2007-05-08 Paul Gilliam <pgilliam@us.ibm.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43 #include "dwarf2-frame.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52
53 #include "solib-svr4.h"
54 #include "ppc-tdep.h"
55
56 #include "gdb_assert.h"
57 #include "dis-asm.h"
58
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
62
63 #include "rs6000-tdep.h"
64
65 /* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72 #define SIG_FRAME_PC_OFFSET 96
73 #define SIG_FRAME_LR_OFFSET 108
74 #define SIG_FRAME_FP_OFFSET 284
75
76 /* To be used by skip_prologue. */
77
78 struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
85 int saved_vr; /* smallest # of saved vr */
86 int saved_ev; /* smallest # of saved ev */
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
92 int vr_offset; /* offset of saved vrs from prev sp */
93 int ev_offset; /* offset of saved evs from prev sp */
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
96 int vrsave_offset; /* offset of saved vrsave register */
97 };
98
99 /* Description of a single register. */
100
101 struct reg
102 {
103 char *name; /* name of register */
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
106 unsigned char fpr; /* whether register is floating-point */
107 unsigned char pseudo; /* whether register is pseudo */
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
111 };
112
113 /* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
117 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
119 /* Static function prototypes */
120
121 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137
138 /* Return true if REGNO is an SPE register, false otherwise. */
139 int
140 spe_register_p (int regno)
141 {
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168 }
169
170
171 /* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
173 int
174 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
180 }
181
182
183 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
190 static void
191 set_sim_regno (int *table, int gdb_regno, int sim_regno)
192 {
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197 }
198
199
200 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
203 static void
204 init_sim_regno_table (struct gdbarch *arch)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281 }
282
283
284 /* Given a GDB register number REG, return the corresponding SIM
285 register number. */
286 static int
287 rs6000_register_sim_regno (int reg)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
292 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
293 sim_regno = tdep->sim_regno[reg];
294
295 if (sim_regno >= 0)
296 return sim_regno;
297 else
298 return LEGACY_SIM_REGNO_IGNORE;
299 }
300
301 \f
302
303 /* Register set support functions. */
304
305 static void
306 ppc_supply_reg (struct regcache *regcache, int regnum,
307 const gdb_byte *regs, size_t offset)
308 {
309 if (regnum != -1 && offset != -1)
310 regcache_raw_supply (regcache, regnum, regs + offset);
311 }
312
313 static void
314 ppc_collect_reg (const struct regcache *regcache, int regnum,
315 gdb_byte *regs, size_t offset)
316 {
317 if (regnum != -1 && offset != -1)
318 regcache_raw_collect (regcache, regnum, regs + offset);
319 }
320
321 /* Supply register REGNUM in the general-purpose register set REGSET
322 from the buffer specified by GREGS and LEN to register cache
323 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
324
325 void
326 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
327 int regnum, const void *gregs, size_t len)
328 {
329 struct gdbarch *gdbarch = get_regcache_arch (regcache);
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 const struct ppc_reg_offsets *offsets = regset->descr;
332 size_t offset;
333 int i;
334
335 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
336 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
337 i++, offset += 4)
338 {
339 if (regnum == -1 || regnum == i)
340 ppc_supply_reg (regcache, i, gregs, offset);
341 }
342
343 if (regnum == -1 || regnum == PC_REGNUM)
344 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
345 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
346 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
347 gregs, offsets->ps_offset);
348 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
349 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
350 gregs, offsets->cr_offset);
351 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
352 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
353 gregs, offsets->lr_offset);
354 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
355 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
356 gregs, offsets->ctr_offset);
357 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
358 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
359 gregs, offsets->cr_offset);
360 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
362 }
363
364 /* Supply register REGNUM in the floating-point register set REGSET
365 from the buffer specified by FPREGS and LEN to register cache
366 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
367
368 void
369 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
370 int regnum, const void *fpregs, size_t len)
371 {
372 struct gdbarch *gdbarch = get_regcache_arch (regcache);
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374 const struct ppc_reg_offsets *offsets = regset->descr;
375 size_t offset;
376 int i;
377
378 gdb_assert (ppc_floating_point_unit_p (gdbarch));
379
380 offset = offsets->f0_offset;
381 for (i = tdep->ppc_fp0_regnum;
382 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
383 i++, offset += 8)
384 {
385 if (regnum == -1 || regnum == i)
386 ppc_supply_reg (regcache, i, fpregs, offset);
387 }
388
389 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
390 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
391 fpregs, offsets->fpscr_offset);
392 }
393
394 /* Collect register REGNUM in the general-purpose register set
395 REGSET. from register cache REGCACHE into the buffer specified by
396 GREGS and LEN. If REGNUM is -1, do this for all registers in
397 REGSET. */
398
399 void
400 ppc_collect_gregset (const struct regset *regset,
401 const struct regcache *regcache,
402 int regnum, void *gregs, size_t len)
403 {
404 struct gdbarch *gdbarch = get_regcache_arch (regcache);
405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
406 const struct ppc_reg_offsets *offsets = regset->descr;
407 size_t offset;
408 int i;
409
410 offset = offsets->r0_offset;
411 for (i = tdep->ppc_gp0_regnum;
412 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
413 i++, offset += 4)
414 {
415 if (regnum == -1 || regnum == i)
416 ppc_collect_reg (regcache, i, gregs, offset);
417 }
418
419 if (regnum == -1 || regnum == PC_REGNUM)
420 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
421 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
422 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
423 gregs, offsets->ps_offset);
424 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
425 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
426 gregs, offsets->cr_offset);
427 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
428 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
429 gregs, offsets->lr_offset);
430 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
431 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
432 gregs, offsets->ctr_offset);
433 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
434 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
435 gregs, offsets->xer_offset);
436 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
438 gregs, offsets->mq_offset);
439 }
440
441 /* Collect register REGNUM in the floating-point register set
442 REGSET. from register cache REGCACHE into the buffer specified by
443 FPREGS and LEN. If REGNUM is -1, do this for all registers in
444 REGSET. */
445
446 void
447 ppc_collect_fpregset (const struct regset *regset,
448 const struct regcache *regcache,
449 int regnum, void *fpregs, size_t len)
450 {
451 struct gdbarch *gdbarch = get_regcache_arch (regcache);
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 const struct ppc_reg_offsets *offsets = regset->descr;
454 size_t offset;
455 int i;
456
457 gdb_assert (ppc_floating_point_unit_p (gdbarch));
458
459 offset = offsets->f0_offset;
460 for (i = tdep->ppc_fp0_regnum;
461 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
462 i++, offset += 8)
463 {
464 if (regnum == -1 || regnum == i)
465 ppc_collect_reg (regcache, i, fpregs, offset);
466 }
467
468 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
469 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
470 fpregs, offsets->fpscr_offset);
471 }
472 \f
473
474 /* Read a LEN-byte address from debugged memory address MEMADDR. */
475
476 static CORE_ADDR
477 read_memory_addr (CORE_ADDR memaddr, int len)
478 {
479 return read_memory_unsigned_integer (memaddr, len);
480 }
481
482 static CORE_ADDR
483 rs6000_skip_prologue (CORE_ADDR pc)
484 {
485 struct rs6000_framedata frame;
486 CORE_ADDR limit_pc, func_addr;
487
488 /* See if we can determine the end of the prologue via the symbol table.
489 If so, then return either PC, or the PC after the prologue, whichever
490 is greater. */
491 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
492 {
493 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
494 if (post_prologue_pc != 0)
495 return max (pc, post_prologue_pc);
496 }
497
498 /* Can't determine prologue from the symbol table, need to examine
499 instructions. */
500
501 /* Find an upper limit on the function prologue using the debug
502 information. If the debug information could not be used to provide
503 that bound, then use an arbitrary large number as the upper bound. */
504 limit_pc = skip_prologue_using_sal (pc);
505 if (limit_pc == 0)
506 limit_pc = pc + 100; /* Magic. */
507
508 pc = skip_prologue (pc, limit_pc, &frame);
509 return pc;
510 }
511
512 static int
513 insn_changes_sp_or_jumps (unsigned long insn)
514 {
515 int opcode = (insn >> 26) & 0x03f;
516 int sd = (insn >> 21) & 0x01f;
517 int a = (insn >> 16) & 0x01f;
518 int subcode = (insn >> 1) & 0x3ff;
519
520 /* Changes the stack pointer. */
521
522 /* NOTE: There are many ways to change the value of a given register.
523 The ways below are those used when the register is R1, the SP,
524 in a funtion's epilogue. */
525
526 if (opcode == 31 && subcode == 444 && a == 1)
527 return 1; /* mr R1,Rn */
528 if (opcode == 14 && sd == 1)
529 return 1; /* addi R1,Rn,simm */
530 if (opcode == 58 && sd == 1)
531 return 1; /* ld R1,ds(Rn) */
532
533 /* Transfers control. */
534
535 if (opcode == 18)
536 return 1; /* b */
537 if (opcode == 16)
538 return 1; /* bc */
539 if (opcode == 19 && subcode == 16)
540 return 1; /* bclr */
541 if (opcode == 19 && subcode == 528)
542 return 1; /* bcctr */
543
544 return 0;
545 }
546
547 /* Return true if we are in the function's epilogue, i.e. after the
548 instruction that destroyed the function's stack frame.
549
550 1) scan forward from the point of execution:
551 a) If you find an instruction that modifies the stack pointer
552 or transfers control (except a return), execution is not in
553 an epilogue, return.
554 b) Stop scanning if you find a return instruction or reach the
555 end of the function or reach the hard limit for the size of
556 an epilogue.
557 2) scan backward from the point of execution:
558 a) If you find an instruction that modifies the stack pointer,
559 execution *is* in an epilogue, return.
