daily update
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51 #include "elf/ppc.h"
52 #include "elf/ppc64.h"
53
54 #include "solib-svr4.h"
55 #include "ppc-tdep.h"
56 #include "ppc-ravenscar-thread.h"
57
58 #include "gdb_assert.h"
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "features/rs6000/powerpc-32.c"
66 #include "features/rs6000/powerpc-altivec32.c"
67 #include "features/rs6000/powerpc-vsx32.c"
68 #include "features/rs6000/powerpc-403.c"
69 #include "features/rs6000/powerpc-403gc.c"
70 #include "features/rs6000/powerpc-405.c"
71 #include "features/rs6000/powerpc-505.c"
72 #include "features/rs6000/powerpc-601.c"
73 #include "features/rs6000/powerpc-602.c"
74 #include "features/rs6000/powerpc-603.c"
75 #include "features/rs6000/powerpc-604.c"
76 #include "features/rs6000/powerpc-64.c"
77 #include "features/rs6000/powerpc-altivec64.c"
78 #include "features/rs6000/powerpc-vsx64.c"
79 #include "features/rs6000/powerpc-7400.c"
80 #include "features/rs6000/powerpc-750.c"
81 #include "features/rs6000/powerpc-860.c"
82 #include "features/rs6000/powerpc-e500.c"
83 #include "features/rs6000/rs6000.c"
84
85 /* Determine if regnum is an SPE pseudo-register. */
86 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
87 && (regnum) >= (tdep)->ppc_ev0_regnum \
88 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
89
90 /* Determine if regnum is a decimal float pseudo-register. */
91 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
92 && (regnum) >= (tdep)->ppc_dl0_regnum \
93 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
94
95 /* Determine if regnum is a POWER7 VSX register. */
96 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
97 && (regnum) >= (tdep)->ppc_vsr0_regnum \
98 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
99
100 /* Determine if regnum is a POWER7 Extended FP register. */
101 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
102 && (regnum) >= (tdep)->ppc_efpr0_regnum \
103 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
104
105 /* The list of available "set powerpc ..." and "show powerpc ..."
106 commands. */
107 static struct cmd_list_element *setpowerpccmdlist = NULL;
108 static struct cmd_list_element *showpowerpccmdlist = NULL;
109
110 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
111
112 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
113 static const char *const powerpc_vector_strings[] =
114 {
115 "auto",
116 "generic",
117 "altivec",
118 "spe",
119 NULL
120 };
121
122 /* A variable that can be configured by the user. */
123 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
124 static const char *powerpc_vector_abi_string = "auto";
125
126 /* To be used by skip_prologue. */
127
128 struct rs6000_framedata
129 {
130 int offset; /* total size of frame --- the distance
131 by which we decrement sp to allocate
132 the frame */
133 int saved_gpr; /* smallest # of saved gpr */
134 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
135 int saved_fpr; /* smallest # of saved fpr */
136 int saved_vr; /* smallest # of saved vr */
137 int saved_ev; /* smallest # of saved ev */
138 int alloca_reg; /* alloca register number (frame ptr) */
139 char frameless; /* true if frameless functions. */
140 char nosavedpc; /* true if pc not saved. */
141 char used_bl; /* true if link register clobbered */
142 int gpr_offset; /* offset of saved gprs from prev sp */
143 int fpr_offset; /* offset of saved fprs from prev sp */
144 int vr_offset; /* offset of saved vrs from prev sp */
145 int ev_offset; /* offset of saved evs from prev sp */
146 int lr_offset; /* offset of saved lr */
147 int lr_register; /* register of saved lr, if trustworthy */
148 int cr_offset; /* offset of saved cr */
149 int vrsave_offset; /* offset of saved vrsave register */
150 };
151
152
153 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
154 int
155 vsx_register_p (struct gdbarch *gdbarch, int regno)
156 {
157 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
158 if (tdep->ppc_vsr0_regnum < 0)
159 return 0;
160 else
161 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
162 <= tdep->ppc_vsr0_upper_regnum + 31);
163 }
164
165 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
166 int
167 altivec_register_p (struct gdbarch *gdbarch, int regno)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
171 return 0;
172 else
173 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
174 }
175
176
177 /* Return true if REGNO is an SPE register, false otherwise. */
178 int
179 spe_register_p (struct gdbarch *gdbarch, int regno)
180 {
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 /* Is it a reference to EV0 -- EV31, and do we have those? */
184 if (IS_SPE_PSEUDOREG (tdep, regno))
185 return 1;
186
187 /* Is it a reference to one of the raw upper GPR halves? */
188 if (tdep->ppc_ev0_upper_regnum >= 0
189 && tdep->ppc_ev0_upper_regnum <= regno
190 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
191 return 1;
192
193 /* Is it a reference to the 64-bit accumulator, and do we have that? */
194 if (tdep->ppc_acc_regnum >= 0
195 && tdep->ppc_acc_regnum == regno)
196 return 1;
197
198 /* Is it a reference to the SPE floating-point status and control register,
199 and do we have that? */
200 if (tdep->ppc_spefscr_regnum >= 0
201 && tdep->ppc_spefscr_regnum == regno)
202 return 1;
203
204 return 0;
205 }
206
207
208 /* Return non-zero if the architecture described by GDBARCH has
209 floating-point registers (f0 --- f31 and fpscr). */
210 int
211 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
212 {
213 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
214
215 return (tdep->ppc_fp0_regnum >= 0
216 && tdep->ppc_fpscr_regnum >= 0);
217 }
218
219 /* Return non-zero if the architecture described by GDBARCH has
220 VSX registers (vsr0 --- vsr63). */
221 static int
222 ppc_vsx_support_p (struct gdbarch *gdbarch)
223 {
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225
226 return tdep->ppc_vsr0_regnum >= 0;
227 }
228
229 /* Return non-zero if the architecture described by GDBARCH has
230 Altivec registers (vr0 --- vr31, vrsave and vscr). */
231 int
232 ppc_altivec_support_p (struct gdbarch *gdbarch)
233 {
234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
235
236 return (tdep->ppc_vr0_regnum >= 0
237 && tdep->ppc_vrsave_regnum >= 0);
238 }
239
240 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
241 set it to SIM_REGNO.
242
243 This is a helper function for init_sim_regno_table, constructing
244 the table mapping GDB register numbers to sim register numbers; we
245 initialize every element in that table to -1 before we start
246 filling it in. */
247 static void
248 set_sim_regno (int *table, int gdb_regno, int sim_regno)
249 {
250 /* Make sure we don't try to assign any given GDB register a sim
251 register number more than once. */
252 gdb_assert (table[gdb_regno] == -1);
253 table[gdb_regno] = sim_regno;
254 }
255
256
257 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
258 numbers to simulator register numbers, based on the values placed
259 in the ARCH->tdep->ppc_foo_regnum members. */
260 static void
261 init_sim_regno_table (struct gdbarch *arch)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
264 int total_regs = gdbarch_num_regs (arch);
265 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
266 int i;
267 static const char *const segment_regs[] = {
268 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
269 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
270 };
271
272 /* Presume that all registers not explicitly mentioned below are
273 unavailable from the sim. */
274 for (i = 0; i < total_regs; i++)
275 sim_regno[i] = -1;
276
277 /* General-purpose registers. */
278 for (i = 0; i < ppc_num_gprs; i++)
279 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
280
281 /* Floating-point registers. */
282 if (tdep->ppc_fp0_regnum >= 0)
283 for (i = 0; i < ppc_num_fprs; i++)
284 set_sim_regno (sim_regno,
285 tdep->ppc_fp0_regnum + i,
286 sim_ppc_f0_regnum + i);
287 if (tdep->ppc_fpscr_regnum >= 0)
288 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
289
290 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
291 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
292 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
293
294 /* Segment registers. */
295 for (i = 0; i < ppc_num_srs; i++)
296 {
297 int gdb_regno;
298
299 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
300 if (gdb_regno >= 0)
301 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
302 }
303
304 /* Altivec registers. */
305 if (tdep->ppc_vr0_regnum >= 0)
306 {
307 for (i = 0; i < ppc_num_vrs; i++)
308 set_sim_regno (sim_regno,
309 tdep->ppc_vr0_regnum + i,
310 sim_ppc_vr0_regnum + i);
311
312 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
313 we can treat this more like the other cases. */
314 set_sim_regno (sim_regno,
315 tdep->ppc_vr0_regnum + ppc_num_vrs,
316 sim_ppc_vscr_regnum);
317 }
318 /* vsave is a special-purpose register, so the code below handles it. */
319
320 /* SPE APU (E500) registers. */
321 if (tdep->ppc_ev0_upper_regnum >= 0)
322 for (i = 0; i < ppc_num_gprs; i++)
323 set_sim_regno (sim_regno,
324 tdep->ppc_ev0_upper_regnum + i,
325 sim_ppc_rh0_regnum + i);
326 if (tdep->ppc_acc_regnum >= 0)
327 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
328 /* spefscr is a special-purpose register, so the code below handles it. */
329
330 #ifdef WITH_SIM
331 /* Now handle all special-purpose registers. Verify that they
332 haven't mistakenly been assigned numbers by any of the above
333 code. */
334 for (i = 0; i < sim_ppc_num_sprs; i++)
335 {
336 const char *spr_name = sim_spr_register_name (i);
337 int gdb_regno = -1;
338
339 if (spr_name != NULL)
340 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
341
342 if (gdb_regno != -1)
343 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
344 }
345 #endif
346
347 /* Drop the initialized array into place. */
348 tdep->sim_regno = sim_regno;
349 }
350
351
352 /* Given a GDB register number REG, return the corresponding SIM
353 register number. */
354 static int
355 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
356 {
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
358 int sim_regno;
359
360 if (tdep->sim_regno == NULL)
361 init_sim_regno_table (gdbarch);
362
363 gdb_assert (0 <= reg
364 && reg <= gdbarch_num_regs (gdbarch)
365 + gdbarch_num_pseudo_regs (gdbarch));
366 sim_regno = tdep->sim_regno[reg];
367
368 if (sim_regno >= 0)
369 return sim_regno;
370 else
371 return LEGACY_SIM_REGNO_IGNORE;
372 }
373
374 \f
375
376 /* Register set support functions. */
377
378 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
379 Write the register to REGCACHE. */
380
381 void
382 ppc_supply_reg (struct regcache *regcache, int regnum,
383 const gdb_byte *regs, size_t offset, int regsize)
384 {
385 if (regnum != -1 && offset != -1)
386 {
387 if (regsize > 4)
388 {
389 struct gdbarch *gdbarch = get_regcache_arch (regcache);
390 int gdb_regsize = register_size (gdbarch, regnum);
391 if (gdb_regsize < regsize
392 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
393 offset += regsize - gdb_regsize;
394 }
395 regcache_raw_supply (regcache, regnum, regs + offset);
396 }
397 }
398
399 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
400 in a field REGSIZE wide. Zero pad as necessary. */
401
402 void
403 ppc_collect_reg (const struct regcache *regcache, int regnum,
404 gdb_byte *regs, size_t offset, int regsize)
405 {
406 if (regnum != -1 && offset != -1)
407 {
408 if (regsize > 4)
409 {
410 struct gdbarch *gdbarch = get_regcache_arch (regcache);
411 int gdb_regsize = register_size (gdbarch, regnum);
412 if (gdb_regsize < regsize)
413 {
414 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
415 {
416 memset (regs + offset, 0, regsize - gdb_regsize);
417 offset += regsize - gdb_regsize;
418 }
419 else
420 memset (regs + offset + regsize - gdb_regsize, 0,
421 regsize - gdb_regsize);
422 }
423 }
424 regcache_raw_collect (regcache, regnum, regs + offset);
425 }
426 }
427
428 static int
429 ppc_greg_offset (struct gdbarch *gdbarch,
430 struct gdbarch_tdep *tdep,
431 const struct ppc_reg_offsets *offsets,
432 int regnum,
433 int *regsize)
434 {
435 *regsize = offsets->gpr_size;
436 if (regnum >= tdep->ppc_gp0_regnum
437 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
438 return (offsets->r0_offset
439 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
440
441 if (regnum == gdbarch_pc_regnum (gdbarch))
442 return offsets->pc_offset;
443
444 if (regnum == tdep->ppc_ps_regnum)
445 return offsets->ps_offset;
446
447 if (regnum == tdep->ppc_lr_regnum)
448 return offsets->lr_offset;
449
450 if (regnum == tdep->ppc_ctr_regnum)
451 return offsets->ctr_offset;
452
453 *regsize = offsets->xr_size;
454 if (regnum == tdep->ppc_cr_regnum)
455 return offsets->cr_offset;
456
457 if (regnum == tdep->ppc_xer_regnum)
458 return offsets->xer_offset;
459
460 if (regnum == tdep->ppc_mq_regnum)
461 return offsets->mq_offset;
462
463 return -1;
464 }
465
466 static int
467 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
468 const struct ppc_reg_offsets *offsets,
469 int regnum)
470 {
471 if (regnum >= tdep->ppc_fp0_regnum
472 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
473 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
474
475 if (regnum == tdep->ppc_fpscr_regnum)
476 return offsets->fpscr_offset;
477
478 return -1;
479 }
480
481 static int
482 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
483 const struct ppc_reg_offsets *offsets,
484 int regnum)
485 {
486 if (regnum >= tdep->ppc_vr0_regnum
487 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
488 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
489
490 if (regnum == tdep->ppc_vrsave_regnum - 1)
491 return offsets->vscr_offset;
492
493 if (regnum == tdep->ppc_vrsave_regnum)
494 return offsets->vrsave_offset;
495
496 return -1;
497 }
498
499 /* Supply register REGNUM in the general-purpose register set REGSET
500 from the buffer specified by GREGS and LEN to register cache
501 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
502
503 void
504 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
505 int regnum, const void *gregs, size_t len)
506 {
507 struct gdbarch *gdbarch = get_regcache_arch (regcache);
508 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
509 const struct ppc_reg_offsets *offsets = regset->descr;
510 size_t offset;
511 int regsize;
512
513 if (regnum == -1)
514 {
515 int i;
516 int gpr_size = offsets->gpr_size;
517
518 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
519 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
520 i++, offset += gpr_size)
521 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
522
523 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
524 gregs, offsets->pc_offset, gpr_size);
525 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
526 gregs, offsets->ps_offset, gpr_size);
527 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
528 gregs, offsets->lr_offset, gpr_size);
529 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
530 gregs, offsets->ctr_offset, gpr_size);
531 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
532 gregs, offsets->cr_offset, offsets->xr_size);
533 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
534 gregs, offsets->xer_offset, offsets->xr_size);
535 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
536 gregs, offsets->mq_offset, offsets->xr_size);
537 return;
538 }
539
540 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
541 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
542 }
543
544 /* Supply register REGNUM in the floating-point register set REGSET
545 from the buffer specified by FPREGS and LEN to register cache
546 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
547
548 void
549 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
550 int regnum, const void *fpregs, size_t len)
551 {
552 struct gdbarch *gdbarch = get_regcache_arch (regcache);
553 struct gdbarch_tdep *tdep;
554 const struct ppc_reg_offsets *offsets;
555 size_t offset;
556
557 if (!ppc_floating_point_unit_p (gdbarch))
558 return;
559
560 tdep = gdbarch_tdep (gdbarch);
561 offsets = regset->descr;
562 if (regnum == -1)
563 {
564 int i;
565
566 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
567 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
568 i++, offset += 8)
569 ppc_supply_reg (regcache, i, fpregs, offset, 8);
570
571 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
572 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
573 return;
574 }
575
576 offset = ppc_fpreg_offset (tdep, offsets, regnum);
577 ppc_supply_reg (regcache, regnum, fpregs, offset,
578 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
579 }
580
581 /* Supply register REGNUM in the VSX register set REGSET
582 from the buffer specified by VSXREGS and LEN to register cache
583 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
584
585 void
586 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
587 int regnum, const void *vsxregs, size_t len)
588 {
589 struct gdbarch *gdbarch = get_regcache_arch (regcache);
590 struct gdbarch_tdep *tdep;
591
592 if (!ppc_vsx_support_p (gdbarch))
593 return;
594
595 tdep = gdbarch_tdep (gdbarch);
596
597 if (regnum == -1)
598 {
599 int i;
600
601 for (i = tdep->ppc_vsr0_upper_regnum;
602 i < tdep->ppc_vsr0_upper_regnum + 32;
603 i++)
604 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
605
606 return;
607 }
608 else
609 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
610 }
611
612 /* Supply register REGNUM in the Altivec register set REGSET
613 from the buffer specified by VRREGS and LEN to register cache
614 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
615
616 void
617 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
618 int regnum, const void *vrregs, size_t len)
619 {
620 struct gdbarch *gdbarch = get_regcache_arch (regcache);
621 struct gdbarch_tdep *tdep;
622 const struct ppc_reg_offsets *offsets;
623 size_t offset;
624
625 if (!ppc_altivec_support_p (gdbarch))
626 return;
627
628 tdep = gdbarch_tdep (gdbarch);
629 offsets = regset->descr;
630 if (regnum == -1)
631 {
632 int i;
633
634 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
635 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
636 i++, offset += 16)
637 ppc_supply_reg (regcache, i, vrregs, offset, 16);
638
639 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
640 vrregs, offsets->vscr_offset, 4);
641
642 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
643 vrregs, offsets->vrsave_offset, 4);
644 return;
645 }
646
647 offset = ppc_vrreg_offset (tdep, offsets, regnum);
648 if (regnum != tdep->ppc_vrsave_regnum
649 && regnum != tdep->ppc_vrsave_regnum - 1)
650 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
651 else
652 ppc_supply_reg (regcache, regnum,
653 vrregs, offset, 4);
654 }
655
656 /* Collect register REGNUM in the general-purpose register set
657 REGSET from register cache REGCACHE into the buffer specified by
658 GREGS and LEN. If REGNUM is -1, do this for all registers in
659 REGSET. */
660
661 void
