*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 #include "rs6000-tdep.h"
63
64 /* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71 #define SIG_FRAME_PC_OFFSET 96
72 #define SIG_FRAME_LR_OFFSET 108
73 #define SIG_FRAME_FP_OFFSET 284
74
75 /* To be used by skip_prologue. */
76
77 struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
84 int saved_vr; /* smallest # of saved vr */
85 int saved_ev; /* smallest # of saved ev */
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
91 int vr_offset; /* offset of saved vrs from prev sp */
92 int ev_offset; /* offset of saved evs from prev sp */
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
95 int vrsave_offset; /* offset of saved vrsave register */
96 };
97
98 /* Description of a single register. */
99
100 struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
105 unsigned char fpr; /* whether register is floating-point */
106 unsigned char pseudo; /* whether register is pseudo */
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
110 };
111
112 /* Hook for determining the TOC address when calling functions in the
113 inferior under AIX. The initialization code in rs6000-nat.c sets
114 this hook to point to find_toc_address. */
115
116 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
117
118 /* Hook to set the current architecture when starting a child process.
119 rs6000-nat.c sets this. */
120
121 void (*rs6000_set_host_arch_hook) (int) = NULL;
122
123 /* Static function prototypes */
124
125 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
126 CORE_ADDR safety);
127 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
128 struct rs6000_framedata *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141
142 /* Return true if REGNO is an SPE register, false otherwise. */
143 int
144 spe_register_p (int regno)
145 {
146 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
147
148 /* Is it a reference to EV0 -- EV31, and do we have those? */
149 if (tdep->ppc_ev0_regnum >= 0
150 && tdep->ppc_ev31_regnum >= 0
151 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
152 return 1;
153
154 /* Is it a reference to one of the raw upper GPR halves? */
155 if (tdep->ppc_ev0_upper_regnum >= 0
156 && tdep->ppc_ev0_upper_regnum <= regno
157 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
158 return 1;
159
160 /* Is it a reference to the 64-bit accumulator, and do we have that? */
161 if (tdep->ppc_acc_regnum >= 0
162 && tdep->ppc_acc_regnum == regno)
163 return 1;
164
165 /* Is it a reference to the SPE floating-point status and control register,
166 and do we have that? */
167 if (tdep->ppc_spefscr_regnum >= 0
168 && tdep->ppc_spefscr_regnum == regno)
169 return 1;
170
171 return 0;
172 }
173
174
175 /* Return non-zero if the architecture described by GDBARCH has
176 floating-point registers (f0 --- f31 and fpscr). */
177 int
178 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 return (tdep->ppc_fp0_regnum >= 0
183 && tdep->ppc_fpscr_regnum >= 0);
184 }
185
186
187 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
188 set it to SIM_REGNO.
189
190 This is a helper function for init_sim_regno_table, constructing
191 the table mapping GDB register numbers to sim register numbers; we
192 initialize every element in that table to -1 before we start
193 filling it in. */
194 static void
195 set_sim_regno (int *table, int gdb_regno, int sim_regno)
196 {
197 /* Make sure we don't try to assign any given GDB register a sim
198 register number more than once. */
199 gdb_assert (table[gdb_regno] == -1);
200 table[gdb_regno] = sim_regno;
201 }
202
203
204 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
205 numbers to simulator register numbers, based on the values placed
206 in the ARCH->tdep->ppc_foo_regnum members. */
207 static void
208 init_sim_regno_table (struct gdbarch *arch)
209 {
210 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
211 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
212 const struct reg *regs = tdep->regs;
213 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
214 int i;
215
216 /* Presume that all registers not explicitly mentioned below are
217 unavailable from the sim. */
218 for (i = 0; i < total_regs; i++)
219 sim_regno[i] = -1;
220
221 /* General-purpose registers. */
222 for (i = 0; i < ppc_num_gprs; i++)
223 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
224
225 /* Floating-point registers. */
226 if (tdep->ppc_fp0_regnum >= 0)
227 for (i = 0; i < ppc_num_fprs; i++)
228 set_sim_regno (sim_regno,
229 tdep->ppc_fp0_regnum + i,
230 sim_ppc_f0_regnum + i);
231 if (tdep->ppc_fpscr_regnum >= 0)
232 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
233
234 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
235 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
236 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
237
238 /* Segment registers. */
239 if (tdep->ppc_sr0_regnum >= 0)
240 for (i = 0; i < ppc_num_srs; i++)
241 set_sim_regno (sim_regno,
242 tdep->ppc_sr0_regnum + i,
243 sim_ppc_sr0_regnum + i);
244
245 /* Altivec registers. */
246 if (tdep->ppc_vr0_regnum >= 0)
247 {
248 for (i = 0; i < ppc_num_vrs; i++)
249 set_sim_regno (sim_regno,
250 tdep->ppc_vr0_regnum + i,
251 sim_ppc_vr0_regnum + i);
252
253 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
254 we can treat this more like the other cases. */
255 set_sim_regno (sim_regno,
256 tdep->ppc_vr0_regnum + ppc_num_vrs,
257 sim_ppc_vscr_regnum);
258 }
259 /* vsave is a special-purpose register, so the code below handles it. */
260
261 /* SPE APU (E500) registers. */
262 if (tdep->ppc_ev0_regnum >= 0)
263 for (i = 0; i < ppc_num_gprs; i++)
264 set_sim_regno (sim_regno,
265 tdep->ppc_ev0_regnum + i,
266 sim_ppc_ev0_regnum + i);
267 if (tdep->ppc_ev0_upper_regnum >= 0)
268 for (i = 0; i < ppc_num_gprs; i++)
269 set_sim_regno (sim_regno,
270 tdep->ppc_ev0_upper_regnum + i,
271 sim_ppc_rh0_regnum + i);
272 if (tdep->ppc_acc_regnum >= 0)
273 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
274 /* spefscr is a special-purpose register, so the code below handles it. */
275
276 /* Now handle all special-purpose registers. Verify that they
277 haven't mistakenly been assigned numbers by any of the above
278 code). */
279 for (i = 0; i < total_regs; i++)
280 if (regs[i].spr_num >= 0)
281 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
282
283 /* Drop the initialized array into place. */
284 tdep->sim_regno = sim_regno;
285 }
286
287
288 /* Given a GDB register number REG, return the corresponding SIM
289 register number. */
290 static int
291 rs6000_register_sim_regno (int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
294 int sim_regno;
295
296 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
297 sim_regno = tdep->sim_regno[reg];
298
299 if (sim_regno >= 0)
300 return sim_regno;
301 else
302 return LEGACY_SIM_REGNO_IGNORE;
303 }
304
305 \f
306
307 /* Register set support functions. */
308
309 static void
310 ppc_supply_reg (struct regcache *regcache, int regnum,
311 const gdb_byte *regs, size_t offset)
312 {
313 if (regnum != -1 && offset != -1)
314 regcache_raw_supply (regcache, regnum, regs + offset);
315 }
316
317 static void
318 ppc_collect_reg (const struct regcache *regcache, int regnum,
319 gdb_byte *regs, size_t offset)
320 {
321 if (regnum != -1 && offset != -1)
322 regcache_raw_collect (regcache, regnum, regs + offset);
323 }
324
325 /* Supply register REGNUM in the general-purpose register set REGSET
326 from the buffer specified by GREGS and LEN to register cache
327 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
328
329 void
330 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
331 int regnum, const void *gregs, size_t len)
332 {
333 struct gdbarch *gdbarch = get_regcache_arch (regcache);
334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335 const struct ppc_reg_offsets *offsets = regset->descr;
336 size_t offset;
337 int i;
338
339 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
340 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
341 i++, offset += 4)
342 {
343 if (regnum == -1 || regnum == i)
344 ppc_supply_reg (regcache, i, gregs, offset);
345 }
346
347 if (regnum == -1 || regnum == PC_REGNUM)
348 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
349 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
350 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
351 gregs, offsets->ps_offset);
352 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
353 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
354 gregs, offsets->cr_offset);
355 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
356 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
357 gregs, offsets->lr_offset);
358 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
359 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
360 gregs, offsets->ctr_offset);
361 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
362 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
363 gregs, offsets->cr_offset);
364 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
365 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
366 }
367
368 /* Supply register REGNUM in the floating-point register set REGSET
369 from the buffer specified by FPREGS and LEN to register cache
370 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
371
372 void
373 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
374 int regnum, const void *fpregs, size_t len)
375 {
376 struct gdbarch *gdbarch = get_regcache_arch (regcache);
377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
378 const struct ppc_reg_offsets *offsets = regset->descr;
379 size_t offset;
380 int i;
381
382 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383
384 offset = offsets->f0_offset;
385 for (i = tdep->ppc_fp0_regnum;
386 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
387 i++, offset += 8)
388 {
389 if (regnum == -1 || regnum == i)
390 ppc_supply_reg (regcache, i, fpregs, offset);
391 }
392
393 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
394 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
395 fpregs, offsets->fpscr_offset);
396 }
397
398 /* Collect register REGNUM in the general-purpose register set
399 REGSET. from register cache REGCACHE into the buffer specified by
400 GREGS and LEN. If REGNUM is -1, do this for all registers in
401 REGSET. */
402
403 void
404 ppc_collect_gregset (const struct regset *regset,
405 const struct regcache *regcache,
406 int regnum, void *gregs, size_t len)
407 {
408 struct gdbarch *gdbarch = get_regcache_arch (regcache);
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410 const struct ppc_reg_offsets *offsets = regset->descr;
411 size_t offset;
412 int i;
413
414 offset = offsets->r0_offset;
415 for (i = tdep->ppc_gp0_regnum;
416 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
417 i++, offset += 4)
418 {
419 if (regnum == -1 || regnum == i)
420 ppc_collect_reg (regcache, i, gregs, offset);
421 }
422
423 if (regnum == -1 || regnum == PC_REGNUM)
424 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
425 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
426 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
427 gregs, offsets->ps_offset);
428 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
429 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
430 gregs, offsets->cr_offset);
431 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
432 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
433 gregs, offsets->lr_offset);
434 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
435 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
436 gregs, offsets->ctr_offset);
437 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
438 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
439 gregs, offsets->xer_offset);
440 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
441 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
442 gregs, offsets->mq_offset);
443 }
444
445 /* Collect register REGNUM in the floating-point register set
446 REGSET. from register cache REGCACHE into the buffer specified by
447 FPREGS and LEN. If REGNUM is -1, do this for all registers in
448 REGSET. */
449
450 void
451 ppc_collect_fpregset (const struct regset *regset,
452 const struct regcache *regcache,
453 int regnum, void *fpregs, size_t len)
454 {
455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
457 const struct ppc_reg_offsets *offsets = regset->descr;
458 size_t offset;
459 int i;
460
461 gdb_assert (ppc_floating_point_unit_p (gdbarch));
462
463 offset = offsets->f0_offset;
464 for (i = tdep->ppc_fp0_regnum;
465 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
466 i++, offset += 8)
467 {
468 if (regnum == -1 || regnum == i)
469 ppc_collect_reg (regcache, i, fpregs, offset);
470 }
471
472 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
473 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
474 fpregs, offsets->fpscr_offset);
475 }
476 \f
477
478 /* Read a LEN-byte address from debugged memory address MEMADDR. */
479
480 static CORE_ADDR
481 read_memory_addr (CORE_ADDR memaddr, int len)
482 {
483 return read_memory_unsigned_integer (memaddr, len);
484 }
485
486 static CORE_ADDR
487 rs6000_skip_prologue (CORE_ADDR pc)
488 {
489 struct rs6000_framedata frame;
490 pc = skip_prologue (pc, 0, &frame);
491 return pc;
492 }
493
494 static int
495 insn_changes_sp_or_jumps (unsigned long insn)
496 {
497 int opcode = (insn >> 26) & 0x03f;
498 int sd = (insn >> 21) & 0x01f;
499 int a = (insn >> 16) & 0x01f;
500 int subcode = (insn >> 1) & 0x3ff;
501
502 /* Changes the stack pointer. */
503
504 /* NOTE: There are many ways to change the value of a given register.
505 The ways below are those used when the register is R1, the SP,
506 in a funtion's epilogue. */
507
508 if (opcode == 31 && subcode == 444 && a == 1)
509 return 1; /* mr R1,Rn */
510 if (opcode == 14 && sd == 1)
511 return 1; /* addi R1,Rn,simm */
512 if (opcode == 58 && sd == 1)
513 return 1; /* ld R1,ds(Rn) */
514
515 /* Transfers control. */
516
517 if (opcode == 18)
518 return 1; /* b */
519 if (opcode == 16)
520 return 1; /* bc */
521 if (opcode == 19 && subcode == 16)
522 return 1; /* bclr */
523 if (opcode == 19 && subcode == 528)
524 return 1; /* bcctr */
525
526 return 0;
527 }
528
529 /* Return true if we are in the function's epilogue, i.e. after the
530 instruction that destroyed the function's stack frame.
