* gencode.c (build_instruction) [MUL]: Cast operands to word64, to
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "xcoffsolib.h"
30
31 extern struct obstack frame_cache_obstack;
32
33 extern int errno;
34
35 /* Nonzero if we just simulated a single step break. */
36 int one_stepped;
37
38 /* Breakpoint shadows for the single step instructions will be kept here. */
39
40 static struct sstep_breaks {
41 /* Address, or 0 if this is not in use. */
42 CORE_ADDR address;
43 /* Shadow contents. */
44 char data[4];
45 } stepBreaks[2];
46
47 /* Static function prototypes */
48
49 static CORE_ADDR find_toc_address PARAMS ((CORE_ADDR pc));
50
51 static CORE_ADDR branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc,
52 CORE_ADDR safety));
53
54 static void frame_get_cache_fsr PARAMS ((struct frame_info *fi,
55 struct rs6000_framedata *fdatap));
56
57 static void pop_dummy_frame PARAMS ((void));
58
59 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
60
61 static CORE_ADDR
62 branch_dest (opcode, instr, pc, safety)
63 int opcode;
64 int instr;
65 CORE_ADDR pc;
66 CORE_ADDR safety;
67 {
68 CORE_ADDR dest;
69 int immediate;
70 int absolute;
71 int ext_op;
72
73 absolute = (int) ((instr >> 1) & 1);
74
75 switch (opcode) {
76 case 18 :
77 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
78 if (absolute)
79 dest = immediate;
80 else
81 dest = pc + immediate;
82 break;
83
84 case 16 :
85 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
86 if (absolute)
87 dest = immediate;
88 else
89 dest = pc + immediate;
90 break;
91
92 case 19 :
93 ext_op = (instr>>1) & 0x3ff;
94
95 if (ext_op == 16) /* br conditional register */
96 dest = read_register (LR_REGNUM) & ~3;
97
98 else if (ext_op == 528) /* br cond to count reg */
99 {
100 dest = read_register (CTR_REGNUM) & ~3;
101
102 /* If we are about to execute a system call, dest is something
103 like 0x22fc or 0x3b00. Upon completion the system call
104 will return to the address in the link register. */
105 if (dest < TEXT_SEGMENT_BASE)
106 dest = read_register (LR_REGNUM) & ~3;
107 }
108 else return -1;
109 break;
110
111 default: return -1;
112 }
113 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
114 }
115
116
117
118 /* AIX does not support PT_STEP. Simulate it. */
119
120 void
121 single_step (signal)
122 enum target_signal signal;
123 {
124 #define INSNLEN(OPCODE) 4
125
126 static char le_breakp[] = LITTLE_BREAKPOINT;
127 static char be_breakp[] = BIG_BREAKPOINT;
128 char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
129 int ii, insn;
130 CORE_ADDR loc;
131 CORE_ADDR breaks[2];
132 int opcode;
133
134 if (!one_stepped) {
135 loc = read_pc ();
136
137 insn = read_memory_integer (loc, 4);
138
139 breaks[0] = loc + INSNLEN(insn);
140 opcode = insn >> 26;
141 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
142
143 /* Don't put two breakpoints on the same address. */
144 if (breaks[1] == breaks[0])
145 breaks[1] = -1;
146
147 stepBreaks[1].address = 0;
148
149 for (ii=0; ii < 2; ++ii) {
150
151 /* ignore invalid breakpoint. */
152 if ( breaks[ii] == -1)
153 continue;
154
155 read_memory (breaks[ii], stepBreaks[ii].data, 4);
156
157 write_memory (breaks[ii], breakp, 4);
158 stepBreaks[ii].address = breaks[ii];
159 }
160
161 one_stepped = 1;
162 } else {
163
164 /* remove step breakpoints. */
165 for (ii=0; ii < 2; ++ii)
166 if (stepBreaks[ii].address != 0)
167 write_memory
168 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
169
170 one_stepped = 0;
171 }
172 errno = 0; /* FIXME, don't ignore errors! */
173 /* What errors? {read,write}_memory call error(). */
174 }
175
176
177 /* return pc value after skipping a function prologue and also return
178 information about a function frame.
179
180 in struct rs6000_frameinfo fdata:
181 - frameless is TRUE, if function does not have a frame.
182 - nosavedpc is TRUE, if function does not save %pc value in its frame.
183 - offset is the number of bytes used in the frame to save registers.
184 - saved_gpr is the number of the first saved gpr.
185 - saved_fpr is the number of the first saved fpr.
186 - alloca_reg is the number of the register used for alloca() handling.
