2004-02-29 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_init_frame_pc_first (int fromleaf, struct frame_info *prev)
215 {
216 return (fromleaf ? DEPRECATED_SAVED_PC_AFTER_CALL (prev->next)
217 : prev->next ? DEPRECATED_FRAME_SAVED_PC (prev->next) : read_pc ());
218 }
219
220 static CORE_ADDR
221 rs6000_frame_args_address (struct frame_info *fi)
222 {
223 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
224 if (extra_info->initial_sp != 0)
225 return extra_info->initial_sp;
226 else
227 return frame_initial_stack_address (fi);
228 }
229
230 /* Immediately after a function call, return the saved pc.
231 Can't go through the frames for this because on some machines
232 the new frame is not set up until the new function executes
233 some instructions. */
234
235 static CORE_ADDR
236 rs6000_saved_pc_after_call (struct frame_info *fi)
237 {
238 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
239 }
240
241 /* Get the ith function argument for the current function. */
242 static CORE_ADDR
243 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
244 struct type *type)
245 {
246 CORE_ADDR addr;
247 get_frame_register (frame, 3 + argi, &addr);
248 return addr;
249 }
250
251 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
252
253 static CORE_ADDR
254 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
255 {
256 CORE_ADDR dest;
257 int immediate;
258 int absolute;
259 int ext_op;
260
261 absolute = (int) ((instr >> 1) & 1);
262
263 switch (opcode)
264 {
265 case 18:
266 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
267 if (absolute)
268 dest = immediate;
269 else
270 dest = pc + immediate;
271 break;
272
273 case 16:
274 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
275 if (absolute)
276 dest = immediate;
277 else
278 dest = pc + immediate;
279 break;
280
281 case 19:
282 ext_op = (instr >> 1) & 0x3ff;
283
284 if (ext_op == 16) /* br conditional register */
285 {
286 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
287
288 /* If we are about to return from a signal handler, dest is
289 something like 0x3c90. The current frame is a signal handler
290 caller frame, upon completion of the sigreturn system call
291 execution will return to the saved PC in the frame. */
292 if (dest < TEXT_SEGMENT_BASE)
293 {
294 struct frame_info *fi;
295
296 fi = get_current_frame ();
297 if (fi != NULL)
298 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
299 gdbarch_tdep (current_gdbarch)->wordsize);
300 }
301 }
302
303 else if (ext_op == 528) /* br cond to count reg */
304 {
305 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
306
307 /* If we are about to execute a system call, dest is something
308 like 0x22fc or 0x3b00. Upon completion the system call
309 will return to the address in the link register. */
310 if (dest < TEXT_SEGMENT_BASE)
311 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
312 }
313 else
314 return -1;
315 break;
316
317 default:
318 return -1;
319 }
320 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
321 }
322
323
324 /* Sequence of bytes for breakpoint instruction. */
325
326 const static unsigned char *
327 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
328 {
329 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
330 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
331 *bp_size = 4;
332 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
333 return big_breakpoint;
334 else
335 return little_breakpoint;
336 }
337
338
339 /* AIX does not support PT_STEP. Simulate it. */
340
341 void
342 rs6000_software_single_step (enum target_signal signal,
343 int insert_breakpoints_p)
344 {
345 CORE_ADDR dummy;
346 int breakp_sz;
347 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
348 int ii, insn;
349 CORE_ADDR loc;
350 CORE_ADDR breaks[2];
351 int opcode;
352
353 if (insert_breakpoints_p)
354 {
355
356 loc = read_pc ();
357
358 insn = read_memory_integer (loc, 4);
359
360 breaks[0] = loc + breakp_sz;
361 opcode = insn >> 26;
362 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
363
364 /* Don't put two breakpoints on the same address. */
365 if (breaks[1] == breaks[0])
366 breaks[1] = -1;
367
368 stepBreaks[1].address = 0;
369
370 for (ii = 0; ii < 2; ++ii)
371 {
372
373 /* ignore invalid breakpoint. */
374 if (breaks[ii] == -1)
375 continue;
376 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
377 stepBreaks[ii].address = breaks[ii];
378 }
379
380 }
381 else
382 {
383
384 /* remove step breakpoints. */
385 for (ii = 0; ii < 2; ++ii)
386 if (stepBreaks[ii].address != 0)
387 target_remove_breakpoint (stepBreaks[ii].address,
388 stepBreaks[ii].data);
389 }
390 errno = 0; /* FIXME, don't ignore errors! */
391 /* What errors? {read,write}_memory call error(). */
392 }
393
394
395 /* return pc value after skipping a function prologue and also return
396 information about a function frame.
397
398 in struct rs6000_framedata fdata:
399 - frameless is TRUE, if function does not have a frame.
400 - nosavedpc is TRUE, if function does not save %pc value in its frame.
401 - offset is the initial size of this stack frame --- the amount by
402 which we decrement the sp to allocate the frame.
403 - saved_gpr is the number of the first saved gpr.
404 - saved_fpr is the number of the first saved fpr.
405 - saved_vr is the number of the first saved vr.
406 - saved_ev is the number of the first saved ev.
407 - alloca_reg is the number of the register used for alloca() handling.
408 Otherwise -1.
409 - gpr_offset is the offset of the first saved gpr from the previous frame.
410 - fpr_offset is the offset of the first saved fpr from the previous frame.
411 - vr_offset is the offset of the first saved vr from the previous frame.
412 - ev_offset is the offset of the first saved ev from the previous frame.
413 - lr_offset is the offset of the saved lr
414 - cr_offset is the offset of the saved cr
415 - vrsave_offset is the offset of the saved vrsave register
416 */
417
418 #define SIGNED_SHORT(x) \
419 ((sizeof (short) == 2) \
420 ? ((int)(short)(x)) \
421 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
422
423 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
424
425 /* Limit the number of skipped non-prologue instructions, as the examining
426 of the prologue is expensive. */
427 static int max_skip_non_prologue_insns = 10;
428
429 /* Given PC representing the starting address of a function, and
430 LIM_PC which is the (sloppy) limit to which to scan when looking
431 for a prologue, attempt to further refine this limit by using
432 the line data in the symbol table. If successful, a better guess
433 on where the prologue ends is returned, otherwise the previous
434 value of lim_pc is returned. */
435
436 /* FIXME: cagney/2004-02-14: This function and logic have largely been
437 superseded by skip_prologue_using_sal. */
438
439 static CORE_ADDR
440 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
441 {
442 struct symtab_and_line prologue_sal;
443
444 prologue_sal = find_pc_line (pc, 0);
445 if (prologue_sal.line != 0)
446 {
447 int i;
448 CORE_ADDR addr = prologue_sal.end;
449
450 /* Handle the case in which compiler's optimizer/scheduler
451 has moved instructions into the prologue. We scan ahead
452 in the function looking for address ranges whose corresponding
453 line number is less than or equal to the first one that we
454 found for the function. (It can be less than when the
455 scheduler puts a body instruction before the first prologue
456 instruction.) */
457 for (i = 2 * max_skip_non_prologue_insns;
458 i > 0 && (lim_pc == 0 || addr < lim_pc);
459 i--)
460 {
461 struct symtab_and_line sal;
462
463 sal = find_pc_line (addr, 0);
464 if (sal.line == 0)
465 break;
466 if (sal.line <= prologue_sal.line
467 && sal.symtab == prologue_sal.symtab)
468 {
469 prologue_sal = sal;
470 }
471 addr = sal.end;
472 }
473
474 if (lim_pc == 0 || prologue_sal.end < lim_pc)
475 lim_pc = prologue_sal.end;
476 }
477 return lim_pc;
478 }
479
480
481 static CORE_ADDR
482 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
483 {
484 CORE_ADDR orig_pc = pc;
485 CORE_ADDR last_prologue_pc = pc;
486 CORE_ADDR li_found_pc = 0;
487 char buf[4];
488 unsigned long op;
489 long offset = 0;
490 long vr_saved_offset = 0;
491 int lr_reg = -1;
492 int cr_reg = -1;
493 int vr_reg = -1;
494 int ev_reg = -1;
495 long ev_offset = 0;
496 int vrsave_reg = -1;
497 int reg;
498 int framep = 0;
499 int minimal_toc_loaded = 0;
500 int prev_insn_was_prologue_insn = 1;
501 int num_skip_non_prologue_insns = 0;
502 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
503 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
504
505 /* Attempt to find the end of the prologue when no limit is specified.
506 Note that refine_prologue_limit() has been written so that it may
507 be used to "refine" the limits of non-zero PC values too, but this
508 is only safe if we 1) trust the line information provided by the
509 compiler and 2) iterate enough to actually find the end of the
510 prologue.