531
532 1) scan forward from the point of execution:
533 a) If you find an instruction that modifies the stack pointer
534 or transfers control (except a return), execution is not in
535 an epilogue, return.
536 b) Stop scanning if you find a return instruction or reach the
537 end of the function or reach the hard limit for the size of
538 an epilogue.
539 2) scan backward from the point of execution:
540 a) If you find an instruction that modifies the stack pointer,
541 execution *is* in an epilogue, return.
542 b) Stop scanning if you reach an instruction that transfers
543 control or the beginning of the function or reach the hard
544 limit for the size of an epilogue. */
545
546 static int
547 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
548 {
549 bfd_byte insn_buf[PPC_INSN_SIZE];
550 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
551 unsigned long insn;
552 struct frame_info *curfrm;
553
554 /* Find the search limits based on function boundaries and hard limit. */
555
556 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
557 return 0;
558
559 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
560 if (epilogue_start < func_start) epilogue_start = func_start;
561
562 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
563 if (epilogue_end > func_end) epilogue_end = func_end;
564
565 curfrm = get_current_frame ();
566
567 /* Scan forward until next 'blr'. */
568
569 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
570 {
571 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
572 return 0;
573 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
574 if (insn == 0x4e800020)
575 break;
576 if (insn_changes_sp_or_jumps (insn))
577 return 0;
578 }
579
580 /* Scan backward until adjustment to stack pointer (R1). */
581
582 for (scan_pc = pc - PPC_INSN_SIZE;
583 scan_pc >= epilogue_start;
584 scan_pc -= PPC_INSN_SIZE)
585 {
586 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
587 return 0;
588 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
589 if (insn_changes_sp_or_jumps (insn))
590 return 1;
591 }
592
593 return 0;
594 }
595
596
597 /* Fill in fi->saved_regs */
598
599 struct frame_extra_info
600 {
601 /* Functions calling alloca() change the value of the stack
602 pointer. We need to use initial stack pointer (which is saved in
603 r31 by gcc) in such cases. If a compiler emits traceback table,
604 then we should use the alloca register specified in traceback
605 table. FIXME. */
606 CORE_ADDR initial_sp; /* initial stack pointer. */
607 };
608
609 /* Get the ith function argument for the current function. */
610 static CORE_ADDR
611 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
612 struct type *type)
613 {
614 return get_frame_register_unsigned (frame, 3 + argi);
615 }
616
617 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
618
619 static CORE_ADDR
620 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
621 {
622 CORE_ADDR dest;
623 int immediate;
624 int absolute;
625 int ext_op;
626
627 absolute = (int) ((instr >> 1) & 1);
628
629 switch (opcode)
630 {
631 case 18:
632 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
633 if (absolute)
634 dest = immediate;
635 else
636 dest = pc + immediate;
637 break;
638
639 case 16:
640 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
641 if (absolute)
642 dest = immediate;
643 else
644 dest = pc + immediate;
645 break;
646
647 case 19:
648 ext_op = (instr >> 1) & 0x3ff;
649
650 if (ext_op == 16) /* br conditional register */
651 {
652 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
653
654 /* If we are about to return from a signal handler, dest is
655 something like 0x3c90. The current frame is a signal handler
656 caller frame, upon completion of the sigreturn system call
657 execution will return to the saved PC in the frame. */
658 if (dest < TEXT_SEGMENT_BASE)
659 {
660 struct frame_info *fi;
661
662 fi = get_current_frame ();
663 if (fi != NULL)
664 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
665 gdbarch_tdep (current_gdbarch)->wordsize);
666 }
667 }
668
669 else if (ext_op == 528) /* br cond to count reg */
670 {
671 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
672
673 /* If we are about to execute a system call, dest is something
674 like 0x22fc or 0x3b00. Upon completion the system call
675 will return to the address in the link register. */
676 if (dest < TEXT_SEGMENT_BASE)
677 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
678 }
679 else
680 return -1;
681 break;
682
683 default:
684 return -1;
685 }
686 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
687 }
688
689
690 /* Sequence of bytes for breakpoint instruction. */
691
692 const static unsigned char *
693 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
694 {
695 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
696 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
697 *bp_size = 4;
698 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
699 return big_breakpoint;
700 else
701 return little_breakpoint;
702 }
703
704
705 /* AIX does not support PT_STEP. Simulate it. */
706
707 void
708 rs6000_software_single_step (enum target_signal signal,
709 int insert_breakpoints_p)
710 {
711 CORE_ADDR dummy;
712 int breakp_sz;
713 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
714 int ii, insn;
715 CORE_ADDR loc;
716 CORE_ADDR breaks[2];
717 int opcode;
718
719 if (insert_breakpoints_p)
720 {
721 loc = read_pc ();
722
723 insn = read_memory_integer (loc, 4);
724
725 breaks[0] = loc + breakp_sz;
726 opcode = insn >> 26;
727 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
728
729 /* Don't put two breakpoints on the same address. */
730 if (breaks[1] == breaks[0])
731 breaks[1] = -1;
732
733 for (ii = 0; ii < 2; ++ii)
734 {
735 /* ignore invalid breakpoint. */
736 if (breaks[ii] == -1)
737 continue;
738 insert_single_step_breakpoint (breaks[ii]);
739 }
740 }
741 else
742 remove_single_step_breakpoints ();
743
744 errno = 0; /* FIXME, don't ignore errors! */
745 /* What errors? {read,write}_memory call error(). */
746 }
747
748
749 /* return pc value after skipping a function prologue and also return
750 information about a function frame.
751
752 in struct rs6000_framedata fdata:
753 - frameless is TRUE, if function does not have a frame.
754 - nosavedpc is TRUE, if function does not save %pc value in its frame.
755 - offset is the initial size of this stack frame --- the amount by
756 which we decrement the sp to allocate the frame.
757 - saved_gpr is the number of the first saved gpr.
758 - saved_fpr is the number of the first saved fpr.
759 - saved_vr is the number of the first saved vr.
760 - saved_ev is the number of the first saved ev.
761 - alloca_reg is the number of the register used for alloca() handling.
762 Otherwise -1.
763 - gpr_offset is the offset of the first saved gpr from the previous frame.
764 - fpr_offset is the offset of the first saved fpr from the previous frame.
765 - vr_offset is the offset of the first saved vr from the previous frame.
766 - ev_offset is the offset of the first saved ev from the previous frame.
767 - lr_offset is the offset of the saved lr
768 - cr_offset is the offset of the saved cr
769 - vrsave_offset is the offset of the saved vrsave register
770 */
771
772 #define SIGNED_SHORT(x) \
773 ((sizeof (short) == 2) \
774 ? ((int)(short)(x)) \
775 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
776
777 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
778
779 /* Limit the number of skipped non-prologue instructions, as the examining
780 of the prologue is expensive. */
781 static int max_skip_non_prologue_insns = 10;
782
783 /* Given PC representing the starting address of a function, and
784 LIM_PC which is the (sloppy) limit to which to scan when looking
785 for a prologue, attempt to further refine this limit by using
786 the line data in the symbol table. If successful, a better guess
787 on where the prologue ends is returned, otherwise the previous
788 value of lim_pc is returned. */
789
790 /* FIXME: cagney/2004-02-14: This function and logic have largely been
791 superseded by skip_prologue_using_sal. */
792
793 static CORE_ADDR
794 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
795 {
796 struct symtab_and_line prologue_sal;
797
798 prologue_sal = find_pc_line (pc, 0);
799 if (prologue_sal.line != 0)
800 {
801 int i;
802 CORE_ADDR addr = prologue_sal.end;
803
804 /* Handle the case in which compiler's optimizer/scheduler
805 has moved instructions into the prologue. We scan ahead
806 in the function looking for address ranges whose corresponding
807 line number is less than or equal to the first one that we
808 found for the function. (It can be less than when the
809 scheduler puts a body instruction before the first prologue
810 instruction.) */
811 for (i = 2 * max_skip_non_prologue_insns;
812 i > 0 && (lim_pc == 0 || addr < lim_pc);
813 i--)
814 {
815 struct symtab_and_line sal;
816
817 sal = find_pc_line (addr, 0);
818 if (sal.line == 0)
819 break;
820 if (sal.line <= prologue_sal.line
821 && sal.symtab == prologue_sal.symtab)
822 {
823 prologue_sal = sal;
824 }
825 addr = sal.end;
826 }
827
828 if (lim_pc == 0 || prologue_sal.end < lim_pc)
829 lim_pc = prologue_sal.end;
830 }
831 return lim_pc;
832 }
833
834 /* Return nonzero if the given instruction OP can be part of the prologue
835 of a function and saves a parameter on the stack. FRAMEP should be
836 set if one of the previous instructions in the function has set the
837 Frame Pointer. */
838
839 static int
840 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
841 {
842 /* Move parameters from argument registers to temporary register. */
843 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
844 {
845 /* Rx must be scratch register r0. */
846 const int rx_regno = (op >> 16) & 31;
847 /* Ry: Only r3 - r10 are used for parameter passing. */
848 const int ry_regno = GET_SRC_REG (op);
849
850 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
851 {
852 *r0_contains_arg = 1;
853 return 1;
854 }
855 else
856 return 0;
857 }
858
859 /* Save a General Purpose Register on stack. */
860
861 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
862 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
863 {
864 /* Rx: Only r3 - r10 are used for parameter passing. */
865 const int rx_regno = GET_SRC_REG (op);
866
867 return (rx_regno >= 3 && rx_regno <= 10);
868 }
869
870 /* Save a General Purpose Register on stack via the Frame Pointer. */
871
872 if (framep &&
873 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
874 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
875 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
876 {
877 /* Rx: Usually, only r3 - r10 are used for parameter passing.
878 However, the compiler sometimes uses r0 to hold an argument. */
879 const int rx_regno = GET_SRC_REG (op);
880
881 return ((rx_regno >= 3 && rx_regno <= 10)
882 || (rx_regno == 0 && *r0_contains_arg));
883 }
884
885 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
886 {
887 /* Only f2 - f8 are used for parameter passing. */
888 const int src_regno = GET_SRC_REG (op);
889
890 return (src_regno >= 2 && src_regno <= 8);
891 }
892
893 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
894 {
895 /* Only f2 - f8 are used for parameter passing. */
896 const int src_regno = GET_SRC_REG (op);
897
898 return (src_regno >= 2 && src_regno <= 8);
899 }
900
901 /* Not an insn that saves a parameter on stack. */
902 return 0;
903 }
904
905 static CORE_ADDR
906 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
907 {
908 CORE_ADDR orig_pc = pc;
909 CORE_ADDR last_prologue_pc = pc;
910 CORE_ADDR li_found_pc = 0;
911 gdb_byte buf[4];
912 unsigned long op;
913 long offset = 0;
914 long vr_saved_offset = 0;
915 int lr_reg = -1;
916 int cr_reg = -1;
917 int vr_reg = -1;
918 int ev_reg = -1;
919 long ev_offset = 0;
920 int vrsave_reg = -1;
921 int reg;
922 int framep = 0;
923 int minimal_toc_loaded = 0;
924 int prev_insn_was_prologue_insn = 1;
925 int num_skip_non_prologue_insns = 0;
926 int r0_contains_arg = 0;
927 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
928 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
929
930 /* Attempt to find the end of the prologue when no limit is specified.
931 Note that refine_prologue_limit() has been written so that it may
932 be used to "refine" the limits of non-zero PC values too, but this
933 is only safe if we 1) trust the line information provided by the
934 compiler and 2) iterate enough to actually find the end of the
935 prologue.