662 ppc_collect_gregset (const struct regset *regset,
663 const struct regcache *regcache,
664 int regnum, void *gregs, size_t len)
665 {
666 struct gdbarch *gdbarch = get_regcache_arch (regcache);
667 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
668 const struct ppc_reg_offsets *offsets = regset->descr;
669 size_t offset;
670 int regsize;
671
672 if (regnum == -1)
673 {
674 int i;
675 int gpr_size = offsets->gpr_size;
676
677 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
678 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
679 i++, offset += gpr_size)
680 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
681
682 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
683 gregs, offsets->pc_offset, gpr_size);
684 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
685 gregs, offsets->ps_offset, gpr_size);
686 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
687 gregs, offsets->lr_offset, gpr_size);
688 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
689 gregs, offsets->ctr_offset, gpr_size);
690 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
691 gregs, offsets->cr_offset, offsets->xr_size);
692 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
693 gregs, offsets->xer_offset, offsets->xr_size);
694 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
695 gregs, offsets->mq_offset, offsets->xr_size);
696 return;
697 }
698
699 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
700 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
701 }
702
703 /* Collect register REGNUM in the floating-point register set
704 REGSET from register cache REGCACHE into the buffer specified by
705 FPREGS and LEN. If REGNUM is -1, do this for all registers in
706 REGSET. */
707
708 void
709 ppc_collect_fpregset (const struct regset *regset,
710 const struct regcache *regcache,
711 int regnum, void *fpregs, size_t len)
712 {
713 struct gdbarch *gdbarch = get_regcache_arch (regcache);
714 struct gdbarch_tdep *tdep;
715 const struct ppc_reg_offsets *offsets;
716 size_t offset;
717
718 if (!ppc_floating_point_unit_p (gdbarch))
719 return;
720
721 tdep = gdbarch_tdep (gdbarch);
722 offsets = regset->descr;
723 if (regnum == -1)
724 {
725 int i;
726
727 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
728 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
729 i++, offset += 8)
730 ppc_collect_reg (regcache, i, fpregs, offset, 8);
731
732 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
733 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
734 return;
735 }
736
737 offset = ppc_fpreg_offset (tdep, offsets, regnum);
738 ppc_collect_reg (regcache, regnum, fpregs, offset,
739 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
740 }
741
742 /* Collect register REGNUM in the VSX register set
743 REGSET from register cache REGCACHE into the buffer specified by
744 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
745 REGSET. */
746
747 void
748 ppc_collect_vsxregset (const struct regset *regset,
749 const struct regcache *regcache,
750 int regnum, void *vsxregs, size_t len)
751 {
752 struct gdbarch *gdbarch = get_regcache_arch (regcache);
753 struct gdbarch_tdep *tdep;
754
755 if (!ppc_vsx_support_p (gdbarch))
756 return;
757
758 tdep = gdbarch_tdep (gdbarch);
759
760 if (regnum == -1)
761 {
762 int i;
763
764 for (i = tdep->ppc_vsr0_upper_regnum;
765 i < tdep->ppc_vsr0_upper_regnum + 32;
766 i++)
767 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
768
769 return;
770 }
771 else
772 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
773 }
774
775
776 /* Collect register REGNUM in the Altivec register set
777 REGSET from register cache REGCACHE into the buffer specified by
778 VRREGS and LEN. If REGNUM is -1, do this for all registers in
779 REGSET. */
780
781 void
782 ppc_collect_vrregset (const struct regset *regset,
783 const struct regcache *regcache,
784 int regnum, void *vrregs, size_t len)
785 {
786 struct gdbarch *gdbarch = get_regcache_arch (regcache);
787 struct gdbarch_tdep *tdep;
788 const struct ppc_reg_offsets *offsets;
789 size_t offset;
790
791 if (!ppc_altivec_support_p (gdbarch))
792 return;
793
794 tdep = gdbarch_tdep (gdbarch);
795 offsets = regset->descr;
796 if (regnum == -1)
797 {
798 int i;
799
800 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
801 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
802 i++, offset += 16)
803 ppc_collect_reg (regcache, i, vrregs, offset, 16);
804
805 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
806 vrregs, offsets->vscr_offset, 4);
807
808 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
809 vrregs, offsets->vrsave_offset, 4);
810 return;
811 }
812
813 offset = ppc_vrreg_offset (tdep, offsets, regnum);
814 if (regnum != tdep->ppc_vrsave_regnum
815 && regnum != tdep->ppc_vrsave_regnum - 1)
816 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
817 else
818 ppc_collect_reg (regcache, regnum,
819 vrregs, offset, 4);
820 }
821 \f
822
823 static int
824 insn_changes_sp_or_jumps (unsigned long insn)
825 {
826 int opcode = (insn >> 26) & 0x03f;
827 int sd = (insn >> 21) & 0x01f;
828 int a = (insn >> 16) & 0x01f;
829 int subcode = (insn >> 1) & 0x3ff;
830
831 /* Changes the stack pointer. */
832
833 /* NOTE: There are many ways to change the value of a given register.
834 The ways below are those used when the register is R1, the SP,
835 in a funtion's epilogue. */
836
837 if (opcode == 31 && subcode == 444 && a == 1)
838 return 1; /* mr R1,Rn */
839 if (opcode == 14 && sd == 1)
840 return 1; /* addi R1,Rn,simm */
841 if (opcode == 58 && sd == 1)
842 return 1; /* ld R1,ds(Rn) */
843
844 /* Transfers control. */
845
846 if (opcode == 18)
847 return 1; /* b */
848 if (opcode == 16)
849 return 1; /* bc */
850 if (opcode == 19 && subcode == 16)
851 return 1; /* bclr */
852 if (opcode == 19 && subcode == 528)
853 return 1; /* bcctr */
854
855 return 0;
856 }
857
858 /* Return true if we are in the function's epilogue, i.e. after the
859 instruction that destroyed the function's stack frame.
860
861 1) scan forward from the point of execution:
862 a) If you find an instruction that modifies the stack pointer
863 or transfers control (except a return), execution is not in
864 an epilogue, return.
865 b) Stop scanning if you find a return instruction or reach the
866 end of the function or reach the hard limit for the size of
867 an epilogue.
868 2) scan backward from the point of execution:
869 a) If you find an instruction that modifies the stack pointer,
870 execution *is* in an epilogue, return.
871 b) Stop scanning if you reach an instruction that transfers
872 control or the beginning of the function or reach the hard
873 limit for the size of an epilogue. */
874
875 static int
876 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
877 {
878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
880 bfd_byte insn_buf[PPC_INSN_SIZE];
881 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
882 unsigned long insn;
883 struct frame_info *curfrm;
884
885 /* Find the search limits based on function boundaries and hard limit. */
886
887 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
888 return 0;
889
890 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
891 if (epilogue_start < func_start) epilogue_start = func_start;
892
893 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
894 if (epilogue_end > func_end) epilogue_end = func_end;
895
896 curfrm = get_current_frame ();
897
898 /* Scan forward until next 'blr'. */
899
900 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
901 {
902 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
903 return 0;
904 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
905 if (insn == 0x4e800020)
906 break;
907 /* Assume a bctr is a tail call unless it points strictly within
908 this function. */
909 if (insn == 0x4e800420)
910 {
911 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
912 tdep->ppc_ctr_regnum);
913 if (ctr > func_start && ctr < func_end)
914 return 0;
915 else
916 break;
917 }
918 if (insn_changes_sp_or_jumps (insn))
919 return 0;
920 }
921
922 /* Scan backward until adjustment to stack pointer (R1). */
923
924 for (scan_pc = pc - PPC_INSN_SIZE;
925 scan_pc >= epilogue_start;
926 scan_pc -= PPC_INSN_SIZE)
927 {
928 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
929 return 0;
930 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
931 if (insn_changes_sp_or_jumps (insn))
932 return 1;
933 }
934
935 return 0;
936 }
937
938 /* Get the ith function argument for the current function. */
939 static CORE_ADDR
940 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
941 struct type *type)
942 {
943 return get_frame_register_unsigned (frame, 3 + argi);
944 }
945
946 /* Sequence of bytes for breakpoint instruction. */
947
948 static const unsigned char *
949 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
950 int *bp_size)
951 {
952 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
953 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
954 *bp_size = 4;
955 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
956 return big_breakpoint;
957 else
958 return little_breakpoint;
959 }
960
961 /* Instruction masks for displaced stepping. */
962 #define BRANCH_MASK 0xfc000000
963 #define BP_MASK 0xFC0007FE
964 #define B_INSN 0x48000000
965 #define BC_INSN 0x40000000
966 #define BXL_INSN 0x4c000000
967 #define BP_INSN 0x7C000008
968
969 /* Fix up the state of registers and memory after having single-stepped
970 a displaced instruction. */
971 static void
972 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
973 struct displaced_step_closure *closure,
974 CORE_ADDR from, CORE_ADDR to,
975 struct regcache *regs)
976 {
977 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
978 /* Since we use simple_displaced_step_copy_insn, our closure is a
979 copy of the instruction. */
980 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
981 PPC_INSN_SIZE, byte_order);
982 ULONGEST opcode = 0;
983 /* Offset for non PC-relative instructions. */
984 LONGEST offset = PPC_INSN_SIZE;
985
986 opcode = insn & BRANCH_MASK;
987
988 if (debug_displaced)
989 fprintf_unfiltered (gdb_stdlog,
990 "displaced: (ppc) fixup (%s, %s)\n",
991 paddress (gdbarch, from), paddress (gdbarch, to));
992
993
994 /* Handle PC-relative branch instructions. */
995 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
996 {
997 ULONGEST current_pc;
998
999 /* Read the current PC value after the instruction has been executed
1000 in a displaced location. Calculate the offset to be applied to the
1001 original PC value before the displaced stepping. */
1002 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1003 &current_pc);
1004 offset = current_pc - to;
1005
1006 if (opcode != BXL_INSN)
1007 {
1008 /* Check for AA bit indicating whether this is an absolute
1009 addressing or PC-relative (1: absolute, 0: relative). */
1010 if (!(insn & 0x2))
1011 {
1012 /* PC-relative addressing is being used in the branch. */
1013 if (debug_displaced)
1014 fprintf_unfiltered
1015 (gdb_stdlog,
1016 "displaced: (ppc) branch instruction: %s\n"
1017 "displaced: (ppc) adjusted PC from %s to %s\n",
1018 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1019 paddress (gdbarch, from + offset));
1020
1021 regcache_cooked_write_unsigned (regs,
1022 gdbarch_pc_regnum (gdbarch),
1023 from + offset);
1024 }
1025 }
1026 else
1027 {
1028 /* If we're here, it means we have a branch to LR or CTR. If the
1029 branch was taken, the offset is probably greater than 4 (the next
1030 instruction), so it's safe to assume that an offset of 4 means we
1031 did not take the branch. */
1032 if (offset == PPC_INSN_SIZE)
1033 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1034 from + PPC_INSN_SIZE);
1035 }
1036
1037 /* Check for LK bit indicating whether we should set the link
1038 register to point to the next instruction
1039 (1: Set, 0: Don't set). */
1040 if (insn & 0x1)
1041 {
1042 /* Link register needs to be set to the next instruction's PC. */
1043 regcache_cooked_write_unsigned (regs,
1044 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1045 from + PPC_INSN_SIZE);
1046 if (debug_displaced)
1047 fprintf_unfiltered (gdb_stdlog,
1048 "displaced: (ppc) adjusted LR to %s\n",
1049 paddress (gdbarch, from + PPC_INSN_SIZE));
1050
1051 }
1052 }
1053 /* Check for breakpoints in the inferior. If we've found one, place the PC
1054 right at the breakpoint instruction. */
1055 else if ((insn & BP_MASK) == BP_INSN)
1056 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1057 else
1058 /* Handle any other instructions that do not fit in the categories above. */
1059 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1060 from + offset);
1061 }
1062
1063 /* Always use hardware single-stepping to execute the
1064 displaced instruction. */
1065 static int
1066 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1067 struct displaced_step_closure *closure)
1068 {
1069 return 1;
1070 }
1071
1072 /* Instruction masks used during single-stepping of atomic sequences. */
1073 #define LWARX_MASK 0xfc0007fe
1074 #define LWARX_INSTRUCTION 0x7c000028
1075 #define LDARX_INSTRUCTION 0x7c0000A8
1076 #define STWCX_MASK 0xfc0007ff
1077 #define STWCX_INSTRUCTION 0x7c00012d
1078 #define STDCX_INSTRUCTION 0x7c0001ad
1079
1080 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1081 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1082 is found, attempt to step through it. A breakpoint is placed at the end of
1083 the sequence. */
1084
1085 int
1086 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1087 {
1088 struct gdbarch *gdbarch = get_frame_arch (frame);
1089 struct address_space *aspace = get_frame_address_space (frame);
1090 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1091 CORE_ADDR pc = get_frame_pc (frame);
1092 CORE_ADDR breaks[2] = {-1, -1};
1093 CORE_ADDR loc = pc;
1094 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1095 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1096 int insn_count;
1097 int index;
1098 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1099 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1100 int opcode; /* Branch instruction's OPcode. */
1101 int bc_insn_count = 0; /* Conditional branch instruction count. */
1102
1103 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1104 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1105 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1106 return 0;
1107
1108 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1109 instructions. */
1110 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1111 {
1112 loc += PPC_INSN_SIZE;
1113 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1114
1115 /* Assume that there is at most one conditional branch in the atomic
1116 sequence. If a conditional branch is found, put a breakpoint in
1117 its destination address. */
1118 if ((insn & BRANCH_MASK) == BC_INSN)
1119 {
1120 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1121 int absolute = insn & 2;
1122
1123 if (bc_insn_count >= 1)
1124 return 0; /* More than one conditional branch found, fallback
1125 to the standard single-step code. */
1126
1127 if (absolute)
1128 breaks[1] = immediate;
1129 else
1130 breaks[1] = loc + immediate;
1131
1132 bc_insn_count++;
1133 last_breakpoint++;
1134 }
1135
1136 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1137 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1138 break;
1139 }
1140
1141 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1142 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1143 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1144 return 0;
1145
1146 closing_insn = loc;
1147 loc += PPC_INSN_SIZE;
1148 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1149
1150 /* Insert a breakpoint right after the end of the atomic sequence. */
1151 breaks[0] = loc;
1152
1153 /* Check for duplicated breakpoints. Check also for a breakpoint
1154 placed (branch instruction's destination) anywhere in sequence. */
1155 if (last_breakpoint
1156 && (breaks[1] == breaks[0]
1157 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1158 last_breakpoint = 0;
1159
1160 /* Effectively inserts the breakpoints. */
1161 for (index = 0; index <= last_breakpoint; index++)
1162 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1163
1164 return 1;
1165 }
1166
1167
1168 #define SIGNED_SHORT(x) \
1169 ((sizeof (short) == 2) \
1170 ? ((int)(short)(x)) \
1171 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1172
1173 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1174
1175 /* Limit the number of skipped non-prologue instructions, as the examining
1176 of the prologue is expensive. */
1177 static int max_skip_non_prologue_insns = 10;
1178
1179 /* Return nonzero if the given instruction OP can be part of the prologue
1180 of a function and saves a parameter on the stack. FRAMEP should be
1181 set if one of the previous instructions in the function has set the
1182 Frame Pointer. */
1183
1184 static int
1185 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1186 {
1187 /* Move parameters from argument registers to temporary register. */
1188 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1189 {
1190 /* Rx must be scratch register r0. */
1191 const int rx_regno = (op >> 16) & 31;
1192 /* Ry: Only r3 - r10 are used for parameter passing. */
1193 const int ry_regno = GET_SRC_REG (op);
1194
1195 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1196 {
1197 *r0_contains_arg = 1;
1198 return 1;
1199 }
1200 else
1201 return 0;
1202 }
1203
1204 /* Save a General Purpose Register on stack. */
1205
1206 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1207 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1208 {
1209 /* Rx: Only r3 - r10 are used for parameter passing. */
1210 const int rx_regno = GET_SRC_REG (op);
1211
1212 return (rx_regno >= 3 && rx_regno <= 10);
1213 }
1214
1215 /* Save a General Purpose Register on stack via the Frame Pointer. */
1216
1217 if (framep &&
1218 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1219 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1220 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1221 {
1222 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1223 However, the compiler sometimes uses r0 to hold an argument. */
1224 const int rx_regno = GET_SRC_REG (op);
1225
1226 return ((rx_regno >= 3 && rx_regno <= 10)
1227 || (rx_regno == 0 && *r0_contains_arg));
1228 }
1229
1230 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1231 {
1232 /* Only f2 - f8 are used for parameter passing. */
1233 const int src_regno = GET_SRC_REG (op);
1234
1235 return (src_regno >= 2 && src_regno <= 8);
1236 }
1237
1238 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1239 {
1240 /* Only f2 - f8 are used for parameter passing. */
1241 const int src_regno = GET_SRC_REG (op);
1242
1243 return (src_regno >= 2 && src_regno <= 8);
1244 }
1245
1246 /* Not an insn that saves a parameter on stack. */
1247 return 0;
1248 }
1249
1250 /* Assuming that INSN is a "bl" instruction located at PC, return
1251 nonzero if the destination of the branch is a "blrl" instruction.
