* config/tc-mips.c (HAVE_64BIT_ADDRESS_CONSTANTS): Remove.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_frame_args_address (struct frame_info *fi)
215 {
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
219 else
220 return frame_initial_stack_address (fi);
221 }
222
223 /* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228 static CORE_ADDR
229 rs6000_saved_pc_after_call (struct frame_info *fi)
230 {
231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232 }
233
234 /* Get the ith function argument for the current function. */
235 static CORE_ADDR
236 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238 {
239 CORE_ADDR addr;
240 frame_read_register (frame, 3 + argi, &addr);
241 return addr;
242 }
243
244 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246 static CORE_ADDR
247 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248 {
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292 gdbarch_tdep (current_gdbarch)->wordsize);
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305 }
306 else
307 return -1;
308 break;
309
310 default:
311 return -1;
312 }
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314 }
315
316
317 /* Sequence of bytes for breakpoint instruction. */
318
319 const static unsigned char *
320 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321 {
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324 *bp_size = 4;
325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329 }
330
331
332 /* AIX does not support PT_STEP. Simulate it. */
333
334 void
335 rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
337 {
338 CORE_ADDR dummy;
339 int breakp_sz;
340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
346 if (insert_breakpoints_p)
347 {
348
349 loc = read_pc ();
350
351 insn = read_memory_integer (loc, 4);
352
353 breaks[0] = loc + breakp_sz;
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
360
361 stepBreaks[1].address = 0;
362
363 for (ii = 0; ii < 2; ++ii)
364 {
365
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370 stepBreaks[ii].address = breaks[ii];
371 }
372
373 }
374 else
375 {
376
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
382 }
383 errno = 0; /* FIXME, don't ignore errors! */
384 /* What errors? {read,write}_memory call error(). */
385 }
386
387
388 /* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
398 - saved_vr is the number of the first saved vr.
399 - saved_ev is the number of the first saved ev.
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
404 - vr_offset is the offset of the first saved vr from the previous frame.
405 - ev_offset is the offset of the first saved ev from the previous frame.
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
408 - vrsave_offset is the offset of the saved vrsave register
409 */
410
411 #define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418 /* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420 static int max_skip_non_prologue_insns = 10;
421
422 /* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428 static CORE_ADDR
429 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430 {
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467 }
468
469
470 static CORE_ADDR
471 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
472 {
473 CORE_ADDR orig_pc = pc;
474 CORE_ADDR last_prologue_pc = pc;
475 CORE_ADDR li_found_pc = 0;
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
479 long vr_saved_offset = 0;
480 int lr_reg = -1;
481 int cr_reg = -1;
482 int vr_reg = -1;
483 int ev_reg = -1;
484 long ev_offset = 0;
485 int vrsave_reg = -1;
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
489 int prev_insn_was_prologue_insn = 1;
490 int num_skip_non_prologue_insns = 0;
491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
493
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
508
509 memset (fdata, 0, sizeof (struct rs6000_framedata));
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
512 fdata->saved_vr = -1;
513 fdata->saved_ev = -1;
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
518 for (;; pc += 4)
519 {
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
531 prev_insn_was_prologue_insn = 1;
532
533 /* Fetch the instruction and convert it to an integer. */
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
537
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
540 lr_reg = (op & 0x03e00000);
541 continue;
542
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
546 cr_reg = (op & 0x03e00000);
547 continue;
548
549 }
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
559
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
571 if ((op & 0xfc1f0003) == 0xf8010000)
572 op &= ~3UL;
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
576
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
580 /* nop */
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
621 continue;
622
623 }
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
633 cr_reg = 0;
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
653 }
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
659
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
664
665 fdata->frameless = 0;
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
683 }
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
691 }
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
712 }
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
716 && !minimal_toc_loaded)
717 {
718 minimal_toc_loaded = 1;
719 continue;
720
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
728 {
729 continue;
730
731 /* store parameters in stack */
732 }
733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
737 continue;
738
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
766 continue;
767 }
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
935 else
936 {
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
951 /* Never skip branches. */
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
962 }
963 }
964
965 #if 0
966 /* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
972 We'd like to skip over it as well. Fortunately, xlc does some extra
973 work before calling a function right after a prologue, thus we can
974 single out such gcc2 behaviour. */
975
976
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
983
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
986
987 tmp = find_pc_misc_function (pc);
988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
989 return pc + 8;
990 }
991 }
992 #endif /* 0 */
993
994 fdata->offset = -fdata->offset;
995 return last_prologue_pc;
996 }
997
998
999 /*************************************************************************
1000 Support for creating pushing a dummy frame into the stack, and popping
1001 frames, etc.
1002 *************************************************************************/
1003
1004
1005 /* Pop the innermost frame, go back to the caller. */
1006
1007 static void
1008 rs6000_pop_frame (void)
1009 {
1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
1013 int ii, wordsize;
1014
1015 pc = read_pc ();
1016 sp = get_frame_base (frame);
1017
1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
1021 {
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
1025 }
1026
1027 /* Make sure that all registers are valid. */
1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1029
1030 /* Figure out previous %pc value. If the function is frameless, it is
1031 still in the link register, otherwise walk the frames and retrieve the
1032 saved %pc value in the previous frame. */
1033
1034 addr = get_frame_func (frame);
1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1036
1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
1041 prev_sp = read_memory_addr (sp, wordsize);
1042 if (fdata.lr_offset == 0)
1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1044 else
1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
1050 /* reset register values if any was saved earlier. */
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
1057 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1058 wordsize);
1059 addr += wordsize;
1060 }
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
1068 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1069 addr += 8;
1070 }
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076 }
1077
1078 /* All the ABI's require 16 byte alignment. */
1079 static CORE_ADDR
1080 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1081 {
1082 return (addr & -16);
1083 }
1084
1085 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1086 the first eight words of the argument list (that might be less than
1087 eight parameters if some parameters occupy more than one word) are
1088 passed in r3..r10 registers. float and double parameters are
1089 passed in fpr's, in addition to that. Rest of the parameters if any
1090 are passed in user stack. There might be cases in which half of the
1091 parameter is copied into registers, the other half is pushed into
1092 stack.
1093
1094 Stack must be aligned on 64-bit boundaries when synthesizing
1095 function calls.
1096
1097 If the function is returning a structure, then the return address is passed
1098 in r3, then the first 7 words of the parameters can be passed in registers,
1099 starting from r4. */
1100
1101 static CORE_ADDR
1102 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1103 struct regcache *regcache, CORE_ADDR bp_addr,
1104 int nargs, struct value **args, CORE_ADDR sp,
1105 int struct_return, CORE_ADDR struct_addr)
1106 {
1107 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1108 int ii;
1109 int len = 0;
1110 int argno; /* current argument number */
1111 int argbytes; /* current argument byte */
1112 char tmp_buffer[50];
1113 int f_argno = 0; /* current floating point argno */
1114 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1115
1116 struct value *arg = 0;
1117 struct type *type;
1118
1119 CORE_ADDR saved_sp;
1120
1121 /* The first eight words of ther arguments are passed in registers.
1122 Copy them appropriately. */
1123 ii = 0;
1124
1125 /* If the function is returning a `struct', then the first word
1126 (which will be passed in r3) is used for struct return address.
1127 In that case we should advance one word and start from r4
1128 register to copy parameters. */
1129 if (struct_return)
1130 {
1131 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1132 struct_addr);
1133 ii++;
1134 }
1135
1136 /*
1137 effectively indirect call... gcc does...
1138
1139 return_val example( float, int);
1140
1141 eabi:
1142 float in fp0, int in r3
1143 offset of stack on overflow 8/16
1144 for varargs, must go by type.