936
937 It may become a good idea at some point (for both performance and
938 accuracy) to unconditionally call refine_prologue_limit(). But,
939 until we can make a clear determination that this is beneficial,
940 we'll play it safe and only use it to obtain a limit when none
941 has been specified. */
942 if (lim_pc == 0)
943 lim_pc = refine_prologue_limit (pc, lim_pc);
944
945 memset (fdata, 0, sizeof (struct rs6000_framedata));
946 fdata->saved_gpr = -1;
947 fdata->saved_fpr = -1;
948 fdata->saved_vr = -1;
949 fdata->saved_ev = -1;
950 fdata->alloca_reg = -1;
951 fdata->frameless = 1;
952 fdata->nosavedpc = 1;
953
954 for (;; pc += 4)
955 {
956 /* Sometimes it isn't clear if an instruction is a prologue
957 instruction or not. When we encounter one of these ambiguous
958 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
959 Otherwise, we'll assume that it really is a prologue instruction. */
960 if (prev_insn_was_prologue_insn)
961 last_prologue_pc = pc;
962
963 /* Stop scanning if we've hit the limit. */
964 if (lim_pc != 0 && pc >= lim_pc)
965 break;
966
967 prev_insn_was_prologue_insn = 1;
968
969 /* Fetch the instruction and convert it to an integer. */
970 if (target_read_memory (pc, buf, 4))
971 break;
972 op = extract_signed_integer (buf, 4);
973
974 if ((op & 0xfc1fffff) == 0x7c0802a6)
975 { /* mflr Rx */
976 /* Since shared library / PIC code, which needs to get its
977 address at runtime, can appear to save more than one link
978 register vis:
979
980 *INDENT-OFF*
981 stwu r1,-304(r1)
982 mflr r3
983 bl 0xff570d0 (blrl)
984 stw r30,296(r1)
985 mflr r30
986 stw r31,300(r1)
987 stw r3,308(r1);
988 ...
989 *INDENT-ON*
990
991 remember just the first one, but skip over additional
992 ones. */
993 if (lr_reg == -1)
994 lr_reg = (op & 0x03e00000);
995 if (lr_reg == 0)
996 r0_contains_arg = 0;
997 continue;
998 }
999 else if ((op & 0xfc1fffff) == 0x7c000026)
1000 { /* mfcr Rx */
1001 cr_reg = (op & 0x03e00000);
1002 if (cr_reg == 0)
1003 r0_contains_arg = 0;
1004 continue;
1005
1006 }
1007 else if ((op & 0xfc1f0000) == 0xd8010000)
1008 { /* stfd Rx,NUM(r1) */
1009 reg = GET_SRC_REG (op);
1010 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1011 {
1012 fdata->saved_fpr = reg;
1013 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1014 }
1015 continue;
1016
1017 }
1018 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1019 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1020 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1021 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1022 {
1023
1024 reg = GET_SRC_REG (op);
1025 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1026 {
1027 fdata->saved_gpr = reg;
1028 if ((op & 0xfc1f0003) == 0xf8010000)
1029 op &= ~3UL;
1030 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1031 }
1032 continue;
1033
1034 }
1035 else if ((op & 0xffff0000) == 0x60000000)
1036 {
1037 /* nop */
1038 /* Allow nops in the prologue, but do not consider them to
1039 be part of the prologue unless followed by other prologue
1040 instructions. */
1041 prev_insn_was_prologue_insn = 0;
1042 continue;
1043
1044 }
1045 else if ((op & 0xffff0000) == 0x3c000000)
1046 { /* addis 0,0,NUM, used
1047 for >= 32k frames */
1048 fdata->offset = (op & 0x0000ffff) << 16;
1049 fdata->frameless = 0;
1050 r0_contains_arg = 0;
1051 continue;
1052
1053 }
1054 else if ((op & 0xffff0000) == 0x60000000)
1055 { /* ori 0,0,NUM, 2nd ha
1056 lf of >= 32k frames */
1057 fdata->offset |= (op & 0x0000ffff);
1058 fdata->frameless = 0;
1059 r0_contains_arg = 0;
1060 continue;
1061
1062 }
1063 else if (lr_reg >= 0 &&
1064 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1065 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1066 /* stw Rx, NUM(r1) */
1067 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1068 /* stwu Rx, NUM(r1) */
1069 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1070 { /* where Rx == lr */
1071 fdata->lr_offset = offset;
1072 fdata->nosavedpc = 0;
1073 /* Invalidate lr_reg, but don't set it to -1.
1074 That would mean that it had never been set. */
1075 lr_reg = -2;
1076 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1077 (op & 0xfc000000) == 0x90000000) /* stw */
1078 {
1079 /* Does not update r1, so add displacement to lr_offset. */
1080 fdata->lr_offset += SIGNED_SHORT (op);
1081 }
1082 continue;
1083
1084 }
1085 else if (cr_reg >= 0 &&
1086 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1087 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1088 /* stw Rx, NUM(r1) */
1089 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1090 /* stwu Rx, NUM(r1) */
1091 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1092 { /* where Rx == cr */
1093 fdata->cr_offset = offset;
1094 /* Invalidate cr_reg, but don't set it to -1.
1095 That would mean that it had never been set. */
1096 cr_reg = -2;
1097 if ((op & 0xfc000003) == 0xf8000000 ||
1098 (op & 0xfc000000) == 0x90000000)
1099 {
1100 /* Does not update r1, so add displacement to cr_offset. */
1101 fdata->cr_offset += SIGNED_SHORT (op);
1102 }
1103 continue;
1104
1105 }
1106 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1107 {
1108 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1109 prediction bits. If the LR has already been saved, we can
1110 skip it. */
1111 continue;
1112 }
1113 else if (op == 0x48000005)
1114 { /* bl .+4 used in
1115 -mrelocatable */
1116 continue;
1117
1118 }
1119 else if (op == 0x48000004)
1120 { /* b .+4 (xlc) */
1121 break;
1122
1123 }
1124 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1125 in V.4 -mminimal-toc */
1126 (op & 0xffff0000) == 0x3bde0000)
1127 { /* addi 30,30,foo@l */
1128 continue;
1129
1130 }
1131 else if ((op & 0xfc000001) == 0x48000001)
1132 { /* bl foo,
1133 to save fprs??? */
1134
1135 fdata->frameless = 0;
1136 /* Don't skip over the subroutine call if it is not within
1137 the first three instructions of the prologue and either
1138 we have no line table information or the line info tells
1139 us that the subroutine call is not part of the line
1140 associated with the prologue. */
1141 if ((pc - orig_pc) > 8)
1142 {
1143 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1144 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1145
1146 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1147 break;
1148 }
1149
1150 op = read_memory_integer (pc + 4, 4);
1151
1152 /* At this point, make sure this is not a trampoline
1153 function (a function that simply calls another functions,
1154 and nothing else). If the next is not a nop, this branch
1155 was part of the function prologue. */
1156
1157 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1158 break; /* don't skip over
1159 this branch */
1160 continue;
1161
1162 }
1163 /* update stack pointer */
1164 else if ((op & 0xfc1f0000) == 0x94010000)
1165 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1166 fdata->frameless = 0;
1167 fdata->offset = SIGNED_SHORT (op);
1168 offset = fdata->offset;
1169 continue;
1170 }
1171 else if ((op & 0xfc1f016a) == 0x7c01016e)
1172 { /* stwux rX,r1,rY */
1173 /* no way to figure out what r1 is going to be */
1174 fdata->frameless = 0;
1175 offset = fdata->offset;
1176 continue;
1177 }
1178 else if ((op & 0xfc1f0003) == 0xf8010001)
1179 { /* stdu rX,NUM(r1) */
1180 fdata->frameless = 0;
1181 fdata->offset = SIGNED_SHORT (op & ~3UL);
1182 offset = fdata->offset;
1183 continue;
1184 }
1185 else if ((op & 0xfc1f016a) == 0x7c01016a)
1186 { /* stdux rX,r1,rY */
1187 /* no way to figure out what r1 is going to be */
1188 fdata->frameless = 0;
1189 offset = fdata->offset;
1190 continue;
1191 }
1192 /* Load up minimal toc pointer */
1193 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1194 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1195 && !minimal_toc_loaded)
1196 {
1197 minimal_toc_loaded = 1;
1198 continue;
1199
1200 /* move parameters from argument registers to local variable
1201 registers */
1202 }
1203 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1204 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1205 (((op >> 21) & 31) <= 10) &&
1206 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1207 {
1208 continue;
1209
1210 /* store parameters in stack */
1211 }
1212 /* Move parameters from argument registers to temporary register. */
1213 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1214 {
1215 continue;
1216
1217 /* Set up frame pointer */
1218 }
1219 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1220 || op == 0x7c3f0b78)
1221 { /* mr r31, r1 */
1222 fdata->frameless = 0;
1223 framep = 1;
1224 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1225 continue;
1226
1227 /* Another way to set up the frame pointer. */
1228 }
1229 else if ((op & 0xfc1fffff) == 0x38010000)
1230 { /* addi rX, r1, 0x0 */
1231 fdata->frameless = 0;
1232 framep = 1;
1233 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1234 + ((op & ~0x38010000) >> 21));
1235 continue;
1236 }
1237 /* AltiVec related instructions. */
1238 /* Store the vrsave register (spr 256) in another register for
1239 later manipulation, or load a register into the vrsave
1240 register. 2 instructions are used: mfvrsave and
1241 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1242 and mtspr SPR256, Rn. */
1243 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1244 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1245 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1246 {
1247 vrsave_reg = GET_SRC_REG (op);
1248 continue;
1249 }
1250 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1251 {
1252 continue;
1253 }
1254 /* Store the register where vrsave was saved to onto the stack:
1255 rS is the register where vrsave was stored in a previous
1256 instruction. */
1257 /* 100100 sssss 00001 dddddddd dddddddd */
1258 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1259 {
1260 if (vrsave_reg == GET_SRC_REG (op))
1261 {
1262 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1263 vrsave_reg = -1;
1264 }
1265 continue;
1266 }
1267 /* Compute the new value of vrsave, by modifying the register
1268 where vrsave was saved to. */
1269 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1270 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1271 {
1272 continue;
1273 }
1274 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1275 in a pair of insns to save the vector registers on the
1276 stack. */
1277 /* 001110 00000 00000 iiii iiii iiii iiii */
1278 /* 001110 01110 00000 iiii iiii iiii iiii */
1279 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1280 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1281 {
1282 if ((op & 0xffff0000) == 0x38000000)
1283 r0_contains_arg = 0;
1284 li_found_pc = pc;
1285 vr_saved_offset = SIGNED_SHORT (op);
1286
1287 /* This insn by itself is not part of the prologue, unless
1288 if part of the pair of insns mentioned above. So do not
1289 record this insn as part of the prologue yet. */
1290 prev_insn_was_prologue_insn = 0;
1291 }
1292 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1293 /* 011111 sssss 11111 00000 00111001110 */
1294 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1295 {
1296 if (pc == (li_found_pc + 4))
1297 {
1298 vr_reg = GET_SRC_REG (op);
1299 /* If this is the first vector reg to be saved, or if
1300 it has a lower number than others previously seen,
1301 reupdate the frame info. */
1302 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1303 {
1304 fdata->saved_vr = vr_reg;
1305 fdata->vr_offset = vr_saved_offset + offset;
1306 }
1307 vr_saved_offset = -1;
1308 vr_reg = -1;
1309 li_found_pc = 0;
1310 }
1311 }
1312 /* End AltiVec related instructions. */
1313
1314 /* Start BookE related instructions. */
1315 /* Store gen register S at (r31+uimm).
1316 Any register less than r13 is volatile, so we don't care. */
1317 /* 000100 sssss 11111 iiiii 01100100001 */
1318 else if (arch_info->mach == bfd_mach_ppc_e500
1319 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1320 {
1321 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1322 {
1323 unsigned int imm;
1324 ev_reg = GET_SRC_REG (op);
1325 imm = (op >> 11) & 0x1f;
1326 ev_offset = imm * 8;
1327 /* If this is the first vector reg to be saved, or if
1328 it has a lower number than others previously seen,
1329 reupdate the frame info. */
1330 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1331 {
1332 fdata->saved_ev = ev_reg;
1333 fdata->ev_offset = ev_offset + offset;
1334 }
1335 }
1336 continue;
1337 }
1338 /* Store gen register rS at (r1+rB). */
1339 /* 000100 sssss 00001 bbbbb 01100100000 */
1340 else if (arch_info->mach == bfd_mach_ppc_e500
1341 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1342 {
1343 if (pc == (li_found_pc + 4))
1344 {
1345 ev_reg = GET_SRC_REG (op);
1346 /* If this is the first vector reg to be saved, or if
1347 it has a lower number than others previously seen,
1348 reupdate the frame info. */
1349 /* We know the contents of rB from the previous instruction. */
1350 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1351 {
1352 fdata->saved_ev = ev_reg;
1353 fdata->ev_offset = vr_saved_offset + offset;
1354 }
1355 vr_saved_offset = -1;
1356 ev_reg = -1;
1357 li_found_pc = 0;
1358 }
1359 continue;
1360 }
1361 /* Store gen register r31 at (rA+uimm). */
1362 /* 000100 11111 aaaaa iiiii 01100100001 */
1363 else if (arch_info->mach == bfd_mach_ppc_e500
1364 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1365 {
1366 /* Wwe know that the source register is 31 already, but
1367 it can't hurt to compute it. */
1368 ev_reg = GET_SRC_REG (op);
1369 ev_offset = ((op >> 11) & 0x1f) * 8;
1370 /* If this is the first vector reg to be saved, or if
1371 it has a lower number than others previously seen,
1372 reupdate the frame info. */
1373 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1374 {
1375 fdata->saved_ev = ev_reg;
1376 fdata->ev_offset = ev_offset + offset;
1377 }
1378
1379 continue;
1380 }
1381 /* Store gen register S at (r31+r0).
