2007-06-18 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43 #include "dwarf2-frame.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52
53 #include "solib-svr4.h"
54 #include "ppc-tdep.h"
55
56 #include "gdb_assert.h"
57 #include "dis-asm.h"
58
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
62
63 #include "rs6000-tdep.h"
64
65 /* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72 #define SIG_FRAME_PC_OFFSET 96
73 #define SIG_FRAME_LR_OFFSET 108
74 #define SIG_FRAME_FP_OFFSET 284
75
76 /* To be used by skip_prologue. */
77
78 struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
85 int saved_vr; /* smallest # of saved vr */
86 int saved_ev; /* smallest # of saved ev */
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
92 int vr_offset; /* offset of saved vrs from prev sp */
93 int ev_offset; /* offset of saved evs from prev sp */
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
96 int vrsave_offset; /* offset of saved vrsave register */
97 };
98
99 /* Description of a single register. */
100
101 struct reg
102 {
103 char *name; /* name of register */
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
106 unsigned char fpr; /* whether register is floating-point */
107 unsigned char pseudo; /* whether register is pseudo */
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
111 };
112
113 /* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
117 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
119 /* Static function prototypes */
120
121 static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
122 int instr, CORE_ADDR pc, CORE_ADDR safety);
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137
138 /* Return true if REGNO is an SPE register, false otherwise. */
139 int
140 spe_register_p (int regno)
141 {
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168 }
169
170
171 /* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
173 int
174 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
180 }
181
182
183 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
190 static void
191 set_sim_regno (int *table, int gdb_regno, int sim_regno)
192 {
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197 }
198
199
200 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
203 static void
204 init_sim_regno_table (struct gdbarch *arch)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281 }
282
283
284 /* Given a GDB register number REG, return the corresponding SIM
285 register number. */
286 static int
287 rs6000_register_sim_regno (int reg)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
292 gdb_assert (0 <= reg
293 && reg <= gdbarch_num_regs (current_gdbarch)
294 + gdbarch_num_pseudo_regs (current_gdbarch));
295 sim_regno = tdep->sim_regno[reg];
296
297 if (sim_regno >= 0)
298 return sim_regno;
299 else
300 return LEGACY_SIM_REGNO_IGNORE;
301 }
302
303 \f
304
305 /* Register set support functions. */
306
307 static void
308 ppc_supply_reg (struct regcache *regcache, int regnum,
309 const gdb_byte *regs, size_t offset)
310 {
311 if (regnum != -1 && offset != -1)
312 regcache_raw_supply (regcache, regnum, regs + offset);
313 }
314
315 static void
316 ppc_collect_reg (const struct regcache *regcache, int regnum,
317 gdb_byte *regs, size_t offset)
318 {
319 if (regnum != -1 && offset != -1)
320 regcache_raw_collect (regcache, regnum, regs + offset);
321 }
322
323 /* Supply register REGNUM in the general-purpose register set REGSET
324 from the buffer specified by GREGS and LEN to register cache
325 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
326
327 void
328 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
329 int regnum, const void *gregs, size_t len)
330 {
331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 const struct ppc_reg_offsets *offsets = regset->descr;
334 size_t offset;
335 int i;
336
337 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
338 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
339 i++, offset += 4)
340 {
341 if (regnum == -1 || regnum == i)
342 ppc_supply_reg (regcache, i, gregs, offset);
343 }
344
345 if (regnum == -1 || regnum == gdbarch_pc_regnum (current_gdbarch))
346 ppc_supply_reg (regcache, gdbarch_pc_regnum (current_gdbarch),
347 gregs, offsets->pc_offset);
348 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
349 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
350 gregs, offsets->ps_offset);
351 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
352 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
353 gregs, offsets->cr_offset);
354 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
355 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
356 gregs, offsets->lr_offset);
357 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
358 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
359 gregs, offsets->ctr_offset);
360 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
362 gregs, offsets->cr_offset);
363 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
365 }
366
367 /* Supply register REGNUM in the floating-point register set REGSET
368 from the buffer specified by FPREGS and LEN to register cache
369 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
370
371 void
372 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
373 int regnum, const void *fpregs, size_t len)
374 {
375 struct gdbarch *gdbarch = get_regcache_arch (regcache);
376 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
377 const struct ppc_reg_offsets *offsets = regset->descr;
378 size_t offset;
379 int i;
380
381 gdb_assert (ppc_floating_point_unit_p (gdbarch));
382
383 offset = offsets->f0_offset;
384 for (i = tdep->ppc_fp0_regnum;
385 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
386 i++, offset += 8)
387 {
388 if (regnum == -1 || regnum == i)
389 ppc_supply_reg (regcache, i, fpregs, offset);
390 }
391
392 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
393 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
394 fpregs, offsets->fpscr_offset);
395 }
396
397 /* Collect register REGNUM in the general-purpose register set
398 REGSET. from register cache REGCACHE into the buffer specified by
399 GREGS and LEN. If REGNUM is -1, do this for all registers in
400 REGSET. */
401
402 void
403 ppc_collect_gregset (const struct regset *regset,
404 const struct regcache *regcache,
405 int regnum, void *gregs, size_t len)
406 {
407 struct gdbarch *gdbarch = get_regcache_arch (regcache);
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409 const struct ppc_reg_offsets *offsets = regset->descr;
410 size_t offset;
411 int i;
412
413 offset = offsets->r0_offset;
414 for (i = tdep->ppc_gp0_regnum;
415 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
416 i++, offset += 4)
417 {
418 if (regnum == -1 || regnum == i)
419 ppc_collect_reg (regcache, i, gregs, offset);
420 }
421
422 if (regnum == -1 || regnum == gdbarch_pc_regnum (current_gdbarch))
423 ppc_collect_reg (regcache, gdbarch_pc_regnum (current_gdbarch),
424 gregs, offsets->pc_offset);
425 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
426 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
427 gregs, offsets->ps_offset);
428 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
429 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
430 gregs, offsets->cr_offset);
431 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
432 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
433 gregs, offsets->lr_offset);
434 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
435 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
436 gregs, offsets->ctr_offset);
437 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
438 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
439 gregs, offsets->xer_offset);
440 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
441 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
442 gregs, offsets->mq_offset);
443 }
444
445 /* Collect register REGNUM in the floating-point register set
446 REGSET. from register cache REGCACHE into the buffer specified by
447 FPREGS and LEN. If REGNUM is -1, do this for all registers in
448 REGSET. */
449
450 void
451 ppc_collect_fpregset (const struct regset *regset,
452 const struct regcache *regcache,
453 int regnum, void *fpregs, size_t len)
454 {
455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
457 const struct ppc_reg_offsets *offsets = regset->descr;
458 size_t offset;
459 int i;
460
461 gdb_assert (ppc_floating_point_unit_p (gdbarch));
462
463 offset = offsets->f0_offset;
464 for (i = tdep->ppc_fp0_regnum;
465 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
466 i++, offset += 8)
467 {
468 if (regnum == -1 || regnum == i)
469 ppc_collect_reg (regcache, i, fpregs, offset);
470 }
471
472 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
473 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
474 fpregs, offsets->fpscr_offset);
475 }
476 \f
477
478 /* Read a LEN-byte address from debugged memory address MEMADDR. */
479
480 static CORE_ADDR
481 read_memory_addr (CORE_ADDR memaddr, int len)
482 {
483 return read_memory_unsigned_integer (memaddr, len);
484 }
485
486 static CORE_ADDR
487 rs6000_skip_prologue (CORE_ADDR pc)
488 {
489 struct rs6000_framedata frame;
490 CORE_ADDR limit_pc, func_addr;
491
492 /* See if we can determine the end of the prologue via the symbol table.
493 If so, then return either PC, or the PC after the prologue, whichever
494 is greater. */
495 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
496 {
497 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
498 if (post_prologue_pc != 0)
499 return max (pc, post_prologue_pc);
500 }
501
502 /* Can't determine prologue from the symbol table, need to examine
503 instructions. */
504
505 /* Find an upper limit on the function prologue using the debug
506 information. If the debug information could not be used to provide
507 that bound, then use an arbitrary large number as the upper bound. */
508 limit_pc = skip_prologue_using_sal (pc);
509 if (limit_pc == 0)
510 limit_pc = pc + 100; /* Magic. */
511
512 pc = skip_prologue (pc, limit_pc, &frame);
513 return pc;
514 }
515
516 static int
517 insn_changes_sp_or_jumps (unsigned long insn)
518 {
519 int opcode = (insn >> 26) & 0x03f;
520 int sd = (insn >> 21) & 0x01f;
521 int a = (insn >> 16) & 0x01f;
522 int subcode = (insn >> 1) & 0x3ff;
523
524 /* Changes the stack pointer. */
525
526 /* NOTE: There are many ways to change the value of a given register.
527 The ways below are those used when the register is R1, the SP,
528 in a funtion's epilogue. */
529
530 if (opcode == 31 && subcode == 444 && a == 1)
531 return 1; /* mr R1,Rn */
532 if (opcode == 14 && sd == 1)
533 return 1; /* addi R1,Rn,simm */
534 if (opcode == 58 && sd == 1)
535 return 1; /* ld R1,ds(Rn) */
536
537 /* Transfers control. */
538
539 if (opcode == 18)
540 return 1; /* b */
541 if (opcode == 16)
542 return 1; /* bc */
543 if (opcode == 19 && subcode == 16)
544 return 1; /* bclr */
545 if (opcode == 19 && subcode == 528)
546 return 1; /* bcctr */
547
548 return 0;
549 }
550
551 /* Return true if we are in the function's epilogue, i.e. after the
552 instruction that destroyed the function's stack frame.
553
554 1) scan forward from the point of execution:
555 a) If you find an instruction that modifies the stack pointer
556 or transfers control (except a return), execution is not in
557 an epilogue, return.
558 b) Stop scanning if you find a return instruction or reach the
559 end of the function or reach the hard limit for the size of
560 an epilogue.
561 2) scan backward from the point of execution:
562 a) If you find an instruction that modifies the stack pointer,
563 execution *is* in an epilogue, return.