187 Otherwise -1.
188 - gpr_offset is the offset of the saved gprs
189 - fpr_offset is the offset of the saved fprs
190 - lr_offset is the offset of the saved lr
191 - cr_offset is the offset of the saved cr
192 */
193
194 #define SIGNED_SHORT(x) \
195 ((sizeof (short) == 2) \
196 ? ((int)(short)(x)) \
197 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
198
199 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
200
201 CORE_ADDR
202 skip_prologue (pc, fdata)
203 CORE_ADDR pc;
204 struct rs6000_framedata *fdata;
205 {
206 CORE_ADDR orig_pc = pc;
207 char buf[4];
208 unsigned long op;
209 long offset = 0;
210 int lr_reg = 0;
211 int cr_reg = 0;
212 int reg;
213 int framep = 0;
214 int minimal_toc_loaded = 0;
215 static struct rs6000_framedata zero_frame;
216
217 *fdata = zero_frame;
218 fdata->saved_gpr = -1;
219 fdata->saved_fpr = -1;
220 fdata->alloca_reg = -1;
221 fdata->frameless = 1;
222 fdata->nosavedpc = 1;
223
224 if (target_read_memory (pc, buf, 4))
225 return pc; /* Can't access it -- assume no prologue. */
226
227 /* Assume that subsequent fetches can fail with low probability. */
228 pc -= 4;
229 for (;;)
230 {
231 pc += 4;
232 op = read_memory_integer (pc, 4);
233
234 if ((op & 0xfc1fffff) == 0x7c0802a6) { /* mflr Rx */
235 lr_reg = (op & 0x03e00000) | 0x90010000;
236 continue;
237
238 } else if ((op & 0xfc1fffff) == 0x7c000026) { /* mfcr Rx */
239 cr_reg = (op & 0x03e00000) | 0x90010000;
240 continue;
241
242 } else if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
243 reg = GET_SRC_REG (op);
244 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) {
245 fdata->saved_fpr = reg;
246 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
247 }
248 continue;
249
250 } else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
251 ((op & 0xfc1f0000) == 0x90010000 && /* st rx,NUM(r1), rx >= r13 */
252 (op & 0x03e00000) >= 0x01a00000)) {
253
254 reg = GET_SRC_REG (op);
255 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) {
256 fdata->saved_gpr = reg;
257 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
258 }
259 continue;
260
261 } else if ((op & 0xffff0000) == 0x3c000000) { /* addis 0,0,NUM, used for >= 32k frames */
262 fdata->offset = (op & 0x0000ffff) << 16;
263 fdata->frameless = 0;
264 continue;
265
266 } else if ((op & 0xffff0000) == 0x60000000) { /* ori 0,0,NUM, 2nd half of >= 32k frames */
267 fdata->offset |= (op & 0x0000ffff);
268 fdata->frameless = 0;
269 continue;
270
271 } else if ((op & 0xffff0000) == lr_reg) { /* st Rx,NUM(r1) where Rx == lr */
272 fdata->lr_offset = SIGNED_SHORT (op) + offset;
273 fdata->nosavedpc = 0;
274 lr_reg = 0;
275 continue;
276
277 } else if ((op & 0xffff0000) == cr_reg) { /* st Rx,NUM(r1) where Rx == cr */
278 fdata->cr_offset = SIGNED_SHORT (op) + offset;
279 cr_reg = 0;
280 continue;
281
282 } else if (op == 0x48000005) { /* bl .+4 used in -mrelocatable */
283 continue;
284
285 } else if (op == 0x48000004) { /* b .+4 (xlc) */
286 break;
287
288 } else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used in V.4 -mrelocatable */
289 op == 0x7fc0f214) && /* add r30,r0,r30, used in V.4 -mrelocatable */
290 lr_reg == 0x901e0000) {
291 continue;
292
293 } else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used in V.4 -mminimal-toc */
294 (op & 0xffff0000) == 0x3bde0000) { /* addi 30,30,foo@l */
295 continue;
296
297 } else if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
298
299 fdata->frameless = 0;
300 /* Don't skip over the subroutine call if it is not within the first
301 three instructions of the prologue. */
302 if ((pc - orig_pc) > 8)
303 break;
304
305 op = read_memory_integer (pc+4, 4);
306
307 /* At this point, make sure this is not a trampoline function
308 (a function that simply calls another functions, and nothing else).
309 If the next is not a nop, this branch was part of the function
310 prologue. */
311
312 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
313 break; /* don't skip over this branch */
314
315 continue;
316
317 /* update stack pointer */
318 } else if ((op & 0xffff0000) == 0x94210000) { /* stu r1,NUM(r1) */
319 fdata->frameless = 0;
320 fdata->offset = SIGNED_SHORT (op);
321 offset = fdata->offset;
322 continue;
323
324 } else if (op == 0x7c21016e) { /* stwux 1,1,0 */
325 fdata->frameless = 0;
326 offset = fdata->offset;
327 continue;
328
329 /* Load up minimal toc pointer */
330 } else if ((op >> 22) == 0x20f
331 && ! minimal_toc_loaded) { /* l r31,... or l r30,... */
332 minimal_toc_loaded = 1;
333 continue;
334
335 /* store parameters in stack */
336 } else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
337 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
338 (op & 0xfc1f0000) == 0xfc010000) { /* frsp, fp?,NUM(r1) */
339 continue;
340
341 /* store parameters in stack via frame pointer */
342 } else if (framep &&
343 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
344 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
345 (op & 0xfc1f0000) == 0xfc1f0000)) { /* frsp, fp?,NUM(r1) */
346 continue;
347
348 /* Set up frame pointer */
349 } else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
350 || op == 0x7c3f0b78) { /* mr r31, r1 */
351 fdata->frameless = 0;
352 framep = 1;
353 fdata->alloca_reg = 31;
354 continue;
355
356 /* Another way to set up the frame pointer. */
357 } else if ((op & 0xfc1fffff) == 0x38010000) { /* addi rX, r1, 0x0 */
358 fdata->frameless = 0;
359 framep = 1;
360 fdata->alloca_reg = (op & ~0x38010000) >> 21;
361 continue;
362
363 } else {
364 break;
365 }
366 }
367
368 #if 0
369 /* I have problems with skipping over __main() that I need to address
370 * sometime. Previously, I used to use misc_function_vector which
371 * didn't work as well as I wanted to be. -MGO */
372
373 /* If the first thing after skipping a prolog is a branch to a function,
374 this might be a call to an initializer in main(), introduced by gcc2.