1382 Store param on stack when offset from SP bigger than 4 bytes. */
1383 /* 000100 sssss 11111 00000 01100100000 */
1384 else if (arch_info->mach == bfd_mach_ppc_e500
1385 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1386 {
1387 if (pc == (li_found_pc + 4))
1388 {
1389 if ((op & 0x03e00000) >= 0x01a00000)
1390 {
1391 ev_reg = GET_SRC_REG (op);
1392 /* If this is the first vector reg to be saved, or if
1393 it has a lower number than others previously seen,
1394 reupdate the frame info. */
1395 /* We know the contents of r0 from the previous
1396 instruction. */
1397 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1398 {
1399 fdata->saved_ev = ev_reg;
1400 fdata->ev_offset = vr_saved_offset + offset;
1401 }
1402 ev_reg = -1;
1403 }
1404 vr_saved_offset = -1;
1405 li_found_pc = 0;
1406 continue;
1407 }
1408 }
1409 /* End BookE related instructions. */
1410
1411 else
1412 {
1413 /* Not a recognized prologue instruction.
1414 Handle optimizer code motions into the prologue by continuing
1415 the search if we have no valid frame yet or if the return
1416 address is not yet saved in the frame. */
1417 if (fdata->frameless == 0
1418 && (lr_reg == -1 || fdata->nosavedpc == 0))
1419 break;
1420
1421 if (op == 0x4e800020 /* blr */
1422 || op == 0x4e800420) /* bctr */
1423 /* Do not scan past epilogue in frameless functions or
1424 trampolines. */
1425 break;
1426 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1427 /* Never skip branches. */
1428 break;
1429
1430 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1431 /* Do not scan too many insns, scanning insns is expensive with
1432 remote targets. */
1433 break;
1434
1435 /* Continue scanning. */
1436 prev_insn_was_prologue_insn = 0;
1437 continue;
1438 }
1439 }
1440
1441 #if 0
1442 /* I have problems with skipping over __main() that I need to address
1443 * sometime. Previously, I used to use misc_function_vector which
1444 * didn't work as well as I wanted to be. -MGO */
1445
1446 /* If the first thing after skipping a prolog is a branch to a function,
1447 this might be a call to an initializer in main(), introduced by gcc2.
1448 We'd like to skip over it as well. Fortunately, xlc does some extra
1449 work before calling a function right after a prologue, thus we can
1450 single out such gcc2 behaviour. */
1451
1452
1453 if ((op & 0xfc000001) == 0x48000001)
1454 { /* bl foo, an initializer function? */
1455 op = read_memory_integer (pc + 4, 4);
1456
1457 if (op == 0x4def7b82)
1458 { /* cror 0xf, 0xf, 0xf (nop) */
1459
1460 /* Check and see if we are in main. If so, skip over this
1461 initializer function as well. */
1462
1463 tmp = find_pc_misc_function (pc);
1464 if (tmp >= 0
1465 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1466 return pc + 8;
1467 }
1468 }
1469 #endif /* 0 */
1470
1471 fdata->offset = -fdata->offset;
1472 return last_prologue_pc;
1473 }
1474
1475
1476 /*************************************************************************
1477 Support for creating pushing a dummy frame into the stack, and popping
1478 frames, etc.
1479 *************************************************************************/
1480
1481
1482 /* All the ABI's require 16 byte alignment. */
1483 static CORE_ADDR
1484 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1485 {
1486 return (addr & -16);
1487 }
1488
1489 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1490 the first eight words of the argument list (that might be less than
1491 eight parameters if some parameters occupy more than one word) are
1492 passed in r3..r10 registers. float and double parameters are
1493 passed in fpr's, in addition to that. Rest of the parameters if any
1494 are passed in user stack. There might be cases in which half of the
1495 parameter is copied into registers, the other half is pushed into
1496 stack.
1497
1498 Stack must be aligned on 64-bit boundaries when synthesizing
1499 function calls.
1500
1501 If the function is returning a structure, then the return address is passed
1502 in r3, then the first 7 words of the parameters can be passed in registers,
1503 starting from r4. */
1504
1505 static CORE_ADDR
1506 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1507 struct regcache *regcache, CORE_ADDR bp_addr,
1508 int nargs, struct value **args, CORE_ADDR sp,
1509 int struct_return, CORE_ADDR struct_addr)
1510 {
1511 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1512 int ii;
1513 int len = 0;
1514 int argno; /* current argument number */
1515 int argbytes; /* current argument byte */
1516 gdb_byte tmp_buffer[50];
1517 int f_argno = 0; /* current floating point argno */
1518 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1519 CORE_ADDR func_addr = find_function_addr (function, NULL);
1520
1521 struct value *arg = 0;
1522 struct type *type;
1523
1524 CORE_ADDR saved_sp;
1525
1526 /* The calling convention this function implements assumes the
1527 processor has floating-point registers. We shouldn't be using it
1528 on PPC variants that lack them. */
1529 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1530
1531 /* The first eight words of ther arguments are passed in registers.
1532 Copy them appropriately. */
1533 ii = 0;
1534
1535 /* If the function is returning a `struct', then the first word
1536 (which will be passed in r3) is used for struct return address.
1537 In that case we should advance one word and start from r4
1538 register to copy parameters. */
1539 if (struct_return)
1540 {
1541 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1542 struct_addr);
1543 ii++;
1544 }
1545
1546 /*
1547 effectively indirect call... gcc does...
1548
1549 return_val example( float, int);
1550
1551 eabi:
1552 float in fp0, int in r3
1553 offset of stack on overflow 8/16
1554 for varargs, must go by type.
1555 power open:
1556 float in r3&r4, int in r5
1557 offset of stack on overflow different
1558 both:
1559 return in r3 or f0. If no float, must study how gcc emulates floats;
1560 pay attention to arg promotion.
1561 User may have to cast\args to handle promotion correctly
1562 since gdb won't know if prototype supplied or not.
1563 */
1564
1565 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1566 {
1567 int reg_size = register_size (current_gdbarch, ii + 3);
1568
1569 arg = args[argno];
1570 type = check_typedef (value_type (arg));
1571 len = TYPE_LENGTH (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1574 {
1575
1576 /* Floating point arguments are passed in fpr's, as well as gpr's.
1577 There are 13 fpr's reserved for passing parameters. At this point
1578 there is no way we would run out of them. */
1579
1580 gdb_assert (len <= 8);
1581
1582 regcache_cooked_write (regcache,
1583 tdep->ppc_fp0_regnum + 1 + f_argno,
1584 value_contents (arg));
1585 ++f_argno;
1586 }
1587
1588 if (len > reg_size)
1589 {
1590
1591 /* Argument takes more than one register. */
1592 while (argbytes < len)
1593 {
1594 gdb_byte word[MAX_REGISTER_SIZE];
1595 memset (word, 0, reg_size);
1596 memcpy (word,
1597 ((char *) value_contents (arg)) + argbytes,
1598 (len - argbytes) > reg_size
1599 ? reg_size : len - argbytes);
1600 regcache_cooked_write (regcache,
1601 tdep->ppc_gp0_regnum + 3 + ii,
1602 word);
1603 ++ii, argbytes += reg_size;
1604
1605 if (ii >= 8)
1606 goto ran_out_of_registers_for_arguments;
1607 }
1608 argbytes = 0;
1609 --ii;
1610 }
1611 else
1612 {
1613 /* Argument can fit in one register. No problem. */
1614 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1615 gdb_byte word[MAX_REGISTER_SIZE];
1616
1617 memset (word, 0, reg_size);
1618 memcpy (word, value_contents (arg), len);
1619 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1620 }
1621 ++argno;
1622 }
1623
1624 ran_out_of_registers_for_arguments:
1625
1626 saved_sp = read_sp ();
1627
1628 /* Location for 8 parameters are always reserved. */
1629 sp -= wordsize * 8;
1630
1631 /* Another six words for back chain, TOC register, link register, etc. */
1632 sp -= wordsize * 6;
1633
1634 /* Stack pointer must be quadword aligned. */
1635 sp &= -16;
1636
1637 /* If there are more arguments, allocate space for them in
1638 the stack, then push them starting from the ninth one. */
1639
1640 if ((argno < nargs) || argbytes)
1641 {
1642 int space = 0, jj;
1643
1644 if (argbytes)
1645 {
1646 space += ((len - argbytes + 3) & -4);
1647 jj = argno + 1;
1648 }
1649 else
1650 jj = argno;
1651
1652 for (; jj < nargs; ++jj)
1653 {
1654 struct value *val = args[jj];
1655 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1656 }
1657
1658 /* Add location required for the rest of the parameters. */
1659 space = (space + 15) & -16;
1660 sp -= space;
1661
1662 /* This is another instance we need to be concerned about
1663 securing our stack space. If we write anything underneath %sp
1664 (r1), we might conflict with the kernel who thinks he is free
1665 to use this area. So, update %sp first before doing anything
1666 else. */
1667
1668 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1669
1670 /* If the last argument copied into the registers didn't fit there
1671 completely, push the rest of it into stack. */
1672
1673 if (argbytes)
1674 {
1675 write_memory (sp + 24 + (ii * 4),
1676 value_contents (arg) + argbytes,
1677 len - argbytes);
1678 ++argno;
1679 ii += ((len - argbytes + 3) & -4) / 4;
1680 }
1681
1682 /* Push the rest of the arguments into stack. */
1683 for (; argno < nargs; ++argno)
1684 {
1685
1686 arg = args[argno];
1687 type = check_typedef (value_type (arg));
1688 len = TYPE_LENGTH (type);
1689
1690
1691 /* Float types should be passed in fpr's, as well as in the
1692 stack. */
1693 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1694 {
1695
1696 gdb_assert (len <= 8);
1697
1698 regcache_cooked_write (regcache,
1699 tdep->ppc_fp0_regnum + 1 + f_argno,
1700 value_contents (arg));
1701 ++f_argno;
1702 }
1703
1704 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1705 ii += ((len + 3) & -4) / 4;
1706 }
1707 }
1708
1709 /* Set the stack pointer. According to the ABI, the SP is meant to
1710 be set _before_ the corresponding stack space is used. On AIX,
1711 this even applies when the target has been completely stopped!
1712 Not doing this can lead to conflicts with the kernel which thinks
1713 that it still has control over this not-yet-allocated stack
1714 region. */
1715 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1716
1717 /* Set back chain properly. */
1718 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1719 write_memory (sp, tmp_buffer, wordsize);
1720
1721 /* Point the inferior function call's return address at the dummy's
1722 breakpoint. */
1723 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1724
1725 /* Set the TOC register, get the value from the objfile reader
1726 which, in turn, gets it from the VMAP table. */
1727 if (rs6000_find_toc_address_hook != NULL)
1728 {
1729 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1730 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1731 }
1732
1733 target_store_registers (-1);
1734 return sp;
1735 }
1736
1737 /* PowerOpen always puts structures in memory. Vectors, which were
1738 added later, do get returned in a register though. */
1739
1740 static int
1741 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1742 {
1743 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1744 && TYPE_VECTOR (value_type))
1745 return 0;
1746 return 1;
1747 }
1748
1749 static void
1750 rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1751 gdb_byte *valbuf)
1752 {
1753 int offset = 0;
1754 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1755
1756 /* The calling convention this function implements assumes the
1757 processor has floating-point registers. We shouldn't be using it
1758 on PPC variants that lack them. */
1759 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1760
1761 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1762 {
1763
1764 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1765 We need to truncate the return value into float size (4 byte) if
1766 necessary. */
1767
1768 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1769 (tdep->ppc_fp0_regnum + 1)],
1770 builtin_type_double,
1771 valbuf,
1772 valtype);
1773 }
1774 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1775 && TYPE_LENGTH (valtype) == 16
1776 && TYPE_VECTOR (valtype))
1777 {
1778 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1779 TYPE_LENGTH (valtype));
1780 }
1781 else
1782 {
1783 /* return value is copied starting from r3. */
1784 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1785 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1786 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1787
1788 memcpy (valbuf,
1789 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1790 TYPE_LENGTH (valtype));
1791 }
1792 }
1793
1794 /* Return whether handle_inferior_event() should proceed through code
1795 starting at PC in function NAME when stepping.