560 b) Stop scanning if you reach an instruction that transfers
561 control or the beginning of the function or reach the hard
562 limit for the size of an epilogue. */
563
564 static int
565 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
566 {
567 bfd_byte insn_buf[PPC_INSN_SIZE];
568 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
569 unsigned long insn;
570 struct frame_info *curfrm;
571
572 /* Find the search limits based on function boundaries and hard limit. */
573
574 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
575 return 0;
576
577 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
578 if (epilogue_start < func_start) epilogue_start = func_start;
579
580 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
581 if (epilogue_end > func_end) epilogue_end = func_end;
582
583 curfrm = get_current_frame ();
584
585 /* Scan forward until next 'blr'. */
586
587 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
588 {
589 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
590 return 0;
591 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
592 if (insn == 0x4e800020)
593 break;
594 if (insn_changes_sp_or_jumps (insn))
595 return 0;
596 }
597
598 /* Scan backward until adjustment to stack pointer (R1). */
599
600 for (scan_pc = pc - PPC_INSN_SIZE;
601 scan_pc >= epilogue_start;
602 scan_pc -= PPC_INSN_SIZE)
603 {
604 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
605 return 0;
606 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
607 if (insn_changes_sp_or_jumps (insn))
608 return 1;
609 }
610
611 return 0;
612 }
613
614 /* Get the ith function argument for the current function. */
615 static CORE_ADDR
616 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
617 struct type *type)
618 {
619 return get_frame_register_unsigned (frame, 3 + argi);
620 }
621
622 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
623
624 static CORE_ADDR
625 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
626 {
627 CORE_ADDR dest;
628 int immediate;
629 int absolute;
630 int ext_op;
631
632 absolute = (int) ((instr >> 1) & 1);
633
634 switch (opcode)
635 {
636 case 18:
637 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
638 if (absolute)
639 dest = immediate;
640 else
641 dest = pc + immediate;
642 break;
643
644 case 16:
645 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
646 if (absolute)
647 dest = immediate;
648 else
649 dest = pc + immediate;
650 break;
651
652 case 19:
653 ext_op = (instr >> 1) & 0x3ff;
654
655 if (ext_op == 16) /* br conditional register */
656 {
657 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
658
659 /* If we are about to return from a signal handler, dest is
660 something like 0x3c90. The current frame is a signal handler
661 caller frame, upon completion of the sigreturn system call
662 execution will return to the saved PC in the frame. */
663 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
664 {
665 struct frame_info *fi;
666
667 fi = get_current_frame ();
668 if (fi != NULL)
669 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
670 gdbarch_tdep (current_gdbarch)->wordsize);
671 }
672 }
673
674 else if (ext_op == 528) /* br cond to count reg */
675 {
676 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
677
678 /* If we are about to execute a system call, dest is something
679 like 0x22fc or 0x3b00. Upon completion the system call
680 will return to the address in the link register. */
681 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
682 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
683 }
684 else
685 return -1;
686 break;
687
688 default:
689 return -1;
690 }
691 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
692 }
693
694
695 /* Sequence of bytes for breakpoint instruction. */
696
697 const static unsigned char *
698 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
699 {
700 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
701 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
702 *bp_size = 4;
703 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
704 return big_breakpoint;
705 else
706 return little_breakpoint;
707 }
708
709
710 /* Instruction masks used during single-stepping of atomic sequences. */
711 #define LWARX_MASK 0xfc0007fe
712 #define LWARX_INSTRUCTION 0x7c000028
713 #define LDARX_INSTRUCTION 0x7c0000A8
714 #define STWCX_MASK 0xfc0007ff
715 #define STWCX_INSTRUCTION 0x7c00012d
716 #define STDCX_INSTRUCTION 0x7c0001ad
717 #define BC_MASK 0xfc000000
718 #define BC_INSTRUCTION 0x40000000
719
720 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
721 instruction and ending with a STWCX/STDCX instruction. If such a sequence
722 is found, attempt to step through it. A breakpoint is placed at the end of
723 the sequence. */
724
725 static int
726 deal_with_atomic_sequence (struct regcache *regcache)
727 {
728 CORE_ADDR pc = read_pc ();
729 CORE_ADDR breaks[2] = {-1, -1};
730 CORE_ADDR loc = pc;
731 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
732 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
733 int insn_count;
734 int index;
735 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
736 const int atomic_sequence_length = 16; /* Instruction sequence length. */
737 const int opcode = BC_INSTRUCTION; /* Branch instruction's OPcode. */
738 int bc_insn_count = 0; /* Conditional branch instruction count. */
739
740 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
741 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
742 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
743 return 0;
744
745 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
746 instructions. */
747 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
748 {
749 loc += PPC_INSN_SIZE;
750 insn = read_memory_integer (loc, PPC_INSN_SIZE);
751
752 /* Assume that there is at most one conditional branch in the atomic
753 sequence. If a conditional branch is found, put a breakpoint in
754 its destination address. */
755 if ((insn & BC_MASK) == BC_INSTRUCTION)
756 {
757 if (bc_insn_count >= 1)
758 return 0; /* More than one conditional branch found, fallback
759 to the standard single-step code. */
760
761 branch_bp = branch_dest (opcode, insn, pc, breaks[0]);
762
763 if (branch_bp != -1)
764 {
765 breaks[1] = branch_bp;
766 bc_insn_count++;
767 last_breakpoint++;
768 }
769 }
770
771 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
772 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
773 break;
774 }
775
776 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
777 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
778 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
779 return 0;
780
781 loc += PPC_INSN_SIZE;
782 insn = read_memory_integer (loc, PPC_INSN_SIZE);
783
784 /* Insert a breakpoint right after the end of the atomic sequence. */
785 breaks[0] = loc;
786
787 /* Check for duplicated breakpoints. */
788 if (last_breakpoint && (breaks[1] == breaks[0]))
789 last_breakpoint = 0;
790
791 /* Effectively inserts the breakpoints. */
792 for (index = 0; index <= last_breakpoint; index++)
793 insert_single_step_breakpoint (breaks[index]);
794
795 return 1;
796 }
797
798 /* AIX does not support PT_STEP. Simulate it. */
799
800 int
801 rs6000_software_single_step (struct regcache *regcache)
802 {
803 CORE_ADDR dummy;
804 int breakp_sz;
805 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
806 int ii, insn;
807 CORE_ADDR loc;
808 CORE_ADDR breaks[2];
809 int opcode;
810
811 loc = read_pc ();
812
813 insn = read_memory_integer (loc, 4);
814
815 if (deal_with_atomic_sequence (regcache))
816 return 1;
817
818 breaks[0] = loc + breakp_sz;
819 opcode = insn >> 26;
820 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
821
822 /* Don't put two breakpoints on the same address. */
823 if (breaks[1] == breaks[0])
824 breaks[1] = -1;
825
826 for (ii = 0; ii < 2; ++ii)
827 {
828 /* ignore invalid breakpoint. */
829 if (breaks[ii] == -1)
830 continue;
831 insert_single_step_breakpoint (breaks[ii]);
832 }
833
834 errno = 0; /* FIXME, don't ignore errors! */
835 /* What errors? {read,write}_memory call error(). */
836 return 1;
837 }
838
839
840 /* return pc value after skipping a function prologue and also return
841 information about a function frame.
842
843 in struct rs6000_framedata fdata:
844 - frameless is TRUE, if function does not have a frame.
845 - nosavedpc is TRUE, if function does not save %pc value in its frame.
846 - offset is the initial size of this stack frame --- the amount by
847 which we decrement the sp to allocate the frame.
848 - saved_gpr is the number of the first saved gpr.
849 - saved_fpr is the number of the first saved fpr.
850 - saved_vr is the number of the first saved vr.
851 - saved_ev is the number of the first saved ev.
852 - alloca_reg is the number of the register used for alloca() handling.
853 Otherwise -1.
854 - gpr_offset is the offset of the first saved gpr from the previous frame.
855 - fpr_offset is the offset of the first saved fpr from the previous frame.
856 - vr_offset is the offset of the first saved vr from the previous frame.
857 - ev_offset is the offset of the first saved ev from the previous frame.
858 - lr_offset is the offset of the saved lr
859 - cr_offset is the offset of the saved cr
860 - vrsave_offset is the offset of the saved vrsave register
861 */
862
863 #define SIGNED_SHORT(x) \
864 ((sizeof (short) == 2) \
865 ? ((int)(short)(x)) \
866 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
867
868 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
869
870 /* Limit the number of skipped non-prologue instructions, as the examining
871 of the prologue is expensive. */
872 static int max_skip_non_prologue_insns = 10;
873
874 /* Return nonzero if the given instruction OP can be part of the prologue
875 of a function and saves a parameter on the stack. FRAMEP should be
876 set if one of the previous instructions in the function has set the
877 Frame Pointer. */
878
879 static int
880 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
881 {
882 /* Move parameters from argument registers to temporary register. */
883 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
884 {
885 /* Rx must be scratch register r0. */
886 const int rx_regno = (op >> 16) & 31;
887 /* Ry: Only r3 - r10 are used for parameter passing. */
888 const int ry_regno = GET_SRC_REG (op);
889
890 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
891 {
892 *r0_contains_arg = 1;
893 return 1;
894 }
895 else
896 return 0;
897 }
898
899 /* Save a General Purpose Register on stack. */
900
901 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
902 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
903 {
904 /* Rx: Only r3 - r10 are used for parameter passing. */
905 const int rx_regno = GET_SRC_REG (op);
906
907 return (rx_regno >= 3 && rx_regno <= 10);
908 }
909
910 /* Save a General Purpose Register on stack via the Frame Pointer. */
911
912 if (framep &&
913 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
914 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
915 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
916 {
917 /* Rx: Usually, only r3 - r10 are used for parameter passing.
918 However, the compiler sometimes uses r0 to hold an argument. */
919 const int rx_regno = GET_SRC_REG (op);
920
921 return ((rx_regno >= 3 && rx_regno <= 10)
922 || (rx_regno == 0 && *r0_contains_arg));
923 }
924
925 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
926 {
927 /* Only f2 - f8 are used for parameter passing. */
928 const int src_regno = GET_SRC_REG (op);
929
930 return (src_regno >= 2 && src_regno <= 8);
931 }
932
933 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
934 {
935 /* Only f2 - f8 are used for parameter passing. */
936 const int src_regno = GET_SRC_REG (op);
937
938 return (src_regno >= 2 && src_regno <= 8);
939 }
940
941 /* Not an insn that saves a parameter on stack. */
942 return 0;
943 }
944
945 /* Assuming that INSN is a "bl" instruction located at PC, return
946 nonzero if the destination of the branch is a "blrl" instruction.
947
948 This sequence is sometimes found in certain function prologues.
949 It allows the function to load the LR register with a value that
950 they can use to access PIC data using PC-relative offsets. */
951
952 static int
953 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
954 {
955 const int opcode = 18;
956 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
957 int dest_insn;
958
959 if (dest == -1)
960 return 0; /* Should never happen, but just return zero to be safe. */
961
962 dest_insn = read_memory_integer (dest, 4);
963 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
964 return 1;
965
966 return 0;
967 }
968
969 static CORE_ADDR
970 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
971 {
972 CORE_ADDR orig_pc = pc;
973 CORE_ADDR last_prologue_pc = pc;
974 CORE_ADDR li_found_pc = 0;
975 gdb_byte buf[4];
976 unsigned long op;
977 long offset = 0;
978 long vr_saved_offset = 0;
979 int lr_reg = -1;
980 int cr_reg = -1;
981 int vr_reg = -1;
982 int ev_reg = -1;
983 long ev_offset = 0;
984 int vrsave_reg = -1;
985 int reg;
986 int framep = 0;
987 int minimal_toc_loaded = 0;
988 int prev_insn_was_prologue_insn = 1;
989 int num_skip_non_prologue_insns = 0;
990 int r0_contains_arg = 0;
991 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
992 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
993
994 memset (fdata, 0, sizeof (struct rs6000_framedata));
995 fdata->saved_gpr = -1;
996 fdata->saved_fpr = -1;
997 fdata->saved_vr = -1;
998 fdata->saved_ev = -1;
999 fdata->alloca_reg = -1;
1000 fdata->frameless = 1;
1001 fdata->nosavedpc = 1;
1002
1003 for (;; pc += 4)
1004 {
1005 /* Sometimes it isn't clear if an instruction is a prologue
1006 instruction or not. When we encounter one of these ambiguous
1007 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1008 Otherwise, we'll assume that it really is a prologue instruction. */
1009 if (prev_insn_was_prologue_insn)
1010 last_prologue_pc = pc;
1011
1012 /* Stop scanning if we've hit the limit. */
1013 if (pc >= lim_pc)
1014 break;
1015
1016 prev_insn_was_prologue_insn = 1;
1017
1018 /* Fetch the instruction and convert it to an integer. */
1019 if (target_read_memory (pc, buf, 4))
1020 break;
1021 op = extract_unsigned_integer (buf, 4);
1022
1023 if ((op & 0xfc1fffff) == 0x7c0802a6)
1024 { /* mflr Rx */
1025 /* Since shared library / PIC code, which needs to get its
1026 address at runtime, can appear to save more than one link
1027 register vis:
1028
1029 *INDENT-OFF*
1030 stwu r1,-304(r1)
1031 mflr r3
1032 bl 0xff570d0 (blrl)
1033 stw r30,296(r1)
1034 mflr r30
1035 stw r31,300(r1)
1036 stw r3,308(r1);
1037 ...
1038 *INDENT-ON*
1039
1040 remember just the first one, but skip over additional
1041 ones. */
1042 if (lr_reg == -1)
1043 lr_reg = (op & 0x03e00000);
1044 if (lr_reg == 0)
1045 r0_contains_arg = 0;
1046 continue;
1047 }
1048 else if ((op & 0xfc1fffff) == 0x7c000026)
1049 { /* mfcr Rx */
1050 cr_reg = (op & 0x03e00000);
1051 if (cr_reg == 0)
1052 r0_contains_arg = 0;
1053 continue;
1054
1055 }
1056 else if ((op & 0xfc1f0000) == 0xd8010000)
1057 { /* stfd Rx,NUM(r1) */
1058 reg = GET_SRC_REG (op);
1059 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1060 {
1061 fdata->saved_fpr = reg;
1062 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1063 }
1064 continue;
1065
1066 }
1067 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1068 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1069 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1070 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1071 {
1072
1073 reg = GET_SRC_REG (op);
1074 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1075 {
1076 fdata->saved_gpr = reg;
1077 if ((op & 0xfc1f0003) == 0xf8010000)
1078 op &= ~3UL;
1079 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1080 }
1081 continue;
1082
1083 }
1084 else if ((op & 0xffff0000) == 0x60000000)
1085 {
1086 /* nop */
1087 /* Allow nops in the prologue, but do not consider them to
1088 be part of the prologue unless followed by other prologue
1089 instructions. */
1090 prev_insn_was_prologue_insn = 0;
1091 continue;
1092
1093 }
1094 else if ((op & 0xffff0000) == 0x3c000000)
1095 { /* addis 0,0,NUM, used
1096 for >= 32k frames */
1097 fdata->offset = (op & 0x0000ffff) << 16;
1098 fdata->frameless = 0;
1099 r0_contains_arg = 0;
1100 continue;
1101
1102 }
1103 else if ((op & 0xffff0000) == 0x60000000)
1104 { /* ori 0,0,NUM, 2nd ha
1105 lf of >= 32k frames */
1106 fdata->offset |= (op & 0x0000ffff);
1107 fdata->frameless = 0;
1108 r0_contains_arg = 0;
1109 continue;
1110
1111 }
1112 else if (lr_reg >= 0 &&
1113 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1114 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1115 /* stw Rx, NUM(r1) */
1116 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1117 /* stwu Rx, NUM(r1) */
1118 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1119 { /* where Rx == lr */
1120 fdata->lr_offset = offset;
1121 fdata->nosavedpc = 0;
1122 /* Invalidate lr_reg, but don't set it to -1.
