Make exceptions use std::string and be self-managing
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
106 /* Determine if regnum is a POWER7 VSX register. */
107 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111 /* Determine if regnum is a POWER7 Extended FP register. */
112 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115
116 /* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122 /* Determine if regnum is a Checkpointed POWER7 VSX register. */
123 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127 /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
132 /* Holds the current set of options to be passed to the disassembler. */
133 static char *powerpc_disassembler_options;
134
135 /* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137 static struct cmd_list_element *setpowerpccmdlist = NULL;
138 static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
143 static const char *const powerpc_vector_strings[] =
144 {
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150 };
151
152 /* A variable that can be configured by the user. */
153 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154 static const char *powerpc_vector_abi_string = "auto";
155
156 /* To be used by skip_prologue. */
157
158 struct rs6000_framedata
159 {
160 int offset; /* total size of frame --- the distance
161 by which we decrement sp to allocate
162 the frame */
163 int saved_gpr; /* smallest # of saved gpr */
164 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
165 int saved_fpr; /* smallest # of saved fpr */
166 int saved_vr; /* smallest # of saved vr */
167 int saved_ev; /* smallest # of saved ev */
168 int alloca_reg; /* alloca register number (frame ptr) */
169 char frameless; /* true if frameless functions. */
170 char nosavedpc; /* true if pc not saved. */
171 char used_bl; /* true if link register clobbered */
172 int gpr_offset; /* offset of saved gprs from prev sp */
173 int fpr_offset; /* offset of saved fprs from prev sp */
174 int vr_offset; /* offset of saved vrs from prev sp */
175 int ev_offset; /* offset of saved evs from prev sp */
176 int lr_offset; /* offset of saved lr */
177 int lr_register; /* register of saved lr, if trustworthy */
178 int cr_offset; /* offset of saved cr */
179 int vrsave_offset; /* offset of saved vrsave register */
180 };
181
182
183 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
184 int
185 vsx_register_p (struct gdbarch *gdbarch, int regno)
186 {
187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
188 if (tdep->ppc_vsr0_regnum < 0)
189 return 0;
190 else
191 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
192 <= tdep->ppc_vsr0_upper_regnum + 31);
193 }
194
195 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
196 int
197 altivec_register_p (struct gdbarch *gdbarch, int regno)
198 {
199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
200 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
201 return 0;
202 else
203 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
204 }
205
206
207 /* Return true if REGNO is an SPE register, false otherwise. */
208 int
209 spe_register_p (struct gdbarch *gdbarch, int regno)
210 {
211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
212
213 /* Is it a reference to EV0 -- EV31, and do we have those? */
214 if (IS_SPE_PSEUDOREG (tdep, regno))
215 return 1;
216
217 /* Is it a reference to one of the raw upper GPR halves? */
218 if (tdep->ppc_ev0_upper_regnum >= 0
219 && tdep->ppc_ev0_upper_regnum <= regno
220 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
221 return 1;
222
223 /* Is it a reference to the 64-bit accumulator, and do we have that? */
224 if (tdep->ppc_acc_regnum >= 0
225 && tdep->ppc_acc_regnum == regno)
226 return 1;
227
228 /* Is it a reference to the SPE floating-point status and control register,
229 and do we have that? */
230 if (tdep->ppc_spefscr_regnum >= 0
231 && tdep->ppc_spefscr_regnum == regno)
232 return 1;
233
234 return 0;
235 }
236
237
238 /* Return non-zero if the architecture described by GDBARCH has
239 floating-point registers (f0 --- f31 and fpscr). */
240 int
241 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244
245 return (tdep->ppc_fp0_regnum >= 0
246 && tdep->ppc_fpscr_regnum >= 0);
247 }
248
249 /* Return non-zero if the architecture described by GDBARCH has
250 Altivec registers (vr0 --- vr31, vrsave and vscr). */
251 int
252 ppc_altivec_support_p (struct gdbarch *gdbarch)
253 {
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255
256 return (tdep->ppc_vr0_regnum >= 0
257 && tdep->ppc_vrsave_regnum >= 0);
258 }
259
260 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
261 set it to SIM_REGNO.
262
263 This is a helper function for init_sim_regno_table, constructing
264 the table mapping GDB register numbers to sim register numbers; we
265 initialize every element in that table to -1 before we start
266 filling it in. */
267 static void
268 set_sim_regno (int *table, int gdb_regno, int sim_regno)
269 {
270 /* Make sure we don't try to assign any given GDB register a sim
271 register number more than once. */
272 gdb_assert (table[gdb_regno] == -1);
273 table[gdb_regno] = sim_regno;
274 }
275
276
277 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
278 numbers to simulator register numbers, based on the values placed
279 in the ARCH->tdep->ppc_foo_regnum members. */
280 static void
281 init_sim_regno_table (struct gdbarch *arch)
282 {
283 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
284 int total_regs = gdbarch_num_regs (arch);
285 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
286 int i;
287 static const char *const segment_regs[] = {
288 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
289 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
290 };
291
292 /* Presume that all registers not explicitly mentioned below are
293 unavailable from the sim. */
294 for (i = 0; i < total_regs; i++)
295 sim_regno[i] = -1;
296
297 /* General-purpose registers. */
298 for (i = 0; i < ppc_num_gprs; i++)
299 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
300
301 /* Floating-point registers. */
302 if (tdep->ppc_fp0_regnum >= 0)
303 for (i = 0; i < ppc_num_fprs; i++)
304 set_sim_regno (sim_regno,
305 tdep->ppc_fp0_regnum + i,
306 sim_ppc_f0_regnum + i);
307 if (tdep->ppc_fpscr_regnum >= 0)
308 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
309
310 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
311 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
312 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
313
314 /* Segment registers. */
315 for (i = 0; i < ppc_num_srs; i++)
316 {
317 int gdb_regno;
318
319 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
320 if (gdb_regno >= 0)
321 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
322 }
323
324 /* Altivec registers. */
325 if (tdep->ppc_vr0_regnum >= 0)
326 {
327 for (i = 0; i < ppc_num_vrs; i++)
328 set_sim_regno (sim_regno,
329 tdep->ppc_vr0_regnum + i,
330 sim_ppc_vr0_regnum + i);
331
332 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
333 we can treat this more like the other cases. */
334 set_sim_regno (sim_regno,
335 tdep->ppc_vr0_regnum + ppc_num_vrs,
336 sim_ppc_vscr_regnum);
337 }
338 /* vsave is a special-purpose register, so the code below handles it. */
339
340 /* SPE APU (E500) registers. */
341 if (tdep->ppc_ev0_upper_regnum >= 0)
342 for (i = 0; i < ppc_num_gprs; i++)
343 set_sim_regno (sim_regno,
344 tdep->ppc_ev0_upper_regnum + i,
345 sim_ppc_rh0_regnum + i);
346 if (tdep->ppc_acc_regnum >= 0)
347 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
348 /* spefscr is a special-purpose register, so the code below handles it. */
349
350 #ifdef WITH_PPC_SIM
351 /* Now handle all special-purpose registers. Verify that they
352 haven't mistakenly been assigned numbers by any of the above
353 code. */
354 for (i = 0; i < sim_ppc_num_sprs; i++)
355 {
356 const char *spr_name = sim_spr_register_name (i);
357 int gdb_regno = -1;
358
359 if (spr_name != NULL)
360 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
361
362 if (gdb_regno != -1)
363 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
364 }
365 #endif
366
367 /* Drop the initialized array into place. */
368 tdep->sim_regno = sim_regno;
369 }
370
371
372 /* Given a GDB register number REG, return the corresponding SIM
373 register number. */
374 static int
375 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
376 {
377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
378 int sim_regno;
379
380 if (tdep->sim_regno == NULL)
381 init_sim_regno_table (gdbarch);
382
383 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
384 sim_regno = tdep->sim_regno[reg];
385
386 if (sim_regno >= 0)
387 return sim_regno;
388 else
389 return LEGACY_SIM_REGNO_IGNORE;
390 }
391
392 \f
393
394 /* Register set support functions. */
395
396 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
397 Write the register to REGCACHE. */
398
399 void
400 ppc_supply_reg (struct regcache *regcache, int regnum,
401 const gdb_byte *regs, size_t offset, int regsize)
402 {
403 if (regnum != -1 && offset != -1)
404 {
405 if (regsize > 4)
406 {
407 struct gdbarch *gdbarch = regcache->arch ();
408 int gdb_regsize = register_size (gdbarch, regnum);
409 if (gdb_regsize < regsize
410 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
411 offset += regsize - gdb_regsize;
412 }
413 regcache->raw_supply (regnum, regs + offset);
414 }
415 }
416
417 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
418 in a field REGSIZE wide. Zero pad as necessary. */
419
420 void
421 ppc_collect_reg (const struct regcache *regcache, int regnum,
422 gdb_byte *regs, size_t offset, int regsize)
423 {
424 if (regnum != -1 && offset != -1)
425 {
426 if (regsize > 4)
427 {
428 struct gdbarch *gdbarch = regcache->arch ();
429 int gdb_regsize = register_size (gdbarch, regnum);
430 if (gdb_regsize < regsize)
431 {
432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
433 {
434 memset (regs + offset, 0, regsize - gdb_regsize);
435 offset += regsize - gdb_regsize;
436 }
437 else
438 memset (regs + offset + regsize - gdb_regsize, 0,
439 regsize - gdb_regsize);
440 }
441 }
442 regcache->raw_collect (regnum, regs + offset);
443 }
444 }
445
446 static int
447 ppc_greg_offset (struct gdbarch *gdbarch,
448 struct gdbarch_tdep *tdep,
449 const struct ppc_reg_offsets *offsets,
450 int regnum,
451 int *regsize)
452 {
453 *regsize = offsets->gpr_size;
454 if (regnum >= tdep->ppc_gp0_regnum
455 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
456 return (offsets->r0_offset
457 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
458
459 if (regnum == gdbarch_pc_regnum (gdbarch))
460 return offsets->pc_offset;
461
462 if (regnum == tdep->ppc_ps_regnum)
463 return offsets->ps_offset;
464
465 if (regnum == tdep->ppc_lr_regnum)
466 return offsets->lr_offset;
467
468 if (regnum == tdep->ppc_ctr_regnum)
469 return offsets->ctr_offset;
470
471 *regsize = offsets->xr_size;
472 if (regnum == tdep->ppc_cr_regnum)
473 return offsets->cr_offset;
474
475 if (regnum == tdep->ppc_xer_regnum)
476 return offsets->xer_offset;
477
478 if (regnum == tdep->ppc_mq_regnum)
479 return offsets->mq_offset;
480
481 return -1;
482 }
483
484 static int
485 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
486 const struct ppc_reg_offsets *offsets,
487 int regnum)
488 {
489 if (regnum >= tdep->ppc_fp0_regnum
490 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
491 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
492
493 if (regnum == tdep->ppc_fpscr_regnum)
494 return offsets->fpscr_offset;
495
496 return -1;
497 }
498
499 /* Supply register REGNUM in the general-purpose register set REGSET
500 from the buffer specified by GREGS and LEN to register cache
501 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
502
503 void
504 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
505 int regnum, const void *gregs, size_t len)
506 {
507 struct gdbarch *gdbarch = regcache->arch ();
508 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
509 const struct ppc_reg_offsets *offsets
510 = (const struct ppc_reg_offsets *) regset->regmap;
511 size_t offset;
512 int regsize;
513
514 if (regnum == -1)
515 {
516 int i;
517 int gpr_size = offsets->gpr_size;
518
519 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
520 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
521 i++, offset += gpr_size)
522 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
523 gpr_size);
524
525 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
526 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
527 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
528 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
529 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
530 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
531 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
532 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
533 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
534 (const gdb_byte *) gregs, offsets->cr_offset,
535 offsets->xr_size);
536 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
537 (const gdb_byte *) gregs, offsets->xer_offset,
538 offsets->xr_size);
539 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
540 (const gdb_byte *) gregs, offsets->mq_offset,
541 offsets->xr_size);
542 return;
543 }
544
545 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
546 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
547 }
548
549 /* Supply register REGNUM in the floating-point register set REGSET
550 from the buffer specified by FPREGS and LEN to register cache
551 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
552
553 void
554 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
555 int regnum, const void *fpregs, size_t len)
556 {
557 struct gdbarch *gdbarch = regcache->arch ();
558 struct gdbarch_tdep *tdep;
559 const struct ppc_reg_offsets *offsets;
560 size_t offset;
561
562 if (!ppc_floating_point_unit_p (gdbarch))
563 return;
564
565 tdep = gdbarch_tdep (gdbarch);
566 offsets = (const struct ppc_reg_offsets *) regset->regmap;
567 if (regnum == -1)
568 {
569 int i;
570
571 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
572 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
573 i++, offset += 8)
574 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
575
576 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
577 (const gdb_byte *) fpregs, offsets->fpscr_offset,
578 offsets->fpscr_size);
579 return;
580 }
581
582 offset = ppc_fpreg_offset (tdep, offsets, regnum);
583 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
584 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
585 }
586
587 /* Collect register REGNUM in the general-purpose register set
588 REGSET from register cache REGCACHE into the buffer specified by
589 GREGS and LEN. If REGNUM is -1, do this for all registers in
590 REGSET. */
591
592 void
593 ppc_collect_gregset (const struct regset *regset,
594 const struct regcache *regcache,
595 int regnum, void *gregs, size_t len)
596 {
597 struct gdbarch *gdbarch = regcache->arch ();
598 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
599 const struct ppc_reg_offsets *offsets
600 = (const struct ppc_reg_offsets *) regset->regmap;
601 size_t offset;
602 int regsize;
603
604 if (regnum == -1)
605 {
606 int i;
607 int gpr_size = offsets->gpr_size;
608
609 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
610 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
611 i++, offset += gpr_size)
612 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
613
614 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
615 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
616 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
617 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
618 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
619 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
620 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
621 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
622 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
623 (gdb_byte *) gregs, offsets->cr_offset,
624 offsets->xr_size);
625 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
626 (gdb_byte *) gregs, offsets->xer_offset,
627 offsets->xr_size);
628 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
629 (gdb_byte *) gregs, offsets->mq_offset,
630 offsets->xr_size);
631 return;
632 }
633
634 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
635 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
636 }
637
638 /* Collect register REGNUM in the floating-point register set
639 REGSET from register cache REGCACHE into the buffer specified by
640 FPREGS and LEN. If REGNUM is -1, do this for all registers in
641 REGSET. */
642
643 void
644 ppc_collect_fpregset (const struct regset *regset,
645 const struct regcache *regcache,
646 int regnum, void *fpregs, size_t len)
647 {
648 struct gdbarch *gdbarch = regcache->arch ();
649 struct gdbarch_tdep *tdep;
650 const struct ppc_reg_offsets *offsets;
651 size_t offset;
652
653 if (!ppc_floating_point_unit_p (gdbarch))
654 return;
655
656 tdep = gdbarch_tdep (gdbarch);
657 offsets = (const struct ppc_reg_offsets *) regset->regmap;
658 if (regnum == -1)
659 {
660 int i;
661
662 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
663 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
664 i++, offset += 8)
665 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
666
667 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
668 (gdb_byte *) fpregs, offsets->fpscr_offset,
669 offsets->fpscr_size);
670 return;
671 }
672
673 offset = ppc_fpreg_offset (tdep, offsets, regnum);
674 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
675 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
676 }
677
678 static int
679 insn_changes_sp_or_jumps (unsigned long insn)
680 {
681 int opcode = (insn >> 26) & 0x03f;
682 int sd = (insn >> 21) & 0x01f;
683 int a = (insn >> 16) & 0x01f;
684 int subcode = (insn >> 1) & 0x3ff;
685
686 /* Changes the stack pointer. */
687
688 /* NOTE: There are many ways to change the value of a given register.
689 The ways below are those used when the register is R1, the SP,
690 in a funtion's epilogue. */
691
692 if (opcode == 31 && subcode == 444 && a == 1)
693 return 1; /* mr R1,Rn */
694 if (opcode == 14 && sd == 1)
695 return 1; /* addi R1,Rn,simm */
696 if (opcode == 58 && sd == 1)
697 return 1; /* ld R1,ds(Rn) */
698
699 /* Transfers control. */
700
701 if (opcode == 18)
702 return 1; /* b */
703 if (opcode == 16)
704 return 1; /* bc */
705 if (opcode == 19 && subcode == 16)
706 return 1; /* bclr */
707 if (opcode == 19 && subcode == 528)
708 return 1; /* bcctr */
709
710 return 0;
711 }
712
713 /* Return true if we are in the function's epilogue, i.e. after the
714 instruction that destroyed the function's stack frame.
715
716 1) scan forward from the point of execution:
717 a) If you find an instruction that modifies the stack pointer
718 or transfers control (except a return), execution is not in
719 an epilogue, return.
720 b) Stop scanning if you find a return instruction or reach the
721 end of the function or reach the hard limit for the size of
722 an epilogue.
723 2) scan backward from the point of execution:
724 a) If you find an instruction that modifies the stack pointer,
725 execution *is* in an epilogue, return.