1145 power open:
1146 float in r3&r4, int in r5
1147 offset of stack on overflow different
1148 both:
1149 return in r3 or f0. If no float, must study how gcc emulates floats;
1150 pay attention to arg promotion.
1151 User may have to cast\args to handle promotion correctly
1152 since gdb won't know if prototype supplied or not.
1153 */
1154
1155 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1156 {
1157 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1158
1159 arg = args[argno];
1160 type = check_typedef (VALUE_TYPE (arg));
1161 len = TYPE_LENGTH (type);
1162
1163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1164 {
1165
1166 /* Floating point arguments are passed in fpr's, as well as gpr's.
1167 There are 13 fpr's reserved for passing parameters. At this point
1168 there is no way we would run out of them. */
1169
1170 if (len > 8)
1171 printf_unfiltered (
1172 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1173
1174 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1175 VALUE_CONTENTS (arg),
1176 len);
1177 ++f_argno;
1178 }
1179
1180 if (len > reg_size)
1181 {
1182
1183 /* Argument takes more than one register. */
1184 while (argbytes < len)
1185 {
1186 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1187 reg_size);
1188 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1189 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1190 (len - argbytes) > reg_size
1191 ? reg_size : len - argbytes);
1192 ++ii, argbytes += reg_size;
1193
1194 if (ii >= 8)
1195 goto ran_out_of_registers_for_arguments;
1196 }
1197 argbytes = 0;
1198 --ii;
1199 }
1200 else
1201 {
1202 /* Argument can fit in one register. No problem. */
1203 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1204 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1205 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1206 VALUE_CONTENTS (arg), len);
1207 }
1208 ++argno;
1209 }
1210
1211 ran_out_of_registers_for_arguments:
1212
1213 saved_sp = read_sp ();
1214
1215 /* Location for 8 parameters are always reserved. */
1216 sp -= wordsize * 8;
1217
1218 /* Another six words for back chain, TOC register, link register, etc. */
1219 sp -= wordsize * 6;
1220
1221 /* Stack pointer must be quadword aligned. */
1222 sp &= -16;
1223
1224 /* If there are more arguments, allocate space for them in
1225 the stack, then push them starting from the ninth one. */
1226
1227 if ((argno < nargs) || argbytes)
1228 {
1229 int space = 0, jj;
1230
1231 if (argbytes)
1232 {
1233 space += ((len - argbytes + 3) & -4);
1234 jj = argno + 1;
1235 }
1236 else
1237 jj = argno;
1238
1239 for (; jj < nargs; ++jj)
1240 {
1241 struct value *val = args[jj];
1242 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1243 }
1244
1245 /* Add location required for the rest of the parameters. */
1246 space = (space + 15) & -16;
1247 sp -= space;
1248
1249 /* If the last argument copied into the registers didn't fit there
1250 completely, push the rest of it into stack. */
1251
1252 if (argbytes)
1253 {
1254 write_memory (sp + 24 + (ii * 4),
1255 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1256 len - argbytes);
1257 ++argno;
1258 ii += ((len - argbytes + 3) & -4) / 4;
1259 }
1260
1261 /* Push the rest of the arguments into stack. */
1262 for (; argno < nargs; ++argno)
1263 {
1264
1265 arg = args[argno];
1266 type = check_typedef (VALUE_TYPE (arg));
1267 len = TYPE_LENGTH (type);
1268
1269
1270 /* Float types should be passed in fpr's, as well as in the
1271 stack. */
1272 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1273 {
1274
1275 if (len > 8)
1276 printf_unfiltered (
1277 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1278
1279 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1280 VALUE_CONTENTS (arg),
1281 len);
1282 ++f_argno;
1283 }
1284
1285 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1286 ii += ((len + 3) & -4) / 4;
1287 }
1288 }
1289
1290 /* set back chain properly */
1291 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1292 write_memory (sp, tmp_buffer, 4);
1293
1294 /* Set the stack pointer. According to the ABI, the SP is ment to
1295 be set _before_ the corresponding stack space is used. No need
1296 for that here though - the target has been completly stopped - it
1297 isn't possible for an exception handler to stomp on the stack. */
1298 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1299
1300 /* Point the inferior function call's return address at the dummy's
1301 breakpoint. */
1302 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1303
1304 /* Set the TOC register, get the value from the objfile reader
1305 which, in turn, gets it from the VMAP table. */
1306 if (rs6000_find_toc_address_hook != NULL)
1307 {
1308 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1309 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1310 }
1311
1312 target_store_registers (-1);
1313 return sp;
1314 }
1315
1316 /* Extract a function return value of type TYPE from raw register array
1317 REGBUF, and copy that return value into VALBUF in virtual format. */
1318 static void
1319 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1320 {
1321 int offset = 0;
1322 int vallen = TYPE_LENGTH (valtype);
1323 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1324
1325 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1326 && vallen == 8
1327 && TYPE_VECTOR (valtype))
1328 {
1329 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1330 }
1331 else
1332 {
1333 /* Return value is copied starting from r3. Note that r3 for us
1334 is a pseudo register. */
1335 int offset = 0;
1336 int return_regnum = tdep->ppc_gp0_regnum + 3;
1337 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1338 int reg_part_size;
1339 char *val_buffer;
1340 int copied = 0;
1341 int i = 0;
1342
1343 /* Compute where we will start storing the value from. */
1344 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1345 {
1346 if (vallen <= reg_size)
1347 offset = reg_size - vallen;
1348 else
1349 offset = reg_size + (reg_size - vallen);
1350 }
1351
1352 /* How big does the local buffer need to be? */
1353 if (vallen <= reg_size)
1354 val_buffer = alloca (reg_size);
1355 else
1356 val_buffer = alloca (vallen);
1357
1358 /* Read all we need into our private buffer. We copy it in
1359 chunks that are as long as one register, never shorter, even
1360 if the value is smaller than the register. */
1361 while (copied < vallen)
1362 {
1363 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1364 /* It is a pseudo/cooked register. */
1365 regcache_cooked_read (regbuf, return_regnum + i,
1366 val_buffer + copied);
1367 copied += reg_part_size;
1368 i++;
1369 }
1370 /* Put the stuff in the return buffer. */
1371 memcpy (valbuf, val_buffer + offset, vallen);
1372 }
1373 }
1374
1375 static void
1376 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1377 {
1378 int offset = 0;
1379 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1380
1381 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1382 {
1383
1384 double dd;
1385 float ff;
1386 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1387 We need to truncate the return value into float size (4 byte) if
1388 necessary. */
1389
1390 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1391 memcpy (valbuf,
1392 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1393 TYPE_LENGTH (valtype));
1394 else
1395 { /* float */
1396 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1397 ff = (float) dd;
1398 memcpy (valbuf, &ff, sizeof (float));
1399 }
1400 }
1401 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1402 && TYPE_LENGTH (valtype) == 16
1403 && TYPE_VECTOR (valtype))
1404 {
1405 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1406 TYPE_LENGTH (valtype));
1407 }
1408 else
1409 {
1410 /* return value is copied starting from r3. */
1411 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1412 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1413 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1414
1415 memcpy (valbuf,
1416 regbuf + REGISTER_BYTE (3) + offset,
1417 TYPE_LENGTH (valtype));
1418 }
1419 }
1420
1421 /* Return whether handle_inferior_event() should proceed through code
1422 starting at PC in function NAME when stepping.
1423
1424 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1425 handle memory references that are too distant to fit in instructions
1426 generated by the compiler. For example, if 'foo' in the following
1427 instruction:
1428
1429 lwz r9,foo(r2)
1430
1431 is greater than 32767, the linker might replace the lwz with a branch to
1432 somewhere in @FIX1 that does the load in 2 instructions and then branches
1433 back to where execution should continue.