564 b) Stop scanning if you reach an instruction that transfers
565 control or the beginning of the function or reach the hard
566 limit for the size of an epilogue. */
567
568 static int
569 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
570 {
571 bfd_byte insn_buf[PPC_INSN_SIZE];
572 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
573 unsigned long insn;
574 struct frame_info *curfrm;
575
576 /* Find the search limits based on function boundaries and hard limit. */
577
578 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
579 return 0;
580
581 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
582 if (epilogue_start < func_start) epilogue_start = func_start;
583
584 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
585 if (epilogue_end > func_end) epilogue_end = func_end;
586
587 curfrm = get_current_frame ();
588
589 /* Scan forward until next 'blr'. */
590
591 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
592 {
593 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
594 return 0;
595 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
596 if (insn == 0x4e800020)
597 break;
598 if (insn_changes_sp_or_jumps (insn))
599 return 0;
600 }
601
602 /* Scan backward until adjustment to stack pointer (R1). */
603
604 for (scan_pc = pc - PPC_INSN_SIZE;
605 scan_pc >= epilogue_start;
606 scan_pc -= PPC_INSN_SIZE)
607 {
608 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
609 return 0;
610 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
611 if (insn_changes_sp_or_jumps (insn))
612 return 1;
613 }
614
615 return 0;
616 }
617
618 /* Get the ith function argument for the current function. */
619 static CORE_ADDR
620 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
621 struct type *type)
622 {
623 return get_frame_register_unsigned (frame, 3 + argi);
624 }
625
626 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
627
628 static CORE_ADDR
629 branch_dest (struct frame_info *frame, int opcode, int instr,
630 CORE_ADDR pc, CORE_ADDR safety)
631 {
632 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
633 CORE_ADDR dest;
634 int immediate;
635 int absolute;
636 int ext_op;
637
638 absolute = (int) ((instr >> 1) & 1);
639
640 switch (opcode)
641 {
642 case 18:
643 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
644 if (absolute)
645 dest = immediate;
646 else
647 dest = pc + immediate;
648 break;
649
650 case 16:
651 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
652 if (absolute)
653 dest = immediate;
654 else
655 dest = pc + immediate;
656 break;
657
658 case 19:
659 ext_op = (instr >> 1) & 0x3ff;
660
661 if (ext_op == 16) /* br conditional register */
662 {
663 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
664
665 /* If we are about to return from a signal handler, dest is
666 something like 0x3c90. The current frame is a signal handler
667 caller frame, upon completion of the sigreturn system call
668 execution will return to the saved PC in the frame. */
669 if (dest < tdep->text_segment_base)
670 dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
671 tdep->wordsize);
672 }
673
674 else if (ext_op == 528) /* br cond to count reg */
675 {
676 dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
677
678 /* If we are about to execute a system call, dest is something
679 like 0x22fc or 0x3b00. Upon completion the system call
680 will return to the address in the link register. */
681 if (dest < tdep->text_segment_base)
682 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
683 }
684 else
685 return -1;
686 break;
687
688 default:
689 return -1;
690 }
691 return (dest < tdep->text_segment_base) ? safety : dest;
692 }
693
694
695 /* Sequence of bytes for breakpoint instruction. */
696
697 const static unsigned char *
698 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
699 {
700 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
701 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
702 *bp_size = 4;
703 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
704 return big_breakpoint;
705 else
706 return little_breakpoint;
707 }
708
709
710 /* Instruction masks used during single-stepping of atomic sequences. */
711 #define LWARX_MASK 0xfc0007fe
712 #define LWARX_INSTRUCTION 0x7c000028
713 #define LDARX_INSTRUCTION 0x7c0000A8
714 #define STWCX_MASK 0xfc0007ff
715 #define STWCX_INSTRUCTION 0x7c00012d
716 #define STDCX_INSTRUCTION 0x7c0001ad
717 #define BC_MASK 0xfc000000
718 #define BC_INSTRUCTION 0x40000000
719
720 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
721 instruction and ending with a STWCX/STDCX instruction. If such a sequence
722 is found, attempt to step through it. A breakpoint is placed at the end of
723 the sequence. */
724
725 static int
726 deal_with_atomic_sequence (struct frame_info *frame)
727 {
728 CORE_ADDR pc = get_frame_pc (frame);
729 CORE_ADDR breaks[2] = {-1, -1};
730 CORE_ADDR loc = pc;
731 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
732 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
733 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
734 int insn_count;
735 int index;
736 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
737 const int atomic_sequence_length = 16; /* Instruction sequence length. */
738 int opcode; /* Branch instruction's OPcode. */
739 int bc_insn_count = 0; /* Conditional branch instruction count. */
740
741 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
742 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
743 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
744 return 0;
745
746 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
747 instructions. */
748 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
749 {
750 loc += PPC_INSN_SIZE;
751 insn = read_memory_integer (loc, PPC_INSN_SIZE);
752
753 /* Assume that there is at most one conditional branch in the atomic
754 sequence. If a conditional branch is found, put a breakpoint in
755 its destination address. */
756 if ((insn & BC_MASK) == BC_INSTRUCTION)
757 {
758 if (bc_insn_count >= 1)
759 return 0; /* More than one conditional branch found, fallback
760 to the standard single-step code. */
761
762 opcode = insn >> 26;
763 branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
764
765 if (branch_bp != -1)
766 {
767 breaks[1] = branch_bp;
768 bc_insn_count++;
769 last_breakpoint++;
770 }
771 }
772
773 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
774 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
775 break;
776 }
777
778 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
779 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
780 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
781 return 0;
782
783 closing_insn = loc;
784 loc += PPC_INSN_SIZE;
785 insn = read_memory_integer (loc, PPC_INSN_SIZE);
786
787 /* Insert a breakpoint right after the end of the atomic sequence. */
788 breaks[0] = loc;
789
790 /* Check for duplicated breakpoints. Check also for a breakpoint
791 placed (branch instruction's destination) at the stwcx/stdcx
792 instruction, this resets the reservation and take us back to the
793 lwarx/ldarx instruction at the beginning of the atomic sequence. */
794 if (last_breakpoint && ((breaks[1] == breaks[0])
795 || (breaks[1] == closing_insn)))
796 last_breakpoint = 0;
797
798 /* Effectively inserts the breakpoints. */
799 for (index = 0; index <= last_breakpoint; index++)
800 insert_single_step_breakpoint (breaks[index]);
801
802 return 1;
803 }
804
805 /* AIX does not support PT_STEP. Simulate it. */
806
807 int
808 rs6000_software_single_step (struct frame_info *frame)
809 {
810 CORE_ADDR dummy;
811 int breakp_sz;
812 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
813 int ii, insn;
814 CORE_ADDR loc;
815 CORE_ADDR breaks[2];
816 int opcode;
817
818 loc = get_frame_pc (frame);
819
820 insn = read_memory_integer (loc, 4);
821
822 if (deal_with_atomic_sequence (frame))
823 return 1;
824
825 breaks[0] = loc + breakp_sz;
826 opcode = insn >> 26;
827 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
828
829 /* Don't put two breakpoints on the same address. */
830 if (breaks[1] == breaks[0])
831 breaks[1] = -1;
832
833 for (ii = 0; ii < 2; ++ii)
834 {
835 /* ignore invalid breakpoint. */
836 if (breaks[ii] == -1)
837 continue;
838 insert_single_step_breakpoint (breaks[ii]);
839 }
840
841 errno = 0; /* FIXME, don't ignore errors! */
842 /* What errors? {read,write}_memory call error(). */
843 return 1;
844 }
845
846
847 /* return pc value after skipping a function prologue and also return
848 information about a function frame.
849
850 in struct rs6000_framedata fdata:
851 - frameless is TRUE, if function does not have a frame.
852 - nosavedpc is TRUE, if function does not save %pc value in its frame.
853 - offset is the initial size of this stack frame --- the amount by
854 which we decrement the sp to allocate the frame.
855 - saved_gpr is the number of the first saved gpr.
856 - saved_fpr is the number of the first saved fpr.
857 - saved_vr is the number of the first saved vr.
858 - saved_ev is the number of the first saved ev.
859 - alloca_reg is the number of the register used for alloca() handling.
860 Otherwise -1.
861 - gpr_offset is the offset of the first saved gpr from the previous frame.
862 - fpr_offset is the offset of the first saved fpr from the previous frame.
863 - vr_offset is the offset of the first saved vr from the previous frame.
864 - ev_offset is the offset of the first saved ev from the previous frame.
865 - lr_offset is the offset of the saved lr
866 - cr_offset is the offset of the saved cr
867 - vrsave_offset is the offset of the saved vrsave register
868 */
869
870 #define SIGNED_SHORT(x) \
871 ((sizeof (short) == 2) \
872 ? ((int)(short)(x)) \
873 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
874
875 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
876
877 /* Limit the number of skipped non-prologue instructions, as the examining
878 of the prologue is expensive. */
879 static int max_skip_non_prologue_insns = 10;
880
881 /* Return nonzero if the given instruction OP can be part of the prologue
882 of a function and saves a parameter on the stack. FRAMEP should be
883 set if one of the previous instructions in the function has set the
884 Frame Pointer. */
885
886 static int
887 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
888 {
889 /* Move parameters from argument registers to temporary register. */
890 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
891 {
892 /* Rx must be scratch register r0. */
893 const int rx_regno = (op >> 16) & 31;
894 /* Ry: Only r3 - r10 are used for parameter passing. */
895 const int ry_regno = GET_SRC_REG (op);
896
897 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
898 {
899 *r0_contains_arg = 1;
900 return 1;
901 }
902 else
903 return 0;
904 }
905
906 /* Save a General Purpose Register on stack. */
907
908 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
909 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
910 {
911 /* Rx: Only r3 - r10 are used for parameter passing. */
912 const int rx_regno = GET_SRC_REG (op);
913
914 return (rx_regno >= 3 && rx_regno <= 10);
915 }
916
917 /* Save a General Purpose Register on stack via the Frame Pointer. */
918
919 if (framep &&
920 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
921 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
922 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
923 {
924 /* Rx: Usually, only r3 - r10 are used for parameter passing.
925 However, the compiler sometimes uses r0 to hold an argument. */
926 const int rx_regno = GET_SRC_REG (op);
927
928 return ((rx_regno >= 3 && rx_regno <= 10)
929 || (rx_regno == 0 && *r0_contains_arg));
930 }
931
932 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
933 {
934 /* Only f2 - f8 are used for parameter passing. */
935 const int src_regno = GET_SRC_REG (op);
936
937 return (src_regno >= 2 && src_regno <= 8);
938 }
939
940 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
941 {
942 /* Only f2 - f8 are used for parameter passing. */
943 const int src_regno = GET_SRC_REG (op);
944
945 return (src_regno >= 2 && src_regno <= 8);
946 }
947
948 /* Not an insn that saves a parameter on stack. */
949 return 0;
950 }
951
952 /* Assuming that INSN is a "bl" instruction located at PC, return
953 nonzero if the destination of the branch is a "blrl" instruction.
954
955 This sequence is sometimes found in certain function prologues.
956 It allows the function to load the LR register with a value that
957 they can use to access PIC data using PC-relative offsets. */
958
959 static int
960 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
961 {
962 CORE_ADDR dest;
963 int immediate;
964 int absolute;
965 int dest_insn;
966
967 absolute = (int) ((insn >> 1) & 1);
968 immediate = ((insn & ~3) << 6) >> 6;
969 if (absolute)
970 dest = immediate;
971 else
972 dest = pc + immediate;
973
974 dest_insn = read_memory_integer (dest, 4);
975 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
976 return 1;
977
978 return 0;
979 }
980
981 static CORE_ADDR
982 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
983 {
984 CORE_ADDR orig_pc = pc;
985 CORE_ADDR last_prologue_pc = pc;
986 CORE_ADDR li_found_pc = 0;
987 gdb_byte buf[4];
988 unsigned long op;
989 long offset = 0;
990 long vr_saved_offset = 0;
991 int lr_reg = -1;
992 int cr_reg = -1;
993 int vr_reg = -1;
994 int ev_reg = -1;
995 long ev_offset = 0;
996 int vrsave_reg = -1;
997 int reg;
998 int framep = 0;
999 int minimal_toc_loaded = 0;
1000 int prev_insn_was_prologue_insn = 1;
1001 int num_skip_non_prologue_insns = 0;
1002 int r0_contains_arg = 0;
1003 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
1004 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1005
1006 memset (fdata, 0, sizeof (struct rs6000_framedata));
1007 fdata->saved_gpr = -1;
1008 fdata->saved_fpr = -1;
1009 fdata->saved_vr = -1;
1010 fdata->saved_ev = -1;
1011 fdata->alloca_reg = -1;
1012 fdata->frameless = 1;
1013 fdata->nosavedpc = 1;
1014
1015 for (;; pc += 4)
1016 {
1017 /* Sometimes it isn't clear if an instruction is a prologue
1018 instruction or not. When we encounter one of these ambiguous
1019 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1020 Otherwise, we'll assume that it really is a prologue instruction. */
1021 if (prev_insn_was_prologue_insn)
1022 last_prologue_pc = pc;
1023
1024 /* Stop scanning if we've hit the limit. */
1025 if (pc >= lim_pc)
1026 break;
1027
1028 prev_insn_was_prologue_insn = 1;
1029
1030 /* Fetch the instruction and convert it to an integer. */
1031 if (target_read_memory (pc, buf, 4))
1032 break;
1033 op = extract_unsigned_integer (buf, 4);
1034
1035 if ((op & 0xfc1fffff) == 0x7c0802a6)
1036 { /* mflr Rx */
1037 /* Since shared library / PIC code, which needs to get its
1038 address at runtime, can appear to save more than one link
1039 register vis:
1040
1041 *INDENT-OFF*
1042 stwu r1,-304(r1)
1043 mflr r3
1044 bl 0xff570d0 (blrl)
1045 stw r30,296(r1)
1046 mflr r30
1047 stw r31,300(r1)
1048 stw r3,308(r1);
1049 ...
1050 *INDENT-ON*
1051
1052 remember just the first one, but skip over additional
1053 ones. */
1054 if (lr_reg == -1)
1055 lr_reg = (op & 0x03e00000);
1056 if (lr_reg == 0)
1057 r0_contains_arg = 0;
1058 continue;
1059 }
1060 else if ((op & 0xfc1fffff) == 0x7c000026)
1061 { /* mfcr Rx */
1062 cr_reg = (op & 0x03e00000);
1063 if (cr_reg == 0)
1064 r0_contains_arg = 0;
1065 continue;
1066
1067 }
1068 else if ((op & 0xfc1f0000) == 0xd8010000)
1069 { /* stfd Rx,NUM(r1) */
1070 reg = GET_SRC_REG (op);
1071 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1072 {
1073 fdata->saved_fpr = reg;
1074 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1075 }
1076 continue;
1077
1078 }
1079 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1080 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1081 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1082 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1083 {
1084
1085 reg = GET_SRC_REG (op);
1086 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1087 {
1088 fdata->saved_gpr = reg;
1089 if ((op & 0xfc1f0003) == 0xf8010000)
1090 op &= ~3UL;
1091 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1092 }
1093 continue;
1094
1095 }
1096 else if ((op & 0xffff0000) == 0x60000000)
1097 {
1098 /* nop */
1099 /* Allow nops in the prologue, but do not consider them to
1100 be part of the prologue unless followed by other prologue
1101 instructions. */
1102 prev_insn_was_prologue_insn = 0;
1103 continue;
1104
1105 }
1106 else if ((op & 0xffff0000) == 0x3c000000)
1107 { /* addis 0,0,NUM, used
1108 for >= 32k frames */
1109 fdata->offset = (op & 0x0000ffff) << 16;
1110 fdata->frameless = 0;
1111 r0_contains_arg = 0;
1112 continue;
1113
1114 }
1115 else if ((op & 0xffff0000) == 0x60000000)
1116 { /* ori 0,0,NUM, 2nd ha
1117 lf of >= 32k frames */
1118 fdata->offset |= (op & 0x0000ffff);
1119 fdata->frameless = 0;
1120 r0_contains_arg = 0;
1121 continue;
1122
1123 }
1124 else if (lr_reg >= 0 &&
1125 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1126 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1127 /* stw Rx, NUM(r1) */
1128 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1129 /* stwu Rx, NUM(r1) */
1130 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1131 { /* where Rx == lr */
1132 fdata->lr_offset = offset;
1133 fdata->nosavedpc = 0;
1134 /* Invalidate lr_reg, but don't set it to -1.