726 b) Stop scanning if you reach an instruction that transfers
727 control or the beginning of the function or reach the hard
728 limit for the size of an epilogue. */
729
730 static int
731 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
732 struct gdbarch *gdbarch, CORE_ADDR pc)
733 {
734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
736 bfd_byte insn_buf[PPC_INSN_SIZE];
737 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
738 unsigned long insn;
739
740 /* Find the search limits based on function boundaries and hard limit. */
741
742 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
743 return 0;
744
745 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
746 if (epilogue_start < func_start) epilogue_start = func_start;
747
748 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
749 if (epilogue_end > func_end) epilogue_end = func_end;
750
751 /* Scan forward until next 'blr'. */
752
753 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
754 {
755 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
756 return 0;
757 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
758 if (insn == 0x4e800020)
759 break;
760 /* Assume a bctr is a tail call unless it points strictly within
761 this function. */
762 if (insn == 0x4e800420)
763 {
764 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
765 tdep->ppc_ctr_regnum);
766 if (ctr > func_start && ctr < func_end)
767 return 0;
768 else
769 break;
770 }
771 if (insn_changes_sp_or_jumps (insn))
772 return 0;
773 }
774
775 /* Scan backward until adjustment to stack pointer (R1). */
776
777 for (scan_pc = pc - PPC_INSN_SIZE;
778 scan_pc >= epilogue_start;
779 scan_pc -= PPC_INSN_SIZE)
780 {
781 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
782 return 0;
783 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
784 if (insn_changes_sp_or_jumps (insn))
785 return 1;
786 }
787
788 return 0;
789 }
790
791 /* Implement the stack_frame_destroyed_p gdbarch method. */
792
793 static int
794 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
795 {
796 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
797 gdbarch, pc);
798 }
799
800 /* Get the ith function argument for the current function. */
801 static CORE_ADDR
802 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
803 struct type *type)
804 {
805 return get_frame_register_unsigned (frame, 3 + argi);
806 }
807
808 /* Sequence of bytes for breakpoint instruction. */
809
810 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
811 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
812
813 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
814 rs6000_breakpoint;
815
816 /* Instruction masks for displaced stepping. */
817 #define BRANCH_MASK 0xfc000000
818 #define BP_MASK 0xFC0007FE
819 #define B_INSN 0x48000000
820 #define BC_INSN 0x40000000
821 #define BXL_INSN 0x4c000000
822 #define BP_INSN 0x7C000008
823
824 /* Instruction masks used during single-stepping of atomic
825 sequences. */
826 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
827 #define LWARX_INSTRUCTION 0x7c000028
828 #define LDARX_INSTRUCTION 0x7c0000A8
829 #define LBARX_INSTRUCTION 0x7c000068
830 #define LHARX_INSTRUCTION 0x7c0000e8
831 #define LQARX_INSTRUCTION 0x7c000228
832 #define STORE_CONDITIONAL_MASK 0xfc0007ff
833 #define STWCX_INSTRUCTION 0x7c00012d
834 #define STDCX_INSTRUCTION 0x7c0001ad
835 #define STBCX_INSTRUCTION 0x7c00056d
836 #define STHCX_INSTRUCTION 0x7c0005ad
837 #define STQCX_INSTRUCTION 0x7c00016d
838
839 /* Check if insn is one of the Load And Reserve instructions used for atomic
840 sequences. */
841 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
842 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
843 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
844 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
845 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
846 /* Check if insn is one of the Store Conditional instructions used for atomic
847 sequences. */
848 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
849 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
850 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
851 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
852 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
853
854 typedef buf_displaced_step_closure ppc_displaced_step_closure;
855
856 /* We can't displaced step atomic sequences. */
857
858 static struct displaced_step_closure *
859 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
860 CORE_ADDR from, CORE_ADDR to,
861 struct regcache *regs)
862 {
863 size_t len = gdbarch_max_insn_length (gdbarch);
864 std::unique_ptr<ppc_displaced_step_closure> closure
865 (new ppc_displaced_step_closure (len));
866 gdb_byte *buf = closure->buf.data ();
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868 int insn;
869
870 read_memory (from, buf, len);
871
872 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
873
874 /* Assume all atomic sequences start with a Load and Reserve instruction. */
875 if (IS_LOAD_AND_RESERVE_INSN (insn))
876 {
877 if (debug_displaced)
878 {
879 fprintf_unfiltered (gdb_stdlog,
880 "displaced: can't displaced step "
881 "atomic sequence at %s\n",
882 paddress (gdbarch, from));
883 }
884
885 return NULL;
886 }
887
888 write_memory (to, buf, len);
889
890 if (debug_displaced)
891 {
892 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
893 paddress (gdbarch, from), paddress (gdbarch, to));
894 displaced_step_dump_bytes (gdb_stdlog, buf, len);
895 }
896
897 return closure.release ();
898 }
899
900 /* Fix up the state of registers and memory after having single-stepped
901 a displaced instruction. */
902 static void
903 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
904 struct displaced_step_closure *closure_,
905 CORE_ADDR from, CORE_ADDR to,
906 struct regcache *regs)
907 {
908 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
909 /* Our closure is a copy of the instruction. */
910 ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
911 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
912 PPC_INSN_SIZE, byte_order);
913 ULONGEST opcode = 0;
914 /* Offset for non PC-relative instructions. */
915 LONGEST offset = PPC_INSN_SIZE;
916
917 opcode = insn & BRANCH_MASK;
918
919 if (debug_displaced)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: (ppc) fixup (%s, %s)\n",
922 paddress (gdbarch, from), paddress (gdbarch, to));
923
924
925 /* Handle PC-relative branch instructions. */
926 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
927 {
928 ULONGEST current_pc;
929
930 /* Read the current PC value after the instruction has been executed
931 in a displaced location. Calculate the offset to be applied to the
932 original PC value before the displaced stepping. */
933 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
934 &current_pc);
935 offset = current_pc - to;
936
937 if (opcode != BXL_INSN)
938 {
939 /* Check for AA bit indicating whether this is an absolute
940 addressing or PC-relative (1: absolute, 0: relative). */
941 if (!(insn & 0x2))
942 {
943 /* PC-relative addressing is being used in the branch. */
944 if (debug_displaced)
945 fprintf_unfiltered
946 (gdb_stdlog,
947 "displaced: (ppc) branch instruction: %s\n"
948 "displaced: (ppc) adjusted PC from %s to %s\n",
949 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
950 paddress (gdbarch, from + offset));
951
952 regcache_cooked_write_unsigned (regs,
953 gdbarch_pc_regnum (gdbarch),
954 from + offset);
955 }
956 }
957 else
958 {
959 /* If we're here, it means we have a branch to LR or CTR. If the
960 branch was taken, the offset is probably greater than 4 (the next
961 instruction), so it's safe to assume that an offset of 4 means we
962 did not take the branch. */
963 if (offset == PPC_INSN_SIZE)
964 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
965 from + PPC_INSN_SIZE);
966 }
967
968 /* Check for LK bit indicating whether we should set the link
969 register to point to the next instruction
970 (1: Set, 0: Don't set). */
971 if (insn & 0x1)
972 {
973 /* Link register needs to be set to the next instruction's PC. */
974 regcache_cooked_write_unsigned (regs,
975 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
976 from + PPC_INSN_SIZE);
977 if (debug_displaced)
978 fprintf_unfiltered (gdb_stdlog,
979 "displaced: (ppc) adjusted LR to %s\n",
980 paddress (gdbarch, from + PPC_INSN_SIZE));
981
982 }
983 }
984 /* Check for breakpoints in the inferior. If we've found one, place the PC
985 right at the breakpoint instruction. */
986 else if ((insn & BP_MASK) == BP_INSN)
987 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
988 else
989 /* Handle any other instructions that do not fit in the categories above. */
990 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
991 from + offset);
992 }
993
994 /* Always use hardware single-stepping to execute the
995 displaced instruction. */
996 static int
997 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
998 struct displaced_step_closure *closure)
999 {
1000 return 1;
1001 }
1002
1003 /* Checks for an atomic sequence of instructions beginning with a
1004 Load And Reserve instruction and ending with a Store Conditional
1005 instruction. If such a sequence is found, attempt to step through it.
1006 A breakpoint is placed at the end of the sequence. */
1007 std::vector<CORE_ADDR>
1008 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1009 {
1010 struct gdbarch *gdbarch = regcache->arch ();
1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1012 CORE_ADDR pc = regcache_read_pc (regcache);
1013 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
1014 CORE_ADDR loc = pc;
1015 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1016 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1017 int insn_count;
1018 int index;
1019 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1020 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1021 int bc_insn_count = 0; /* Conditional branch instruction count. */
1022
1023 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1024 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1025 return {};
1026
1027 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1028 instructions. */
1029 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1030 {
1031 loc += PPC_INSN_SIZE;
1032 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1033
1034 /* Assume that there is at most one conditional branch in the atomic
1035 sequence. If a conditional branch is found, put a breakpoint in
1036 its destination address. */
1037 if ((insn & BRANCH_MASK) == BC_INSN)
1038 {
1039 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1040 int absolute = insn & 2;
1041
1042 if (bc_insn_count >= 1)
1043 return {}; /* More than one conditional branch found, fallback
1044 to the standard single-step code. */
1045
1046 if (absolute)
1047 breaks[1] = immediate;
1048 else
1049 breaks[1] = loc + immediate;
1050
1051 bc_insn_count++;
1052 last_breakpoint++;
1053 }
1054
1055 if (IS_STORE_CONDITIONAL_INSN (insn))
1056 break;
1057 }
1058
1059 /* Assume that the atomic sequence ends with a Store Conditional
1060 instruction. */
1061 if (!IS_STORE_CONDITIONAL_INSN (insn))
1062 return {};
1063
1064 closing_insn = loc;
1065 loc += PPC_INSN_SIZE;
1066
1067 /* Insert a breakpoint right after the end of the atomic sequence. */
1068 breaks[0] = loc;
1069
1070 /* Check for duplicated breakpoints. Check also for a breakpoint
1071 placed (branch instruction's destination) anywhere in sequence. */
1072 if (last_breakpoint
1073 && (breaks[1] == breaks[0]
1074 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1075 last_breakpoint = 0;
1076
1077 std::vector<CORE_ADDR> next_pcs;
1078
1079 for (index = 0; index <= last_breakpoint; index++)
1080 next_pcs.push_back (breaks[index]);
1081
1082 return next_pcs;
1083 }
1084
1085
1086 #define SIGNED_SHORT(x) \
1087 ((sizeof (short) == 2) \
1088 ? ((int)(short)(x)) \
1089 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1090
1091 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1092
1093 /* Limit the number of skipped non-prologue instructions, as the examining
1094 of the prologue is expensive. */
1095 static int max_skip_non_prologue_insns = 10;
1096
1097 /* Return nonzero if the given instruction OP can be part of the prologue
1098 of a function and saves a parameter on the stack. FRAMEP should be
1099 set if one of the previous instructions in the function has set the
1100 Frame Pointer. */
1101
1102 static int
1103 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1104 {
1105 /* Move parameters from argument registers to temporary register. */
1106 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1107 {
1108 /* Rx must be scratch register r0. */
1109 const int rx_regno = (op >> 16) & 31;
1110 /* Ry: Only r3 - r10 are used for parameter passing. */
1111 const int ry_regno = GET_SRC_REG (op);
1112
1113 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1114 {
1115 *r0_contains_arg = 1;
1116 return 1;
1117 }
1118 else
1119 return 0;
1120 }
1121
1122 /* Save a General Purpose Register on stack. */
1123
1124 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1125 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1126 {
1127 /* Rx: Only r3 - r10 are used for parameter passing. */
1128 const int rx_regno = GET_SRC_REG (op);
1129
1130 return (rx_regno >= 3 && rx_regno <= 10);
1131 }
1132
1133 /* Save a General Purpose Register on stack via the Frame Pointer. */
1134
1135 if (framep &&
1136 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1137 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1138 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1139 {
1140 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1141 However, the compiler sometimes uses r0 to hold an argument. */
1142 const int rx_regno = GET_SRC_REG (op);
1143
1144 return ((rx_regno >= 3 && rx_regno <= 10)
1145 || (rx_regno == 0 && *r0_contains_arg));
1146 }
1147
1148 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1149 {
1150 /* Only f2 - f8 are used for parameter passing. */
1151 const int src_regno = GET_SRC_REG (op);
1152
1153 return (src_regno >= 2 && src_regno <= 8);
1154 }
1155
1156 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1157 {
1158 /* Only f2 - f8 are used for parameter passing. */
1159 const int src_regno = GET_SRC_REG (op);
1160
1161 return (src_regno >= 2 && src_regno <= 8);
1162 }
1163
1164 /* Not an insn that saves a parameter on stack. */
1165 return 0;
1166 }
1167
1168 /* Assuming that INSN is a "bl" instruction located at PC, return
1169 nonzero if the destination of the branch is a "blrl" instruction.
1170
1171 This sequence is sometimes found in certain function prologues.
1172 It allows the function to load the LR register with a value that
1173 they can use to access PIC data using PC-relative offsets. */
1174
1175 static int
1176 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1177 {
1178 CORE_ADDR dest;
1179 int immediate;
1180 int absolute;
1181 int dest_insn;
1182
1183 absolute = (int) ((insn >> 1) & 1);
1184 immediate = ((insn & ~3) << 6) >> 6;
1185 if (absolute)
1186 dest = immediate;
1187 else
1188 dest = pc + immediate;
1189
1190 dest_insn = read_memory_integer (dest, 4, byte_order);
1191 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1192 return 1;
1193
1194 return 0;
1195 }
1196
1197 /* Return true if OP is a stw or std instruction with
1198 register operands RS and RA and any immediate offset.
1199
1200 If WITH_UPDATE is true, also return true if OP is
1201 a stwu or stdu instruction with the same operands.
1202
1203 Return false otherwise.
1204 */
1205 static bool
1206 store_insn_p (unsigned long op, unsigned long rs,
1207 unsigned long ra, bool with_update)
1208 {
1209 rs = rs << 21;
1210 ra = ra << 16;
1211
1212 if (/* std RS, SIMM(RA) */
1213 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1214 /* stw RS, SIMM(RA) */
1215 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1216 return true;
1217
1218 if (with_update)
1219 {
1220 if (/* stdu RS, SIMM(RA) */
1221 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1222 /* stwu RS, SIMM(RA) */
1223 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1224 return true;
1225 }
1226
1227 return false;
1228 }
1229
1230 /* Masks for decoding a branch-and-link (bl) instruction.
1231
1232 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1233 The former is anded with the opcode in question; if the result of
1234 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1235 question is a ``bl'' instruction.
1236
1237 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1238 the branch displacement. */
1239
1240 #define BL_MASK 0xfc000001
1241 #define BL_INSTRUCTION 0x48000001
1242 #define BL_DISPLACEMENT_MASK 0x03fffffc
1243
1244 static unsigned long
1245 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1246 {
1247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1248 gdb_byte buf[4];
1249 unsigned long op;
1250
1251 /* Fetch the instruction and convert it to an integer. */
1252 if (target_read_memory (pc, buf, 4))
1253 return 0;
1254 op = extract_unsigned_integer (buf, 4, byte_order);
1255
1256 return op;
1257 }
1258
1259 /* GCC generates several well-known sequences of instructions at the begining
1260 of each function prologue when compiling with -fstack-check. If one of
1261 such sequences starts at START_PC, then return the address of the
1262 instruction immediately past this sequence. Otherwise, return START_PC. */
1263
1264 static CORE_ADDR
1265 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1266 {
1267 CORE_ADDR pc = start_pc;
1268 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1269
1270 /* First possible sequence: A small number of probes.
1271 stw 0, -<some immediate>(1)
1272 [repeat this instruction any (small) number of times]. */
1273
1274 if ((op & 0xffff0000) == 0x90010000)
1275 {
1276 while ((op & 0xffff0000) == 0x90010000)
1277 {
1278 pc = pc + 4;
1279 op = rs6000_fetch_instruction (gdbarch, pc);
1280 }
1281 return pc;
1282 }
1283
1284 /* Second sequence: A probing loop.
1285 addi 12,1,-<some immediate>
1286 lis 0,-<some immediate>
1287 [possibly ori 0,0,<some immediate>]
1288 add 0,12,0
1289 cmpw 0,12,0
1290 beq 0,<disp>
1291 addi 12,12,-<some immediate>
1292 stw 0,0(12)
1293 b <disp>
1294 [possibly one last probe: stw 0,<some immediate>(12)]. */
1295
1296 while (1)
1297 {
1298 /* addi 12,1,-<some immediate> */
1299 if ((op & 0xffff0000) != 0x39810000)
1300 break;
1301
1302 /* lis 0,-<some immediate> */
1303 pc = pc + 4;
1304 op = rs6000_fetch_instruction (gdbarch, pc);
1305 if ((op & 0xffff0000) != 0x3c000000)
1306 break;
1307
1308 pc = pc + 4;
1309 op = rs6000_fetch_instruction (gdbarch, pc);
1310 /* [possibly ori 0,0,<some immediate>] */
1311 if ((op & 0xffff0000) == 0x60000000)
1312 {
1313 pc = pc + 4;
1314 op = rs6000_fetch_instruction (gdbarch, pc);
1315 }
1316 /* add 0,12,0 */
1317 if (op != 0x7c0c0214)
1318 break;
1319
1320 /* cmpw 0,12,0 */
1321 pc = pc + 4;
1322 op = rs6000_fetch_instruction (gdbarch, pc);
1323 if (op != 0x7c0c0000)
1324 break;
1325
1326 /* beq 0,<disp> */
1327 pc = pc + 4;
1328 op = rs6000_fetch_instruction (gdbarch, pc);
1329 if ((op & 0xff9f0001) != 0x41820000)
1330 break;
1331
1332 /* addi 12,12,-<some immediate> */
1333 pc = pc + 4;
1334 op = rs6000_fetch_instruction (gdbarch, pc);
1335 if ((op & 0xffff0000) != 0x398c0000)
1336 break;
1337
1338 /* stw 0,0(12) */
1339 pc = pc + 4;
1340 op = rs6000_fetch_instruction (gdbarch, pc);
1341 if (op != 0x900c0000)
1342 break;
1343
1344 /* b <disp> */
1345 pc = pc + 4;
1346 op = rs6000_fetch_instruction (gdbarch, pc);
1347 if ((op & 0xfc000001) != 0x48000000)
1348 break;
1349
1350 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1351 pc = pc + 4;
1352 op = rs6000_fetch_instruction (gdbarch, pc);
1353 if ((op & 0xffff0000) == 0x900c0000)
1354 {
1355 pc = pc + 4;
1356 op = rs6000_fetch_instruction (gdbarch, pc);
1357 }
1358
1359 /* We found a valid stack-check sequence, return the new PC. */
1360 return pc;
1361 }
1362
1363 /* Third sequence: No probe; instead, a comparizon between the stack size
1364 limit (saved in a run-time global variable) and the current stack
1365 pointer:
1366
1367 addi 0,1,-<some immediate>
1368 lis 12,__gnat_stack_limit@ha
1369 lwz 12,__gnat_stack_limit@l(12)
1370 twllt 0,12
1371
1372 or, with a small variant in the case of a bigger stack frame:
1373 addis 0,1,<some immediate>
1374 addic 0,0,-<some immediate>
1375 lis 12,__gnat_stack_limit@ha
1376 lwz 12,__gnat_stack_limit@l(12)
1377 twllt 0,12
1378 */
1379 while (1)
1380 {
1381 /* addi 0,1,-<some immediate> */
1382 if ((op & 0xffff0000) != 0x38010000)
1383 {
1384 /* small stack frame variant not recognized; try the
1385 big stack frame variant: */
1386
1387 /* addis 0,1,<some immediate> */
1388 if ((op & 0xffff0000) != 0x3c010000)
1389 break;
1390
1391 /* addic 0,0,-<some immediate> */
1392 pc = pc + 4;
1393 op = rs6000_fetch_instruction (gdbarch, pc);
1394 if ((op & 0xffff0000) != 0x30000000)
1395 break;
1396 }
1397
1398 /* lis 12,<some immediate> */
1399 pc = pc + 4;
1400 op = rs6000_fetch_instruction (gdbarch, pc);
1401 if ((op & 0xffff0000) != 0x3d800000)
1402 break;
1403
1404 /* lwz 12,<some immediate>(12) */
1405 pc = pc + 4;
1406 op = rs6000_fetch_instruction (gdbarch, pc);
1407 if ((op & 0xffff0000) != 0x818c0000)
1408 break;
1409
1410 /* twllt 0,12 */
1411 pc = pc + 4;
1412 op = rs6000_fetch_instruction (gdbarch, pc);
1413 if ((op & 0xfffffffe) != 0x7c406008)
1414 break;
1415
1416 /* We found a valid stack-check sequence, return the new PC. */
1417 return pc;
1418 }
1419
1420 /* No stack check code in our prologue, return the start_pc. */
1421 return start_pc;
1422 }
1423
1424 /* return pc value after skipping a function prologue and also return
1425 information about a function frame.
1426
1427 in struct rs6000_framedata fdata:
1428 - frameless is TRUE, if function does not have a frame.
1429 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1430 - offset is the initial size of this stack frame --- the amount by
1431 which we decrement the sp to allocate the frame.
1432 - saved_gpr is the number of the first saved gpr.
1433 - saved_fpr is the number of the first saved fpr.
1434 - saved_vr is the number of the first saved vr.
1435 - saved_ev is the number of the first saved ev.
1436 - alloca_reg is the number of the register used for alloca() handling.
1437 Otherwise -1.
1438 - gpr_offset is the offset of the first saved gpr from the previous frame.
1439 - fpr_offset is the offset of the first saved fpr from the previous frame.
1440 - vr_offset is the offset of the first saved vr from the previous frame.
1441 - ev_offset is the offset of the first saved ev from the previous frame.
1442 - lr_offset is the offset of the saved lr
1443 - cr_offset is the offset of the saved cr
1444 - vrsave_offset is the offset of the saved vrsave register. */
1445
1446 static CORE_ADDR
1447 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1448 struct rs6000_framedata *fdata)
1449 {
1450 CORE_ADDR orig_pc = pc;
1451 CORE_ADDR last_prologue_pc = pc;
1452 CORE_ADDR li_found_pc = 0;
1453 gdb_byte buf[4];
1454 unsigned long op;
1455 long offset = 0;
1456 long alloca_reg_offset = 0;
1457 long vr_saved_offset = 0;
1458 int lr_reg = -1;
1459 int cr_reg = -1;
1460 int vr_reg = -1;
1461 int ev_reg = -1;
1462 long ev_offset = 0;
1463 int vrsave_reg = -1;
1464 int reg;
1465 int framep = 0;
1466 int minimal_toc_loaded = 0;
1467 int prev_insn_was_prologue_insn = 1;
1468 int num_skip_non_prologue_insns = 0;
1469 int r0_contains_arg = 0;
1470 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1473
1474 memset (fdata, 0, sizeof (struct rs6000_framedata));
1475 fdata->saved_gpr = -1;
1476 fdata->saved_fpr = -1;
1477 fdata->saved_vr = -1;
1478 fdata->saved_ev = -1;
1479 fdata->alloca_reg = -1;
1480 fdata->frameless = 1;
1481 fdata->nosavedpc = 1;
1482 fdata->lr_register = -1;
1483
1484 pc = rs6000_skip_stack_check (gdbarch, pc);
1485 if (pc >= lim_pc)
1486 pc = lim_pc;
1487
1488 for (;; pc += 4)
1489 {
1490 /* Sometimes it isn't clear if an instruction is a prologue
1491 instruction or not. When we encounter one of these ambiguous
1492 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1493 Otherwise, we'll assume that it really is a prologue instruction. */
1494 if (prev_insn_was_prologue_insn)
1495 last_prologue_pc = pc;
1496
1497 /* Stop scanning if we've hit the limit. */
1498 if (pc >= lim_pc)
1499 break;
1500
1501 prev_insn_was_prologue_insn = 1;
1502
1503 /* Fetch the instruction and convert it to an integer. */
1504 if (target_read_memory (pc, buf, 4))
1505 break;
1506 op = extract_unsigned_integer (buf, 4, byte_order);
1507
1508 if ((op & 0xfc1fffff) == 0x7c0802a6)
1509 { /* mflr Rx */
1510 /* Since shared library / PIC code, which needs to get its
1511 address at runtime, can appear to save more than one link
1512 register vis:
1513
1514 *INDENT-OFF*
1515 stwu r1,-304(r1)
1516 mflr r3
1517 bl 0xff570d0 (blrl)
1518 stw r30,296(r1)
1519 mflr r30
1520 stw r31,300(r1)
1521 stw r3,308(r1);
1522 ...