1252
1253 This sequence is sometimes found in certain function prologues.
1254 It allows the function to load the LR register with a value that
1255 they can use to access PIC data using PC-relative offsets. */
1256
1257 static int
1258 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1259 {
1260 CORE_ADDR dest;
1261 int immediate;
1262 int absolute;
1263 int dest_insn;
1264
1265 absolute = (int) ((insn >> 1) & 1);
1266 immediate = ((insn & ~3) << 6) >> 6;
1267 if (absolute)
1268 dest = immediate;
1269 else
1270 dest = pc + immediate;
1271
1272 dest_insn = read_memory_integer (dest, 4, byte_order);
1273 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1274 return 1;
1275
1276 return 0;
1277 }
1278
1279 /* Masks for decoding a branch-and-link (bl) instruction.
1280
1281 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1282 The former is anded with the opcode in question; if the result of
1283 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1284 question is a ``bl'' instruction.
1285
1286 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1287 the branch displacement. */
1288
1289 #define BL_MASK 0xfc000001
1290 #define BL_INSTRUCTION 0x48000001
1291 #define BL_DISPLACEMENT_MASK 0x03fffffc
1292
1293 static unsigned long
1294 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1295 {
1296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1297 gdb_byte buf[4];
1298 unsigned long op;
1299
1300 /* Fetch the instruction and convert it to an integer. */
1301 if (target_read_memory (pc, buf, 4))
1302 return 0;
1303 op = extract_unsigned_integer (buf, 4, byte_order);
1304
1305 return op;
1306 }
1307
1308 /* GCC generates several well-known sequences of instructions at the begining
1309 of each function prologue when compiling with -fstack-check. If one of
1310 such sequences starts at START_PC, then return the address of the
1311 instruction immediately past this sequence. Otherwise, return START_PC. */
1312
1313 static CORE_ADDR
1314 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1315 {
1316 CORE_ADDR pc = start_pc;
1317 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1318
1319 /* First possible sequence: A small number of probes.
1320 stw 0, -<some immediate>(1)
1321 [repeat this instruction any (small) number of times]. */
1322
1323 if ((op & 0xffff0000) == 0x90010000)
1324 {
1325 while ((op & 0xffff0000) == 0x90010000)
1326 {
1327 pc = pc + 4;
1328 op = rs6000_fetch_instruction (gdbarch, pc);
1329 }
1330 return pc;
1331 }
1332
1333 /* Second sequence: A probing loop.
1334 addi 12,1,-<some immediate>
1335 lis 0,-<some immediate>
1336 [possibly ori 0,0,<some immediate>]
1337 add 0,12,0
1338 cmpw 0,12,0
1339 beq 0,<disp>
1340 addi 12,12,-<some immediate>
1341 stw 0,0(12)
1342 b <disp>
1343 [possibly one last probe: stw 0,<some immediate>(12)]. */
1344
1345 while (1)
1346 {
1347 /* addi 12,1,-<some immediate> */
1348 if ((op & 0xffff0000) != 0x39810000)
1349 break;
1350
1351 /* lis 0,-<some immediate> */
1352 pc = pc + 4;
1353 op = rs6000_fetch_instruction (gdbarch, pc);
1354 if ((op & 0xffff0000) != 0x3c000000)
1355 break;
1356
1357 pc = pc + 4;
1358 op = rs6000_fetch_instruction (gdbarch, pc);
1359 /* [possibly ori 0,0,<some immediate>] */
1360 if ((op & 0xffff0000) == 0x60000000)
1361 {
1362 pc = pc + 4;
1363 op = rs6000_fetch_instruction (gdbarch, pc);
1364 }
1365 /* add 0,12,0 */
1366 if (op != 0x7c0c0214)
1367 break;
1368
1369 /* cmpw 0,12,0 */
1370 pc = pc + 4;
1371 op = rs6000_fetch_instruction (gdbarch, pc);
1372 if (op != 0x7c0c0000)
1373 break;
1374
1375 /* beq 0,<disp> */
1376 pc = pc + 4;
1377 op = rs6000_fetch_instruction (gdbarch, pc);
1378 if ((op & 0xff9f0001) != 0x41820000)
1379 break;
1380
1381 /* addi 12,12,-<some immediate> */
1382 pc = pc + 4;
1383 op = rs6000_fetch_instruction (gdbarch, pc);
1384 if ((op & 0xffff0000) != 0x398c0000)
1385 break;
1386
1387 /* stw 0,0(12) */
1388 pc = pc + 4;
1389 op = rs6000_fetch_instruction (gdbarch, pc);
1390 if (op != 0x900c0000)
1391 break;
1392
1393 /* b <disp> */
1394 pc = pc + 4;
1395 op = rs6000_fetch_instruction (gdbarch, pc);
1396 if ((op & 0xfc000001) != 0x48000000)
1397 break;
1398
1399 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1400 pc = pc + 4;
1401 op = rs6000_fetch_instruction (gdbarch, pc);
1402 if ((op & 0xffff0000) == 0x900c0000)
1403 {
1404 pc = pc + 4;
1405 op = rs6000_fetch_instruction (gdbarch, pc);
1406 }
1407
1408 /* We found a valid stack-check sequence, return the new PC. */
1409 return pc;
1410 }
1411
1412 /* Third sequence: No probe; instead, a comparizon between the stack size
1413 limit (saved in a run-time global variable) and the current stack
1414 pointer:
1415
1416 addi 0,1,-<some immediate>
1417 lis 12,__gnat_stack_limit@ha
1418 lwz 12,__gnat_stack_limit@l(12)
1419 twllt 0,12
1420
1421 or, with a small variant in the case of a bigger stack frame:
1422 addis 0,1,<some immediate>
1423 addic 0,0,-<some immediate>
1424 lis 12,__gnat_stack_limit@ha
1425 lwz 12,__gnat_stack_limit@l(12)
1426 twllt 0,12
1427 */
1428 while (1)
1429 {
1430 /* addi 0,1,-<some immediate> */
1431 if ((op & 0xffff0000) != 0x38010000)
1432 {
1433 /* small stack frame variant not recognized; try the
1434 big stack frame variant: */
1435
1436 /* addis 0,1,<some immediate> */
1437 if ((op & 0xffff0000) != 0x3c010000)
1438 break;
1439
1440 /* addic 0,0,-<some immediate> */
1441 pc = pc + 4;
1442 op = rs6000_fetch_instruction (gdbarch, pc);
1443 if ((op & 0xffff0000) != 0x30000000)
1444 break;
1445 }
1446
1447 /* lis 12,<some immediate> */
1448 pc = pc + 4;
1449 op = rs6000_fetch_instruction (gdbarch, pc);
1450 if ((op & 0xffff0000) != 0x3d800000)
1451 break;
1452
1453 /* lwz 12,<some immediate>(12) */
1454 pc = pc + 4;
1455 op = rs6000_fetch_instruction (gdbarch, pc);
1456 if ((op & 0xffff0000) != 0x818c0000)
1457 break;
1458
1459 /* twllt 0,12 */
1460 pc = pc + 4;
1461 op = rs6000_fetch_instruction (gdbarch, pc);
1462 if ((op & 0xfffffffe) != 0x7c406008)
1463 break;
1464
1465 /* We found a valid stack-check sequence, return the new PC. */
1466 return pc;
1467 }
1468
1469 /* No stack check code in our prologue, return the start_pc. */
1470 return start_pc;
1471 }
1472
1473 /* return pc value after skipping a function prologue and also return
1474 information about a function frame.
1475
1476 in struct rs6000_framedata fdata:
1477 - frameless is TRUE, if function does not have a frame.
1478 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1479 - offset is the initial size of this stack frame --- the amount by
1480 which we decrement the sp to allocate the frame.
1481 - saved_gpr is the number of the first saved gpr.
1482 - saved_fpr is the number of the first saved fpr.
1483 - saved_vr is the number of the first saved vr.
1484 - saved_ev is the number of the first saved ev.
1485 - alloca_reg is the number of the register used for alloca() handling.
1486 Otherwise -1.
1487 - gpr_offset is the offset of the first saved gpr from the previous frame.
1488 - fpr_offset is the offset of the first saved fpr from the previous frame.
1489 - vr_offset is the offset of the first saved vr from the previous frame.
1490 - ev_offset is the offset of the first saved ev from the previous frame.
1491 - lr_offset is the offset of the saved lr
1492 - cr_offset is the offset of the saved cr
1493 - vrsave_offset is the offset of the saved vrsave register. */
1494
1495 static CORE_ADDR
1496 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1497 struct rs6000_framedata *fdata)
1498 {
1499 CORE_ADDR orig_pc = pc;
1500 CORE_ADDR last_prologue_pc = pc;
1501 CORE_ADDR li_found_pc = 0;
1502 gdb_byte buf[4];
1503 unsigned long op;
1504 long offset = 0;
1505 long vr_saved_offset = 0;
1506 int lr_reg = -1;
1507 int cr_reg = -1;
1508 int vr_reg = -1;
1509 int ev_reg = -1;
1510 long ev_offset = 0;
1511 int vrsave_reg = -1;
1512 int reg;
1513 int framep = 0;
1514 int minimal_toc_loaded = 0;
1515 int prev_insn_was_prologue_insn = 1;
1516 int num_skip_non_prologue_insns = 0;
1517 int r0_contains_arg = 0;
1518 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1519 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1521
1522 memset (fdata, 0, sizeof (struct rs6000_framedata));
1523 fdata->saved_gpr = -1;
1524 fdata->saved_fpr = -1;
1525 fdata->saved_vr = -1;
1526 fdata->saved_ev = -1;
1527 fdata->alloca_reg = -1;
1528 fdata->frameless = 1;
1529 fdata->nosavedpc = 1;
1530 fdata->lr_register = -1;
1531
1532 pc = rs6000_skip_stack_check (gdbarch, pc);
1533 if (pc >= lim_pc)
1534 pc = lim_pc;
1535
1536 for (;; pc += 4)
1537 {
1538 /* Sometimes it isn't clear if an instruction is a prologue
1539 instruction or not. When we encounter one of these ambiguous
1540 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1541 Otherwise, we'll assume that it really is a prologue instruction. */
1542 if (prev_insn_was_prologue_insn)
1543 last_prologue_pc = pc;
1544
1545 /* Stop scanning if we've hit the limit. */
1546 if (pc >= lim_pc)
1547 break;
1548
1549 prev_insn_was_prologue_insn = 1;
1550
1551 /* Fetch the instruction and convert it to an integer. */
1552 if (target_read_memory (pc, buf, 4))
1553 break;
1554 op = extract_unsigned_integer (buf, 4, byte_order);
1555
1556 if ((op & 0xfc1fffff) == 0x7c0802a6)
1557 { /* mflr Rx */
1558 /* Since shared library / PIC code, which needs to get its
1559 address at runtime, can appear to save more than one link
1560 register vis:
1561
1562 *INDENT-OFF*
1563 stwu r1,-304(r1)
1564 mflr r3
1565 bl 0xff570d0 (blrl)
1566 stw r30,296(r1)
1567 mflr r30
1568 stw r31,300(r1)
1569 stw r3,308(r1);
1570 ...
1571 *INDENT-ON*
1572
1573 remember just the first one, but skip over additional
1574 ones. */
1575 if (lr_reg == -1)
1576 lr_reg = (op & 0x03e00000) >> 21;
1577 if (lr_reg == 0)
1578 r0_contains_arg = 0;
1579 continue;
1580 }
1581 else if ((op & 0xfc1fffff) == 0x7c000026)
1582 { /* mfcr Rx */
1583 cr_reg = (op & 0x03e00000);
1584 if (cr_reg == 0)
1585 r0_contains_arg = 0;
1586 continue;
1587
1588 }
1589 else if ((op & 0xfc1f0000) == 0xd8010000)
1590 { /* stfd Rx,NUM(r1) */
1591 reg = GET_SRC_REG (op);
1592 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1593 {
1594 fdata->saved_fpr = reg;
1595 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1596 }
1597 continue;
1598
1599 }
1600 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1601 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1602 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1603 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1604 {
1605
1606 reg = GET_SRC_REG (op);
1607 if ((op & 0xfc1f0000) == 0xbc010000)
1608 fdata->gpr_mask |= ~((1U << reg) - 1);
1609 else
1610 fdata->gpr_mask |= 1U << reg;
1611 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1612 {
1613 fdata->saved_gpr = reg;
1614 if ((op & 0xfc1f0003) == 0xf8010000)
1615 op &= ~3UL;
1616 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1617 }
1618 continue;
1619
1620 }
1621 else if ((op & 0xffff0000) == 0x3c4c0000
1622 || (op & 0xffff0000) == 0x3c400000
1623 || (op & 0xffff0000) == 0x38420000)
1624 {
1625 /* . 0: addis 2,12,.TOC.-0b@ha
1626 . addi 2,2,.TOC.-0b@l
1627 or
1628 . lis 2,.TOC.@ha
1629 . addi 2,2,.TOC.@l
1630 used by ELFv2 global entry points to set up r2. */
1631 continue;
1632 }
1633 else if (op == 0x60000000)
1634 {
1635 /* nop */
1636 /* Allow nops in the prologue, but do not consider them to
1637 be part of the prologue unless followed by other prologue
1638 instructions. */
1639 prev_insn_was_prologue_insn = 0;
1640 continue;
1641
1642 }
1643 else if ((op & 0xffff0000) == 0x3c000000)
1644 { /* addis 0,0,NUM, used for >= 32k frames */
1645 fdata->offset = (op & 0x0000ffff) << 16;
1646 fdata->frameless = 0;
1647 r0_contains_arg = 0;
1648 continue;
1649
1650 }
1651 else if ((op & 0xffff0000) == 0x60000000)
1652 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1653 fdata->offset |= (op & 0x0000ffff);
1654 fdata->frameless = 0;
1655 r0_contains_arg = 0;
1656 continue;
1657
1658 }
1659 else if (lr_reg >= 0 &&
1660 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1661 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1662 /* stw Rx, NUM(r1) */
1663 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1664 /* stwu Rx, NUM(r1) */
1665 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1666 { /* where Rx == lr */
1667 fdata->lr_offset = offset;
1668 fdata->nosavedpc = 0;
1669 /* Invalidate lr_reg, but don't set it to -1.