1796
1797 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1798 handle memory references that are too distant to fit in instructions
1799 generated by the compiler. For example, if 'foo' in the following
1800 instruction:
1801
1802 lwz r9,foo(r2)
1803
1804 is greater than 32767, the linker might replace the lwz with a branch to
1805 somewhere in @FIX1 that does the load in 2 instructions and then branches
1806 back to where execution should continue.
1807
1808 GDB should silently step over @FIX code, just like AIX dbx does.
1809 Unfortunately, the linker uses the "b" instruction for the
1810 branches, meaning that the link register doesn't get set.
1811 Therefore, GDB's usual step_over_function () mechanism won't work.
1812
1813 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1814 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1815 @FIX code. */
1816
1817 int
1818 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1819 {
1820 return name && !strncmp (name, "@FIX", 4);
1821 }
1822
1823 /* Skip code that the user doesn't want to see when stepping:
1824
1825 1. Indirect function calls use a piece of trampoline code to do context
1826 switching, i.e. to set the new TOC table. Skip such code if we are on
1827 its first instruction (as when we have single-stepped to here).
1828
1829 2. Skip shared library trampoline code (which is different from
1830 indirect function call trampolines).
1831
1832 3. Skip bigtoc fixup code.
1833
1834 Result is desired PC to step until, or NULL if we are not in
1835 code that should be skipped. */
1836
1837 CORE_ADDR
1838 rs6000_skip_trampoline_code (CORE_ADDR pc)
1839 {
1840 unsigned int ii, op;
1841 int rel;
1842 CORE_ADDR solib_target_pc;
1843 struct minimal_symbol *msymbol;
1844
1845 static unsigned trampoline_code[] =
1846 {
1847 0x800b0000, /* l r0,0x0(r11) */
1848 0x90410014, /* st r2,0x14(r1) */
1849 0x7c0903a6, /* mtctr r0 */
1850 0x804b0004, /* l r2,0x4(r11) */
1851 0x816b0008, /* l r11,0x8(r11) */
1852 0x4e800420, /* bctr */
1853 0x4e800020, /* br */
1854 0
1855 };
1856
1857 /* Check for bigtoc fixup code. */
1858 msymbol = lookup_minimal_symbol_by_pc (pc);
1859 if (msymbol
1860 && rs6000_in_solib_return_trampoline (pc,
1861 DEPRECATED_SYMBOL_NAME (msymbol)))
1862 {
1863 /* Double-check that the third instruction from PC is relative "b". */
1864 op = read_memory_integer (pc + 8, 4);
1865 if ((op & 0xfc000003) == 0x48000000)
1866 {
1867 /* Extract bits 6-29 as a signed 24-bit relative word address and
1868 add it to the containing PC. */
1869 rel = ((int)(op << 6) >> 6);
1870 return pc + 8 + rel;
1871 }
1872 }
1873
1874 /* If pc is in a shared library trampoline, return its target. */
1875 solib_target_pc = find_solib_trampoline_target (pc);
1876 if (solib_target_pc)
1877 return solib_target_pc;
1878
1879 for (ii = 0; trampoline_code[ii]; ++ii)
1880 {
1881 op = read_memory_integer (pc + (ii * 4), 4);
1882 if (op != trampoline_code[ii])
1883 return 0;
1884 }
1885 ii = read_register (11); /* r11 holds destination addr */
1886 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1887 return pc;
1888 }
1889
1890 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1891 isn't available with that word size, return 0. */
1892
1893 static int
1894 regsize (const struct reg *reg, int wordsize)
1895 {
1896 return wordsize == 8 ? reg->sz64 : reg->sz32;
1897 }
1898
1899 /* Return the name of register number N, or null if no such register exists
1900 in the current architecture. */
1901
1902 static const char *
1903 rs6000_register_name (int n)
1904 {
1905 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1906 const struct reg *reg = tdep->regs + n;
1907
1908 if (!regsize (reg, tdep->wordsize))
1909 return NULL;
1910 return reg->name;
1911 }
1912
1913 /* Return the GDB type object for the "standard" data type
1914 of data in register N. */
1915
1916 static struct type *
1917 rs6000_register_type (struct gdbarch *gdbarch, int n)
1918 {
1919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1920 const struct reg *reg = tdep->regs + n;
1921
1922 if (reg->fpr)
1923 return builtin_type_double;
1924 else
1925 {
1926 int size = regsize (reg, tdep->wordsize);
1927 switch (size)
1928 {
1929 case 0:
1930 return builtin_type_int0;
1931 case 4:
1932 return builtin_type_uint32;
1933 case 8:
1934 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1935 return builtin_type_vec64;
1936 else
1937 return builtin_type_uint64;
1938 break;
1939 case 16:
1940 return builtin_type_vec128;
1941 break;
1942 default:
1943 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1944 n, size);
1945 }
1946 }
1947 }
1948
1949 /* Is REGNUM a member of REGGROUP? */
1950 static int
1951 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1952 struct reggroup *group)
1953 {
1954 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1955 int float_p;
1956 int vector_p;
1957 int general_p;
1958
1959 if (REGISTER_NAME (regnum) == NULL
1960 || *REGISTER_NAME (regnum) == '\0')
1961 return 0;
1962 if (group == all_reggroup)
1963 return 1;
1964
1965 float_p = (regnum == tdep->ppc_fpscr_regnum
1966 || (regnum >= tdep->ppc_fp0_regnum
1967 && regnum < tdep->ppc_fp0_regnum + 32));
1968 if (group == float_reggroup)
1969 return float_p;
1970
1971 vector_p = ((tdep->ppc_vr0_regnum >= 0
1972 && regnum >= tdep->ppc_vr0_regnum
1973 && regnum < tdep->ppc_vr0_regnum + 32)
1974 || (tdep->ppc_ev0_regnum >= 0
1975 && regnum >= tdep->ppc_ev0_regnum
1976 && regnum < tdep->ppc_ev0_regnum + 32)
1977 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
1978 || regnum == tdep->ppc_vrsave_regnum
1979 || regnum == tdep->ppc_acc_regnum
1980 || regnum == tdep->ppc_spefscr_regnum);
1981 if (group == vector_reggroup)
1982 return vector_p;
1983
1984 /* Note that PS aka MSR isn't included - it's a system register (and
1985 besides, due to GCC's CFI foobar you do not want to restore
1986 it). */
1987 general_p = ((regnum >= tdep->ppc_gp0_regnum
1988 && regnum < tdep->ppc_gp0_regnum + 32)
1989 || regnum == tdep->ppc_toc_regnum
1990 || regnum == tdep->ppc_cr_regnum
1991 || regnum == tdep->ppc_lr_regnum
1992 || regnum == tdep->ppc_ctr_regnum
1993 || regnum == tdep->ppc_xer_regnum
1994 || regnum == PC_REGNUM);
1995 if (group == general_reggroup)
1996 return general_p;
1997
1998 if (group == save_reggroup || group == restore_reggroup)
1999 return general_p || vector_p || float_p;
2000
2001 return 0;
2002 }
2003
2004 /* The register format for RS/6000 floating point registers is always
2005 double, we need a conversion if the memory format is float. */
2006
2007 static int
2008 rs6000_convert_register_p (int regnum, struct type *type)
2009 {
2010 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2011
2012 return (reg->fpr
2013 && TYPE_CODE (type) == TYPE_CODE_FLT
2014 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2015 }
2016
2017 static void
2018 rs6000_register_to_value (struct frame_info *frame,
2019 int regnum,
2020 struct type *type,
2021 gdb_byte *to)
2022 {
2023 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2024 gdb_byte from[MAX_REGISTER_SIZE];
2025
2026 gdb_assert (reg->fpr);
2027 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2028
2029 get_frame_register (frame, regnum, from);
2030 convert_typed_floating (from, builtin_type_double, to, type);
2031 }
2032
2033 static void
2034 rs6000_value_to_register (struct frame_info *frame,
2035 int regnum,
2036 struct type *type,
2037 const gdb_byte *from)
2038 {
2039 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2040 gdb_byte to[MAX_REGISTER_SIZE];
2041
2042 gdb_assert (reg->fpr);
2043 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2044
2045 convert_typed_floating (from, type, to, builtin_type_double);
2046 put_frame_register (frame, regnum, to);
2047 }
2048
2049 /* Move SPE vector register values between a 64-bit buffer and the two
2050 32-bit raw register halves in a regcache. This function handles
2051 both splitting a 64-bit value into two 32-bit halves, and joining
2052 two halves into a whole 64-bit value, depending on the function
2053 passed as the MOVE argument.
2054
2055 EV_REG must be the number of an SPE evN vector register --- a
2056 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2057 64-bit buffer.
2058
2059 Call MOVE once for each 32-bit half of that register, passing
2060 REGCACHE, the number of the raw register corresponding to that
2061 half, and the address of the appropriate half of BUFFER.
2062
2063 For example, passing 'regcache_raw_read' as the MOVE function will
2064 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2065 'regcache_raw_supply' will supply the contents of BUFFER to the
2066 appropriate pair of raw registers in REGCACHE.
2067
2068 You may need to cast away some 'const' qualifiers when passing
2069 MOVE, since this function can't tell at compile-time which of
2070 REGCACHE or BUFFER is acting as the source of the data. If C had
2071 co-variant type qualifiers, ... */
2072 static void
2073 e500_move_ev_register (void (*move) (struct regcache *regcache,
2074 int regnum, gdb_byte *buf),
2075 struct regcache *regcache, int ev_reg,
2076 gdb_byte *buffer)
2077 {
2078 struct gdbarch *arch = get_regcache_arch (regcache);
2079 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2080 int reg_index;
2081 gdb_byte *byte_buffer = buffer;
2082
2083 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2084 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2085
2086 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2087
2088 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2089 {
2090 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2091 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2092 }
2093 else
2094 {
2095 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2096 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2097 }
2098 }
2099
2100 static void
2101 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2102 int reg_nr, gdb_byte *buffer)
2103 {
2104 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2106
2107 gdb_assert (regcache_arch == gdbarch);
2108
2109 if (tdep->ppc_ev0_regnum <= reg_nr
2110 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2111 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2112 else
2113 internal_error (__FILE__, __LINE__,
2114 _("e500_pseudo_register_read: "
2115 "called on unexpected register '%s' (%d)"),
2116 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2117 }
2118
2119 static void
2120 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2121 int reg_nr, const gdb_byte *buffer)
2122 {
2123 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2125
2126 gdb_assert (regcache_arch == gdbarch);
2127
2128 if (tdep->ppc_ev0_regnum <= reg_nr
2129 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2130 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2131 regcache_raw_write,
2132 regcache, reg_nr, (gdb_byte *) buffer);
2133 else
2134 internal_error (__FILE__, __LINE__,
2135 _("e500_pseudo_register_read: "
2136 "called on unexpected register '%s' (%d)"),
2137 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2138 }
2139
2140 /* The E500 needs a custom reggroup function: it has anonymous raw
2141 registers, and default_register_reggroup_p assumes that anonymous
2142 registers are not members of any reggroup. */
2143 static int
2144 e500_register_reggroup_p (struct gdbarch *gdbarch,
2145 int regnum,
2146 struct reggroup *group)
2147 {
2148 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2149
2150 /* The save and restore register groups need to include the
2151 upper-half registers, even though they're anonymous. */
2152 if ((group == save_reggroup
2153 || group == restore_reggroup)
2154 && (tdep->ppc_ev0_upper_regnum <= regnum
2155 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2156 return 1;
2157
2158 /* In all other regards, the default reggroup definition is fine. */
2159 return default_register_reggroup_p (gdbarch, regnum, group);
2160 }
2161
2162 /* Convert a DBX STABS register number to a GDB register number. */
2163 static int
2164 rs6000_stab_reg_to_regnum (int num)
2165 {
2166 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2167
2168 if (0 <= num && num <= 31)
2169 return tdep->ppc_gp0_regnum + num;
2170 else if (32 <= num && num <= 63)
2171 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2172 specifies registers the architecture doesn't have? Our
2173 callers don't check the value we return. */
2174 return tdep->ppc_fp0_regnum + (num - 32);
2175 else if (77 <= num && num <= 108)
2176 return tdep->ppc_vr0_regnum + (num - 77);
2177 else if (1200 <= num && num < 1200 + 32)
2178 return tdep->ppc_ev0_regnum + (num - 1200);
2179 else
2180 switch (num)
2181 {
2182 case 64:
2183 return tdep->ppc_mq_regnum;
2184 case 65:
2185 return tdep->ppc_lr_regnum;
2186 case 66:
2187 return tdep->ppc_ctr_regnum;
2188 case 76:
2189 return tdep->ppc_xer_regnum;
2190 case 109:
2191 return tdep->ppc_vrsave_regnum;
2192 case 110:
2193 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2194 case 111:
2195 return tdep->ppc_acc_regnum;
2196 case 112:
2197 return tdep->ppc_spefscr_regnum;
2198 default:
2199 return num;
2200 }
2201 }
2202
2203
2204 /* Convert a Dwarf 2 register number to a GDB register number. */
2205 static int
2206 rs6000_dwarf2_reg_to_regnum (int num)
2207 {
2208 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2209
2210 if (0 <= num && num <= 31)
2211 return tdep->ppc_gp0_regnum + num;
2212 else if (32 <= num && num <= 63)
2213 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2214 specifies registers the architecture doesn't have? Our
2215 callers don't check the value we return. */
2216 return tdep->ppc_fp0_regnum + (num - 32);
2217 else if (1124 <= num && num < 1124 + 32)
2218 return tdep->ppc_vr0_regnum + (num - 1124);
2219 else if (1200 <= num && num < 1200 + 32)
2220 return tdep->ppc_ev0_regnum + (num - 1200);
2221 else
2222 switch (num)
2223 {
2224 case 67:
2225 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2226 case 99:
2227 return tdep->ppc_acc_regnum;
2228 case 100:
2229 return tdep->ppc_mq_regnum;
2230 case 101:
2231 return tdep->ppc_xer_regnum;
2232 case 108:
2233 return tdep->ppc_lr_regnum;
2234 case 109:
2235 return tdep->ppc_ctr_regnum;
2236 case 356:
2237 return tdep->ppc_vrsave_regnum;
2238 case 612:
2239 return tdep->ppc_spefscr_regnum;
2240 default:
2241 return num;
2242 }
2243 }
2244
2245
2246 static void
2247 rs6000_store_return_value (struct type *type,
2248 struct regcache *regcache,
2249 const gdb_byte *valbuf)
2250 {
2251 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2252 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2253 int regnum = -1;
2254
2255 /* The calling convention this function implements assumes the
2256 processor has floating-point registers. We shouldn't be using it
2257 on PPC variants that lack them. */
2258 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2259
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2261 /* Floating point values are returned starting from FPR1 and up.