1523 *INDENT-ON*
1524
1525 remember just the first one, but skip over additional
1526 ones. */
1527 if (lr_reg == -1)
1528 lr_reg = (op & 0x03e00000) >> 21;
1529 if (lr_reg == 0)
1530 r0_contains_arg = 0;
1531 continue;
1532 }
1533 else if ((op & 0xfc1fffff) == 0x7c000026)
1534 { /* mfcr Rx */
1535 cr_reg = (op & 0x03e00000) >> 21;
1536 if (cr_reg == 0)
1537 r0_contains_arg = 0;
1538 continue;
1539
1540 }
1541 else if ((op & 0xfc1f0000) == 0xd8010000)
1542 { /* stfd Rx,NUM(r1) */
1543 reg = GET_SRC_REG (op);
1544 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1545 {
1546 fdata->saved_fpr = reg;
1547 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1548 }
1549 continue;
1550
1551 }
1552 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1553 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1554 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1555 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1556 {
1557
1558 reg = GET_SRC_REG (op);
1559 if ((op & 0xfc1f0000) == 0xbc010000)
1560 fdata->gpr_mask |= ~((1U << reg) - 1);
1561 else
1562 fdata->gpr_mask |= 1U << reg;
1563 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1564 {
1565 fdata->saved_gpr = reg;
1566 if ((op & 0xfc1f0003) == 0xf8010000)
1567 op &= ~3UL;
1568 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1569 }
1570 continue;
1571
1572 }
1573 else if ((op & 0xffff0000) == 0x3c4c0000
1574 || (op & 0xffff0000) == 0x3c400000
1575 || (op & 0xffff0000) == 0x38420000)
1576 {
1577 /* . 0: addis 2,12,.TOC.-0b@ha
1578 . addi 2,2,.TOC.-0b@l
1579 or
1580 . lis 2,.TOC.@ha
1581 . addi 2,2,.TOC.@l
1582 used by ELFv2 global entry points to set up r2. */
1583 continue;
1584 }
1585 else if (op == 0x60000000)
1586 {
1587 /* nop */
1588 /* Allow nops in the prologue, but do not consider them to
1589 be part of the prologue unless followed by other prologue
1590 instructions. */
1591 prev_insn_was_prologue_insn = 0;
1592 continue;
1593
1594 }
1595 else if ((op & 0xffff0000) == 0x3c000000)
1596 { /* addis 0,0,NUM, used for >= 32k frames */
1597 fdata->offset = (op & 0x0000ffff) << 16;
1598 fdata->frameless = 0;
1599 r0_contains_arg = 0;
1600 continue;
1601
1602 }
1603 else if ((op & 0xffff0000) == 0x60000000)
1604 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1605 fdata->offset |= (op & 0x0000ffff);
1606 fdata->frameless = 0;
1607 r0_contains_arg = 0;
1608 continue;
1609
1610 }
1611 else if (lr_reg >= 0 &&
1612 ((store_insn_p (op, lr_reg, 1, true)) ||
1613 (framep &&
1614 (store_insn_p (op, lr_reg,
1615 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1616 false)))))
1617 {
1618 if (store_insn_p (op, lr_reg, 1, true))
1619 fdata->lr_offset = offset;
1620 else /* LR save through frame pointer. */
1621 fdata->lr_offset = alloca_reg_offset;
1622
1623 fdata->nosavedpc = 0;
1624 /* Invalidate lr_reg, but don't set it to -1.
1625 That would mean that it had never been set. */
1626 lr_reg = -2;
1627 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1628 (op & 0xfc000000) == 0x90000000) /* stw */
1629 {
1630 /* Does not update r1, so add displacement to lr_offset. */
1631 fdata->lr_offset += SIGNED_SHORT (op);
1632 }
1633 continue;
1634
1635 }
1636 else if (cr_reg >= 0 &&
1637 (store_insn_p (op, cr_reg, 1, true)))
1638 {
1639 fdata->cr_offset = offset;
1640 /* Invalidate cr_reg, but don't set it to -1.
1641 That would mean that it had never been set. */
1642 cr_reg = -2;
1643 if ((op & 0xfc000003) == 0xf8000000 ||
1644 (op & 0xfc000000) == 0x90000000)
1645 {
1646 /* Does not update r1, so add displacement to cr_offset. */
1647 fdata->cr_offset += SIGNED_SHORT (op);
1648 }
1649 continue;
1650
1651 }
1652 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1653 {
1654 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1655 prediction bits. If the LR has already been saved, we can
1656 skip it. */
1657 continue;
1658 }
1659 else if (op == 0x48000005)
1660 { /* bl .+4 used in
1661 -mrelocatable */
1662 fdata->used_bl = 1;
1663 continue;
1664
1665 }
1666 else if (op == 0x48000004)
1667 { /* b .+4 (xlc) */
1668 break;
1669
1670 }
1671 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1672 in V.4 -mminimal-toc */
1673 (op & 0xffff0000) == 0x3bde0000)
1674 { /* addi 30,30,foo@l */
1675 continue;
1676
1677 }
1678 else if ((op & 0xfc000001) == 0x48000001)
1679 { /* bl foo,
1680 to save fprs??? */
1681
1682 fdata->frameless = 0;
1683
1684 /* If the return address has already been saved, we can skip
1685 calls to blrl (for PIC). */
1686 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1687 {
1688 fdata->used_bl = 1;
1689 continue;
1690 }
1691
1692 /* Don't skip over the subroutine call if it is not within
1693 the first three instructions of the prologue and either
1694 we have no line table information or the line info tells
1695 us that the subroutine call is not part of the line
1696 associated with the prologue. */
1697 if ((pc - orig_pc) > 8)
1698 {
1699 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1700 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1701
1702 if ((prologue_sal.line == 0)
1703 || (prologue_sal.line != this_sal.line))
1704 break;
1705 }
1706
1707 op = read_memory_integer (pc + 4, 4, byte_order);
1708
1709 /* At this point, make sure this is not a trampoline
1710 function (a function that simply calls another functions,
1711 and nothing else). If the next is not a nop, this branch
1712 was part of the function prologue. */
1713
1714 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1715 break; /* Don't skip over
1716 this branch. */
1717
1718 fdata->used_bl = 1;
1719 continue;
1720 }
1721 /* update stack pointer */
1722 else if ((op & 0xfc1f0000) == 0x94010000)
1723 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1724 fdata->frameless = 0;
1725 fdata->offset = SIGNED_SHORT (op);
1726 offset = fdata->offset;
1727 continue;
1728 }
1729 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1730 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1731 /* No way to figure out what r1 is going to be. */
1732 fdata->frameless = 0;
1733 offset = fdata->offset;
1734 continue;
1735 }
1736 else if ((op & 0xfc1f0003) == 0xf8010001)
1737 { /* stdu rX,NUM(r1) */
1738 fdata->frameless = 0;
1739 fdata->offset = SIGNED_SHORT (op & ~3UL);
1740 offset = fdata->offset;
1741 continue;
1742 }
1743 else if ((op & 0xffff0000) == 0x38210000)
1744 { /* addi r1,r1,SIMM */
1745 fdata->frameless = 0;
1746 fdata->offset += SIGNED_SHORT (op);
1747 offset = fdata->offset;
1748 continue;
1749 }
1750 /* Load up minimal toc pointer. Do not treat an epilogue restore
1751 of r31 as a minimal TOC load. */
1752 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1753 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1754 && !framep
1755 && !minimal_toc_loaded)
1756 {
1757 minimal_toc_loaded = 1;
1758 continue;
1759
1760 /* move parameters from argument registers to local variable
1761 registers */
1762 }
1763 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1764 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1765 (((op >> 21) & 31) <= 10) &&
1766 ((long) ((op >> 16) & 31)
1767 >= fdata->saved_gpr)) /* Rx: local var reg */
1768 {
1769 continue;
1770
1771 /* store parameters in stack */
1772 }
1773 /* Move parameters from argument registers to temporary register. */
1774 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1775 {
1776 continue;
1777
1778 /* Set up frame pointer */
1779 }
1780 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1781 {
1782 fdata->frameless = 0;
1783 framep = 1;
1784 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1785 alloca_reg_offset = offset;
1786 continue;
1787
1788 /* Another way to set up the frame pointer. */
1789 }
1790 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1791 || op == 0x7c3f0b78)
1792 { /* mr r31, r1 */
1793 fdata->frameless = 0;
1794 framep = 1;
1795 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1796 alloca_reg_offset = offset;
1797 continue;
1798
1799 /* Another way to set up the frame pointer. */
1800 }
1801 else if ((op & 0xfc1fffff) == 0x38010000)
1802 { /* addi rX, r1, 0x0 */
1803 fdata->frameless = 0;
1804 framep = 1;
1805 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1806 + ((op & ~0x38010000) >> 21));
1807 alloca_reg_offset = offset;
1808 continue;
1809 }
1810 /* AltiVec related instructions. */
1811 /* Store the vrsave register (spr 256) in another register for
1812 later manipulation, or load a register into the vrsave
1813 register. 2 instructions are used: mfvrsave and
1814 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1815 and mtspr SPR256, Rn. */
1816 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1817 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1818 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1819 {
1820 vrsave_reg = GET_SRC_REG (op);
1821 continue;
1822 }
1823 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1824 {
1825 continue;
1826 }
1827 /* Store the register where vrsave was saved to onto the stack:
1828 rS is the register where vrsave was stored in a previous
1829 instruction. */
1830 /* 100100 sssss 00001 dddddddd dddddddd */
1831 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1832 {
1833 if (vrsave_reg == GET_SRC_REG (op))
1834 {
1835 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1836 vrsave_reg = -1;
1837 }
1838 continue;
1839 }
1840 /* Compute the new value of vrsave, by modifying the register
1841 where vrsave was saved to. */
1842 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1843 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1844 {
1845 continue;
1846 }
1847 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1848 in a pair of insns to save the vector registers on the
1849 stack. */
1850 /* 001110 00000 00000 iiii iiii iiii iiii */
1851 /* 001110 01110 00000 iiii iiii iiii iiii */
1852 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1853 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1854 {
1855 if ((op & 0xffff0000) == 0x38000000)
1856 r0_contains_arg = 0;
1857 li_found_pc = pc;
1858 vr_saved_offset = SIGNED_SHORT (op);
1859
1860 /* This insn by itself is not part of the prologue, unless
1861 if part of the pair of insns mentioned above. So do not
1862 record this insn as part of the prologue yet. */
1863 prev_insn_was_prologue_insn = 0;
1864 }
1865 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1866 /* 011111 sssss 11111 00000 00111001110 */
1867 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1868 {
1869 if (pc == (li_found_pc + 4))
1870 {
1871 vr_reg = GET_SRC_REG (op);
1872 /* If this is the first vector reg to be saved, or if
1873 it has a lower number than others previously seen,
1874 reupdate the frame info. */
1875 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1876 {
1877 fdata->saved_vr = vr_reg;
1878 fdata->vr_offset = vr_saved_offset + offset;
1879 }
1880 vr_saved_offset = -1;
1881 vr_reg = -1;
1882 li_found_pc = 0;
1883 }
1884 }
1885 /* End AltiVec related instructions. */
1886
1887 /* Start BookE related instructions. */
1888 /* Store gen register S at (r31+uimm).
1889 Any register less than r13 is volatile, so we don't care. */
1890 /* 000100 sssss 11111 iiiii 01100100001 */
1891 else if (arch_info->mach == bfd_mach_ppc_e500
1892 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1893 {
1894 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1895 {
1896 unsigned int imm;
1897 ev_reg = GET_SRC_REG (op);
1898 imm = (op >> 11) & 0x1f;
1899 ev_offset = imm * 8;
1900 /* If this is the first vector reg to be saved, or if
1901 it has a lower number than others previously seen,
1902 reupdate the frame info. */
1903 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1904 {
1905 fdata->saved_ev = ev_reg;
1906 fdata->ev_offset = ev_offset + offset;
1907 }
1908 }
1909 continue;
1910 }
1911 /* Store gen register rS at (r1+rB). */
1912 /* 000100 sssss 00001 bbbbb 01100100000 */
1913 else if (arch_info->mach == bfd_mach_ppc_e500
1914 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1915 {
1916 if (pc == (li_found_pc + 4))
1917 {
1918 ev_reg = GET_SRC_REG (op);
1919 /* If this is the first vector reg to be saved, or if
1920 it has a lower number than others previously seen,
1921 reupdate the frame info. */
1922 /* We know the contents of rB from the previous instruction. */
1923 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1924 {
1925 fdata->saved_ev = ev_reg;
1926 fdata->ev_offset = vr_saved_offset + offset;
1927 }
1928 vr_saved_offset = -1;
1929 ev_reg = -1;
1930 li_found_pc = 0;
1931 }
1932 continue;
1933 }
1934 /* Store gen register r31 at (rA+uimm). */
1935 /* 000100 11111 aaaaa iiiii 01100100001 */
1936 else if (arch_info->mach == bfd_mach_ppc_e500
1937 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1938 {
1939 /* Wwe know that the source register is 31 already, but
1940 it can't hurt to compute it. */
1941 ev_reg = GET_SRC_REG (op);
1942 ev_offset = ((op >> 11) & 0x1f) * 8;
1943 /* If this is the first vector reg to be saved, or if
1944 it has a lower number than others previously seen,
1945 reupdate the frame info. */
1946 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1947 {
1948 fdata->saved_ev = ev_reg;
1949 fdata->ev_offset = ev_offset + offset;
1950 }
1951
1952 continue;
1953 }
1954 /* Store gen register S at (r31+r0).
1955 Store param on stack when offset from SP bigger than 4 bytes. */
1956 /* 000100 sssss 11111 00000 01100100000 */
1957 else if (arch_info->mach == bfd_mach_ppc_e500
1958 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1959 {
1960 if (pc == (li_found_pc + 4))
1961 {
1962 if ((op & 0x03e00000) >= 0x01a00000)
1963 {
1964 ev_reg = GET_SRC_REG (op);
1965 /* If this is the first vector reg to be saved, or if
1966 it has a lower number than others previously seen,
1967 reupdate the frame info. */
1968 /* We know the contents of r0 from the previous
1969 instruction. */
1970 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1971 {
1972 fdata->saved_ev = ev_reg;
1973 fdata->ev_offset = vr_saved_offset + offset;
1974 }
1975 ev_reg = -1;
1976 }
1977 vr_saved_offset = -1;
1978 li_found_pc = 0;
1979 continue;
1980 }
1981 }
1982 /* End BookE related instructions. */
1983
1984 else
1985 {
1986 /* Not a recognized prologue instruction.
1987 Handle optimizer code motions into the prologue by continuing
1988 the search if we have no valid frame yet or if the return
1989 address is not yet saved in the frame. Also skip instructions
1990 if some of the GPRs expected to be saved are not yet saved. */
1991 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1992 && fdata->saved_gpr != -1)
1993 {
1994 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
1995
1996 if ((fdata->gpr_mask & all_mask) == all_mask)
1997 break;
1998 }
1999
2000 if (op == 0x4e800020 /* blr */
2001 || op == 0x4e800420) /* bctr */
2002 /* Do not scan past epilogue in frameless functions or
2003 trampolines. */
2004 break;
2005 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2006 /* Never skip branches. */
2007 break;
2008
2009 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2010 /* Do not scan too many insns, scanning insns is expensive with
2011 remote targets. */
2012 break;
2013
2014 /* Continue scanning. */
2015 prev_insn_was_prologue_insn = 0;
2016 continue;
2017 }
2018 }
2019
2020 #if 0
2021 /* I have problems with skipping over __main() that I need to address
2022 * sometime. Previously, I used to use misc_function_vector which
2023 * didn't work as well as I wanted to be. -MGO */
2024
2025 /* If the first thing after skipping a prolog is a branch to a function,
2026 this might be a call to an initializer in main(), introduced by gcc2.
2027 We'd like to skip over it as well. Fortunately, xlc does some extra
2028 work before calling a function right after a prologue, thus we can
2029 single out such gcc2 behaviour. */
2030
2031
2032 if ((op & 0xfc000001) == 0x48000001)
2033 { /* bl foo, an initializer function? */
2034 op = read_memory_integer (pc + 4, 4, byte_order);
2035
2036 if (op == 0x4def7b82)
2037 { /* cror 0xf, 0xf, 0xf (nop) */
2038
2039 /* Check and see if we are in main. If so, skip over this
2040 initializer function as well. */
2041
2042 tmp = find_pc_misc_function (pc);
2043 if (tmp >= 0
2044 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2045 return pc + 8;
2046 }
2047 }
2048 #endif /* 0 */
2049
2050 if (pc == lim_pc && lr_reg >= 0)
2051 fdata->lr_register = lr_reg;
2052
2053 fdata->offset = -fdata->offset;
2054 return last_prologue_pc;
2055 }
2056
2057 static CORE_ADDR
2058 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2059 {
2060 struct rs6000_framedata frame;
2061 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2062
2063 /* See if we can determine the end of the prologue via the symbol table.
2064 If so, then return either PC, or the PC after the prologue, whichever
2065 is greater. */
2066 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2067 {
2068 CORE_ADDR post_prologue_pc
2069 = skip_prologue_using_sal (gdbarch, func_addr);
2070 if (post_prologue_pc != 0)
2071 return std::max (pc, post_prologue_pc);
2072 }
2073
2074 /* Can't determine prologue from the symbol table, need to examine
2075 instructions. */
2076
2077 /* Find an upper limit on the function prologue using the debug
2078 information. If the debug information could not be used to provide
2079 that bound, then use an arbitrary large number as the upper bound. */
2080 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2081 if (limit_pc == 0)
2082 limit_pc = pc + 100; /* Magic. */
2083
2084 /* Do not allow limit_pc to be past the function end, if we know
2085 where that end is... */
2086 if (func_end_addr && limit_pc > func_end_addr)
2087 limit_pc = func_end_addr;
2088
2089 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2090 return pc;
2091 }
2092
2093 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2094 in the prologue of main().
2095
2096 The function below examines the code pointed at by PC and checks to
2097 see if it corresponds to a call to __eabi. If so, it returns the
2098 address of the instruction following that call. Otherwise, it simply
2099 returns PC. */
2100
2101 static CORE_ADDR
2102 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2103 {
2104 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2105 gdb_byte buf[4];
2106 unsigned long op;
2107
2108 if (target_read_memory (pc, buf, 4))
2109 return pc;
2110 op = extract_unsigned_integer (buf, 4, byte_order);
2111
2112 if ((op & BL_MASK) == BL_INSTRUCTION)
2113 {
2114 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2115 CORE_ADDR call_dest = pc + 4 + displ;
2116 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2117
2118 /* We check for ___eabi (three leading underscores) in addition
2119 to __eabi in case the GCC option "-fleading-underscore" was
2120 used to compile the program. */
2121 if (s.minsym != NULL
2122 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2123 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2124 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2125 pc += 4;
2126 }
2127 return pc;
2128 }
2129
2130 /* All the ABI's require 16 byte alignment. */
2131 static CORE_ADDR
2132 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2133 {
2134 return (addr & -16);
2135 }
2136
2137 /* Return whether handle_inferior_event() should proceed through code
2138 starting at PC in function NAME when stepping.