1670 That would mean that it had never been set. */
1671 lr_reg = -2;
1672 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1673 (op & 0xfc000000) == 0x90000000) /* stw */
1674 {
1675 /* Does not update r1, so add displacement to lr_offset. */
1676 fdata->lr_offset += SIGNED_SHORT (op);
1677 }
1678 continue;
1679
1680 }
1681 else if (cr_reg >= 0 &&
1682 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1683 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1684 /* stw Rx, NUM(r1) */
1685 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1686 /* stwu Rx, NUM(r1) */
1687 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1688 { /* where Rx == cr */
1689 fdata->cr_offset = offset;
1690 /* Invalidate cr_reg, but don't set it to -1.
1691 That would mean that it had never been set. */
1692 cr_reg = -2;
1693 if ((op & 0xfc000003) == 0xf8000000 ||
1694 (op & 0xfc000000) == 0x90000000)
1695 {
1696 /* Does not update r1, so add displacement to cr_offset. */
1697 fdata->cr_offset += SIGNED_SHORT (op);
1698 }
1699 continue;
1700
1701 }
1702 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1703 {
1704 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1705 prediction bits. If the LR has already been saved, we can
1706 skip it. */
1707 continue;
1708 }
1709 else if (op == 0x48000005)
1710 { /* bl .+4 used in
1711 -mrelocatable */
1712 fdata->used_bl = 1;
1713 continue;
1714
1715 }
1716 else if (op == 0x48000004)
1717 { /* b .+4 (xlc) */
1718 break;
1719
1720 }
1721 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1722 in V.4 -mminimal-toc */
1723 (op & 0xffff0000) == 0x3bde0000)
1724 { /* addi 30,30,foo@l */
1725 continue;
1726
1727 }
1728 else if ((op & 0xfc000001) == 0x48000001)
1729 { /* bl foo,
1730 to save fprs??? */
1731
1732 fdata->frameless = 0;
1733
1734 /* If the return address has already been saved, we can skip
1735 calls to blrl (for PIC). */
1736 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1737 {
1738 fdata->used_bl = 1;
1739 continue;
1740 }
1741
1742 /* Don't skip over the subroutine call if it is not within
1743 the first three instructions of the prologue and either
1744 we have no line table information or the line info tells
1745 us that the subroutine call is not part of the line
1746 associated with the prologue. */
1747 if ((pc - orig_pc) > 8)
1748 {
1749 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1750 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1751
1752 if ((prologue_sal.line == 0)
1753 || (prologue_sal.line != this_sal.line))
1754 break;
1755 }
1756
1757 op = read_memory_integer (pc + 4, 4, byte_order);
1758
1759 /* At this point, make sure this is not a trampoline
1760 function (a function that simply calls another functions,
1761 and nothing else). If the next is not a nop, this branch
1762 was part of the function prologue. */
1763
1764 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1765 break; /* Don't skip over
1766 this branch. */
1767
1768 fdata->used_bl = 1;
1769 continue;
1770 }
1771 /* update stack pointer */
1772 else if ((op & 0xfc1f0000) == 0x94010000)
1773 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1774 fdata->frameless = 0;
1775 fdata->offset = SIGNED_SHORT (op);
1776 offset = fdata->offset;
1777 continue;
1778 }
1779 else if ((op & 0xfc1f016a) == 0x7c01016e)
1780 { /* stwux rX,r1,rY */
1781 /* No way to figure out what r1 is going to be. */
1782 fdata->frameless = 0;
1783 offset = fdata->offset;
1784 continue;
1785 }
1786 else if ((op & 0xfc1f0003) == 0xf8010001)
1787 { /* stdu rX,NUM(r1) */
1788 fdata->frameless = 0;
1789 fdata->offset = SIGNED_SHORT (op & ~3UL);
1790 offset = fdata->offset;
1791 continue;
1792 }
1793 else if ((op & 0xfc1f016a) == 0x7c01016a)
1794 { /* stdux rX,r1,rY */
1795 /* No way to figure out what r1 is going to be. */
1796 fdata->frameless = 0;
1797 offset = fdata->offset;
1798 continue;
1799 }
1800 else if ((op & 0xffff0000) == 0x38210000)
1801 { /* addi r1,r1,SIMM */
1802 fdata->frameless = 0;
1803 fdata->offset += SIGNED_SHORT (op);
1804 offset = fdata->offset;
1805 continue;
1806 }
1807 /* Load up minimal toc pointer. Do not treat an epilogue restore
1808 of r31 as a minimal TOC load. */
1809 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1810 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1811 && !framep
1812 && !minimal_toc_loaded)
1813 {
1814 minimal_toc_loaded = 1;
1815 continue;
1816
1817 /* move parameters from argument registers to local variable
1818 registers */
1819 }
1820 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1821 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1822 (((op >> 21) & 31) <= 10) &&
1823 ((long) ((op >> 16) & 31)
1824 >= fdata->saved_gpr)) /* Rx: local var reg */
1825 {
1826 continue;
1827
1828 /* store parameters in stack */
1829 }
1830 /* Move parameters from argument registers to temporary register. */
1831 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1832 {
1833 continue;
1834
1835 /* Set up frame pointer */
1836 }
1837 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1838 {
1839 fdata->frameless = 0;
1840 framep = 1;
1841 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1842 continue;
1843
1844 /* Another way to set up the frame pointer. */
1845 }
1846 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1847 || op == 0x7c3f0b78)
1848 { /* mr r31, r1 */
1849 fdata->frameless = 0;
1850 framep = 1;
1851 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1852 continue;
1853
1854 /* Another way to set up the frame pointer. */
1855 }
1856 else if ((op & 0xfc1fffff) == 0x38010000)
1857 { /* addi rX, r1, 0x0 */
1858 fdata->frameless = 0;
1859 framep = 1;
1860 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1861 + ((op & ~0x38010000) >> 21));
1862 continue;
1863 }
1864 /* AltiVec related instructions. */
1865 /* Store the vrsave register (spr 256) in another register for
1866 later manipulation, or load a register into the vrsave
1867 register. 2 instructions are used: mfvrsave and
1868 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1869 and mtspr SPR256, Rn. */
1870 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1871 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1872 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1873 {
1874 vrsave_reg = GET_SRC_REG (op);
1875 continue;
1876 }
1877 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1878 {
1879 continue;
1880 }
1881 /* Store the register where vrsave was saved to onto the stack:
1882 rS is the register where vrsave was stored in a previous
1883 instruction. */
1884 /* 100100 sssss 00001 dddddddd dddddddd */
1885 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1886 {
1887 if (vrsave_reg == GET_SRC_REG (op))
1888 {
1889 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1890 vrsave_reg = -1;
1891 }
1892 continue;
1893 }
1894 /* Compute the new value of vrsave, by modifying the register
1895 where vrsave was saved to. */
1896 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1897 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1898 {
1899 continue;
1900 }
1901 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1902 in a pair of insns to save the vector registers on the
1903 stack. */
1904 /* 001110 00000 00000 iiii iiii iiii iiii */
1905 /* 001110 01110 00000 iiii iiii iiii iiii */
1906 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1907 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1908 {
1909 if ((op & 0xffff0000) == 0x38000000)
1910 r0_contains_arg = 0;
1911 li_found_pc = pc;
1912 vr_saved_offset = SIGNED_SHORT (op);
1913
1914 /* This insn by itself is not part of the prologue, unless
1915 if part of the pair of insns mentioned above. So do not
1916 record this insn as part of the prologue yet. */
1917 prev_insn_was_prologue_insn = 0;
1918 }
1919 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1920 /* 011111 sssss 11111 00000 00111001110 */
1921 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1922 {
1923 if (pc == (li_found_pc + 4))
1924 {
1925 vr_reg = GET_SRC_REG (op);
1926 /* If this is the first vector reg to be saved, or if
1927 it has a lower number than others previously seen,
1928 reupdate the frame info. */
1929 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1930 {
1931 fdata->saved_vr = vr_reg;
1932 fdata->vr_offset = vr_saved_offset + offset;
1933 }
1934 vr_saved_offset = -1;
1935 vr_reg = -1;
1936 li_found_pc = 0;
1937 }
1938 }
1939 /* End AltiVec related instructions. */
1940
1941 /* Start BookE related instructions. */
1942 /* Store gen register S at (r31+uimm).
1943 Any register less than r13 is volatile, so we don't care. */
1944 /* 000100 sssss 11111 iiiii 01100100001 */
1945 else if (arch_info->mach == bfd_mach_ppc_e500
1946 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1947 {
1948 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1949 {
1950 unsigned int imm;
1951 ev_reg = GET_SRC_REG (op);
1952 imm = (op >> 11) & 0x1f;
1953 ev_offset = imm * 8;
1954 /* If this is the first vector reg to be saved, or if
1955 it has a lower number than others previously seen,
1956 reupdate the frame info. */
1957 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1958 {
1959 fdata->saved_ev = ev_reg;
1960 fdata->ev_offset = ev_offset + offset;
1961 }
1962 }
1963 continue;
1964 }
1965 /* Store gen register rS at (r1+rB). */
1966 /* 000100 sssss 00001 bbbbb 01100100000 */
1967 else if (arch_info->mach == bfd_mach_ppc_e500
1968 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1969 {
1970 if (pc == (li_found_pc + 4))
1971 {
1972 ev_reg = GET_SRC_REG (op);
1973 /* If this is the first vector reg to be saved, or if
1974 it has a lower number than others previously seen,
1975 reupdate the frame info. */
1976 /* We know the contents of rB from the previous instruction. */
1977 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1978 {
1979 fdata->saved_ev = ev_reg;
1980 fdata->ev_offset = vr_saved_offset + offset;
1981 }
1982 vr_saved_offset = -1;
1983 ev_reg = -1;
1984 li_found_pc = 0;
1985 }
1986 continue;
1987 }
1988 /* Store gen register r31 at (rA+uimm). */
1989 /* 000100 11111 aaaaa iiiii 01100100001 */
1990 else if (arch_info->mach == bfd_mach_ppc_e500
1991 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1992 {
1993 /* Wwe know that the source register is 31 already, but
1994 it can't hurt to compute it. */
1995 ev_reg = GET_SRC_REG (op);
1996 ev_offset = ((op >> 11) & 0x1f) * 8;
1997 /* If this is the first vector reg to be saved, or if
1998 it has a lower number than others previously seen,
1999 reupdate the frame info. */
2000 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2001 {
2002 fdata->saved_ev = ev_reg;
2003 fdata->ev_offset = ev_offset + offset;
2004 }
2005
2006 continue;
2007 }
2008 /* Store gen register S at (r31+r0).
2009 Store param on stack when offset from SP bigger than 4 bytes. */
2010 /* 000100 sssss 11111 00000 01100100000 */
2011 else if (arch_info->mach == bfd_mach_ppc_e500
2012 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2013 {
2014 if (pc == (li_found_pc + 4))
2015 {
2016 if ((op & 0x03e00000) >= 0x01a00000)
2017 {
2018 ev_reg = GET_SRC_REG (op);
2019 /* If this is the first vector reg to be saved, or if
2020 it has a lower number than others previously seen,
2021 reupdate the frame info. */
2022 /* We know the contents of r0 from the previous
2023 instruction. */
2024 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2025 {
2026 fdata->saved_ev = ev_reg;
2027 fdata->ev_offset = vr_saved_offset + offset;
2028 }
2029 ev_reg = -1;
2030 }
2031 vr_saved_offset = -1;
2032 li_found_pc = 0;
2033 continue;
2034 }
2035 }
2036 /* End BookE related instructions. */
2037
2038 else
2039 {
2040 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2041
2042 /* Not a recognized prologue instruction.
2043 Handle optimizer code motions into the prologue by continuing
2044 the search if we have no valid frame yet or if the return
2045 address is not yet saved in the frame. Also skip instructions
2046 if some of the GPRs expected to be saved are not yet saved. */
2047 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2048 && (fdata->gpr_mask & all_mask) == all_mask)
2049 break;
2050
2051 if (op == 0x4e800020 /* blr */
2052 || op == 0x4e800420) /* bctr */
2053 /* Do not scan past epilogue in frameless functions or
2054 trampolines. */
2055 break;
2056 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2057 /* Never skip branches. */
2058 break;
2059
2060 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2061 /* Do not scan too many insns, scanning insns is expensive with
2062 remote targets. */
2063 break;
2064
2065 /* Continue scanning. */
2066 prev_insn_was_prologue_insn = 0;
2067 continue;
2068 }
2069 }
2070
2071 #if 0
2072 /* I have problems with skipping over __main() that I need to address
2073 * sometime. Previously, I used to use misc_function_vector which
2074 * didn't work as well as I wanted to be. -MGO */
2075
2076 /* If the first thing after skipping a prolog is a branch to a function,
2077 this might be a call to an initializer in main(), introduced by gcc2.
2078 We'd like to skip over it as well. Fortunately, xlc does some extra
2079 work before calling a function right after a prologue, thus we can
2080 single out such gcc2 behaviour. */
2081
2082
2083 if ((op & 0xfc000001) == 0x48000001)
2084 { /* bl foo, an initializer function? */
2085 op = read_memory_integer (pc + 4, 4, byte_order);
2086
2087 if (op == 0x4def7b82)
2088 { /* cror 0xf, 0xf, 0xf (nop) */
2089
2090 /* Check and see if we are in main. If so, skip over this
2091 initializer function as well. */
2092
2093 tmp = find_pc_misc_function (pc);
2094 if (tmp >= 0
2095 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2096 return pc + 8;
2097 }
2098 }
2099 #endif /* 0 */
2100
2101 if (pc == lim_pc && lr_reg >= 0)
2102 fdata->lr_register = lr_reg;
2103
2104 fdata->offset = -fdata->offset;
2105 return last_prologue_pc;
2106 }
2107
2108 static CORE_ADDR
2109 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2110 {
2111 struct rs6000_framedata frame;
2112 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2113
2114 /* See if we can determine the end of the prologue via the symbol table.
2115 If so, then return either PC, or the PC after the prologue, whichever
2116 is greater. */
2117 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2118 {
2119 CORE_ADDR post_prologue_pc
2120 = skip_prologue_using_sal (gdbarch, func_addr);
2121 if (post_prologue_pc != 0)
2122 return max (pc, post_prologue_pc);
2123 }
2124
2125 /* Can't determine prologue from the symbol table, need to examine
2126 instructions. */
2127
2128 /* Find an upper limit on the function prologue using the debug
2129 information. If the debug information could not be used to provide
2130 that bound, then use an arbitrary large number as the upper bound. */
2131 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2132 if (limit_pc == 0)
2133 limit_pc = pc + 100; /* Magic. */
2134
2135 /* Do not allow limit_pc to be past the function end, if we know
2136 where that end is... */
2137 if (func_end_addr && limit_pc > func_end_addr)
2138 limit_pc = func_end_addr;
2139
2140 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2141 return pc;
2142 }
2143
2144 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2145 in the prologue of main().
2146
2147 The function below examines the code pointed at by PC and checks to
2148 see if it corresponds to a call to __eabi. If so, it returns the
2149 address of the instruction following that call. Otherwise, it simply
2150 returns PC. */
2151
2152 static CORE_ADDR
2153 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2154 {
2155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2156 gdb_byte buf[4];
2157 unsigned long op;
2158
2159 if (target_read_memory (pc, buf, 4))
2160 return pc;
2161 op = extract_unsigned_integer (buf, 4, byte_order);
2162
2163 if ((op & BL_MASK) == BL_INSTRUCTION)
2164 {
2165 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2166 CORE_ADDR call_dest = pc + 4 + displ;
2167 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2168
2169 /* We check for ___eabi (three leading underscores) in addition
2170 to __eabi in case the GCC option "-fleading-underscore" was
2171 used to compile the program. */
2172 if (s.minsym != NULL
2173 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2174 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2175 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2176 pc += 4;
2177 }
2178 return pc;
2179 }
2180
2181 /* All the ABI's require 16 byte alignment. */
2182 static CORE_ADDR
2183 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2184 {
2185 return (addr & -16);
2186 }
2187
2188 /* Return whether handle_inferior_event() should proceed through code
2189 starting at PC in function NAME when stepping.