1434
1435 GDB should silently step over @FIX code, just like AIX dbx does.
1436 Unfortunately, the linker uses the "b" instruction for the branches,
1437 meaning that the link register doesn't get set. Therefore, GDB's usual
1438 step_over_function() mechanism won't work.
1439
1440 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1441 in handle_inferior_event() to skip past @FIX code. */
1442
1443 int
1444 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1445 {
1446 return name && !strncmp (name, "@FIX", 4);
1447 }
1448
1449 /* Skip code that the user doesn't want to see when stepping:
1450
1451 1. Indirect function calls use a piece of trampoline code to do context
1452 switching, i.e. to set the new TOC table. Skip such code if we are on
1453 its first instruction (as when we have single-stepped to here).
1454
1455 2. Skip shared library trampoline code (which is different from
1456 indirect function call trampolines).
1457
1458 3. Skip bigtoc fixup code.
1459
1460 Result is desired PC to step until, or NULL if we are not in
1461 code that should be skipped. */
1462
1463 CORE_ADDR
1464 rs6000_skip_trampoline_code (CORE_ADDR pc)
1465 {
1466 register unsigned int ii, op;
1467 int rel;
1468 CORE_ADDR solib_target_pc;
1469 struct minimal_symbol *msymbol;
1470
1471 static unsigned trampoline_code[] =
1472 {
1473 0x800b0000, /* l r0,0x0(r11) */
1474 0x90410014, /* st r2,0x14(r1) */
1475 0x7c0903a6, /* mtctr r0 */
1476 0x804b0004, /* l r2,0x4(r11) */
1477 0x816b0008, /* l r11,0x8(r11) */
1478 0x4e800420, /* bctr */
1479 0x4e800020, /* br */
1480 0
1481 };
1482
1483 /* Check for bigtoc fixup code. */
1484 msymbol = lookup_minimal_symbol_by_pc (pc);
1485 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1486 {
1487 /* Double-check that the third instruction from PC is relative "b". */
1488 op = read_memory_integer (pc + 8, 4);
1489 if ((op & 0xfc000003) == 0x48000000)
1490 {
1491 /* Extract bits 6-29 as a signed 24-bit relative word address and
1492 add it to the containing PC. */
1493 rel = ((int)(op << 6) >> 6);
1494 return pc + 8 + rel;
1495 }
1496 }
1497
1498 /* If pc is in a shared library trampoline, return its target. */
1499 solib_target_pc = find_solib_trampoline_target (pc);
1500 if (solib_target_pc)
1501 return solib_target_pc;
1502
1503 for (ii = 0; trampoline_code[ii]; ++ii)
1504 {
1505 op = read_memory_integer (pc + (ii * 4), 4);
1506 if (op != trampoline_code[ii])
1507 return 0;
1508 }
1509 ii = read_register (11); /* r11 holds destination addr */
1510 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1511 return pc;
1512 }
1513
1514 /* Determines whether the function FI has a frame on the stack or not. */
1515
1516 int
1517 rs6000_frameless_function_invocation (struct frame_info *fi)
1518 {
1519 CORE_ADDR func_start;
1520 struct rs6000_framedata fdata;
1521
1522 /* Don't even think about framelessness except on the innermost frame
1523 or if the function was interrupted by a signal. */
1524 if (get_next_frame (fi) != NULL
1525 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1526 return 0;
1527
1528 func_start = get_frame_func (fi);
1529
1530 /* If we failed to find the start of the function, it is a mistake
1531 to inspect the instructions. */
1532
1533 if (!func_start)
1534 {
1535 /* A frame with a zero PC is usually created by dereferencing a NULL
1536 function pointer, normally causing an immediate core dump of the
1537 inferior. Mark function as frameless, as the inferior has no chance
1538 of setting up a stack frame. */
1539 if (get_frame_pc (fi) == 0)
1540 return 1;
1541 else
1542 return 0;
1543 }
1544
1545 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1546 return fdata.frameless;
1547 }
1548
1549 /* Return the PC saved in a frame. */
1550
1551 CORE_ADDR
1552 rs6000_frame_saved_pc (struct frame_info *fi)
1553 {
1554 CORE_ADDR func_start;
1555 struct rs6000_framedata fdata;
1556 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1557 int wordsize = tdep->wordsize;
1558
1559 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1560 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1561 wordsize);
1562
1563 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1564 get_frame_base (fi),
1565 get_frame_base (fi)))
1566 return deprecated_read_register_dummy (get_frame_pc (fi),
1567 get_frame_base (fi), PC_REGNUM);
1568
1569 func_start = get_frame_func (fi);
1570
1571 /* If we failed to find the start of the function, it is a mistake
1572 to inspect the instructions. */
1573 if (!func_start)
1574 return 0;
1575
1576 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1577
1578 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1579 {
1580 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1581 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1582 + SIG_FRAME_LR_OFFSET),
1583 wordsize);
1584 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1585 /* The link register wasn't saved by this frame and the next
1586 (inner, newer) frame is a dummy. Get the link register
1587 value by unwinding it from that [dummy] frame. */
1588 {
1589 ULONGEST lr;
1590 frame_unwind_unsigned_register (get_next_frame (fi),
1591 tdep->ppc_lr_regnum, &lr);
1592 return lr;
1593 }
1594 else
1595 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1596 + tdep->lr_frame_offset,
1597 wordsize);
1598 }
1599
1600 if (fdata.lr_offset == 0)
1601 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1602
1603 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1604 wordsize);
1605 }
1606
1607 /* If saved registers of frame FI are not known yet, read and cache them.