511
512 It may become a good idea at some point (for both performance and
513 accuracy) to unconditionally call refine_prologue_limit(). But,
514 until we can make a clear determination that this is beneficial,
515 we'll play it safe and only use it to obtain a limit when none
516 has been specified. */
517 if (lim_pc == 0)
518 lim_pc = refine_prologue_limit (pc, lim_pc);
519
520 memset (fdata, 0, sizeof (struct rs6000_framedata));
521 fdata->saved_gpr = -1;
522 fdata->saved_fpr = -1;
523 fdata->saved_vr = -1;
524 fdata->saved_ev = -1;
525 fdata->alloca_reg = -1;
526 fdata->frameless = 1;
527 fdata->nosavedpc = 1;
528
529 for (;; pc += 4)
530 {
531 /* Sometimes it isn't clear if an instruction is a prologue
532 instruction or not. When we encounter one of these ambiguous
533 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
534 Otherwise, we'll assume that it really is a prologue instruction. */
535 if (prev_insn_was_prologue_insn)
536 last_prologue_pc = pc;
537
538 /* Stop scanning if we've hit the limit. */
539 if (lim_pc != 0 && pc >= lim_pc)
540 break;
541
542 prev_insn_was_prologue_insn = 1;
543
544 /* Fetch the instruction and convert it to an integer. */
545 if (target_read_memory (pc, buf, 4))
546 break;
547 op = extract_signed_integer (buf, 4);
548
549 if ((op & 0xfc1fffff) == 0x7c0802a6)
550 { /* mflr Rx */
551 lr_reg = (op & 0x03e00000);
552 continue;
553
554 }
555 else if ((op & 0xfc1fffff) == 0x7c000026)
556 { /* mfcr Rx */
557 cr_reg = (op & 0x03e00000);
558 continue;
559
560 }
561 else if ((op & 0xfc1f0000) == 0xd8010000)
562 { /* stfd Rx,NUM(r1) */
563 reg = GET_SRC_REG (op);
564 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
565 {
566 fdata->saved_fpr = reg;
567 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
568 }
569 continue;
570
571 }
572 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
573 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
574 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
575 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
576 {
577
578 reg = GET_SRC_REG (op);
579 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
580 {
581 fdata->saved_gpr = reg;
582 if ((op & 0xfc1f0003) == 0xf8010000)
583 op &= ~3UL;
584 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
585 }
586 continue;
587
588 }
589 else if ((op & 0xffff0000) == 0x60000000)
590 {
591 /* nop */
592 /* Allow nops in the prologue, but do not consider them to
593 be part of the prologue unless followed by other prologue
594 instructions. */
595 prev_insn_was_prologue_insn = 0;
596 continue;
597
598 }
599 else if ((op & 0xffff0000) == 0x3c000000)
600 { /* addis 0,0,NUM, used
601 for >= 32k frames */
602 fdata->offset = (op & 0x0000ffff) << 16;
603 fdata->frameless = 0;
604 continue;
605
606 }
607 else if ((op & 0xffff0000) == 0x60000000)
608 { /* ori 0,0,NUM, 2nd ha
609 lf of >= 32k frames */
610 fdata->offset |= (op & 0x0000ffff);
611 fdata->frameless = 0;
612 continue;
613
614 }
615 else if (lr_reg != -1 &&
616 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
617 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
618 /* stw Rx, NUM(r1) */
619 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
620 /* stwu Rx, NUM(r1) */
621 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
622 { /* where Rx == lr */
623 fdata->lr_offset = offset;
624 fdata->nosavedpc = 0;
625 lr_reg = 0;
626 if ((op & 0xfc000003) == 0xf8000000 || /* std */
627 (op & 0xfc000000) == 0x90000000) /* stw */
628 {
629 /* Does not update r1, so add displacement to lr_offset. */
630 fdata->lr_offset += SIGNED_SHORT (op);
631 }
632 continue;
633
634 }
635 else if (cr_reg != -1 &&
636 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
637 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
638 /* stw Rx, NUM(r1) */
639 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
640 /* stwu Rx, NUM(r1) */
641 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
642 { /* where Rx == cr */
643 fdata->cr_offset = offset;
644 cr_reg = 0;
645 if ((op & 0xfc000003) == 0xf8000000 ||
646 (op & 0xfc000000) == 0x90000000)
647 {
648 /* Does not update r1, so add displacement to cr_offset. */
649 fdata->cr_offset += SIGNED_SHORT (op);
650 }
651 continue;
652
653 }
654 else if (op == 0x48000005)
655 { /* bl .+4 used in
656 -mrelocatable */
657 continue;
658
659 }
660 else if (op == 0x48000004)
661 { /* b .+4 (xlc) */
662 break;
663
664 }
665 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
666 in V.4 -mminimal-toc */
667 (op & 0xffff0000) == 0x3bde0000)
668 { /* addi 30,30,foo@l */
669 continue;
670
671 }
672 else if ((op & 0xfc000001) == 0x48000001)
673 { /* bl foo,
674 to save fprs??? */
675
676 fdata->frameless = 0;
677 /* Don't skip over the subroutine call if it is not within
678 the first three instructions of the prologue. */
679 if ((pc - orig_pc) > 8)
680 break;
681
682 op = read_memory_integer (pc + 4, 4);
683
684 /* At this point, make sure this is not a trampoline
685 function (a function that simply calls another functions,
686 and nothing else). If the next is not a nop, this branch
687 was part of the function prologue. */
688
689 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
690 break; /* don't skip over
691 this branch */
692 continue;
693
694 }
695 /* update stack pointer */
696 else if ((op & 0xfc1f0000) == 0x94010000)
697 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
698 fdata->frameless = 0;
699 fdata->offset = SIGNED_SHORT (op);
700 offset = fdata->offset;
701 continue;
702 }
703 else if ((op & 0xfc1f016a) == 0x7c01016e)
704 { /* stwux rX,r1,rY */
705 /* no way to figure out what r1 is going to be */
706 fdata->frameless = 0;
707 offset = fdata->offset;
708 continue;
709 }
710 else if ((op & 0xfc1f0003) == 0xf8010001)
711 { /* stdu rX,NUM(r1) */
712 fdata->frameless = 0;
713 fdata->offset = SIGNED_SHORT (op & ~3UL);
714 offset = fdata->offset;
715 continue;
716 }
717 else if ((op & 0xfc1f016a) == 0x7c01016a)
718 { /* stdux rX,r1,rY */
719 /* no way to figure out what r1 is going to be */
720 fdata->frameless = 0;
721 offset = fdata->offset;
722 continue;
723 }
724 /* Load up minimal toc pointer */
725 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
726 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
727 && !minimal_toc_loaded)
728 {
729 minimal_toc_loaded = 1;
730 continue;
731
732 /* move parameters from argument registers to local variable
733 registers */
734 }
735 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
736 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
737 (((op >> 21) & 31) <= 10) &&
738 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
739 {
740 continue;
741
742 /* store parameters in stack */
743 }
744 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
745 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
746 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
747 {
748 continue;
749
750 /* store parameters in stack via frame pointer */
751 }
752 else if (framep &&
753 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
754 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
755 (op & 0xfc1f0000) == 0xfc1f0000))
756 { /* frsp, fp?,NUM(r1) */
757 continue;
758
759 /* Set up frame pointer */
760 }
761 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
762 || op == 0x7c3f0b78)
763 { /* mr r31, r1 */
764 fdata->frameless = 0;
765 framep = 1;
766 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
767 continue;
768
769 /* Another way to set up the frame pointer. */
770 }
771 else if ((op & 0xfc1fffff) == 0x38010000)
772 { /* addi rX, r1, 0x0 */
773 fdata->frameless = 0;
774 framep = 1;
775 fdata->alloca_reg = (tdep->ppc_gp0_regnum
776 + ((op & ~0x38010000) >> 21));
777 continue;
778 }
779 /* AltiVec related instructions. */
780 /* Store the vrsave register (spr 256) in another register for
781 later manipulation, or load a register into the vrsave
782 register. 2 instructions are used: mfvrsave and
783 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
784 and mtspr SPR256, Rn. */
785 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
786 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
787 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
788 {
789 vrsave_reg = GET_SRC_REG (op);
790 continue;
791 }
792 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
793 {
794 continue;
795 }
796 /* Store the register where vrsave was saved to onto the stack:
797 rS is the register where vrsave was stored in a previous
798 instruction. */
799 /* 100100 sssss 00001 dddddddd dddddddd */
800 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
801 {
802 if (vrsave_reg == GET_SRC_REG (op))
803 {
804 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
805 vrsave_reg = -1;
806 }
807 continue;
808 }
809 /* Compute the new value of vrsave, by modifying the register
810 where vrsave was saved to. */
811 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
812 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
813 {
814 continue;
815 }
816 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
817 in a pair of insns to save the vector registers on the
818 stack. */
819 /* 001110 00000 00000 iiii iiii iiii iiii */
820 /* 001110 01110 00000 iiii iiii iiii iiii */
821 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
822 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
823 {
824 li_found_pc = pc;
825 vr_saved_offset = SIGNED_SHORT (op);
826 }
827 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
828 /* 011111 sssss 11111 00000 00111001110 */
829 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
830 {
831 if (pc == (li_found_pc + 4))
832 {
833 vr_reg = GET_SRC_REG (op);
834 /* If this is the first vector reg to be saved, or if
835 it has a lower number than others previously seen,
836 reupdate the frame info. */
837 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
838 {
839 fdata->saved_vr = vr_reg;
840 fdata->vr_offset = vr_saved_offset + offset;
841 }
842 vr_saved_offset = -1;
843 vr_reg = -1;
844 li_found_pc = 0;
845 }
846 }
847 /* End AltiVec related instructions. */
848
849 /* Start BookE related instructions. */
850 /* Store gen register S at (r31+uimm).
851 Any register less than r13 is volatile, so we don't care. */
852 /* 000100 sssss 11111 iiiii 01100100001 */
853 else if (arch_info->mach == bfd_mach_ppc_e500
854 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
855 {
856 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
857 {
858 unsigned int imm;
859 ev_reg = GET_SRC_REG (op);
860 imm = (op >> 11) & 0x1f;
861 ev_offset = imm * 8;
862 /* If this is the first vector reg to be saved, or if
863 it has a lower number than others previously seen,
864 reupdate the frame info. */
865 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
866 {
867 fdata->saved_ev = ev_reg;
868 fdata->ev_offset = ev_offset + offset;
869 }
870 }
871 continue;
872 }
873 /* Store gen register rS at (r1+rB). */
874 /* 000100 sssss 00001 bbbbb 01100100000 */
875 else if (arch_info->mach == bfd_mach_ppc_e500
876 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
877 {
878 if (pc == (li_found_pc + 4))
879 {
880 ev_reg = GET_SRC_REG (op);
881 /* If this is the first vector reg to be saved, or if
882 it has a lower number than others previously seen,
883 reupdate the frame info. */
884 /* We know the contents of rB from the previous instruction. */
885 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
886 {
887 fdata->saved_ev = ev_reg;
888 fdata->ev_offset = vr_saved_offset + offset;
889 }
890 vr_saved_offset = -1;
891 ev_reg = -1;
892 li_found_pc = 0;
893 }
894 continue;
895 }
896 /* Store gen register r31 at (rA+uimm). */
897 /* 000100 11111 aaaaa iiiii 01100100001 */
898 else if (arch_info->mach == bfd_mach_ppc_e500
899 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
900 {
901 /* Wwe know that the source register is 31 already, but
902 it can't hurt to compute it. */
903 ev_reg = GET_SRC_REG (op);
904 ev_offset = ((op >> 11) & 0x1f) * 8;
905 /* If this is the first vector reg to be saved, or if
906 it has a lower number than others previously seen,
907 reupdate the frame info. */
908 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
909 {
910 fdata->saved_ev = ev_reg;
911 fdata->ev_offset = ev_offset + offset;
912 }
913
914 continue;
915 }
916 /* Store gen register S at (r31+r0).