1135 That would mean that it had never been set. */
1136 lr_reg = -2;
1137 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1138 (op & 0xfc000000) == 0x90000000) /* stw */
1139 {
1140 /* Does not update r1, so add displacement to lr_offset. */
1141 fdata->lr_offset += SIGNED_SHORT (op);
1142 }
1143 continue;
1144
1145 }
1146 else if (cr_reg >= 0 &&
1147 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1148 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1149 /* stw Rx, NUM(r1) */
1150 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1151 /* stwu Rx, NUM(r1) */
1152 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1153 { /* where Rx == cr */
1154 fdata->cr_offset = offset;
1155 /* Invalidate cr_reg, but don't set it to -1.
1156 That would mean that it had never been set. */
1157 cr_reg = -2;
1158 if ((op & 0xfc000003) == 0xf8000000 ||
1159 (op & 0xfc000000) == 0x90000000)
1160 {
1161 /* Does not update r1, so add displacement to cr_offset. */
1162 fdata->cr_offset += SIGNED_SHORT (op);
1163 }
1164 continue;
1165
1166 }
1167 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1168 {
1169 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1170 prediction bits. If the LR has already been saved, we can
1171 skip it. */
1172 continue;
1173 }
1174 else if (op == 0x48000005)
1175 { /* bl .+4 used in
1176 -mrelocatable */
1177 continue;
1178
1179 }
1180 else if (op == 0x48000004)
1181 { /* b .+4 (xlc) */
1182 break;
1183
1184 }
1185 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1186 in V.4 -mminimal-toc */
1187 (op & 0xffff0000) == 0x3bde0000)
1188 { /* addi 30,30,foo@l */
1189 continue;
1190
1191 }
1192 else if ((op & 0xfc000001) == 0x48000001)
1193 { /* bl foo,
1194 to save fprs??? */
1195
1196 fdata->frameless = 0;
1197
1198 /* If the return address has already been saved, we can skip
1199 calls to blrl (for PIC). */
1200 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1201 continue;
1202
1203 /* Don't skip over the subroutine call if it is not within
1204 the first three instructions of the prologue and either
1205 we have no line table information or the line info tells
1206 us that the subroutine call is not part of the line
1207 associated with the prologue. */
1208 if ((pc - orig_pc) > 8)
1209 {
1210 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1211 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1212
1213 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1214 break;
1215 }
1216
1217 op = read_memory_integer (pc + 4, 4);
1218
1219 /* At this point, make sure this is not a trampoline
1220 function (a function that simply calls another functions,
1221 and nothing else). If the next is not a nop, this branch
1222 was part of the function prologue. */
1223
1224 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1225 break; /* don't skip over
1226 this branch */
1227 continue;
1228
1229 }
1230 /* update stack pointer */
1231 else if ((op & 0xfc1f0000) == 0x94010000)
1232 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1233 fdata->frameless = 0;
1234 fdata->offset = SIGNED_SHORT (op);
1235 offset = fdata->offset;
1236 continue;
1237 }
1238 else if ((op & 0xfc1f016a) == 0x7c01016e)
1239 { /* stwux rX,r1,rY */
1240 /* no way to figure out what r1 is going to be */
1241 fdata->frameless = 0;
1242 offset = fdata->offset;
1243 continue;
1244 }
1245 else if ((op & 0xfc1f0003) == 0xf8010001)
1246 { /* stdu rX,NUM(r1) */
1247 fdata->frameless = 0;
1248 fdata->offset = SIGNED_SHORT (op & ~3UL);
1249 offset = fdata->offset;
1250 continue;
1251 }
1252 else if ((op & 0xfc1f016a) == 0x7c01016a)
1253 { /* stdux rX,r1,rY */
1254 /* no way to figure out what r1 is going to be */
1255 fdata->frameless = 0;
1256 offset = fdata->offset;
1257 continue;
1258 }
1259 else if ((op & 0xffff0000) == 0x38210000)
1260 { /* addi r1,r1,SIMM */
1261 fdata->frameless = 0;
1262 fdata->offset += SIGNED_SHORT (op);
1263 offset = fdata->offset;
1264 continue;
1265 }
1266 /* Load up minimal toc pointer. Do not treat an epilogue restore
1267 of r31 as a minimal TOC load. */
1268 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1269 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1270 && !framep
1271 && !minimal_toc_loaded)
1272 {
1273 minimal_toc_loaded = 1;
1274 continue;
1275
1276 /* move parameters from argument registers to local variable
1277 registers */
1278 }
1279 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1280 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1281 (((op >> 21) & 31) <= 10) &&
1282 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1283 {
1284 continue;
1285
1286 /* store parameters in stack */
1287 }
1288 /* Move parameters from argument registers to temporary register. */
1289 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1290 {
1291 continue;
1292
1293 /* Set up frame pointer */
1294 }
1295 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1296 || op == 0x7c3f0b78)
1297 { /* mr r31, r1 */
1298 fdata->frameless = 0;
1299 framep = 1;
1300 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1301 continue;
1302
1303 /* Another way to set up the frame pointer. */
1304 }
1305 else if ((op & 0xfc1fffff) == 0x38010000)
1306 { /* addi rX, r1, 0x0 */
1307 fdata->frameless = 0;
1308 framep = 1;
1309 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1310 + ((op & ~0x38010000) >> 21));
1311 continue;
1312 }
1313 /* AltiVec related instructions. */
1314 /* Store the vrsave register (spr 256) in another register for
1315 later manipulation, or load a register into the vrsave
1316 register. 2 instructions are used: mfvrsave and
1317 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1318 and mtspr SPR256, Rn. */
1319 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1320 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1321 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1322 {
1323 vrsave_reg = GET_SRC_REG (op);
1324 continue;
1325 }
1326 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1327 {
1328 continue;
1329 }
1330 /* Store the register where vrsave was saved to onto the stack:
1331 rS is the register where vrsave was stored in a previous
1332 instruction. */
1333 /* 100100 sssss 00001 dddddddd dddddddd */
1334 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1335 {
1336 if (vrsave_reg == GET_SRC_REG (op))
1337 {
1338 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1339 vrsave_reg = -1;
1340 }
1341 continue;
1342 }
1343 /* Compute the new value of vrsave, by modifying the register
1344 where vrsave was saved to. */
1345 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1346 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1347 {
1348 continue;
1349 }
1350 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1351 in a pair of insns to save the vector registers on the
1352 stack. */
1353 /* 001110 00000 00000 iiii iiii iiii iiii */
1354 /* 001110 01110 00000 iiii iiii iiii iiii */
1355 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1356 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1357 {
1358 if ((op & 0xffff0000) == 0x38000000)
1359 r0_contains_arg = 0;
1360 li_found_pc = pc;
1361 vr_saved_offset = SIGNED_SHORT (op);
1362
1363 /* This insn by itself is not part of the prologue, unless
1364 if part of the pair of insns mentioned above. So do not
1365 record this insn as part of the prologue yet. */
1366 prev_insn_was_prologue_insn = 0;
1367 }
1368 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1369 /* 011111 sssss 11111 00000 00111001110 */
1370 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1371 {
1372 if (pc == (li_found_pc + 4))
1373 {
1374 vr_reg = GET_SRC_REG (op);
1375 /* If this is the first vector reg to be saved, or if
1376 it has a lower number than others previously seen,
1377 reupdate the frame info. */
1378 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1379 {
1380 fdata->saved_vr = vr_reg;
1381 fdata->vr_offset = vr_saved_offset + offset;
1382 }
1383 vr_saved_offset = -1;
1384 vr_reg = -1;
1385 li_found_pc = 0;
1386 }
1387 }
1388 /* End AltiVec related instructions. */
1389
1390 /* Start BookE related instructions. */
1391 /* Store gen register S at (r31+uimm).
1392 Any register less than r13 is volatile, so we don't care. */
1393 /* 000100 sssss 11111 iiiii 01100100001 */
1394 else if (arch_info->mach == bfd_mach_ppc_e500
1395 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1396 {
1397 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1398 {
1399 unsigned int imm;
1400 ev_reg = GET_SRC_REG (op);
1401 imm = (op >> 11) & 0x1f;
1402 ev_offset = imm * 8;
1403 /* If this is the first vector reg to be saved, or if
1404 it has a lower number than others previously seen,
1405 reupdate the frame info. */
1406 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1407 {
1408 fdata->saved_ev = ev_reg;
1409 fdata->ev_offset = ev_offset + offset;
1410 }
1411 }
1412 continue;
1413 }
1414 /* Store gen register rS at (r1+rB). */
1415 /* 000100 sssss 00001 bbbbb 01100100000 */
1416 else if (arch_info->mach == bfd_mach_ppc_e500
1417 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1418 {
1419 if (pc == (li_found_pc + 4))
1420 {
1421 ev_reg = GET_SRC_REG (op);
1422 /* If this is the first vector reg to be saved, or if
1423 it has a lower number than others previously seen,
1424 reupdate the frame info. */
1425 /* We know the contents of rB from the previous instruction. */
1426 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1427 {
1428 fdata->saved_ev = ev_reg;
1429 fdata->ev_offset = vr_saved_offset + offset;
1430 }
1431 vr_saved_offset = -1;
1432 ev_reg = -1;
1433 li_found_pc = 0;
1434 }
1435 continue;
1436 }
1437 /* Store gen register r31 at (rA+uimm). */
1438 /* 000100 11111 aaaaa iiiii 01100100001 */
1439 else if (arch_info->mach == bfd_mach_ppc_e500
1440 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1441 {
1442 /* Wwe know that the source register is 31 already, but
1443 it can't hurt to compute it. */
1444 ev_reg = GET_SRC_REG (op);
1445 ev_offset = ((op >> 11) & 0x1f) * 8;
1446 /* If this is the first vector reg to be saved, or if
1447 it has a lower number than others previously seen,
1448 reupdate the frame info. */
1449 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1450 {
1451 fdata->saved_ev = ev_reg;
1452 fdata->ev_offset = ev_offset + offset;
1453 }
1454
1455 continue;
1456 }
1457 /* Store gen register S at (r31+r0).
1458 Store param on stack when offset from SP bigger than 4 bytes. */
1459 /* 000100 sssss 11111 00000 01100100000 */
1460 else if (arch_info->mach == bfd_mach_ppc_e500
1461 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1462 {
1463 if (pc == (li_found_pc + 4))
1464 {
1465 if ((op & 0x03e00000) >= 0x01a00000)
1466 {
1467 ev_reg = GET_SRC_REG (op);
1468 /* If this is the first vector reg to be saved, or if
1469 it has a lower number than others previously seen,
1470 reupdate the frame info. */
1471 /* We know the contents of r0 from the previous
1472 instruction. */
1473 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1474 {
1475 fdata->saved_ev = ev_reg;
1476 fdata->ev_offset = vr_saved_offset + offset;
1477 }
1478 ev_reg = -1;
1479 }
1480 vr_saved_offset = -1;
1481 li_found_pc = 0;
1482 continue;
1483 }
1484 }
1485 /* End BookE related instructions. */
1486
1487 else
1488 {
1489 /* Not a recognized prologue instruction.
1490 Handle optimizer code motions into the prologue by continuing
1491 the search if we have no valid frame yet or if the return
1492 address is not yet saved in the frame. */
1493 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1494 break;
1495
1496 if (op == 0x4e800020 /* blr */
1497 || op == 0x4e800420) /* bctr */
1498 /* Do not scan past epilogue in frameless functions or
1499 trampolines. */
1500 break;
1501 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1502 /* Never skip branches. */
1503 break;
1504
1505 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1506 /* Do not scan too many insns, scanning insns is expensive with
1507 remote targets. */
1508 break;
1509
1510 /* Continue scanning. */
1511 prev_insn_was_prologue_insn = 0;
1512 continue;
1513 }
1514 }
1515
1516 #if 0
1517 /* I have problems with skipping over __main() that I need to address
1518 * sometime. Previously, I used to use misc_function_vector which
1519 * didn't work as well as I wanted to be. -MGO */
1520
1521 /* If the first thing after skipping a prolog is a branch to a function,
1522 this might be a call to an initializer in main(), introduced by gcc2.