1123 That would mean that it had never been set. */
1124 lr_reg = -2;
1125 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1126 (op & 0xfc000000) == 0x90000000) /* stw */
1127 {
1128 /* Does not update r1, so add displacement to lr_offset. */
1129 fdata->lr_offset += SIGNED_SHORT (op);
1130 }
1131 continue;
1132
1133 }
1134 else if (cr_reg >= 0 &&
1135 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1136 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1137 /* stw Rx, NUM(r1) */
1138 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1139 /* stwu Rx, NUM(r1) */
1140 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1141 { /* where Rx == cr */
1142 fdata->cr_offset = offset;
1143 /* Invalidate cr_reg, but don't set it to -1.
1144 That would mean that it had never been set. */
1145 cr_reg = -2;
1146 if ((op & 0xfc000003) == 0xf8000000 ||
1147 (op & 0xfc000000) == 0x90000000)
1148 {
1149 /* Does not update r1, so add displacement to cr_offset. */
1150 fdata->cr_offset += SIGNED_SHORT (op);
1151 }
1152 continue;
1153
1154 }
1155 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1156 {
1157 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1158 prediction bits. If the LR has already been saved, we can
1159 skip it. */
1160 continue;
1161 }
1162 else if (op == 0x48000005)
1163 { /* bl .+4 used in
1164 -mrelocatable */
1165 continue;
1166
1167 }
1168 else if (op == 0x48000004)
1169 { /* b .+4 (xlc) */
1170 break;
1171
1172 }
1173 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1174 in V.4 -mminimal-toc */
1175 (op & 0xffff0000) == 0x3bde0000)
1176 { /* addi 30,30,foo@l */
1177 continue;
1178
1179 }
1180 else if ((op & 0xfc000001) == 0x48000001)
1181 { /* bl foo,
1182 to save fprs??? */
1183
1184 fdata->frameless = 0;
1185
1186 /* If the return address has already been saved, we can skip
1187 calls to blrl (for PIC). */
1188 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1189 continue;
1190
1191 /* Don't skip over the subroutine call if it is not within
1192 the first three instructions of the prologue and either
1193 we have no line table information or the line info tells
1194 us that the subroutine call is not part of the line
1195 associated with the prologue. */
1196 if ((pc - orig_pc) > 8)
1197 {
1198 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1199 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1200
1201 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1202 break;
1203 }
1204
1205 op = read_memory_integer (pc + 4, 4);
1206
1207 /* At this point, make sure this is not a trampoline
1208 function (a function that simply calls another functions,
1209 and nothing else). If the next is not a nop, this branch
1210 was part of the function prologue. */
1211
1212 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1213 break; /* don't skip over
1214 this branch */
1215 continue;
1216
1217 }
1218 /* update stack pointer */
1219 else if ((op & 0xfc1f0000) == 0x94010000)
1220 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1221 fdata->frameless = 0;
1222 fdata->offset = SIGNED_SHORT (op);
1223 offset = fdata->offset;
1224 continue;
1225 }
1226 else if ((op & 0xfc1f016a) == 0x7c01016e)
1227 { /* stwux rX,r1,rY */
1228 /* no way to figure out what r1 is going to be */
1229 fdata->frameless = 0;
1230 offset = fdata->offset;
1231 continue;
1232 }
1233 else if ((op & 0xfc1f0003) == 0xf8010001)
1234 { /* stdu rX,NUM(r1) */
1235 fdata->frameless = 0;
1236 fdata->offset = SIGNED_SHORT (op & ~3UL);
1237 offset = fdata->offset;
1238 continue;
1239 }
1240 else if ((op & 0xfc1f016a) == 0x7c01016a)
1241 { /* stdux rX,r1,rY */
1242 /* no way to figure out what r1 is going to be */
1243 fdata->frameless = 0;
1244 offset = fdata->offset;
1245 continue;
1246 }
1247 else if ((op & 0xffff0000) == 0x38210000)
1248 { /* addi r1,r1,SIMM */
1249 fdata->frameless = 0;
1250 fdata->offset += SIGNED_SHORT (op);
1251 offset = fdata->offset;
1252 continue;
1253 }
1254 /* Load up minimal toc pointer. Do not treat an epilogue restore
1255 of r31 as a minimal TOC load. */
1256 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1257 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1258 && !framep
1259 && !minimal_toc_loaded)
1260 {
1261 minimal_toc_loaded = 1;
1262 continue;
1263
1264 /* move parameters from argument registers to local variable
1265 registers */
1266 }
1267 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1268 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1269 (((op >> 21) & 31) <= 10) &&
1270 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1271 {
1272 continue;
1273
1274 /* store parameters in stack */
1275 }
1276 /* Move parameters from argument registers to temporary register. */
1277 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1278 {
1279 continue;
1280
1281 /* Set up frame pointer */
1282 }
1283 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1284 || op == 0x7c3f0b78)
1285 { /* mr r31, r1 */
1286 fdata->frameless = 0;
1287 framep = 1;
1288 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1289 continue;
1290
1291 /* Another way to set up the frame pointer. */
1292 }
1293 else if ((op & 0xfc1fffff) == 0x38010000)
1294 { /* addi rX, r1, 0x0 */
1295 fdata->frameless = 0;
1296 framep = 1;
1297 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1298 + ((op & ~0x38010000) >> 21));
1299 continue;
1300 }
1301 /* AltiVec related instructions. */
1302 /* Store the vrsave register (spr 256) in another register for
1303 later manipulation, or load a register into the vrsave
1304 register. 2 instructions are used: mfvrsave and
1305 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1306 and mtspr SPR256, Rn. */
1307 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1308 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1309 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1310 {
1311 vrsave_reg = GET_SRC_REG (op);
1312 continue;
1313 }
1314 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1315 {
1316 continue;
1317 }
1318 /* Store the register where vrsave was saved to onto the stack:
1319 rS is the register where vrsave was stored in a previous
1320 instruction. */
1321 /* 100100 sssss 00001 dddddddd dddddddd */
1322 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1323 {
1324 if (vrsave_reg == GET_SRC_REG (op))
1325 {
1326 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1327 vrsave_reg = -1;
1328 }
1329 continue;
1330 }
1331 /* Compute the new value of vrsave, by modifying the register
1332 where vrsave was saved to. */
1333 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1334 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1335 {
1336 continue;
1337 }
1338 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1339 in a pair of insns to save the vector registers on the
1340 stack. */
1341 /* 001110 00000 00000 iiii iiii iiii iiii */
1342 /* 001110 01110 00000 iiii iiii iiii iiii */
1343 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1344 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1345 {
1346 if ((op & 0xffff0000) == 0x38000000)
1347 r0_contains_arg = 0;
1348 li_found_pc = pc;
1349 vr_saved_offset = SIGNED_SHORT (op);
1350
1351 /* This insn by itself is not part of the prologue, unless
1352 if part of the pair of insns mentioned above. So do not
1353 record this insn as part of the prologue yet. */
1354 prev_insn_was_prologue_insn = 0;
1355 }
1356 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1357 /* 011111 sssss 11111 00000 00111001110 */
1358 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1359 {
1360 if (pc == (li_found_pc + 4))
1361 {
1362 vr_reg = GET_SRC_REG (op);
1363 /* If this is the first vector reg to be saved, or if
1364 it has a lower number than others previously seen,
1365 reupdate the frame info. */
1366 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1367 {
1368 fdata->saved_vr = vr_reg;
1369 fdata->vr_offset = vr_saved_offset + offset;
1370 }
1371 vr_saved_offset = -1;
1372 vr_reg = -1;
1373 li_found_pc = 0;
1374 }
1375 }
1376 /* End AltiVec related instructions. */
1377
1378 /* Start BookE related instructions. */
1379 /* Store gen register S at (r31+uimm).
1380 Any register less than r13 is volatile, so we don't care. */
1381 /* 000100 sssss 11111 iiiii 01100100001 */
1382 else if (arch_info->mach == bfd_mach_ppc_e500
1383 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1384 {
1385 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1386 {
1387 unsigned int imm;
1388 ev_reg = GET_SRC_REG (op);
1389 imm = (op >> 11) & 0x1f;
1390 ev_offset = imm * 8;
1391 /* If this is the first vector reg to be saved, or if
1392 it has a lower number than others previously seen,
1393 reupdate the frame info. */
1394 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1395 {
1396 fdata->saved_ev = ev_reg;
1397 fdata->ev_offset = ev_offset + offset;
1398 }
1399 }
1400 continue;
1401 }
1402 /* Store gen register rS at (r1+rB). */
1403 /* 000100 sssss 00001 bbbbb 01100100000 */
1404 else if (arch_info->mach == bfd_mach_ppc_e500
1405 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1406 {
1407 if (pc == (li_found_pc + 4))
1408 {
1409 ev_reg = GET_SRC_REG (op);
1410 /* If this is the first vector reg to be saved, or if
1411 it has a lower number than others previously seen,
1412 reupdate the frame info. */
1413 /* We know the contents of rB from the previous instruction. */
1414 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1415 {
1416 fdata->saved_ev = ev_reg;
1417 fdata->ev_offset = vr_saved_offset + offset;
1418 }
1419 vr_saved_offset = -1;
1420 ev_reg = -1;
1421 li_found_pc = 0;
1422 }
1423 continue;
1424 }
1425 /* Store gen register r31 at (rA+uimm). */
1426 /* 000100 11111 aaaaa iiiii 01100100001 */
1427 else if (arch_info->mach == bfd_mach_ppc_e500
1428 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1429 {
1430 /* Wwe know that the source register is 31 already, but
1431 it can't hurt to compute it. */
1432 ev_reg = GET_SRC_REG (op);
1433 ev_offset = ((op >> 11) & 0x1f) * 8;
1434 /* If this is the first vector reg to be saved, or if
1435 it has a lower number than others previously seen,
1436 reupdate the frame info. */
1437 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1438 {
1439 fdata->saved_ev = ev_reg;
1440 fdata->ev_offset = ev_offset + offset;
1441 }
1442
1443 continue;
1444 }
1445 /* Store gen register S at (r31+r0).
1446 Store param on stack when offset from SP bigger than 4 bytes. */
1447 /* 000100 sssss 11111 00000 01100100000 */
1448 else if (arch_info->mach == bfd_mach_ppc_e500
1449 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1450 {
1451 if (pc == (li_found_pc + 4))
1452 {
1453 if ((op & 0x03e00000) >= 0x01a00000)
1454 {
1455 ev_reg = GET_SRC_REG (op);
1456 /* If this is the first vector reg to be saved, or if
1457 it has a lower number than others previously seen,
1458 reupdate the frame info. */
1459 /* We know the contents of r0 from the previous
1460 instruction. */
1461 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1462 {
1463 fdata->saved_ev = ev_reg;
1464 fdata->ev_offset = vr_saved_offset + offset;
1465 }
1466 ev_reg = -1;
1467 }
1468 vr_saved_offset = -1;
1469 li_found_pc = 0;
1470 continue;
1471 }
1472 }
1473 /* End BookE related instructions. */
1474
1475 else
1476 {
1477 /* Not a recognized prologue instruction.
1478 Handle optimizer code motions into the prologue by continuing
1479 the search if we have no valid frame yet or if the return
1480 address is not yet saved in the frame. */
1481 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1482 break;
1483
1484 if (op == 0x4e800020 /* blr */
1485 || op == 0x4e800420) /* bctr */
1486 /* Do not scan past epilogue in frameless functions or
1487 trampolines. */
1488 break;
1489 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1490 /* Never skip branches. */
1491 break;
1492
1493 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1494 /* Do not scan too many insns, scanning insns is expensive with
1495 remote targets. */
1496 break;
1497
1498 /* Continue scanning. */
1499 prev_insn_was_prologue_insn = 0;
1500 continue;
1501 }
1502 }
1503
1504 #if 0
1505 /* I have problems with skipping over __main() that I need to address
1506 * sometime. Previously, I used to use misc_function_vector which
1507 * didn't work as well as I wanted to be. -MGO */
1508
1509 /* If the first thing after skipping a prolog is a branch to a function,
1510 this might be a call to an initializer in main(), introduced by gcc2.