2262 Say a double_double_double type could be returned in
2263 FPR1/FPR2/FPR3 triple. */
2264 regnum = tdep->ppc_fp0_regnum + 1;
2265 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2266 {
2267 if (TYPE_LENGTH (type) == 16
2268 && TYPE_VECTOR (type))
2269 regnum = tdep->ppc_vr0_regnum + 2;
2270 else
2271 internal_error (__FILE__, __LINE__,
2272 _("rs6000_store_return_value: "
2273 "unexpected array return type"));
2274 }
2275 else
2276 /* Everything else is returned in GPR3 and up. */
2277 regnum = tdep->ppc_gp0_regnum + 3;
2278
2279 {
2280 size_t bytes_written = 0;
2281
2282 while (bytes_written < TYPE_LENGTH (type))
2283 {
2284 /* How much of this value can we write to this register? */
2285 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2286 register_size (gdbarch, regnum));
2287 regcache_cooked_write_part (regcache, regnum,
2288 0, bytes_to_write,
2289 valbuf + bytes_written);
2290 regnum++;
2291 bytes_written += bytes_to_write;
2292 }
2293 }
2294 }
2295
2296
2297 /* Extract from an array REGBUF containing the (raw) register state
2298 the address in which a function should return its structure value,
2299 as a CORE_ADDR (or an expression that can be used as one). */
2300
2301 static CORE_ADDR
2302 rs6000_extract_struct_value_address (struct regcache *regcache)
2303 {
2304 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2305 function call GDB knows the address of the struct return value
2306 and hence, should not need to call this function. Unfortunately,
2307 the current call_function_by_hand() code only saves the most
2308 recent struct address leading to occasional calls. The code
2309 should instead maintain a stack of such addresses (in the dummy
2310 frame object). */
2311 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2312 really got no idea where the return value is being stored. While
2313 r3, on function entry, contained the address it will have since
2314 been reused (scratch) and hence wouldn't be valid */
2315 return 0;
2316 }
2317
2318 /* Hook called when a new child process is started. */
2319
2320 void
2321 rs6000_create_inferior (int pid)
2322 {
2323 if (rs6000_set_host_arch_hook)
2324 rs6000_set_host_arch_hook (pid);
2325 }
2326 \f
2327 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2328
2329 Usually a function pointer's representation is simply the address
2330 of the function. On the RS/6000 however, a function pointer is
2331 represented by a pointer to an OPD entry. This OPD entry contains
2332 three words, the first word is the address of the function, the
2333 second word is the TOC pointer (r2), and the third word is the
2334 static chain value. Throughout GDB it is currently assumed that a
2335 function pointer contains the address of the function, which is not
2336 easy to fix. In addition, the conversion of a function address to
2337 a function pointer would require allocation of an OPD entry in the
2338 inferior's memory space, with all its drawbacks. To be able to
2339 call C++ virtual methods in the inferior (which are called via
2340 function pointers), find_function_addr uses this function to get the
2341 function address from a function pointer. */
2342
2343 /* Return real function address if ADDR (a function pointer) is in the data
2344 space and is therefore a special function pointer. */
2345
2346 static CORE_ADDR
2347 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2348 CORE_ADDR addr,
2349 struct target_ops *targ)
2350 {
2351 struct obj_section *s;
2352
2353 s = find_pc_section (addr);
2354 if (s && s->the_bfd_section->flags & SEC_CODE)
2355 return addr;
2356
2357 /* ADDR is in the data space, so it's a special function pointer. */
2358 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2359 }
2360 \f
2361
2362 /* Handling the various POWER/PowerPC variants. */
2363
2364
2365 /* The arrays here called registers_MUMBLE hold information about available
2366 registers.
2367
2368 For each family of PPC variants, I've tried to isolate out the
2369 common registers and put them up front, so that as long as you get
2370 the general family right, GDB will correctly identify the registers
2371 common to that family. The common register sets are:
2372
2373 For the 60x family: hid0 hid1 iabr dabr pir
2374
2375 For the 505 and 860 family: eie eid nri
2376
2377 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2378 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2379 pbu1 pbl2 pbu2
2380
2381 Most of these register groups aren't anything formal. I arrived at
2382 them by looking at the registers that occurred in more than one
2383 processor.
2384
2385 Note: kevinb/2002-04-30: Support for the fpscr register was added
2386 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2387 for Power. For PowerPC, slot 70 was unused and was already in the
2388 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2389 slot 70 was being used for "mq", so the next available slot (71)
2390 was chosen. It would have been nice to be able to make the
2391 register numbers the same across processor cores, but this wasn't
2392 possible without either 1) renumbering some registers for some
2393 processors or 2) assigning fpscr to a really high slot that's
2394 larger than any current register number. Doing (1) is bad because
2395 existing stubs would break. Doing (2) is undesirable because it
2396 would introduce a really large gap between fpscr and the rest of
2397 the registers for most processors. */
2398
2399 /* Convenience macros for populating register arrays. */
2400
2401 /* Within another macro, convert S to a string. */
2402
2403 #define STR(s) #s
2404
2405 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2406 and 64 bits on 64-bit systems. */
2407 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2408
2409 /* Return a struct reg defining register NAME that's 32 bits on all
2410 systems. */
2411 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2412
2413 /* Return a struct reg defining register NAME that's 64 bits on all
2414 systems. */
2415 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2416
2417 /* Return a struct reg defining register NAME that's 128 bits on all
2418 systems. */
2419 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2420
2421 /* Return a struct reg defining floating-point register NAME. */
2422 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2423
2424 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2425 long on all systems. */
2426 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2427
2428 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2429 systems and that doesn't exist on 64-bit systems. */
2430 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2431
2432 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2433 systems and that doesn't exist on 32-bit systems. */
2434 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2435
2436 /* Return a struct reg placeholder for a register that doesn't exist. */
2437 #define R0 { 0, 0, 0, 0, 0, -1 }
2438
2439 /* Return a struct reg defining an anonymous raw register that's 32
2440 bits on all systems. */
2441 #define A4 { 0, 4, 4, 0, 0, -1 }
2442
2443 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2444 32-bit systems and 64 bits on 64-bit systems. */
2445 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2446
2447 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2448 all systems. */
2449 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2450
2451 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2452 all systems, and whose SPR number is NUMBER. */
2453 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2454
2455 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2456 64-bit systems and that doesn't exist on 32-bit systems. */
2457 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2458
2459 /* UISA registers common across all architectures, including POWER. */
2460
2461 #define COMMON_UISA_REGS \
2462 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2463 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2464 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2465 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2466 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2467 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2468 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2469 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2470 /* 64 */ R(pc), R(ps)
2471
2472 /* UISA-level SPRs for PowerPC. */
2473 #define PPC_UISA_SPRS \
2474 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2475
2476 /* UISA-level SPRs for PowerPC without floating point support. */
2477 #define PPC_UISA_NOFP_SPRS \
2478 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2479
2480 /* Segment registers, for PowerPC. */
2481 #define PPC_SEGMENT_REGS \
2482 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2483 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2484 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2485 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2486
2487 /* OEA SPRs for PowerPC. */
2488 #define PPC_OEA_SPRS \
2489 /* 87 */ S4(pvr), \
2490 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2491 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2492 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2493 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2494 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2495 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2496 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2497 /* 116 */ S4(dec), S(dabr), S4(ear)
2498
2499 /* AltiVec registers. */
2500 #define PPC_ALTIVEC_REGS \
2501 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2502 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2503 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2504 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2505 /*151*/R4(vscr), R4(vrsave)
2506
2507
2508 /* On machines supporting the SPE APU, the general-purpose registers
2509 are 64 bits long. There are SIMD vector instructions to treat them
2510 as pairs of floats, but the rest of the instruction set treats them
2511 as 32-bit registers, and only operates on their lower halves.
2512
2513 In the GDB regcache, we treat their high and low halves as separate
2514 registers. The low halves we present as the general-purpose
2515 registers, and then we have pseudo-registers that stitch together
2516 the upper and lower halves and present them as pseudo-registers. */
2517
2518 /* SPE GPR lower halves --- raw registers. */
2519 #define PPC_SPE_GP_REGS \
2520 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2521 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2522 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2523 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2524
2525 /* SPE GPR upper halves --- anonymous raw registers. */
2526 #define PPC_SPE_UPPER_GP_REGS \
2527 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2528 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2529 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2530 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2531
2532 /* SPE GPR vector registers --- pseudo registers based on underlying
2533 gprs and the anonymous upper half raw registers. */
2534 #define PPC_EV_PSEUDO_REGS \
2535 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2536 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2537 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2538 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2539
2540 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2541 user-level SPR's. */
2542 static const struct reg registers_power[] =
2543 {
2544 COMMON_UISA_REGS,
2545 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2546 /* 71 */ R4(fpscr)
2547 };
2548
2549 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2550 view of the PowerPC. */
2551 static const struct reg registers_powerpc[] =
2552 {
2553 COMMON_UISA_REGS,
2554 PPC_UISA_SPRS,
2555 PPC_ALTIVEC_REGS
2556 };
2557
2558 /* IBM PowerPC 403.
2559
2560 Some notes about the "tcr" special-purpose register:
2561 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2562 403's programmable interval timer, fixed interval timer, and
2563 watchdog timer.
2564 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2565 watchdog timer, and nothing else.
2566
2567 Some of the fields are similar between the two, but they're not
2568 compatible with each other. Since the two variants have different
2569 registers, with different numbers, but the same name, we can't
2570 splice the register name to get the SPR number. */
2571 static const struct reg registers_403[] =
2572 {
2573 COMMON_UISA_REGS,
2574 PPC_UISA_SPRS,
2575 PPC_SEGMENT_REGS,
2576 PPC_OEA_SPRS,
2577 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2578 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2579 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2580 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2581 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2582 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2583 };
2584
2585 /* IBM PowerPC 403GC.