1608 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1609 in which case the framedata are read. */
1610
1611 static void
1612 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1613 {
1614 CORE_ADDR frame_addr;
1615 struct rs6000_framedata work_fdata;
1616 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1617 int wordsize = tdep->wordsize;
1618
1619 if (get_frame_saved_regs (fi))
1620 return;
1621
1622 if (fdatap == NULL)
1623 {
1624 fdatap = &work_fdata;
1625 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1626 }
1627
1628 frame_saved_regs_zalloc (fi);
1629
1630 /* If there were any saved registers, figure out parent's stack
1631 pointer. */
1632 /* The following is true only if the frame doesn't have a call to
1633 alloca(), FIXME. */
1634
1635 if (fdatap->saved_fpr == 0
1636 && fdatap->saved_gpr == 0
1637 && fdatap->saved_vr == 0
1638 && fdatap->saved_ev == 0
1639 && fdatap->lr_offset == 0
1640 && fdatap->cr_offset == 0
1641 && fdatap->vr_offset == 0
1642 && fdatap->ev_offset == 0)
1643 frame_addr = 0;
1644 else
1645 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1646 address of the current frame. Things might be easier if the
1647 ->frame pointed to the outer-most address of the frame. In the
1648 mean time, the address of the prev frame is used as the base
1649 address of this frame. */
1650 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1651
1652 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1653 All fpr's from saved_fpr to fp31 are saved. */
1654
1655 if (fdatap->saved_fpr >= 0)
1656 {
1657 int i;
1658 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1659 for (i = fdatap->saved_fpr; i < 32; i++)
1660 {
1661 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1662 fpr_addr += 8;
1663 }
1664 }
1665
1666 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1667 All gpr's from saved_gpr to gpr31 are saved. */
1668
1669 if (fdatap->saved_gpr >= 0)
1670 {
1671 int i;
1672 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1673 for (i = fdatap->saved_gpr; i < 32; i++)
1674 {
1675 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1676 gpr_addr += wordsize;
1677 }
1678 }
1679
1680 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1681 All vr's from saved_vr to vr31 are saved. */
1682 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1683 {
1684 if (fdatap->saved_vr >= 0)
1685 {
1686 int i;
1687 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1688 for (i = fdatap->saved_vr; i < 32; i++)
1689 {
1690 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1691 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1692 }
1693 }
1694 }
1695
1696 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1697 All vr's from saved_ev to ev31 are saved. ????? */
1698 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1699 {
1700 if (fdatap->saved_ev >= 0)
1701 {
1702 int i;
1703 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1704 for (i = fdatap->saved_ev; i < 32; i++)
1705 {
1706 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1707 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1708 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1709 }
1710 }
1711 }
1712
1713 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1714 the CR. */
1715 if (fdatap->cr_offset != 0)
1716 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1717
1718 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1719 the LR. */
1720 if (fdatap->lr_offset != 0)
1721 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1722
1723 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1724 the VRSAVE. */
1725 if (fdatap->vrsave_offset != 0)
1726 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1727 }
1728
1729 /* Return the address of a frame. This is the inital %sp value when the frame
1730 was first allocated. For functions calling alloca(), it might be saved in
1731 an alloca register. */
1732
1733 static CORE_ADDR
1734 frame_initial_stack_address (struct frame_info *fi)
1735 {
1736 CORE_ADDR tmpaddr;
1737 struct rs6000_framedata fdata;
1738 struct frame_info *callee_fi;
1739
1740 /* If the initial stack pointer (frame address) of this frame is known,
1741 just return it. */
1742
1743 if (get_frame_extra_info (fi)->initial_sp)
1744 return get_frame_extra_info (fi)->initial_sp;
1745
1746 /* Find out if this function is using an alloca register. */
1747
1748 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1749
1750 /* If saved registers of this frame are not known yet, read and
1751 cache them. */
1752
1753 if (!get_frame_saved_regs (fi))
1754 frame_get_saved_regs (fi, &fdata);
1755
1756 /* If no alloca register used, then fi->frame is the value of the %sp for
1757 this frame, and it is good enough. */
1758
1759 if (fdata.alloca_reg < 0)
1760 {
1761 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1762 return get_frame_extra_info (fi)->initial_sp;
1763 }
1764
1765 /* There is an alloca register, use its value, in the current frame,
1766 as the initial stack pointer. */
1767 {
1768 char tmpbuf[MAX_REGISTER_SIZE];
1769 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1770 {
1771 get_frame_extra_info (fi)->initial_sp
1772 = extract_unsigned_integer (tmpbuf,
1773 REGISTER_RAW_SIZE (fdata.alloca_reg));
1774 }
1775 else
1776 /* NOTE: cagney/2002-04-17: At present the only time
1777 frame_register_read will fail is when the register isn't
1778 available. If that does happen, use the frame. */
1779 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1780 }
1781 return get_frame_extra_info (fi)->initial_sp;
1782 }
1783
1784 /* Describe the pointer in each stack frame to the previous stack frame
1785 (its caller). */
1786
1787 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1788 the frame's chain-pointer. */
1789
1790 /* In the case of the RS/6000, the frame's nominal address
1791 is the address of a 4-byte word containing the calling frame's address. */
1792
1793 CORE_ADDR
1794 rs6000_frame_chain (struct frame_info *thisframe)
1795 {
1796 CORE_ADDR fp, fpp, lr;
1797 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1798
1799 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1800 get_frame_base (thisframe),
1801 get_frame_base (thisframe)))
1802 /* A dummy frame always correctly chains back to the previous
1803 frame. */
1804 return read_memory_addr (get_frame_base (thisframe), wordsize);
1805
1806 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
1807 || get_frame_pc (thisframe) == entry_point_address ())
1808 return 0;
1809
1810 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1811 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1812 wordsize);
1813 else if (get_next_frame (thisframe) != NULL
1814 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1815 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1816 /* A frameless function interrupted by a signal did not change the
1817 frame pointer. */
1818 fp = get_frame_base (thisframe);
1819 else
1820 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1821 return fp;
1822 }
1823
1824 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1825 isn't available with that word size, return 0. */
1826
1827 static int
1828 regsize (const struct reg *reg, int wordsize)
1829 {
1830 return wordsize == 8 ? reg->sz64 : reg->sz32;
1831 }
1832
1833 /* Return the name of register number N, or null if no such register exists
1834 in the current architecture. */
1835
1836 static const char *
1837 rs6000_register_name (int n)
1838 {
1839 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1840 const struct reg *reg = tdep->regs + n;
1841
1842 if (!regsize (reg, tdep->wordsize))
1843 return NULL;
1844 return reg->name;
1845 }
1846
1847 /* Index within `registers' of the first byte of the space for
1848 register N. */
1849
1850 static int
1851 rs6000_register_byte (int n)
1852 {
1853 return gdbarch_tdep (current_gdbarch)->regoff[n];
1854 }
1855
1856 /* Return the number of bytes of storage in the actual machine representation
1857 for register N if that register is available, else return 0. */
1858
1859 static int
1860 rs6000_register_raw_size (int n)
1861 {
1862 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1863 const struct reg *reg = tdep->regs + n;
1864 return regsize (reg, tdep->wordsize);
1865 }
1866
1867 /* Return the GDB type object for the "standard" data type
1868 of data in register N. */
1869
1870 static struct type *
1871 rs6000_register_virtual_type (int n)
1872 {
1873 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1874 const struct reg *reg = tdep->regs + n;
1875
1876 if (reg->fpr)
1877 return builtin_type_double;
1878 else
1879 {
1880 int size = regsize (reg, tdep->wordsize);
1881 switch (size)
1882 {
1883 case 0:
1884 return builtin_type_int0;
1885 case 4:
1886 return builtin_type_int32;
1887 case 8:
1888 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1889 return builtin_type_vec64;
1890 else
1891 return builtin_type_int64;
1892 break;
1893 case 16:
1894 return builtin_type_vec128;
1895 break;
1896 default:
1897 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1898 n, size);
1899 }
1900 }
1901 }
1902
1903 /* Return whether register N requires conversion when moving from raw format
1904 to virtual format.