2190
2191 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2192 handle memory references that are too distant to fit in instructions
2193 generated by the compiler. For example, if 'foo' in the following
2194 instruction:
2195
2196 lwz r9,foo(r2)
2197
2198 is greater than 32767, the linker might replace the lwz with a branch to
2199 somewhere in @FIX1 that does the load in 2 instructions and then branches
2200 back to where execution should continue.
2201
2202 GDB should silently step over @FIX code, just like AIX dbx does.
2203 Unfortunately, the linker uses the "b" instruction for the
2204 branches, meaning that the link register doesn't get set.
2205 Therefore, GDB's usual step_over_function () mechanism won't work.
2206
2207 Instead, use the gdbarch_skip_trampoline_code and
2208 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2209 @FIX code. */
2210
2211 static int
2212 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2213 CORE_ADDR pc, const char *name)
2214 {
2215 return name && !strncmp (name, "@FIX", 4);
2216 }
2217
2218 /* Skip code that the user doesn't want to see when stepping:
2219
2220 1. Indirect function calls use a piece of trampoline code to do context
2221 switching, i.e. to set the new TOC table. Skip such code if we are on
2222 its first instruction (as when we have single-stepped to here).
2223
2224 2. Skip shared library trampoline code (which is different from
2225 indirect function call trampolines).
2226
2227 3. Skip bigtoc fixup code.
2228
2229 Result is desired PC to step until, or NULL if we are not in
2230 code that should be skipped. */
2231
2232 static CORE_ADDR
2233 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2234 {
2235 struct gdbarch *gdbarch = get_frame_arch (frame);
2236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2237 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2238 unsigned int ii, op;
2239 int rel;
2240 CORE_ADDR solib_target_pc;
2241 struct bound_minimal_symbol msymbol;
2242
2243 static unsigned trampoline_code[] =
2244 {
2245 0x800b0000, /* l r0,0x0(r11) */
2246 0x90410014, /* st r2,0x14(r1) */
2247 0x7c0903a6, /* mtctr r0 */
2248 0x804b0004, /* l r2,0x4(r11) */
2249 0x816b0008, /* l r11,0x8(r11) */
2250 0x4e800420, /* bctr */
2251 0x4e800020, /* br */
2252 0
2253 };
2254
2255 /* Check for bigtoc fixup code. */
2256 msymbol = lookup_minimal_symbol_by_pc (pc);
2257 if (msymbol.minsym
2258 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2259 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2260 {
2261 /* Double-check that the third instruction from PC is relative "b". */
2262 op = read_memory_integer (pc + 8, 4, byte_order);
2263 if ((op & 0xfc000003) == 0x48000000)
2264 {
2265 /* Extract bits 6-29 as a signed 24-bit relative word address and
2266 add it to the containing PC. */
2267 rel = ((int)(op << 6) >> 6);
2268 return pc + 8 + rel;
2269 }
2270 }
2271
2272 /* If pc is in a shared library trampoline, return its target. */
2273 solib_target_pc = find_solib_trampoline_target (frame, pc);
2274 if (solib_target_pc)
2275 return solib_target_pc;
2276
2277 for (ii = 0; trampoline_code[ii]; ++ii)
2278 {
2279 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2280 if (op != trampoline_code[ii])
2281 return 0;
2282 }
2283 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2284 addr. */
2285 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2286 return pc;
2287 }
2288
2289 /* ISA-specific vector types. */
2290
2291 static struct type *
2292 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2293 {
2294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2295
2296 if (!tdep->ppc_builtin_type_vec64)
2297 {
2298 const struct builtin_type *bt = builtin_type (gdbarch);
2299
2300 /* The type we're building is this: */
2301 #if 0
2302 union __gdb_builtin_type_vec64
2303 {
2304 int64_t uint64;
2305 float v2_float[2];
2306 int32_t v2_int32[2];
2307 int16_t v4_int16[4];
2308 int8_t v8_int8[8];
2309 };
2310 #endif
2311
2312 struct type *t;
2313
2314 t = arch_composite_type (gdbarch,
2315 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2316 append_composite_type_field (t, "uint64", bt->builtin_int64);
2317 append_composite_type_field (t, "v2_float",
2318 init_vector_type (bt->builtin_float, 2));
2319 append_composite_type_field (t, "v2_int32",
2320 init_vector_type (bt->builtin_int32, 2));
2321 append_composite_type_field (t, "v4_int16",
2322 init_vector_type (bt->builtin_int16, 4));
2323 append_composite_type_field (t, "v8_int8",
2324 init_vector_type (bt->builtin_int8, 8));
2325
2326 TYPE_VECTOR (t) = 1;
2327 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2328 tdep->ppc_builtin_type_vec64 = t;
2329 }
2330
2331 return tdep->ppc_builtin_type_vec64;
2332 }
2333
2334 /* Vector 128 type. */
2335
2336 static struct type *
2337 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2338 {
2339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2340
2341 if (!tdep->ppc_builtin_type_vec128)
2342 {
2343 const struct builtin_type *bt = builtin_type (gdbarch);
2344
2345 /* The type we're building is this
2346
2347 type = union __ppc_builtin_type_vec128 {
2348 uint128_t uint128;
2349 double v2_double[2];
2350 float v4_float[4];
2351 int32_t v4_int32[4];
2352 int16_t v8_int16[8];
2353 int8_t v16_int8[16];
2354 }
2355 */
2356
2357 struct type *t;
2358
2359 t = arch_composite_type (gdbarch,
2360 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2361 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2362 append_composite_type_field (t, "v2_double",
2363 init_vector_type (bt->builtin_double, 2));
2364 append_composite_type_field (t, "v4_float",
2365 init_vector_type (bt->builtin_float, 4));
2366 append_composite_type_field (t, "v4_int32",
2367 init_vector_type (bt->builtin_int32, 4));
2368 append_composite_type_field (t, "v8_int16",
2369 init_vector_type (bt->builtin_int16, 8));
2370 append_composite_type_field (t, "v16_int8",
2371 init_vector_type (bt->builtin_int8, 16));
2372
2373 TYPE_VECTOR (t) = 1;
2374 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2375 tdep->ppc_builtin_type_vec128 = t;
2376 }
2377
2378 return tdep->ppc_builtin_type_vec128;
2379 }
2380
2381 /* Return the name of register number REGNO, or the empty string if it
2382 is an anonymous register. */
2383
2384 static const char *
2385 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2386 {
2387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2388
2389 /* The upper half "registers" have names in the XML description,
2390 but we present only the low GPRs and the full 64-bit registers
2391 to the user. */
2392 if (tdep->ppc_ev0_upper_regnum >= 0
2393 && tdep->ppc_ev0_upper_regnum <= regno
2394 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2395 return "";
2396
2397 /* Hide the upper halves of the vs0~vs31 registers. */
2398 if (tdep->ppc_vsr0_regnum >= 0
2399 && tdep->ppc_vsr0_upper_regnum <= regno
2400 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2401 return "";
2402
2403 /* Check if the SPE pseudo registers are available. */
2404 if (IS_SPE_PSEUDOREG (tdep, regno))
2405 {
2406 static const char *const spe_regnames[] = {
2407 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2408 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2409 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2410 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2411 };
2412 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2413 }
2414
2415 /* Check if the decimal128 pseudo-registers are available. */
2416 if (IS_DFP_PSEUDOREG (tdep, regno))
2417 {
2418 static const char *const dfp128_regnames[] = {
2419 "dl0", "dl1", "dl2", "dl3",
2420 "dl4", "dl5", "dl6", "dl7",
2421 "dl8", "dl9", "dl10", "dl11",
2422 "dl12", "dl13", "dl14", "dl15"
2423 };
2424 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2425 }
2426
2427 /* Check if this is a VSX pseudo-register. */
2428 if (IS_VSX_PSEUDOREG (tdep, regno))
2429 {
2430 static const char *const vsx_regnames[] = {
2431 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2432 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2433 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2434 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2435 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2436 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2437 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2438 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2439 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2440 };
2441 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2442 }
2443
2444 /* Check if the this is a Extended FP pseudo-register. */
2445 if (IS_EFP_PSEUDOREG (tdep, regno))
2446 {
2447 static const char *const efpr_regnames[] = {
2448 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2449 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2450 "f46", "f47", "f48", "f49", "f50", "f51",
2451 "f52", "f53", "f54", "f55", "f56", "f57",
2452 "f58", "f59", "f60", "f61", "f62", "f63"
2453 };
2454 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2455 }
2456
2457 return tdesc_register_name (gdbarch, regno);
2458 }
2459
2460 /* Return the GDB type object for the "standard" data type of data in
2461 register N. */
2462
2463 static struct type *
2464 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2465 {
2466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2467
2468 /* These are the only pseudo-registers we support. */
2469 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2470 || IS_DFP_PSEUDOREG (tdep, regnum)
2471 || IS_VSX_PSEUDOREG (tdep, regnum)
2472 || IS_EFP_PSEUDOREG (tdep, regnum));
2473
2474 /* These are the e500 pseudo-registers. */
2475 if (IS_SPE_PSEUDOREG (tdep, regnum))
2476 return rs6000_builtin_type_vec64 (gdbarch);
2477 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2478 /* PPC decimal128 pseudo-registers. */
2479 return builtin_type (gdbarch)->builtin_declong;
2480 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2481 /* POWER7 VSX pseudo-registers. */
2482 return rs6000_builtin_type_vec128 (gdbarch);
2483 else
2484 /* POWER7 Extended FP pseudo-registers. */
2485 return builtin_type (gdbarch)->builtin_double;
2486 }
2487
2488 /* Is REGNUM a member of REGGROUP? */
2489 static int
2490 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2491 struct reggroup *group)
2492 {
2493 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2494
2495 /* These are the only pseudo-registers we support. */
2496 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2497 || IS_DFP_PSEUDOREG (tdep, regnum)
2498 || IS_VSX_PSEUDOREG (tdep, regnum)
2499 || IS_EFP_PSEUDOREG (tdep, regnum));
2500
2501 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2502 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2503 return group == all_reggroup || group == vector_reggroup;
2504 else
2505 /* PPC decimal128 or Extended FP pseudo-registers. */
2506 return group == all_reggroup || group == float_reggroup;
2507 }
2508
2509 /* The register format for RS/6000 floating point registers is always
2510 double, we need a conversion if the memory format is float. */
2511
2512 static int
2513 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2514 struct type *type)
2515 {
2516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2517
2518 return (tdep->ppc_fp0_regnum >= 0
2519 && regnum >= tdep->ppc_fp0_regnum
2520 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2521 && TYPE_CODE (type) == TYPE_CODE_FLT
2522 && TYPE_LENGTH (type)
2523 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2524 }
2525
2526 static int
2527 rs6000_register_to_value (struct frame_info *frame,
2528 int regnum,
2529 struct type *type,
2530 gdb_byte *to,
2531 int *optimizedp, int *unavailablep)
2532 {
2533 struct gdbarch *gdbarch = get_frame_arch (frame);
2534 gdb_byte from[MAX_REGISTER_SIZE];
2535
2536 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2537
2538 if (!get_frame_register_bytes (frame, regnum, 0,
2539 register_size (gdbarch, regnum),
2540 from, optimizedp, unavailablep))
2541 return 0;
2542
2543 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2544 to, type);
2545 *optimizedp = *unavailablep = 0;
2546 return 1;
2547 }
2548
2549 static void
2550 rs6000_value_to_register (struct frame_info *frame,
2551 int regnum,
2552 struct type *type,
2553 const gdb_byte *from)
2554 {
2555 struct gdbarch *gdbarch = get_frame_arch (frame);
2556 gdb_byte to[MAX_REGISTER_SIZE];
2557
2558 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2559
2560 convert_typed_floating (from, type,
2561 to, builtin_type (gdbarch)->builtin_double);
2562 put_frame_register (frame, regnum, to);
2563 }
2564
2565 /* The type of a function that moves the value of REG between CACHE
2566 or BUF --- in either direction. */
2567 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2568 int, void *);
2569
2570 /* Move SPE vector register values between a 64-bit buffer and the two
2571 32-bit raw register halves in a regcache. This function handles
2572 both splitting a 64-bit value into two 32-bit halves, and joining
2573 two halves into a whole 64-bit value, depending on the function
2574 passed as the MOVE argument.
2575
2576 EV_REG must be the number of an SPE evN vector register --- a
2577 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2578 64-bit buffer.
2579
2580 Call MOVE once for each 32-bit half of that register, passing
2581 REGCACHE, the number of the raw register corresponding to that
2582 half, and the address of the appropriate half of BUFFER.
2583
2584 For example, passing 'regcache_raw_read' as the MOVE function will
2585 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2586 'regcache_raw_supply' will supply the contents of BUFFER to the
2587 appropriate pair of raw registers in REGCACHE.