2586 See the comments about 'tcr' for the 403, above. */
2587 static const struct reg registers_403GC[] =
2588 {
2589 COMMON_UISA_REGS,
2590 PPC_UISA_SPRS,
2591 PPC_SEGMENT_REGS,
2592 PPC_OEA_SPRS,
2593 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2594 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2595 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2596 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2597 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2598 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2599 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2600 /* 147 */ S(tbhu), S(tblu)
2601 };
2602
2603 /* Motorola PowerPC 505. */
2604 static const struct reg registers_505[] =
2605 {
2606 COMMON_UISA_REGS,
2607 PPC_UISA_SPRS,
2608 PPC_SEGMENT_REGS,
2609 PPC_OEA_SPRS,
2610 /* 119 */ S(eie), S(eid), S(nri)
2611 };
2612
2613 /* Motorola PowerPC 860 or 850. */
2614 static const struct reg registers_860[] =
2615 {
2616 COMMON_UISA_REGS,
2617 PPC_UISA_SPRS,
2618 PPC_SEGMENT_REGS,
2619 PPC_OEA_SPRS,
2620 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2621 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2622 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2623 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2624 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2625 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2626 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2627 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2628 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2629 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2630 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2631 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2632 };
2633
2634 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2635 for reading and writing RTCU and RTCL. However, how one reads and writes a
2636 register is the stub's problem. */
2637 static const struct reg registers_601[] =
2638 {
2639 COMMON_UISA_REGS,
2640 PPC_UISA_SPRS,
2641 PPC_SEGMENT_REGS,
2642 PPC_OEA_SPRS,
2643 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2644 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2645 };
2646
2647 /* Motorola PowerPC 602.
2648 See the notes under the 403 about 'tcr'. */
2649 static const struct reg registers_602[] =
2650 {
2651 COMMON_UISA_REGS,
2652 PPC_UISA_SPRS,
2653 PPC_SEGMENT_REGS,
2654 PPC_OEA_SPRS,
2655 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2656 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2657 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2658 };
2659
2660 /* Motorola/IBM PowerPC 603 or 603e. */
2661 static const struct reg registers_603[] =
2662 {
2663 COMMON_UISA_REGS,
2664 PPC_UISA_SPRS,
2665 PPC_SEGMENT_REGS,
2666 PPC_OEA_SPRS,
2667 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2668 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2669 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2670 };
2671
2672 /* Motorola PowerPC 604 or 604e. */
2673 static const struct reg registers_604[] =
2674 {
2675 COMMON_UISA_REGS,
2676 PPC_UISA_SPRS,
2677 PPC_SEGMENT_REGS,
2678 PPC_OEA_SPRS,
2679 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2680 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2681 /* 127 */ S(sia), S(sda)
2682 };
2683
2684 /* Motorola/IBM PowerPC 750 or 740. */
2685 static const struct reg registers_750[] =
2686 {
2687 COMMON_UISA_REGS,
2688 PPC_UISA_SPRS,
2689 PPC_SEGMENT_REGS,
2690 PPC_OEA_SPRS,
2691 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2692 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2693 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2694 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2695 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2696 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2697 };
2698
2699
2700 /* Motorola PowerPC 7400. */
2701 static const struct reg registers_7400[] =
2702 {
2703 /* gpr0-gpr31, fpr0-fpr31 */
2704 COMMON_UISA_REGS,
2705 /* cr, lr, ctr, xer, fpscr */
2706 PPC_UISA_SPRS,
2707 /* sr0-sr15 */
2708 PPC_SEGMENT_REGS,
2709 PPC_OEA_SPRS,
2710 /* vr0-vr31, vrsave, vscr */
2711 PPC_ALTIVEC_REGS
2712 /* FIXME? Add more registers? */
2713 };
2714
2715 /* Motorola e500. */
2716 static const struct reg registers_e500[] =
2717 {
2718 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2719 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2720 /* 64 .. 65 */ R(pc), R(ps),
2721 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2722 /* 71 .. 72 */ R8(acc), S4(spefscr),
2723 /* NOTE: Add new registers here the end of the raw register
2724 list and just before the first pseudo register. */
2725 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2726 };
2727
2728 /* Information about a particular processor variant. */
2729
2730 struct variant
2731 {
2732 /* Name of this variant. */
2733 char *name;
2734
2735 /* English description of the variant. */
2736 char *description;
2737
2738 /* bfd_arch_info.arch corresponding to variant. */
2739 enum bfd_architecture arch;
2740
2741 /* bfd_arch_info.mach corresponding to variant. */
2742 unsigned long mach;
2743
2744 /* Number of real registers. */
2745 int nregs;
2746
2747 /* Number of pseudo registers. */
2748 int npregs;
2749
2750 /* Number of total registers (the sum of nregs and npregs). */
2751 int num_tot_regs;
2752
2753 /* Table of register names; registers[R] is the name of the register
2754 number R. */
2755 const struct reg *regs;
2756 };
2757
2758 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2759
2760 static int
2761 num_registers (const struct reg *reg_list, int num_tot_regs)
2762 {
2763 int i;
2764 int nregs = 0;
2765
2766 for (i = 0; i < num_tot_regs; i++)
2767 if (!reg_list[i].pseudo)
2768 nregs++;
2769
2770 return nregs;
2771 }
2772
2773 static int
2774 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2775 {
2776 int i;
2777 int npregs = 0;
2778
2779 for (i = 0; i < num_tot_regs; i++)
2780 if (reg_list[i].pseudo)
2781 npregs ++;
2782
2783 return npregs;
2784 }
2785
2786 /* Information in this table comes from the following web sites:
2787 IBM: http://www.chips.ibm.com:80/products/embedded/
2788 Motorola: http://www.mot.com/SPS/PowerPC/
2789
2790 I'm sure I've got some of the variant descriptions not quite right.
2791 Please report any inaccuracies you find to GDB's maintainer.
2792
2793 If you add entries to this table, please be sure to allow the new
2794 value as an argument to the --with-cpu flag, in configure.in. */
2795
2796 static struct variant variants[] =
2797 {
2798
2799 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2800 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2801 registers_powerpc},
2802 {"power", "POWER user-level", bfd_arch_rs6000,
2803 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2804 registers_power},
2805 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2806 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2807 registers_403},
2808 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2809 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2810 registers_601},
2811 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2812 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2813 registers_602},
2814 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2815 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2816 registers_603},
2817 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2818 604, -1, -1, tot_num_registers (registers_604),
2819 registers_604},
2820 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2821 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2822 registers_403GC},
2823 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2824 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2825 registers_505},
2826 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2827 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2828 registers_860},
2829 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2830 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2831 registers_750},
2832 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2833 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2834 registers_7400},
2835 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2836 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2837 registers_e500},
2838
2839 /* 64-bit */
2840 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2841 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2842 registers_powerpc},
2843 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2844 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2845 registers_powerpc},
2846 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2847 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2848 registers_powerpc},
2849 {"a35", "PowerPC A35", bfd_arch_powerpc,
2850 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2851 registers_powerpc},
2852 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2853 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2854 registers_powerpc},
2855 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2856 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2857 registers_powerpc},
2858
2859 /* FIXME: I haven't checked the register sets of the following. */
2860 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2861 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2862 registers_power},
2863 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2864 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2865 registers_power},
2866 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2867 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2868 registers_power},
2869
2870 {0, 0, 0, 0, 0, 0, 0, 0}
2871 };
2872
2873 /* Initialize the number of registers and pseudo registers in each variant. */
2874
2875 static void
2876 init_variants (void)
2877 {
2878 struct variant *v;
2879
2880 for (v = variants; v->name; v++)
2881 {
2882 if (v->nregs == -1)
2883 v->nregs = num_registers (v->regs, v->num_tot_regs);
2884 if (v->npregs == -1)
2885 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2886 }
2887 }
2888
2889 /* Return the variant corresponding to architecture ARCH and machine number
2890 MACH. If no such variant exists, return null. */
2891
2892 static const struct variant *
2893 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2894 {
2895 const struct variant *v;
2896
2897 for (v = variants; v->name; v++)
2898 if (arch == v->arch && mach == v->mach)
2899 return v;
2900
2901 return NULL;
2902 }
2903
2904 static int
2905 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2906 {
2907 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2908 return print_insn_big_powerpc (memaddr, info);
2909 else
2910 return print_insn_little_powerpc (memaddr, info);
2911 }
2912 \f
2913 static CORE_ADDR
2914 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2915 {
2916 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2917 }
2918
2919 static struct frame_id
2920 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2921 {
2922 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2923 SP_REGNUM),
2924 frame_pc_unwind (next_frame));
2925 }
2926
2927 struct rs6000_frame_cache
2928 {
2929 CORE_ADDR base;
2930 CORE_ADDR initial_sp;
2931 struct trad_frame_saved_reg *saved_regs;
2932 };
2933
2934 static struct rs6000_frame_cache *
2935 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2936 {
2937 struct rs6000_frame_cache *cache;
2938 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2939 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2940 struct rs6000_framedata fdata;
2941 int wordsize = tdep->wordsize;
2942 CORE_ADDR func, pc;
2943
2944 if ((*this_cache) != NULL)
2945 return (*this_cache);
2946 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2947 (*this_cache) = cache;
2948 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2949
2950 func = frame_func_unwind (next_frame);
2951 pc = frame_pc_unwind (next_frame);
2952 skip_prologue (func, pc, &fdata);
2953
2954 /* Figure out the parent's stack pointer. */
2955
2956 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2957 address of the current frame. Things might be easier if the
2958 ->frame pointed to the outer-most address of the frame. In
2959 the mean time, the address of the prev frame is used as the
2960 base address of this frame. */
2961 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2962
2963 /* If the function appears to be frameless, check a couple of likely
2964 indicators that we have simply failed to find the frame setup.
2965 Two common cases of this are missing symbols (i.e.
2966 frame_func_unwind returns the wrong address or 0), and assembly
2967 stubs which have a fast exit path but set up a frame on the slow
2968 path.
2969
2970 If the LR appears to return to this function, then presume that
2971 we have an ABI compliant frame that we failed to find. */
2972 if (fdata.frameless && fdata.lr_offset == 0)
2973 {
2974 CORE_ADDR saved_lr;
2975 int make_frame = 0;
2976
2977 saved_lr = frame_unwind_register_unsigned (next_frame,
2978 tdep->ppc_lr_regnum);
2979 if (func == 0 && saved_lr == pc)
2980 make_frame = 1;
2981 else if (func != 0)
2982 {
2983 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2984 if (func == saved_func)
2985 make_frame = 1;
2986 }
2987
2988 if (make_frame)
2989 {
2990 fdata.frameless = 0;
2991 fdata.lr_offset = wordsize;
2992 }
2993 }
2994
2995 if (!fdata.frameless)
2996 /* Frameless really means stackless. */
2997 cache->base = read_memory_addr (cache->base, wordsize);
2998
2999 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3000
3001 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3002 All fpr's from saved_fpr to fp31 are saved. */
3003
3004 if (fdata.saved_fpr >= 0)
3005 {
3006 int i;
3007 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3008
3009 /* If skip_prologue says floating-point registers were saved,
3010 but the current architecture has no floating-point registers,
3011 then that's strange. But we have no indices to even record
3012 the addresses under, so we just ignore it. */
3013 if (ppc_floating_point_unit_p (gdbarch))
3014 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3015 {
3016 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3017 fpr_addr += 8;
3018 }
3019 }
3020
3021 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3022 All gpr's from saved_gpr to gpr31 are saved. */
3023
3024 if (fdata.saved_gpr >= 0)
3025 {
3026 int i;
3027 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3028 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3029 {
3030 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3031 gpr_addr += wordsize;
3032 }
3033 }
3034
3035 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3036 All vr's from saved_vr to vr31 are saved. */
3037 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3038 {
3039 if (fdata.saved_vr >= 0)
3040 {
3041 int i;
3042 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3043 for (i = fdata.saved_vr; i < 32; i++)
3044 {
3045 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3046 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3047 }
3048 }
3049 }
3050
3051 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3052 All vr's from saved_ev to ev31 are saved. ????? */
3053 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3054 {
3055 if (fdata.saved_ev >= 0)
3056 {
3057 int i;
3058 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3059 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3060 {
3061 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3062 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3063 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3064 }
3065 }
3066 }
3067
3068 /* If != 0, fdata.cr_offset is the offset from the frame that
3069 holds the CR. */
3070 if (fdata.cr_offset != 0)
3071 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3072
3073 /* If != 0, fdata.lr_offset is the offset from the frame that
3074 holds the LR. */
3075 if (fdata.lr_offset != 0)
3076 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3077 /* The PC is found in the link register. */
3078 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3079
3080 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3081 holds the VRSAVE. */
3082 if (fdata.vrsave_offset != 0)
3083 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3084
3085 if (fdata.alloca_reg < 0)
3086 /* If no alloca register used, then fi->frame is the value of the
3087 %sp for this frame, and it is good enough. */
3088 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3089 else
3090 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3091 fdata.alloca_reg);
3092
3093 return cache;
3094 }
3095
3096 static void
3097 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3098 struct frame_id *this_id)
3099 {
3100 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3101 this_cache);
3102 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
3103 }
3104
3105 static void
3106 rs6000_frame_prev_register (struct frame_info *next_frame,
3107 void **this_cache,
3108 int regnum, int *optimizedp,
3109 enum lval_type *lvalp, CORE_ADDR *addrp,
3110 int *realnump, gdb_byte *valuep)
3111 {
3112 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3113 this_cache);
3114 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3115 optimizedp, lvalp, addrp, realnump, valuep);
3116 }
3117
3118 static const struct frame_unwind rs6000_frame_unwind =
3119 {
3120 NORMAL_FRAME,
3121 rs6000_frame_this_id,
3122 rs6000_frame_prev_register
3123 };
3124
3125 static const struct frame_unwind *
3126 rs6000_frame_sniffer (struct frame_info *next_frame)
3127 {
3128 return &rs6000_frame_unwind;
3129 }
3130
3131 \f
3132
3133 static CORE_ADDR
3134 rs6000_frame_base_address (struct frame_info *next_frame,
3135 void **this_cache)
3136 {
3137 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3138 this_cache);
3139 return info->initial_sp;
3140 }
3141
3142 static const struct frame_base rs6000_frame_base = {
3143 &rs6000_frame_unwind,
3144 rs6000_frame_base_address,
3145 rs6000_frame_base_address,
3146 rs6000_frame_base_address
3147 };
3148
3149 static const struct frame_base *
3150 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3151 {
3152 return &rs6000_frame_base;
3153 }
3154
3155 /* Initialize the current architecture based on INFO. If possible, re-use an
3156 architecture from ARCHES, which is a list of architectures already created
3157 during this debugging session.