2139
2140 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2141 handle memory references that are too distant to fit in instructions
2142 generated by the compiler. For example, if 'foo' in the following
2143 instruction:
2144
2145 lwz r9,foo(r2)
2146
2147 is greater than 32767, the linker might replace the lwz with a branch to
2148 somewhere in @FIX1 that does the load in 2 instructions and then branches
2149 back to where execution should continue.
2150
2151 GDB should silently step over @FIX code, just like AIX dbx does.
2152 Unfortunately, the linker uses the "b" instruction for the
2153 branches, meaning that the link register doesn't get set.
2154 Therefore, GDB's usual step_over_function () mechanism won't work.
2155
2156 Instead, use the gdbarch_skip_trampoline_code and
2157 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2158 @FIX code. */
2159
2160 static int
2161 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2162 CORE_ADDR pc, const char *name)
2163 {
2164 return name && startswith (name, "@FIX");
2165 }
2166
2167 /* Skip code that the user doesn't want to see when stepping:
2168
2169 1. Indirect function calls use a piece of trampoline code to do context
2170 switching, i.e. to set the new TOC table. Skip such code if we are on
2171 its first instruction (as when we have single-stepped to here).
2172
2173 2. Skip shared library trampoline code (which is different from
2174 indirect function call trampolines).
2175
2176 3. Skip bigtoc fixup code.
2177
2178 Result is desired PC to step until, or NULL if we are not in
2179 code that should be skipped. */
2180
2181 static CORE_ADDR
2182 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2183 {
2184 struct gdbarch *gdbarch = get_frame_arch (frame);
2185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2186 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2187 unsigned int ii, op;
2188 int rel;
2189 CORE_ADDR solib_target_pc;
2190 struct bound_minimal_symbol msymbol;
2191
2192 static unsigned trampoline_code[] =
2193 {
2194 0x800b0000, /* l r0,0x0(r11) */
2195 0x90410014, /* st r2,0x14(r1) */
2196 0x7c0903a6, /* mtctr r0 */
2197 0x804b0004, /* l r2,0x4(r11) */
2198 0x816b0008, /* l r11,0x8(r11) */
2199 0x4e800420, /* bctr */
2200 0x4e800020, /* br */
2201 0
2202 };
2203
2204 /* Check for bigtoc fixup code. */
2205 msymbol = lookup_minimal_symbol_by_pc (pc);
2206 if (msymbol.minsym
2207 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2208 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2209 {
2210 /* Double-check that the third instruction from PC is relative "b". */
2211 op = read_memory_integer (pc + 8, 4, byte_order);
2212 if ((op & 0xfc000003) == 0x48000000)
2213 {
2214 /* Extract bits 6-29 as a signed 24-bit relative word address and
2215 add it to the containing PC. */
2216 rel = ((int)(op << 6) >> 6);
2217 return pc + 8 + rel;
2218 }
2219 }
2220
2221 /* If pc is in a shared library trampoline, return its target. */
2222 solib_target_pc = find_solib_trampoline_target (frame, pc);
2223 if (solib_target_pc)
2224 return solib_target_pc;
2225
2226 for (ii = 0; trampoline_code[ii]; ++ii)
2227 {
2228 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2229 if (op != trampoline_code[ii])
2230 return 0;
2231 }
2232 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2233 addr. */
2234 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2235 return pc;
2236 }
2237
2238 /* ISA-specific vector types. */
2239
2240 static struct type *
2241 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2242 {
2243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2244
2245 if (!tdep->ppc_builtin_type_vec64)
2246 {
2247 const struct builtin_type *bt = builtin_type (gdbarch);
2248
2249 /* The type we're building is this: */
2250 #if 0
2251 union __gdb_builtin_type_vec64
2252 {
2253 int64_t uint64;
2254 float v2_float[2];
2255 int32_t v2_int32[2];
2256 int16_t v4_int16[4];
2257 int8_t v8_int8[8];
2258 };
2259 #endif
2260
2261 struct type *t;
2262
2263 t = arch_composite_type (gdbarch,
2264 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2265 append_composite_type_field (t, "uint64", bt->builtin_int64);
2266 append_composite_type_field (t, "v2_float",
2267 init_vector_type (bt->builtin_float, 2));
2268 append_composite_type_field (t, "v2_int32",
2269 init_vector_type (bt->builtin_int32, 2));
2270 append_composite_type_field (t, "v4_int16",
2271 init_vector_type (bt->builtin_int16, 4));
2272 append_composite_type_field (t, "v8_int8",
2273 init_vector_type (bt->builtin_int8, 8));
2274
2275 TYPE_VECTOR (t) = 1;
2276 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2277 tdep->ppc_builtin_type_vec64 = t;
2278 }
2279
2280 return tdep->ppc_builtin_type_vec64;
2281 }
2282
2283 /* Vector 128 type. */
2284
2285 static struct type *
2286 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2287 {
2288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2289
2290 if (!tdep->ppc_builtin_type_vec128)
2291 {
2292 const struct builtin_type *bt = builtin_type (gdbarch);
2293
2294 /* The type we're building is this
2295
2296 type = union __ppc_builtin_type_vec128 {
2297 uint128_t uint128;
2298 double v2_double[2];
2299 float v4_float[4];
2300 int32_t v4_int32[4];
2301 int16_t v8_int16[8];
2302 int8_t v16_int8[16];
2303 }
2304 */
2305
2306 struct type *t;
2307
2308 t = arch_composite_type (gdbarch,
2309 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2310 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2311 append_composite_type_field (t, "v2_double",
2312 init_vector_type (bt->builtin_double, 2));
2313 append_composite_type_field (t, "v4_float",
2314 init_vector_type (bt->builtin_float, 4));
2315 append_composite_type_field (t, "v4_int32",
2316 init_vector_type (bt->builtin_int32, 4));
2317 append_composite_type_field (t, "v8_int16",
2318 init_vector_type (bt->builtin_int16, 8));
2319 append_composite_type_field (t, "v16_int8",
2320 init_vector_type (bt->builtin_int8, 16));
2321
2322 TYPE_VECTOR (t) = 1;
2323 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2324 tdep->ppc_builtin_type_vec128 = t;
2325 }
2326
2327 return tdep->ppc_builtin_type_vec128;
2328 }
2329
2330 /* Return the name of register number REGNO, or the empty string if it
2331 is an anonymous register. */
2332
2333 static const char *
2334 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2335 {
2336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2337
2338 /* The upper half "registers" have names in the XML description,
2339 but we present only the low GPRs and the full 64-bit registers
2340 to the user. */
2341 if (tdep->ppc_ev0_upper_regnum >= 0
2342 && tdep->ppc_ev0_upper_regnum <= regno
2343 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2344 return "";
2345
2346 /* Hide the upper halves of the vs0~vs31 registers. */
2347 if (tdep->ppc_vsr0_regnum >= 0
2348 && tdep->ppc_vsr0_upper_regnum <= regno
2349 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2350 return "";
2351
2352 /* Hide the upper halves of the cvs0~cvs31 registers. */
2353 if (PPC_CVSR0_UPPER_REGNUM <= regno
2354 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2355 return "";
2356
2357 /* Check if the SPE pseudo registers are available. */
2358 if (IS_SPE_PSEUDOREG (tdep, regno))
2359 {
2360 static const char *const spe_regnames[] = {
2361 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2362 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2363 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2364 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2365 };
2366 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2367 }
2368
2369 /* Check if the decimal128 pseudo-registers are available. */
2370 if (IS_DFP_PSEUDOREG (tdep, regno))
2371 {
2372 static const char *const dfp128_regnames[] = {
2373 "dl0", "dl1", "dl2", "dl3",
2374 "dl4", "dl5", "dl6", "dl7",
2375 "dl8", "dl9", "dl10", "dl11",
2376 "dl12", "dl13", "dl14", "dl15"
2377 };
2378 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2379 }
2380
2381 /* Check if this is a vX alias for a raw vrX vector register. */
2382 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2383 {
2384 static const char *const vector_alias_regnames[] = {
2385 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2386 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2387 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2388 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2389 };
2390 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2391 }
2392
2393 /* Check if this is a VSX pseudo-register. */
2394 if (IS_VSX_PSEUDOREG (tdep, regno))
2395 {
2396 static const char *const vsx_regnames[] = {
2397 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2398 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2399 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2400 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2401 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2402 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2403 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2404 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2405 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2406 };
2407 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2408 }
2409
2410 /* Check if the this is a Extended FP pseudo-register. */
2411 if (IS_EFP_PSEUDOREG (tdep, regno))
2412 {
2413 static const char *const efpr_regnames[] = {
2414 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2415 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2416 "f46", "f47", "f48", "f49", "f50", "f51",
2417 "f52", "f53", "f54", "f55", "f56", "f57",
2418 "f58", "f59", "f60", "f61", "f62", "f63"
2419 };
2420 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2421 }
2422
2423 /* Check if this is a Checkpointed DFP pseudo-register. */
2424 if (IS_CDFP_PSEUDOREG (tdep, regno))
2425 {
2426 static const char *const cdfp128_regnames[] = {
2427 "cdl0", "cdl1", "cdl2", "cdl3",
2428 "cdl4", "cdl5", "cdl6", "cdl7",
2429 "cdl8", "cdl9", "cdl10", "cdl11",
2430 "cdl12", "cdl13", "cdl14", "cdl15"
2431 };
2432 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2433 }
2434
2435 /* Check if this is a Checkpointed VSX pseudo-register. */
2436 if (IS_CVSX_PSEUDOREG (tdep, regno))
2437 {
2438 static const char *const cvsx_regnames[] = {
2439 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2440 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2441 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2442 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2443 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2444 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2445 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2446 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2447 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2448 };
2449 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2450 }
2451
2452 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2453 if (IS_CEFP_PSEUDOREG (tdep, regno))
2454 {
2455 static const char *const cefpr_regnames[] = {
2456 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2457 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2458 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2459 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2460 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2461 };
2462 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2463 }
2464
2465 return tdesc_register_name (gdbarch, regno);
2466 }
2467
2468 /* Return the GDB type object for the "standard" data type of data in
2469 register N. */
2470
2471 static struct type *
2472 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2473 {
2474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2475
2476 /* These are the e500 pseudo-registers. */
2477 if (IS_SPE_PSEUDOREG (tdep, regnum))
2478 return rs6000_builtin_type_vec64 (gdbarch);
2479 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2480 || IS_CDFP_PSEUDOREG (tdep, regnum))
2481 /* PPC decimal128 pseudo-registers. */
2482 return builtin_type (gdbarch)->builtin_declong;
2483 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2484 return gdbarch_register_type (gdbarch,
2485 tdep->ppc_vr0_regnum
2486 + (regnum
2487 - tdep->ppc_v0_alias_regnum));
2488 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2489 || IS_CVSX_PSEUDOREG (tdep, regnum))
2490 /* POWER7 VSX pseudo-registers. */
2491 return rs6000_builtin_type_vec128 (gdbarch);
2492 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2493 || IS_CEFP_PSEUDOREG (tdep, regnum))
2494 /* POWER7 Extended FP pseudo-registers. */
2495 return builtin_type (gdbarch)->builtin_double;
2496 else
2497 internal_error (__FILE__, __LINE__,
2498 _("rs6000_pseudo_register_type: "
2499 "called on unexpected register '%s' (%d)"),
2500 gdbarch_register_name (gdbarch, regnum), regnum);
2501 }
2502
2503 /* Check if REGNUM is a member of REGGROUP. We only need to handle
2504 the vX aliases for the vector registers by always returning false
2505 to avoid duplicated information in "info register vector/all",
2506 since the raw vrX registers will already show in these cases. For
2507 other pseudo-registers we use the default membership function. */
2508
2509 static int
2510 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2511 struct reggroup *group)
2512 {
2513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2514
2515 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2516 return 0;
2517 else
2518 return default_register_reggroup_p (gdbarch, regnum, group);
2519 }
2520
2521 /* The register format for RS/6000 floating point registers is always
2522 double, we need a conversion if the memory format is float. */
2523
2524 static int
2525 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2526 struct type *type)
2527 {
2528 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2529
2530 return (tdep->ppc_fp0_regnum >= 0
2531 && regnum >= tdep->ppc_fp0_regnum
2532 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2533 && TYPE_CODE (type) == TYPE_CODE_FLT
2534 && TYPE_LENGTH (type)
2535 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2536 }
2537
2538 static int
2539 rs6000_register_to_value (struct frame_info *frame,
2540 int regnum,
2541 struct type *type,
2542 gdb_byte *to,
2543 int *optimizedp, int *unavailablep)
2544 {
2545 struct gdbarch *gdbarch = get_frame_arch (frame);
2546 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2547
2548 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2549
2550 if (!get_frame_register_bytes (frame, regnum, 0,
2551 register_size (gdbarch, regnum),
2552 from, optimizedp, unavailablep))
2553 return 0;
2554
2555 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2556 to, type);
2557 *optimizedp = *unavailablep = 0;
2558 return 1;
2559 }
2560
2561 static void
2562 rs6000_value_to_register (struct frame_info *frame,
2563 int regnum,
2564 struct type *type,
2565 const gdb_byte *from)
2566 {
2567 struct gdbarch *gdbarch = get_frame_arch (frame);
2568 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2569
2570 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2571
2572 target_float_convert (from, type,
2573 to, builtin_type (gdbarch)->builtin_double);
2574 put_frame_register (frame, regnum, to);
2575 }
2576
2577 /* The type of a function that moves the value of REG between CACHE
2578 or BUF --- in either direction. */
2579 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2580 int, void *);
2581
2582 /* Move SPE vector register values between a 64-bit buffer and the two
2583 32-bit raw register halves in a regcache. This function handles
2584 both splitting a 64-bit value into two 32-bit halves, and joining
2585 two halves into a whole 64-bit value, depending on the function
2586 passed as the MOVE argument.
2587
2588 EV_REG must be the number of an SPE evN vector register --- a
2589 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2590 64-bit buffer.
2591
2592 Call MOVE once for each 32-bit half of that register, passing
2593 REGCACHE, the number of the raw register corresponding to that
2594 half, and the address of the appropriate half of BUFFER.
2595
2596 For example, passing 'regcache_raw_read' as the MOVE function will
2597 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2598 'regcache_raw_supply' will supply the contents of BUFFER to the
2599 appropriate pair of raw registers in REGCACHE.