2588
2589 You may need to cast away some 'const' qualifiers when passing
2590 MOVE, since this function can't tell at compile-time which of
2591 REGCACHE or BUFFER is acting as the source of the data. If C had
2592 co-variant type qualifiers, ... */
2593
2594 static enum register_status
2595 e500_move_ev_register (move_ev_register_func move,
2596 struct regcache *regcache, int ev_reg, void *buffer)
2597 {
2598 struct gdbarch *arch = get_regcache_arch (regcache);
2599 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2600 int reg_index;
2601 gdb_byte *byte_buffer = buffer;
2602 enum register_status status;
2603
2604 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2605
2606 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2607
2608 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2609 {
2610 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2611 byte_buffer);
2612 if (status == REG_VALID)
2613 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2614 byte_buffer + 4);
2615 }
2616 else
2617 {
2618 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2619 if (status == REG_VALID)
2620 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2621 byte_buffer + 4);
2622 }
2623
2624 return status;
2625 }
2626
2627 static enum register_status
2628 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2629 {
2630 return regcache_raw_read (regcache, regnum, buffer);
2631 }
2632
2633 static enum register_status
2634 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2635 {
2636 regcache_raw_write (regcache, regnum, buffer);
2637
2638 return REG_VALID;
2639 }
2640
2641 static enum register_status
2642 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2643 int reg_nr, gdb_byte *buffer)
2644 {
2645 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2646 }
2647
2648 static void
2649 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2650 int reg_nr, const gdb_byte *buffer)
2651 {
2652 e500_move_ev_register (do_regcache_raw_write, regcache,
2653 reg_nr, (void *) buffer);
2654 }
2655
2656 /* Read method for DFP pseudo-registers. */
2657 static enum register_status
2658 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2659 int reg_nr, gdb_byte *buffer)
2660 {
2661 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2662 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2663 enum register_status status;
2664
2665 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2666 {
2667 /* Read two FP registers to form a whole dl register. */
2668 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2669 2 * reg_index, buffer);
2670 if (status == REG_VALID)
2671 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2672 2 * reg_index + 1, buffer + 8);
2673 }
2674 else
2675 {
2676 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2677 2 * reg_index + 1, buffer);
2678 if (status == REG_VALID)
2679 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2680 2 * reg_index, buffer + 8);
2681 }
2682
2683 return status;
2684 }
2685
2686 /* Write method for DFP pseudo-registers. */
2687 static void
2688 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2689 int reg_nr, const gdb_byte *buffer)
2690 {
2691 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2692 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2693
2694 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2695 {
2696 /* Write each half of the dl register into a separate
2697 FP register. */
2698 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2699 2 * reg_index, buffer);
2700 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2701 2 * reg_index + 1, buffer + 8);
2702 }
2703 else
2704 {
2705 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2706 2 * reg_index + 1, buffer);
2707 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2708 2 * reg_index, buffer + 8);
2709 }
2710 }
2711
2712 /* Read method for POWER7 VSX pseudo-registers. */
2713 static enum register_status
2714 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2715 int reg_nr, gdb_byte *buffer)
2716 {
2717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2718 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2719 enum register_status status;
2720
2721 /* Read the portion that overlaps the VMX registers. */
2722 if (reg_index > 31)
2723 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2724 reg_index - 32, buffer);
2725 else
2726 /* Read the portion that overlaps the FPR registers. */
2727 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2728 {
2729 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2730 reg_index, buffer);
2731 if (status == REG_VALID)
2732 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2733 reg_index, buffer + 8);
2734 }
2735 else
2736 {
2737 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2738 reg_index, buffer + 8);
2739 if (status == REG_VALID)
2740 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2741 reg_index, buffer);
2742 }
2743
2744 return status;
2745 }
2746
2747 /* Write method for POWER7 VSX pseudo-registers. */
2748 static void
2749 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2750 int reg_nr, const gdb_byte *buffer)
2751 {
2752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2753 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2754
2755 /* Write the portion that overlaps the VMX registers. */
2756 if (reg_index > 31)
2757 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2758 reg_index - 32, buffer);
2759 else
2760 /* Write the portion that overlaps the FPR registers. */
2761 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2762 {
2763 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2764 reg_index, buffer);
2765 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2766 reg_index, buffer + 8);
2767 }
2768 else
2769 {
2770 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2771 reg_index, buffer + 8);
2772 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2773 reg_index, buffer);
2774 }
2775 }
2776
2777 /* Read method for POWER7 Extended FP pseudo-registers. */
2778 static enum register_status
2779 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2780 int reg_nr, gdb_byte *buffer)
2781 {
2782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2783 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2784 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2785
2786 /* Read the portion that overlaps the VMX register. */
2787 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2788 offset, register_size (gdbarch, reg_nr),
2789 buffer);
2790 }
2791
2792 /* Write method for POWER7 Extended FP pseudo-registers. */
2793 static void
2794 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2795 int reg_nr, const gdb_byte *buffer)
2796 {
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2798 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2799 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2800
2801 /* Write the portion that overlaps the VMX register. */
2802 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2803 offset, register_size (gdbarch, reg_nr),
2804 buffer);
2805 }
2806
2807 static enum register_status
2808 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2809 struct regcache *regcache,
2810 int reg_nr, gdb_byte *buffer)
2811 {
2812 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2813 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2814
2815 gdb_assert (regcache_arch == gdbarch);
2816
2817 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2818 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2819 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2820 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2821 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2822 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2823 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2824 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2825 else
2826 internal_error (__FILE__, __LINE__,
2827 _("rs6000_pseudo_register_read: "
2828 "called on unexpected register '%s' (%d)"),
2829 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2830 }
2831
2832 static void
2833 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2834 struct regcache *regcache,
2835 int reg_nr, const gdb_byte *buffer)
2836 {
2837 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2839
2840 gdb_assert (regcache_arch == gdbarch);
2841
2842 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2843 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2844 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2845 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2846 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2847 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2848 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2849 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2850 else
2851 internal_error (__FILE__, __LINE__,
2852 _("rs6000_pseudo_register_write: "
2853 "called on unexpected register '%s' (%d)"),
2854 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2855 }
2856
2857 /* Convert a DBX STABS register number to a GDB register number. */
2858 static int
2859 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2860 {
2861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2862
2863 if (0 <= num && num <= 31)
2864 return tdep->ppc_gp0_regnum + num;
2865 else if (32 <= num && num <= 63)
2866 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2867 specifies registers the architecture doesn't have? Our
2868 callers don't check the value we return. */
2869 return tdep->ppc_fp0_regnum + (num - 32);
2870 else if (77 <= num && num <= 108)
2871 return tdep->ppc_vr0_regnum + (num - 77);
2872 else if (1200 <= num && num < 1200 + 32)
2873 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2874 else
2875 switch (num)
2876 {
2877 case 64:
2878 return tdep->ppc_mq_regnum;
2879 case 65:
2880 return tdep->ppc_lr_regnum;
2881 case 66:
2882 return tdep->ppc_ctr_regnum;
2883 case 76:
2884 return tdep->ppc_xer_regnum;
2885 case 109:
2886 return tdep->ppc_vrsave_regnum;
2887 case 110:
2888 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2889 case 111:
2890 return tdep->ppc_acc_regnum;
2891 case 112:
2892 return tdep->ppc_spefscr_regnum;
2893 default:
2894 return num;
2895 }
2896 }
2897
2898
2899 /* Convert a Dwarf 2 register number to a GDB register number. */
2900 static int
2901 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2902 {
2903 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2904
2905 if (0 <= num && num <= 31)
2906 return tdep->ppc_gp0_regnum + num;
2907 else if (32 <= num && num <= 63)
2908 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2909 specifies registers the architecture doesn't have? Our
2910 callers don't check the value we return. */
2911 return tdep->ppc_fp0_regnum + (num - 32);
2912 else if (1124 <= num && num < 1124 + 32)
2913 return tdep->ppc_vr0_regnum + (num - 1124);
2914 else if (1200 <= num && num < 1200 + 32)
2915 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2916 else
2917 switch (num)
2918 {
2919 case 64:
2920 return tdep->ppc_cr_regnum;
2921 case 67:
2922 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2923 case 99:
2924 return tdep->ppc_acc_regnum;
2925 case 100:
2926 return tdep->ppc_mq_regnum;
2927 case 101:
2928 return tdep->ppc_xer_regnum;
2929 case 108:
2930 return tdep->ppc_lr_regnum;
2931 case 109:
2932 return tdep->ppc_ctr_regnum;
2933 case 356:
2934 return tdep->ppc_vrsave_regnum;
2935 case 612:
2936 return tdep->ppc_spefscr_regnum;
2937 default:
2938 return num;
2939 }
2940 }
2941
2942 /* Translate a .eh_frame register to DWARF register, or adjust a
2943 .debug_frame register. */
2944
2945 static int
2946 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2947 {
2948 /* GCC releases before 3.4 use GCC internal register numbering in
2949 .debug_frame (and .debug_info, et cetera). The numbering is
2950 different from the standard SysV numbering for everything except
2951 for GPRs and FPRs. We can not detect this problem in most cases
2952 - to get accurate debug info for variables living in lr, ctr, v0,
2953 et cetera, use a newer version of GCC. But we must detect
2954 one important case - lr is in column 65 in .debug_frame output,
2955 instead of 108.
2956
2957 GCC 3.4, and the "hammer" branch, have a related problem. They
2958 record lr register saves in .debug_frame as 108, but still record
2959 the return column as 65. We fix that up too.
2960
2961 We can do this because 65 is assigned to fpsr, and GCC never
2962 generates debug info referring to it. To add support for
2963 handwritten debug info that restores fpsr, we would need to add a
2964 producer version check to this. */
2965 if (!eh_frame_p)
2966 {
2967 if (num == 65)
2968 return 108;
2969 else
2970 return num;
2971 }
2972
2973 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2974 internal register numbering; translate that to the standard DWARF2
2975 register numbering. */
2976 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2977 return num;
2978 else if (68 <= num && num <= 75) /* cr0-cr8 */
2979 return num - 68 + 86;
2980 else if (77 <= num && num <= 108) /* vr0-vr31 */
2981 return num - 77 + 1124;
2982 else
2983 switch (num)
2984 {
2985 case 64: /* mq */
2986 return 100;
2987 case 65: /* lr */
2988 return 108;
2989 case 66: /* ctr */
2990 return 109;
2991 case 76: /* xer */
2992 return 101;
2993 case 109: /* vrsave */
2994 return 356;
2995 case 110: /* vscr */
2996 return 67;
2997 case 111: /* spe_acc */
2998 return 99;
2999 case 112: /* spefscr */
3000 return 612;
3001 default:
3002 return num;
3003 }
3004 }
3005 \f
3006
3007 /* Handling the various POWER/PowerPC variants. */
3008
3009 /* Information about a particular processor variant. */
3010
3011 struct variant
3012 {
3013 /* Name of this variant. */
3014 char *name;
3015
3016 /* English description of the variant. */
3017 char *description;
3018
3019 /* bfd_arch_info.arch corresponding to variant. */
3020 enum bfd_architecture arch;
3021
3022 /* bfd_arch_info.mach corresponding to variant. */
3023 unsigned long mach;
3024
3025 /* Target description for this variant. */
3026 struct target_desc **tdesc;
3027 };
3028
3029 static struct variant variants[] =
3030 {
3031 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3032 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3033 {"power", "POWER user-level", bfd_arch_rs6000,
3034 bfd_mach_rs6k, &tdesc_rs6000},
3035 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3036 bfd_mach_ppc_403, &tdesc_powerpc_403},
3037 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3038 bfd_mach_ppc_405, &tdesc_powerpc_405},
3039 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3040 bfd_mach_ppc_601, &tdesc_powerpc_601},
3041 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3042 bfd_mach_ppc_602, &tdesc_powerpc_602},
3043 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3044 bfd_mach_ppc_603, &tdesc_powerpc_603},
3045 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3046 604, &tdesc_powerpc_604},
3047 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3048 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3049 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3050 bfd_mach_ppc_505, &tdesc_powerpc_505},
3051 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3052 bfd_mach_ppc_860, &tdesc_powerpc_860},
3053 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3054 bfd_mach_ppc_750, &tdesc_powerpc_750},
3055 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3056 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3057 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3058 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3059
3060 /* 64-bit */
3061 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3062 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3063 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3064 bfd_mach_ppc_620, &tdesc_powerpc_64},
3065 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3066 bfd_mach_ppc_630, &tdesc_powerpc_64},
3067 {"a35", "PowerPC A35", bfd_arch_powerpc,
3068 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3069 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3070 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3071 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3072 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3073
3074 /* FIXME: I haven't checked the register sets of the following. */
3075 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3076 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3077 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3078 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3079 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3080 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3081
3082 {0, 0, 0, 0, 0}
3083 };
3084
3085 /* Return the variant corresponding to architecture ARCH and machine number
3086 MACH. If no such variant exists, return null. */
3087
3088 static const struct variant *
3089 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3090 {
3091 const struct variant *v;
3092
3093 for (v = variants; v->name; v++)
3094 if (arch == v->arch && mach == v->mach)
3095 return v;
3096
3097 return NULL;
3098 }
3099
3100 static int
3101 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3102 {
3103 if (info->endian == BFD_ENDIAN_BIG)
3104 return print_insn_big_powerpc (memaddr, info);
3105 else
3106 return print_insn_little_powerpc (memaddr, info);
3107 }
3108 \f
3109 static CORE_ADDR
3110 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3111 {
3112 return frame_unwind_register_unsigned (next_frame,
3113 gdbarch_pc_regnum (gdbarch));
3114 }
3115
3116 static struct frame_id
3117 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3118 {
3119 return frame_id_build (get_frame_register_unsigned
3120 (this_frame, gdbarch_sp_regnum (gdbarch)),
3121 get_frame_pc (this_frame));
3122 }
3123
3124 struct rs6000_frame_cache
3125 {
3126 CORE_ADDR base;
3127 CORE_ADDR initial_sp;
3128 struct trad_frame_saved_reg *saved_regs;
3129 };
3130
3131 static struct rs6000_frame_cache *
3132 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3133 {
3134 struct rs6000_frame_cache *cache;
3135 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3138 struct rs6000_framedata fdata;
3139 int wordsize = tdep->wordsize;
3140 CORE_ADDR func, pc;
3141
3142 if ((*this_cache) != NULL)
3143 return (*this_cache);
3144 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3145 (*this_cache) = cache;
3146 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3147
3148 func = get_frame_func (this_frame);
3149 pc = get_frame_pc (this_frame);
3150 skip_prologue (gdbarch, func, pc, &fdata);
3151
3152 /* Figure out the parent's stack pointer. */
3153
3154 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3155 address of the current frame. Things might be easier if the
3156 ->frame pointed to the outer-most address of the frame. In
3157 the mean time, the address of the prev frame is used as the
3158 base address of this frame. */
3159 cache->base = get_frame_register_unsigned
3160 (this_frame, gdbarch_sp_regnum (gdbarch));
3161
3162 /* If the function appears to be frameless, check a couple of likely
3163 indicators that we have simply failed to find the frame setup.
3164 Two common cases of this are missing symbols (i.e.
3165 get_frame_func returns the wrong address or 0), and assembly
3166 stubs which have a fast exit path but set up a frame on the slow
3167 path.
3168
3169 If the LR appears to return to this function, then presume that
3170 we have an ABI compliant frame that we failed to find. */
3171 if (fdata.frameless && fdata.lr_offset == 0)
3172 {
3173 CORE_ADDR saved_lr;
3174 int make_frame = 0;
3175
3176 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3177 if (func == 0 && saved_lr == pc)
3178 make_frame = 1;
3179 else if (func != 0)
3180 {
3181 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3182 if (func == saved_func)
3183 make_frame = 1;
3184 }
3185
3186 if (make_frame)
3187 {
3188 fdata.frameless = 0;
3189 fdata.lr_offset = tdep->lr_frame_offset;
3190 }
3191 }
3192
3193 if (!fdata.frameless)
3194 /* Frameless really means stackless. */
3195 cache->base
3196 = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
3197
3198 trad_frame_set_value (cache->saved_regs,
3199 gdbarch_sp_regnum (gdbarch), cache->base);
3200
3201 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3202 All fpr's from saved_fpr to fp31 are saved. */
3203
3204 if (fdata.saved_fpr >= 0)
3205 {
3206 int i;
3207 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3208
3209 /* If skip_prologue says floating-point registers were saved,
3210 but the current architecture has no floating-point registers,
3211 then that's strange. But we have no indices to even record
3212 the addresses under, so we just ignore it. */
3213 if (ppc_floating_point_unit_p (gdbarch))
3214 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3215 {
3216 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3217 fpr_addr += 8;
3218 }
3219 }
3220
3221 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3222 All gpr's from saved_gpr to gpr31 are saved (except during the
3223 prologue). */
3224
3225 if (fdata.saved_gpr >= 0)
3226 {
3227 int i;
3228 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3229 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3230 {
3231 if (fdata.gpr_mask & (1U << i))
3232 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3233 gpr_addr += wordsize;
3234 }
3235 }
3236
3237 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3238 All vr's from saved_vr to vr31 are saved. */
3239 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3240 {
3241 if (fdata.saved_vr >= 0)
3242 {
3243 int i;
3244 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3245 for (i = fdata.saved_vr; i < 32; i++)
3246 {
3247 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3248 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3249 }
3250 }
3251 }
3252
3253 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3254 All vr's from saved_ev to ev31 are saved. ????? */
3255 if (tdep->ppc_ev0_regnum != -1)
3256 {
3257 if (fdata.saved_ev >= 0)
3258 {
3259 int i;
3260 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3261 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3262
3263 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3264 {
3265 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3266 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3267 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3268 }
3269 }
3270 }
3271
3272 /* If != 0, fdata.cr_offset is the offset from the frame that
3273 holds the CR. */
3274 if (fdata.cr_offset != 0)
3275 cache->saved_regs[tdep->ppc_cr_regnum].addr
3276 = cache->base + fdata.cr_offset;
3277
3278 /* If != 0, fdata.lr_offset is the offset from the frame that
3279 holds the LR. */
3280 if (fdata.lr_offset != 0)
3281 cache->saved_regs[tdep->ppc_lr_regnum].addr
3282 = cache->base + fdata.lr_offset;
3283 else if (fdata.lr_register != -1)
3284 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3285 /* The PC is found in the link register. */
3286 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3287 cache->saved_regs[tdep->ppc_lr_regnum];
3288
3289 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3290 holds the VRSAVE. */
3291 if (fdata.vrsave_offset != 0)
3292 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3293 = cache->base + fdata.vrsave_offset;
3294
3295 if (fdata.alloca_reg < 0)
3296 /* If no alloca register used, then fi->frame is the value of the
3297 %sp for this frame, and it is good enough. */
3298 cache->initial_sp
3299 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3300 else
3301 cache->initial_sp
3302 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3303
3304 return cache;
3305 }
3306
3307 static void
3308 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3309 struct frame_id *this_id)
3310 {
3311 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3312 this_cache);
3313 /* This marks the outermost frame. */
3314 if (info->base == 0)
3315 return;
3316
3317 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3318 }
3319
3320 static struct value *
3321 rs6000_frame_prev_register (struct frame_info *this_frame,
3322 void **this_cache, int regnum)
3323 {
3324 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3325 this_cache);
3326 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3327 }
3328
3329 static const struct frame_unwind rs6000_frame_unwind =
3330 {
3331 NORMAL_FRAME,
3332 default_frame_unwind_stop_reason,
3333 rs6000_frame_this_id,
3334 rs6000_frame_prev_register,
3335 NULL,
3336 default_frame_sniffer
3337 };
3338 \f
3339
3340 static CORE_ADDR
3341 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3342 {
3343 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3344 this_cache);
3345 return info->initial_sp;
3346 }
3347
3348 static const struct frame_base rs6000_frame_base = {
3349 &rs6000_frame_unwind,
3350 rs6000_frame_base_address,
3351 rs6000_frame_base_address,
3352 rs6000_frame_base_address
3353 };
3354
3355 static const struct frame_base *
3356 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3357 {
3358 return &rs6000_frame_base;
3359 }
3360
3361 /* DWARF-2 frame support. Used to handle the detection of
3362 clobbered registers during function calls. */
3363
3364 static void
3365 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3366 struct dwarf2_frame_state_reg *reg,
3367 struct frame_info *this_frame)
3368 {
3369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3370
3371 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3372 non-volatile registers. We will use the same code for both. */
3373
3374 /* Call-saved GP registers. */
3375 if ((regnum >= tdep->ppc_gp0_regnum + 14
3376 && regnum <= tdep->ppc_gp0_regnum + 31)
3377 || (regnum == tdep->ppc_gp0_regnum + 1))
3378 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3379
3380 /* Call-clobbered GP registers. */
3381 if ((regnum >= tdep->ppc_gp0_regnum + 3
3382 && regnum <= tdep->ppc_gp0_regnum + 12)
3383 || (regnum == tdep->ppc_gp0_regnum))
3384 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3385
3386 /* Deal with FP registers, if supported. */
3387 if (tdep->ppc_fp0_regnum >= 0)
3388 {
3389 /* Call-saved FP registers. */
3390 if ((regnum >= tdep->ppc_fp0_regnum + 14
3391 && regnum <= tdep->ppc_fp0_regnum + 31))
3392 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3393
3394 /* Call-clobbered FP registers. */
3395 if ((regnum >= tdep->ppc_fp0_regnum
3396 && regnum <= tdep->ppc_fp0_regnum + 13))
3397 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3398 }
3399
3400 /* Deal with ALTIVEC registers, if supported. */
3401 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3402 {
3403 /* Call-saved Altivec registers. */
3404 if ((regnum >= tdep->ppc_vr0_regnum + 20
3405 && regnum <= tdep->ppc_vr0_regnum + 31)
3406 || regnum == tdep->ppc_vrsave_regnum)
3407 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3408
3409 /* Call-clobbered Altivec registers. */
3410 if ((regnum >= tdep->ppc_vr0_regnum
3411 && regnum <= tdep->ppc_vr0_regnum + 19))
3412 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3413 }
3414
3415 /* Handle PC register and Stack Pointer correctly. */
3416 if (regnum == gdbarch_pc_regnum (gdbarch))
3417 reg->how = DWARF2_FRAME_REG_RA;
3418 else if (regnum == gdbarch_sp_regnum (gdbarch))
3419 reg->how = DWARF2_FRAME_REG_CFA;
3420 }
3421
3422
3423 /* Return true if a .gnu_attributes section exists in BFD and it
3424 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3425 section exists in BFD and it indicates that SPE extensions are in
3426 use. Check the .gnu.attributes section first, as the binary might be
3427 compiled for SPE, but not actually using SPE instructions. */
3428
3429 static int
3430 bfd_uses_spe_extensions (bfd *abfd)
3431 {
3432 asection *sect;
3433 gdb_byte *contents = NULL;
3434 bfd_size_type size;
3435 gdb_byte *ptr;
3436 int success = 0;
3437 int vector_abi;
3438
3439 if (!abfd)
3440 return 0;
3441
3442 #ifdef HAVE_ELF
3443 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3444 could be using the SPE vector abi without actually using any spe
3445 bits whatsoever. But it's close enough for now. */
3446 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3447 Tag_GNU_Power_ABI_Vector);
3448 if (vector_abi == 3)
3449 return 1;
3450 #endif
3451
3452 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3453 if (!sect)
3454 return 0;
3455
3456 size = bfd_get_section_size (sect);
3457 contents = xmalloc (size);
3458 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3459 {
3460 xfree (contents);
3461 return 0;
3462 }
3463
3464 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3465
3466 struct {
3467 uint32 name_len;
3468 uint32 data_len;
3469 uint32 type;
3470 char name[name_len rounded up to 4-byte alignment];
3471 char data[data_len];
3472 };
3473
3474 Technically, there's only supposed to be one such structure in a
3475 given apuinfo section, but the linker is not always vigilant about
3476 merging apuinfo sections from input files. Just go ahead and parse
3477 them all, exiting early when we discover the binary uses SPE
3478 insns.