917 Store param on stack when offset from SP bigger than 4 bytes. */
918 /* 000100 sssss 11111 00000 01100100000 */
919 else if (arch_info->mach == bfd_mach_ppc_e500
920 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
921 {
922 if (pc == (li_found_pc + 4))
923 {
924 if ((op & 0x03e00000) >= 0x01a00000)
925 {
926 ev_reg = GET_SRC_REG (op);
927 /* If this is the first vector reg to be saved, or if
928 it has a lower number than others previously seen,
929 reupdate the frame info. */
930 /* We know the contents of r0 from the previous
931 instruction. */
932 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
933 {
934 fdata->saved_ev = ev_reg;
935 fdata->ev_offset = vr_saved_offset + offset;
936 }
937 ev_reg = -1;
938 }
939 vr_saved_offset = -1;
940 li_found_pc = 0;
941 continue;
942 }
943 }
944 /* End BookE related instructions. */
945
946 else
947 {
948 /* Not a recognized prologue instruction.
949 Handle optimizer code motions into the prologue by continuing
950 the search if we have no valid frame yet or if the return
951 address is not yet saved in the frame. */
952 if (fdata->frameless == 0
953 && (lr_reg == -1 || fdata->nosavedpc == 0))
954 break;
955
956 if (op == 0x4e800020 /* blr */
957 || op == 0x4e800420) /* bctr */
958 /* Do not scan past epilogue in frameless functions or
959 trampolines. */
960 break;
961 if ((op & 0xf4000000) == 0x40000000) /* bxx */
962 /* Never skip branches. */
963 break;
964
965 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
966 /* Do not scan too many insns, scanning insns is expensive with
967 remote targets. */
968 break;
969
970 /* Continue scanning. */
971 prev_insn_was_prologue_insn = 0;
972 continue;
973 }
974 }
975
976 #if 0
977 /* I have problems with skipping over __main() that I need to address
978 * sometime. Previously, I used to use misc_function_vector which
979 * didn't work as well as I wanted to be. -MGO */
980
981 /* If the first thing after skipping a prolog is a branch to a function,
982 this might be a call to an initializer in main(), introduced by gcc2.
983 We'd like to skip over it as well. Fortunately, xlc does some extra
984 work before calling a function right after a prologue, thus we can
985 single out such gcc2 behaviour. */
986
987
988 if ((op & 0xfc000001) == 0x48000001)
989 { /* bl foo, an initializer function? */
990 op = read_memory_integer (pc + 4, 4);
991
992 if (op == 0x4def7b82)
993 { /* cror 0xf, 0xf, 0xf (nop) */
994
995 /* Check and see if we are in main. If so, skip over this
996 initializer function as well. */
997
998 tmp = find_pc_misc_function (pc);
999 if (tmp >= 0
1000 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1001 return pc + 8;
1002 }
1003 }
1004 #endif /* 0 */
1005
1006 fdata->offset = -fdata->offset;
1007 return last_prologue_pc;
1008 }
1009
1010
1011 /*************************************************************************
1012 Support for creating pushing a dummy frame into the stack, and popping
1013 frames, etc.
1014 *************************************************************************/
1015
1016
1017 /* Pop the innermost frame, go back to the caller. */
1018
1019 static void
1020 rs6000_pop_frame (void)
1021 {
1022 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1023 struct rs6000_framedata fdata;
1024 struct frame_info *frame = get_current_frame ();
1025 int ii, wordsize;
1026
1027 pc = read_pc ();
1028 sp = get_frame_base (frame);
1029
1030 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1031 get_frame_base (frame),
1032 get_frame_base (frame)))
1033 {
1034 generic_pop_dummy_frame ();
1035 flush_cached_frames ();
1036 return;
1037 }
1038
1039 /* Make sure that all registers are valid. */
1040 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1041
1042 /* Figure out previous %pc value. If the function is frameless, it is
1043 still in the link register, otherwise walk the frames and retrieve the
1044 saved %pc value in the previous frame. */
1045
1046 addr = get_frame_func (frame);
1047 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1048
1049 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1050 if (fdata.frameless)
1051 prev_sp = sp;
1052 else
1053 prev_sp = read_memory_addr (sp, wordsize);
1054 if (fdata.lr_offset == 0)
1055 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1056 else
1057 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1058
1059 /* reset %pc value. */
1060 write_register (PC_REGNUM, lr);
1061
1062 /* reset register values if any was saved earlier. */
1063
1064 if (fdata.saved_gpr != -1)
1065 {
1066 addr = prev_sp + fdata.gpr_offset;
1067 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1068 {
1069 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
1070 wordsize);
1071 addr += wordsize;
1072 }
1073 }
1074
1075 if (fdata.saved_fpr != -1)
1076 {
1077 addr = prev_sp + fdata.fpr_offset;
1078 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1079 {
1080 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1081 addr += 8;
1082 }
1083 }
1084
1085 write_register (SP_REGNUM, prev_sp);
1086 target_store_registers (-1);
1087 flush_cached_frames ();
1088 }
1089
1090 /* All the ABI's require 16 byte alignment. */
1091 static CORE_ADDR
1092 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1093 {
1094 return (addr & -16);
1095 }
1096
1097 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1098 the first eight words of the argument list (that might be less than
1099 eight parameters if some parameters occupy more than one word) are
1100 passed in r3..r10 registers. float and double parameters are
1101 passed in fpr's, in addition to that. Rest of the parameters if any
1102 are passed in user stack. There might be cases in which half of the
1103 parameter is copied into registers, the other half is pushed into
1104 stack.
1105
1106 Stack must be aligned on 64-bit boundaries when synthesizing
1107 function calls.
1108
1109 If the function is returning a structure, then the return address is passed
1110 in r3, then the first 7 words of the parameters can be passed in registers,
1111 starting from r4. */
1112
1113 static CORE_ADDR
1114 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1115 struct regcache *regcache, CORE_ADDR bp_addr,
1116 int nargs, struct value **args, CORE_ADDR sp,
1117 int struct_return, CORE_ADDR struct_addr)
1118 {
1119 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1120 int ii;
1121 int len = 0;
1122 int argno; /* current argument number */
1123 int argbytes; /* current argument byte */
1124 char tmp_buffer[50];
1125 int f_argno = 0; /* current floating point argno */
1126 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1127
1128 struct value *arg = 0;
1129 struct type *type;
1130
1131 CORE_ADDR saved_sp;
1132
1133 /* The first eight words of ther arguments are passed in registers.
1134 Copy them appropriately. */
1135 ii = 0;
1136
1137 /* If the function is returning a `struct', then the first word
1138 (which will be passed in r3) is used for struct return address.
1139 In that case we should advance one word and start from r4
1140 register to copy parameters. */
1141 if (struct_return)
1142 {
1143 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1144 struct_addr);
1145 ii++;
1146 }
1147
1148 /*
1149 effectively indirect call... gcc does...
1150
1151 return_val example( float, int);
1152
1153 eabi:
1154 float in fp0, int in r3
1155 offset of stack on overflow 8/16
1156 for varargs, must go by type.
1157 power open:
1158 float in r3&r4, int in r5
1159 offset of stack on overflow different
1160 both:
1161 return in r3 or f0. If no float, must study how gcc emulates floats;
1162 pay attention to arg promotion.
1163 User may have to cast\args to handle promotion correctly
1164 since gdb won't know if prototype supplied or not.
1165 */
1166
1167 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1168 {
1169 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1170
1171 arg = args[argno];
1172 type = check_typedef (VALUE_TYPE (arg));
1173 len = TYPE_LENGTH (type);
1174
1175 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1176 {
1177
1178 /* Floating point arguments are passed in fpr's, as well as gpr's.