1511 We'd like to skip over it as well. Fortunately, xlc does some extra
1512 work before calling a function right after a prologue, thus we can
1513 single out such gcc2 behaviour. */
1514
1515
1516 if ((op & 0xfc000001) == 0x48000001)
1517 { /* bl foo, an initializer function? */
1518 op = read_memory_integer (pc + 4, 4);
1519
1520 if (op == 0x4def7b82)
1521 { /* cror 0xf, 0xf, 0xf (nop) */
1522
1523 /* Check and see if we are in main. If so, skip over this
1524 initializer function as well. */
1525
1526 tmp = find_pc_misc_function (pc);
1527 if (tmp >= 0
1528 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1529 return pc + 8;
1530 }
1531 }
1532 #endif /* 0 */
1533
1534 fdata->offset = -fdata->offset;
1535 return last_prologue_pc;
1536 }
1537
1538
1539 /*************************************************************************
1540 Support for creating pushing a dummy frame into the stack, and popping
1541 frames, etc.
1542 *************************************************************************/
1543
1544
1545 /* All the ABI's require 16 byte alignment. */
1546 static CORE_ADDR
1547 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1548 {
1549 return (addr & -16);
1550 }
1551
1552 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1553 the first eight words of the argument list (that might be less than
1554 eight parameters if some parameters occupy more than one word) are
1555 passed in r3..r10 registers. float and double parameters are
1556 passed in fpr's, in addition to that. Rest of the parameters if any
1557 are passed in user stack. There might be cases in which half of the
1558 parameter is copied into registers, the other half is pushed into
1559 stack.
1560
1561 Stack must be aligned on 64-bit boundaries when synthesizing
1562 function calls.
1563
1564 If the function is returning a structure, then the return address is passed
1565 in r3, then the first 7 words of the parameters can be passed in registers,
1566 starting from r4. */
1567
1568 static CORE_ADDR
1569 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1570 struct regcache *regcache, CORE_ADDR bp_addr,
1571 int nargs, struct value **args, CORE_ADDR sp,
1572 int struct_return, CORE_ADDR struct_addr)
1573 {
1574 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1575 int ii;
1576 int len = 0;
1577 int argno; /* current argument number */
1578 int argbytes; /* current argument byte */
1579 gdb_byte tmp_buffer[50];
1580 int f_argno = 0; /* current floating point argno */
1581 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1582 CORE_ADDR func_addr = find_function_addr (function, NULL);
1583
1584 struct value *arg = 0;
1585 struct type *type;
1586
1587 CORE_ADDR saved_sp;
1588
1589 /* The calling convention this function implements assumes the
1590 processor has floating-point registers. We shouldn't be using it
1591 on PPC variants that lack them. */
1592 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1593
1594 /* The first eight words of ther arguments are passed in registers.
1595 Copy them appropriately. */
1596 ii = 0;
1597
1598 /* If the function is returning a `struct', then the first word
1599 (which will be passed in r3) is used for struct return address.
1600 In that case we should advance one word and start from r4
1601 register to copy parameters. */
1602 if (struct_return)
1603 {
1604 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1605 struct_addr);
1606 ii++;
1607 }
1608
1609 /*
1610 effectively indirect call... gcc does...
1611
1612 return_val example( float, int);
1613
1614 eabi:
1615 float in fp0, int in r3
1616 offset of stack on overflow 8/16
1617 for varargs, must go by type.
1618 power open:
1619 float in r3&r4, int in r5
1620 offset of stack on overflow different
1621 both:
1622 return in r3 or f0. If no float, must study how gcc emulates floats;
1623 pay attention to arg promotion.
1624 User may have to cast\args to handle promotion correctly
1625 since gdb won't know if prototype supplied or not.
1626 */
1627
1628 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1629 {
1630 int reg_size = register_size (current_gdbarch, ii + 3);
1631
1632 arg = args[argno];
1633 type = check_typedef (value_type (arg));
1634 len = TYPE_LENGTH (type);
1635
1636 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1637 {
1638
1639 /* Floating point arguments are passed in fpr's, as well as gpr's.
1640 There are 13 fpr's reserved for passing parameters. At this point
1641 there is no way we would run out of them. */
1642
1643 gdb_assert (len <= 8);
1644
1645 regcache_cooked_write (regcache,
1646 tdep->ppc_fp0_regnum + 1 + f_argno,
1647 value_contents (arg));
1648 ++f_argno;
1649 }
1650
1651 if (len > reg_size)
1652 {
1653
1654 /* Argument takes more than one register. */
1655 while (argbytes < len)
1656 {
1657 gdb_byte word[MAX_REGISTER_SIZE];
1658 memset (word, 0, reg_size);
1659 memcpy (word,
1660 ((char *) value_contents (arg)) + argbytes,
1661 (len - argbytes) > reg_size
1662 ? reg_size : len - argbytes);
1663 regcache_cooked_write (regcache,
1664 tdep->ppc_gp0_regnum + 3 + ii,
1665 word);
1666 ++ii, argbytes += reg_size;
1667
1668 if (ii >= 8)
1669 goto ran_out_of_registers_for_arguments;
1670 }
1671 argbytes = 0;
1672 --ii;
1673 }
1674 else
1675 {
1676 /* Argument can fit in one register. No problem. */
1677 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1678 gdb_byte word[MAX_REGISTER_SIZE];
1679
1680 memset (word, 0, reg_size);
1681 memcpy (word, value_contents (arg), len);
1682 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1683 }
1684 ++argno;
1685 }
1686
1687 ran_out_of_registers_for_arguments:
1688
1689 saved_sp = read_sp ();
1690
1691 /* Location for 8 parameters are always reserved. */
1692 sp -= wordsize * 8;
1693
1694 /* Another six words for back chain, TOC register, link register, etc. */
1695 sp -= wordsize * 6;
1696
1697 /* Stack pointer must be quadword aligned. */
1698 sp &= -16;
1699
1700 /* If there are more arguments, allocate space for them in
1701 the stack, then push them starting from the ninth one. */
1702
1703 if ((argno < nargs) || argbytes)
1704 {
1705 int space = 0, jj;
1706
1707 if (argbytes)
1708 {
1709 space += ((len - argbytes + 3) & -4);
1710 jj = argno + 1;
1711 }
1712 else
1713 jj = argno;
1714
1715 for (; jj < nargs; ++jj)
1716 {
1717 struct value *val = args[jj];
1718 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1719 }
1720
1721 /* Add location required for the rest of the parameters. */
1722 space = (space + 15) & -16;
1723 sp -= space;
1724
1725 /* This is another instance we need to be concerned about
1726 securing our stack space. If we write anything underneath %sp
1727 (r1), we might conflict with the kernel who thinks he is free
1728 to use this area. So, update %sp first before doing anything
1729 else. */
1730
1731 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1732
1733 /* If the last argument copied into the registers didn't fit there
1734 completely, push the rest of it into stack. */
1735
1736 if (argbytes)
1737 {
1738 write_memory (sp + 24 + (ii * 4),
1739 value_contents (arg) + argbytes,
1740 len - argbytes);
1741 ++argno;
1742 ii += ((len - argbytes + 3) & -4) / 4;
1743 }
1744
1745 /* Push the rest of the arguments into stack. */
1746 for (; argno < nargs; ++argno)
1747 {
1748
1749 arg = args[argno];
1750 type = check_typedef (value_type (arg));
1751 len = TYPE_LENGTH (type);
1752
1753
1754 /* Float types should be passed in fpr's, as well as in the
1755 stack. */
1756 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1757 {
1758
1759 gdb_assert (len <= 8);
1760
1761 regcache_cooked_write (regcache,
1762 tdep->ppc_fp0_regnum + 1 + f_argno,
1763 value_contents (arg));
1764 ++f_argno;
1765 }
1766
1767 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1768 ii += ((len + 3) & -4) / 4;
1769 }
1770 }
1771
1772 /* Set the stack pointer. According to the ABI, the SP is meant to
1773 be set _before_ the corresponding stack space is used. On AIX,
1774 this even applies when the target has been completely stopped!
1775 Not doing this can lead to conflicts with the kernel which thinks
1776 that it still has control over this not-yet-allocated stack
1777 region. */
1778 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1779
1780 /* Set back chain properly. */
1781 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1782 write_memory (sp, tmp_buffer, wordsize);
1783
1784 /* Point the inferior function call's return address at the dummy's
1785 breakpoint. */
1786 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1787
1788 /* Set the TOC register, get the value from the objfile reader
1789 which, in turn, gets it from the VMAP table. */
1790 if (rs6000_find_toc_address_hook != NULL)
1791 {
1792 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1793 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1794 }
1795
1796 target_store_registers (regcache, -1);
1797 return sp;
1798 }
1799
1800 static enum return_value_convention
1801 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1802 struct regcache *regcache, gdb_byte *readbuf,
1803 const gdb_byte *writebuf)
1804 {
1805 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1806 gdb_byte buf[8];
1807
1808 /* The calling convention this function implements assumes the
1809 processor has floating-point registers. We shouldn't be using it
1810 on PowerPC variants that lack them. */
1811 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1812
1813 /* AltiVec extension: Functions that declare a vector data type as a
1814 return value place that return value in VR2. */
1815 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1816 && TYPE_LENGTH (valtype) == 16)
1817 {
1818 if (readbuf)
1819 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1820 if (writebuf)
1821 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1822
1823 return RETURN_VALUE_REGISTER_CONVENTION;
1824 }
1825
1826 /* If the called subprogram returns an aggregate, there exists an
1827 implicit first argument, whose value is the address of a caller-
1828 allocated buffer into which the callee is assumed to store its
1829 return value. All explicit parameters are appropriately
1830 relabeled. */
1831 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1832 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1833 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1834 return RETURN_VALUE_STRUCT_CONVENTION;
1835
1836 /* Scalar floating-point values are returned in FPR1 for float or
1837 double, and in FPR1:FPR2 for quadword precision. Fortran
1838 complex*8 and complex*16 are returned in FPR1:FPR2, and
1839 complex*32 is returned in FPR1:FPR4. */
1840 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1841 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1842 {
1843 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1844 gdb_byte regval[8];
1845
1846 /* FIXME: kettenis/2007-01-01: Add support for quadword
1847 precision and complex. */
1848
1849 if (readbuf)
1850 {
1851 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1852 convert_typed_floating (regval, regtype, readbuf, valtype);
1853 }
1854 if (writebuf)
1855 {
1856 convert_typed_floating (writebuf, valtype, regval, regtype);
1857 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1858 }
1859
1860 return RETURN_VALUE_REGISTER_CONVENTION;
1861 }
1862
1863 /* Values of the types int, long, short, pointer, and char (length
1864 is less than or equal to four bytes), as well as bit values of
1865 lengths less than or equal to 32 bits, must be returned right
1866 justified in GPR3 with signed values sign extended and unsigned
1867 values zero extended, as necessary. */
1868 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1869 {
1870 if (readbuf)
1871 {
1872 ULONGEST regval;
1873
1874 /* For reading we don't have to worry about sign extension. */
1875 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1876 &regval);
1877 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1878 }
1879 if (writebuf)
1880 {
1881 /* For writing, use unpack_long since that should handle any
1882 required sign extension. */
1883 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1884 unpack_long (valtype, writebuf));
1885 }
1886
1887 return RETURN_VALUE_REGISTER_CONVENTION;
1888 }
1889
1890 /* Eight-byte non-floating-point scalar values must be returned in
1891 GPR3:GPR4. */
1892
1893 if (TYPE_LENGTH (valtype) == 8)
1894 {
1895 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1896 gdb_assert (tdep->wordsize == 4);
1897
1898 if (readbuf)
1899 {
1900 gdb_byte regval[8];
1901
1902 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1903 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1904 regval + 4);
1905 memcpy (readbuf, regval, 8);
1906 }
1907 if (writebuf)
1908 {
1909 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1910 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1911 writebuf + 4);
1912 }
1913
1914 return RETURN_VALUE_REGISTER_CONVENTION;
1915 }
1916
1917 return RETURN_VALUE_STRUCT_CONVENTION;
1918 }
1919
1920 /* Return whether handle_inferior_event() should proceed through code
1921 starting at PC in function NAME when stepping.