375 We'd like to skip over it as well. Fortunately, xlc does some extra
376 work before calling a function right after a prologue, thus we can
377 single out such gcc2 behaviour. */
378
379
380 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
381 op = read_memory_integer (pc+4, 4);
382
383 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
384
385 /* check and see if we are in main. If so, skip over this initializer
386 function as well. */
387
388 tmp = find_pc_misc_function (pc);
389 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
390 return pc + 8;
391 }
392 }
393 #endif /* 0 */
394
395 fdata->offset = - fdata->offset;
396 return pc;
397 }
398
399
400 /*************************************************************************
401 Support for creating pushind a dummy frame into the stack, and popping
402 frames, etc.
403 *************************************************************************/
404
405 /* The total size of dummy frame is 436, which is;
406
407 32 gpr's - 128 bytes
408 32 fpr's - 256 "
409 7 the rest - 28 "
410 and 24 extra bytes for the callee's link area. The last 24 bytes
411 for the link area might not be necessary, since it will be taken
412 care of by push_arguments(). */
413
414 #define DUMMY_FRAME_SIZE 436
415
416 #define DUMMY_FRAME_ADDR_SIZE 10
417
418 /* Make sure you initialize these in somewhere, in case gdb gives up what it
419 was debugging and starts debugging something else. FIXMEibm */
420
421 static int dummy_frame_count = 0;
422 static int dummy_frame_size = 0;
423 static CORE_ADDR *dummy_frame_addr = 0;
424
425 extern int stop_stack_dummy;
426
427 /* push a dummy frame into stack, save all register. Currently we are saving
428 only gpr's and fpr's, which is not good enough! FIXMEmgo */
429
430 void
431 push_dummy_frame ()
432 {
433 /* stack pointer. */
434 CORE_ADDR sp;
435 /* Same thing, target byte order. */
436 char sp_targ[4];
437
438 /* link register. */
439 CORE_ADDR pc;
440 /* Same thing, target byte order. */
441 char pc_targ[4];
442
443 /* Needed to figure out where to save the dummy link area.
444 FIXME: There should be an easier way to do this, no? tiemann 9/9/95. */
445 struct rs6000_framedata fdata;
446
447 int ii;
448
449 target_fetch_registers (-1);
450
451 if (dummy_frame_count >= dummy_frame_size) {
452 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
453 if (dummy_frame_addr)
454 dummy_frame_addr = (CORE_ADDR*) xrealloc
455 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
456 else
457 dummy_frame_addr = (CORE_ADDR*)
458 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
459 }
460
461 sp = read_register(SP_REGNUM);
462 pc = read_register(PC_REGNUM);
463 store_address (pc_targ, 4, pc);
464
465 (void) skip_prologue (get_pc_function_start (pc) + FUNCTION_START_OFFSET, &fdata);
466
467 dummy_frame_addr [dummy_frame_count++] = sp;
468
469 /* Be careful! If the stack pointer is not decremented first, then kernel
470 thinks he is free to use the space underneath it. And kernel actually
471 uses that area for IPC purposes when executing ptrace(2) calls. So
472 before writing register values into the new frame, decrement and update
473 %sp first in order to secure your frame. */
474
475 /* FIXME: We don't check if the stack really has this much space.
476 This is a problem on the ppc simulator (which only grants one page
477 (4096 bytes) by default. */
478
479 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
480
481 /* gdb relies on the state of current_frame. We'd better update it,
482 otherwise things like do_registers_info() wouldn't work properly! */
483
484 flush_cached_frames ();
485
486 /* save program counter in link register's space. */
487 write_memory (sp + (fdata.lr_offset ? fdata.lr_offset : DEFAULT_LR_SAVE),
488 pc_targ, 4);
489
490 /* save all floating point and general purpose registers here. */
491
492 /* fpr's, f0..f31 */
493 for (ii = 0; ii < 32; ++ii)
494 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
495
496 /* gpr's r0..r31 */
497 for (ii=1; ii <=32; ++ii)
498 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
499
500 /* so far, 32*2 + 32 words = 384 bytes have been written.