1179 There are 13 fpr's reserved for passing parameters. At this point
1180 there is no way we would run out of them. */
1181
1182 if (len > 8)
1183 printf_unfiltered (
1184 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1185
1186 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1187 VALUE_CONTENTS (arg),
1188 len);
1189 ++f_argno;
1190 }
1191
1192 if (len > reg_size)
1193 {
1194
1195 /* Argument takes more than one register. */
1196 while (argbytes < len)
1197 {
1198 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1199 reg_size);
1200 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1201 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1202 (len - argbytes) > reg_size
1203 ? reg_size : len - argbytes);
1204 ++ii, argbytes += reg_size;
1205
1206 if (ii >= 8)
1207 goto ran_out_of_registers_for_arguments;
1208 }
1209 argbytes = 0;
1210 --ii;
1211 }
1212 else
1213 {
1214 /* Argument can fit in one register. No problem. */
1215 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1216 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1217 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1218 VALUE_CONTENTS (arg), len);
1219 }
1220 ++argno;
1221 }
1222
1223 ran_out_of_registers_for_arguments:
1224
1225 saved_sp = read_sp ();
1226
1227 /* Location for 8 parameters are always reserved. */
1228 sp -= wordsize * 8;
1229
1230 /* Another six words for back chain, TOC register, link register, etc. */
1231 sp -= wordsize * 6;
1232
1233 /* Stack pointer must be quadword aligned. */
1234 sp &= -16;
1235
1236 /* If there are more arguments, allocate space for them in
1237 the stack, then push them starting from the ninth one. */
1238
1239 if ((argno < nargs) || argbytes)
1240 {
1241 int space = 0, jj;
1242
1243 if (argbytes)
1244 {
1245 space += ((len - argbytes + 3) & -4);
1246 jj = argno + 1;
1247 }
1248 else
1249 jj = argno;
1250
1251 for (; jj < nargs; ++jj)
1252 {
1253 struct value *val = args[jj];
1254 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1255 }
1256
1257 /* Add location required for the rest of the parameters. */
1258 space = (space + 15) & -16;
1259 sp -= space;
1260
1261 /* This is another instance we need to be concerned about
1262 securing our stack space. If we write anything underneath %sp
1263 (r1), we might conflict with the kernel who thinks he is free
1264 to use this area. So, update %sp first before doing anything
1265 else. */
1266
1267 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1268
1269 /* If the last argument copied into the registers didn't fit there
1270 completely, push the rest of it into stack. */
1271
1272 if (argbytes)
1273 {
1274 write_memory (sp + 24 + (ii * 4),
1275 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1276 len - argbytes);
1277 ++argno;
1278 ii += ((len - argbytes + 3) & -4) / 4;
1279 }
1280
1281 /* Push the rest of the arguments into stack. */
1282 for (; argno < nargs; ++argno)
1283 {
1284
1285 arg = args[argno];
1286 type = check_typedef (VALUE_TYPE (arg));
1287 len = TYPE_LENGTH (type);
1288
1289
1290 /* Float types should be passed in fpr's, as well as in the
1291 stack. */
1292 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1293 {
1294
1295 if (len > 8)
1296 printf_unfiltered (
1297 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1298
1299 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1300 VALUE_CONTENTS (arg),
1301 len);
1302 ++f_argno;
1303 }
1304
1305 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1306 ii += ((len + 3) & -4) / 4;
1307 }
1308 }
1309
1310 /* Set the stack pointer. According to the ABI, the SP is meant to
1311 be set _before_ the corresponding stack space is used. On AIX,
1312 this even applies when the target has been completely stopped!
1313 Not doing this can lead to conflicts with the kernel which thinks
1314 that it still has control over this not-yet-allocated stack
1315 region. */
1316 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1317
1318 /* Set back chain properly. */
1319 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1320 write_memory (sp, tmp_buffer, 4);
1321
1322 /* Point the inferior function call's return address at the dummy's
1323 breakpoint. */
1324 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1325
1326 /* Set the TOC register, get the value from the objfile reader
1327 which, in turn, gets it from the VMAP table. */
1328 if (rs6000_find_toc_address_hook != NULL)
1329 {
1330 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1331 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1332 }
1333
1334 target_store_registers (-1);
1335 return sp;
1336 }
1337
1338 /* PowerOpen always puts structures in memory. Vectors, which were
1339 added later, do get returned in a register though. */
1340
1341 static int
1342 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1343 {
1344 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1345 && TYPE_VECTOR (value_type))
1346 return 0;
1347 return 1;
1348 }
1349
1350 static void
1351 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1352 {
1353 int offset = 0;
1354 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1355
1356 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1357 {
1358
1359 double dd;
1360 float ff;
1361 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1362 We need to truncate the return value into float size (4 byte) if
1363 necessary. */
1364
1365 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1366 memcpy (valbuf,
1367 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
1368 TYPE_LENGTH (valtype));
1369 else
1370 { /* float */
1371 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1372 ff = (float) dd;
1373 memcpy (valbuf, &ff, sizeof (float));
1374 }
1375 }
1376 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1377 && TYPE_LENGTH (valtype) == 16
1378 && TYPE_VECTOR (valtype))
1379 {
1380 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1381 TYPE_LENGTH (valtype));
1382 }
1383 else
1384 {
1385 /* return value is copied starting from r3. */
1386 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1387 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1388 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1389
1390 memcpy (valbuf,
1391 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1392 TYPE_LENGTH (valtype));
1393 }
1394 }
1395
1396 /* Return whether handle_inferior_event() should proceed through code
1397 starting at PC in function NAME when stepping.
1398
1399 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1400 handle memory references that are too distant to fit in instructions
1401 generated by the compiler. For example, if 'foo' in the following
1402 instruction:
1403
1404 lwz r9,foo(r2)
1405
1406 is greater than 32767, the linker might replace the lwz with a branch to
1407 somewhere in @FIX1 that does the load in 2 instructions and then branches
1408 back to where execution should continue.
1409
1410 GDB should silently step over @FIX code, just like AIX dbx does.
1411 Unfortunately, the linker uses the "b" instruction for the branches,
1412 meaning that the link register doesn't get set. Therefore, GDB's usual
1413 step_over_function() mechanism won't work.
1414
1415 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1416 in handle_inferior_event() to skip past @FIX code. */
1417
1418 int
1419 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1420 {
1421 return name && !strncmp (name, "@FIX", 4);
1422 }
1423
1424 /* Skip code that the user doesn't want to see when stepping:
1425
1426 1. Indirect function calls use a piece of trampoline code to do context
1427 switching, i.e. to set the new TOC table. Skip such code if we are on
1428 its first instruction (as when we have single-stepped to here).
1429
1430 2. Skip shared library trampoline code (which is different from
1431 indirect function call trampolines).
1432
1433 3. Skip bigtoc fixup code.
1434
1435 Result is desired PC to step until, or NULL if we are not in
1436 code that should be skipped. */
1437
1438 CORE_ADDR
1439 rs6000_skip_trampoline_code (CORE_ADDR pc)
1440 {
1441 unsigned int ii, op;
1442 int rel;
1443 CORE_ADDR solib_target_pc;
1444 struct minimal_symbol *msymbol;
1445
1446 static unsigned trampoline_code[] =
1447 {
1448 0x800b0000, /* l r0,0x0(r11) */
1449 0x90410014, /* st r2,0x14(r1) */
1450 0x7c0903a6, /* mtctr r0 */
1451 0x804b0004, /* l r2,0x4(r11) */
1452 0x816b0008, /* l r11,0x8(r11) */
1453 0x4e800420, /* bctr */
1454 0x4e800020, /* br */
1455 0
1456 };
1457
1458 /* Check for bigtoc fixup code. */
1459 msymbol = lookup_minimal_symbol_by_pc (pc);
1460 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1461 {
1462 /* Double-check that the third instruction from PC is relative "b". */
1463 op = read_memory_integer (pc + 8, 4);
1464 if ((op & 0xfc000003) == 0x48000000)
1465 {
1466 /* Extract bits 6-29 as a signed 24-bit relative word address and
1467 add it to the containing PC. */
1468 rel = ((int)(op << 6) >> 6);
1469 return pc + 8 + rel;
1470 }
1471 }
1472
1473 /* If pc is in a shared library trampoline, return its target. */
1474 solib_target_pc = find_solib_trampoline_target (pc);
1475 if (solib_target_pc)
1476 return solib_target_pc;
1477
1478 for (ii = 0; trampoline_code[ii]; ++ii)
1479 {
1480 op = read_memory_integer (pc + (ii * 4), 4);
1481 if (op != trampoline_code[ii])
1482 return 0;
1483 }
1484 ii = read_register (11); /* r11 holds destination addr */
1485 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1486 return pc;
1487 }
1488
1489 /* Determines whether the function FI has a frame on the stack or not. */
1490
1491 int
1492 rs6000_frameless_function_invocation (struct frame_info *fi)
1493 {
1494 CORE_ADDR func_start;
1495 struct rs6000_framedata fdata;
1496
1497 /* Don't even think about framelessness except on the innermost frame
1498 or if the function was interrupted by a signal. */
1499 if (get_next_frame (fi) != NULL
1500 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1501 return 0;
1502
1503 func_start = get_frame_func (fi);
1504
1505 /* If we failed to find the start of the function, it is a mistake
1506 to inspect the instructions. */
1507
1508 if (!func_start)
1509 {
1510 /* A frame with a zero PC is usually created by dereferencing a NULL
1511 function pointer, normally causing an immediate core dump of the
1512 inferior. Mark function as frameless, as the inferior has no chance
1513 of setting up a stack frame. */
1514 if (get_frame_pc (fi) == 0)
1515 return 1;
1516 else
1517 return 0;
1518 }
1519
1520 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1521 return fdata.frameless;
1522 }
1523
1524 /* Return the PC saved in a frame. */
1525
1526 CORE_ADDR
1527 rs6000_frame_saved_pc (struct frame_info *fi)
1528 {
1529 CORE_ADDR func_start;
1530 struct rs6000_framedata fdata;
1531 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1532 int wordsize = tdep->wordsize;
1533
1534 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1535 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1536 wordsize);
1537
1538 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1539 get_frame_base (fi),
1540 get_frame_base (fi)))
1541 return deprecated_read_register_dummy (get_frame_pc (fi),
1542 get_frame_base (fi), PC_REGNUM);
1543
1544 func_start = get_frame_func (fi);
1545
1546 /* If we failed to find the start of the function, it is a mistake
1547 to inspect the instructions. */
1548 if (!func_start)
1549 return 0;
1550
1551 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1552
1553 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1554 {
1555 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1556 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1557 + SIG_FRAME_LR_OFFSET),
1558 wordsize);
1559 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1560 /* The link register wasn't saved by this frame and the next
1561 (inner, newer) frame is a dummy. Get the link register
1562 value by unwinding it from that [dummy] frame. */
1563 {
1564 ULONGEST lr;
1565 frame_unwind_unsigned_register (get_next_frame (fi),
1566 tdep->ppc_lr_regnum, &lr);
1567 return lr;
1568 }
1569 else
1570 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1571 + tdep->lr_frame_offset,
1572 wordsize);
1573 }
1574
1575 if (fdata.lr_offset == 0)
1576 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1577
1578 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1579 wordsize);
1580 }
1581
1582 /* If saved registers of frame FI are not known yet, read and cache them.