1922
1923 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1924 handle memory references that are too distant to fit in instructions
1925 generated by the compiler. For example, if 'foo' in the following
1926 instruction:
1927
1928 lwz r9,foo(r2)
1929
1930 is greater than 32767, the linker might replace the lwz with a branch to
1931 somewhere in @FIX1 that does the load in 2 instructions and then branches
1932 back to where execution should continue.
1933
1934 GDB should silently step over @FIX code, just like AIX dbx does.
1935 Unfortunately, the linker uses the "b" instruction for the
1936 branches, meaning that the link register doesn't get set.
1937 Therefore, GDB's usual step_over_function () mechanism won't work.
1938
1939 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1940 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1941 @FIX code. */
1942
1943 int
1944 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1945 {
1946 return name && !strncmp (name, "@FIX", 4);
1947 }
1948
1949 /* Skip code that the user doesn't want to see when stepping:
1950
1951 1. Indirect function calls use a piece of trampoline code to do context
1952 switching, i.e. to set the new TOC table. Skip such code if we are on
1953 its first instruction (as when we have single-stepped to here).
1954
1955 2. Skip shared library trampoline code (which is different from
1956 indirect function call trampolines).
1957
1958 3. Skip bigtoc fixup code.
1959
1960 Result is desired PC to step until, or NULL if we are not in
1961 code that should be skipped. */
1962
1963 CORE_ADDR
1964 rs6000_skip_trampoline_code (CORE_ADDR pc)
1965 {
1966 unsigned int ii, op;
1967 int rel;
1968 CORE_ADDR solib_target_pc;
1969 struct minimal_symbol *msymbol;
1970
1971 static unsigned trampoline_code[] =
1972 {
1973 0x800b0000, /* l r0,0x0(r11) */
1974 0x90410014, /* st r2,0x14(r1) */
1975 0x7c0903a6, /* mtctr r0 */
1976 0x804b0004, /* l r2,0x4(r11) */
1977 0x816b0008, /* l r11,0x8(r11) */
1978 0x4e800420, /* bctr */
1979 0x4e800020, /* br */
1980 0
1981 };
1982
1983 /* Check for bigtoc fixup code. */
1984 msymbol = lookup_minimal_symbol_by_pc (pc);
1985 if (msymbol
1986 && rs6000_in_solib_return_trampoline (pc,
1987 DEPRECATED_SYMBOL_NAME (msymbol)))
1988 {
1989 /* Double-check that the third instruction from PC is relative "b". */
1990 op = read_memory_integer (pc + 8, 4);
1991 if ((op & 0xfc000003) == 0x48000000)
1992 {
1993 /* Extract bits 6-29 as a signed 24-bit relative word address and
1994 add it to the containing PC. */
1995 rel = ((int)(op << 6) >> 6);
1996 return pc + 8 + rel;
1997 }
1998 }
1999
2000 /* If pc is in a shared library trampoline, return its target. */
2001 solib_target_pc = find_solib_trampoline_target (pc);
2002 if (solib_target_pc)
2003 return solib_target_pc;
2004
2005 for (ii = 0; trampoline_code[ii]; ++ii)
2006 {
2007 op = read_memory_integer (pc + (ii * 4), 4);
2008 if (op != trampoline_code[ii])
2009 return 0;
2010 }
2011 ii = read_register (11); /* r11 holds destination addr */
2012 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
2013 return pc;
2014 }
2015
2016 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
2017 isn't available with that word size, return 0. */
2018
2019 static int
2020 regsize (const struct reg *reg, int wordsize)
2021 {
2022 return wordsize == 8 ? reg->sz64 : reg->sz32;
2023 }
2024
2025 /* Return the name of register number N, or null if no such register exists
2026 in the current architecture. */
2027
2028 static const char *
2029 rs6000_register_name (int n)
2030 {
2031 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2032 const struct reg *reg = tdep->regs + n;
2033
2034 if (!regsize (reg, tdep->wordsize))
2035 return NULL;
2036 return reg->name;
2037 }
2038
2039 /* Return the GDB type object for the "standard" data type
2040 of data in register N. */
2041
2042 static struct type *
2043 rs6000_register_type (struct gdbarch *gdbarch, int n)
2044 {
2045 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2046 const struct reg *reg = tdep->regs + n;
2047
2048 if (reg->fpr)
2049 return builtin_type_double;
2050 else
2051 {
2052 int size = regsize (reg, tdep->wordsize);
2053 switch (size)
2054 {
2055 case 0:
2056 return builtin_type_int0;
2057 case 4:
2058 return builtin_type_uint32;
2059 case 8:
2060 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
2061 return builtin_type_vec64;
2062 else
2063 return builtin_type_uint64;
2064 break;
2065 case 16:
2066 return builtin_type_vec128;
2067 break;
2068 default:
2069 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
2070 n, size);
2071 }
2072 }
2073 }
2074
2075 /* Is REGNUM a member of REGGROUP? */
2076 static int
2077 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2078 struct reggroup *group)
2079 {
2080 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2081 int float_p;
2082 int vector_p;
2083 int general_p;
2084
2085 if (REGISTER_NAME (regnum) == NULL
2086 || *REGISTER_NAME (regnum) == '\0')
2087 return 0;
2088 if (group == all_reggroup)
2089 return 1;
2090
2091 float_p = (regnum == tdep->ppc_fpscr_regnum
2092 || (regnum >= tdep->ppc_fp0_regnum
2093 && regnum < tdep->ppc_fp0_regnum + 32));
2094 if (group == float_reggroup)
2095 return float_p;
2096
2097 vector_p = ((tdep->ppc_vr0_regnum >= 0
2098 && regnum >= tdep->ppc_vr0_regnum
2099 && regnum < tdep->ppc_vr0_regnum + 32)
2100 || (tdep->ppc_ev0_regnum >= 0
2101 && regnum >= tdep->ppc_ev0_regnum
2102 && regnum < tdep->ppc_ev0_regnum + 32)
2103 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2104 || regnum == tdep->ppc_vrsave_regnum
2105 || regnum == tdep->ppc_acc_regnum
2106 || regnum == tdep->ppc_spefscr_regnum);
2107 if (group == vector_reggroup)
2108 return vector_p;
2109
2110 /* Note that PS aka MSR isn't included - it's a system register (and
2111 besides, due to GCC's CFI foobar you do not want to restore
2112 it). */
2113 general_p = ((regnum >= tdep->ppc_gp0_regnum
2114 && regnum < tdep->ppc_gp0_regnum + 32)
2115 || regnum == tdep->ppc_toc_regnum
2116 || regnum == tdep->ppc_cr_regnum
2117 || regnum == tdep->ppc_lr_regnum
2118 || regnum == tdep->ppc_ctr_regnum
2119 || regnum == tdep->ppc_xer_regnum
2120 || regnum == PC_REGNUM);
2121 if (group == general_reggroup)
2122 return general_p;
2123
2124 if (group == save_reggroup || group == restore_reggroup)
2125 return general_p || vector_p || float_p;
2126
2127 return 0;
2128 }
2129
2130 /* The register format for RS/6000 floating point registers is always
2131 double, we need a conversion if the memory format is float. */
2132
2133 static int
2134 rs6000_convert_register_p (int regnum, struct type *type)
2135 {
2136 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2137
2138 return (reg->fpr
2139 && TYPE_CODE (type) == TYPE_CODE_FLT
2140 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2141 }
2142
2143 static void
2144 rs6000_register_to_value (struct frame_info *frame,
2145 int regnum,
2146 struct type *type,
2147 gdb_byte *to)
2148 {
2149 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2150 gdb_byte from[MAX_REGISTER_SIZE];
2151
2152 gdb_assert (reg->fpr);
2153 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2154
2155 get_frame_register (frame, regnum, from);
2156 convert_typed_floating (from, builtin_type_double, to, type);
2157 }
2158
2159 static void
2160 rs6000_value_to_register (struct frame_info *frame,
2161 int regnum,
2162 struct type *type,
2163 const gdb_byte *from)
2164 {
2165 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2166 gdb_byte to[MAX_REGISTER_SIZE];
2167
2168 gdb_assert (reg->fpr);
2169 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2170
2171 convert_typed_floating (from, type, to, builtin_type_double);
2172 put_frame_register (frame, regnum, to);
2173 }
2174
2175 /* Move SPE vector register values between a 64-bit buffer and the two
2176 32-bit raw register halves in a regcache. This function handles
2177 both splitting a 64-bit value into two 32-bit halves, and joining
2178 two halves into a whole 64-bit value, depending on the function
2179 passed as the MOVE argument.
2180
2181 EV_REG must be the number of an SPE evN vector register --- a
2182 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2183 64-bit buffer.
2184
2185 Call MOVE once for each 32-bit half of that register, passing
2186 REGCACHE, the number of the raw register corresponding to that
2187 half, and the address of the appropriate half of BUFFER.
2188
2189 For example, passing 'regcache_raw_read' as the MOVE function will
2190 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2191 'regcache_raw_supply' will supply the contents of BUFFER to the
2192 appropriate pair of raw registers in REGCACHE.
2193
2194 You may need to cast away some 'const' qualifiers when passing
2195 MOVE, since this function can't tell at compile-time which of
2196 REGCACHE or BUFFER is acting as the source of the data. If C had
2197 co-variant type qualifiers, ... */
2198 static void
2199 e500_move_ev_register (void (*move) (struct regcache *regcache,
2200 int regnum, gdb_byte *buf),
2201 struct regcache *regcache, int ev_reg,
2202 gdb_byte *buffer)
2203 {
2204 struct gdbarch *arch = get_regcache_arch (regcache);
2205 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2206 int reg_index;
2207 gdb_byte *byte_buffer = buffer;
2208
2209 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2210 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2211
2212 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2213
2214 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2215 {
2216 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2217 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2218 }
2219 else
2220 {
2221 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2222 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2223 }
2224 }
2225
2226 static void
2227 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2228 int reg_nr, gdb_byte *buffer)
2229 {
2230 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2232
2233 gdb_assert (regcache_arch == gdbarch);
2234
2235 if (tdep->ppc_ev0_regnum <= reg_nr
2236 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2237 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2238 else
2239 internal_error (__FILE__, __LINE__,
2240 _("e500_pseudo_register_read: "
2241 "called on unexpected register '%s' (%d)"),
2242 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2243 }
2244
2245 static void
2246 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2247 int reg_nr, const gdb_byte *buffer)
2248 {
2249 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2250 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2251
2252 gdb_assert (regcache_arch == gdbarch);
2253
2254 if (tdep->ppc_ev0_regnum <= reg_nr
2255 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2256 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2257 regcache_raw_write,
2258 regcache, reg_nr, (gdb_byte *) buffer);
2259 else
2260 internal_error (__FILE__, __LINE__,
2261 _("e500_pseudo_register_read: "
2262 "called on unexpected register '%s' (%d)"),
2263 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2264 }
2265
2266 /* The E500 needs a custom reggroup function: it has anonymous raw
2267 registers, and default_register_reggroup_p assumes that anonymous
2268 registers are not members of any reggroup. */
2269 static int
2270 e500_register_reggroup_p (struct gdbarch *gdbarch,
2271 int regnum,
2272 struct reggroup *group)
2273 {
2274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2275
2276 /* The save and restore register groups need to include the
2277 upper-half registers, even though they're anonymous. */
2278 if ((group == save_reggroup
2279 || group == restore_reggroup)
2280 && (tdep->ppc_ev0_upper_regnum <= regnum
2281 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2282 return 1;
2283
2284 /* In all other regards, the default reggroup definition is fine. */
2285 return default_register_reggroup_p (gdbarch, regnum, group);
2286 }
2287
2288 /* Convert a DBX STABS register number to a GDB register number. */
2289 static int
2290 rs6000_stab_reg_to_regnum (int num)
2291 {
2292 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2293
2294 if (0 <= num && num <= 31)
2295 return tdep->ppc_gp0_regnum + num;
2296 else if (32 <= num && num <= 63)
2297 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2298 specifies registers the architecture doesn't have? Our
2299 callers don't check the value we return. */
2300 return tdep->ppc_fp0_regnum + (num - 32);
2301 else if (77 <= num && num <= 108)
2302 return tdep->ppc_vr0_regnum + (num - 77);
2303 else if (1200 <= num && num < 1200 + 32)
2304 return tdep->ppc_ev0_regnum + (num - 1200);
2305 else
2306 switch (num)
2307 {
2308 case 64:
2309 return tdep->ppc_mq_regnum;
2310 case 65:
2311 return tdep->ppc_lr_regnum;
2312 case 66:
2313 return tdep->ppc_ctr_regnum;
2314 case 76:
2315 return tdep->ppc_xer_regnum;
2316 case 109:
2317 return tdep->ppc_vrsave_regnum;
2318 case 110:
2319 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2320 case 111:
2321 return tdep->ppc_acc_regnum;
2322 case 112:
2323 return tdep->ppc_spefscr_regnum;
2324 default:
2325 return num;
2326 }
2327 }
2328
2329
2330 /* Convert a Dwarf 2 register number to a GDB register number. */
2331 static int
2332 rs6000_dwarf2_reg_to_regnum (int num)
2333 {
2334 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2335
2336 if (0 <= num && num <= 31)
2337 return tdep->ppc_gp0_regnum + num;
2338 else if (32 <= num && num <= 63)
2339 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2340 specifies registers the architecture doesn't have? Our
2341 callers don't check the value we return. */
2342 return tdep->ppc_fp0_regnum + (num - 32);
2343 else if (1124 <= num && num < 1124 + 32)
2344 return tdep->ppc_vr0_regnum + (num - 1124);
2345 else if (1200 <= num && num < 1200 + 32)
2346 return tdep->ppc_ev0_regnum + (num - 1200);
2347 else
2348 switch (num)
2349 {
2350 case 64:
2351 return tdep->ppc_cr_regnum;
2352 case 67:
2353 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2354 case 99:
2355 return tdep->ppc_acc_regnum;
2356 case 100:
2357 return tdep->ppc_mq_regnum;
2358 case 101:
2359 return tdep->ppc_xer_regnum;
2360 case 108:
2361 return tdep->ppc_lr_regnum;
2362 case 109:
2363 return tdep->ppc_ctr_regnum;
2364 case 356:
2365 return tdep->ppc_vrsave_regnum;
2366 case 612:
2367 return tdep->ppc_spefscr_regnum;
2368 default:
2369 return num;
2370 }
2371 }
2372
2373 /* Translate a .eh_frame register to DWARF register, or adjust a
2374 .debug_frame register. */
2375
2376 static int
2377 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2378 {
2379 /* GCC releases before 3.4 use GCC internal register numbering in
2380 .debug_frame (and .debug_info, et cetera). The numbering is
2381 different from the standard SysV numbering for everything except
2382 for GPRs and FPRs. We can not detect this problem in most cases
2383 - to get accurate debug info for variables living in lr, ctr, v0,
2384 et cetera, use a newer version of GCC. But we must detect
2385 one important case - lr is in column 65 in .debug_frame output,
2386 instead of 108.