2600
2601 You may need to cast away some 'const' qualifiers when passing
2602 MOVE, since this function can't tell at compile-time which of
2603 REGCACHE or BUFFER is acting as the source of the data. If C had
2604 co-variant type qualifiers, ... */
2605
2606 static enum register_status
2607 e500_move_ev_register (move_ev_register_func move,
2608 struct regcache *regcache, int ev_reg, void *buffer)
2609 {
2610 struct gdbarch *arch = regcache->arch ();
2611 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2612 int reg_index;
2613 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2614 enum register_status status;
2615
2616 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2617
2618 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2619
2620 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2621 {
2622 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2623 byte_buffer);
2624 if (status == REG_VALID)
2625 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2626 byte_buffer + 4);
2627 }
2628 else
2629 {
2630 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2631 if (status == REG_VALID)
2632 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2633 byte_buffer + 4);
2634 }
2635
2636 return status;
2637 }
2638
2639 static enum register_status
2640 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2641 {
2642 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2643
2644 return REG_VALID;
2645 }
2646
2647 static enum register_status
2648 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2649 int ev_reg, gdb_byte *buffer)
2650 {
2651 struct gdbarch *arch = regcache->arch ();
2652 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2653 int reg_index;
2654 enum register_status status;
2655
2656 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2657
2658 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2659
2660 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2661 {
2662 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2663 buffer);
2664 if (status == REG_VALID)
2665 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2666 buffer + 4);
2667 }
2668 else
2669 {
2670 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2671 if (status == REG_VALID)
2672 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2673 buffer + 4);
2674 }
2675
2676 return status;
2677
2678 }
2679
2680 static void
2681 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2682 int reg_nr, const gdb_byte *buffer)
2683 {
2684 e500_move_ev_register (do_regcache_raw_write, regcache,
2685 reg_nr, (void *) buffer);
2686 }
2687
2688 /* Read method for DFP pseudo-registers. */
2689 static enum register_status
2690 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2691 int reg_nr, gdb_byte *buffer)
2692 {
2693 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2694 int reg_index, fp0;
2695 enum register_status status;
2696
2697 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2698 {
2699 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2700 fp0 = PPC_F0_REGNUM;
2701 }
2702 else
2703 {
2704 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2705
2706 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2707 fp0 = PPC_CF0_REGNUM;
2708 }
2709
2710 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2711 {
2712 /* Read two FP registers to form a whole dl register. */
2713 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2714 if (status == REG_VALID)
2715 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2716 buffer + 8);
2717 }
2718 else
2719 {
2720 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2721 if (status == REG_VALID)
2722 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2723 }
2724
2725 return status;
2726 }
2727
2728 /* Write method for DFP pseudo-registers. */
2729 static void
2730 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2731 int reg_nr, const gdb_byte *buffer)
2732 {
2733 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2734 int reg_index, fp0;
2735
2736 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2737 {
2738 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2739 fp0 = PPC_F0_REGNUM;
2740 }
2741 else
2742 {
2743 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2744
2745 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2746 fp0 = PPC_CF0_REGNUM;
2747 }
2748
2749 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2750 {
2751 /* Write each half of the dl register into a separate
2752 FP register. */
2753 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2754 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2755 }
2756 else
2757 {
2758 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2759 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2760 }
2761 }
2762
2763 /* Read method for the vX aliases for the raw vrX registers. */
2764
2765 static enum register_status
2766 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2767 readable_regcache *regcache, int reg_nr,
2768 gdb_byte *buffer)
2769 {
2770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2771 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2772
2773 return regcache->raw_read (tdep->ppc_vr0_regnum
2774 + (reg_nr - tdep->ppc_v0_alias_regnum),
2775 buffer);
2776 }
2777
2778 /* Write method for the vX aliases for the raw vrX registers. */
2779
2780 static void
2781 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2782 struct regcache *regcache,
2783 int reg_nr, const gdb_byte *buffer)
2784 {
2785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2786 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2787
2788 regcache->raw_write (tdep->ppc_vr0_regnum
2789 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2790 }
2791
2792 /* Read method for POWER7 VSX pseudo-registers. */
2793 static enum register_status
2794 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2795 int reg_nr, gdb_byte *buffer)
2796 {
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2798 int reg_index, vr0, fp0, vsr0_upper;
2799 enum register_status status;
2800
2801 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2802 {
2803 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2804 vr0 = PPC_VR0_REGNUM;
2805 fp0 = PPC_F0_REGNUM;
2806 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2807 }
2808 else
2809 {
2810 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2811
2812 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2813 vr0 = PPC_CVR0_REGNUM;
2814 fp0 = PPC_CF0_REGNUM;
2815 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2816 }
2817
2818 /* Read the portion that overlaps the VMX registers. */
2819 if (reg_index > 31)
2820 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
2821 else
2822 /* Read the portion that overlaps the FPR registers. */
2823 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2824 {
2825 status = regcache->raw_read (fp0 + reg_index, buffer);
2826 if (status == REG_VALID)
2827 status = regcache->raw_read (vsr0_upper + reg_index,
2828 buffer + 8);
2829 }
2830 else
2831 {
2832 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
2833 if (status == REG_VALID)
2834 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
2835 }
2836
2837 return status;
2838 }
2839
2840 /* Write method for POWER7 VSX pseudo-registers. */
2841 static void
2842 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2843 int reg_nr, const gdb_byte *buffer)
2844 {
2845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2846 int reg_index, vr0, fp0, vsr0_upper;
2847
2848 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2849 {
2850 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2851 vr0 = PPC_VR0_REGNUM;
2852 fp0 = PPC_F0_REGNUM;
2853 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2854 }
2855 else
2856 {
2857 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2858
2859 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2860 vr0 = PPC_CVR0_REGNUM;
2861 fp0 = PPC_CF0_REGNUM;
2862 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2863 }
2864
2865 /* Write the portion that overlaps the VMX registers. */
2866 if (reg_index > 31)
2867 regcache->raw_write (vr0 + reg_index - 32, buffer);
2868 else
2869 /* Write the portion that overlaps the FPR registers. */
2870 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2871 {
2872 regcache->raw_write (fp0 + reg_index, buffer);
2873 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
2874 }
2875 else
2876 {
2877 regcache->raw_write (fp0 + reg_index, buffer + 8);
2878 regcache->raw_write (vsr0_upper + reg_index, buffer);
2879 }
2880 }
2881
2882 /* Read method for POWER7 Extended FP pseudo-registers. */
2883 static enum register_status
2884 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2885 int reg_nr, gdb_byte *buffer)
2886 {
2887 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2888 int reg_index, vr0;
2889
2890 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2891 {
2892 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2893 vr0 = PPC_VR0_REGNUM;
2894 }
2895 else
2896 {
2897 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2898
2899 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2900 vr0 = PPC_CVR0_REGNUM;
2901 }
2902
2903 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2904
2905 /* Read the portion that overlaps the VMX register. */
2906 return regcache->raw_read_part (vr0 + reg_index, offset,
2907 register_size (gdbarch, reg_nr),
2908 buffer);
2909 }
2910
2911 /* Write method for POWER7 Extended FP pseudo-registers. */
2912 static void
2913 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2914 int reg_nr, const gdb_byte *buffer)
2915 {
2916 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2917 int reg_index, vr0;
2918 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2919
2920 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2921 {
2922 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2923 vr0 = PPC_VR0_REGNUM;
2924 }
2925 else
2926 {
2927 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2928
2929 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2930 vr0 = PPC_CVR0_REGNUM;
2931
2932 /* The call to raw_write_part fails silently if the initial read
2933 of the read-update-write sequence returns an invalid status,
2934 so we check this manually and throw an error if needed. */
2935 regcache->raw_update (vr0 + reg_index);
2936 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
2937 error (_("Cannot write to the checkpointed EFP register, "
2938 "the corresponding vector register is unavailable."));
2939 }
2940
2941 /* Write the portion that overlaps the VMX register. */
2942 regcache->raw_write_part (vr0 + reg_index, offset,
2943 register_size (gdbarch, reg_nr), buffer);
2944 }
2945
2946 static enum register_status
2947 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2948 readable_regcache *regcache,
2949 int reg_nr, gdb_byte *buffer)
2950 {
2951 struct gdbarch *regcache_arch = regcache->arch ();
2952 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2953
2954 gdb_assert (regcache_arch == gdbarch);
2955
2956 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2957 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2958 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
2959 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2960 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2961 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
2962 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
2963 buffer);
2964 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
2965 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2966 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2967 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
2968 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2969 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2970 else
2971 internal_error (__FILE__, __LINE__,
2972 _("rs6000_pseudo_register_read: "
2973 "called on unexpected register '%s' (%d)"),
2974 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2975 }
2976
2977 static void
2978 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2979 struct regcache *regcache,
2980 int reg_nr, const gdb_byte *buffer)
2981 {
2982 struct gdbarch *regcache_arch = regcache->arch ();
2983 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2984
2985 gdb_assert (regcache_arch == gdbarch);
2986
2987 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2988 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2989 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
2990 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2991 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2992 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
2993 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2994 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
2995 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2996 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2997 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
2998 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2999 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3000 else
3001 internal_error (__FILE__, __LINE__,
3002 _("rs6000_pseudo_register_write: "
3003 "called on unexpected register '%s' (%d)"),
3004 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3005 }
3006
3007 /* Set the register mask in AX with the registers that form the DFP or
3008 checkpointed DFP pseudo-register REG_NR. */
3009
3010 static void
3011 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3012 struct agent_expr *ax, int reg_nr)
3013 {
3014 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3015 int reg_index, fp0;
3016
3017 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3018 {
3019 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3020 fp0 = PPC_F0_REGNUM;
3021 }
3022 else
3023 {
3024 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3025
3026 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3027 fp0 = PPC_CF0_REGNUM;
3028 }
3029
3030 ax_reg_mask (ax, fp0 + 2 * reg_index);
3031 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3032 }
3033
3034 /* Set the register mask in AX with the raw vector register that
3035 corresponds to its REG_NR alias. */
3036
3037 static void
3038 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3039 struct agent_expr *ax, int reg_nr)
3040 {
3041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3042 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3043
3044 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3045 + (reg_nr - tdep->ppc_v0_alias_regnum));
3046 }
3047
3048 /* Set the register mask in AX with the registers that form the VSX or
3049 checkpointed VSX pseudo-register REG_NR. */
3050
3051 static void
3052 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3053 struct agent_expr *ax, int reg_nr)
3054 {
3055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3056 int reg_index, vr0, fp0, vsr0_upper;
3057
3058 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3059 {
3060 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3061 vr0 = PPC_VR0_REGNUM;
3062 fp0 = PPC_F0_REGNUM;
3063 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3064 }
3065 else
3066 {
3067 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3068
3069 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3070 vr0 = PPC_CVR0_REGNUM;
3071 fp0 = PPC_CF0_REGNUM;
3072 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3073 }
3074
3075 if (reg_index > 31)
3076 {
3077 ax_reg_mask (ax, vr0 + reg_index - 32);
3078 }
3079 else
3080 {
3081 ax_reg_mask (ax, fp0 + reg_index);
3082 ax_reg_mask (ax, vsr0_upper + reg_index);
3083 }
3084 }
3085
3086 /* Set the register mask in AX with the register that corresponds to
3087 the EFP or checkpointed EFP pseudo-register REG_NR. */
3088
3089 static void
3090 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3091 struct agent_expr *ax, int reg_nr)
3092 {
3093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3094 int reg_index, vr0;
3095
3096 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3097 {
3098 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3099 vr0 = PPC_VR0_REGNUM;
3100 }
3101 else
3102 {
3103 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3104
3105 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3106 vr0 = PPC_CVR0_REGNUM;
3107 }
3108
3109 ax_reg_mask (ax, vr0 + reg_index);
3110 }
3111
3112 static int
3113 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3114 struct agent_expr *ax, int reg_nr)
3115 {
3116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3117 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3118 {
3119 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3120 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3121 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3122 }
3123 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3124 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3125 {
3126 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3127 }
3128 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3129 {
3130 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3131 }
3132 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3133 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3134 {
3135 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3136 }
3137 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3138 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3139 {
3140 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3141 }
3142 else
3143 internal_error (__FILE__, __LINE__,
3144 _("rs6000_pseudo_register_collect: "
3145 "called on unexpected register '%s' (%d)"),
3146 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3147 return 0;
3148 }
3149
3150
3151 static void
3152 rs6000_gen_return_address (struct gdbarch *gdbarch,
3153 struct agent_expr *ax, struct axs_value *value,
3154 CORE_ADDR scope)
3155 {
3156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3157 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3158 value->kind = axs_lvalue_register;
3159 value->u.reg = tdep->ppc_lr_regnum;
3160 }
3161
3162
3163 /* Convert a DBX STABS register number to a GDB register number. */
3164 static int
3165 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3166 {
3167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3168
3169 if (0 <= num && num <= 31)
3170 return tdep->ppc_gp0_regnum + num;
3171 else if (32 <= num && num <= 63)
3172 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3173 specifies registers the architecture doesn't have? Our
3174 callers don't check the value we return. */
3175 return tdep->ppc_fp0_regnum + (num - 32);
3176 else if (77 <= num && num <= 108)
3177 return tdep->ppc_vr0_regnum + (num - 77);
3178 else if (1200 <= num && num < 1200 + 32)
3179 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3180 else
3181 switch (num)
3182 {
3183 case 64:
3184 return tdep->ppc_mq_regnum;
3185 case 65:
3186 return tdep->ppc_lr_regnum;
3187 case 66:
3188 return tdep->ppc_ctr_regnum;
3189 case 76:
3190 return tdep->ppc_xer_regnum;
3191 case 109:
3192 return tdep->ppc_vrsave_regnum;
3193 case 110:
3194 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3195 case 111:
3196 return tdep->ppc_acc_regnum;
3197 case 112:
3198 return tdep->ppc_spefscr_regnum;
3199 default:
3200 return num;
3201 }
3202 }
3203
3204
3205 /* Convert a Dwarf 2 register number to a GDB register number. */
3206 static int
3207 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3208 {
3209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3210
3211 if (0 <= num && num <= 31)
3212 return tdep->ppc_gp0_regnum + num;
3213 else if (32 <= num && num <= 63)
3214 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3215 specifies registers the architecture doesn't have? Our
3216 callers don't check the value we return. */
3217 return tdep->ppc_fp0_regnum + (num - 32);
3218 else if (1124 <= num && num < 1124 + 32)
3219 return tdep->ppc_vr0_regnum + (num - 1124);
3220 else if (1200 <= num && num < 1200 + 32)
3221 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3222 else
3223 switch (num)
3224 {
3225 case 64:
3226 return tdep->ppc_cr_regnum;
3227 case 67:
3228 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3229 case 99:
3230 return tdep->ppc_acc_regnum;
3231 case 100:
3232 return tdep->ppc_mq_regnum;
3233 case 101:
3234 return tdep->ppc_xer_regnum;
3235 case 108:
3236 return tdep->ppc_lr_regnum;
3237 case 109:
3238 return tdep->ppc_ctr_regnum;
3239 case 356:
3240 return tdep->ppc_vrsave_regnum;
3241 case 612:
3242 return tdep->ppc_spefscr_regnum;
3243 default:
3244 return num;
3245 }
3246 }
3247
3248 /* Translate a .eh_frame register to DWARF register, or adjust a
3249 .debug_frame register. */
3250
3251 static int
3252 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3253 {
3254 /* GCC releases before 3.4 use GCC internal register numbering in
3255 .debug_frame (and .debug_info, et cetera). The numbering is
3256 different from the standard SysV numbering for everything except
3257 for GPRs and FPRs. We can not detect this problem in most cases
3258 - to get accurate debug info for variables living in lr, ctr, v0,
3259 et cetera, use a newer version of GCC. But we must detect
3260 one important case - lr is in column 65 in .debug_frame output,
3261 instead of 108.
3262
3263 GCC 3.4, and the "hammer" branch, have a related problem. They
3264 record lr register saves in .debug_frame as 108, but still record
3265 the return column as 65. We fix that up too.
3266
3267 We can do this because 65 is assigned to fpsr, and GCC never
3268 generates debug info referring to it. To add support for
3269 handwritten debug info that restores fpsr, we would need to add a
3270 producer version check to this. */
3271 if (!eh_frame_p)
3272 {
3273 if (num == 65)
3274 return 108;
3275 else
3276 return num;
3277 }
3278
3279 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3280 internal register numbering; translate that to the standard DWARF2
3281 register numbering. */
3282 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3283 return num;
3284 else if (68 <= num && num <= 75) /* cr0-cr8 */
3285 return num - 68 + 86;
3286 else if (77 <= num && num <= 108) /* vr0-vr31 */
3287 return num - 77 + 1124;
3288 else
3289 switch (num)
3290 {
3291 case 64: /* mq */
3292 return 100;
3293 case 65: /* lr */
3294 return 108;
3295 case 66: /* ctr */
3296 return 109;
3297 case 76: /* xer */
3298 return 101;
3299 case 109: /* vrsave */
3300 return 356;
3301 case 110: /* vscr */
3302 return 67;
3303 case 111: /* spe_acc */
3304 return 99;
3305 case 112: /* spefscr */
3306 return 612;
3307 default:
3308 return num;
3309 }
3310 }
3311 \f
3312
3313 /* Handling the various POWER/PowerPC variants. */
3314
3315 /* Information about a particular processor variant. */
3316
3317 struct variant
3318 {
3319 /* Name of this variant. */
3320 const char *name;
3321
3322 /* English description of the variant. */
3323 const char *description;
3324
3325 /* bfd_arch_info.arch corresponding to variant. */
3326 enum bfd_architecture arch;
3327
3328 /* bfd_arch_info.mach corresponding to variant. */
3329 unsigned long mach;
3330
3331 /* Target description for this variant. */
3332 struct target_desc **tdesc;
3333 };
3334
3335 static struct variant variants[] =
3336 {
3337 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3338 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3339 {"power", "POWER user-level", bfd_arch_rs6000,
3340 bfd_mach_rs6k, &tdesc_rs6000},
3341 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3342 bfd_mach_ppc_403, &tdesc_powerpc_403},
3343 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3344 bfd_mach_ppc_405, &tdesc_powerpc_405},
3345 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3346 bfd_mach_ppc_601, &tdesc_powerpc_601},
3347 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3348 bfd_mach_ppc_602, &tdesc_powerpc_602},
3349 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3350 bfd_mach_ppc_603, &tdesc_powerpc_603},
3351 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3352 604, &tdesc_powerpc_604},
3353 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3354 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3355 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3356 bfd_mach_ppc_505, &tdesc_powerpc_505},
3357 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3358 bfd_mach_ppc_860, &tdesc_powerpc_860},
3359 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3360 bfd_mach_ppc_750, &tdesc_powerpc_750},
3361 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3362 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3363 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3364 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3365
3366 /* 64-bit */
3367 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3368 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3369 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3370 bfd_mach_ppc_620, &tdesc_powerpc_64},
3371 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3372 bfd_mach_ppc_630, &tdesc_powerpc_64},
3373 {"a35", "PowerPC A35", bfd_arch_powerpc,
3374 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3375 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3376 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3377 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3378 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3379
3380 /* FIXME: I haven't checked the register sets of the following. */
3381 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3382 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3383 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3384 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3385 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3386 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3387
3388 {0, 0, (enum bfd_architecture) 0, 0, 0}
3389 };
3390
3391 /* Return the variant corresponding to architecture ARCH and machine number
3392 MACH. If no such variant exists, return null. */
3393
3394 static const struct variant *
3395 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3396 {
3397 const struct variant *v;
3398
3399 for (v = variants; v->name; v++)
3400 if (arch == v->arch && mach == v->mach)
3401 return v;
3402
3403 return NULL;
3404 }
3405
3406 \f
3407 static CORE_ADDR
3408 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3409 {
3410 return frame_unwind_register_unsigned (next_frame,
3411 gdbarch_pc_regnum (gdbarch));
3412 }
3413
3414 static struct frame_id
3415 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3416 {
3417 return frame_id_build (get_frame_register_unsigned
3418 (this_frame, gdbarch_sp_regnum (gdbarch)),
3419 get_frame_pc (this_frame));
3420 }
3421
3422 struct rs6000_frame_cache
3423 {
3424 CORE_ADDR base;
3425 CORE_ADDR initial_sp;
3426 struct trad_frame_saved_reg *saved_regs;
3427
3428 /* Set BASE_P to true if this frame cache is properly initialized.
3429 Otherwise set to false because some registers or memory cannot
3430 collected. */
3431 int base_p;
3432 /* Cache PC for building unavailable frame. */
3433 CORE_ADDR pc;
3434 };
3435
3436 static struct rs6000_frame_cache *
3437 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3438 {
3439 struct rs6000_frame_cache *cache;
3440 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3442 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3443 struct rs6000_framedata fdata;
3444 int wordsize = tdep->wordsize;
3445 CORE_ADDR func = 0, pc = 0;
3446
3447 if ((*this_cache) != NULL)
3448 return (struct rs6000_frame_cache *) (*this_cache);
3449 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3450 (*this_cache) = cache;
3451 cache->pc = 0;
3452 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3453
3454 TRY
3455 {
3456 func = get_frame_func (this_frame);
3457 cache->pc = func;
3458 pc = get_frame_pc (this_frame);
3459 skip_prologue (gdbarch, func, pc, &fdata);
3460
3461 /* Figure out the parent's stack pointer. */
3462
3463 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3464 address of the current frame. Things might be easier if the
3465 ->frame pointed to the outer-most address of the frame. In
3466 the mean time, the address of the prev frame is used as the
3467 base address of this frame. */
3468 cache->base = get_frame_register_unsigned
3469 (this_frame, gdbarch_sp_regnum (gdbarch));
3470 }
3471 CATCH (ex, RETURN_MASK_ERROR)
3472 {
3473 if (ex.error != NOT_AVAILABLE_ERROR)
3474 throw_exception (ex);
3475 return (struct rs6000_frame_cache *) (*this_cache);
3476 }
3477 END_CATCH
3478
3479 /* If the function appears to be frameless, check a couple of likely
3480 indicators that we have simply failed to find the frame setup.
3481 Two common cases of this are missing symbols (i.e.
3482 get_frame_func returns the wrong address or 0), and assembly
3483 stubs which have a fast exit path but set up a frame on the slow
3484 path.
3485
3486 If the LR appears to return to this function, then presume that
3487 we have an ABI compliant frame that we failed to find. */
3488 if (fdata.frameless && fdata.lr_offset == 0)
3489 {
3490 CORE_ADDR saved_lr;
3491 int make_frame = 0;
3492
3493 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3494 if (func == 0 && saved_lr == pc)
3495 make_frame = 1;
3496 else if (func != 0)
3497 {
3498 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3499 if (func == saved_func)
3500 make_frame = 1;
3501 }
3502
3503 if (make_frame)
3504 {
3505 fdata.frameless = 0;
3506 fdata.lr_offset = tdep->lr_frame_offset;
3507 }
3508 }
3509
3510 if (!fdata.frameless)
3511 {
3512 /* Frameless really means stackless. */
3513 ULONGEST backchain;
3514
3515 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3516 byte_order, &backchain))
3517 cache->base = (CORE_ADDR) backchain;
3518 }
3519
3520 trad_frame_set_value (cache->saved_regs,
3521 gdbarch_sp_regnum (gdbarch), cache->base);
3522
3523 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3524 All fpr's from saved_fpr to fp31 are saved. */
3525
3526 if (fdata.saved_fpr >= 0)
3527 {
3528 int i;
3529 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3530
3531 /* If skip_prologue says floating-point registers were saved,
3532 but the current architecture has no floating-point registers,
3533 then that's strange. But we have no indices to even record
3534 the addresses under, so we just ignore it. */
3535 if (ppc_floating_point_unit_p (gdbarch))
3536 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3537 {
3538 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3539 fpr_addr += 8;
3540 }
3541 }
3542
3543 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3544 All gpr's from saved_gpr to gpr31 are saved (except during the
3545 prologue). */
3546
3547 if (fdata.saved_gpr >= 0)
3548 {
3549 int i;
3550 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3551 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3552 {
3553 if (fdata.gpr_mask & (1U << i))
3554 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3555 gpr_addr += wordsize;
3556 }
3557 }
3558
3559 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3560 All vr's from saved_vr to vr31 are saved. */
3561 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3562 {
3563 if (fdata.saved_vr >= 0)
3564 {
3565 int i;
3566 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3567 for (i = fdata.saved_vr; i < 32; i++)
3568 {
3569 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3570 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3571 }
3572 }
3573 }
3574
3575 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3576 All vr's from saved_ev to ev31 are saved. ????? */
3577 if (tdep->ppc_ev0_regnum != -1)
3578 {
3579 if (fdata.saved_ev >= 0)
3580 {
3581 int i;
3582 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3583 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3584
3585 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3586 {
3587 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3588 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3589 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3590 }
3591 }
3592 }
3593
3594 /* If != 0, fdata.cr_offset is the offset from the frame that
3595 holds the CR. */
3596 if (fdata.cr_offset != 0)
3597 cache->saved_regs[tdep->ppc_cr_regnum].addr
3598 = cache->base + fdata.cr_offset;
3599
3600 /* If != 0, fdata.lr_offset is the offset from the frame that
3601 holds the LR. */
3602 if (fdata.lr_offset != 0)
3603 cache->saved_regs[tdep->ppc_lr_regnum].addr
3604 = cache->base + fdata.lr_offset;
3605 else if (fdata.lr_register != -1)
3606 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3607 /* The PC is found in the link register. */
3608 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3609 cache->saved_regs[tdep->ppc_lr_regnum];
3610
3611 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3612 holds the VRSAVE. */
3613 if (fdata.vrsave_offset != 0)
3614 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3615 = cache->base + fdata.vrsave_offset;
3616
3617 if (fdata.alloca_reg < 0)
3618 /* If no alloca register used, then fi->frame is the value of the
3619 %sp for this frame, and it is good enough. */
3620 cache->initial_sp
3621 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3622 else
3623 cache->initial_sp
3624 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3625
3626 cache->base_p = 1;
3627 return cache;
3628 }
3629
3630 static void
3631 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3632 struct frame_id *this_id)
3633 {
3634 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3635 this_cache);
3636
3637 if (!info->base_p)
3638 {
3639 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3640 return;
3641 }
3642
3643 /* This marks the outermost frame. */
3644 if (info->base == 0)
3645 return;
3646
3647 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3648 }
3649
3650 static struct value *
3651 rs6000_frame_prev_register (struct frame_info *this_frame,
3652 void **this_cache, int regnum)
3653 {
3654 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3655 this_cache);
3656 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3657 }
3658
3659 static const struct frame_unwind rs6000_frame_unwind =
3660 {
3661 NORMAL_FRAME,
3662 default_frame_unwind_stop_reason,
3663 rs6000_frame_this_id,
3664 rs6000_frame_prev_register,
3665 NULL,
3666 default_frame_sniffer
3667 };
3668
3669 /* Allocate and initialize a frame cache for an epilogue frame.