501 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
502
503 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
504 write_memory (sp-384-(ii*4),
505 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
506 }
507
508 /* Save sp or so called back chain right here. */
509 store_address (sp_targ, 4, sp);
510 write_memory (sp-DUMMY_FRAME_SIZE, sp_targ, 4);
511 sp -= DUMMY_FRAME_SIZE;
512
513 /* And finally, this is the back chain. */
514 write_memory (sp+8, pc_targ, 4);
515 }
516
517
518 /* Pop a dummy frame.
519
520 In rs6000 when we push a dummy frame, we save all of the registers. This
521 is usually done before user calls a function explicitly.
522
523 After a dummy frame is pushed, some instructions are copied into stack,
524 and stack pointer is decremented even more. Since we don't have a frame
525 pointer to get back to the parent frame of the dummy, we start having
526 trouble poping it. Therefore, we keep a dummy frame stack, keeping
527 addresses of dummy frames as such. When poping happens and when we
528 detect that was a dummy frame, we pop it back to its parent by using
529 dummy frame stack (`dummy_frame_addr' array).
530
531 FIXME: This whole concept is broken. You should be able to detect
532 a dummy stack frame *on the user's stack itself*. When you do,
533 then you know the format of that stack frame -- including its
534 saved SP register! There should *not* be a separate stack in the
535 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
536 */
537
538 static void
539 pop_dummy_frame ()
540 {
541 CORE_ADDR sp, pc;
542 int ii;
543 sp = dummy_frame_addr [--dummy_frame_count];
544
545 /* restore all fpr's. */
546 for (ii = 1; ii <= 32; ++ii)
547 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
548
549 /* restore all gpr's */
550 for (ii=1; ii <= 32; ++ii) {
551 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
552 }
553
554 /* restore the rest of the registers. */
555 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
556 read_memory (sp-384-(ii*4),
557 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
558
559 read_memory (sp-(DUMMY_FRAME_SIZE-8),
560 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
561
562 /* when a dummy frame was being pushed, we had to decrement %sp first, in
563 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
564 one we should restore. Change it with the one we need. */
565
566 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
567
568 /* Now we can restore all registers. */
569
570 target_store_registers (-1);
571 pc = read_pc ();
572 flush_cached_frames ();
573 }
574
575
576 /* pop the innermost frame, go back to the caller. */
577
578 void
579 pop_frame ()
580 {
581 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
582 struct rs6000_framedata fdata;
583 struct frame_info *frame = get_current_frame ();
584 int addr, ii;
585
586 pc = read_pc ();
587 sp = FRAME_FP (frame);
588
589 if (stop_stack_dummy && dummy_frame_count) {
590 pop_dummy_frame ();
591 return;
592 }
593
594 /* Make sure that all registers are valid. */
595 read_register_bytes (0, NULL, REGISTER_BYTES);
596
597 /* figure out previous %pc value. If the function is frameless, it is
598 still in the link register, otherwise walk the frames and retrieve the
599 saved %pc value in the previous frame. */
600
601 addr = get_pc_function_start (frame->pc) + FUNCTION_START_OFFSET;
602 (void) skip_prologue (addr, &fdata);
603
604 if (fdata.frameless)
605 prev_sp = sp;
606 else
607 prev_sp = read_memory_integer (sp, 4);
608 if (fdata.lr_offset == 0)
609 lr = read_register (LR_REGNUM);
610 else
611 lr = read_memory_integer (prev_sp + fdata.lr_offset, 4);
612
613 /* reset %pc value. */
614 write_register (PC_REGNUM, lr);
615
616 /* reset register values if any was saved earlier. */
617 addr = prev_sp - fdata.offset;
618
619 if (fdata.saved_gpr != -1)
620 for (ii = fdata.saved_gpr; ii <= 31; ++ii) {
621 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
622 addr += 4;
623 }
624
625 if (fdata.saved_fpr != -1)
626 for (ii = fdata.saved_fpr; ii <= 31; ++ii) {
627 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
628 addr += 8;
629 }
630
631 write_register (SP_REGNUM, prev_sp);
632 target_store_registers (-1);
633 flush_cached_frames ();
634 }
635
636 /* fixup the call sequence of a dummy function, with the real function address.
637 its argumets will be passed by gdb. */
638
639 void
640 rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
641 char *dummyname;
642 CORE_ADDR pc;
643 CORE_ADDR fun;
644 int nargs;
645 value_ptr *args;
646 struct type *type;
647 int gcc_p;
648 {
649 #define TOC_ADDR_OFFSET 20
650 #define TARGET_ADDR_OFFSET 28
651
652 int ii;
653 CORE_ADDR target_addr;
654 CORE_ADDR tocvalue;
655
656 target_addr = fun;
657 tocvalue = find_toc_address (target_addr);
658
659 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
660 ii = (ii & 0xffff0000) | (tocvalue >> 16);
661 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
662
663 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
664 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
665 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
666
667 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
668 ii = (ii & 0xffff0000) | (target_addr >> 16);
669 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
670
671 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
672 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
673 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
674 }
675
676 /* Pass the arguments in either registers, or in the stack. In RS6000,
677 the first eight words of the argument list (that might be less than
678 eight parameters if some parameters occupy more than one word) are
679 passed in r3..r11 registers. float and double parameters are
680 passed in fpr's, in addition to that. Rest of the parameters if any
681 are passed in user stack. There might be cases in which half of the
682 parameter is copied into registers, the other half is pushed into
683 stack.