1523 We'd like to skip over it as well. Fortunately, xlc does some extra
1524 work before calling a function right after a prologue, thus we can
1525 single out such gcc2 behaviour. */
1526
1527
1528 if ((op & 0xfc000001) == 0x48000001)
1529 { /* bl foo, an initializer function? */
1530 op = read_memory_integer (pc + 4, 4);
1531
1532 if (op == 0x4def7b82)
1533 { /* cror 0xf, 0xf, 0xf (nop) */
1534
1535 /* Check and see if we are in main. If so, skip over this
1536 initializer function as well. */
1537
1538 tmp = find_pc_misc_function (pc);
1539 if (tmp >= 0
1540 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1541 return pc + 8;
1542 }
1543 }
1544 #endif /* 0 */
1545
1546 fdata->offset = -fdata->offset;
1547 return last_prologue_pc;
1548 }
1549
1550
1551 /*************************************************************************
1552 Support for creating pushing a dummy frame into the stack, and popping
1553 frames, etc.
1554 *************************************************************************/
1555
1556
1557 /* All the ABI's require 16 byte alignment. */
1558 static CORE_ADDR
1559 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1560 {
1561 return (addr & -16);
1562 }
1563
1564 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1565 the first eight words of the argument list (that might be less than
1566 eight parameters if some parameters occupy more than one word) are
1567 passed in r3..r10 registers. float and double parameters are
1568 passed in fpr's, in addition to that. Rest of the parameters if any
1569 are passed in user stack. There might be cases in which half of the
1570 parameter is copied into registers, the other half is pushed into
1571 stack.
1572
1573 Stack must be aligned on 64-bit boundaries when synthesizing
1574 function calls.
1575
1576 If the function is returning a structure, then the return address is passed
1577 in r3, then the first 7 words of the parameters can be passed in registers,
1578 starting from r4. */
1579
1580 static CORE_ADDR
1581 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1582 struct regcache *regcache, CORE_ADDR bp_addr,
1583 int nargs, struct value **args, CORE_ADDR sp,
1584 int struct_return, CORE_ADDR struct_addr)
1585 {
1586 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1587 int ii;
1588 int len = 0;
1589 int argno; /* current argument number */
1590 int argbytes; /* current argument byte */
1591 gdb_byte tmp_buffer[50];
1592 int f_argno = 0; /* current floating point argno */
1593 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1594 CORE_ADDR func_addr = find_function_addr (function, NULL);
1595
1596 struct value *arg = 0;
1597 struct type *type;
1598
1599 ULONGEST saved_sp;
1600
1601 /* The calling convention this function implements assumes the
1602 processor has floating-point registers. We shouldn't be using it
1603 on PPC variants that lack them. */
1604 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1605
1606 /* The first eight words of ther arguments are passed in registers.
1607 Copy them appropriately. */
1608 ii = 0;
1609
1610 /* If the function is returning a `struct', then the first word
1611 (which will be passed in r3) is used for struct return address.
1612 In that case we should advance one word and start from r4
1613 register to copy parameters. */
1614 if (struct_return)
1615 {
1616 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1617 struct_addr);
1618 ii++;
1619 }
1620
1621 /*
1622 effectively indirect call... gcc does...
1623
1624 return_val example( float, int);
1625
1626 eabi:
1627 float in fp0, int in r3
1628 offset of stack on overflow 8/16
1629 for varargs, must go by type.
1630 power open:
1631 float in r3&r4, int in r5
1632 offset of stack on overflow different
1633 both:
1634 return in r3 or f0. If no float, must study how gcc emulates floats;
1635 pay attention to arg promotion.
1636 User may have to cast\args to handle promotion correctly
1637 since gdb won't know if prototype supplied or not.
1638 */
1639
1640 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1641 {
1642 int reg_size = register_size (current_gdbarch, ii + 3);
1643
1644 arg = args[argno];
1645 type = check_typedef (value_type (arg));
1646 len = TYPE_LENGTH (type);
1647
1648 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1649 {
1650
1651 /* Floating point arguments are passed in fpr's, as well as gpr's.
1652 There are 13 fpr's reserved for passing parameters. At this point
1653 there is no way we would run out of them. */
1654
1655 gdb_assert (len <= 8);
1656
1657 regcache_cooked_write (regcache,
1658 tdep->ppc_fp0_regnum + 1 + f_argno,
1659 value_contents (arg));
1660 ++f_argno;
1661 }
1662
1663 if (len > reg_size)
1664 {
1665
1666 /* Argument takes more than one register. */
1667 while (argbytes < len)
1668 {
1669 gdb_byte word[MAX_REGISTER_SIZE];
1670 memset (word, 0, reg_size);
1671 memcpy (word,
1672 ((char *) value_contents (arg)) + argbytes,
1673 (len - argbytes) > reg_size
1674 ? reg_size : len - argbytes);
1675 regcache_cooked_write (regcache,
1676 tdep->ppc_gp0_regnum + 3 + ii,
1677 word);
1678 ++ii, argbytes += reg_size;
1679
1680 if (ii >= 8)
1681 goto ran_out_of_registers_for_arguments;
1682 }
1683 argbytes = 0;
1684 --ii;
1685 }
1686 else
1687 {
1688 /* Argument can fit in one register. No problem. */
1689 int adj = gdbarch_byte_order (current_gdbarch)
1690 == BFD_ENDIAN_BIG ? reg_size - len : 0;
1691 gdb_byte word[MAX_REGISTER_SIZE];
1692
1693 memset (word, 0, reg_size);
1694 memcpy (word, value_contents (arg), len);
1695 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1696 }
1697 ++argno;
1698 }
1699
1700 ran_out_of_registers_for_arguments:
1701
1702 regcache_cooked_read_unsigned (regcache,
1703 gdbarch_sp_regnum (current_gdbarch),
1704 &saved_sp);
1705
1706 /* Location for 8 parameters are always reserved. */
1707 sp -= wordsize * 8;
1708
1709 /* Another six words for back chain, TOC register, link register, etc. */
1710 sp -= wordsize * 6;
1711
1712 /* Stack pointer must be quadword aligned. */
1713 sp &= -16;
1714
1715 /* If there are more arguments, allocate space for them in
1716 the stack, then push them starting from the ninth one. */
1717
1718 if ((argno < nargs) || argbytes)
1719 {
1720 int space = 0, jj;
1721
1722 if (argbytes)
1723 {
1724 space += ((len - argbytes + 3) & -4);
1725 jj = argno + 1;
1726 }
1727 else
1728 jj = argno;
1729
1730 for (; jj < nargs; ++jj)
1731 {
1732 struct value *val = args[jj];
1733 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1734 }
1735
1736 /* Add location required for the rest of the parameters. */
1737 space = (space + 15) & -16;
1738 sp -= space;
1739
1740 /* This is another instance we need to be concerned about
1741 securing our stack space. If we write anything underneath %sp
1742 (r1), we might conflict with the kernel who thinks he is free
1743 to use this area. So, update %sp first before doing anything
1744 else. */
1745
1746 regcache_raw_write_signed (regcache,
1747 gdbarch_sp_regnum (current_gdbarch), sp);
1748
1749 /* If the last argument copied into the registers didn't fit there
1750 completely, push the rest of it into stack. */
1751
1752 if (argbytes)
1753 {
1754 write_memory (sp + 24 + (ii * 4),
1755 value_contents (arg) + argbytes,
1756 len - argbytes);
1757 ++argno;
1758 ii += ((len - argbytes + 3) & -4) / 4;
1759 }
1760
1761 /* Push the rest of the arguments into stack. */
1762 for (; argno < nargs; ++argno)
1763 {
1764
1765 arg = args[argno];
1766 type = check_typedef (value_type (arg));
1767 len = TYPE_LENGTH (type);
1768
1769
1770 /* Float types should be passed in fpr's, as well as in the
1771 stack. */
1772 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1773 {
1774
1775 gdb_assert (len <= 8);
1776
1777 regcache_cooked_write (regcache,
1778 tdep->ppc_fp0_regnum + 1 + f_argno,
1779 value_contents (arg));
1780 ++f_argno;
1781 }
1782
1783 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1784 ii += ((len + 3) & -4) / 4;
1785 }
1786 }
1787
1788 /* Set the stack pointer. According to the ABI, the SP is meant to
1789 be set _before_ the corresponding stack space is used. On AIX,
1790 this even applies when the target has been completely stopped!
1791 Not doing this can lead to conflicts with the kernel which thinks
1792 that it still has control over this not-yet-allocated stack
1793 region. */
1794 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (current_gdbarch), sp);
1795
1796 /* Set back chain properly. */
1797 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1798 write_memory (sp, tmp_buffer, wordsize);
1799
1800 /* Point the inferior function call's return address at the dummy's
1801 breakpoint. */
1802 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1803
1804 /* Set the TOC register, get the value from the objfile reader
1805 which, in turn, gets it from the VMAP table. */
1806 if (rs6000_find_toc_address_hook != NULL)
1807 {
1808 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1809 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1810 }
1811
1812 target_store_registers (regcache, -1);
1813 return sp;
1814 }
1815
1816 static enum return_value_convention
1817 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1818 struct regcache *regcache, gdb_byte *readbuf,
1819 const gdb_byte *writebuf)
1820 {
1821 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1822 gdb_byte buf[8];
1823
1824 /* The calling convention this function implements assumes the
1825 processor has floating-point registers. We shouldn't be using it
1826 on PowerPC variants that lack them. */
1827 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1828
1829 /* AltiVec extension: Functions that declare a vector data type as a
1830 return value place that return value in VR2. */
1831 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1832 && TYPE_LENGTH (valtype) == 16)
1833 {
1834 if (readbuf)
1835 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1836 if (writebuf)
1837 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1838
1839 return RETURN_VALUE_REGISTER_CONVENTION;
1840 }
1841
1842 /* If the called subprogram returns an aggregate, there exists an
1843 implicit first argument, whose value is the address of a caller-
1844 allocated buffer into which the callee is assumed to store its
1845 return value. All explicit parameters are appropriately
1846 relabeled. */
1847 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1848 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1849 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1850 return RETURN_VALUE_STRUCT_CONVENTION;
1851
1852 /* Scalar floating-point values are returned in FPR1 for float or
1853 double, and in FPR1:FPR2 for quadword precision. Fortran
1854 complex*8 and complex*16 are returned in FPR1:FPR2, and
1855 complex*32 is returned in FPR1:FPR4. */
1856 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1857 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1858 {
1859 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1860 gdb_byte regval[8];
1861
1862 /* FIXME: kettenis/2007-01-01: Add support for quadword
1863 precision and complex. */
1864
1865 if (readbuf)
1866 {
1867 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1868 convert_typed_floating (regval, regtype, readbuf, valtype);
1869 }
1870 if (writebuf)
1871 {
1872 convert_typed_floating (writebuf, valtype, regval, regtype);
1873 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1874 }
1875
1876 return RETURN_VALUE_REGISTER_CONVENTION;
1877 }
1878
1879 /* Values of the types int, long, short, pointer, and char (length
1880 is less than or equal to four bytes), as well as bit values of
1881 lengths less than or equal to 32 bits, must be returned right
1882 justified in GPR3 with signed values sign extended and unsigned
1883 values zero extended, as necessary. */
1884 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1885 {
1886 if (readbuf)
1887 {
1888 ULONGEST regval;
1889
1890 /* For reading we don't have to worry about sign extension. */
1891 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1892 &regval);
1893 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1894 }
1895 if (writebuf)
1896 {
1897 /* For writing, use unpack_long since that should handle any
1898 required sign extension. */
1899 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1900 unpack_long (valtype, writebuf));
1901 }
1902
1903 return RETURN_VALUE_REGISTER_CONVENTION;
1904 }
1905
1906 /* Eight-byte non-floating-point scalar values must be returned in
1907 GPR3:GPR4. */
1908
1909 if (TYPE_LENGTH (valtype) == 8)
1910 {
1911 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1912 gdb_assert (tdep->wordsize == 4);
1913
1914 if (readbuf)
1915 {
1916 gdb_byte regval[8];
1917
1918 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1919 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1920 regval + 4);
1921 memcpy (readbuf, regval, 8);
1922 }
1923 if (writebuf)
1924 {
1925 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1926 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1927 writebuf + 4);
1928 }
1929
1930 return RETURN_VALUE_REGISTER_CONVENTION;
1931 }
1932
1933 return RETURN_VALUE_STRUCT_CONVENTION;
1934 }
1935
1936 /* Return whether handle_inferior_event() should proceed through code
1937 starting at PC in function NAME when stepping.
1938
1939 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1940 handle memory references that are too distant to fit in instructions
1941 generated by the compiler. For example, if 'foo' in the following
1942 instruction:
1943
1944 lwz r9,foo(r2)
1945
1946 is greater than 32767, the linker might replace the lwz with a branch to
1947 somewhere in @FIX1 that does the load in 2 instructions and then branches
1948 back to where execution should continue.
1949
1950 GDB should silently step over @FIX code, just like AIX dbx does.
1951 Unfortunately, the linker uses the "b" instruction for the
1952 branches, meaning that the link register doesn't get set.
1953 Therefore, GDB's usual step_over_function () mechanism won't work.
1954
1955 Instead, use the gdbarch_skip_trampoline_code and
1956 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
1957 @FIX code. */
1958
1959 int
1960 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1961 {
1962 return name && !strncmp (name, "@FIX", 4);
1963 }
1964
1965 /* Skip code that the user doesn't want to see when stepping:
1966
1967 1. Indirect function calls use a piece of trampoline code to do context
1968 switching, i.e. to set the new TOC table. Skip such code if we are on
1969 its first instruction (as when we have single-stepped to here).