1583 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1584 in which case the framedata are read. */
1585
1586 static void
1587 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1588 {
1589 CORE_ADDR frame_addr;
1590 struct rs6000_framedata work_fdata;
1591 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1592 int wordsize = tdep->wordsize;
1593
1594 if (deprecated_get_frame_saved_regs (fi))
1595 return;
1596
1597 if (fdatap == NULL)
1598 {
1599 fdatap = &work_fdata;
1600 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1601 }
1602
1603 frame_saved_regs_zalloc (fi);
1604
1605 /* If there were any saved registers, figure out parent's stack
1606 pointer. */
1607 /* The following is true only if the frame doesn't have a call to
1608 alloca(), FIXME. */
1609
1610 if (fdatap->saved_fpr == 0
1611 && fdatap->saved_gpr == 0
1612 && fdatap->saved_vr == 0
1613 && fdatap->saved_ev == 0
1614 && fdatap->lr_offset == 0
1615 && fdatap->cr_offset == 0
1616 && fdatap->vr_offset == 0
1617 && fdatap->ev_offset == 0)
1618 frame_addr = 0;
1619 else
1620 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1621 address of the current frame. Things might be easier if the
1622 ->frame pointed to the outer-most address of the frame. In the
1623 mean time, the address of the prev frame is used as the base
1624 address of this frame. */
1625 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1626
1627 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1628 All fpr's from saved_fpr to fp31 are saved. */
1629
1630 if (fdatap->saved_fpr >= 0)
1631 {
1632 int i;
1633 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1634 for (i = fdatap->saved_fpr; i < 32; i++)
1635 {
1636 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1637 fpr_addr += 8;
1638 }
1639 }
1640
1641 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1642 All gpr's from saved_gpr to gpr31 are saved. */
1643
1644 if (fdatap->saved_gpr >= 0)
1645 {
1646 int i;
1647 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1648 for (i = fdatap->saved_gpr; i < 32; i++)
1649 {
1650 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1651 gpr_addr += wordsize;
1652 }
1653 }
1654
1655 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1656 All vr's from saved_vr to vr31 are saved. */
1657 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1658 {
1659 if (fdatap->saved_vr >= 0)
1660 {
1661 int i;
1662 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1663 for (i = fdatap->saved_vr; i < 32; i++)
1664 {
1665 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1666 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1667 }
1668 }
1669 }
1670
1671 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1672 All vr's from saved_ev to ev31 are saved. ????? */
1673 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1674 {
1675 if (fdatap->saved_ev >= 0)
1676 {
1677 int i;
1678 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1679 for (i = fdatap->saved_ev; i < 32; i++)
1680 {
1681 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1682 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1683 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1684 }
1685 }
1686 }
1687
1688 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1689 the CR. */
1690 if (fdatap->cr_offset != 0)
1691 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1692
1693 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1694 the LR. */
1695 if (fdatap->lr_offset != 0)
1696 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1697
1698 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1699 the VRSAVE. */
1700 if (fdatap->vrsave_offset != 0)
1701 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1702 }
1703
1704 /* Return the address of a frame. This is the inital %sp value when the frame
1705 was first allocated. For functions calling alloca(), it might be saved in
1706 an alloca register. */
1707
1708 static CORE_ADDR
1709 frame_initial_stack_address (struct frame_info *fi)
1710 {
1711 CORE_ADDR tmpaddr;
1712 struct rs6000_framedata fdata;
1713 struct frame_info *callee_fi;
1714
1715 /* If the initial stack pointer (frame address) of this frame is known,
1716 just return it. */
1717
1718 if (get_frame_extra_info (fi)->initial_sp)
1719 return get_frame_extra_info (fi)->initial_sp;
1720
1721 /* Find out if this function is using an alloca register. */
1722
1723 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1724
1725 /* If saved registers of this frame are not known yet, read and
1726 cache them. */
1727
1728 if (!deprecated_get_frame_saved_regs (fi))
1729 frame_get_saved_regs (fi, &fdata);
1730
1731 /* If no alloca register used, then fi->frame is the value of the %sp for
1732 this frame, and it is good enough. */
1733
1734 if (fdata.alloca_reg < 0)
1735 {
1736 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1737 return get_frame_extra_info (fi)->initial_sp;
1738 }
1739
1740 /* There is an alloca register, use its value, in the current frame,
1741 as the initial stack pointer. */
1742 {
1743 char tmpbuf[MAX_REGISTER_SIZE];
1744 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1745 {
1746 get_frame_extra_info (fi)->initial_sp
1747 = extract_unsigned_integer (tmpbuf,
1748 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
1749 }
1750 else
1751 /* NOTE: cagney/2002-04-17: At present the only time
1752 frame_register_read will fail is when the register isn't
1753 available. If that does happen, use the frame. */
1754 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1755 }
1756 return get_frame_extra_info (fi)->initial_sp;
1757 }
1758
1759 /* Describe the pointer in each stack frame to the previous stack frame
1760 (its caller). */
1761
1762 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1763 the frame's chain-pointer. */
1764
1765 /* In the case of the RS/6000, the frame's nominal address
1766 is the address of a 4-byte word containing the calling frame's address. */
1767
1768 CORE_ADDR
1769 rs6000_frame_chain (struct frame_info *thisframe)
1770 {
1771 CORE_ADDR fp, fpp, lr;
1772 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1773
1774 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1775 get_frame_base (thisframe),
1776 get_frame_base (thisframe)))
1777 /* A dummy frame always correctly chains back to the previous
1778 frame. */
1779 return read_memory_addr (get_frame_base (thisframe), wordsize);
1780
1781 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
1782 || get_frame_pc (thisframe) == entry_point_address ())
1783 return 0;
1784
1785 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1786 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1787 wordsize);
1788 else if (get_next_frame (thisframe) != NULL
1789 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1790 && (DEPRECATED_FRAMELESS_FUNCTION_INVOCATION_P ()
1791 && DEPRECATED_FRAMELESS_FUNCTION_INVOCATION (thisframe)))
1792 /* A frameless function interrupted by a signal did not change the
1793 frame pointer. */
1794 fp = get_frame_base (thisframe);
1795 else
1796 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1797 return fp;
1798 }
1799
1800 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1801 isn't available with that word size, return 0. */
1802
1803 static int
1804 regsize (const struct reg *reg, int wordsize)
1805 {
1806 return wordsize == 8 ? reg->sz64 : reg->sz32;
1807 }
1808
1809 /* Return the name of register number N, or null if no such register exists
1810 in the current architecture. */
1811
1812 static const char *
1813 rs6000_register_name (int n)
1814 {
1815 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1816 const struct reg *reg = tdep->regs + n;
1817
1818 if (!regsize (reg, tdep->wordsize))
1819 return NULL;
1820 return reg->name;
1821 }
1822
1823 /* Index within `registers' of the first byte of the space for
1824 register N. */
1825
1826 static int
1827 rs6000_register_byte (int n)
1828 {
1829 return gdbarch_tdep (current_gdbarch)->regoff[n];
1830 }
1831
1832 /* Return the number of bytes of storage in the actual machine representation
1833 for register N if that register is available, else return 0. */
1834
1835 static int
1836 rs6000_register_raw_size (int n)
1837 {
1838 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1839 const struct reg *reg = tdep->regs + n;
1840 return regsize (reg, tdep->wordsize);
1841 }
1842
1843 /* Return the GDB type object for the "standard" data type
1844 of data in register N. */
1845
1846 static struct type *
1847 rs6000_register_virtual_type (int n)
1848 {
1849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1850 const struct reg *reg = tdep->regs + n;
1851
1852 if (reg->fpr)
1853 return builtin_type_double;
1854 else
1855 {
1856 int size = regsize (reg, tdep->wordsize);
1857 switch (size)
1858 {
1859 case 0:
1860 return builtin_type_int0;
1861 case 4:
1862 return builtin_type_int32;
1863 case 8:
1864 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1865 return builtin_type_vec64;
1866 else
1867 return builtin_type_int64;
1868 break;
1869 case 16:
1870 return builtin_type_vec128;
1871 break;
1872 default:
1873 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1874 n, size);
1875 }
1876 }
1877 }
1878
1879 /* Return whether register N requires conversion when moving from raw format
1880 to virtual format.