1905
1906 The register format for RS/6000 floating point registers is always
1907 double, we need a conversion if the memory format is float. */
1908
1909 static int
1910 rs6000_register_convertible (int n)
1911 {
1912 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1913 return reg->fpr;
1914 }
1915
1916 /* Convert data from raw format for register N in buffer FROM
1917 to virtual format with type TYPE in buffer TO. */
1918
1919 static void
1920 rs6000_register_convert_to_virtual (int n, struct type *type,
1921 char *from, char *to)
1922 {
1923 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1924 {
1925 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1926 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1927 }
1928 else
1929 memcpy (to, from, REGISTER_RAW_SIZE (n));
1930 }
1931
1932 /* Convert data from virtual format with type TYPE in buffer FROM
1933 to raw format for register N in buffer TO. */
1934
1935 static void
1936 rs6000_register_convert_to_raw (struct type *type, int n,
1937 const char *from, char *to)
1938 {
1939 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1940 {
1941 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1942 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
1943 }
1944 else
1945 memcpy (to, from, REGISTER_RAW_SIZE (n));
1946 }
1947
1948 static void
1949 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1950 int reg_nr, void *buffer)
1951 {
1952 int base_regnum;
1953 int offset = 0;
1954 char temp_buffer[MAX_REGISTER_SIZE];
1955 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1956
1957 if (reg_nr >= tdep->ppc_gp0_regnum
1958 && reg_nr <= tdep->ppc_gplast_regnum)
1959 {
1960 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1961
1962 /* Build the value in the provided buffer. */
1963 /* Read the raw register of which this one is the lower portion. */
1964 regcache_raw_read (regcache, base_regnum, temp_buffer);
1965 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1966 offset = 4;
1967 memcpy ((char *) buffer, temp_buffer + offset, 4);
1968 }
1969 }
1970
1971 static void
1972 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1973 int reg_nr, const void *buffer)
1974 {
1975 int base_regnum;
1976 int offset = 0;
1977 char temp_buffer[MAX_REGISTER_SIZE];
1978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1979
1980 if (reg_nr >= tdep->ppc_gp0_regnum
1981 && reg_nr <= tdep->ppc_gplast_regnum)
1982 {
1983 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1984 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1985 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1986 offset = 4;
1987
1988 /* Let's read the value of the base register into a temporary
1989 buffer, so that overwriting the last four bytes with the new
1990 value of the pseudo will leave the upper 4 bytes unchanged. */
1991 regcache_raw_read (regcache, base_regnum, temp_buffer);
1992
1993 /* Write as an 8 byte quantity. */
1994 memcpy (temp_buffer + offset, (char *) buffer, 4);
1995 regcache_raw_write (regcache, base_regnum, temp_buffer);
1996 }
1997 }
1998
1999 /* Convert a dwarf2 register number to a gdb REGNUM. */
2000 static int
2001 e500_dwarf2_reg_to_regnum (int num)
2002 {
2003 int regnum;
2004 if (0 <= num && num <= 31)
2005 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2006 else
2007 return num;
2008 }
2009
2010 /* Convert a dbx stab register number (from `r' declaration) to a gdb
2011 REGNUM. */
2012 static int
2013 rs6000_stab_reg_to_regnum (int num)
2014 {
2015 int regnum;
2016 switch (num)
2017 {
2018 case 64:
2019 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2020 break;
2021 case 65:
2022 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2023 break;
2024 case 66:
2025 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2026 break;
2027 case 76:
2028 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2029 break;
2030 default:
2031 regnum = num;
2032 break;
2033 }
2034 return regnum;
2035 }
2036
2037 /* Write into appropriate registers a function return value
2038 of type TYPE, given in virtual format. */
2039 static void
2040 e500_store_return_value (struct type *type, char *valbuf)
2041 {
2042 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2043
2044 /* Everything is returned in GPR3 and up. */
2045 int copied = 0;
2046 int i = 0;
2047 int len = TYPE_LENGTH (type);
2048 while (copied < len)
2049 {
2050 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2051 int reg_size = REGISTER_RAW_SIZE (regnum);
2052 char *reg_val_buf = alloca (reg_size);
2053
2054 memcpy (reg_val_buf, valbuf + copied, reg_size);
2055 copied += reg_size;
2056 deprecated_write_register_gen (regnum, reg_val_buf);
2057 i++;
2058 }
2059 }
2060
2061 static void
2062 rs6000_store_return_value (struct type *type, char *valbuf)
2063 {
2064 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2065
2066 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2067
2068 /* Floating point values are returned starting from FPR1 and up.
2069 Say a double_double_double type could be returned in
2070 FPR1/FPR2/FPR3 triple. */
2071
2072 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2073 TYPE_LENGTH (type));
2074 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2075 {
2076 if (TYPE_LENGTH (type) == 16
2077 && TYPE_VECTOR (type))
2078 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2079 valbuf, TYPE_LENGTH (type));
2080 }
2081 else
2082 /* Everything else is returned in GPR3 and up. */
2083 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2084 valbuf, TYPE_LENGTH (type));
2085 }
2086
2087 /* Extract from an array REGBUF containing the (raw) register state
2088 the address in which a function should return its structure value,
2089 as a CORE_ADDR (or an expression that can be used as one). */
2090
2091 static CORE_ADDR
2092 rs6000_extract_struct_value_address (struct regcache *regcache)
2093 {
2094 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2095 function call GDB knows the address of the struct return value
2096 and hence, should not need to call this function. Unfortunately,
2097 the current call_function_by_hand() code only saves the most
2098 recent struct address leading to occasional calls. The code
2099 should instead maintain a stack of such addresses (in the dummy
2100 frame object). */
2101 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2102 really got no idea where the return value is being stored. While
2103 r3, on function entry, contained the address it will have since
2104 been reused (scratch) and hence wouldn't be valid */
2105 return 0;
2106 }
2107
2108 /* Return whether PC is in a dummy function call.
2109
2110 FIXME: This just checks for the end of the stack, which is broken
2111 for things like stepping through gcc nested function stubs. */
2112
2113 static int
2114 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2115 {
2116 return sp < pc && pc < fp;
2117 }
2118
2119 /* Hook called when a new child process is started. */
2120
2121 void
2122 rs6000_create_inferior (int pid)
2123 {
2124 if (rs6000_set_host_arch_hook)
2125 rs6000_set_host_arch_hook (pid);
2126 }
2127 \f
2128 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2129
2130 Usually a function pointer's representation is simply the address
2131 of the function. On the RS/6000 however, a function pointer is
2132 represented by a pointer to a TOC entry. This TOC entry contains
2133 three words, the first word is the address of the function, the
2134 second word is the TOC pointer (r2), and the third word is the
2135 static chain value. Throughout GDB it is currently assumed that a
2136 function pointer contains the address of the function, which is not
2137 easy to fix. In addition, the conversion of a function address to
2138 a function pointer would require allocation of a TOC entry in the
2139 inferior's memory space, with all its drawbacks. To be able to
2140 call C++ virtual methods in the inferior (which are called via
2141 function pointers), find_function_addr uses this function to get the
2142 function address from a function pointer. */
2143
2144 /* Return real function address if ADDR (a function pointer) is in the data
2145 space and is therefore a special function pointer. */
2146
2147 static CORE_ADDR
2148 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2149 {
2150 struct obj_section *s;
2151
2152 s = find_pc_section (addr);
2153 if (s && s->the_bfd_section->flags & SEC_CODE)
2154 return addr;
2155
2156 /* ADDR is in the data space, so it's a special function pointer. */
2157 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2158 }
2159 \f
2160
2161 /* Handling the various POWER/PowerPC variants. */
2162
2163
2164 /* The arrays here called registers_MUMBLE hold information about available
2165 registers.
2166
2167 For each family of PPC variants, I've tried to isolate out the
2168 common registers and put them up front, so that as long as you get
2169 the general family right, GDB will correctly identify the registers
2170 common to that family. The common register sets are:
2171
2172 For the 60x family: hid0 hid1 iabr dabr pir
2173
2174 For the 505 and 860 family: eie eid nri
2175
2176 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2177 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2178 pbu1 pbl2 pbu2
2179
2180 Most of these register groups aren't anything formal. I arrived at
2181 them by looking at the registers that occurred in more than one
2182 processor.