2387
2388 GCC 3.4, and the "hammer" branch, have a related problem. They
2389 record lr register saves in .debug_frame as 108, but still record
2390 the return column as 65. We fix that up too.
2391
2392 We can do this because 65 is assigned to fpsr, and GCC never
2393 generates debug info referring to it. To add support for
2394 handwritten debug info that restores fpsr, we would need to add a
2395 producer version check to this. */
2396 if (!eh_frame_p)
2397 {
2398 if (num == 65)
2399 return 108;
2400 else
2401 return num;
2402 }
2403
2404 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2405 internal register numbering; translate that to the standard DWARF2
2406 register numbering. */
2407 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2408 return num;
2409 else if (68 <= num && num <= 75) /* cr0-cr8 */
2410 return num - 68 + 86;
2411 else if (77 <= num && num <= 108) /* vr0-vr31 */
2412 return num - 77 + 1124;
2413 else
2414 switch (num)
2415 {
2416 case 64: /* mq */
2417 return 100;
2418 case 65: /* lr */
2419 return 108;
2420 case 66: /* ctr */
2421 return 109;
2422 case 76: /* xer */
2423 return 101;
2424 case 109: /* vrsave */
2425 return 356;
2426 case 110: /* vscr */
2427 return 67;
2428 case 111: /* spe_acc */
2429 return 99;
2430 case 112: /* spefscr */
2431 return 612;
2432 default:
2433 return num;
2434 }
2435 }
2436 \f
2437 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2438
2439 Usually a function pointer's representation is simply the address
2440 of the function. On the RS/6000 however, a function pointer is
2441 represented by a pointer to an OPD entry. This OPD entry contains
2442 three words, the first word is the address of the function, the
2443 second word is the TOC pointer (r2), and the third word is the
2444 static chain value. Throughout GDB it is currently assumed that a
2445 function pointer contains the address of the function, which is not
2446 easy to fix. In addition, the conversion of a function address to
2447 a function pointer would require allocation of an OPD entry in the
2448 inferior's memory space, with all its drawbacks. To be able to
2449 call C++ virtual methods in the inferior (which are called via
2450 function pointers), find_function_addr uses this function to get the
2451 function address from a function pointer. */
2452
2453 /* Return real function address if ADDR (a function pointer) is in the data
2454 space and is therefore a special function pointer. */
2455
2456 static CORE_ADDR
2457 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2458 CORE_ADDR addr,
2459 struct target_ops *targ)
2460 {
2461 struct obj_section *s;
2462
2463 s = find_pc_section (addr);
2464 if (s && s->the_bfd_section->flags & SEC_CODE)
2465 return addr;
2466
2467 /* ADDR is in the data space, so it's a special function pointer. */
2468 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2469 }
2470 \f
2471
2472 /* Handling the various POWER/PowerPC variants. */
2473
2474
2475 /* The arrays here called registers_MUMBLE hold information about available
2476 registers.
2477
2478 For each family of PPC variants, I've tried to isolate out the
2479 common registers and put them up front, so that as long as you get
2480 the general family right, GDB will correctly identify the registers
2481 common to that family. The common register sets are:
2482
2483 For the 60x family: hid0 hid1 iabr dabr pir
2484
2485 For the 505 and 860 family: eie eid nri
2486
2487 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2488 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2489 pbu1 pbl2 pbu2
2490
2491 Most of these register groups aren't anything formal. I arrived at
2492 them by looking at the registers that occurred in more than one
2493 processor.
2494
2495 Note: kevinb/2002-04-30: Support for the fpscr register was added
2496 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2497 for Power. For PowerPC, slot 70 was unused and was already in the
2498 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2499 slot 70 was being used for "mq", so the next available slot (71)
2500 was chosen. It would have been nice to be able to make the
2501 register numbers the same across processor cores, but this wasn't
2502 possible without either 1) renumbering some registers for some
2503 processors or 2) assigning fpscr to a really high slot that's
2504 larger than any current register number. Doing (1) is bad because
2505 existing stubs would break. Doing (2) is undesirable because it
2506 would introduce a really large gap between fpscr and the rest of
2507 the registers for most processors. */
2508
2509 /* Convenience macros for populating register arrays. */
2510
2511 /* Within another macro, convert S to a string. */
2512
2513 #define STR(s) #s
2514
2515 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2516 and 64 bits on 64-bit systems. */
2517 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2518
2519 /* Return a struct reg defining register NAME that's 32 bits on all
2520 systems. */
2521 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2522
2523 /* Return a struct reg defining register NAME that's 64 bits on all
2524 systems. */
2525 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2526
2527 /* Return a struct reg defining register NAME that's 128 bits on all
2528 systems. */
2529 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2530
2531 /* Return a struct reg defining floating-point register NAME. */
2532 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2533
2534 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2535 long on all systems. */
2536 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2537
2538 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2539 systems and that doesn't exist on 64-bit systems. */
2540 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2541
2542 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2543 systems and that doesn't exist on 32-bit systems. */
2544 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2545
2546 /* Return a struct reg placeholder for a register that doesn't exist. */
2547 #define R0 { 0, 0, 0, 0, 0, -1 }
2548
2549 /* Return a struct reg defining an anonymous raw register that's 32
2550 bits on all systems. */
2551 #define A4 { 0, 4, 4, 0, 0, -1 }
2552
2553 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2554 32-bit systems and 64 bits on 64-bit systems. */
2555 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2556
2557 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2558 all systems. */
2559 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2560
2561 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2562 all systems, and whose SPR number is NUMBER. */
2563 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2564
2565 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2566 64-bit systems and that doesn't exist on 32-bit systems. */
2567 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2568
2569 /* UISA registers common across all architectures, including POWER. */
2570
2571 #define COMMON_UISA_REGS \
2572 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2573 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2574 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2575 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2576 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2577 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2578 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2579 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2580 /* 64 */ R(pc), R(ps)
2581
2582 /* UISA-level SPRs for PowerPC. */
2583 #define PPC_UISA_SPRS \
2584 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2585
2586 /* UISA-level SPRs for PowerPC without floating point support. */
2587 #define PPC_UISA_NOFP_SPRS \
2588 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2589
2590 /* Segment registers, for PowerPC. */
2591 #define PPC_SEGMENT_REGS \
2592 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2593 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2594 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2595 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2596
2597 /* OEA SPRs for PowerPC. */
2598 #define PPC_OEA_SPRS \
2599 /* 87 */ S4(pvr), \
2600 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2601 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2602 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2603 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2604 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2605 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2606 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2607 /* 116 */ S4(dec), S(dabr), S4(ear)
2608
2609 /* AltiVec registers. */
2610 #define PPC_ALTIVEC_REGS \
2611 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2612 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2613 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2614 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2615 /*151*/R4(vscr), R4(vrsave)
2616
2617
2618 /* On machines supporting the SPE APU, the general-purpose registers
2619 are 64 bits long. There are SIMD vector instructions to treat them
2620 as pairs of floats, but the rest of the instruction set treats them
2621 as 32-bit registers, and only operates on their lower halves.
2622
2623 In the GDB regcache, we treat their high and low halves as separate
2624 registers. The low halves we present as the general-purpose
2625 registers, and then we have pseudo-registers that stitch together
2626 the upper and lower halves and present them as pseudo-registers. */
2627
2628 /* SPE GPR lower halves --- raw registers. */
2629 #define PPC_SPE_GP_REGS \
2630 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2631 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2632 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2633 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2634
2635 /* SPE GPR upper halves --- anonymous raw registers. */
2636 #define PPC_SPE_UPPER_GP_REGS \
2637 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2638 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2639 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2640 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2641
2642 /* SPE GPR vector registers --- pseudo registers based on underlying
2643 gprs and the anonymous upper half raw registers. */
2644 #define PPC_EV_PSEUDO_REGS \
2645 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2646 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2647 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2648 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2649
2650 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2651 user-level SPR's. */
2652 static const struct reg registers_power[] =
2653 {
2654 COMMON_UISA_REGS,
2655 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2656 /* 71 */ R4(fpscr)
2657 };
2658
2659 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2660 view of the PowerPC. */
2661 static const struct reg registers_powerpc[] =
2662 {
2663 COMMON_UISA_REGS,
2664 PPC_UISA_SPRS,
2665 PPC_ALTIVEC_REGS
2666 };
2667
2668 /* IBM PowerPC 403.
2669
2670 Some notes about the "tcr" special-purpose register:
2671 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2672 403's programmable interval timer, fixed interval timer, and
2673 watchdog timer.
2674 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2675 watchdog timer, and nothing else.
2676
2677 Some of the fields are similar between the two, but they're not
2678 compatible with each other. Since the two variants have different
2679 registers, with different numbers, but the same name, we can't
2680 splice the register name to get the SPR number. */
2681 static const struct reg registers_403[] =
2682 {
2683 COMMON_UISA_REGS,
2684 PPC_UISA_SPRS,
2685 PPC_SEGMENT_REGS,
2686 PPC_OEA_SPRS,
2687 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2688 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2689 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2690 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2691 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2692 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2693 };
2694
2695 /* IBM PowerPC 403GC.