3479
3480 It's not specified in what endianness the information in this
3481 section is stored. Assume that it's the endianness of the BFD. */
3482 ptr = contents;
3483 while (1)
3484 {
3485 unsigned int name_len;
3486 unsigned int data_len;
3487 unsigned int type;
3488
3489 /* If we can't read the first three fields, we're done. */
3490 if (size < 12)
3491 break;
3492
3493 name_len = bfd_get_32 (abfd, ptr);
3494 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3495 data_len = bfd_get_32 (abfd, ptr + 4);
3496 type = bfd_get_32 (abfd, ptr + 8);
3497 ptr += 12;
3498
3499 /* The name must be "APUinfo\0". */
3500 if (name_len != 8
3501 && strcmp ((const char *) ptr, "APUinfo") != 0)
3502 break;
3503 ptr += name_len;
3504
3505 /* The type must be 2. */
3506 if (type != 2)
3507 break;
3508
3509 /* The data is stored as a series of uint32. The upper half of
3510 each uint32 indicates the particular APU used and the lower
3511 half indicates the revision of that APU. We just care about
3512 the upper half. */
3513
3514 /* Not 4-byte quantities. */
3515 if (data_len & 3U)
3516 break;
3517
3518 while (data_len)
3519 {
3520 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3521 unsigned int apu = apuinfo >> 16;
3522 ptr += 4;
3523 data_len -= 4;
3524
3525 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3526 either. */
3527 if (apu == 0x100 || apu == 0x101)
3528 {
3529 success = 1;
3530 data_len = 0;
3531 }
3532 }
3533
3534 if (success)
3535 break;
3536 }
3537
3538 xfree (contents);
3539 return success;
3540 }
3541
3542 /* Initialize the current architecture based on INFO. If possible, re-use an
3543 architecture from ARCHES, which is a list of architectures already created
3544 during this debugging session.
3545
3546 Called e.g. at program startup, when reading a core file, and when reading
3547 a binary file. */
3548
3549 static struct gdbarch *
3550 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3551 {
3552 struct gdbarch *gdbarch;
3553 struct gdbarch_tdep *tdep;
3554 int wordsize, from_xcoff_exec, from_elf_exec;
3555 enum bfd_architecture arch;
3556 unsigned long mach;
3557 bfd abfd;
3558 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3559 int soft_float;
3560 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3561 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
3562 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3563 have_vsx = 0;
3564 int tdesc_wordsize = -1;
3565 const struct target_desc *tdesc = info.target_desc;
3566 struct tdesc_arch_data *tdesc_data = NULL;
3567 int num_pseudoregs = 0;
3568 int cur_reg;
3569
3570 /* INFO may refer to a binary that is not of the PowerPC architecture,
3571 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
3572 In this case, we must not attempt to infer properties of the (PowerPC
3573 side) of the target system from properties of that executable. Trust
3574 the target description instead. */
3575 if (info.abfd
3576 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
3577 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
3578 info.abfd = NULL;
3579
3580 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3581 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3582
3583 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3584 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3585
3586 /* Check word size. If INFO is from a binary file, infer it from
3587 that, else choose a likely default. */
3588 if (from_xcoff_exec)
3589 {
3590 if (bfd_xcoff_is_xcoff64 (info.abfd))
3591 wordsize = 8;
3592 else
3593 wordsize = 4;
3594 }
3595 else if (from_elf_exec)
3596 {
3597 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3598 wordsize = 8;
3599 else
3600 wordsize = 4;
3601 }
3602 else if (tdesc_has_registers (tdesc))
3603 wordsize = -1;
3604 else
3605 {
3606 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3607 wordsize = info.bfd_arch_info->bits_per_word /
3608 info.bfd_arch_info->bits_per_byte;
3609 else
3610 wordsize = 4;
3611 }
3612
3613 /* Get the architecture and machine from the BFD. */
3614 arch = info.bfd_arch_info->arch;
3615 mach = info.bfd_arch_info->mach;
3616
3617 /* For e500 executables, the apuinfo section is of help here. Such
3618 section contains the identifier and revision number of each
3619 Application-specific Processing Unit that is present on the
3620 chip. The content of the section is determined by the assembler
3621 which looks at each instruction and determines which unit (and
3622 which version of it) can execute it. Grovel through the section
3623 looking for relevant e500 APUs. */
3624
3625 if (bfd_uses_spe_extensions (info.abfd))
3626 {
3627 arch = info.bfd_arch_info->arch;
3628 mach = bfd_mach_ppc_e500;
3629 bfd_default_set_arch_mach (&abfd, arch, mach);
3630 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3631 }
3632
3633 /* Find a default target description which describes our register
3634 layout, if we do not already have one. */
3635 if (! tdesc_has_registers (tdesc))
3636 {
3637 const struct variant *v;
3638
3639 /* Choose variant. */
3640 v = find_variant_by_arch (arch, mach);
3641 if (!v)
3642 return NULL;
3643
3644 tdesc = *v->tdesc;
3645 }
3646
3647 gdb_assert (tdesc_has_registers (tdesc));
3648
3649 /* Check any target description for validity. */
3650 if (tdesc_has_registers (tdesc))
3651 {
3652 static const char *const gprs[] = {
3653 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3654 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3655 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3656 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3657 };
3658 const struct tdesc_feature *feature;
3659 int i, valid_p;
3660 static const char *const msr_names[] = { "msr", "ps" };
3661 static const char *const cr_names[] = { "cr", "cnd" };
3662 static const char *const ctr_names[] = { "ctr", "cnt" };
3663
3664 feature = tdesc_find_feature (tdesc,
3665 "org.gnu.gdb.power.core");
3666 if (feature == NULL)
3667 return NULL;
3668
3669 tdesc_data = tdesc_data_alloc ();
3670
3671 valid_p = 1;
3672 for (i = 0; i < ppc_num_gprs; i++)
3673 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3674 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3675 "pc");
3676 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3677 "lr");
3678 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3679 "xer");
3680
3681 /* Allow alternate names for these registers, to accomodate GDB's
3682 historic naming. */
3683 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3684 PPC_MSR_REGNUM, msr_names);
3685 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3686 PPC_CR_REGNUM, cr_names);
3687 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3688 PPC_CTR_REGNUM, ctr_names);
3689
3690 if (!valid_p)
3691 {
3692 tdesc_data_cleanup (tdesc_data);
3693 return NULL;
3694 }
3695
3696 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3697 "mq");
3698
3699 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3700 if (wordsize == -1)
3701 wordsize = tdesc_wordsize;
3702
3703 feature = tdesc_find_feature (tdesc,
3704 "org.gnu.gdb.power.fpu");
3705 if (feature != NULL)
3706 {
3707 static const char *const fprs[] = {
3708 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3709 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3710 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3711 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3712 };
3713 valid_p = 1;
3714 for (i = 0; i < ppc_num_fprs; i++)
3715 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3716 PPC_F0_REGNUM + i, fprs[i]);
3717 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3718 PPC_FPSCR_REGNUM, "fpscr");
3719
3720 if (!valid_p)
3721 {
3722 tdesc_data_cleanup (tdesc_data);
3723 return NULL;
3724 }
3725 have_fpu = 1;
3726 }
3727 else
3728 have_fpu = 0;
3729
3730 /* The DFP pseudo-registers will be available when there are floating
3731 point registers. */
3732 have_dfp = have_fpu;
3733
3734 feature = tdesc_find_feature (tdesc,
3735 "org.gnu.gdb.power.altivec");
3736 if (feature != NULL)
3737 {
3738 static const char *const vector_regs[] = {
3739 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3740 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3741 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3742 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3743 };
3744
3745 valid_p = 1;
3746 for (i = 0; i < ppc_num_gprs; i++)
3747 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3748 PPC_VR0_REGNUM + i,
3749 vector_regs[i]);
3750 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3751 PPC_VSCR_REGNUM, "vscr");
3752 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3753 PPC_VRSAVE_REGNUM, "vrsave");
3754
3755 if (have_spe || !valid_p)
3756 {
3757 tdesc_data_cleanup (tdesc_data);
3758 return NULL;
3759 }
3760 have_altivec = 1;
3761 }
3762 else
3763 have_altivec = 0;
3764
3765 /* Check for POWER7 VSX registers support. */
3766 feature = tdesc_find_feature (tdesc,
3767 "org.gnu.gdb.power.vsx");
3768
3769 if (feature != NULL)
3770 {
3771 static const char *const vsx_regs[] = {
3772 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3773 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3774 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3775 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3776 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3777 "vs30h", "vs31h"
3778 };
3779
3780 valid_p = 1;
3781
3782 for (i = 0; i < ppc_num_vshrs; i++)
3783 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3784 PPC_VSR0_UPPER_REGNUM + i,
3785 vsx_regs[i]);
3786 if (!valid_p)
3787 {
3788 tdesc_data_cleanup (tdesc_data);
3789 return NULL;
3790 }
3791
3792 have_vsx = 1;
3793 }
3794 else
3795 have_vsx = 0;
3796
3797 /* On machines supporting the SPE APU, the general-purpose registers
3798 are 64 bits long. There are SIMD vector instructions to treat them
3799 as pairs of floats, but the rest of the instruction set treats them
3800 as 32-bit registers, and only operates on their lower halves.
3801
3802 In the GDB regcache, we treat their high and low halves as separate
3803 registers. The low halves we present as the general-purpose
3804 registers, and then we have pseudo-registers that stitch together
3805 the upper and lower halves and present them as pseudo-registers.
3806
3807 Thus, the target description is expected to supply the upper
3808 halves separately. */
3809
3810 feature = tdesc_find_feature (tdesc,
3811 "org.gnu.gdb.power.spe");
3812 if (feature != NULL)
3813 {
3814 static const char *const upper_spe[] = {
3815 "ev0h", "ev1h", "ev2h", "ev3h",
3816 "ev4h", "ev5h", "ev6h", "ev7h",
3817 "ev8h", "ev9h", "ev10h", "ev11h",
3818 "ev12h", "ev13h", "ev14h", "ev15h",
3819 "ev16h", "ev17h", "ev18h", "ev19h",
3820 "ev20h", "ev21h", "ev22h", "ev23h",
3821 "ev24h", "ev25h", "ev26h", "ev27h",
3822 "ev28h", "ev29h", "ev30h", "ev31h"
3823 };
3824
3825 valid_p = 1;
3826 for (i = 0; i < ppc_num_gprs; i++)
3827 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3828 PPC_SPE_UPPER_GP0_REGNUM + i,
3829 upper_spe[i]);
3830 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3831 PPC_SPE_ACC_REGNUM, "acc");
3832 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3833 PPC_SPE_FSCR_REGNUM, "spefscr");
3834
3835 if (have_mq || have_fpu || !valid_p)
3836 {
3837 tdesc_data_cleanup (tdesc_data);
3838 return NULL;
3839 }
3840 have_spe = 1;
3841 }
3842 else
3843 have_spe = 0;
3844 }
3845
3846 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3847 complain for a 32-bit binary on a 64-bit target; we do not yet
3848 support that. For instance, the 32-bit ABI routines expect
3849 32-bit GPRs.