684
685 If the function is returning a structure, then the return address is passed
686 in r3, then the first 7 words of the parameters can be passed in registers,
687 starting from r4. */
688
689 CORE_ADDR
690 push_arguments (nargs, args, sp, struct_return, struct_addr)
691 int nargs;
692 value_ptr *args;
693 CORE_ADDR sp;
694 int struct_return;
695 CORE_ADDR struct_addr;
696 {
697 int ii;
698 int len = 0;
699 int argno; /* current argument number */
700 int argbytes; /* current argument byte */
701 char tmp_buffer [50];
702 int f_argno = 0; /* current floating point argno */
703 value_ptr arg = 0;
704 struct type *type;
705
706 CORE_ADDR saved_sp;
707
708 if ( dummy_frame_count <= 0)
709 printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
710
711 /* The first eight words of ther arguments are passed in registers. Copy
712 them appropriately.
713
714 If the function is returning a `struct', then the first word (which
715 will be passed in r3) is used for struct return address. In that
716 case we should advance one word and start from r4 register to copy
717 parameters. */
718
719 ii = struct_return ? 1 : 0;
720
721 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
722
723 arg = args[argno];
724 type = check_typedef (VALUE_TYPE (arg));
725 len = TYPE_LENGTH (type);
726
727 if (TYPE_CODE (type) == TYPE_CODE_FLT) {
728
729 /* floating point arguments are passed in fpr's, as well as gpr's.
730 There are 13 fpr's reserved for passing parameters. At this point
731 there is no way we would run out of them. */
732
733 if (len > 8)
734 printf_unfiltered (
735 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
736
737 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
738 len);
739 ++f_argno;
740 }
741
742 if (len > 4) {
743
744 /* Argument takes more than one register. */
745 while (argbytes < len) {
746
747 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
748 memcpy (&registers[REGISTER_BYTE(ii+3)],
749 ((char*)VALUE_CONTENTS (arg))+argbytes,
750 (len - argbytes) > 4 ? 4 : len - argbytes);
751 ++ii, argbytes += 4;
752
753 if (ii >= 8)
754 goto ran_out_of_registers_for_arguments;
755 }
756 argbytes = 0;
757 --ii;
758 }
759 else { /* Argument can fit in one register. No problem. */
760 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
761 memcpy (&registers[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
762 }
763 ++argno;
764 }
765
766 ran_out_of_registers_for_arguments:
767
768 /* location for 8 parameters are always reserved. */
769 sp -= 4 * 8;
770
771 /* another six words for back chain, TOC register, link register, etc. */
772 sp -= 24;
773
774 /* if there are more arguments, allocate space for them in
775 the stack, then push them starting from the ninth one. */
776
777 if ((argno < nargs) || argbytes) {
778 int space = 0, jj;
779
780 if (argbytes) {
781 space += ((len - argbytes + 3) & -4);
782 jj = argno + 1;
783 }
784 else
785 jj = argno;
786
787 for (; jj < nargs; ++jj) {
788 value_ptr val = args[jj];
789 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
790 }
791
792 /* add location required for the rest of the parameters */
793 space = (space + 7) & -8;
794 sp -= space;
795
796 /* This is another instance we need to be concerned about securing our
797 stack space. If we write anything underneath %sp (r1), we might conflict
798 with the kernel who thinks he is free to use this area. So, update %sp
799 first before doing anything else. */
800
801 write_register (SP_REGNUM, sp);
802
803 /* if the last argument copied into the registers didn't fit there
804 completely, push the rest of it into stack. */
805
806 if (argbytes) {
807 write_memory (
808 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
809 ++argno;
810 ii += ((len - argbytes + 3) & -4) / 4;
811 }
812
813 /* push the rest of the arguments into stack. */
814 for (; argno < nargs; ++argno) {
815
816 arg = args[argno];
817 type = check_typedef (VALUE_TYPE (arg));
818 len = TYPE_LENGTH (type);
819
820
821 /* float types should be passed in fpr's, as well as in the stack. */
822 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) {
823
824 if (len > 8)
825 printf_unfiltered (
826 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
827
828 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
829 len);
830 ++f_argno;
831 }
832
833 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
834 ii += ((len + 3) & -4) / 4;
835 }
836 }
837 else
838 /* Secure stack areas first, before doing anything else. */
839 write_register (SP_REGNUM, sp);
840
841 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
842 read_memory (saved_sp, tmp_buffer, 24);
843 write_memory (sp, tmp_buffer, 24);
844
845 /* set back chain properly */
846 store_address (tmp_buffer, 4, saved_sp);
847 write_memory (sp, tmp_buffer, 4);
848
849 target_store_registers (-1);
850 return sp;
851 }
852
853 /* a given return value in `regbuf' with a type `valtype', extract and copy its
854 value into `valbuf' */
855
856 void
857 extract_return_value (valtype, regbuf, valbuf)
858 struct type *valtype;
859 char regbuf[REGISTER_BYTES];
860 char *valbuf;
861 {
862 int offset = 0;
863
864 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
865
866 double dd; float ff;
867 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
868 We need to truncate the return value into float size (4 byte) if
869 necessary. */
870
871 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
872 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
873 TYPE_LENGTH (valtype));
874 else { /* float */
875 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
876 ff = (float)dd;
877 memcpy (valbuf, &ff, sizeof(float));
878 }
879 }
880 else {
881 /* return value is copied starting from r3. */
882 if (TARGET_BYTE_ORDER == BIG_ENDIAN
883 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
884 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
885
886 memcpy (valbuf, regbuf + REGISTER_BYTE (3) + offset,
887 TYPE_LENGTH (valtype));
888 }
889 }
890
891
892 /* keep structure return address in this variable.