3670 SP is restored and prev-PC is stored in LR. */
3671
3672 static struct rs6000_frame_cache *
3673 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3674 {
3675 struct rs6000_frame_cache *cache;
3676 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3677 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3678
3679 if (*this_cache)
3680 return (struct rs6000_frame_cache *) *this_cache;
3681
3682 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3683 (*this_cache) = cache;
3684 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3685
3686 TRY
3687 {
3688 /* At this point the stack looks as if we just entered the
3689 function, and the return address is stored in LR. */
3690 CORE_ADDR sp, lr;
3691
3692 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3693 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3694
3695 cache->base = sp;
3696 cache->initial_sp = sp;
3697
3698 trad_frame_set_value (cache->saved_regs,
3699 gdbarch_pc_regnum (gdbarch), lr);
3700 }
3701 CATCH (ex, RETURN_MASK_ERROR)
3702 {
3703 if (ex.error != NOT_AVAILABLE_ERROR)
3704 throw_exception (ex);
3705 }
3706 END_CATCH
3707
3708 return cache;
3709 }
3710
3711 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3712 Return the frame ID of an epilogue frame. */
3713
3714 static void
3715 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3716 void **this_cache, struct frame_id *this_id)
3717 {
3718 CORE_ADDR pc;
3719 struct rs6000_frame_cache *info =
3720 rs6000_epilogue_frame_cache (this_frame, this_cache);
3721
3722 pc = get_frame_func (this_frame);
3723 if (info->base == 0)
3724 (*this_id) = frame_id_build_unavailable_stack (pc);
3725 else
3726 (*this_id) = frame_id_build (info->base, pc);
3727 }
3728
3729 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3730 Return the register value of REGNUM in previous frame. */
3731
3732 static struct value *
3733 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3734 void **this_cache, int regnum)
3735 {
3736 struct rs6000_frame_cache *info =
3737 rs6000_epilogue_frame_cache (this_frame, this_cache);
3738 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3739 }
3740
3741 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3742 Check whether this an epilogue frame. */
3743
3744 static int
3745 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3746 struct frame_info *this_frame,
3747 void **this_prologue_cache)
3748 {
3749 if (frame_relative_level (this_frame) == 0)
3750 return rs6000_in_function_epilogue_frame_p (this_frame,
3751 get_frame_arch (this_frame),
3752 get_frame_pc (this_frame));
3753 else
3754 return 0;
3755 }
3756
3757 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3758 a function without debug information. */
3759
3760 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3761 {
3762 NORMAL_FRAME,
3763 default_frame_unwind_stop_reason,
3764 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3765 NULL,
3766 rs6000_epilogue_frame_sniffer
3767 };
3768 \f
3769
3770 static CORE_ADDR
3771 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3772 {
3773 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3774 this_cache);
3775 return info->initial_sp;
3776 }
3777
3778 static const struct frame_base rs6000_frame_base = {
3779 &rs6000_frame_unwind,
3780 rs6000_frame_base_address,
3781 rs6000_frame_base_address,
3782 rs6000_frame_base_address
3783 };
3784
3785 static const struct frame_base *
3786 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3787 {
3788 return &rs6000_frame_base;
3789 }
3790
3791 /* DWARF-2 frame support. Used to handle the detection of
3792 clobbered registers during function calls. */
3793
3794 static void
3795 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3796 struct dwarf2_frame_state_reg *reg,
3797 struct frame_info *this_frame)
3798 {
3799 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3800
3801 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3802 non-volatile registers. We will use the same code for both. */
3803
3804 /* Call-saved GP registers. */
3805 if ((regnum >= tdep->ppc_gp0_regnum + 14
3806 && regnum <= tdep->ppc_gp0_regnum + 31)
3807 || (regnum == tdep->ppc_gp0_regnum + 1))
3808 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3809
3810 /* Call-clobbered GP registers. */
3811 if ((regnum >= tdep->ppc_gp0_regnum + 3
3812 && regnum <= tdep->ppc_gp0_regnum + 12)
3813 || (regnum == tdep->ppc_gp0_regnum))
3814 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3815
3816 /* Deal with FP registers, if supported. */
3817 if (tdep->ppc_fp0_regnum >= 0)
3818 {
3819 /* Call-saved FP registers. */
3820 if ((regnum >= tdep->ppc_fp0_regnum + 14
3821 && regnum <= tdep->ppc_fp0_regnum + 31))
3822 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3823
3824 /* Call-clobbered FP registers. */
3825 if ((regnum >= tdep->ppc_fp0_regnum
3826 && regnum <= tdep->ppc_fp0_regnum + 13))
3827 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3828 }
3829
3830 /* Deal with ALTIVEC registers, if supported. */
3831 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3832 {
3833 /* Call-saved Altivec registers. */
3834 if ((regnum >= tdep->ppc_vr0_regnum + 20
3835 && regnum <= tdep->ppc_vr0_regnum + 31)
3836 || regnum == tdep->ppc_vrsave_regnum)
3837 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3838
3839 /* Call-clobbered Altivec registers. */
3840 if ((regnum >= tdep->ppc_vr0_regnum
3841 && regnum <= tdep->ppc_vr0_regnum + 19))
3842 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3843 }
3844
3845 /* Handle PC register and Stack Pointer correctly. */
3846 if (regnum == gdbarch_pc_regnum (gdbarch))
3847 reg->how = DWARF2_FRAME_REG_RA;
3848 else if (regnum == gdbarch_sp_regnum (gdbarch))
3849 reg->how = DWARF2_FRAME_REG_CFA;
3850 }
3851
3852
3853 /* Return true if a .gnu_attributes section exists in BFD and it
3854 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3855 section exists in BFD and it indicates that SPE extensions are in
3856 use. Check the .gnu.attributes section first, as the binary might be
3857 compiled for SPE, but not actually using SPE instructions. */
3858
3859 static int
3860 bfd_uses_spe_extensions (bfd *abfd)
3861 {
3862 asection *sect;
3863 gdb_byte *contents = NULL;
3864 bfd_size_type size;
3865 gdb_byte *ptr;
3866 int success = 0;
3867
3868 if (!abfd)
3869 return 0;
3870
3871 #ifdef HAVE_ELF
3872 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3873 could be using the SPE vector abi without actually using any spe
3874 bits whatsoever. But it's close enough for now. */
3875 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3876 Tag_GNU_Power_ABI_Vector);
3877 if (vector_abi == 3)
3878 return 1;
3879 #endif
3880
3881 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3882 if (!sect)
3883 return 0;
3884
3885 size = bfd_get_section_size (sect);
3886 contents = (gdb_byte *) xmalloc (size);
3887 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3888 {
3889 xfree (contents);
3890 return 0;
3891 }
3892
3893 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3894
3895 struct {
3896 uint32 name_len;
3897 uint32 data_len;
3898 uint32 type;
3899 char name[name_len rounded up to 4-byte alignment];
3900 char data[data_len];
3901 };
3902
3903 Technically, there's only supposed to be one such structure in a
3904 given apuinfo section, but the linker is not always vigilant about
3905 merging apuinfo sections from input files. Just go ahead and parse
3906 them all, exiting early when we discover the binary uses SPE
3907 insns.
3908
3909 It's not specified in what endianness the information in this
3910 section is stored. Assume that it's the endianness of the BFD. */
3911 ptr = contents;
3912 while (1)
3913 {
3914 unsigned int name_len;
3915 unsigned int data_len;
3916 unsigned int type;
3917
3918 /* If we can't read the first three fields, we're done. */
3919 if (size < 12)
3920 break;
3921
3922 name_len = bfd_get_32 (abfd, ptr);
3923 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3924 data_len = bfd_get_32 (abfd, ptr + 4);
3925 type = bfd_get_32 (abfd, ptr + 8);
3926 ptr += 12;
3927
3928 /* The name must be "APUinfo\0". */
3929 if (name_len != 8
3930 && strcmp ((const char *) ptr, "APUinfo") != 0)
3931 break;
3932 ptr += name_len;
3933
3934 /* The type must be 2. */
3935 if (type != 2)
3936 break;
3937
3938 /* The data is stored as a series of uint32. The upper half of
3939 each uint32 indicates the particular APU used and the lower
3940 half indicates the revision of that APU. We just care about
3941 the upper half. */
3942
3943 /* Not 4-byte quantities. */
3944 if (data_len & 3U)
3945 break;
3946
3947 while (data_len)
3948 {
3949 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3950 unsigned int apu = apuinfo >> 16;
3951 ptr += 4;
3952 data_len -= 4;
3953
3954 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3955 either. */
3956 if (apu == 0x100 || apu == 0x101)
3957 {
3958 success = 1;
3959 data_len = 0;
3960 }
3961 }
3962
3963 if (success)
3964 break;
3965 }
3966
3967 xfree (contents);
3968 return success;
3969 }
3970
3971 /* These are macros for parsing instruction fields (I.1.6.28) */
3972
3973 #define PPC_FIELD(value, from, len) \
3974 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3975 #define PPC_SEXT(v, bs) \
3976 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3977 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3978 - ((CORE_ADDR) 1 << ((bs) - 1)))
3979 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3980 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3981 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3982 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3983 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3984 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3985 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3986 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3987 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3988 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3989 | (PPC_FIELD (insn, 16, 5) << 5))
3990 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3991 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3992 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3993 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3994 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3995 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3996 #define PPC_OE(insn) PPC_BIT (insn, 21)
3997 #define PPC_RC(insn) PPC_BIT (insn, 31)
3998 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3999 #define PPC_LK(insn) PPC_BIT (insn, 31)
4000 #define PPC_TX(insn) PPC_BIT (insn, 31)
4001 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
4002
4003 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
4004 #define PPC_XER_NB(xer) (xer & 0x7f)
4005
4006 /* Record Vector-Scalar Registers.
4007 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4008 Otherwise, it's just a VR register. Record them accordingly. */
4009
4010 static int
4011 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
4012 {
4013 if (vsr < 0 || vsr >= 64)
4014 return -1;
4015
4016 if (vsr >= 32)
4017 {
4018 if (tdep->ppc_vr0_regnum >= 0)
4019 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4020 }
4021 else
4022 {
4023 if (tdep->ppc_fp0_regnum >= 0)
4024 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4025 if (tdep->ppc_vsr0_upper_regnum >= 0)
4026 record_full_arch_list_add_reg (regcache,
4027 tdep->ppc_vsr0_upper_regnum + vsr);
4028 }
4029
4030 return 0;
4031 }
4032
4033 /* Parse and record instructions primary opcode-4 at ADDR.
4034 Return 0 if successful. */
4035
4036 static int
4037 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4038 CORE_ADDR addr, uint32_t insn)
4039 {
4040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4041 int ext = PPC_FIELD (insn, 21, 11);
4042 int vra = PPC_FIELD (insn, 11, 5);
4043
4044 switch (ext & 0x3f)
4045 {
4046 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4047 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4048 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4049 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4050 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4051 /* FALL-THROUGH */
4052 case 42: /* Vector Select */
4053 case 43: /* Vector Permute */
4054 case 59: /* Vector Permute Right-indexed */
4055 case 44: /* Vector Shift Left Double by Octet Immediate */
4056 case 45: /* Vector Permute and Exclusive-OR */
4057 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4058 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4059 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4060 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4061 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4062 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
4063 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4064 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4065 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4066 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4067 case 46: /* Vector Multiply-Add Single-Precision */
4068 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4069 record_full_arch_list_add_reg (regcache,
4070 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4071 return 0;
4072
4073 case 48: /* Multiply-Add High Doubleword */
4074 case 49: /* Multiply-Add High Doubleword Unsigned */
4075 case 51: /* Multiply-Add Low Doubleword */
4076 record_full_arch_list_add_reg (regcache,
4077 tdep->ppc_gp0_regnum + PPC_RT (insn));
4078 return 0;
4079 }
4080
4081 switch ((ext & 0x1ff))
4082 {
4083 case 385:
4084 if (vra != 0 /* Decimal Convert To Signed Quadword */
4085 && vra != 2 /* Decimal Convert From Signed Quadword */
4086 && vra != 4 /* Decimal Convert To Zoned */
4087 && vra != 5 /* Decimal Convert To National */
4088 && vra != 6 /* Decimal Convert From Zoned */
4089 && vra != 7 /* Decimal Convert From National */
4090 && vra != 31) /* Decimal Set Sign */
4091 break;
4092 /* Fall through. */
4093 /* 5.16 Decimal Integer Arithmetic Instructions */
4094 case 1: /* Decimal Add Modulo */
4095 case 65: /* Decimal Subtract Modulo */
4096
4097 case 193: /* Decimal Shift */
4098 case 129: /* Decimal Unsigned Shift */
4099 case 449: /* Decimal Shift and Round */
4100
4101 case 257: /* Decimal Truncate */
4102 case 321: /* Decimal Unsigned Truncate */
4103
4104 /* Bit-21 should be set. */
4105 if (!PPC_BIT (insn, 21))
4106 break;
4107
4108 record_full_arch_list_add_reg (regcache,
4109 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4110 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4111 return 0;
4112 }
4113
4114 /* Bit-21 is used for RC */
4115 switch (ext & 0x3ff)
4116 {
4117 case 6: /* Vector Compare Equal To Unsigned Byte */
4118 case 70: /* Vector Compare Equal To Unsigned Halfword */
4119 case 134: /* Vector Compare Equal To Unsigned Word */
4120 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4121 case 774: /* Vector Compare Greater Than Signed Byte */
4122 case 838: /* Vector Compare Greater Than Signed Halfword */
4123 case 902: /* Vector Compare Greater Than Signed Word */
4124 case 967: /* Vector Compare Greater Than Signed Doubleword */
4125 case 518: /* Vector Compare Greater Than Unsigned Byte */
4126 case 646: /* Vector Compare Greater Than Unsigned Word */
4127 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4128 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4129 case 966: /* Vector Compare Bounds Single-Precision */
4130 case 198: /* Vector Compare Equal To Single-Precision */
4131 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4132 case 710: /* Vector Compare Greater Than Single-Precision */
4133 case 7: /* Vector Compare Not Equal Byte */
4134 case 71: /* Vector Compare Not Equal Halfword */
4135 case 135: /* Vector Compare Not Equal Word */
4136 case 263: /* Vector Compare Not Equal or Zero Byte */
4137 case 327: /* Vector Compare Not Equal or Zero Halfword */
4138 case 391: /* Vector Compare Not Equal or Zero Word */
4139 if (PPC_Rc (insn))
4140 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4141 record_full_arch_list_add_reg (regcache,
4142 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4143 return 0;
4144 }
4145
4146 if (ext == 1538)
4147 {
4148 switch (vra)
4149 {
4150 case 0: /* Vector Count Leading Zero Least-Significant Bits
4151 Byte */
4152 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4153 Byte */
4154 record_full_arch_list_add_reg (regcache,
4155 tdep->ppc_gp0_regnum + PPC_RT (insn));
4156 return 0;
4157
4158 case 6: /* Vector Negate Word */
4159 case 7: /* Vector Negate Doubleword */
4160 case 8: /* Vector Parity Byte Word */
4161 case 9: /* Vector Parity Byte Doubleword */
4162 case 10: /* Vector Parity Byte Quadword */
4163 case 16: /* Vector Extend Sign Byte To Word */
4164 case 17: /* Vector Extend Sign Halfword To Word */
4165 case 24: /* Vector Extend Sign Byte To Doubleword */
4166 case 25: /* Vector Extend Sign Halfword To Doubleword */
4167 case 26: /* Vector Extend Sign Word To Doubleword */
4168 case 28: /* Vector Count Trailing Zeros Byte */
4169 case 29: /* Vector Count Trailing Zeros Halfword */
4170 case 30: /* Vector Count Trailing Zeros Word */
4171 case 31: /* Vector Count Trailing Zeros Doubleword */
4172 record_full_arch_list_add_reg (regcache,
4173 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4174 return 0;
4175 }
4176 }
4177
4178 switch (ext)
4179 {
4180 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4181 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4182 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4183 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4184 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4185 case 462: /* Vector Pack Signed Word Signed Saturate */
4186 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4187 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4188 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4189 case 512: /* Vector Add Unsigned Byte Saturate */
4190 case 576: /* Vector Add Unsigned Halfword Saturate */
4191 case 640: /* Vector Add Unsigned Word Saturate */
4192 case 768: /* Vector Add Signed Byte Saturate */
4193 case 832: /* Vector Add Signed Halfword Saturate */
4194 case 896: /* Vector Add Signed Word Saturate */
4195 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4196 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4197 case 1664: /* Vector Subtract Unsigned Word Saturate */
4198 case 1792: /* Vector Subtract Signed Byte Saturate */
4199 case 1856: /* Vector Subtract Signed Halfword Saturate */
4200 case 1920: /* Vector Subtract Signed Word Saturate */
4201
4202 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4203 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4204 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4205 case 1672: /* Vector Sum across Half Signed Word Saturate */
4206 case 1928: /* Vector Sum across Signed Word Saturate */
4207 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4208 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4209 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4210 /* FALL-THROUGH */
4211 case 12: /* Vector Merge High Byte */
4212 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4213 case 76: /* Vector Merge High Halfword */
4214 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4215 case 140: /* Vector Merge High Word */
4216 case 268: /* Vector Merge Low Byte */
4217 case 332: /* Vector Merge Low Halfword */
4218 case 396: /* Vector Merge Low Word */
4219 case 526: /* Vector Unpack High Signed Byte */
4220 case 590: /* Vector Unpack High Signed Halfword */
4221 case 654: /* Vector Unpack Low Signed Byte */
4222 case 718: /* Vector Unpack Low Signed Halfword */
4223 case 782: /* Vector Pack Pixel */
4224 case 846: /* Vector Unpack High Pixel */
4225 case 974: /* Vector Unpack Low Pixel */
4226 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4227 case 1614: /* Vector Unpack High Signed Word */
4228 case 1676: /* Vector Merge Odd Word */
4229 case 1742: /* Vector Unpack Low Signed Word */
4230 case 1932: /* Vector Merge Even Word */
4231 case 524: /* Vector Splat Byte */
4232 case 588: /* Vector Splat Halfword */
4233 case 652: /* Vector Splat Word */
4234 case 780: /* Vector Splat Immediate Signed Byte */
4235 case 844: /* Vector Splat Immediate Signed Halfword */
4236 case 908: /* Vector Splat Immediate Signed Word */
4237 case 452: /* Vector Shift Left */
4238 case 708: /* Vector Shift Right */
4239 case 1036: /* Vector Shift Left by Octet */
4240 case 1100: /* Vector Shift Right by Octet */
4241 case 0: /* Vector Add Unsigned Byte Modulo */
4242 case 64: /* Vector Add Unsigned Halfword Modulo */
4243 case 128: /* Vector Add Unsigned Word Modulo */
4244 case 192: /* Vector Add Unsigned Doubleword Modulo */
4245 case 256: /* Vector Add Unsigned Quadword Modulo */
4246 case 320: /* Vector Add & write Carry Unsigned Quadword */
4247 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4248 case 8: /* Vector Multiply Odd Unsigned Byte */
4249 case 72: /* Vector Multiply Odd Unsigned Halfword */