3158
3159 Called e.g. at program startup, when reading a core file, and when reading
3160 a binary file. */
3161
3162 static struct gdbarch *
3163 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3164 {
3165 struct gdbarch *gdbarch;
3166 struct gdbarch_tdep *tdep;
3167 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3168 struct reg *regs;
3169 const struct variant *v;
3170 enum bfd_architecture arch;
3171 unsigned long mach;
3172 bfd abfd;
3173 int sysv_abi;
3174 asection *sect;
3175
3176 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3177 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3178
3179 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3180 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3181
3182 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3183
3184 /* Check word size. If INFO is from a binary file, infer it from
3185 that, else choose a likely default. */
3186 if (from_xcoff_exec)
3187 {
3188 if (bfd_xcoff_is_xcoff64 (info.abfd))
3189 wordsize = 8;
3190 else
3191 wordsize = 4;
3192 }
3193 else if (from_elf_exec)
3194 {
3195 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3196 wordsize = 8;
3197 else
3198 wordsize = 4;
3199 }
3200 else
3201 {
3202 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3203 wordsize = info.bfd_arch_info->bits_per_word /
3204 info.bfd_arch_info->bits_per_byte;
3205 else
3206 wordsize = 4;
3207 }
3208
3209 /* Find a candidate among extant architectures. */
3210 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3211 arches != NULL;
3212 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3213 {
3214 /* Word size in the various PowerPC bfd_arch_info structs isn't
3215 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3216 separate word size check. */
3217 tdep = gdbarch_tdep (arches->gdbarch);
3218 if (tdep && tdep->wordsize == wordsize)
3219 return arches->gdbarch;
3220 }
3221
3222 /* None found, create a new architecture from INFO, whose bfd_arch_info
3223 validity depends on the source:
3224 - executable useless
3225 - rs6000_host_arch() good
3226 - core file good
3227 - "set arch" trust blindly
3228 - GDB startup useless but harmless */
3229
3230 if (!from_xcoff_exec)
3231 {
3232 arch = info.bfd_arch_info->arch;
3233 mach = info.bfd_arch_info->mach;
3234 }
3235 else
3236 {
3237 arch = bfd_arch_powerpc;
3238 bfd_default_set_arch_mach (&abfd, arch, 0);
3239 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3240 mach = info.bfd_arch_info->mach;
3241 }
3242 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3243 tdep->wordsize = wordsize;
3244
3245 /* For e500 executables, the apuinfo section is of help here. Such
3246 section contains the identifier and revision number of each
3247 Application-specific Processing Unit that is present on the
3248 chip. The content of the section is determined by the assembler
3249 which looks at each instruction and determines which unit (and
3250 which version of it) can execute it. In our case we just look for
3251 the existance of the section. */
3252
3253 if (info.abfd)
3254 {
3255 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3256 if (sect)
3257 {
3258 arch = info.bfd_arch_info->arch;
3259 mach = bfd_mach_ppc_e500;
3260 bfd_default_set_arch_mach (&abfd, arch, mach);
3261 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3262 }
3263 }
3264
3265 gdbarch = gdbarch_alloc (&info, tdep);
3266
3267 /* Initialize the number of real and pseudo registers in each variant. */
3268 init_variants ();
3269
3270 /* Choose variant. */
3271 v = find_variant_by_arch (arch, mach);
3272 if (!v)
3273 return NULL;
3274
3275 tdep->regs = v->regs;
3276
3277 tdep->ppc_gp0_regnum = 0;
3278 tdep->ppc_toc_regnum = 2;
3279 tdep->ppc_ps_regnum = 65;
3280 tdep->ppc_cr_regnum = 66;
3281 tdep->ppc_lr_regnum = 67;
3282 tdep->ppc_ctr_regnum = 68;
3283 tdep->ppc_xer_regnum = 69;
3284 if (v->mach == bfd_mach_ppc_601)
3285 tdep->ppc_mq_regnum = 124;
3286 else if (arch == bfd_arch_rs6000)
3287 tdep->ppc_mq_regnum = 70;
3288 else
3289 tdep->ppc_mq_regnum = -1;
3290 tdep->ppc_fp0_regnum = 32;
3291 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3292 tdep->ppc_sr0_regnum = 71;
3293 tdep->ppc_vr0_regnum = -1;
3294 tdep->ppc_vrsave_regnum = -1;
3295 tdep->ppc_ev0_upper_regnum = -1;
3296 tdep->ppc_ev0_regnum = -1;
3297 tdep->ppc_ev31_regnum = -1;
3298 tdep->ppc_acc_regnum = -1;
3299 tdep->ppc_spefscr_regnum = -1;
3300
3301 set_gdbarch_pc_regnum (gdbarch, 64);
3302 set_gdbarch_sp_regnum (gdbarch, 1);
3303 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3304 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3305 if (sysv_abi && wordsize == 8)
3306 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3307 else if (sysv_abi && wordsize == 4)
3308 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3309 else
3310 {
3311 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3312 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3313 }
3314
3315 /* Set lr_frame_offset. */
3316 if (wordsize == 8)
3317 tdep->lr_frame_offset = 16;
3318 else if (sysv_abi)
3319 tdep->lr_frame_offset = 4;
3320 else
3321 tdep->lr_frame_offset = 8;
3322
3323 if (v->arch == bfd_arch_rs6000)
3324 tdep->ppc_sr0_regnum = -1;
3325 else if (v->arch == bfd_arch_powerpc)
3326 switch (v->mach)
3327 {
3328 case bfd_mach_ppc:
3329 tdep->ppc_sr0_regnum = -1;
3330 tdep->ppc_vr0_regnum = 71;
3331 tdep->ppc_vrsave_regnum = 104;
3332 break;
3333 case bfd_mach_ppc_7400:
3334 tdep->ppc_vr0_regnum = 119;
3335 tdep->ppc_vrsave_regnum = 152;
3336 break;
3337 case bfd_mach_ppc_e500:
3338 tdep->ppc_toc_regnum = -1;
3339 tdep->ppc_ev0_upper_regnum = 32;
3340 tdep->ppc_ev0_regnum = 73;
3341 tdep->ppc_ev31_regnum = 104;
3342 tdep->ppc_acc_regnum = 71;
3343 tdep->ppc_spefscr_regnum = 72;
3344 tdep->ppc_fp0_regnum = -1;
3345 tdep->ppc_fpscr_regnum = -1;
3346 tdep->ppc_sr0_regnum = -1;
3347 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3348 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3349 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3350 break;
3351
3352 case bfd_mach_ppc64:
3353 case bfd_mach_ppc_620:
3354 case bfd_mach_ppc_630:
3355 case bfd_mach_ppc_a35:
3356 case bfd_mach_ppc_rs64ii:
3357 case bfd_mach_ppc_rs64iii:
3358 /* These processor's register sets don't have segment registers. */
3359 tdep->ppc_sr0_regnum = -1;
3360 break;
3361 }
3362 else
3363 internal_error (__FILE__, __LINE__,
3364 _("rs6000_gdbarch_init: "
3365 "received unexpected BFD 'arch' value"));
3366
3367 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3368
3369 /* Sanity check on registers. */
3370 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3371
3372 /* Select instruction printer. */
3373 if (arch == bfd_arch_rs6000)
3374 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3375 else
3376 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3377
3378 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3379
3380 set_gdbarch_num_regs (gdbarch, v->nregs);
3381 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3382 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3383 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3384 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3385
3386 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3387 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3388 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3389 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3390 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3391 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3392 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3393 if (sysv_abi)
3394 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3395 else
3396 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3397 set_gdbarch_char_signed (gdbarch, 0);
3398
3399 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3400 if (sysv_abi && wordsize == 8)
3401 /* PPC64 SYSV. */
3402 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3403 else if (!sysv_abi && wordsize == 4)
3404 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3405 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3406 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3407 224. */
3408 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3409
3410 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3411 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3412 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3413
3414 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3415 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3416 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3417 is correct for the SysV ABI when the wordsize is 8, but I'm also
3418 fairly certain that ppc_sysv_abi_push_arguments() will give even
3419 worse results since it only works for 32-bit code. So, for the moment,
3420 we're better off calling rs6000_push_arguments() since it works for
3421 64-bit code. At some point in the future, this matter needs to be
3422 revisited. */
3423 if (sysv_abi && wordsize == 4)
3424 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3425 else if (sysv_abi && wordsize == 8)
3426 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3427 else
3428 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3429
3430 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3431
3432 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3433 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3434
3435 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3436 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3437
3438 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3439 for the descriptor and ".FN" for the entry-point -- a user
3440 specifying "break FN" will unexpectedly end up with a breakpoint
3441 on the descriptor and not the function. This architecture method
3442 transforms any breakpoints on descriptors into breakpoints on the
3443 corresponding entry point. */
3444 if (sysv_abi && wordsize == 8)
3445 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3446
3447 /* Not sure on this. FIXMEmgo */
3448 set_gdbarch_frame_args_skip (gdbarch, 8);
3449
3450 if (!sysv_abi)
3451 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3452
3453 if (!sysv_abi)
3454 {
3455 /* Handle RS/6000 function pointers (which are really function
3456 descriptors). */
3457 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3458 rs6000_convert_from_func_ptr_addr);
3459 }
3460
3461 /* Helpers for function argument information. */
3462 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3463
3464 /* Hook in ABI-specific overrides, if they have been registered. */
3465 gdbarch_init_osabi (info, gdbarch);
3466
3467 switch (info.osabi)
3468 {
3469 case GDB_OSABI_LINUX:
3470 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3471 have altivec registers. If not, ptrace will fail the first time it's
3472 called to access one and will not be called again. This wart will
3473 be removed when Daniel Jacobowitz's proposal for autodetecting target
3474 registers is implemented. */
3475 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3476 {
3477 tdep->ppc_vr0_regnum = 71;
3478 tdep->ppc_vrsave_regnum = 104;
3479 }
3480 /* Fall Thru */
3481 case GDB_OSABI_NETBSD_AOUT:
3482 case GDB_OSABI_NETBSD_ELF:
3483 case GDB_OSABI_UNKNOWN:
3484 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3485 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3486 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3487 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3488 break;
3489 default:
3490 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3491
3492 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3493 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3494 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3495 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3496 }
3497
3498 init_sim_regno_table (gdbarch);
3499
3500 return gdbarch;
3501 }
3502
3503 static void
3504 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3505 {
3506 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3507
3508 if (tdep == NULL)
3509 return;
3510
3511 /* FIXME: Dump gdbarch_tdep. */
3512 }
3513
3514 /* Initialization code. */
3515
3516 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3517
3518 void
3519 _initialize_rs6000_tdep (void)
3520 {
3521 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3522 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3523 }
This page took 0.119044 seconds and 4 git commands to generate.