2696 See the comments about 'tcr' for the 403, above. */
2697 static const struct reg registers_403GC[] =
2698 {
2699 COMMON_UISA_REGS,
2700 PPC_UISA_SPRS,
2701 PPC_SEGMENT_REGS,
2702 PPC_OEA_SPRS,
2703 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2704 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2705 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2706 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2707 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2708 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2709 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2710 /* 147 */ S(tbhu), S(tblu)
2711 };
2712
2713 /* Motorola PowerPC 505. */
2714 static const struct reg registers_505[] =
2715 {
2716 COMMON_UISA_REGS,
2717 PPC_UISA_SPRS,
2718 PPC_SEGMENT_REGS,
2719 PPC_OEA_SPRS,
2720 /* 119 */ S(eie), S(eid), S(nri)
2721 };
2722
2723 /* Motorola PowerPC 860 or 850. */
2724 static const struct reg registers_860[] =
2725 {
2726 COMMON_UISA_REGS,
2727 PPC_UISA_SPRS,
2728 PPC_SEGMENT_REGS,
2729 PPC_OEA_SPRS,
2730 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2731 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2732 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2733 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2734 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2735 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2736 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2737 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2738 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2739 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2740 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2741 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2742 };
2743
2744 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2745 for reading and writing RTCU and RTCL. However, how one reads and writes a
2746 register is the stub's problem. */
2747 static const struct reg registers_601[] =
2748 {
2749 COMMON_UISA_REGS,
2750 PPC_UISA_SPRS,
2751 PPC_SEGMENT_REGS,
2752 PPC_OEA_SPRS,
2753 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2754 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2755 };
2756
2757 /* Motorola PowerPC 602.
2758 See the notes under the 403 about 'tcr'. */
2759 static const struct reg registers_602[] =
2760 {
2761 COMMON_UISA_REGS,
2762 PPC_UISA_SPRS,
2763 PPC_SEGMENT_REGS,
2764 PPC_OEA_SPRS,
2765 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2766 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2767 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2768 };
2769
2770 /* Motorola/IBM PowerPC 603 or 603e. */
2771 static const struct reg registers_603[] =
2772 {
2773 COMMON_UISA_REGS,
2774 PPC_UISA_SPRS,
2775 PPC_SEGMENT_REGS,
2776 PPC_OEA_SPRS,
2777 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2778 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2779 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2780 };
2781
2782 /* Motorola PowerPC 604 or 604e. */
2783 static const struct reg registers_604[] =
2784 {
2785 COMMON_UISA_REGS,
2786 PPC_UISA_SPRS,
2787 PPC_SEGMENT_REGS,
2788 PPC_OEA_SPRS,
2789 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2790 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2791 /* 127 */ S(sia), S(sda)
2792 };
2793
2794 /* Motorola/IBM PowerPC 750 or 740. */
2795 static const struct reg registers_750[] =
2796 {
2797 COMMON_UISA_REGS,
2798 PPC_UISA_SPRS,
2799 PPC_SEGMENT_REGS,
2800 PPC_OEA_SPRS,
2801 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2802 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2803 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2804 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2805 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2806 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2807 };
2808
2809
2810 /* Motorola PowerPC 7400. */
2811 static const struct reg registers_7400[] =
2812 {
2813 /* gpr0-gpr31, fpr0-fpr31 */
2814 COMMON_UISA_REGS,
2815 /* cr, lr, ctr, xer, fpscr */
2816 PPC_UISA_SPRS,
2817 /* sr0-sr15 */
2818 PPC_SEGMENT_REGS,
2819 PPC_OEA_SPRS,
2820 /* vr0-vr31, vrsave, vscr */
2821 PPC_ALTIVEC_REGS
2822 /* FIXME? Add more registers? */
2823 };
2824
2825 /* Motorola e500. */
2826 static const struct reg registers_e500[] =
2827 {
2828 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2829 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2830 /* 64 .. 65 */ R(pc), R(ps),
2831 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2832 /* 71 .. 72 */ R8(acc), S4(spefscr),
2833 /* NOTE: Add new registers here the end of the raw register
2834 list and just before the first pseudo register. */
2835 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2836 };
2837
2838 /* Information about a particular processor variant. */
2839
2840 struct variant
2841 {
2842 /* Name of this variant. */
2843 char *name;
2844
2845 /* English description of the variant. */
2846 char *description;
2847
2848 /* bfd_arch_info.arch corresponding to variant. */
2849 enum bfd_architecture arch;
2850
2851 /* bfd_arch_info.mach corresponding to variant. */
2852 unsigned long mach;
2853
2854 /* Number of real registers. */
2855 int nregs;
2856
2857 /* Number of pseudo registers. */
2858 int npregs;
2859
2860 /* Number of total registers (the sum of nregs and npregs). */
2861 int num_tot_regs;
2862
2863 /* Table of register names; registers[R] is the name of the register
2864 number R. */
2865 const struct reg *regs;
2866 };
2867
2868 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2869
2870 static int
2871 num_registers (const struct reg *reg_list, int num_tot_regs)
2872 {
2873 int i;
2874 int nregs = 0;
2875
2876 for (i = 0; i < num_tot_regs; i++)
2877 if (!reg_list[i].pseudo)
2878 nregs++;
2879
2880 return nregs;
2881 }
2882
2883 static int
2884 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2885 {
2886 int i;
2887 int npregs = 0;
2888
2889 for (i = 0; i < num_tot_regs; i++)
2890 if (reg_list[i].pseudo)
2891 npregs ++;
2892
2893 return npregs;
2894 }
2895
2896 /* Information in this table comes from the following web sites:
2897 IBM: http://www.chips.ibm.com:80/products/embedded/
2898 Motorola: http://www.mot.com/SPS/PowerPC/
2899
2900 I'm sure I've got some of the variant descriptions not quite right.
2901 Please report any inaccuracies you find to GDB's maintainer.
2902
2903 If you add entries to this table, please be sure to allow the new
2904 value as an argument to the --with-cpu flag, in configure.in. */
2905
2906 static struct variant variants[] =
2907 {
2908
2909 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2910 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2911 registers_powerpc},
2912 {"power", "POWER user-level", bfd_arch_rs6000,
2913 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2914 registers_power},
2915 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2916 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2917 registers_403},
2918 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2919 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2920 registers_601},
2921 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2922 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2923 registers_602},
2924 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2925 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2926 registers_603},
2927 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2928 604, -1, -1, tot_num_registers (registers_604),
2929 registers_604},
2930 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2931 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2932 registers_403GC},
2933 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2934 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2935 registers_505},
2936 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2937 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2938 registers_860},
2939 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2940 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2941 registers_750},
2942 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2943 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2944 registers_7400},
2945 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2946 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2947 registers_e500},
2948
2949 /* 64-bit */
2950 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2951 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2952 registers_powerpc},
2953 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2954 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2955 registers_powerpc},
2956 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2957 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2958 registers_powerpc},
2959 {"a35", "PowerPC A35", bfd_arch_powerpc,
2960 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2961 registers_powerpc},
2962 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2963 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2964 registers_powerpc},
2965 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2966 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2967 registers_powerpc},
2968
2969 /* FIXME: I haven't checked the register sets of the following. */
2970 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2971 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2972 registers_power},
2973 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2974 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2975 registers_power},
2976 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2977 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2978 registers_power},
2979
2980 {0, 0, 0, 0, 0, 0, 0, 0}
2981 };
2982
2983 /* Initialize the number of registers and pseudo registers in each variant. */
2984
2985 static void
2986 init_variants (void)
2987 {
2988 struct variant *v;
2989
2990 for (v = variants; v->name; v++)
2991 {
2992 if (v->nregs == -1)
2993 v->nregs = num_registers (v->regs, v->num_tot_regs);
2994 if (v->npregs == -1)
2995 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2996 }
2997 }
2998
2999 /* Return the variant corresponding to architecture ARCH and machine number
3000 MACH. If no such variant exists, return null. */
3001
3002 static const struct variant *
3003 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3004 {
3005 const struct variant *v;
3006
3007 for (v = variants; v->name; v++)
3008 if (arch == v->arch && mach == v->mach)
3009 return v;
3010
3011 return NULL;
3012 }
3013
3014 static int
3015 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3016 {
3017 if (!info->disassembler_options)
3018 info->disassembler_options = "any";
3019
3020 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3021 return print_insn_big_powerpc (memaddr, info);
3022 else
3023 return print_insn_little_powerpc (memaddr, info);
3024 }
3025 \f
3026 static CORE_ADDR
3027 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3028 {
3029 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
3030 }
3031
3032 static struct frame_id
3033 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3034 {
3035 return frame_id_build (frame_unwind_register_unsigned (next_frame,
3036 SP_REGNUM),
3037 frame_pc_unwind (next_frame));
3038 }
3039
3040 struct rs6000_frame_cache
3041 {
3042 CORE_ADDR base;
3043 CORE_ADDR initial_sp;
3044 struct trad_frame_saved_reg *saved_regs;
3045 };
3046
3047 static struct rs6000_frame_cache *
3048 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
3049 {
3050 struct rs6000_frame_cache *cache;
3051 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3053 struct rs6000_framedata fdata;
3054 int wordsize = tdep->wordsize;
3055 CORE_ADDR func, pc;
3056
3057 if ((*this_cache) != NULL)
3058 return (*this_cache);
3059 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3060 (*this_cache) = cache;
3061 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
3062
3063 func = frame_func_unwind (next_frame, NORMAL_FRAME);
3064 pc = frame_pc_unwind (next_frame);
3065 skip_prologue (func, pc, &fdata);
3066
3067 /* Figure out the parent's stack pointer. */
3068
3069 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3070 address of the current frame. Things might be easier if the
3071 ->frame pointed to the outer-most address of the frame. In
3072 the mean time, the address of the prev frame is used as the
3073 base address of this frame. */
3074 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3075
3076 /* If the function appears to be frameless, check a couple of likely
3077 indicators that we have simply failed to find the frame setup.
3078 Two common cases of this are missing symbols (i.e.
3079 frame_func_unwind returns the wrong address or 0), and assembly
3080 stubs which have a fast exit path but set up a frame on the slow
3081 path.
3082
3083 If the LR appears to return to this function, then presume that
3084 we have an ABI compliant frame that we failed to find. */
3085 if (fdata.frameless && fdata.lr_offset == 0)
3086 {
3087 CORE_ADDR saved_lr;
3088 int make_frame = 0;
3089
3090 saved_lr = frame_unwind_register_unsigned (next_frame,
3091 tdep->ppc_lr_regnum);
3092 if (func == 0 && saved_lr == pc)
3093 make_frame = 1;
3094 else if (func != 0)
3095 {
3096 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3097 if (func == saved_func)
3098 make_frame = 1;
3099 }
3100
3101 if (make_frame)
3102 {
3103 fdata.frameless = 0;
3104 fdata.lr_offset = tdep->lr_frame_offset;
3105 }
3106 }
3107
3108 if (!fdata.frameless)
3109 /* Frameless really means stackless. */
3110 cache->base = read_memory_addr (cache->base, wordsize);
3111
3112 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3113
3114 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3115 All fpr's from saved_fpr to fp31 are saved. */
3116
3117 if (fdata.saved_fpr >= 0)
3118 {
3119 int i;
3120 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3121
3122 /* If skip_prologue says floating-point registers were saved,
3123 but the current architecture has no floating-point registers,
3124 then that's strange. But we have no indices to even record
3125 the addresses under, so we just ignore it. */
3126 if (ppc_floating_point_unit_p (gdbarch))
3127 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3128 {
3129 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3130 fpr_addr += 8;
3131 }
3132 }
3133
3134 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3135 All gpr's from saved_gpr to gpr31 are saved. */
3136
3137 if (fdata.saved_gpr >= 0)
3138 {
3139 int i;
3140 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3141 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3142 {
3143 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3144 gpr_addr += wordsize;
3145 }
3146 }
3147
3148 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3149 All vr's from saved_vr to vr31 are saved. */
3150 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3151 {
3152 if (fdata.saved_vr >= 0)
3153 {
3154 int i;
3155 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3156 for (i = fdata.saved_vr; i < 32; i++)
3157 {
3158 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3159 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3160 }
3161 }
3162 }
3163
3164 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3165 All vr's from saved_ev to ev31 are saved. ????? */
3166 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3167 {
3168 if (fdata.saved_ev >= 0)
3169 {
3170 int i;
3171 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3172 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3173 {
3174 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3175 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3176 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3177 }
3178 }
3179 }
3180
3181 /* If != 0, fdata.cr_offset is the offset from the frame that
3182 holds the CR. */
3183 if (fdata.cr_offset != 0)
3184 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3185
3186 /* If != 0, fdata.lr_offset is the offset from the frame that
3187 holds the LR. */
3188 if (fdata.lr_offset != 0)
3189 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3190 /* The PC is found in the link register. */
3191 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3192
3193 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3194 holds the VRSAVE. */
3195 if (fdata.vrsave_offset != 0)
3196 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3197
3198 if (fdata.alloca_reg < 0)
3199 /* If no alloca register used, then fi->frame is the value of the
3200 %sp for this frame, and it is good enough. */
3201 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3202 else
3203 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3204 fdata.alloca_reg);
3205
3206 return cache;
3207 }
3208
3209 static void
3210 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3211 struct frame_id *this_id)
3212 {
3213 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3214 this_cache);
3215 (*this_id) = frame_id_build (info->base,
3216 frame_func_unwind (next_frame, NORMAL_FRAME));
3217 }
3218
3219 static void
3220 rs6000_frame_prev_register (struct frame_info *next_frame,
3221 void **this_cache,
3222 int regnum, int *optimizedp,
3223 enum lval_type *lvalp, CORE_ADDR *addrp,
3224 int *realnump, gdb_byte *valuep)
3225 {
3226 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3227 this_cache);
3228 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3229 optimizedp, lvalp, addrp, realnump, valuep);
3230 }
3231
3232 static const struct frame_unwind rs6000_frame_unwind =
3233 {
3234 NORMAL_FRAME,
3235 rs6000_frame_this_id,
3236 rs6000_frame_prev_register
3237 };
3238
3239 static const struct frame_unwind *
3240 rs6000_frame_sniffer (struct frame_info *next_frame)
3241 {
3242 return &rs6000_frame_unwind;
3243 }
3244
3245 \f
3246
3247 static CORE_ADDR
3248 rs6000_frame_base_address (struct frame_info *next_frame,
3249 void **this_cache)
3250 {
3251 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3252 this_cache);
3253 return info->initial_sp;
3254 }
3255
3256 static const struct frame_base rs6000_frame_base = {
3257 &rs6000_frame_unwind,
3258 rs6000_frame_base_address,
3259 rs6000_frame_base_address,
3260 rs6000_frame_base_address
3261 };
3262
3263 static const struct frame_base *
3264 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3265 {
3266 return &rs6000_frame_base;
3267 }
3268
3269 /* Initialize the current architecture based on INFO. If possible, re-use an
3270 architecture from ARCHES, which is a list of architectures already created
3271 during this debugging session.