4250 case 136: /* Vector Multiply Odd Unsigned Word */
4251 case 264: /* Vector Multiply Odd Signed Byte */
4252 case 328: /* Vector Multiply Odd Signed Halfword */
4253 case 392: /* Vector Multiply Odd Signed Word */
4254 case 520: /* Vector Multiply Even Unsigned Byte */
4255 case 584: /* Vector Multiply Even Unsigned Halfword */
4256 case 648: /* Vector Multiply Even Unsigned Word */
4257 case 776: /* Vector Multiply Even Signed Byte */
4258 case 840: /* Vector Multiply Even Signed Halfword */
4259 case 904: /* Vector Multiply Even Signed Word */
4260 case 137: /* Vector Multiply Unsigned Word Modulo */
4261 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4262 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4263 case 1152: /* Vector Subtract Unsigned Word Modulo */
4264 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4265 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4266 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4267 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4268 case 1282: /* Vector Average Signed Byte */
4269 case 1346: /* Vector Average Signed Halfword */
4270 case 1410: /* Vector Average Signed Word */
4271 case 1026: /* Vector Average Unsigned Byte */
4272 case 1090: /* Vector Average Unsigned Halfword */
4273 case 1154: /* Vector Average Unsigned Word */
4274 case 258: /* Vector Maximum Signed Byte */
4275 case 322: /* Vector Maximum Signed Halfword */
4276 case 386: /* Vector Maximum Signed Word */
4277 case 450: /* Vector Maximum Signed Doubleword */
4278 case 2: /* Vector Maximum Unsigned Byte */
4279 case 66: /* Vector Maximum Unsigned Halfword */
4280 case 130: /* Vector Maximum Unsigned Word */
4281 case 194: /* Vector Maximum Unsigned Doubleword */
4282 case 770: /* Vector Minimum Signed Byte */
4283 case 834: /* Vector Minimum Signed Halfword */
4284 case 898: /* Vector Minimum Signed Word */
4285 case 962: /* Vector Minimum Signed Doubleword */
4286 case 514: /* Vector Minimum Unsigned Byte */
4287 case 578: /* Vector Minimum Unsigned Halfword */
4288 case 642: /* Vector Minimum Unsigned Word */
4289 case 706: /* Vector Minimum Unsigned Doubleword */
4290 case 1028: /* Vector Logical AND */
4291 case 1668: /* Vector Logical Equivalent */
4292 case 1092: /* Vector Logical AND with Complement */
4293 case 1412: /* Vector Logical NAND */
4294 case 1348: /* Vector Logical OR with Complement */
4295 case 1156: /* Vector Logical OR */
4296 case 1284: /* Vector Logical NOR */
4297 case 1220: /* Vector Logical XOR */
4298 case 4: /* Vector Rotate Left Byte */
4299 case 132: /* Vector Rotate Left Word VX-form */
4300 case 68: /* Vector Rotate Left Halfword */
4301 case 196: /* Vector Rotate Left Doubleword */
4302 case 260: /* Vector Shift Left Byte */
4303 case 388: /* Vector Shift Left Word */
4304 case 324: /* Vector Shift Left Halfword */
4305 case 1476: /* Vector Shift Left Doubleword */
4306 case 516: /* Vector Shift Right Byte */
4307 case 644: /* Vector Shift Right Word */
4308 case 580: /* Vector Shift Right Halfword */
4309 case 1732: /* Vector Shift Right Doubleword */
4310 case 772: /* Vector Shift Right Algebraic Byte */
4311 case 900: /* Vector Shift Right Algebraic Word */
4312 case 836: /* Vector Shift Right Algebraic Halfword */
4313 case 964: /* Vector Shift Right Algebraic Doubleword */
4314 case 10: /* Vector Add Single-Precision */
4315 case 74: /* Vector Subtract Single-Precision */
4316 case 1034: /* Vector Maximum Single-Precision */
4317 case 1098: /* Vector Minimum Single-Precision */
4318 case 842: /* Vector Convert From Signed Fixed-Point Word */
4319 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4320 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4321 case 522: /* Vector Round to Single-Precision Integer Nearest */
4322 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4323 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4324 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4325 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4326 case 266: /* Vector Reciprocal Estimate Single-Precision */
4327 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4328 case 1288: /* Vector AES Cipher */
4329 case 1289: /* Vector AES Cipher Last */
4330 case 1352: /* Vector AES Inverse Cipher */
4331 case 1353: /* Vector AES Inverse Cipher Last */
4332 case 1480: /* Vector AES SubBytes */
4333 case 1730: /* Vector SHA-512 Sigma Doubleword */
4334 case 1666: /* Vector SHA-256 Sigma Word */
4335 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4336 case 1160: /* Vector Polynomial Multiply-Sum Word */
4337 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4338 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4339 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4340 case 1794: /* Vector Count Leading Zeros Byte */
4341 case 1858: /* Vector Count Leading Zeros Halfword */
4342 case 1922: /* Vector Count Leading Zeros Word */
4343 case 1986: /* Vector Count Leading Zeros Doubleword */
4344 case 1795: /* Vector Population Count Byte */
4345 case 1859: /* Vector Population Count Halfword */
4346 case 1923: /* Vector Population Count Word */
4347 case 1987: /* Vector Population Count Doubleword */
4348 case 1356: /* Vector Bit Permute Quadword */
4349 case 1484: /* Vector Bit Permute Doubleword */
4350 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4351 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4352 Quadword */
4353 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4354 case 65: /* Vector Multiply-by-10 Extended & write Carry
4355 Unsigned Quadword */
4356 case 1027: /* Vector Absolute Difference Unsigned Byte */
4357 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4358 case 1155: /* Vector Absolute Difference Unsigned Word */
4359 case 1796: /* Vector Shift Right Variable */
4360 case 1860: /* Vector Shift Left Variable */
4361 case 133: /* Vector Rotate Left Word then Mask Insert */
4362 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4363 case 389: /* Vector Rotate Left Word then AND with Mask */
4364 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4365 case 525: /* Vector Extract Unsigned Byte */
4366 case 589: /* Vector Extract Unsigned Halfword */
4367 case 653: /* Vector Extract Unsigned Word */
4368 case 717: /* Vector Extract Doubleword */
4369 case 781: /* Vector Insert Byte */
4370 case 845: /* Vector Insert Halfword */
4371 case 909: /* Vector Insert Word */
4372 case 973: /* Vector Insert Doubleword */
4373 record_full_arch_list_add_reg (regcache,
4374 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4375 return 0;
4376
4377 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4378 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4379 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4380 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4381 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4382 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4383 record_full_arch_list_add_reg (regcache,
4384 tdep->ppc_gp0_regnum + PPC_RT (insn));
4385 return 0;
4386
4387 case 1604: /* Move To Vector Status and Control Register */
4388 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4389 return 0;
4390 case 1540: /* Move From Vector Status and Control Register */
4391 record_full_arch_list_add_reg (regcache,
4392 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4393 return 0;
4394 case 833: /* Decimal Copy Sign */
4395 record_full_arch_list_add_reg (regcache,
4396 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4397 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4398 return 0;
4399 }
4400
4401 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4402 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4403 return -1;
4404 }
4405
4406 /* Parse and record instructions of primary opcode-19 at ADDR.
4407 Return 0 if successful. */
4408
4409 static int
4410 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4411 CORE_ADDR addr, uint32_t insn)
4412 {
4413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4414 int ext = PPC_EXTOP (insn);
4415
4416 switch (ext & 0x01f)
4417 {
4418 case 2: /* Add PC Immediate Shifted */
4419 record_full_arch_list_add_reg (regcache,
4420 tdep->ppc_gp0_regnum + PPC_RT (insn));
4421 return 0;
4422 }
4423
4424 switch (ext)
4425 {
4426 case 0: /* Move Condition Register Field */
4427 case 33: /* Condition Register NOR */
4428 case 129: /* Condition Register AND with Complement */
4429 case 193: /* Condition Register XOR */
4430 case 225: /* Condition Register NAND */
4431 case 257: /* Condition Register AND */
4432 case 289: /* Condition Register Equivalent */
4433 case 417: /* Condition Register OR with Complement */
4434 case 449: /* Condition Register OR */
4435 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4436 return 0;
4437
4438 case 16: /* Branch Conditional */
4439 case 560: /* Branch Conditional to Branch Target Address Register */
4440 if ((PPC_BO (insn) & 0x4) == 0)
4441 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4442 /* FALL-THROUGH */
4443 case 528: /* Branch Conditional to Count Register */
4444 if (PPC_LK (insn))
4445 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4446 return 0;
4447
4448 case 150: /* Instruction Synchronize */
4449 /* Do nothing. */
4450 return 0;
4451 }
4452
4453 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4454 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4455 return -1;
4456 }
4457
4458 /* Parse and record instructions of primary opcode-31 at ADDR.
4459 Return 0 if successful. */
4460
4461 static int
4462 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4463 CORE_ADDR addr, uint32_t insn)
4464 {
4465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4466 int ext = PPC_EXTOP (insn);
4467 int tmp, nr, nb, i;
4468 CORE_ADDR at_dcsz, ea = 0;
4469 ULONGEST rb, ra, xer;
4470 int size = 0;
4471
4472 /* These instructions have OE bit. */
4473 switch (ext & 0x1ff)
4474 {
4475 /* These write RT and XER. Update CR if RC is set. */
4476 case 8: /* Subtract from carrying */
4477 case 10: /* Add carrying */
4478 case 136: /* Subtract from extended */
4479 case 138: /* Add extended */
4480 case 200: /* Subtract from zero extended */
4481 case 202: /* Add to zero extended */
4482 case 232: /* Subtract from minus one extended */
4483 case 234: /* Add to minus one extended */
4484 /* CA is always altered, but SO/OV are only altered when OE=1.
4485 In any case, XER is always altered. */
4486 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4487 if (PPC_RC (insn))
4488 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4489 record_full_arch_list_add_reg (regcache,
4490 tdep->ppc_gp0_regnum + PPC_RT (insn));
4491 return 0;
4492
4493 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4494 case 40: /* Subtract from */
4495 case 104: /* Negate */
4496 case 233: /* Multiply low doubleword */
4497 case 235: /* Multiply low word */
4498 case 266: /* Add */
4499 case 393: /* Divide Doubleword Extended Unsigned */
4500 case 395: /* Divide Word Extended Unsigned */
4501 case 425: /* Divide Doubleword Extended */
4502 case 427: /* Divide Word Extended */
4503 case 457: /* Divide Doubleword Unsigned */
4504 case 459: /* Divide Word Unsigned */
4505 case 489: /* Divide Doubleword */
4506 case 491: /* Divide Word */
4507 if (PPC_OE (insn))
4508 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4509 /* FALL-THROUGH */
4510 case 9: /* Multiply High Doubleword Unsigned */
4511 case 11: /* Multiply High Word Unsigned */
4512 case 73: /* Multiply High Doubleword */
4513 case 75: /* Multiply High Word */
4514 if (PPC_RC (insn))
4515 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4516 record_full_arch_list_add_reg (regcache,
4517 tdep->ppc_gp0_regnum + PPC_RT (insn));
4518 return 0;
4519 }
4520
4521 if ((ext & 0x1f) == 15)
4522 {
4523 /* Integer Select. bit[16:20] is used for BC. */
4524 record_full_arch_list_add_reg (regcache,
4525 tdep->ppc_gp0_regnum + PPC_RT (insn));
4526 return 0;
4527 }
4528
4529 if ((ext & 0xff) == 170)
4530 {
4531 /* Add Extended using alternate carry bits */
4532 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4533 record_full_arch_list_add_reg (regcache,
4534 tdep->ppc_gp0_regnum + PPC_RT (insn));
4535 return 0;
4536 }
4537
4538 switch (ext)
4539 {
4540 case 78: /* Determine Leftmost Zero Byte */
4541 if (PPC_RC (insn))
4542 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4543 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4544 record_full_arch_list_add_reg (regcache,
4545 tdep->ppc_gp0_regnum + PPC_RT (insn));
4546 return 0;
4547
4548 /* These only write RT. */
4549 case 19: /* Move from condition register */
4550 /* Move From One Condition Register Field */
4551 case 74: /* Add and Generate Sixes */
4552 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4553 case 302: /* Move From Branch History Rolling Buffer */
4554 case 339: /* Move From Special Purpose Register */
4555 case 371: /* Move From Time Base [Phased-Out] */
4556 case 309: /* Load Doubleword Monitored Indexed */
4557 case 128: /* Set Boolean */
4558 case 755: /* Deliver A Random Number */
4559 record_full_arch_list_add_reg (regcache,
4560 tdep->ppc_gp0_regnum + PPC_RT (insn));
4561 return 0;
4562
4563 /* These only write to RA. */
4564 case 51: /* Move From VSR Doubleword */
4565 case 115: /* Move From VSR Word and Zero */
4566 case 122: /* Population count bytes */
4567 case 378: /* Population count words */
4568 case 506: /* Population count doublewords */
4569 case 154: /* Parity Word */
4570 case 186: /* Parity Doubleword */
4571 case 252: /* Bit Permute Doubleword */
4572 case 282: /* Convert Declets To Binary Coded Decimal */
4573 case 314: /* Convert Binary Coded Decimal To Declets */
4574 case 508: /* Compare bytes */
4575 case 307: /* Move From VSR Lower Doubleword */
4576 record_full_arch_list_add_reg (regcache,
4577 tdep->ppc_gp0_regnum + PPC_RA (insn));
4578 return 0;
4579
4580 /* These write CR and optional RA. */
4581 case 792: /* Shift Right Algebraic Word */
4582 case 794: /* Shift Right Algebraic Doubleword */
4583 case 824: /* Shift Right Algebraic Word Immediate */
4584 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4585 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4586 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4587 record_full_arch_list_add_reg (regcache,
4588 tdep->ppc_gp0_regnum + PPC_RA (insn));
4589 /* FALL-THROUGH */
4590 case 0: /* Compare */
4591 case 32: /* Compare logical */
4592 case 144: /* Move To Condition Register Fields */
4593 /* Move To One Condition Register Field */
4594 case 192: /* Compare Ranged Byte */
4595 case 224: /* Compare Equal Byte */
4596 case 576: /* Move XER to CR Extended */
4597 case 902: /* Paste (should always fail due to single-stepping and
4598 the memory location might not be accessible, so
4599 record only CR) */
4600 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4601 return 0;
4602
4603 /* These write to RT. Update RA if 'update indexed.' */
4604 case 53: /* Load Doubleword with Update Indexed */
4605 case 119: /* Load Byte and Zero with Update Indexed */
4606 case 311: /* Load Halfword and Zero with Update Indexed */
4607 case 55: /* Load Word and Zero with Update Indexed */
4608 case 375: /* Load Halfword Algebraic with Update Indexed */
4609 case 373: /* Load Word Algebraic with Update Indexed */
4610 record_full_arch_list_add_reg (regcache,
4611 tdep->ppc_gp0_regnum + PPC_RA (insn));
4612 /* FALL-THROUGH */
4613 case 21: /* Load Doubleword Indexed */
4614 case 52: /* Load Byte And Reserve Indexed */
4615 case 116: /* Load Halfword And Reserve Indexed */
4616 case 20: /* Load Word And Reserve Indexed */
4617 case 84: /* Load Doubleword And Reserve Indexed */
4618 case 87: /* Load Byte and Zero Indexed */
4619 case 279: /* Load Halfword and Zero Indexed */
4620 case 23: /* Load Word and Zero Indexed */
4621 case 343: /* Load Halfword Algebraic Indexed */
4622 case 341: /* Load Word Algebraic Indexed */
4623 case 790: /* Load Halfword Byte-Reverse Indexed */
4624 case 534: /* Load Word Byte-Reverse Indexed */
4625 case 532: /* Load Doubleword Byte-Reverse Indexed */
4626 case 582: /* Load Word Atomic */
4627 case 614: /* Load Doubleword Atomic */
4628 case 265: /* Modulo Unsigned Doubleword */
4629 case 777: /* Modulo Signed Doubleword */
4630 case 267: /* Modulo Unsigned Word */
4631 case 779: /* Modulo Signed Word */
4632 record_full_arch_list_add_reg (regcache,
4633 tdep->ppc_gp0_regnum + PPC_RT (insn));
4634 return 0;
4635
4636 case 597: /* Load String Word Immediate */
4637 case 533: /* Load String Word Indexed */
4638 if (ext == 597)
4639 {
4640 nr = PPC_NB (insn);
4641 if (nr == 0)
4642 nr = 32;
4643 }
4644 else
4645 {
4646 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4647 nr = PPC_XER_NB (xer);
4648 }
4649
4650 nr = (nr + 3) >> 2;
4651
4652 /* If n=0, the contents of register RT are undefined. */
4653 if (nr == 0)
4654 nr = 1;
4655
4656 for (i = 0; i < nr; i++)
4657 record_full_arch_list_add_reg (regcache,
4658 tdep->ppc_gp0_regnum
4659 + ((PPC_RT (insn) + i) & 0x1f));
4660 return 0;
4661
4662 case 276: /* Load Quadword And Reserve Indexed */
4663 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4664 record_full_arch_list_add_reg (regcache, tmp);
4665 record_full_arch_list_add_reg (regcache, tmp + 1);
4666 return 0;
4667
4668 /* These write VRT. */
4669 case 6: /* Load Vector for Shift Left Indexed */
4670 case 38: /* Load Vector for Shift Right Indexed */
4671 case 7: /* Load Vector Element Byte Indexed */
4672 case 39: /* Load Vector Element Halfword Indexed */
4673 case 71: /* Load Vector Element Word Indexed */
4674 case 103: /* Load Vector Indexed */
4675 case 359: /* Load Vector Indexed LRU */
4676 record_full_arch_list_add_reg (regcache,
4677 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4678 return 0;
4679
4680 /* These write FRT. Update RA if 'update indexed.' */
4681 case 567: /* Load Floating-Point Single with Update Indexed */
4682 case 631: /* Load Floating-Point Double with Update Indexed */
4683 record_full_arch_list_add_reg (regcache,
4684 tdep->ppc_gp0_regnum + PPC_RA (insn));
4685 /* FALL-THROUGH */
4686 case 535: /* Load Floating-Point Single Indexed */
4687 case 599: /* Load Floating-Point Double Indexed */
4688 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4689 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4690 record_full_arch_list_add_reg (regcache,
4691 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4692 return 0;
4693
4694 case 791: /* Load Floating-Point Double Pair Indexed */
4695 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4696 record_full_arch_list_add_reg (regcache, tmp);
4697 record_full_arch_list_add_reg (regcache, tmp + 1);
4698 return 0;
4699
4700 case 179: /* Move To VSR Doubleword */
4701 case 211: /* Move To VSR Word Algebraic */
4702 case 243: /* Move To VSR Word and Zero */
4703 case 588: /* Load VSX Scalar Doubleword Indexed */
4704 case 524: /* Load VSX Scalar Single-Precision Indexed */
4705 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4706 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4707 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4708 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4709 case 780: /* Load VSX Vector Word*4 Indexed */
4710 case 268: /* Load VSX Vector Indexed */
4711 case 364: /* Load VSX Vector Word & Splat Indexed */
4712 case 812: /* Load VSX Vector Halfword*8 Indexed */
4713 case 876: /* Load VSX Vector Byte*16 Indexed */
4714 case 269: /* Load VSX Vector with Length */
4715 case 301: /* Load VSX Vector Left-justified with Length */
4716 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4717 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4718 case 403: /* Move To VSR Word & Splat */
4719 case 435: /* Move To VSR Double Doubleword */
4720 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4721 return 0;
4722
4723 /* These write RA. Update CR if RC is set. */
4724 case 24: /* Shift Left Word */
4725 case 26: /* Count Leading Zeros Word */
4726 case 27: /* Shift Left Doubleword */
4727 case 28: /* AND */
4728 case 58: /* Count Leading Zeros Doubleword */
4729 case 60: /* AND with Complement */
4730 case 124: /* NOR */
4731 case 284: /* Equivalent */
4732 case 316: /* XOR */
4733 case 476: /* NAND */
4734 case 412: /* OR with Complement */
4735 case 444: /* OR */
4736 case 536: /* Shift Right Word */
4737 case 539: /* Shift Right Doubleword */
4738 case 922: /* Extend Sign Halfword */
4739 case 954: /* Extend Sign Byte */
4740 case 986: /* Extend Sign Word */
4741 case 538: /* Count Trailing Zeros Word */
4742 case 570: /* Count Trailing Zeros Doubleword */
4743 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4744 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4745
4746 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4747 && (PPC_RS (insn) == PPC_RA (insn))
4748 && (PPC_RA (insn) == PPC_RB (insn))
4749 && !PPC_RC (insn))
4750 {
4751 /* or Rx,Rx,Rx alters PRI in PPR. */
4752 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4753 return 0;
4754 }
4755
4756 if (PPC_RC (insn))