1881
1882 The register format for RS/6000 floating point registers is always
1883 double, we need a conversion if the memory format is float. */
1884
1885 static int
1886 rs6000_register_convertible (int n)
1887 {
1888 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1889 return reg->fpr;
1890 }
1891
1892 /* Convert data from raw format for register N in buffer FROM
1893 to virtual format with type TYPE in buffer TO. */
1894
1895 static void
1896 rs6000_register_convert_to_virtual (int n, struct type *type,
1897 char *from, char *to)
1898 {
1899 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1900 {
1901 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1902 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1903 }
1904 else
1905 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1906 }
1907
1908 /* Convert data from virtual format with type TYPE in buffer FROM
1909 to raw format for register N in buffer TO. */
1910
1911 static void
1912 rs6000_register_convert_to_raw (struct type *type, int n,
1913 const char *from, char *to)
1914 {
1915 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1916 {
1917 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1918 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1919 }
1920 else
1921 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1922 }
1923
1924 static void
1925 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1926 int reg_nr, void *buffer)
1927 {
1928 int base_regnum;
1929 int offset = 0;
1930 char temp_buffer[MAX_REGISTER_SIZE];
1931 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1932
1933 if (reg_nr >= tdep->ppc_gp0_regnum
1934 && reg_nr <= tdep->ppc_gplast_regnum)
1935 {
1936 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1937
1938 /* Build the value in the provided buffer. */
1939 /* Read the raw register of which this one is the lower portion. */
1940 regcache_raw_read (regcache, base_regnum, temp_buffer);
1941 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1942 offset = 4;
1943 memcpy ((char *) buffer, temp_buffer + offset, 4);
1944 }
1945 }
1946
1947 static void
1948 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1949 int reg_nr, const void *buffer)
1950 {
1951 int base_regnum;
1952 int offset = 0;
1953 char temp_buffer[MAX_REGISTER_SIZE];
1954 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1955
1956 if (reg_nr >= tdep->ppc_gp0_regnum
1957 && reg_nr <= tdep->ppc_gplast_regnum)
1958 {
1959 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1960 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1961 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1962 offset = 4;
1963
1964 /* Let's read the value of the base register into a temporary
1965 buffer, so that overwriting the last four bytes with the new
1966 value of the pseudo will leave the upper 4 bytes unchanged. */
1967 regcache_raw_read (regcache, base_regnum, temp_buffer);
1968
1969 /* Write as an 8 byte quantity. */
1970 memcpy (temp_buffer + offset, (char *) buffer, 4);
1971 regcache_raw_write (regcache, base_regnum, temp_buffer);
1972 }
1973 }
1974
1975 /* Convert a dwarf2 register number to a gdb REGNUM. */
1976 static int
1977 e500_dwarf2_reg_to_regnum (int num)
1978 {
1979 int regnum;
1980 if (0 <= num && num <= 31)
1981 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1982 else
1983 return num;
1984 }
1985
1986 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1987 REGNUM. */
1988 static int
1989 rs6000_stab_reg_to_regnum (int num)
1990 {
1991 int regnum;
1992 switch (num)
1993 {
1994 case 64:
1995 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1996 break;
1997 case 65:
1998 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1999 break;
2000 case 66:
2001 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2002 break;
2003 case 76:
2004 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2005 break;
2006 default:
2007 regnum = num;
2008 break;
2009 }
2010 return regnum;
2011 }
2012
2013 static void
2014 rs6000_store_return_value (struct type *type, char *valbuf)
2015 {
2016 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2017
2018 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2019
2020 /* Floating point values are returned starting from FPR1 and up.
2021 Say a double_double_double type could be returned in
2022 FPR1/FPR2/FPR3 triple. */
2023
2024 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2025 TYPE_LENGTH (type));
2026 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2027 {
2028 if (TYPE_LENGTH (type) == 16
2029 && TYPE_VECTOR (type))
2030 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2031 valbuf, TYPE_LENGTH (type));
2032 }
2033 else
2034 /* Everything else is returned in GPR3 and up. */
2035 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2036 valbuf, TYPE_LENGTH (type));
2037 }
2038
2039 /* Extract from an array REGBUF containing the (raw) register state
2040 the address in which a function should return its structure value,
2041 as a CORE_ADDR (or an expression that can be used as one). */
2042
2043 static CORE_ADDR
2044 rs6000_extract_struct_value_address (struct regcache *regcache)
2045 {
2046 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2047 function call GDB knows the address of the struct return value
2048 and hence, should not need to call this function. Unfortunately,
2049 the current call_function_by_hand() code only saves the most
2050 recent struct address leading to occasional calls. The code
2051 should instead maintain a stack of such addresses (in the dummy
2052 frame object). */
2053 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2054 really got no idea where the return value is being stored. While
2055 r3, on function entry, contained the address it will have since
2056 been reused (scratch) and hence wouldn't be valid */
2057 return 0;
2058 }
2059
2060 /* Hook called when a new child process is started. */
2061
2062 void
2063 rs6000_create_inferior (int pid)
2064 {
2065 if (rs6000_set_host_arch_hook)
2066 rs6000_set_host_arch_hook (pid);
2067 }
2068 \f
2069 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2070
2071 Usually a function pointer's representation is simply the address
2072 of the function. On the RS/6000 however, a function pointer is
2073 represented by a pointer to a TOC entry. This TOC entry contains
2074 three words, the first word is the address of the function, the
2075 second word is the TOC pointer (r2), and the third word is the
2076 static chain value. Throughout GDB it is currently assumed that a
2077 function pointer contains the address of the function, which is not
2078 easy to fix. In addition, the conversion of a function address to
2079 a function pointer would require allocation of a TOC entry in the
2080 inferior's memory space, with all its drawbacks. To be able to
2081 call C++ virtual methods in the inferior (which are called via
2082 function pointers), find_function_addr uses this function to get the
2083 function address from a function pointer. */
2084
2085 /* Return real function address if ADDR (a function pointer) is in the data
2086 space and is therefore a special function pointer. */
2087
2088 static CORE_ADDR
2089 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2090 CORE_ADDR addr,
2091 struct target_ops *targ)
2092 {
2093 struct obj_section *s;
2094
2095 s = find_pc_section (addr);
2096 if (s && s->the_bfd_section->flags & SEC_CODE)
2097 return addr;
2098
2099 /* ADDR is in the data space, so it's a special function pointer. */
2100 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2101 }
2102 \f
2103
2104 /* Handling the various POWER/PowerPC variants. */
2105
2106
2107 /* The arrays here called registers_MUMBLE hold information about available
2108 registers.
2109
2110 For each family of PPC variants, I've tried to isolate out the
2111 common registers and put them up front, so that as long as you get
2112 the general family right, GDB will correctly identify the registers
2113 common to that family. The common register sets are:
2114
2115 For the 60x family: hid0 hid1 iabr dabr pir
2116
2117 For the 505 and 860 family: eie eid nri
2118
2119 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2120 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2121 pbu1 pbl2 pbu2
2122
2123 Most of these register groups aren't anything formal. I arrived at
2124 them by looking at the registers that occurred in more than one
2125 processor.
2126
2127 Note: kevinb/2002-04-30: Support for the fpscr register was added
2128 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2129 for Power. For PowerPC, slot 70 was unused and was already in the
2130 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2131 slot 70 was being used for "mq", so the next available slot (71)
2132 was chosen. It would have been nice to be able to make the
2133 register numbers the same across processor cores, but this wasn't
2134 possible without either 1) renumbering some registers for some
2135 processors or 2) assigning fpscr to a really high slot that's
2136 larger than any current register number. Doing (1) is bad because
2137 existing stubs would break. Doing (2) is undesirable because it
2138 would introduce a really large gap between fpscr and the rest of
2139 the registers for most processors. */
2140
2141 /* Convenience macros for populating register arrays. */
2142
2143 /* Within another macro, convert S to a string. */
2144
2145 #define STR(s) #s
2146
2147 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2148 and 64 bits on 64-bit systems. */
2149 #define R(name) { STR(name), 4, 8, 0, 0 }
2150
2151 /* Return a struct reg defining register NAME that's 32 bits on all
2152 systems. */
2153 #define R4(name) { STR(name), 4, 4, 0, 0 }
2154
2155 /* Return a struct reg defining register NAME that's 64 bits on all
2156 systems. */
2157 #define R8(name) { STR(name), 8, 8, 0, 0 }
2158
2159 /* Return a struct reg defining register NAME that's 128 bits on all
2160 systems. */
2161 #define R16(name) { STR(name), 16, 16, 0, 0 }
2162
2163 /* Return a struct reg defining floating-point register NAME. */
2164 #define F(name) { STR(name), 8, 8, 1, 0 }
2165
2166 /* Return a struct reg defining a pseudo register NAME. */
2167 #define P(name) { STR(name), 4, 8, 0, 1}
2168
2169 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2170 systems and that doesn't exist on 64-bit systems. */
2171 #define R32(name) { STR(name), 4, 0, 0, 0 }
2172
2173 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2174 systems and that doesn't exist on 32-bit systems. */
2175 #define R64(name) { STR(name), 0, 8, 0, 0 }
2176
2177 /* Return a struct reg placeholder for a register that doesn't exist. */
2178 #define R0 { 0, 0, 0, 0, 0 }
2179
2180 /* UISA registers common across all architectures, including POWER. */
2181
2182 #define COMMON_UISA_REGS \
2183 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2184 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2185 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2186 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2187 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2188 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2189 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2190 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2191 /* 64 */ R(pc), R(ps)
2192
2193 #define COMMON_UISA_NOFP_REGS \
2194 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2195 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2196 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2197 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2198 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2199 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2200 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2201 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2202 /* 64 */ R(pc), R(ps)
2203
2204 /* UISA-level SPRs for PowerPC. */
2205 #define PPC_UISA_SPRS \
2206 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2207
2208 /* UISA-level SPRs for PowerPC without floating point support. */
2209 #define PPC_UISA_NOFP_SPRS \
2210 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2211
2212 /* Segment registers, for PowerPC. */
2213 #define PPC_SEGMENT_REGS \
2214 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2215 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2216 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2217 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2218
2219 /* OEA SPRs for PowerPC. */
2220 #define PPC_OEA_SPRS \
2221 /* 87 */ R4(pvr), \
2222 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2223 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2224 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2225 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2226 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2227 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2228 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2229 /* 116 */ R4(dec), R(dabr), R4(ear)
2230
2231 /* AltiVec registers. */