2183
2184 Note: kevinb/2002-04-30: Support for the fpscr register was added
2185 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2186 for Power. For PowerPC, slot 70 was unused and was already in the
2187 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2188 slot 70 was being used for "mq", so the next available slot (71)
2189 was chosen. It would have been nice to be able to make the
2190 register numbers the same across processor cores, but this wasn't
2191 possible without either 1) renumbering some registers for some
2192 processors or 2) assigning fpscr to a really high slot that's
2193 larger than any current register number. Doing (1) is bad because
2194 existing stubs would break. Doing (2) is undesirable because it
2195 would introduce a really large gap between fpscr and the rest of
2196 the registers for most processors. */
2197
2198 /* Convenience macros for populating register arrays. */
2199
2200 /* Within another macro, convert S to a string. */
2201
2202 #define STR(s) #s
2203
2204 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2205 and 64 bits on 64-bit systems. */
2206 #define R(name) { STR(name), 4, 8, 0, 0 }
2207
2208 /* Return a struct reg defining register NAME that's 32 bits on all
2209 systems. */
2210 #define R4(name) { STR(name), 4, 4, 0, 0 }
2211
2212 /* Return a struct reg defining register NAME that's 64 bits on all
2213 systems. */
2214 #define R8(name) { STR(name), 8, 8, 0, 0 }
2215
2216 /* Return a struct reg defining register NAME that's 128 bits on all
2217 systems. */
2218 #define R16(name) { STR(name), 16, 16, 0, 0 }
2219
2220 /* Return a struct reg defining floating-point register NAME. */
2221 #define F(name) { STR(name), 8, 8, 1, 0 }
2222
2223 /* Return a struct reg defining a pseudo register NAME. */
2224 #define P(name) { STR(name), 4, 8, 0, 1}
2225
2226 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2227 systems and that doesn't exist on 64-bit systems. */
2228 #define R32(name) { STR(name), 4, 0, 0, 0 }
2229
2230 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2231 systems and that doesn't exist on 32-bit systems. */
2232 #define R64(name) { STR(name), 0, 8, 0, 0 }
2233
2234 /* Return a struct reg placeholder for a register that doesn't exist. */
2235 #define R0 { 0, 0, 0, 0, 0 }
2236
2237 /* UISA registers common across all architectures, including POWER. */
2238
2239 #define COMMON_UISA_REGS \
2240 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2241 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2242 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2243 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2244 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2245 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2246 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2247 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2248 /* 64 */ R(pc), R(ps)
2249
2250 #define COMMON_UISA_NOFP_REGS \
2251 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2252 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2253 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2254 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2255 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2256 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2257 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2258 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2259 /* 64 */ R(pc), R(ps)
2260
2261 /* UISA-level SPRs for PowerPC. */
2262 #define PPC_UISA_SPRS \
2263 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2264
2265 /* UISA-level SPRs for PowerPC without floating point support. */
2266 #define PPC_UISA_NOFP_SPRS \
2267 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2268
2269 /* Segment registers, for PowerPC. */
2270 #define PPC_SEGMENT_REGS \
2271 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2272 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2273 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2274 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2275
2276 /* OEA SPRs for PowerPC. */
2277 #define PPC_OEA_SPRS \
2278 /* 87 */ R4(pvr), \
2279 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2280 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2281 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2282 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2283 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2284 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2285 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2286 /* 116 */ R4(dec), R(dabr), R4(ear)
2287
2288 /* AltiVec registers. */
2289 #define PPC_ALTIVEC_REGS \
2290 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2291 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2292 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2293 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2294 /*151*/R4(vscr), R4(vrsave)
2295
2296 /* Vectors of hi-lo general purpose registers. */
2297 #define PPC_EV_REGS \
2298 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2299 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2300 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2301 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2302
2303 /* Lower half of the EV registers. */
2304 #define PPC_GPRS_PSEUDO_REGS \
2305 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2306 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2307 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2308 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2309
2310 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2311 user-level SPR's. */
2312 static const struct reg registers_power[] =
2313 {
2314 COMMON_UISA_REGS,
2315 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2316 /* 71 */ R4(fpscr)
2317 };
2318
2319 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2320 view of the PowerPC. */
2321 static const struct reg registers_powerpc[] =
2322 {
2323 COMMON_UISA_REGS,
2324 PPC_UISA_SPRS,
2325 PPC_ALTIVEC_REGS
2326 };
2327
2328 /* PowerPC UISA - a PPC processor as viewed by user-level
2329 code, but without floating point registers. */
2330 static const struct reg registers_powerpc_nofp[] =
2331 {
2332 COMMON_UISA_NOFP_REGS,
2333 PPC_UISA_SPRS
2334 };
2335
2336 /* IBM PowerPC 403. */
2337 static const struct reg registers_403[] =
2338 {
2339 COMMON_UISA_REGS,
2340 PPC_UISA_SPRS,
2341 PPC_SEGMENT_REGS,
2342 PPC_OEA_SPRS,
2343 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2344 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2345 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2346 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2347 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2348 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2349 };
2350
2351 /* IBM PowerPC 403GC. */
2352 static const struct reg registers_403GC[] =
2353 {
2354 COMMON_UISA_REGS,
2355 PPC_UISA_SPRS,
2356 PPC_SEGMENT_REGS,
2357 PPC_OEA_SPRS,
2358 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2359 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2360 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2361 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2362 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2363 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2364 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2365 /* 147 */ R(tbhu), R(tblu)
2366 };
2367
2368 /* Motorola PowerPC 505. */
2369 static const struct reg registers_505[] =
2370 {
2371 COMMON_UISA_REGS,
2372 PPC_UISA_SPRS,
2373 PPC_SEGMENT_REGS,
2374 PPC_OEA_SPRS,
2375 /* 119 */ R(eie), R(eid), R(nri)
2376 };
2377
2378 /* Motorola PowerPC 860 or 850. */
2379 static const struct reg registers_860[] =
2380 {
2381 COMMON_UISA_REGS,
2382 PPC_UISA_SPRS,
2383 PPC_SEGMENT_REGS,
2384 PPC_OEA_SPRS,
2385 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2386 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2387 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2388 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2389 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2390 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2391 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2392 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2393 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2394 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2395 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2396 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2397 };
2398
2399 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2400 for reading and writing RTCU and RTCL. However, how one reads and writes a
2401 register is the stub's problem. */
2402 static const struct reg registers_601[] =
2403 {
2404 COMMON_UISA_REGS,
2405 PPC_UISA_SPRS,
2406 PPC_SEGMENT_REGS,
2407 PPC_OEA_SPRS,
2408 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2409 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2410 };
2411
2412 /* Motorola PowerPC 602. */
2413 static const struct reg registers_602[] =
2414 {
2415 COMMON_UISA_REGS,
2416 PPC_UISA_SPRS,
2417 PPC_SEGMENT_REGS,
2418 PPC_OEA_SPRS,
2419 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2420 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2421 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2422 };
2423
2424 /* Motorola/IBM PowerPC 603 or 603e. */
2425 static const struct reg registers_603[] =
2426 {
2427 COMMON_UISA_REGS,
2428 PPC_UISA_SPRS,
2429 PPC_SEGMENT_REGS,
2430 PPC_OEA_SPRS,
2431 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2432 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2433 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2434 };
2435
2436 /* Motorola PowerPC 604 or 604e. */
2437 static const struct reg registers_604[] =