1970
1971 2. Skip shared library trampoline code (which is different from
1972 indirect function call trampolines).
1973
1974 3. Skip bigtoc fixup code.
1975
1976 Result is desired PC to step until, or NULL if we are not in
1977 code that should be skipped. */
1978
1979 CORE_ADDR
1980 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1981 {
1982 unsigned int ii, op;
1983 int rel;
1984 CORE_ADDR solib_target_pc;
1985 struct minimal_symbol *msymbol;
1986
1987 static unsigned trampoline_code[] =
1988 {
1989 0x800b0000, /* l r0,0x0(r11) */
1990 0x90410014, /* st r2,0x14(r1) */
1991 0x7c0903a6, /* mtctr r0 */
1992 0x804b0004, /* l r2,0x4(r11) */
1993 0x816b0008, /* l r11,0x8(r11) */
1994 0x4e800420, /* bctr */
1995 0x4e800020, /* br */
1996 0
1997 };
1998
1999 /* Check for bigtoc fixup code. */
2000 msymbol = lookup_minimal_symbol_by_pc (pc);
2001 if (msymbol
2002 && rs6000_in_solib_return_trampoline (pc,
2003 DEPRECATED_SYMBOL_NAME (msymbol)))
2004 {
2005 /* Double-check that the third instruction from PC is relative "b". */
2006 op = read_memory_integer (pc + 8, 4);
2007 if ((op & 0xfc000003) == 0x48000000)
2008 {
2009 /* Extract bits 6-29 as a signed 24-bit relative word address and
2010 add it to the containing PC. */
2011 rel = ((int)(op << 6) >> 6);
2012 return pc + 8 + rel;
2013 }
2014 }
2015
2016 /* If pc is in a shared library trampoline, return its target. */
2017 solib_target_pc = find_solib_trampoline_target (frame, pc);
2018 if (solib_target_pc)
2019 return solib_target_pc;
2020
2021 for (ii = 0; trampoline_code[ii]; ++ii)
2022 {
2023 op = read_memory_integer (pc + (ii * 4), 4);
2024 if (op != trampoline_code[ii])
2025 return 0;
2026 }
2027 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
2028 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
2029 return pc;
2030 }
2031
2032 /* ISA-specific vector types. */
2033
2034 static struct type *
2035 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2036 {
2037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2038
2039 if (!tdep->ppc_builtin_type_vec64)
2040 {
2041 /* The type we're building is this: */
2042 #if 0
2043 union __gdb_builtin_type_vec64
2044 {
2045 int64_t uint64;
2046 float v2_float[2];
2047 int32_t v2_int32[2];
2048 int16_t v4_int16[4];
2049 int8_t v8_int8[8];
2050 };
2051 #endif
2052
2053 struct type *t;
2054
2055 t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2056 append_composite_type_field (t, "uint64", builtin_type_int64);
2057 append_composite_type_field (t, "v2_float",
2058 init_vector_type (builtin_type_float, 2));
2059 append_composite_type_field (t, "v2_int32",
2060 init_vector_type (builtin_type_int32, 2));
2061 append_composite_type_field (t, "v4_int16",
2062 init_vector_type (builtin_type_int16, 4));
2063 append_composite_type_field (t, "v8_int8",
2064 init_vector_type (builtin_type_int8, 8));
2065
2066 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2067 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2068 tdep->ppc_builtin_type_vec64 = t;
2069 }
2070
2071 return tdep->ppc_builtin_type_vec64;
2072 }
2073
2074 static struct type *
2075 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2076 {
2077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2078
2079 if (!tdep->ppc_builtin_type_vec128)
2080 {
2081 /* The type we're building is this: */
2082 #if 0
2083 union __gdb_builtin_type_vec128
2084 {
2085 int128_t uint128;
2086 float v4_float[4];
2087 int32_t v4_int32[4];
2088 int16_t v8_int16[8];
2089 int8_t v16_int8[16];
2090 };
2091 #endif
2092
2093 struct type *t;
2094
2095 t = init_composite_type ("__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2096 append_composite_type_field (t, "uint128", builtin_type_int128);
2097 append_composite_type_field (t, "v4_float",
2098 init_vector_type (builtin_type_float, 4));
2099 append_composite_type_field (t, "v4_int32",
2100 init_vector_type (builtin_type_int32, 4));
2101 append_composite_type_field (t, "v8_int16",
2102 init_vector_type (builtin_type_int16, 8));
2103 append_composite_type_field (t, "v16_int8",
2104 init_vector_type (builtin_type_int8, 16));
2105
2106 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2107 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2108 tdep->ppc_builtin_type_vec128 = t;
2109 }
2110
2111 return tdep->ppc_builtin_type_vec128;
2112 }
2113
2114 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
2115 isn't available with that word size, return 0. */
2116
2117 static int
2118 regsize (const struct reg *reg, int wordsize)
2119 {
2120 return wordsize == 8 ? reg->sz64 : reg->sz32;
2121 }
2122
2123 /* Return the name of register number N, or null if no such register exists
2124 in the current architecture. */
2125
2126 static const char *
2127 rs6000_register_name (int n)
2128 {
2129 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2130 const struct reg *reg = tdep->regs + n;
2131
2132 if (!regsize (reg, tdep->wordsize))
2133 return NULL;
2134 return reg->name;
2135 }
2136
2137 /* Return the GDB type object for the "standard" data type
2138 of data in register N. */
2139
2140 static struct type *
2141 rs6000_register_type (struct gdbarch *gdbarch, int n)
2142 {
2143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2144 const struct reg *reg = tdep->regs + n;
2145
2146 if (reg->fpr)
2147 return builtin_type_double;
2148 else
2149 {
2150 int size = regsize (reg, tdep->wordsize);
2151 switch (size)
2152 {
2153 case 0:
2154 return builtin_type_int0;
2155 case 4:
2156 return builtin_type_uint32;
2157 case 8:
2158 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
2159 return rs6000_builtin_type_vec64 (gdbarch);
2160 else
2161 return builtin_type_uint64;
2162 break;
2163 case 16:
2164 return rs6000_builtin_type_vec128 (gdbarch);
2165 break;
2166 default:
2167 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
2168 n, size);
2169 }
2170 }
2171 }
2172
2173 /* Is REGNUM a member of REGGROUP? */
2174 static int
2175 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2176 struct reggroup *group)
2177 {
2178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2179 int float_p;
2180 int vector_p;
2181 int general_p;
2182
2183 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
2184 || *gdbarch_register_name (current_gdbarch, regnum) == '\0')
2185 return 0;
2186 if (group == all_reggroup)
2187 return 1;
2188
2189 float_p = (regnum == tdep->ppc_fpscr_regnum
2190 || (regnum >= tdep->ppc_fp0_regnum
2191 && regnum < tdep->ppc_fp0_regnum + 32));
2192 if (group == float_reggroup)
2193 return float_p;
2194
2195 vector_p = ((tdep->ppc_vr0_regnum >= 0
2196 && regnum >= tdep->ppc_vr0_regnum
2197 && regnum < tdep->ppc_vr0_regnum + 32)
2198 || (tdep->ppc_ev0_regnum >= 0
2199 && regnum >= tdep->ppc_ev0_regnum
2200 && regnum < tdep->ppc_ev0_regnum + 32)
2201 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2202 || regnum == tdep->ppc_vrsave_regnum
2203 || regnum == tdep->ppc_acc_regnum
2204 || regnum == tdep->ppc_spefscr_regnum);
2205 if (group == vector_reggroup)
2206 return vector_p;
2207
2208 /* Note that PS aka MSR isn't included - it's a system register (and
2209 besides, due to GCC's CFI foobar you do not want to restore
2210 it). */
2211 general_p = ((regnum >= tdep->ppc_gp0_regnum
2212 && regnum < tdep->ppc_gp0_regnum + 32)
2213 || regnum == tdep->ppc_toc_regnum
2214 || regnum == tdep->ppc_cr_regnum
2215 || regnum == tdep->ppc_lr_regnum
2216 || regnum == tdep->ppc_ctr_regnum
2217 || regnum == tdep->ppc_xer_regnum
2218 || regnum == gdbarch_pc_regnum (current_gdbarch));
2219 if (group == general_reggroup)
2220 return general_p;
2221
2222 if (group == save_reggroup || group == restore_reggroup)
2223 return general_p || vector_p || float_p;
2224
2225 return 0;
2226 }
2227
2228 /* The register format for RS/6000 floating point registers is always
2229 double, we need a conversion if the memory format is float. */
2230
2231 static int
2232 rs6000_convert_register_p (int regnum, struct type *type)
2233 {
2234 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2235
2236 return (reg->fpr
2237 && TYPE_CODE (type) == TYPE_CODE_FLT
2238 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2239 }
2240
2241 static void
2242 rs6000_register_to_value (struct frame_info *frame,
2243 int regnum,
2244 struct type *type,
2245 gdb_byte *to)
2246 {
2247 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2248 gdb_byte from[MAX_REGISTER_SIZE];
2249
2250 gdb_assert (reg->fpr);
2251 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2252
2253 get_frame_register (frame, regnum, from);
2254 convert_typed_floating (from, builtin_type_double, to, type);
2255 }
2256
2257 static void
2258 rs6000_value_to_register (struct frame_info *frame,
2259 int regnum,
2260 struct type *type,
2261 const gdb_byte *from)
2262 {
2263 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2264 gdb_byte to[MAX_REGISTER_SIZE];
2265
2266 gdb_assert (reg->fpr);
2267 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2268
2269 convert_typed_floating (from, type, to, builtin_type_double);
2270 put_frame_register (frame, regnum, to);
2271 }
2272
2273 /* Move SPE vector register values between a 64-bit buffer and the two
2274 32-bit raw register halves in a regcache. This function handles
2275 both splitting a 64-bit value into two 32-bit halves, and joining
2276 two halves into a whole 64-bit value, depending on the function
2277 passed as the MOVE argument.
2278
2279 EV_REG must be the number of an SPE evN vector register --- a
2280 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2281 64-bit buffer.
2282
2283 Call MOVE once for each 32-bit half of that register, passing
2284 REGCACHE, the number of the raw register corresponding to that
2285 half, and the address of the appropriate half of BUFFER.
2286
2287 For example, passing 'regcache_raw_read' as the MOVE function will
2288 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2289 'regcache_raw_supply' will supply the contents of BUFFER to the
2290 appropriate pair of raw registers in REGCACHE.