893 FIXME: This is a horrid kludge which should not be allowed to continue
894 living. This only allows a single nested call to a structure-returning
895 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
896
897 CORE_ADDR rs6000_struct_return_address;
898
899
900 /* Indirect function calls use a piece of trampoline code to do context
901 switching, i.e. to set the new TOC table. Skip such code if we are on
902 its first instruction (as when we have single-stepped to here).
903 Also skip shared library trampoline code (which is different from
904 indirect function call trampolines).
905 Result is desired PC to step until, or NULL if we are not in
906 trampoline code. */
907
908 CORE_ADDR
909 skip_trampoline_code (pc)
910 CORE_ADDR pc;
911 {
912 register unsigned int ii, op;
913 CORE_ADDR solib_target_pc;
914
915 static unsigned trampoline_code[] = {
916 0x800b0000, /* l r0,0x0(r11) */
917 0x90410014, /* st r2,0x14(r1) */
918 0x7c0903a6, /* mtctr r0 */
919 0x804b0004, /* l r2,0x4(r11) */
920 0x816b0008, /* l r11,0x8(r11) */
921 0x4e800420, /* bctr */
922 0x4e800020, /* br */
923 0
924 };
925
926 /* If pc is in a shared library trampoline, return its target. */
927 solib_target_pc = find_solib_trampoline_target (pc);
928 if (solib_target_pc)
929 return solib_target_pc;
930
931 for (ii=0; trampoline_code[ii]; ++ii) {
932 op = read_memory_integer (pc + (ii*4), 4);
933 if (op != trampoline_code [ii])
934 return 0;
935 }
936 ii = read_register (11); /* r11 holds destination addr */
937 pc = read_memory_integer (ii, 4); /* (r11) value */
938 return pc;
939 }
940
941 /* Determines whether the function FI has a frame on the stack or not. */
942
943 int
944 frameless_function_invocation (fi)
945 struct frame_info *fi;
946 {
947 CORE_ADDR func_start;
948 struct rs6000_framedata fdata;
949
950 if (fi->next != NULL)
951 /* Don't even think about framelessness except on the innermost frame. */
952 /* FIXME: Can also be frameless if fi->next->signal_handler_caller (if
953 a signal happens while executing in a frameless function). */
954 return 0;
955
956 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
957
958 /* If we failed to find the start of the function, it is a mistake
959 to inspect the instructions. */
960
961 if (!func_start)
962 return 0;
963
964 (void) skip_prologue (func_start, &fdata);
965 return fdata.frameless;
966 }
967
968 /* Return the PC saved in a frame */
969
970 unsigned long
971 frame_saved_pc (fi)
972 struct frame_info *fi;
973 {
974 CORE_ADDR func_start;
975 struct rs6000_framedata fdata;
976
977 if (fi->signal_handler_caller)
978 return read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET, 4);
979
980 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
981
982 /* If we failed to find the start of the function, it is a mistake
983 to inspect the instructions. */
984 if (!func_start)
985 return 0;
986
987 (void) skip_prologue (func_start, &fdata);
988
989 if (fdata.lr_offset == 0 && fi->next != NULL)
990 return read_memory_integer (rs6000_frame_chain (fi) + DEFAULT_LR_SAVE, 4);
991
992 if (fdata.lr_offset == 0)
993 return read_register (LR_REGNUM);
994
995 return read_memory_integer (rs6000_frame_chain (fi) + fdata.lr_offset, 4);
996 }
997
998 /* If saved registers of frame FI are not known yet, read and cache them.