2438 {
2439 COMMON_UISA_REGS,
2440 PPC_UISA_SPRS,
2441 PPC_SEGMENT_REGS,
2442 PPC_OEA_SPRS,
2443 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2444 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2445 /* 127 */ R(sia), R(sda)
2446 };
2447
2448 /* Motorola/IBM PowerPC 750 or 740. */
2449 static const struct reg registers_750[] =
2450 {
2451 COMMON_UISA_REGS,
2452 PPC_UISA_SPRS,
2453 PPC_SEGMENT_REGS,
2454 PPC_OEA_SPRS,
2455 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2456 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2457 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2458 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2459 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2460 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2461 };
2462
2463
2464 /* Motorola PowerPC 7400. */
2465 static const struct reg registers_7400[] =
2466 {
2467 /* gpr0-gpr31, fpr0-fpr31 */
2468 COMMON_UISA_REGS,
2469 /* ctr, xre, lr, cr */
2470 PPC_UISA_SPRS,
2471 /* sr0-sr15 */
2472 PPC_SEGMENT_REGS,
2473 PPC_OEA_SPRS,
2474 /* vr0-vr31, vrsave, vscr */
2475 PPC_ALTIVEC_REGS
2476 /* FIXME? Add more registers? */
2477 };
2478
2479 /* Motorola e500. */
2480 static const struct reg registers_e500[] =
2481 {
2482 R(pc), R(ps),
2483 /* cr, lr, ctr, xer, "" */
2484 PPC_UISA_NOFP_SPRS,
2485 /* 7...38 */
2486 PPC_EV_REGS,
2487 R8(acc), R(spefscr),
2488 /* NOTE: Add new registers here the end of the raw register
2489 list and just before the first pseudo register. */
2490 /* 39...70 */
2491 PPC_GPRS_PSEUDO_REGS
2492 };
2493
2494 /* Information about a particular processor variant. */
2495
2496 struct variant
2497 {
2498 /* Name of this variant. */
2499 char *name;
2500
2501 /* English description of the variant. */
2502 char *description;
2503
2504 /* bfd_arch_info.arch corresponding to variant. */
2505 enum bfd_architecture arch;
2506
2507 /* bfd_arch_info.mach corresponding to variant. */
2508 unsigned long mach;
2509
2510 /* Number of real registers. */
2511 int nregs;
2512
2513 /* Number of pseudo registers. */
2514 int npregs;
2515
2516 /* Number of total registers (the sum of nregs and npregs). */
2517 int num_tot_regs;
2518
2519 /* Table of register names; registers[R] is the name of the register
2520 number R. */
2521 const struct reg *regs;
2522 };
2523
2524 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2525
2526 static int
2527 num_registers (const struct reg *reg_list, int num_tot_regs)
2528 {
2529 int i;
2530 int nregs = 0;
2531
2532 for (i = 0; i < num_tot_regs; i++)
2533 if (!reg_list[i].pseudo)
2534 nregs++;
2535
2536 return nregs;
2537 }
2538
2539 static int
2540 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2541 {
2542 int i;
2543 int npregs = 0;
2544
2545 for (i = 0; i < num_tot_regs; i++)
2546 if (reg_list[i].pseudo)
2547 npregs ++;
2548
2549 return npregs;
2550 }
2551
2552 /* Information in this table comes from the following web sites:
2553 IBM: http://www.chips.ibm.com:80/products/embedded/
2554 Motorola: http://www.mot.com/SPS/PowerPC/
2555
2556 I'm sure I've got some of the variant descriptions not quite right.
2557 Please report any inaccuracies you find to GDB's maintainer.
2558
2559 If you add entries to this table, please be sure to allow the new
2560 value as an argument to the --with-cpu flag, in configure.in. */
2561
2562 static struct variant variants[] =
2563 {
2564
2565 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2566 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2567 registers_powerpc},
2568 {"power", "POWER user-level", bfd_arch_rs6000,
2569 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2570 registers_power},
2571 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2572 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2573 registers_403},
2574 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2575 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2576 registers_601},
2577 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2578 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2579 registers_602},
2580 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2581 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2582 registers_603},
2583 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2584 604, -1, -1, tot_num_registers (registers_604),
2585 registers_604},
2586 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2587 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2588 registers_403GC},
2589 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2590 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2591 registers_505},
2592 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2593 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2594 registers_860},
2595 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2596 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2597 registers_750},
2598 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2599 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2600 registers_7400},
2601 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2602 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2603 registers_e500},
2604
2605 /* 64-bit */
2606 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2607 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2608 registers_powerpc},
2609 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2610 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2611 registers_powerpc},
2612 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2613 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2614 registers_powerpc},
2615 {"a35", "PowerPC A35", bfd_arch_powerpc,
2616 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2617 registers_powerpc},
2618 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2619 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2620 registers_powerpc},
2621 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2622 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2623 registers_powerpc},
2624
2625 /* FIXME: I haven't checked the register sets of the following. */
2626 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2627 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2628 registers_power},
2629 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2630 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2631 registers_power},
2632 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2633 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2634 registers_power},
2635
2636 {0, 0, 0, 0, 0, 0, 0, 0}
2637 };
2638
2639 /* Initialize the number of registers and pseudo registers in each variant. */
2640
2641 static void
2642 init_variants (void)
2643 {
2644 struct variant *v;
2645
2646 for (v = variants; v->name; v++)
2647 {
2648 if (v->nregs == -1)
2649 v->nregs = num_registers (v->regs, v->num_tot_regs);
2650 if (v->npregs == -1)
2651 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2652 }
2653 }
2654
2655 /* Return the variant corresponding to architecture ARCH and machine number
2656 MACH. If no such variant exists, return null. */
2657
2658 static const struct variant *
2659 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2660 {
2661 const struct variant *v;
2662
2663 for (v = variants; v->name; v++)
2664 if (arch == v->arch && mach == v->mach)
2665 return v;
2666
2667 return NULL;
2668 }
2669
2670 static int
2671 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2672 {
2673 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2674 return print_insn_big_powerpc (memaddr, info);
2675 else
2676 return print_insn_little_powerpc (memaddr, info);
2677 }
2678 \f
2679 /* Initialize the current architecture based on INFO. If possible, re-use an
2680 architecture from ARCHES, which is a list of architectures already created
2681 during this debugging session.
2682
2683 Called e.g. at program startup, when reading a core file, and when reading
2684 a binary file. */
2685
2686 static struct gdbarch *
2687 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2688 {
2689 struct gdbarch *gdbarch;
2690 struct gdbarch_tdep *tdep;
2691 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2692 struct reg *regs;
2693 const struct variant *v;
2694 enum bfd_architecture arch;
2695 unsigned long mach;
2696 bfd abfd;
2697 int sysv_abi;
2698 asection *sect;
2699
2700 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2701 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2702
2703 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2704 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2705
2706 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2707
2708 /* Check word size. If INFO is from a binary file, infer it from
2709 that, else choose a likely default. */
2710 if (from_xcoff_exec)
2711 {
2712 if (bfd_xcoff_is_xcoff64 (info.abfd))
2713 wordsize = 8;
2714 else
2715 wordsize = 4;
2716 }
2717 else if (from_elf_exec)
2718 {
2719 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2720 wordsize = 8;
2721 else
2722 wordsize = 4;
2723 }
2724 else
2725 {
2726 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2727 wordsize = info.bfd_arch_info->bits_per_word /
2728 info.bfd_arch_info->bits_per_byte;
2729 else
2730 wordsize = 4;
2731 }
2732
2733 /* Find a candidate among extant architectures. */
2734 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2735 arches != NULL;
2736 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2737 {
2738 /* Word size in the various PowerPC bfd_arch_info structs isn't
2739 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2740 separate word size check. */
2741 tdep = gdbarch_tdep (arches->gdbarch);
2742 if (tdep && tdep->wordsize == wordsize)
2743 return arches->gdbarch;
2744 }
2745
2746 /* None found, create a new architecture from INFO, whose bfd_arch_info