2291
2292 You may need to cast away some 'const' qualifiers when passing
2293 MOVE, since this function can't tell at compile-time which of
2294 REGCACHE or BUFFER is acting as the source of the data. If C had
2295 co-variant type qualifiers, ... */
2296 static void
2297 e500_move_ev_register (void (*move) (struct regcache *regcache,
2298 int regnum, gdb_byte *buf),
2299 struct regcache *regcache, int ev_reg,
2300 gdb_byte *buffer)
2301 {
2302 struct gdbarch *arch = get_regcache_arch (regcache);
2303 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2304 int reg_index;
2305 gdb_byte *byte_buffer = buffer;
2306
2307 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2308 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2309
2310 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2311
2312 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2313 {
2314 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2315 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2316 }
2317 else
2318 {
2319 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2320 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2321 }
2322 }
2323
2324 static void
2325 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2326 int reg_nr, gdb_byte *buffer)
2327 {
2328 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2330
2331 gdb_assert (regcache_arch == gdbarch);
2332
2333 if (tdep->ppc_ev0_regnum <= reg_nr
2334 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2335 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2336 else
2337 internal_error (__FILE__, __LINE__,
2338 _("e500_pseudo_register_read: "
2339 "called on unexpected register '%s' (%d)"),
2340 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2341 }
2342
2343 static void
2344 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2345 int reg_nr, const gdb_byte *buffer)
2346 {
2347 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2349
2350 gdb_assert (regcache_arch == gdbarch);
2351
2352 if (tdep->ppc_ev0_regnum <= reg_nr
2353 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2354 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2355 regcache_raw_write,
2356 regcache, reg_nr, (gdb_byte *) buffer);
2357 else
2358 internal_error (__FILE__, __LINE__,
2359 _("e500_pseudo_register_read: "
2360 "called on unexpected register '%s' (%d)"),
2361 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2362 }
2363
2364 /* The E500 needs a custom reggroup function: it has anonymous raw
2365 registers, and default_register_reggroup_p assumes that anonymous
2366 registers are not members of any reggroup. */
2367 static int
2368 e500_register_reggroup_p (struct gdbarch *gdbarch,
2369 int regnum,
2370 struct reggroup *group)
2371 {
2372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2373
2374 /* The save and restore register groups need to include the
2375 upper-half registers, even though they're anonymous. */
2376 if ((group == save_reggroup
2377 || group == restore_reggroup)
2378 && (tdep->ppc_ev0_upper_regnum <= regnum
2379 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2380 return 1;
2381
2382 /* In all other regards, the default reggroup definition is fine. */
2383 return default_register_reggroup_p (gdbarch, regnum, group);
2384 }
2385
2386 /* Convert a DBX STABS register number to a GDB register number. */
2387 static int
2388 rs6000_stab_reg_to_regnum (int num)
2389 {
2390 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2391
2392 if (0 <= num && num <= 31)
2393 return tdep->ppc_gp0_regnum + num;
2394 else if (32 <= num && num <= 63)
2395 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2396 specifies registers the architecture doesn't have? Our
2397 callers don't check the value we return. */
2398 return tdep->ppc_fp0_regnum + (num - 32);
2399 else if (77 <= num && num <= 108)
2400 return tdep->ppc_vr0_regnum + (num - 77);
2401 else if (1200 <= num && num < 1200 + 32)
2402 return tdep->ppc_ev0_regnum + (num - 1200);
2403 else
2404 switch (num)
2405 {
2406 case 64:
2407 return tdep->ppc_mq_regnum;
2408 case 65:
2409 return tdep->ppc_lr_regnum;
2410 case 66:
2411 return tdep->ppc_ctr_regnum;
2412 case 76:
2413 return tdep->ppc_xer_regnum;
2414 case 109:
2415 return tdep->ppc_vrsave_regnum;
2416 case 110:
2417 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2418 case 111:
2419 return tdep->ppc_acc_regnum;
2420 case 112:
2421 return tdep->ppc_spefscr_regnum;
2422 default:
2423 return num;
2424 }
2425 }
2426
2427
2428 /* Convert a Dwarf 2 register number to a GDB register number. */
2429 static int
2430 rs6000_dwarf2_reg_to_regnum (int num)
2431 {
2432 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2433
2434 if (0 <= num && num <= 31)
2435 return tdep->ppc_gp0_regnum + num;
2436 else if (32 <= num && num <= 63)
2437 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2438 specifies registers the architecture doesn't have? Our
2439 callers don't check the value we return. */
2440 return tdep->ppc_fp0_regnum + (num - 32);
2441 else if (1124 <= num && num < 1124 + 32)
2442 return tdep->ppc_vr0_regnum + (num - 1124);
2443 else if (1200 <= num && num < 1200 + 32)
2444 return tdep->ppc_ev0_regnum + (num - 1200);
2445 else
2446 switch (num)
2447 {
2448 case 64:
2449 return tdep->ppc_cr_regnum;
2450 case 67:
2451 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2452 case 99:
2453 return tdep->ppc_acc_regnum;
2454 case 100:
2455 return tdep->ppc_mq_regnum;
2456 case 101:
2457 return tdep->ppc_xer_regnum;
2458 case 108:
2459 return tdep->ppc_lr_regnum;
2460 case 109:
2461 return tdep->ppc_ctr_regnum;
2462 case 356:
2463 return tdep->ppc_vrsave_regnum;
2464 case 612:
2465 return tdep->ppc_spefscr_regnum;
2466 default:
2467 return num;
2468 }
2469 }
2470
2471 /* Translate a .eh_frame register to DWARF register, or adjust a
2472 .debug_frame register. */
2473
2474 static int
2475 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2476 {
2477 /* GCC releases before 3.4 use GCC internal register numbering in
2478 .debug_frame (and .debug_info, et cetera). The numbering is
2479 different from the standard SysV numbering for everything except
2480 for GPRs and FPRs. We can not detect this problem in most cases
2481 - to get accurate debug info for variables living in lr, ctr, v0,
2482 et cetera, use a newer version of GCC. But we must detect
2483 one important case - lr is in column 65 in .debug_frame output,
2484 instead of 108.
2485
2486 GCC 3.4, and the "hammer" branch, have a related problem. They
2487 record lr register saves in .debug_frame as 108, but still record
2488 the return column as 65. We fix that up too.
2489
2490 We can do this because 65 is assigned to fpsr, and GCC never
2491 generates debug info referring to it. To add support for
2492 handwritten debug info that restores fpsr, we would need to add a
2493 producer version check to this. */
2494 if (!eh_frame_p)
2495 {
2496 if (num == 65)
2497 return 108;
2498 else
2499 return num;
2500 }
2501
2502 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2503 internal register numbering; translate that to the standard DWARF2
2504 register numbering. */
2505 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2506 return num;
2507 else if (68 <= num && num <= 75) /* cr0-cr8 */
2508 return num - 68 + 86;
2509 else if (77 <= num && num <= 108) /* vr0-vr31 */
2510 return num - 77 + 1124;
2511 else
2512 switch (num)
2513 {
2514 case 64: /* mq */
2515 return 100;
2516 case 65: /* lr */
2517 return 108;
2518 case 66: /* ctr */
2519 return 109;
2520 case 76: /* xer */
2521 return 101;
2522 case 109: /* vrsave */
2523 return 356;
2524 case 110: /* vscr */
2525 return 67;
2526 case 111: /* spe_acc */
2527 return 99;
2528 case 112: /* spefscr */
2529 return 612;
2530 default:
2531 return num;
2532 }
2533 }
2534 \f
2535 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2536
2537 Usually a function pointer's representation is simply the address
2538 of the function. On the RS/6000 however, a function pointer is
2539 represented by a pointer to an OPD entry. This OPD entry contains
2540 three words, the first word is the address of the function, the
2541 second word is the TOC pointer (r2), and the third word is the
2542 static chain value. Throughout GDB it is currently assumed that a
2543 function pointer contains the address of the function, which is not
2544 easy to fix. In addition, the conversion of a function address to
2545 a function pointer would require allocation of an OPD entry in the
2546 inferior's memory space, with all its drawbacks. To be able to
2547 call C++ virtual methods in the inferior (which are called via
2548 function pointers), find_function_addr uses this function to get the
2549 function address from a function pointer. */
2550
2551 /* Return real function address if ADDR (a function pointer) is in the data
2552 space and is therefore a special function pointer. */
2553
2554 static CORE_ADDR
2555 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2556 CORE_ADDR addr,
2557 struct target_ops *targ)
2558 {
2559 struct obj_section *s;
2560
2561 s = find_pc_section (addr);
2562 if (s && s->the_bfd_section->flags & SEC_CODE)
2563 return addr;
2564
2565 /* ADDR is in the data space, so it's a special function pointer. */
2566 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2567 }
2568 \f
2569
2570 /* Handling the various POWER/PowerPC variants. */
2571
2572
2573 /* The arrays here called registers_MUMBLE hold information about available
2574 registers.
2575
2576 For each family of PPC variants, I've tried to isolate out the
2577 common registers and put them up front, so that as long as you get
2578 the general family right, GDB will correctly identify the registers
2579 common to that family. The common register sets are:
2580
2581 For the 60x family: hid0 hid1 iabr dabr pir
2582
2583 For the 505 and 860 family: eie eid nri
2584
2585 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2586 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2587 pbu1 pbl2 pbu2
2588
2589 Most of these register groups aren't anything formal. I arrived at
2590 them by looking at the registers that occurred in more than one
2591 processor.
2592
2593 Note: kevinb/2002-04-30: Support for the fpscr register was added
2594 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2595 for Power. For PowerPC, slot 70 was unused and was already in the
2596 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2597 slot 70 was being used for "mq", so the next available slot (71)
2598 was chosen. It would have been nice to be able to make the
2599 register numbers the same across processor cores, but this wasn't
2600 possible without either 1) renumbering some registers for some
2601 processors or 2) assigning fpscr to a really high slot that's
2602 larger than any current register number. Doing (1) is bad because
2603 existing stubs would break. Doing (2) is undesirable because it
2604 would introduce a really large gap between fpscr and the rest of
2605 the registers for most processors. */
2606
2607 /* Convenience macros for populating register arrays. */
2608
2609 /* Within another macro, convert S to a string. */
2610
2611 #define STR(s) #s
2612
2613 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2614 and 64 bits on 64-bit systems. */
2615 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2616
2617 /* Return a struct reg defining register NAME that's 32 bits on all
2618 systems. */
2619 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2620
2621 /* Return a struct reg defining register NAME that's 64 bits on all
2622 systems. */
2623 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2624
2625 /* Return a struct reg defining register NAME that's 128 bits on all
2626 systems. */
2627 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2628
2629 /* Return a struct reg defining floating-point register NAME. */
2630 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2631
2632 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2633 long on all systems. */
2634 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2635
2636 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2637 systems and that doesn't exist on 64-bit systems. */
2638 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2639
2640 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2641 systems and that doesn't exist on 32-bit systems. */
2642 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2643
2644 /* Return a struct reg placeholder for a register that doesn't exist. */
2645 #define R0 { 0, 0, 0, 0, 0, -1 }
2646
2647 /* Return a struct reg defining an anonymous raw register that's 32
2648 bits on all systems. */
2649 #define A4 { 0, 4, 4, 0, 0, -1 }
2650
2651 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2652 32-bit systems and 64 bits on 64-bit systems. */
2653 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2654
2655 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2656 all systems. */
2657 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2658
2659 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2660 all systems, and whose SPR number is NUMBER. */
2661 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2662
2663 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2664 64-bit systems and that doesn't exist on 32-bit systems. */
2665 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2666
2667 /* UISA registers common across all architectures, including POWER. */
2668
2669 #define COMMON_UISA_REGS \
2670 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2671 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2672 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2673 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2674 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2675 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2676 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2677 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2678 /* 64 */ R(pc), R(ps)
2679
2680 /* UISA-level SPRs for PowerPC. */
2681 #define PPC_UISA_SPRS \
2682 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2683
2684 /* UISA-level SPRs for PowerPC without floating point support. */
2685 #define PPC_UISA_NOFP_SPRS \
2686 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2687
2688 /* Segment registers, for PowerPC. */
2689 #define PPC_SEGMENT_REGS \
2690 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2691 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2692 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2693 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2694
2695 /* OEA SPRs for PowerPC. */
2696 #define PPC_OEA_SPRS \
2697 /* 87 */ S4(pvr), \
2698 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2699 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2700 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2701 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2702 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2703 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2704 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2705 /* 116 */ S4(dec), S(dabr), S4(ear)
2706
2707 /* AltiVec registers. */
2708 #define PPC_ALTIVEC_REGS \
2709 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2710 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2711 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2712 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2713 /*151*/R4(vscr), R4(vrsave)
2714
2715
2716 /* On machines supporting the SPE APU, the general-purpose registers
2717 are 64 bits long. There are SIMD vector instructions to treat them
2718 as pairs of floats, but the rest of the instruction set treats them
2719 as 32-bit registers, and only operates on their lower halves.
2720
2721 In the GDB regcache, we treat their high and low halves as separate
2722 registers. The low halves we present as the general-purpose
2723 registers, and then we have pseudo-registers that stitch together
2724 the upper and lower halves and present them as pseudo-registers. */
2725
2726 /* SPE GPR lower halves --- raw registers. */
2727 #define PPC_SPE_GP_REGS \
2728 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2729 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2730 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2731 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2732
2733 /* SPE GPR upper halves --- anonymous raw registers. */
2734 #define PPC_SPE_UPPER_GP_REGS \
2735 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2736 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2737 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2738 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2739
2740 /* SPE GPR vector registers --- pseudo registers based on underlying
2741 gprs and the anonymous upper half raw registers. */
2742 #define PPC_EV_PSEUDO_REGS \
2743 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2744 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2745 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2746 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2747
2748 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2749 user-level SPR's. */
2750 static const struct reg registers_power[] =
2751 {
2752 COMMON_UISA_REGS,
2753 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2754 /* 71 */ R4(fpscr)
2755 };
2756
2757 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2758 view of the PowerPC. */
2759 static const struct reg registers_powerpc[] =
2760 {
2761 COMMON_UISA_REGS,
2762 PPC_UISA_SPRS,
2763 PPC_ALTIVEC_REGS
2764 };
2765
2766 /* IBM PowerPC 403.
2767
2768 Some notes about the "tcr" special-purpose register:
2769 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2770 403's programmable interval timer, fixed interval timer, and
2771 watchdog timer.
2772 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2773 watchdog timer, and nothing else.
2774
2775 Some of the fields are similar between the two, but they're not
2776 compatible with each other. Since the two variants have different
2777 registers, with different numbers, but the same name, we can't
2778 splice the register name to get the SPR number. */
2779 static const struct reg registers_403[] =
2780 {
2781 COMMON_UISA_REGS,
2782 PPC_UISA_SPRS,
2783 PPC_SEGMENT_REGS,
2784 PPC_OEA_SPRS,
2785 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2786 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2787 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2788 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2789 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2790 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2791 };
2792
2793 /* IBM PowerPC 403GC.