3272
3273 Called e.g. at program startup, when reading a core file, and when reading
3274 a binary file. */
3275
3276 static struct gdbarch *
3277 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3278 {
3279 struct gdbarch *gdbarch;
3280 struct gdbarch_tdep *tdep;
3281 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3282 struct reg *regs;
3283 const struct variant *v;
3284 enum bfd_architecture arch;
3285 unsigned long mach;
3286 bfd abfd;
3287 int sysv_abi;
3288 asection *sect;
3289
3290 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3291 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3292
3293 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3294 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3295
3296 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3297
3298 /* Check word size. If INFO is from a binary file, infer it from
3299 that, else choose a likely default. */
3300 if (from_xcoff_exec)
3301 {
3302 if (bfd_xcoff_is_xcoff64 (info.abfd))
3303 wordsize = 8;
3304 else
3305 wordsize = 4;
3306 }
3307 else if (from_elf_exec)
3308 {
3309 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3310 wordsize = 8;
3311 else
3312 wordsize = 4;
3313 }
3314 else
3315 {
3316 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3317 wordsize = info.bfd_arch_info->bits_per_word /
3318 info.bfd_arch_info->bits_per_byte;
3319 else
3320 wordsize = 4;
3321 }
3322
3323 /* Find a candidate among extant architectures. */
3324 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3325 arches != NULL;
3326 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3327 {
3328 /* Word size in the various PowerPC bfd_arch_info structs isn't
3329 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3330 separate word size check. */
3331 tdep = gdbarch_tdep (arches->gdbarch);
3332 if (tdep && tdep->wordsize == wordsize)
3333 return arches->gdbarch;
3334 }
3335
3336 /* None found, create a new architecture from INFO, whose bfd_arch_info
3337 validity depends on the source:
3338 - executable useless
3339 - rs6000_host_arch() good
3340 - core file good
3341 - "set arch" trust blindly
3342 - GDB startup useless but harmless */
3343
3344 if (!from_xcoff_exec)
3345 {
3346 arch = info.bfd_arch_info->arch;
3347 mach = info.bfd_arch_info->mach;
3348 }
3349 else
3350 {
3351 arch = bfd_arch_powerpc;
3352 bfd_default_set_arch_mach (&abfd, arch, 0);
3353 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3354 mach = info.bfd_arch_info->mach;
3355 }
3356 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3357 tdep->wordsize = wordsize;
3358
3359 /* For e500 executables, the apuinfo section is of help here. Such
3360 section contains the identifier and revision number of each
3361 Application-specific Processing Unit that is present on the
3362 chip. The content of the section is determined by the assembler
3363 which looks at each instruction and determines which unit (and
3364 which version of it) can execute it. In our case we just look for
3365 the existance of the section. */
3366
3367 if (info.abfd)
3368 {
3369 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3370 if (sect)
3371 {
3372 arch = info.bfd_arch_info->arch;
3373 mach = bfd_mach_ppc_e500;
3374 bfd_default_set_arch_mach (&abfd, arch, mach);
3375 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3376 }
3377 }
3378
3379 gdbarch = gdbarch_alloc (&info, tdep);
3380
3381 /* Initialize the number of real and pseudo registers in each variant. */
3382 init_variants ();
3383
3384 /* Choose variant. */
3385 v = find_variant_by_arch (arch, mach);
3386 if (!v)
3387 return NULL;
3388
3389 tdep->regs = v->regs;
3390
3391 tdep->ppc_gp0_regnum = 0;
3392 tdep->ppc_toc_regnum = 2;
3393 tdep->ppc_ps_regnum = 65;
3394 tdep->ppc_cr_regnum = 66;
3395 tdep->ppc_lr_regnum = 67;
3396 tdep->ppc_ctr_regnum = 68;
3397 tdep->ppc_xer_regnum = 69;
3398 if (v->mach == bfd_mach_ppc_601)
3399 tdep->ppc_mq_regnum = 124;
3400 else if (arch == bfd_arch_rs6000)
3401 tdep->ppc_mq_regnum = 70;
3402 else
3403 tdep->ppc_mq_regnum = -1;
3404 tdep->ppc_fp0_regnum = 32;
3405 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3406 tdep->ppc_sr0_regnum = 71;
3407 tdep->ppc_vr0_regnum = -1;
3408 tdep->ppc_vrsave_regnum = -1;
3409 tdep->ppc_ev0_upper_regnum = -1;
3410 tdep->ppc_ev0_regnum = -1;
3411 tdep->ppc_ev31_regnum = -1;
3412 tdep->ppc_acc_regnum = -1;
3413 tdep->ppc_spefscr_regnum = -1;
3414
3415 set_gdbarch_pc_regnum (gdbarch, 64);
3416 set_gdbarch_sp_regnum (gdbarch, 1);
3417 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3418 set_gdbarch_fp0_regnum (gdbarch, 32);
3419 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3420 if (sysv_abi && wordsize == 8)
3421 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3422 else if (sysv_abi && wordsize == 4)
3423 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3424 else
3425 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3426
3427 /* Set lr_frame_offset. */
3428 if (wordsize == 8)
3429 tdep->lr_frame_offset = 16;
3430 else if (sysv_abi)
3431 tdep->lr_frame_offset = 4;
3432 else
3433 tdep->lr_frame_offset = 8;
3434
3435 if (v->arch == bfd_arch_rs6000)
3436 tdep->ppc_sr0_regnum = -1;
3437 else if (v->arch == bfd_arch_powerpc)
3438 switch (v->mach)
3439 {
3440 case bfd_mach_ppc:
3441 tdep->ppc_sr0_regnum = -1;
3442 tdep->ppc_vr0_regnum = 71;
3443 tdep->ppc_vrsave_regnum = 104;
3444 break;
3445 case bfd_mach_ppc_7400:
3446 tdep->ppc_vr0_regnum = 119;
3447 tdep->ppc_vrsave_regnum = 152;
3448 break;
3449 case bfd_mach_ppc_e500:
3450 tdep->ppc_toc_regnum = -1;
3451 tdep->ppc_ev0_upper_regnum = 32;
3452 tdep->ppc_ev0_regnum = 73;
3453 tdep->ppc_ev31_regnum = 104;
3454 tdep->ppc_acc_regnum = 71;
3455 tdep->ppc_spefscr_regnum = 72;
3456 tdep->ppc_fp0_regnum = -1;
3457 tdep->ppc_fpscr_regnum = -1;
3458 tdep->ppc_sr0_regnum = -1;
3459 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3460 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3461 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3462 break;
3463
3464 case bfd_mach_ppc64:
3465 case bfd_mach_ppc_620:
3466 case bfd_mach_ppc_630:
3467 case bfd_mach_ppc_a35:
3468 case bfd_mach_ppc_rs64ii:
3469 case bfd_mach_ppc_rs64iii:
3470 /* These processor's register sets don't have segment registers. */
3471 tdep->ppc_sr0_regnum = -1;
3472 break;
3473 }
3474 else
3475 internal_error (__FILE__, __LINE__,
3476 _("rs6000_gdbarch_init: "
3477 "received unexpected BFD 'arch' value"));
3478
3479 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3480
3481 /* Sanity check on registers. */
3482 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3483
3484 /* Select instruction printer. */
3485 if (arch == bfd_arch_rs6000)
3486 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3487 else
3488 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3489
3490 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3491
3492 set_gdbarch_num_regs (gdbarch, v->nregs);
3493 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3494 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3495 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3496 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3497
3498 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3499 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3500 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3501 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3502 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3503 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3504 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3505 if (sysv_abi)
3506 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3507 else
3508 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3509 set_gdbarch_char_signed (gdbarch, 0);
3510
3511 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3512 if (sysv_abi && wordsize == 8)
3513 /* PPC64 SYSV. */
3514 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3515 else if (!sysv_abi && wordsize == 4)
3516 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3517 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3518 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3519 224. */
3520 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3521
3522 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3523 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3524 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3525
3526 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3527 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3528
3529 if (sysv_abi && wordsize == 4)
3530 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3531 else if (sysv_abi && wordsize == 8)
3532 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3533 else
3534 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3535
3536 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3537 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3538
3539 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3540 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3541
3542 /* Handles single stepping of atomic sequences. */
3543 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3544
3545 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3546 for the descriptor and ".FN" for the entry-point -- a user
3547 specifying "break FN" will unexpectedly end up with a breakpoint
3548 on the descriptor and not the function. This architecture method
3549 transforms any breakpoints on descriptors into breakpoints on the
3550 corresponding entry point. */
3551 if (sysv_abi && wordsize == 8)
3552 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3553
3554 /* Not sure on this. FIXMEmgo */
3555 set_gdbarch_frame_args_skip (gdbarch, 8);
3556
3557 if (!sysv_abi)
3558 {
3559 /* Handle RS/6000 function pointers (which are really function
3560 descriptors). */
3561 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3562 rs6000_convert_from_func_ptr_addr);
3563 }
3564
3565 /* Helpers for function argument information. */
3566 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3567
3568 /* Trampoline. */
3569 set_gdbarch_in_solib_return_trampoline
3570 (gdbarch, rs6000_in_solib_return_trampoline);
3571 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3572
3573 /* Hook in the DWARF CFI frame unwinder. */
3574 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3575 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3576
3577 /* Hook in ABI-specific overrides, if they have been registered. */
3578 gdbarch_init_osabi (info, gdbarch);
3579
3580 switch (info.osabi)
3581 {
3582 case GDB_OSABI_LINUX:
3583 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3584 have altivec registers. If not, ptrace will fail the first time it's
3585 called to access one and will not be called again. This wart will
3586 be removed when Daniel Jacobowitz's proposal for autodetecting target
3587 registers is implemented. */
3588 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3589 {
3590 tdep->ppc_vr0_regnum = 71;
3591 tdep->ppc_vrsave_regnum = 104;
3592 }
3593 /* Fall Thru */
3594 case GDB_OSABI_NETBSD_AOUT:
3595 case GDB_OSABI_NETBSD_ELF:
3596 case GDB_OSABI_UNKNOWN:
3597 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3598 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3599 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3600 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3601 break;
3602 default:
3603 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3604
3605 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3606 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3607 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3608 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3609 }
3610
3611 init_sim_regno_table (gdbarch);
3612
3613 return gdbarch;
3614 }
3615
3616 static void
3617 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3618 {
3619 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3620
3621 if (tdep == NULL)
3622 return;
3623
3624 /* FIXME: Dump gdbarch_tdep. */
3625 }
3626
3627 /* Initialization code. */
3628
3629 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3630
3631 void
3632 _initialize_rs6000_tdep (void)
3633 {
3634 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3635 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3636 }
This page took 0.10501 seconds and 4 git commands to generate.