2747 validity depends on the source:
2748 - executable useless
2749 - rs6000_host_arch() good
2750 - core file good
2751 - "set arch" trust blindly
2752 - GDB startup useless but harmless */
2753
2754 if (!from_xcoff_exec)
2755 {
2756 arch = info.bfd_arch_info->arch;
2757 mach = info.bfd_arch_info->mach;
2758 }
2759 else
2760 {
2761 arch = bfd_arch_powerpc;
2762 bfd_default_set_arch_mach (&abfd, arch, 0);
2763 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2764 mach = info.bfd_arch_info->mach;
2765 }
2766 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2767 tdep->wordsize = wordsize;
2768
2769 /* For e500 executables, the apuinfo section is of help here. Such
2770 section contains the identifier and revision number of each
2771 Application-specific Processing Unit that is present on the
2772 chip. The content of the section is determined by the assembler
2773 which looks at each instruction and determines which unit (and
2774 which version of it) can execute it. In our case we just look for
2775 the existance of the section. */
2776
2777 if (info.abfd)
2778 {
2779 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2780 if (sect)
2781 {
2782 arch = info.bfd_arch_info->arch;
2783 mach = bfd_mach_ppc_e500;
2784 bfd_default_set_arch_mach (&abfd, arch, mach);
2785 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2786 }
2787 }
2788
2789 gdbarch = gdbarch_alloc (&info, tdep);
2790 power = arch == bfd_arch_rs6000;
2791
2792 /* Initialize the number of real and pseudo registers in each variant. */
2793 init_variants ();
2794
2795 /* Choose variant. */
2796 v = find_variant_by_arch (arch, mach);
2797 if (!v)
2798 return NULL;
2799
2800 tdep->regs = v->regs;
2801
2802 tdep->ppc_gp0_regnum = 0;
2803 tdep->ppc_gplast_regnum = 31;
2804 tdep->ppc_toc_regnum = 2;
2805 tdep->ppc_ps_regnum = 65;
2806 tdep->ppc_cr_regnum = 66;
2807 tdep->ppc_lr_regnum = 67;
2808 tdep->ppc_ctr_regnum = 68;
2809 tdep->ppc_xer_regnum = 69;
2810 if (v->mach == bfd_mach_ppc_601)
2811 tdep->ppc_mq_regnum = 124;
2812 else if (power)
2813 tdep->ppc_mq_regnum = 70;
2814 else
2815 tdep->ppc_mq_regnum = -1;
2816 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2817
2818 set_gdbarch_pc_regnum (gdbarch, 64);
2819 set_gdbarch_sp_regnum (gdbarch, 1);
2820 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2821 set_gdbarch_deprecated_extract_return_value (gdbarch,
2822 rs6000_extract_return_value);
2823 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2824
2825 if (v->arch == bfd_arch_powerpc)
2826 switch (v->mach)
2827 {
2828 case bfd_mach_ppc:
2829 tdep->ppc_vr0_regnum = 71;
2830 tdep->ppc_vrsave_regnum = 104;
2831 tdep->ppc_ev0_regnum = -1;
2832 tdep->ppc_ev31_regnum = -1;
2833 break;
2834 case bfd_mach_ppc_7400:
2835 tdep->ppc_vr0_regnum = 119;
2836 tdep->ppc_vrsave_regnum = 152;
2837 tdep->ppc_ev0_regnum = -1;
2838 tdep->ppc_ev31_regnum = -1;
2839 break;
2840 case bfd_mach_ppc_e500:
2841 tdep->ppc_gp0_regnum = 41;
2842 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2843 tdep->ppc_toc_regnum = -1;
2844 tdep->ppc_ps_regnum = 1;
2845 tdep->ppc_cr_regnum = 2;
2846 tdep->ppc_lr_regnum = 3;
2847 tdep->ppc_ctr_regnum = 4;
2848 tdep->ppc_xer_regnum = 5;
2849 tdep->ppc_ev0_regnum = 7;
2850 tdep->ppc_ev31_regnum = 38;
2851 set_gdbarch_pc_regnum (gdbarch, 0);
2852 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2853 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2854 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2855 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2856 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2857 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2858 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2859 break;
2860 default:
2861 tdep->ppc_vr0_regnum = -1;
2862 tdep->ppc_vrsave_regnum = -1;
2863 tdep->ppc_ev0_regnum = -1;
2864 tdep->ppc_ev31_regnum = -1;
2865 break;
2866 }
2867
2868 /* Sanity check on registers. */
2869 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2870
2871 /* Set lr_frame_offset. */
2872 if (wordsize == 8)
2873 tdep->lr_frame_offset = 16;
2874 else if (sysv_abi)
2875 tdep->lr_frame_offset = 4;
2876 else
2877 tdep->lr_frame_offset = 8;
2878
2879 /* Calculate byte offsets in raw register array. */
2880 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2881 for (i = off = 0; i < v->num_tot_regs; i++)
2882 {
2883 tdep->regoff[i] = off;
2884 off += regsize (v->regs + i, wordsize);
2885 }
2886
2887 /* Select instruction printer. */
2888 if (arch == power)
2889 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2890 else
2891 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2892
2893 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2894
2895 set_gdbarch_num_regs (gdbarch, v->nregs);
2896 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2897 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2898 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2899 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2900 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2901 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2902 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2903
2904 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2905 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2906 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2907 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2908 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2909 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2910 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2911 if (sysv_abi)
2912 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2913 else
2914 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2915 set_gdbarch_char_signed (gdbarch, 0);
2916
2917 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2918 if (sysv_abi && wordsize == 8)
2919 /* PPC64 SYSV. */
2920 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2921 else if (!sysv_abi && wordsize == 4)
2922 /* PowerOpen / AIX 32 bit. */
2923 set_gdbarch_frame_red_zone_size (gdbarch, 220);
2924 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2925 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2926
2927 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2928 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2929 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2930 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2931 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2932 is correct for the SysV ABI when the wordsize is 8, but I'm also
2933 fairly certain that ppc_sysv_abi_push_arguments() will give even
2934 worse results since it only works for 32-bit code. So, for the moment,
2935 we're better off calling rs6000_push_arguments() since it works for
2936 64-bit code. At some point in the future, this matter needs to be
2937 revisited. */
2938 if (sysv_abi && wordsize == 4)
2939 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2940 else
2941 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2942
2943 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2944 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2945
2946 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2947 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2948 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2949 set_gdbarch_function_start_offset (gdbarch, 0);
2950 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2951
2952 /* Not sure on this. FIXMEmgo */
2953 set_gdbarch_frame_args_skip (gdbarch, 8);
2954
2955 if (sysv_abi)
2956 set_gdbarch_use_struct_convention (gdbarch,
2957 ppc_sysv_abi_use_struct_convention);
2958 else
2959 set_gdbarch_use_struct_convention (gdbarch,
2960 generic_use_struct_convention);
2961
2962 set_gdbarch_frameless_function_invocation (gdbarch,
2963 rs6000_frameless_function_invocation);
2964 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2965 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2966
2967 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2968 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2969
2970 if (!sysv_abi)
2971 {
2972 /* Handle RS/6000 function pointers (which are really function
2973 descriptors). */
2974 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2975 rs6000_convert_from_func_ptr_addr);
2976 }
2977 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2978 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
2979 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2980
2981 /* Helpers for function argument information. */
2982 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2983
2984 /* Hook in ABI-specific overrides, if they have been registered. */
2985 gdbarch_init_osabi (info, gdbarch);
2986
2987 return gdbarch;
2988 }
2989
2990 static void
2991 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2992 {
2993 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2994
2995 if (tdep == NULL)
2996 return;
2997
2998 /* FIXME: Dump gdbarch_tdep. */
2999 }
3000
3001 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3002
3003 static void
3004 rs6000_info_powerpc_command (char *args, int from_tty)
3005 {
3006 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3007 }
3008
3009 /* Initialization code. */
3010
3011 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3012
3013 void
3014 _initialize_rs6000_tdep (void)
3015 {
3016 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3017 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3018
3019 /* Add root prefix command for "info powerpc" commands */
3020 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3021 "Various POWERPC info specific commands.",
3022 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3023 }
This page took 0.151718 seconds and 5 git commands to generate.