2232 #define PPC_ALTIVEC_REGS \
2233 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2234 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2235 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2236 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2237 /*151*/R4(vscr), R4(vrsave)
2238
2239 /* Vectors of hi-lo general purpose registers. */
2240 #define PPC_EV_REGS \
2241 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2242 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2243 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2244 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2245
2246 /* Lower half of the EV registers. */
2247 #define PPC_GPRS_PSEUDO_REGS \
2248 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2249 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2250 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2251 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2252
2253 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2254 user-level SPR's. */
2255 static const struct reg registers_power[] =
2256 {
2257 COMMON_UISA_REGS,
2258 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2259 /* 71 */ R4(fpscr)
2260 };
2261
2262 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2263 view of the PowerPC. */
2264 static const struct reg registers_powerpc[] =
2265 {
2266 COMMON_UISA_REGS,
2267 PPC_UISA_SPRS,
2268 PPC_ALTIVEC_REGS
2269 };
2270
2271 /* PowerPC UISA - a PPC processor as viewed by user-level
2272 code, but without floating point registers. */
2273 static const struct reg registers_powerpc_nofp[] =
2274 {
2275 COMMON_UISA_NOFP_REGS,
2276 PPC_UISA_SPRS
2277 };
2278
2279 /* IBM PowerPC 403. */
2280 static const struct reg registers_403[] =
2281 {
2282 COMMON_UISA_REGS,
2283 PPC_UISA_SPRS,
2284 PPC_SEGMENT_REGS,
2285 PPC_OEA_SPRS,
2286 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2287 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2288 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2289 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2290 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2291 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2292 };
2293
2294 /* IBM PowerPC 403GC. */
2295 static const struct reg registers_403GC[] =
2296 {
2297 COMMON_UISA_REGS,
2298 PPC_UISA_SPRS,
2299 PPC_SEGMENT_REGS,
2300 PPC_OEA_SPRS,
2301 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2302 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2303 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2304 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2305 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2306 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2307 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2308 /* 147 */ R(tbhu), R(tblu)
2309 };
2310
2311 /* Motorola PowerPC 505. */
2312 static const struct reg registers_505[] =
2313 {
2314 COMMON_UISA_REGS,
2315 PPC_UISA_SPRS,
2316 PPC_SEGMENT_REGS,
2317 PPC_OEA_SPRS,
2318 /* 119 */ R(eie), R(eid), R(nri)
2319 };
2320
2321 /* Motorola PowerPC 860 or 850. */
2322 static const struct reg registers_860[] =
2323 {
2324 COMMON_UISA_REGS,
2325 PPC_UISA_SPRS,
2326 PPC_SEGMENT_REGS,
2327 PPC_OEA_SPRS,
2328 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2329 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2330 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2331 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2332 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2333 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2334 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2335 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2336 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2337 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2338 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2339 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2340 };
2341
2342 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2343 for reading and writing RTCU and RTCL. However, how one reads and writes a
2344 register is the stub's problem. */
2345 static const struct reg registers_601[] =
2346 {
2347 COMMON_UISA_REGS,
2348 PPC_UISA_SPRS,
2349 PPC_SEGMENT_REGS,
2350 PPC_OEA_SPRS,
2351 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2352 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2353 };
2354
2355 /* Motorola PowerPC 602. */
2356 static const struct reg registers_602[] =
2357 {
2358 COMMON_UISA_REGS,
2359 PPC_UISA_SPRS,
2360 PPC_SEGMENT_REGS,
2361 PPC_OEA_SPRS,
2362 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2363 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2364 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2365 };
2366
2367 /* Motorola/IBM PowerPC 603 or 603e. */
2368 static const struct reg registers_603[] =
2369 {
2370 COMMON_UISA_REGS,
2371 PPC_UISA_SPRS,
2372 PPC_SEGMENT_REGS,
2373 PPC_OEA_SPRS,
2374 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2375 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2376 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2377 };
2378
2379 /* Motorola PowerPC 604 or 604e. */
2380 static const struct reg registers_604[] =
2381 {
2382 COMMON_UISA_REGS,
2383 PPC_UISA_SPRS,
2384 PPC_SEGMENT_REGS,
2385 PPC_OEA_SPRS,
2386 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2387 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2388 /* 127 */ R(sia), R(sda)
2389 };
2390
2391 /* Motorola/IBM PowerPC 750 or 740. */
2392 static const struct reg registers_750[] =
2393 {
2394 COMMON_UISA_REGS,
2395 PPC_UISA_SPRS,
2396 PPC_SEGMENT_REGS,
2397 PPC_OEA_SPRS,
2398 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2399 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2400 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2401 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2402 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2403 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2404 };
2405
2406
2407 /* Motorola PowerPC 7400. */
2408 static const struct reg registers_7400[] =
2409 {
2410 /* gpr0-gpr31, fpr0-fpr31 */
2411 COMMON_UISA_REGS,
2412 /* ctr, xre, lr, cr */
2413 PPC_UISA_SPRS,
2414 /* sr0-sr15 */
2415 PPC_SEGMENT_REGS,
2416 PPC_OEA_SPRS,
2417 /* vr0-vr31, vrsave, vscr */
2418 PPC_ALTIVEC_REGS
2419 /* FIXME? Add more registers? */
2420 };
2421
2422 /* Motorola e500. */
2423 static const struct reg registers_e500[] =
2424 {
2425 R(pc), R(ps),
2426 /* cr, lr, ctr, xer, "" */
2427 PPC_UISA_NOFP_SPRS,
2428 /* 7...38 */
2429 PPC_EV_REGS,
2430 R8(acc), R(spefscr),
2431 /* NOTE: Add new registers here the end of the raw register
2432 list and just before the first pseudo register. */
2433 /* 39...70 */
2434 PPC_GPRS_PSEUDO_REGS
2435 };
2436
2437 /* Information about a particular processor variant. */
2438
2439 struct variant
2440 {
2441 /* Name of this variant. */
2442 char *name;
2443
2444 /* English description of the variant. */
2445 char *description;
2446
2447 /* bfd_arch_info.arch corresponding to variant. */
2448 enum bfd_architecture arch;
2449
2450 /* bfd_arch_info.mach corresponding to variant. */
2451 unsigned long mach;
2452
2453 /* Number of real registers. */
2454 int nregs;
2455
2456 /* Number of pseudo registers. */
2457 int npregs;
2458
2459 /* Number of total registers (the sum of nregs and npregs). */
2460 int num_tot_regs;
2461
2462 /* Table of register names; registers[R] is the name of the register
2463 number R. */
2464 const struct reg *regs;
2465 };
2466
2467 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2468
2469 static int
2470 num_registers (const struct reg *reg_list, int num_tot_regs)
2471 {
2472 int i;
2473 int nregs = 0;
2474
2475 for (i = 0; i < num_tot_regs; i++)
2476 if (!reg_list[i].pseudo)
2477 nregs++;
2478
2479 return nregs;
2480 }
2481
2482 static int
2483 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2484 {
2485 int i;
2486 int npregs = 0;
2487
2488 for (i = 0; i < num_tot_regs; i++)
2489 if (reg_list[i].pseudo)
2490 npregs ++;
2491
2492 return npregs;
2493 }
2494
2495 /* Information in this table comes from the following web sites:
2496 IBM: http://www.chips.ibm.com:80/products/embedded/
2497 Motorola: http://www.mot.com/SPS/PowerPC/
2498
2499 I'm sure I've got some of the variant descriptions not quite right.
2500 Please report any inaccuracies you find to GDB's maintainer.
2501
2502 If you add entries to this table, please be sure to allow the new
2503 value as an argument to the --with-cpu flag, in configure.in. */
2504
2505 static struct variant variants[] =
2506 {
2507
2508 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2509 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2510 registers_powerpc},
2511 {"power", "POWER user-level", bfd_arch_rs6000,
2512 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2513 registers_power},
2514 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2515 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2516 registers_403},
2517 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2518 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2519 registers_601},
2520 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2521 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2522 registers_602},
2523 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2524 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2525 registers_603},
2526 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2527 604, -1, -1, tot_num_registers (registers_604),
2528 registers_604},
2529 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2530 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2531 registers_403GC},
2532 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2533 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2534 registers_505},
2535 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2536 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2537 registers_860},
2538 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2539 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2540 registers_750},
2541 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2542 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2543 registers_7400},
2544 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2545 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2546 registers_e500},
2547
2548 /* 64-bit */
2549 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2550 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2551 registers_powerpc},
2552 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2553 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2554 registers_powerpc},
2555 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2556 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2557 registers_powerpc},
2558 {"a35", "PowerPC A35", bfd_arch_powerpc,
2559 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2560 registers_powerpc},
2561 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2562 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2563 registers_powerpc},
2564 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2565 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2566 registers_powerpc},
2567
2568 /* FIXME: I haven't checked the register sets of the following. */
2569 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2570 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2571 registers_power},
2572 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2573 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2574 registers_power},
2575 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2576 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2577 registers_power},
2578
2579 {0, 0, 0, 0, 0, 0, 0, 0}
2580 };
2581
2582 /* Initialize the number of registers and pseudo registers in each variant. */
2583
2584 static void
2585 init_variants (void)
2586 {
2587 struct variant *v;
2588
2589 for (v = variants; v->name; v++)
2590 {
2591 if (v->nregs == -1)
2592 v->nregs = num_registers (v->regs, v->num_tot_regs);
2593 if (v->npregs == -1)
2594 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2595 }
2596 }
2597
2598 /* Return the variant corresponding to architecture ARCH and machine number
2599 MACH. If no such variant exists, return null. */
2600
2601 static const struct variant *
2602 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2603 {
2604 const struct variant *v;
2605
2606 for (v = variants; v->name; v++)
2607 if (arch == v->arch && mach == v->mach)
2608 return v;
2609
2610 return NULL;
2611 }
2612
2613 static int
2614 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2615 {
2616 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2617 return print_insn_big_powerpc (memaddr, info);
2618 else
2619 return print_insn_little_powerpc (memaddr, info);
2620 }
2621 \f
2622 /* Initialize the current architecture based on INFO. If possible, re-use an
2623 architecture from ARCHES, which is a list of architectures already created
2624 during this debugging session.