2794 See the comments about 'tcr' for the 403, above. */
2795 static const struct reg registers_403GC[] =
2796 {
2797 COMMON_UISA_REGS,
2798 PPC_UISA_SPRS,
2799 PPC_SEGMENT_REGS,
2800 PPC_OEA_SPRS,
2801 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2802 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2803 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2804 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2805 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2806 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2807 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2808 /* 147 */ S(tbhu), S(tblu)
2809 };
2810
2811 /* Motorola PowerPC 505. */
2812 static const struct reg registers_505[] =
2813 {
2814 COMMON_UISA_REGS,
2815 PPC_UISA_SPRS,
2816 PPC_SEGMENT_REGS,
2817 PPC_OEA_SPRS,
2818 /* 119 */ S(eie), S(eid), S(nri)
2819 };
2820
2821 /* Motorola PowerPC 860 or 850. */
2822 static const struct reg registers_860[] =
2823 {
2824 COMMON_UISA_REGS,
2825 PPC_UISA_SPRS,
2826 PPC_SEGMENT_REGS,
2827 PPC_OEA_SPRS,
2828 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2829 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2830 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2831 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2832 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2833 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2834 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2835 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2836 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2837 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2838 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2839 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2840 };
2841
2842 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2843 for reading and writing RTCU and RTCL. However, how one reads and writes a
2844 register is the stub's problem. */
2845 static const struct reg registers_601[] =
2846 {
2847 COMMON_UISA_REGS,
2848 PPC_UISA_SPRS,
2849 PPC_SEGMENT_REGS,
2850 PPC_OEA_SPRS,
2851 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2852 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2853 };
2854
2855 /* Motorola PowerPC 602.
2856 See the notes under the 403 about 'tcr'. */
2857 static const struct reg registers_602[] =
2858 {
2859 COMMON_UISA_REGS,
2860 PPC_UISA_SPRS,
2861 PPC_SEGMENT_REGS,
2862 PPC_OEA_SPRS,
2863 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2864 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2865 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2866 };
2867
2868 /* Motorola/IBM PowerPC 603 or 603e. */
2869 static const struct reg registers_603[] =
2870 {
2871 COMMON_UISA_REGS,
2872 PPC_UISA_SPRS,
2873 PPC_SEGMENT_REGS,
2874 PPC_OEA_SPRS,
2875 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2876 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2877 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2878 };
2879
2880 /* Motorola PowerPC 604 or 604e. */
2881 static const struct reg registers_604[] =
2882 {
2883 COMMON_UISA_REGS,
2884 PPC_UISA_SPRS,
2885 PPC_SEGMENT_REGS,
2886 PPC_OEA_SPRS,
2887 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2888 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2889 /* 127 */ S(sia), S(sda)
2890 };
2891
2892 /* Motorola/IBM PowerPC 750 or 740. */
2893 static const struct reg registers_750[] =
2894 {
2895 COMMON_UISA_REGS,
2896 PPC_UISA_SPRS,
2897 PPC_SEGMENT_REGS,
2898 PPC_OEA_SPRS,
2899 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2900 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2901 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2902 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2903 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2904 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2905 };
2906
2907
2908 /* Motorola PowerPC 7400. */
2909 static const struct reg registers_7400[] =
2910 {
2911 /* gpr0-gpr31, fpr0-fpr31 */
2912 COMMON_UISA_REGS,
2913 /* cr, lr, ctr, xer, fpscr */
2914 PPC_UISA_SPRS,
2915 /* sr0-sr15 */
2916 PPC_SEGMENT_REGS,
2917 PPC_OEA_SPRS,
2918 /* vr0-vr31, vrsave, vscr */
2919 PPC_ALTIVEC_REGS
2920 /* FIXME? Add more registers? */
2921 };
2922
2923 /* Motorola e500. */
2924 static const struct reg registers_e500[] =
2925 {
2926 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2927 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2928 /* 64 .. 65 */ R(pc), R(ps),
2929 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2930 /* 71 .. 72 */ R8(acc), S4(spefscr),
2931 /* NOTE: Add new registers here the end of the raw register
2932 list and just before the first pseudo register. */
2933 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2934 };
2935
2936 /* Information about a particular processor variant. */
2937
2938 struct variant
2939 {
2940 /* Name of this variant. */
2941 char *name;
2942
2943 /* English description of the variant. */
2944 char *description;
2945
2946 /* bfd_arch_info.arch corresponding to variant. */
2947 enum bfd_architecture arch;
2948
2949 /* bfd_arch_info.mach corresponding to variant. */
2950 unsigned long mach;
2951
2952 /* Number of real registers. */
2953 int nregs;
2954
2955 /* Number of pseudo registers. */
2956 int npregs;
2957
2958 /* Number of total registers (the sum of nregs and npregs). */
2959 int num_tot_regs;
2960
2961 /* Table of register names; registers[R] is the name of the register
2962 number R. */
2963 const struct reg *regs;
2964 };
2965
2966 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2967
2968 static int
2969 num_registers (const struct reg *reg_list, int num_tot_regs)
2970 {
2971 int i;
2972 int nregs = 0;
2973
2974 for (i = 0; i < num_tot_regs; i++)
2975 if (!reg_list[i].pseudo)
2976 nregs++;
2977
2978 return nregs;
2979 }
2980
2981 static int
2982 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2983 {
2984 int i;
2985 int npregs = 0;
2986
2987 for (i = 0; i < num_tot_regs; i++)
2988 if (reg_list[i].pseudo)
2989 npregs ++;
2990
2991 return npregs;
2992 }
2993
2994 /* Information in this table comes from the following web sites:
2995 IBM: http://www.chips.ibm.com:80/products/embedded/
2996 Motorola: http://www.mot.com/SPS/PowerPC/
2997
2998 I'm sure I've got some of the variant descriptions not quite right.
2999 Please report any inaccuracies you find to GDB's maintainer.
3000
3001 If you add entries to this table, please be sure to allow the new
3002 value as an argument to the --with-cpu flag, in configure.in. */
3003
3004 static struct variant variants[] =
3005 {
3006
3007 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3008 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
3009 registers_powerpc},
3010 {"power", "POWER user-level", bfd_arch_rs6000,
3011 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
3012 registers_power},
3013 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3014 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
3015 registers_403},
3016 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3017 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
3018 registers_601},
3019 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3020 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
3021 registers_602},
3022 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3023 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
3024 registers_603},
3025 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3026 604, -1, -1, tot_num_registers (registers_604),
3027 registers_604},
3028 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3029 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
3030 registers_403GC},
3031 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3032 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
3033 registers_505},
3034 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3035 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
3036 registers_860},
3037 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3038 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
3039 registers_750},
3040 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3041 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
3042 registers_7400},
3043 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3044 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
3045 registers_e500},
3046
3047 /* 64-bit */
3048 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3049 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
3050 registers_powerpc},
3051 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3052 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
3053 registers_powerpc},
3054 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3055 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
3056 registers_powerpc},
3057 {"a35", "PowerPC A35", bfd_arch_powerpc,
3058 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
3059 registers_powerpc},
3060 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3061 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
3062 registers_powerpc},
3063 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3064 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
3065 registers_powerpc},
3066
3067 /* FIXME: I haven't checked the register sets of the following. */
3068 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3069 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
3070 registers_power},
3071 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3072 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
3073 registers_power},
3074 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3075 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
3076 registers_power},
3077
3078 {0, 0, 0, 0, 0, 0, 0, 0}
3079 };
3080
3081 /* Initialize the number of registers and pseudo registers in each variant. */
3082
3083 static void
3084 init_variants (void)
3085 {
3086 struct variant *v;
3087
3088 for (v = variants; v->name; v++)
3089 {
3090 if (v->nregs == -1)
3091 v->nregs = num_registers (v->regs, v->num_tot_regs);
3092 if (v->npregs == -1)
3093 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
3094 }
3095 }
3096
3097 /* Return the variant corresponding to architecture ARCH and machine number
3098 MACH. If no such variant exists, return null. */
3099
3100 static const struct variant *
3101 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3102 {
3103 const struct variant *v;
3104
3105 for (v = variants; v->name; v++)
3106 if (arch == v->arch && mach == v->mach)
3107 return v;
3108
3109 return NULL;
3110 }
3111
3112 static int
3113 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3114 {
3115 if (!info->disassembler_options)
3116 info->disassembler_options = "any";
3117
3118 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
3119 return print_insn_big_powerpc (memaddr, info);
3120 else
3121 return print_insn_little_powerpc (memaddr, info);
3122 }
3123 \f
3124 static CORE_ADDR
3125 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3126 {
3127 return frame_unwind_register_unsigned (next_frame,
3128 gdbarch_pc_regnum (current_gdbarch));
3129 }
3130
3131 static struct frame_id
3132 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3133 {
3134 return frame_id_build (frame_unwind_register_unsigned
3135 (next_frame, gdbarch_sp_regnum (current_gdbarch)),
3136 frame_pc_unwind (next_frame));
3137 }
3138
3139 struct rs6000_frame_cache
3140 {
3141 CORE_ADDR base;
3142 CORE_ADDR initial_sp;
3143 struct trad_frame_saved_reg *saved_regs;
3144 };
3145
3146 static struct rs6000_frame_cache *
3147 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
3148 {
3149 struct rs6000_frame_cache *cache;
3150 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3151 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3152 struct rs6000_framedata fdata;
3153 int wordsize = tdep->wordsize;
3154 CORE_ADDR func, pc;
3155
3156 if ((*this_cache) != NULL)
3157 return (*this_cache);
3158 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3159 (*this_cache) = cache;
3160 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
3161
3162 func = frame_func_unwind (next_frame, NORMAL_FRAME);
3163 pc = frame_pc_unwind (next_frame);
3164 skip_prologue (func, pc, &fdata);
3165
3166 /* Figure out the parent's stack pointer. */
3167
3168 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3169 address of the current frame. Things might be easier if the
3170 ->frame pointed to the outer-most address of the frame. In
3171 the mean time, the address of the prev frame is used as the
3172 base address of this frame. */
3173 cache->base = frame_unwind_register_unsigned
3174 (next_frame, gdbarch_sp_regnum (current_gdbarch));
3175
3176 /* If the function appears to be frameless, check a couple of likely
3177 indicators that we have simply failed to find the frame setup.
3178 Two common cases of this are missing symbols (i.e.
3179 frame_func_unwind returns the wrong address or 0), and assembly
3180 stubs which have a fast exit path but set up a frame on the slow
3181 path.
3182
3183 If the LR appears to return to this function, then presume that
3184 we have an ABI compliant frame that we failed to find. */
3185 if (fdata.frameless && fdata.lr_offset == 0)
3186 {
3187 CORE_ADDR saved_lr;
3188 int make_frame = 0;
3189
3190 saved_lr = frame_unwind_register_unsigned (next_frame,
3191 tdep->ppc_lr_regnum);
3192 if (func == 0 && saved_lr == pc)
3193 make_frame = 1;
3194 else if (func != 0)
3195 {
3196 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3197 if (func == saved_func)
3198 make_frame = 1;
3199 }
3200
3201 if (make_frame)
3202 {
3203 fdata.frameless = 0;
3204 fdata.lr_offset = tdep->lr_frame_offset;
3205 }
3206 }
3207
3208 if (!fdata.frameless)
3209 /* Frameless really means stackless. */
3210 cache->base = read_memory_addr (cache->base, wordsize);
3211
3212 trad_frame_set_value (cache->saved_regs,
3213 gdbarch_sp_regnum (current_gdbarch), cache->base);
3214
3215 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3216 All fpr's from saved_fpr to fp31 are saved. */
3217
3218 if (fdata.saved_fpr >= 0)
3219 {
3220 int i;
3221 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3222
3223 /* If skip_prologue says floating-point registers were saved,
3224 but the current architecture has no floating-point registers,
3225 then that's strange. But we have no indices to even record
3226 the addresses under, so we just ignore it. */
3227 if (ppc_floating_point_unit_p (gdbarch))
3228 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3229 {
3230 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3231 fpr_addr += 8;
3232 }
3233 }
3234
3235 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3236 All gpr's from saved_gpr to gpr31 are saved. */
3237
3238 if (fdata.saved_gpr >= 0)
3239 {
3240 int i;
3241 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3242 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3243 {
3244 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3245 gpr_addr += wordsize;
3246 }
3247 }
3248
3249 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3250 All vr's from saved_vr to vr31 are saved. */
3251 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3252 {
3253 if (fdata.saved_vr >= 0)
3254 {
3255 int i;
3256 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3257 for (i = fdata.saved_vr; i < 32; i++)
3258 {
3259 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3260 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3261 }
3262 }
3263 }
3264
3265 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3266 All vr's from saved_ev to ev31 are saved. ????? */
3267 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3268 {
3269 if (fdata.saved_ev >= 0)
3270 {
3271 int i;
3272 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3273 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3274 {
3275 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3276 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3277 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3278 }
3279 }
3280 }
3281
3282 /* If != 0, fdata.cr_offset is the offset from the frame that
3283 holds the CR. */
3284 if (fdata.cr_offset != 0)
3285 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3286
3287 /* If != 0, fdata.lr_offset is the offset from the frame that
3288 holds the LR. */
3289 if (fdata.lr_offset != 0)
3290 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3291 /* The PC is found in the link register. */
3292 cache->saved_regs[gdbarch_pc_regnum (current_gdbarch)] =
3293 cache->saved_regs[tdep->ppc_lr_regnum];
3294
3295 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3296 holds the VRSAVE. */
3297 if (fdata.vrsave_offset != 0)
3298 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3299
3300 if (fdata.alloca_reg < 0)
3301 /* If no alloca register used, then fi->frame is the value of the
3302 %sp for this frame, and it is good enough. */
3303 cache->initial_sp = frame_unwind_register_unsigned
3304 (next_frame, gdbarch_sp_regnum (current_gdbarch));
3305 else
3306 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3307 fdata.alloca_reg);
3308
3309 return cache;
3310 }
3311
3312 static void
3313 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3314 struct frame_id *this_id)
3315 {
3316 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3317 this_cache);
3318 (*this_id) = frame_id_build (info->base,
3319 frame_func_unwind (next_frame, NORMAL_FRAME));
3320 }
3321
3322 static void
3323 rs6000_frame_prev_register (struct frame_info *next_frame,
3324 void **this_cache,
3325 int regnum, int *optimizedp,
3326 enum lval_type *lvalp, CORE_ADDR *addrp,
3327 int *realnump, gdb_byte *valuep)
3328 {
3329 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3330 this_cache);
3331 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3332 optimizedp, lvalp, addrp, realnump, valuep);
3333 }
3334
3335 static const struct frame_unwind rs6000_frame_unwind =
3336 {
3337 NORMAL_FRAME,
3338 rs6000_frame_this_id,
3339 rs6000_frame_prev_register
3340 };
3341
3342 static const struct frame_unwind *
3343 rs6000_frame_sniffer (struct frame_info *next_frame)
3344 {
3345 return &rs6000_frame_unwind;
3346 }
3347
3348 \f
3349
3350 static CORE_ADDR
3351 rs6000_frame_base_address (struct frame_info *next_frame,
3352 void **this_cache)
3353 {
3354 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3355 this_cache);
3356 return info->initial_sp;
3357 }
3358
3359 static const struct frame_base rs6000_frame_base = {
3360 &rs6000_frame_unwind,
3361 rs6000_frame_base_address,
3362 rs6000_frame_base_address,
3363 rs6000_frame_base_address
3364 };
3365
3366 static const struct frame_base *
3367 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3368 {
3369 return &rs6000_frame_base;
3370 }
3371
3372 /* Initialize the current architecture based on INFO. If possible, re-use an
3373 architecture from ARCHES, which is a list of architectures already created
3374 during this debugging session.