999 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1000 in which case the framedata are read. */
1001
1002 static void
1003 frame_get_cache_fsr (fi, fdatap)
1004 struct frame_info *fi;
1005 struct rs6000_framedata *fdatap;
1006 {
1007 int ii;
1008 CORE_ADDR frame_addr;
1009 struct rs6000_framedata work_fdata;
1010
1011 if (fi->cache_fsr)
1012 return;
1013
1014 if (fdatap == NULL) {
1015 fdatap = &work_fdata;
1016 (void) skip_prologue (get_pc_function_start (fi->pc), fdatap);
1017 }
1018
1019 fi->cache_fsr = (struct frame_saved_regs *)
1020 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
1021 memset (fi->cache_fsr, '\0', sizeof (struct frame_saved_regs));
1022
1023 if (fi->prev && fi->prev->frame)
1024 frame_addr = fi->prev->frame;
1025 else
1026 frame_addr = read_memory_integer (fi->frame, 4);
1027
1028 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1029 All fpr's from saved_fpr to fp31 are saved. */
1030
1031 if (fdatap->saved_fpr >= 0) {
1032 int fpr_offset = frame_addr + fdatap->fpr_offset;
1033 for (ii = fdatap->saved_fpr; ii < 32; ii++) {
1034 fi->cache_fsr->regs [FP0_REGNUM + ii] = fpr_offset;
1035 fpr_offset += 8;
1036 }
1037 }
1038
1039 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1040 All gpr's from saved_gpr to gpr31 are saved. */
1041
1042 if (fdatap->saved_gpr >= 0) {
1043 int gpr_offset = frame_addr + fdatap->gpr_offset;
1044 for (ii = fdatap->saved_gpr; ii < 32; ii++) {
1045 fi->cache_fsr->regs [ii] = gpr_offset;
1046 gpr_offset += 4;
1047 }
1048 }
1049
1050 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1051 the CR. */
1052 if (fdatap->cr_offset != 0)
1053 fi->cache_fsr->regs [CR_REGNUM] = frame_addr + fdatap->cr_offset;
1054
1055 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1056 the LR. */
1057 if (fdatap->lr_offset != 0)
1058 fi->cache_fsr->regs [LR_REGNUM] = frame_addr + fdatap->lr_offset;
1059 }
1060
1061 /* Return the address of a frame. This is the inital %sp value when the frame
1062 was first allocated. For functions calling alloca(), it might be saved in
1063 an alloca register. */
1064
1065 CORE_ADDR
1066 frame_initial_stack_address (fi)
1067 struct frame_info *fi;
1068 {
1069 CORE_ADDR tmpaddr;
1070 struct rs6000_framedata fdata;
1071 struct frame_info *callee_fi;
1072
1073 /* if the initial stack pointer (frame address) of this frame is known,
1074 just return it. */
1075
1076 if (fi->initial_sp)
1077 return fi->initial_sp;
1078
1079 /* find out if this function is using an alloca register.. */
1080
1081 (void) skip_prologue (get_pc_function_start (fi->pc), &fdata);
1082
1083 /* if saved registers of this frame are not known yet, read and cache them. */
1084
1085 if (!fi->cache_fsr)
1086 frame_get_cache_fsr (fi, &fdata);
1087
1088 /* If no alloca register used, then fi->frame is the value of the %sp for
1089 this frame, and it is good enough. */
1090
1091 if (fdata.alloca_reg < 0) {
1092 fi->initial_sp = fi->frame;
1093 return fi->initial_sp;
1094 }
1095
1096 /* This function has an alloca register. If this is the top-most frame
1097 (with the lowest address), the value in alloca register is good. */
1098
1099 if (!fi->next)
1100 return fi->initial_sp = read_register (fdata.alloca_reg);
1101
1102 /* Otherwise, this is a caller frame. Callee has usually already saved
1103 registers, but there are exceptions (such as when the callee
1104 has no parameters). Find the address in which caller's alloca
1105 register is saved. */
1106
1107 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1108
1109 if (!callee_fi->cache_fsr)
1110 frame_get_cache_fsr (callee_fi, NULL);
1111
1112 /* this is the address in which alloca register is saved. */
1113
1114 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1115 if (tmpaddr) {
1116 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1117 return fi->initial_sp;
1118 }
1119
1120 /* Go look into deeper levels of the frame chain to see if any one of
1121 the callees has saved alloca register. */
1122 }
1123
1124 /* If alloca register was not saved, by the callee (or any of its callees)
1125 then the value in the register is still good. */
1126
1127 return fi->initial_sp = read_register (fdata.alloca_reg);
1128 }
1129
1130 CORE_ADDR
1131 rs6000_frame_chain (thisframe)
1132 struct frame_info *thisframe;
1133 {
1134 CORE_ADDR fp;
1135 if (inside_entry_file ((thisframe)->pc))
1136 return 0;
1137 if (thisframe->signal_handler_caller)
1138 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1139 else
1140 fp = read_memory_integer ((thisframe)->frame, 4);
1141
1142 return fp;
1143 }
1144 \f
1145 /* Keep an array of load segment information and their TOC table addresses.