2625
2626 Called e.g. at program startup, when reading a core file, and when reading
2627 a binary file. */
2628
2629 static struct gdbarch *
2630 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2631 {
2632 struct gdbarch *gdbarch;
2633 struct gdbarch_tdep *tdep;
2634 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2635 struct reg *regs;
2636 const struct variant *v;
2637 enum bfd_architecture arch;
2638 unsigned long mach;
2639 bfd abfd;
2640 int sysv_abi;
2641 asection *sect;
2642
2643 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2644 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2645
2646 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2647 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2648
2649 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2650
2651 /* Check word size. If INFO is from a binary file, infer it from
2652 that, else choose a likely default. */
2653 if (from_xcoff_exec)
2654 {
2655 if (bfd_xcoff_is_xcoff64 (info.abfd))
2656 wordsize = 8;
2657 else
2658 wordsize = 4;
2659 }
2660 else if (from_elf_exec)
2661 {
2662 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2663 wordsize = 8;
2664 else
2665 wordsize = 4;
2666 }
2667 else
2668 {
2669 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2670 wordsize = info.bfd_arch_info->bits_per_word /
2671 info.bfd_arch_info->bits_per_byte;
2672 else
2673 wordsize = 4;
2674 }
2675
2676 /* Find a candidate among extant architectures. */
2677 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2678 arches != NULL;
2679 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2680 {
2681 /* Word size in the various PowerPC bfd_arch_info structs isn't
2682 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2683 separate word size check. */
2684 tdep = gdbarch_tdep (arches->gdbarch);
2685 if (tdep && tdep->wordsize == wordsize)
2686 return arches->gdbarch;
2687 }
2688
2689 /* None found, create a new architecture from INFO, whose bfd_arch_info
2690 validity depends on the source:
2691 - executable useless
2692 - rs6000_host_arch() good
2693 - core file good
2694 - "set arch" trust blindly
2695 - GDB startup useless but harmless */
2696
2697 if (!from_xcoff_exec)
2698 {
2699 arch = info.bfd_arch_info->arch;
2700 mach = info.bfd_arch_info->mach;
2701 }
2702 else
2703 {
2704 arch = bfd_arch_powerpc;
2705 bfd_default_set_arch_mach (&abfd, arch, 0);
2706 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2707 mach = info.bfd_arch_info->mach;
2708 }
2709 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2710 tdep->wordsize = wordsize;
2711
2712 /* For e500 executables, the apuinfo section is of help here. Such
2713 section contains the identifier and revision number of each
2714 Application-specific Processing Unit that is present on the
2715 chip. The content of the section is determined by the assembler
2716 which looks at each instruction and determines which unit (and
2717 which version of it) can execute it. In our case we just look for
2718 the existance of the section. */
2719
2720 if (info.abfd)
2721 {
2722 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2723 if (sect)
2724 {
2725 arch = info.bfd_arch_info->arch;
2726 mach = bfd_mach_ppc_e500;
2727 bfd_default_set_arch_mach (&abfd, arch, mach);
2728 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2729 }
2730 }
2731
2732 gdbarch = gdbarch_alloc (&info, tdep);
2733 power = arch == bfd_arch_rs6000;
2734
2735 /* Initialize the number of real and pseudo registers in each variant. */
2736 init_variants ();
2737
2738 /* Choose variant. */
2739 v = find_variant_by_arch (arch, mach);
2740 if (!v)
2741 return NULL;
2742
2743 tdep->regs = v->regs;
2744
2745 tdep->ppc_gp0_regnum = 0;
2746 tdep->ppc_gplast_regnum = 31;
2747 tdep->ppc_toc_regnum = 2;
2748 tdep->ppc_ps_regnum = 65;
2749 tdep->ppc_cr_regnum = 66;
2750 tdep->ppc_lr_regnum = 67;
2751 tdep->ppc_ctr_regnum = 68;
2752 tdep->ppc_xer_regnum = 69;
2753 if (v->mach == bfd_mach_ppc_601)
2754 tdep->ppc_mq_regnum = 124;
2755 else if (power)
2756 tdep->ppc_mq_regnum = 70;
2757 else
2758 tdep->ppc_mq_regnum = -1;
2759 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2760
2761 set_gdbarch_pc_regnum (gdbarch, 64);
2762 set_gdbarch_sp_regnum (gdbarch, 1);
2763 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2764 if (sysv_abi && wordsize == 8)
2765 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2766 else if (sysv_abi && wordsize == 4)
2767 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2768 else
2769 {
2770 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2771 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2772 }
2773
2774 if (v->arch == bfd_arch_powerpc)
2775 switch (v->mach)
2776 {
2777 case bfd_mach_ppc:
2778 tdep->ppc_vr0_regnum = 71;
2779 tdep->ppc_vrsave_regnum = 104;
2780 tdep->ppc_ev0_regnum = -1;
2781 tdep->ppc_ev31_regnum = -1;
2782 break;
2783 case bfd_mach_ppc_7400:
2784 tdep->ppc_vr0_regnum = 119;
2785 tdep->ppc_vrsave_regnum = 152;
2786 tdep->ppc_ev0_regnum = -1;
2787 tdep->ppc_ev31_regnum = -1;
2788 break;
2789 case bfd_mach_ppc_e500:
2790 tdep->ppc_gp0_regnum = 41;
2791 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2792 tdep->ppc_toc_regnum = -1;
2793 tdep->ppc_ps_regnum = 1;
2794 tdep->ppc_cr_regnum = 2;
2795 tdep->ppc_lr_regnum = 3;
2796 tdep->ppc_ctr_regnum = 4;
2797 tdep->ppc_xer_regnum = 5;
2798 tdep->ppc_ev0_regnum = 7;
2799 tdep->ppc_ev31_regnum = 38;
2800 set_gdbarch_pc_regnum (gdbarch, 0);
2801 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2802 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2803 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2804 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2805 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2806 break;
2807 default:
2808 tdep->ppc_vr0_regnum = -1;
2809 tdep->ppc_vrsave_regnum = -1;
2810 tdep->ppc_ev0_regnum = -1;
2811 tdep->ppc_ev31_regnum = -1;
2812 break;
2813 }
2814
2815 /* Sanity check on registers. */
2816 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2817
2818 /* Set lr_frame_offset. */
2819 if (wordsize == 8)
2820 tdep->lr_frame_offset = 16;
2821 else if (sysv_abi)
2822 tdep->lr_frame_offset = 4;
2823 else
2824 tdep->lr_frame_offset = 8;
2825
2826 /* Calculate byte offsets in raw register array. */
2827 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2828 for (i = off = 0; i < v->num_tot_regs; i++)
2829 {
2830 tdep->regoff[i] = off;
2831 off += regsize (v->regs + i, wordsize);
2832 }
2833
2834 /* Select instruction printer. */
2835 if (arch == power)
2836 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2837 else
2838 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2839
2840 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2841
2842 set_gdbarch_num_regs (gdbarch, v->nregs);
2843 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2844 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2845 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2846 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2847 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2848 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2849 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2850
2851 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2852 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2853 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2854 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2855 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2856 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2857 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2858 if (sysv_abi)
2859 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2860 else
2861 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2862 set_gdbarch_char_signed (gdbarch, 0);
2863
2864 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2865 if (sysv_abi && wordsize == 8)
2866 /* PPC64 SYSV. */
2867 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2868 else if (!sysv_abi && wordsize == 4)
2869 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2870 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2871 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2872 224. */
2873 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2874 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2875 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2876
2877 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2878 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2879 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2880 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2881 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2882 is correct for the SysV ABI when the wordsize is 8, but I'm also
2883 fairly certain that ppc_sysv_abi_push_arguments() will give even
2884 worse results since it only works for 32-bit code. So, for the moment,
2885 we're better off calling rs6000_push_arguments() since it works for
2886 64-bit code. At some point in the future, this matter needs to be
2887 revisited. */
2888 if (sysv_abi && wordsize == 4)
2889 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2890 else if (sysv_abi && wordsize == 8)
2891 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2892 else
2893 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2894
2895 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2896 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2897
2898 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2899 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2900 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2901
2902 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2903 for the descriptor and ".FN" for the entry-point -- a user
2904 specifying "break FN" will unexpectedly end up with a breakpoint
2905 on the descriptor and not the function. This architecture method
2906 transforms any breakpoints on descriptors into breakpoints on the
2907 corresponding entry point. */
2908 if (sysv_abi && wordsize == 8)
2909 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2910
2911 /* Not sure on this. FIXMEmgo */
2912 set_gdbarch_frame_args_skip (gdbarch, 8);
2913
2914 if (!sysv_abi)
2915 set_gdbarch_use_struct_convention (gdbarch,
2916 rs6000_use_struct_convention);
2917
2918 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, rs6000_frameless_function_invocation);
2919 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2920 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2921
2922 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2923 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2924 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, rs6000_init_frame_pc_first);
2925
2926 if (!sysv_abi)
2927 {
2928 /* Handle RS/6000 function pointers (which are really function
2929 descriptors). */
2930 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2931 rs6000_convert_from_func_ptr_addr);
2932 }
2933 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2934 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
2935 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2936
2937 /* Helpers for function argument information. */
2938 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2939
2940 /* Hook in ABI-specific overrides, if they have been registered. */
2941 gdbarch_init_osabi (info, gdbarch);
2942
2943 if (from_xcoff_exec)
2944 {
2945 /* NOTE: jimix/2003-06-09: This test should really check for
2946 GDB_OSABI_AIX when that is defined and becomes
2947 available. (Actually, once things are properly split apart,
2948 the test goes away.) */
2949 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2950 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2951 }
2952
2953 return gdbarch;
2954 }
2955
2956 static void
2957 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2958 {
2959 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2960
2961 if (tdep == NULL)
2962 return;
2963
2964 /* FIXME: Dump gdbarch_tdep. */
2965 }
2966
2967 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2968
2969 static void
2970 rs6000_info_powerpc_command (char *args, int from_tty)
2971 {
2972 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2973 }
2974
2975 /* Initialization code. */
2976
2977 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
2978
2979 void
2980 _initialize_rs6000_tdep (void)
2981 {
2982 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2983 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2984
2985 /* Add root prefix command for "info powerpc" commands */
2986 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2987 "Various POWERPC info specific commands.",
2988 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2989 }
This page took 0.138585 seconds and 5 git commands to generate.