3375
3376 Called e.g. at program startup, when reading a core file, and when reading
3377 a binary file. */
3378
3379 static struct gdbarch *
3380 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3381 {
3382 struct gdbarch *gdbarch;
3383 struct gdbarch_tdep *tdep;
3384 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3385 struct reg *regs;
3386 const struct variant *v;
3387 enum bfd_architecture arch;
3388 unsigned long mach;
3389 bfd abfd;
3390 int sysv_abi;
3391 asection *sect;
3392
3393 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3394 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3395
3396 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3397 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3398
3399 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3400
3401 /* Check word size. If INFO is from a binary file, infer it from
3402 that, else choose a likely default. */
3403 if (from_xcoff_exec)
3404 {
3405 if (bfd_xcoff_is_xcoff64 (info.abfd))
3406 wordsize = 8;
3407 else
3408 wordsize = 4;
3409 }
3410 else if (from_elf_exec)
3411 {
3412 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3413 wordsize = 8;
3414 else
3415 wordsize = 4;
3416 }
3417 else
3418 {
3419 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3420 wordsize = info.bfd_arch_info->bits_per_word /
3421 info.bfd_arch_info->bits_per_byte;
3422 else
3423 wordsize = 4;
3424 }
3425
3426 /* Find a candidate among extant architectures. */
3427 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3428 arches != NULL;
3429 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3430 {
3431 /* Word size in the various PowerPC bfd_arch_info structs isn't
3432 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3433 separate word size check. */
3434 tdep = gdbarch_tdep (arches->gdbarch);
3435 if (tdep && tdep->wordsize == wordsize)
3436 return arches->gdbarch;
3437 }
3438
3439 /* None found, create a new architecture from INFO, whose bfd_arch_info
3440 validity depends on the source:
3441 - executable useless
3442 - rs6000_host_arch() good
3443 - core file good
3444 - "set arch" trust blindly
3445 - GDB startup useless but harmless */
3446
3447 if (!from_xcoff_exec)
3448 {
3449 arch = info.bfd_arch_info->arch;
3450 mach = info.bfd_arch_info->mach;
3451 }
3452 else
3453 {
3454 arch = bfd_arch_powerpc;
3455 bfd_default_set_arch_mach (&abfd, arch, 0);
3456 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3457 mach = info.bfd_arch_info->mach;
3458 }
3459 tdep = XCALLOC (1, struct gdbarch_tdep);
3460 tdep->wordsize = wordsize;
3461
3462 /* For e500 executables, the apuinfo section is of help here. Such
3463 section contains the identifier and revision number of each
3464 Application-specific Processing Unit that is present on the
3465 chip. The content of the section is determined by the assembler
3466 which looks at each instruction and determines which unit (and
3467 which version of it) can execute it. In our case we just look for
3468 the existance of the section. */
3469
3470 if (info.abfd)
3471 {
3472 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3473 if (sect)
3474 {
3475 arch = info.bfd_arch_info->arch;
3476 mach = bfd_mach_ppc_e500;
3477 bfd_default_set_arch_mach (&abfd, arch, mach);
3478 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3479 }
3480 }
3481
3482 gdbarch = gdbarch_alloc (&info, tdep);
3483
3484 /* Initialize the number of real and pseudo registers in each variant. */
3485 init_variants ();
3486
3487 /* Choose variant. */
3488 v = find_variant_by_arch (arch, mach);
3489 if (!v)
3490 return NULL;
3491
3492 tdep->regs = v->regs;
3493
3494 tdep->ppc_gp0_regnum = 0;
3495 tdep->ppc_toc_regnum = 2;
3496 tdep->ppc_ps_regnum = 65;
3497 tdep->ppc_cr_regnum = 66;
3498 tdep->ppc_lr_regnum = 67;
3499 tdep->ppc_ctr_regnum = 68;
3500 tdep->ppc_xer_regnum = 69;
3501 if (v->mach == bfd_mach_ppc_601)
3502 tdep->ppc_mq_regnum = 124;
3503 else if (arch == bfd_arch_rs6000)
3504 tdep->ppc_mq_regnum = 70;
3505 else
3506 tdep->ppc_mq_regnum = -1;
3507 tdep->ppc_fp0_regnum = 32;
3508 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3509 tdep->ppc_sr0_regnum = 71;
3510 tdep->ppc_vr0_regnum = -1;
3511 tdep->ppc_vrsave_regnum = -1;
3512 tdep->ppc_ev0_upper_regnum = -1;
3513 tdep->ppc_ev0_regnum = -1;
3514 tdep->ppc_ev31_regnum = -1;
3515 tdep->ppc_acc_regnum = -1;
3516 tdep->ppc_spefscr_regnum = -1;
3517
3518 set_gdbarch_pc_regnum (gdbarch, 64);
3519 set_gdbarch_sp_regnum (gdbarch, 1);
3520 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3521 set_gdbarch_fp0_regnum (gdbarch, 32);
3522 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3523 if (sysv_abi && wordsize == 8)
3524 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3525 else if (sysv_abi && wordsize == 4)
3526 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3527 else
3528 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3529
3530 /* Set lr_frame_offset. */
3531 if (wordsize == 8)
3532 tdep->lr_frame_offset = 16;
3533 else if (sysv_abi)
3534 tdep->lr_frame_offset = 4;
3535 else
3536 tdep->lr_frame_offset = 8;
3537
3538 if (v->arch == bfd_arch_rs6000)
3539 tdep->ppc_sr0_regnum = -1;
3540 else if (v->arch == bfd_arch_powerpc)
3541 switch (v->mach)
3542 {
3543 case bfd_mach_ppc:
3544 tdep->ppc_sr0_regnum = -1;
3545 tdep->ppc_vr0_regnum = 71;
3546 tdep->ppc_vrsave_regnum = 104;
3547 break;
3548 case bfd_mach_ppc_7400:
3549 tdep->ppc_vr0_regnum = 119;
3550 tdep->ppc_vrsave_regnum = 152;
3551 break;
3552 case bfd_mach_ppc_e500:
3553 tdep->ppc_toc_regnum = -1;
3554 tdep->ppc_ev0_upper_regnum = 32;
3555 tdep->ppc_ev0_regnum = 73;
3556 tdep->ppc_ev31_regnum = 104;
3557 tdep->ppc_acc_regnum = 71;
3558 tdep->ppc_spefscr_regnum = 72;
3559 tdep->ppc_fp0_regnum = -1;
3560 tdep->ppc_fpscr_regnum = -1;
3561 tdep->ppc_sr0_regnum = -1;
3562 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3563 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3564 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3565 break;
3566
3567 case bfd_mach_ppc64:
3568 case bfd_mach_ppc_620:
3569 case bfd_mach_ppc_630:
3570 case bfd_mach_ppc_a35:
3571 case bfd_mach_ppc_rs64ii:
3572 case bfd_mach_ppc_rs64iii:
3573 /* These processor's register sets don't have segment registers. */
3574 tdep->ppc_sr0_regnum = -1;
3575 break;
3576 }
3577 else
3578 internal_error (__FILE__, __LINE__,
3579 _("rs6000_gdbarch_init: "
3580 "received unexpected BFD 'arch' value"));
3581
3582 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3583
3584 /* Sanity check on registers. */
3585 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3586
3587 /* Select instruction printer. */
3588 if (arch == bfd_arch_rs6000)
3589 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3590 else
3591 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3592
3593 set_gdbarch_num_regs (gdbarch, v->nregs);
3594 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3595 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3596 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3597 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3598
3599 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3600 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3601 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3602 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3603 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3604 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3605 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3606 if (sysv_abi)
3607 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3608 else
3609 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3610 set_gdbarch_char_signed (gdbarch, 0);
3611
3612 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3613 if (sysv_abi && wordsize == 8)
3614 /* PPC64 SYSV. */
3615 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3616 else if (!sysv_abi && wordsize == 4)
3617 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3618 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3619 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3620 224. */
3621 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3622
3623 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3624 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3625 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3626
3627 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3628 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3629
3630 if (sysv_abi && wordsize == 4)
3631 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3632 else if (sysv_abi && wordsize == 8)
3633 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3634 else
3635 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3636
3637 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3638 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3639
3640 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3641 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3642
3643 /* Handles single stepping of atomic sequences. */
3644 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3645
3646 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3647 for the descriptor and ".FN" for the entry-point -- a user
3648 specifying "break FN" will unexpectedly end up with a breakpoint
3649 on the descriptor and not the function. This architecture method
3650 transforms any breakpoints on descriptors into breakpoints on the
3651 corresponding entry point. */
3652 if (sysv_abi && wordsize == 8)
3653 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3654
3655 /* Not sure on this. FIXMEmgo */
3656 set_gdbarch_frame_args_skip (gdbarch, 8);
3657
3658 if (!sysv_abi)
3659 {
3660 /* Handle RS/6000 function pointers (which are really function
3661 descriptors). */
3662 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3663 rs6000_convert_from_func_ptr_addr);
3664 }
3665
3666 /* Helpers for function argument information. */
3667 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3668
3669 /* Trampoline. */
3670 set_gdbarch_in_solib_return_trampoline
3671 (gdbarch, rs6000_in_solib_return_trampoline);
3672 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3673
3674 /* Hook in the DWARF CFI frame unwinder. */
3675 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3676 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3677
3678 /* Hook in ABI-specific overrides, if they have been registered. */
3679 gdbarch_init_osabi (info, gdbarch);
3680
3681 switch (info.osabi)
3682 {
3683 case GDB_OSABI_LINUX:
3684 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3685 have altivec registers. If not, ptrace will fail the first time it's
3686 called to access one and will not be called again. This wart will
3687 be removed when Daniel Jacobowitz's proposal for autodetecting target
3688 registers is implemented. */
3689 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3690 {
3691 tdep->ppc_vr0_regnum = 71;
3692 tdep->ppc_vrsave_regnum = 104;
3693 }
3694 /* Fall Thru */
3695 case GDB_OSABI_NETBSD_AOUT:
3696 case GDB_OSABI_NETBSD_ELF:
3697 case GDB_OSABI_UNKNOWN:
3698 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3699 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3700 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3701 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3702 break;
3703 default:
3704 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3705
3706 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3707 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3708 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3709 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3710 }
3711
3712 init_sim_regno_table (gdbarch);
3713
3714 return gdbarch;
3715 }
3716
3717 static void
3718 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3719 {
3720 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3721
3722 if (tdep == NULL)
3723 return;
3724
3725 /* FIXME: Dump gdbarch_tdep. */
3726 }
3727
3728 /* Initialization code. */
3729
3730 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3731
3732 void
3733 _initialize_rs6000_tdep (void)
3734 {
3735 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3736 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3737 }
This page took 0.127118 seconds and 4 git commands to generate.