1146 This info will be useful when calling a shared library function by hand. */
1147
1148 struct loadinfo {
1149 CORE_ADDR textorg, dataorg;
1150 unsigned long toc_offset;
1151 };
1152
1153 #define LOADINFOLEN 10
1154
1155 static struct loadinfo *loadinfo = NULL;
1156 static int loadinfolen = 0;
1157 static int loadinfotocindex = 0;
1158 static int loadinfotextindex = 0;
1159
1160
1161 void
1162 xcoff_init_loadinfo ()
1163 {
1164 loadinfotocindex = 0;
1165 loadinfotextindex = 0;
1166
1167 if (loadinfolen == 0) {
1168 loadinfo = (struct loadinfo *)
1169 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1170 loadinfolen = LOADINFOLEN;
1171 }
1172 }
1173
1174
1175 /* FIXME -- this is never called! */
1176 #if 0
1177 void
1178 free_loadinfo ()
1179 {
1180 if (loadinfo)
1181 free (loadinfo);
1182 loadinfo = NULL;
1183 loadinfolen = 0;
1184 loadinfotocindex = 0;
1185 loadinfotextindex = 0;
1186 }
1187 #endif
1188
1189 /* this is called from xcoffread.c */
1190
1191 void
1192 xcoff_add_toc_to_loadinfo (tocoff)
1193 unsigned long tocoff;
1194 {
1195 while (loadinfotocindex >= loadinfolen) {
1196 loadinfolen += LOADINFOLEN;
1197 loadinfo = (struct loadinfo *)
1198 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1199 }
1200 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1201 }
1202
1203 void
1204 add_text_to_loadinfo (textaddr, dataaddr)
1205 CORE_ADDR textaddr;
1206 CORE_ADDR dataaddr;
1207 {
1208 while (loadinfotextindex >= loadinfolen) {
1209 loadinfolen += LOADINFOLEN;
1210 loadinfo = (struct loadinfo *)
1211 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1212 }
1213 loadinfo [loadinfotextindex].textorg = textaddr;
1214 loadinfo [loadinfotextindex].dataorg = dataaddr;
1215 ++loadinfotextindex;
1216 }
1217
1218
1219 /* Note that this assumes that the "textorg" and "dataorg" elements of
1220 a member of this array are correlated with the "toc_offset" element
1221 of the same member. This is taken care of because the loops which
1222 assign the former (in xcoff_relocate_symtab or xcoff_relocate_core)
1223 and the latter (in scan_xcoff_symtab, via vmap_symtab, in
1224 vmap_ldinfo or xcoff_relocate_core) traverse the same objfiles in
1225 the same order. */
1226
1227 static CORE_ADDR
1228 find_toc_address (pc)
1229 CORE_ADDR pc;
1230 {
1231 int ii, toc_entry, tocbase = 0;
1232
1233 toc_entry = -1;
1234 for (ii=0; ii < loadinfotextindex; ++ii)
1235 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1236 toc_entry = ii;
1237 tocbase = loadinfo[ii].textorg;
1238 }
1239
1240 if (toc_entry == -1)
1241 error ("Unable to find TOC entry for pc 0x%x\n", pc);
1242 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1243 }
1244
1245 /* Return nonzero if ADDR (a function pointer) is in the data space and
1246 is therefore a special function pointer. */
1247
1248 int
1249 is_magic_function_pointer (addr)
1250 CORE_ADDR addr;
1251 {
1252 struct obj_section *s;
1253
1254 s = find_pc_section (addr);
1255 if (s && s->the_bfd_section->flags & SEC_CODE)
1256 return 0;
1257 else
1258 return 1;
1259 }
1260
1261 #ifdef GDB_TARGET_POWERPC
1262 int
1263 gdb_print_insn_powerpc (memaddr, info)
1264 bfd_vma memaddr;
1265 disassemble_info *info;
1266 {
1267 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1268 return print_insn_big_powerpc (memaddr, info);
1269 else
1270 return print_insn_little_powerpc (memaddr, info);
1271 }
1272 #endif
1273
1274 void
1275 _initialize_rs6000_tdep ()
1276 {
1277 #ifndef ELF_OBJECT_FORMAT
1278 {
1279 extern void (*xcoff_add_toc_to_loadinfo_hook) PARAMS ((unsigned long));
1280 extern void (*xcoff_init_loadinfo_hook) PARAMS ((void));
1281
1282 /* Initialize hook in xcoffread for recording the toc offset value
1283 of a symbol table into the ldinfo structure, for native rs6000
1284 config. */
1285 xcoff_add_toc_to_loadinfo_hook = &xcoff_add_toc_to_loadinfo;
1286
1287 /* Initialize hook in xcoffread for calling xcoff_init_loadinfo in
1288 a native rs6000 config. */
1289 xcoff_init_loadinfo_hook = &xcoff_init_loadinfo;
1290 }
1291 #endif /* ELF_OBJECT_FORMAT */
1292
1293 /* FIXME, this should not be decided via ifdef. */
1294 #ifdef GDB_TARGET_POWERPC
1295 tm_print_insn = gdb_print_insn_powerpc;
1296 #else
1297 tm_print_insn = print_insn_rs6000;
1298 #endif
1299 }
This page took 0.055653 seconds and 4 git commands to generate.