3850
3851 As long as there isn't an explicit target description, we'll
3852 choose one based on the BFD architecture and get a word size
3853 matching the binary (probably powerpc:common or
3854 powerpc:common64). So there is only trouble if a 64-bit target
3855 supplies a 64-bit description while debugging a 32-bit
3856 binary. */
3857 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3858 {
3859 tdesc_data_cleanup (tdesc_data);
3860 return NULL;
3861 }
3862
3863 #ifdef HAVE_ELF
3864 if (from_elf_exec)
3865 {
3866 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
3867 {
3868 case 1:
3869 elf_abi = POWERPC_ELF_V1;
3870 break;
3871 case 2:
3872 elf_abi = POWERPC_ELF_V2;
3873 break;
3874 default:
3875 break;
3876 }
3877 }
3878
3879 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3880 {
3881 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3882 Tag_GNU_Power_ABI_FP))
3883 {
3884 case 1:
3885 soft_float_flag = AUTO_BOOLEAN_FALSE;
3886 break;
3887 case 2:
3888 soft_float_flag = AUTO_BOOLEAN_TRUE;
3889 break;
3890 default:
3891 break;
3892 }
3893 }
3894
3895 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3896 {
3897 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3898 Tag_GNU_Power_ABI_Vector))
3899 {
3900 case 1:
3901 vector_abi = POWERPC_VEC_GENERIC;
3902 break;
3903 case 2:
3904 vector_abi = POWERPC_VEC_ALTIVEC;
3905 break;
3906 case 3:
3907 vector_abi = POWERPC_VEC_SPE;
3908 break;
3909 default:
3910 break;
3911 }
3912 }
3913 #endif
3914
3915 /* At this point, the only supported ELF-based 64-bit little-endian
3916 operating system is GNU/Linux, and this uses the ELFv2 ABI by
3917 default. All other supported ELF-based operating systems use the
3918 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
3919 e.g. because we run a legacy binary, or have attached to a process
3920 and have not found any associated binary file, set the default
3921 according to this heuristic. */
3922 if (elf_abi == POWERPC_ELF_AUTO)
3923 {
3924 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
3925 elf_abi = POWERPC_ELF_V2;
3926 else
3927 elf_abi = POWERPC_ELF_V1;
3928 }
3929
3930 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3931 soft_float = 1;
3932 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3933 soft_float = 0;
3934 else
3935 soft_float = !have_fpu;
3936
3937 /* If we have a hard float binary or setting but no floating point
3938 registers, downgrade to soft float anyway. We're still somewhat
3939 useful in this scenario. */
3940 if (!soft_float && !have_fpu)
3941 soft_float = 1;
3942
3943 /* Similarly for vector registers. */
3944 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3945 vector_abi = POWERPC_VEC_GENERIC;
3946
3947 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3948 vector_abi = POWERPC_VEC_GENERIC;
3949
3950 if (vector_abi == POWERPC_VEC_AUTO)
3951 {
3952 if (have_altivec)
3953 vector_abi = POWERPC_VEC_ALTIVEC;
3954 else if (have_spe)
3955 vector_abi = POWERPC_VEC_SPE;
3956 else
3957 vector_abi = POWERPC_VEC_GENERIC;
3958 }
3959
3960 /* Do not limit the vector ABI based on available hardware, since we
3961 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3962
3963 /* Find a candidate among extant architectures. */
3964 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3965 arches != NULL;
3966 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3967 {
3968 /* Word size in the various PowerPC bfd_arch_info structs isn't
3969 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3970 separate word size check. */
3971 tdep = gdbarch_tdep (arches->gdbarch);
3972 if (tdep && tdep->elf_abi != elf_abi)
3973 continue;
3974 if (tdep && tdep->soft_float != soft_float)
3975 continue;
3976 if (tdep && tdep->vector_abi != vector_abi)
3977 continue;
3978 if (tdep && tdep->wordsize == wordsize)
3979 {
3980 if (tdesc_data != NULL)
3981 tdesc_data_cleanup (tdesc_data);
3982 return arches->gdbarch;
3983 }
3984 }
3985
3986 /* None found, create a new architecture from INFO, whose bfd_arch_info
3987 validity depends on the source:
3988 - executable useless
3989 - rs6000_host_arch() good
3990 - core file good
3991 - "set arch" trust blindly
3992 - GDB startup useless but harmless */
3993
3994 tdep = XCNEW (struct gdbarch_tdep);
3995 tdep->wordsize = wordsize;
3996 tdep->elf_abi = elf_abi;
3997 tdep->soft_float = soft_float;
3998 tdep->vector_abi = vector_abi;
3999
4000 gdbarch = gdbarch_alloc (&info, tdep);
4001
4002 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
4003 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
4004 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
4005 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
4006 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
4007 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
4008 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
4009 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
4010
4011 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
4012 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
4013 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
4014 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
4015 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
4016 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
4017 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
4018 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
4019
4020 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
4021 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
4022 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
4023 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
4024 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
4025
4026 /* The XML specification for PowerPC sensibly calls the MSR "msr".
4027 GDB traditionally called it "ps", though, so let GDB add an
4028 alias. */
4029 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
4030
4031 if (wordsize == 8)
4032 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
4033 else
4034 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
4035
4036 /* Set lr_frame_offset. */
4037 if (wordsize == 8)
4038 tdep->lr_frame_offset = 16;
4039 else
4040 tdep->lr_frame_offset = 4;
4041
4042 if (have_spe || have_dfp || have_vsx)
4043 {
4044 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
4045 set_gdbarch_pseudo_register_write (gdbarch,
4046 rs6000_pseudo_register_write);
4047 }
4048
4049 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4050
4051 /* Select instruction printer. */
4052 if (arch == bfd_arch_rs6000)
4053 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
4054 else
4055 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
4056
4057 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
4058
4059 if (have_spe)
4060 num_pseudoregs += 32;
4061 if (have_dfp)
4062 num_pseudoregs += 16;
4063 if (have_vsx)
4064 /* Include both VSX and Extended FP registers. */
4065 num_pseudoregs += 96;
4066
4067 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
4068
4069 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
4070 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
4071 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
4072 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
4073 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4074 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
4075 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4076 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4077 set_gdbarch_char_signed (gdbarch, 0);
4078
4079 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4080 if (wordsize == 8)
4081 /* PPC64 SYSV. */
4082 set_gdbarch_frame_red_zone_size (gdbarch, 288);
4083
4084 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
4085 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
4086 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
4087
4088 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
4089 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
4090
4091 if (wordsize == 4)
4092 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4093 else if (wordsize == 8)
4094 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
4095
4096 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
4097 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
4098 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
4099
4100 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4101 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
4102
4103 /* The value of symbols of type N_SO and N_FUN maybe null when
4104 it shouldn't be. */
4105 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
4106
4107 /* Handles single stepping of atomic sequences. */
4108 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
4109
4110 /* Not sure on this. FIXMEmgo */
4111 set_gdbarch_frame_args_skip (gdbarch, 8);
4112
4113 /* Helpers for function argument information. */
4114 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
4115
4116 /* Trampoline. */
4117 set_gdbarch_in_solib_return_trampoline
4118 (gdbarch, rs6000_in_solib_return_trampoline);
4119 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
4120
4121 /* Hook in the DWARF CFI frame unwinder. */
4122 dwarf2_append_unwinders (gdbarch);
4123 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
4124
4125 /* Frame handling. */
4126 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
4127
4128 /* Setup displaced stepping. */
4129 set_gdbarch_displaced_step_copy_insn (gdbarch,
4130 simple_displaced_step_copy_insn);
4131 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
4132 ppc_displaced_step_hw_singlestep);
4133 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
4134 set_gdbarch_displaced_step_free_closure (gdbarch,
4135 simple_displaced_step_free_closure);
4136 set_gdbarch_displaced_step_location (gdbarch,
4137 displaced_step_at_entry_point);
4138
4139 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
4140
4141 /* Hook in ABI-specific overrides, if they have been registered. */
4142 info.target_desc = tdesc;
4143 info.tdep_info = (void *) tdesc_data;
4144 gdbarch_init_osabi (info, gdbarch);
4145
4146 switch (info.osabi)
4147 {
4148 case GDB_OSABI_LINUX:
4149 case GDB_OSABI_NETBSD_AOUT:
4150 case GDB_OSABI_NETBSD_ELF:
4151 case GDB_OSABI_UNKNOWN:
4152 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4153 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4154 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4155 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4156 break;
4157 default:
4158 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
4159
4160 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4161 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4162 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4163 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4164 }
4165
4166 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
4167 set_tdesc_pseudo_register_reggroup_p (gdbarch,
4168 rs6000_pseudo_register_reggroup_p);
4169 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
4170
4171 /* Override the normal target description method to make the SPE upper
4172 halves anonymous. */
4173 set_gdbarch_register_name (gdbarch, rs6000_register_name);
4174
4175 /* Choose register numbers for all supported pseudo-registers. */
4176 tdep->ppc_ev0_regnum = -1;
4177 tdep->ppc_dl0_regnum = -1;
4178 tdep->ppc_vsr0_regnum = -1;
4179 tdep->ppc_efpr0_regnum = -1;
4180
4181 cur_reg = gdbarch_num_regs (gdbarch);
4182
4183 if (have_spe)
4184 {
4185 tdep->ppc_ev0_regnum = cur_reg;
4186 cur_reg += 32;
4187 }
4188 if (have_dfp)
4189 {
4190 tdep->ppc_dl0_regnum = cur_reg;
4191 cur_reg += 16;
4192 }
4193 if (have_vsx)
4194 {
4195 tdep->ppc_vsr0_regnum = cur_reg;
4196 cur_reg += 64;
4197 tdep->ppc_efpr0_regnum = cur_reg;
4198 cur_reg += 32;
4199 }
4200
4201 gdb_assert (gdbarch_num_regs (gdbarch)
4202 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
4203
4204 /* Register the ravenscar_arch_ops. */
4205 if (mach == bfd_mach_ppc_e500)
4206 register_e500_ravenscar_ops (gdbarch);
4207 else
4208 register_ppc_ravenscar_ops (gdbarch);
4209
4210 return gdbarch;
4211 }
4212
4213 static void
4214 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4215 {
4216 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4217
4218 if (tdep == NULL)
4219 return;
4220
4221 /* FIXME: Dump gdbarch_tdep. */
4222 }
4223
4224 /* PowerPC-specific commands. */
4225
4226 static void
4227 set_powerpc_command (char *args, int from_tty)
4228 {
4229 printf_unfiltered (_("\
4230 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
4231 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
4232 }
4233
4234 static void
4235 show_powerpc_command (char *args, int from_tty)
4236 {
4237 cmd_show_list (showpowerpccmdlist, from_tty, "");
4238 }
4239
4240 static void
4241 powerpc_set_soft_float (char *args, int from_tty,
4242 struct cmd_list_element *c)
4243 {
4244 struct gdbarch_info info;
4245
4246 /* Update the architecture. */
4247 gdbarch_info_init (&info);
4248 if (!gdbarch_update_p (info))
4249 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4250 }
4251
4252 static void
4253 powerpc_set_vector_abi (char *args, int from_tty,
4254 struct cmd_list_element *c)
4255 {
4256 struct gdbarch_info info;
4257 enum powerpc_vector_abi vector_abi;
4258
4259 for (vector_abi = POWERPC_VEC_AUTO;
4260 vector_abi != POWERPC_VEC_LAST;
4261 vector_abi++)
4262 if (strcmp (powerpc_vector_abi_string,
4263 powerpc_vector_strings[vector_abi]) == 0)
4264 {
4265 powerpc_vector_abi_global = vector_abi;
4266 break;
4267 }
4268
4269 if (vector_abi == POWERPC_VEC_LAST)
4270 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
4271 powerpc_vector_abi_string);
4272
4273 /* Update the architecture. */
4274 gdbarch_info_init (&info);
4275 if (!gdbarch_update_p (info))
4276 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4277 }
4278
4279 /* Show the current setting of the exact watchpoints flag. */
4280
4281 static void
4282 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
4283 struct cmd_list_element *c,
4284 const char *value)
4285 {
4286 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
4287 }
4288
4289 /* Read a PPC instruction from memory. */
4290
4291 static unsigned int
4292 read_insn (struct frame_info *frame, CORE_ADDR pc)
4293 {
4294 struct gdbarch *gdbarch = get_frame_arch (frame);
4295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4296
4297 return read_memory_unsigned_integer (pc, 4, byte_order);
4298 }
4299
4300 /* Return non-zero if the instructions at PC match the series
4301 described in PATTERN, or zero otherwise. PATTERN is an array of
4302 'struct ppc_insn_pattern' objects, terminated by an entry whose
4303 mask is zero.
4304
4305 When the match is successful, fill INSN[i] with what PATTERN[i]
4306 matched. If PATTERN[i] is optional, and the instruction wasn't
4307 present, set INSN[i] to 0 (which is not a valid PPC instruction).
4308 INSN should have as many elements as PATTERN. Note that, if
4309 PATTERN contains optional instructions which aren't present in
4310 memory, then INSN will have holes, so INSN[i] isn't necessarily the
4311 i'th instruction in memory. */
4312
4313 int
4314 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
4315 struct ppc_insn_pattern *pattern,
4316 unsigned int *insns)
4317 {
4318 int i;
4319 unsigned int insn;
4320
4321 for (i = 0, insn = 0; pattern[i].mask; i++)
4322 {
4323 if (insn == 0)
4324 insn = read_insn (frame, pc);
4325 insns[i] = 0;
4326 if ((insn & pattern[i].mask) == pattern[i].data)
4327 {
4328 insns[i] = insn;
4329 pc += 4;
4330 insn = 0;
4331 }
4332 else if (!pattern[i].optional)
4333 return 0;
4334 }
4335
4336 return 1;
4337 }
4338
4339 /* Return the 'd' field of the d-form instruction INSN, properly
4340 sign-extended. */
4341
4342 CORE_ADDR
4343 ppc_insn_d_field (unsigned int insn)
4344 {
4345 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
4346 }
4347
4348 /* Return the 'ds' field of the ds-form instruction INSN, with the two
4349 zero bits concatenated at the right, and properly
4350 sign-extended. */
4351
4352 CORE_ADDR
4353 ppc_insn_ds_field (unsigned int insn)
4354 {
4355 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
4356 }
4357
4358 /* Initialization code. */
4359
4360 /* -Wmissing-prototypes */
4361 extern initialize_file_ftype _initialize_rs6000_tdep;
4362
4363 void
4364 _initialize_rs6000_tdep (void)
4365 {
4366 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
4367 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
4368
4369 /* Initialize the standard target descriptions. */
4370 initialize_tdesc_powerpc_32 ();
4371 initialize_tdesc_powerpc_altivec32 ();
4372 initialize_tdesc_powerpc_vsx32 ();
4373 initialize_tdesc_powerpc_403 ();
4374 initialize_tdesc_powerpc_403gc ();
4375 initialize_tdesc_powerpc_405 ();
4376 initialize_tdesc_powerpc_505 ();
4377 initialize_tdesc_powerpc_601 ();
4378 initialize_tdesc_powerpc_602 ();
4379 initialize_tdesc_powerpc_603 ();
4380 initialize_tdesc_powerpc_604 ();
4381 initialize_tdesc_powerpc_64 ();
4382 initialize_tdesc_powerpc_altivec64 ();
4383 initialize_tdesc_powerpc_vsx64 ();
4384 initialize_tdesc_powerpc_7400 ();
4385 initialize_tdesc_powerpc_750 ();
4386 initialize_tdesc_powerpc_860 ();
4387 initialize_tdesc_powerpc_e500 ();
4388 initialize_tdesc_rs6000 ();
4389
4390 /* Add root prefix command for all "set powerpc"/"show powerpc"
4391 commands. */
4392 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
4393 _("Various PowerPC-specific commands."),
4394 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
4395
4396 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
4397 _("Various PowerPC-specific commands."),
4398 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
4399
4400 /* Add a command to allow the user to force the ABI. */
4401 add_setshow_auto_boolean_cmd ("soft-float", class_support,
4402 &powerpc_soft_float_global,
4403 _("Set whether to use a soft-float ABI."),
4404 _("Show whether to use a soft-float ABI."),
4405 NULL,
4406 powerpc_set_soft_float, NULL,
4407 &setpowerpccmdlist, &showpowerpccmdlist);
4408
4409 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
4410 &powerpc_vector_abi_string,
4411 _("Set the vector ABI."),
4412 _("Show the vector ABI."),
4413 NULL, powerpc_set_vector_abi, NULL,
4414 &setpowerpccmdlist, &showpowerpccmdlist);
4415
4416 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
4417 &target_exact_watchpoints,
4418 _("\
4419 Set whether to use just one debug register for watchpoints on scalars."),
4420 _("\
4421 Show whether to use just one debug register for watchpoints on scalars."),
4422 _("\
4423 If true, GDB will use only one debug register when watching a variable of\n\
4424 scalar type, thus assuming that the variable is accessed through the address\n\
4425 of its first byte."),
4426 NULL, show_powerpc_exact_watchpoints,
4427 &setpowerpccmdlist, &showpowerpccmdlist);
4428 }
This page took 0.206129 seconds and 4 git commands to generate.