4757 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4758 record_full_arch_list_add_reg (regcache,
4759 tdep->ppc_gp0_regnum + PPC_RA (insn));
4760 return 0;
4761
4762 /* Store memory. */
4763 case 181: /* Store Doubleword with Update Indexed */
4764 case 183: /* Store Word with Update Indexed */
4765 case 247: /* Store Byte with Update Indexed */
4766 case 439: /* Store Half Word with Update Indexed */
4767 case 695: /* Store Floating-Point Single with Update Indexed */
4768 case 759: /* Store Floating-Point Double with Update Indexed */
4769 record_full_arch_list_add_reg (regcache,
4770 tdep->ppc_gp0_regnum + PPC_RA (insn));
4771 /* FALL-THROUGH */
4772 case 135: /* Store Vector Element Byte Indexed */
4773 case 167: /* Store Vector Element Halfword Indexed */
4774 case 199: /* Store Vector Element Word Indexed */
4775 case 231: /* Store Vector Indexed */
4776 case 487: /* Store Vector Indexed LRU */
4777 case 716: /* Store VSX Scalar Doubleword Indexed */
4778 case 140: /* Store VSX Scalar as Integer Word Indexed */
4779 case 652: /* Store VSX Scalar Single-Precision Indexed */
4780 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4781 case 908: /* Store VSX Vector Word*4 Indexed */
4782 case 149: /* Store Doubleword Indexed */
4783 case 151: /* Store Word Indexed */
4784 case 215: /* Store Byte Indexed */
4785 case 407: /* Store Half Word Indexed */
4786 case 694: /* Store Byte Conditional Indexed */
4787 case 726: /* Store Halfword Conditional Indexed */
4788 case 150: /* Store Word Conditional Indexed */
4789 case 214: /* Store Doubleword Conditional Indexed */
4790 case 182: /* Store Quadword Conditional Indexed */
4791 case 662: /* Store Word Byte-Reverse Indexed */
4792 case 918: /* Store Halfword Byte-Reverse Indexed */
4793 case 660: /* Store Doubleword Byte-Reverse Indexed */
4794 case 663: /* Store Floating-Point Single Indexed */
4795 case 727: /* Store Floating-Point Double Indexed */
4796 case 919: /* Store Floating-Point Double Pair Indexed */
4797 case 983: /* Store Floating-Point as Integer Word Indexed */
4798 case 396: /* Store VSX Vector Indexed */
4799 case 940: /* Store VSX Vector Halfword*8 Indexed */
4800 case 1004: /* Store VSX Vector Byte*16 Indexed */
4801 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4802 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4803 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4804 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4805
4806 ra = 0;
4807 if (PPC_RA (insn) != 0)
4808 regcache_raw_read_unsigned (regcache,
4809 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4810 regcache_raw_read_unsigned (regcache,
4811 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4812 ea = ra + rb;
4813
4814 switch (ext)
4815 {
4816 case 183: /* Store Word with Update Indexed */
4817 case 199: /* Store Vector Element Word Indexed */
4818 case 140: /* Store VSX Scalar as Integer Word Indexed */
4819 case 652: /* Store VSX Scalar Single-Precision Indexed */
4820 case 151: /* Store Word Indexed */
4821 case 150: /* Store Word Conditional Indexed */
4822 case 662: /* Store Word Byte-Reverse Indexed */
4823 case 663: /* Store Floating-Point Single Indexed */
4824 case 695: /* Store Floating-Point Single with Update Indexed */
4825 case 983: /* Store Floating-Point as Integer Word Indexed */
4826 size = 4;
4827 break;
4828 case 247: /* Store Byte with Update Indexed */
4829 case 135: /* Store Vector Element Byte Indexed */
4830 case 215: /* Store Byte Indexed */
4831 case 694: /* Store Byte Conditional Indexed */
4832 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4833 size = 1;
4834 break;
4835 case 439: /* Store Halfword with Update Indexed */
4836 case 167: /* Store Vector Element Halfword Indexed */
4837 case 407: /* Store Halfword Indexed */
4838 case 726: /* Store Halfword Conditional Indexed */
4839 case 918: /* Store Halfword Byte-Reverse Indexed */
4840 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4841 size = 2;
4842 break;
4843 case 181: /* Store Doubleword with Update Indexed */
4844 case 716: /* Store VSX Scalar Doubleword Indexed */
4845 case 149: /* Store Doubleword Indexed */
4846 case 214: /* Store Doubleword Conditional Indexed */
4847 case 660: /* Store Doubleword Byte-Reverse Indexed */
4848 case 727: /* Store Floating-Point Double Indexed */
4849 case 759: /* Store Floating-Point Double with Update Indexed */
4850 size = 8;
4851 break;
4852 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4853 case 908: /* Store VSX Vector Word*4 Indexed */
4854 case 182: /* Store Quadword Conditional Indexed */
4855 case 231: /* Store Vector Indexed */
4856 case 487: /* Store Vector Indexed LRU */
4857 case 919: /* Store Floating-Point Double Pair Indexed */
4858 case 396: /* Store VSX Vector Indexed */
4859 case 940: /* Store VSX Vector Halfword*8 Indexed */
4860 case 1004: /* Store VSX Vector Byte*16 Indexed */
4861 size = 16;
4862 break;
4863 default:
4864 gdb_assert (0);
4865 }
4866
4867 /* Align address for Store Vector instructions. */
4868 switch (ext)
4869 {
4870 case 167: /* Store Vector Element Halfword Indexed */
4871 addr = addr & ~0x1ULL;
4872 break;
4873
4874 case 199: /* Store Vector Element Word Indexed */
4875 addr = addr & ~0x3ULL;
4876 break;
4877
4878 case 231: /* Store Vector Indexed */
4879 case 487: /* Store Vector Indexed LRU */
4880 addr = addr & ~0xfULL;
4881 break;
4882 }
4883
4884 record_full_arch_list_add_mem (addr, size);
4885 return 0;
4886
4887 case 397: /* Store VSX Vector with Length */
4888 case 429: /* Store VSX Vector Left-justified with Length */
4889 ra = 0;
4890 if (PPC_RA (insn) != 0)
4891 regcache_raw_read_unsigned (regcache,
4892 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4893 ea = ra;
4894 regcache_raw_read_unsigned (regcache,
4895 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4896 /* Store up to 16 bytes. */
4897 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4898 if (nb > 0)
4899 record_full_arch_list_add_mem (ea, nb);
4900 return 0;
4901
4902 case 710: /* Store Word Atomic */
4903 case 742: /* Store Doubleword Atomic */
4904 ra = 0;
4905 if (PPC_RA (insn) != 0)
4906 regcache_raw_read_unsigned (regcache,
4907 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4908 ea = ra;
4909 switch (ext)
4910 {
4911 case 710: /* Store Word Atomic */
4912 size = 8;
4913 break;
4914 case 742: /* Store Doubleword Atomic */
4915 size = 16;
4916 break;
4917 default:
4918 gdb_assert (0);
4919 }
4920 record_full_arch_list_add_mem (ea, size);
4921 return 0;
4922
4923 case 725: /* Store String Word Immediate */
4924 ra = 0;
4925 if (PPC_RA (insn) != 0)
4926 regcache_raw_read_unsigned (regcache,
4927 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4928 ea += ra;
4929
4930 nb = PPC_NB (insn);
4931 if (nb == 0)
4932 nb = 32;
4933
4934 record_full_arch_list_add_mem (ea, nb);
4935
4936 return 0;
4937
4938 case 661: /* Store String Word Indexed */
4939 ra = 0;
4940 if (PPC_RA (insn) != 0)
4941 regcache_raw_read_unsigned (regcache,
4942 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4943 ea += ra;
4944
4945 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4946 nb = PPC_XER_NB (xer);
4947
4948 if (nb != 0)
4949 {
4950 regcache_raw_read_unsigned (regcache,
4951 tdep->ppc_gp0_regnum + PPC_RB (insn),
4952 &rb);
4953 ea += rb;
4954 record_full_arch_list_add_mem (ea, nb);
4955 }
4956
4957 return 0;
4958
4959 case 467: /* Move To Special Purpose Register */
4960 switch (PPC_SPR (insn))
4961 {
4962 case 1: /* XER */
4963 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4964 return 0;
4965 case 3: /* DSCR */
4966 if (tdep->ppc_dscr_regnum >= 0)
4967 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
4968 return 0;
4969 case 8: /* LR */
4970 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4971 return 0;
4972 case 9: /* CTR */
4973 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4974 return 0;
4975 case 256: /* VRSAVE */
4976 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4977 return 0;
4978 case 815: /* TAR */
4979 if (tdep->ppc_tar_regnum >= 0)
4980 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
4981 return 0;
4982 case 896:
4983 case 898: /* PPR */
4984 if (tdep->ppc_ppr_regnum >= 0)
4985 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4986 return 0;
4987 }
4988
4989 goto UNKNOWN_OP;
4990
4991 case 147: /* Move To Split Little Endian */
4992 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4993 return 0;
4994
4995 case 512: /* Move to Condition Register from XER */
4996 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4997 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4998 return 0;
4999
5000 case 4: /* Trap Word */
5001 case 68: /* Trap Doubleword */
5002 case 430: /* Clear BHRB */
5003 case 598: /* Synchronize */
5004 case 62: /* Wait for Interrupt */
5005 case 30: /* Wait */
5006 case 22: /* Instruction Cache Block Touch */
5007 case 854: /* Enforce In-order Execution of I/O */
5008 case 246: /* Data Cache Block Touch for Store */
5009 case 54: /* Data Cache Block Store */
5010 case 86: /* Data Cache Block Flush */
5011 case 278: /* Data Cache Block Touch */
5012 case 758: /* Data Cache Block Allocate */
5013 case 982: /* Instruction Cache Block Invalidate */
5014 case 774: /* Copy */
5015 case 838: /* CP_Abort */
5016 return 0;
5017
5018 case 654: /* Transaction Begin */
5019 case 686: /* Transaction End */
5020 case 750: /* Transaction Suspend or Resume */
5021 case 782: /* Transaction Abort Word Conditional */
5022 case 814: /* Transaction Abort Doubleword Conditional */
5023 case 846: /* Transaction Abort Word Conditional Immediate */
5024 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5025 case 910: /* Transaction Abort */
5026 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5027 /* FALL-THROUGH */
5028 case 718: /* Transaction Check */
5029 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5030 return 0;
5031
5032 case 1014: /* Data Cache Block set to Zero */
5033 if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
5034 || at_dcsz == 0)
5035 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5036
5037 ra = 0;
5038 if (PPC_RA (insn) != 0)
5039 regcache_raw_read_unsigned (regcache,
5040 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5041 regcache_raw_read_unsigned (regcache,
5042 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5043 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5044 record_full_arch_list_add_mem (ea, at_dcsz);
5045 return 0;
5046 }
5047
5048 UNKNOWN_OP:
5049 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5050 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5051 return -1;
5052 }
5053
5054 /* Parse and record instructions of primary opcode-59 at ADDR.
5055 Return 0 if successful. */
5056
5057 static int
5058 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5059 CORE_ADDR addr, uint32_t insn)
5060 {
5061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5062 int ext = PPC_EXTOP (insn);
5063
5064 switch (ext & 0x1f)
5065 {
5066 case 18: /* Floating Divide */
5067 case 20: /* Floating Subtract */
5068 case 21: /* Floating Add */
5069 case 22: /* Floating Square Root */
5070 case 24: /* Floating Reciprocal Estimate */
5071 case 25: /* Floating Multiply */
5072 case 26: /* Floating Reciprocal Square Root Estimate */
5073 case 28: /* Floating Multiply-Subtract */
5074 case 29: /* Floating Multiply-Add */
5075 case 30: /* Floating Negative Multiply-Subtract */
5076 case 31: /* Floating Negative Multiply-Add */
5077 record_full_arch_list_add_reg (regcache,
5078 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5079 if (PPC_RC (insn))
5080 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5081 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5082
5083 return 0;
5084 }
5085
5086 switch (ext)
5087 {
5088 case 2: /* DFP Add */
5089 case 3: /* DFP Quantize */
5090 case 34: /* DFP Multiply */
5091 case 35: /* DFP Reround */
5092 case 67: /* DFP Quantize Immediate */
5093 case 99: /* DFP Round To FP Integer With Inexact */
5094 case 227: /* DFP Round To FP Integer Without Inexact */
5095 case 258: /* DFP Convert To DFP Long! */
5096 case 290: /* DFP Convert To Fixed */
5097 case 514: /* DFP Subtract */
5098 case 546: /* DFP Divide */
5099 case 770: /* DFP Round To DFP Short! */
5100 case 802: /* DFP Convert From Fixed */
5101 case 834: /* DFP Encode BCD To DPD */
5102 if (PPC_RC (insn))
5103 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5104 record_full_arch_list_add_reg (regcache,
5105 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5106 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5107 return 0;
5108
5109 case 130: /* DFP Compare Ordered */
5110 case 162: /* DFP Test Exponent */
5111 case 194: /* DFP Test Data Class */
5112 case 226: /* DFP Test Data Group */
5113 case 642: /* DFP Compare Unordered */
5114 case 674: /* DFP Test Significance */
5115 case 675: /* DFP Test Significance Immediate */
5116 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5117 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5118 return 0;
5119
5120 case 66: /* DFP Shift Significand Left Immediate */
5121 case 98: /* DFP Shift Significand Right Immediate */
5122 case 322: /* DFP Decode DPD To BCD */
5123 case 354: /* DFP Extract Biased Exponent */
5124 case 866: /* DFP Insert Biased Exponent */
5125 record_full_arch_list_add_reg (regcache,
5126 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5127 if (PPC_RC (insn))
5128 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5129 return 0;
5130
5131 case 846: /* Floating Convert From Integer Doubleword Single */
5132 case 974: /* Floating Convert From Integer Doubleword Unsigned
5133 Single */
5134 record_full_arch_list_add_reg (regcache,
5135 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5136 if (PPC_RC (insn))
5137 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5138 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5139
5140 return 0;
5141 }
5142
5143 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5144 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5145 return -1;
5146 }
5147
5148 /* Parse and record instructions of primary opcode-60 at ADDR.
5149 Return 0 if successful. */
5150
5151 static int
5152 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5153 CORE_ADDR addr, uint32_t insn)
5154 {
5155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5156 int ext = PPC_EXTOP (insn);
5157
5158 switch (ext >> 2)
5159 {
5160 case 0: /* VSX Scalar Add Single-Precision */
5161 case 32: /* VSX Scalar Add Double-Precision */
5162 case 24: /* VSX Scalar Divide Single-Precision */
5163 case 56: /* VSX Scalar Divide Double-Precision */
5164 case 176: /* VSX Scalar Copy Sign Double-Precision */
5165 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5166 case 41: /* ditto */
5167 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5168 case 9: /* ditto */
5169 case 160: /* VSX Scalar Maximum Double-Precision */
5170 case 168: /* VSX Scalar Minimum Double-Precision */
5171 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5172 case 57: /* ditto */
5173 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5174 case 25: /* ditto */
5175 case 48: /* VSX Scalar Multiply Double-Precision */
5176 case 16: /* VSX Scalar Multiply Single-Precision */
5177 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5178 case 169: /* ditto */
5179 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5180 case 137: /* ditto */
5181 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5182 case 185: /* ditto */
5183 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5184 case 153: /* ditto */
5185 case 40: /* VSX Scalar Subtract Double-Precision */
5186 case 8: /* VSX Scalar Subtract Single-Precision */
5187 case 96: /* VSX Vector Add Double-Precision */
5188 case 64: /* VSX Vector Add Single-Precision */
5189 case 120: /* VSX Vector Divide Double-Precision */
5190 case 88: /* VSX Vector Divide Single-Precision */
5191 case 97: /* VSX Vector Multiply-Add Double-Precision */
5192 case 105: /* ditto */
5193 case 65: /* VSX Vector Multiply-Add Single-Precision */
5194 case 73: /* ditto */
5195 case 224: /* VSX Vector Maximum Double-Precision */
5196 case 192: /* VSX Vector Maximum Single-Precision */
5197 case 232: /* VSX Vector Minimum Double-Precision */
5198 case 200: /* VSX Vector Minimum Single-Precision */
5199 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5200 case 121: /* ditto */
5201 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5202 case 89: /* ditto */
5203 case 112: /* VSX Vector Multiply Double-Precision */
5204 case 80: /* VSX Vector Multiply Single-Precision */
5205 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5206 case 233: /* ditto */
5207 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5208 case 201: /* ditto */
5209 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5210 case 249: /* ditto */
5211 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5212 case 217: /* ditto */
5213 case 104: /* VSX Vector Subtract Double-Precision */
5214 case 72: /* VSX Vector Subtract Single-Precision */
5215 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5216 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5217 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5218 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5219 case 3: /* VSX Scalar Compare Equal Double-Precision */
5220 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5221 case 19: /* VSX Scalar Compare Greater Than or Equal
5222 Double-Precision */
5223 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5224 /* FALL-THROUGH */
5225 case 240: /* VSX Vector Copy Sign Double-Precision */
5226 case 208: /* VSX Vector Copy Sign Single-Precision */
5227 case 130: /* VSX Logical AND */
5228 case 138: /* VSX Logical AND with Complement */
5229 case 186: /* VSX Logical Equivalence */
5230 case 178: /* VSX Logical NAND */
5231 case 170: /* VSX Logical OR with Complement */
5232 case 162: /* VSX Logical NOR */
5233 case 146: /* VSX Logical OR */
5234 case 154: /* VSX Logical XOR */
5235 case 18: /* VSX Merge High Word */
5236 case 50: /* VSX Merge Low Word */
5237 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5238 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5239 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5240 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5241 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5242 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5243 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5244 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5245 case 216: /* VSX Vector Insert Exponent Single-Precision */
5246 case 248: /* VSX Vector Insert Exponent Double-Precision */
5247 case 26: /* VSX Vector Permute */
5248 case 58: /* VSX Vector Permute Right-indexed */
5249 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5250 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5251 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5252 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5253 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5254 return 0;
5255
5256 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5257 case 125: /* VSX Vector Test for software Divide Double-Precision */
5258 case 93: /* VSX Vector Test for software Divide Single-Precision */
5259 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5260 return 0;
5261
5262 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5263 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5264 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5265 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5266 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5267 return 0;
5268 }
5269
5270 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5271 {
5272 case 99: /* VSX Vector Compare Equal To Double-Precision */
5273 case 67: /* VSX Vector Compare Equal To Single-Precision */
5274 case 115: /* VSX Vector Compare Greater Than or
5275 Equal To Double-Precision */
5276 case 83: /* VSX Vector Compare Greater Than or
5277 Equal To Single-Precision */
5278 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5279 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5280 if (PPC_Rc (insn))
5281 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5282 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5283 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5284 return 0;
5285 }
5286
5287 switch (ext >> 1)
5288 {
5289 case 265: /* VSX Scalar round Double-Precision to
5290 Single-Precision and Convert to
5291 Single-Precision format */
5292 case 344: /* VSX Scalar truncate Double-Precision to
5293 Integer and Convert to Signed Integer
5294 Doubleword format with Saturate */
5295 case 88: /* VSX Scalar truncate Double-Precision to
5296 Integer and Convert to Signed Integer Word
5297 Format with Saturate */
5298 case 328: /* VSX Scalar truncate Double-Precision integer
5299 and Convert to Unsigned Integer Doubleword
5300 Format with Saturate */
5301 case 72: /* VSX Scalar truncate Double-Precision to
5302 Integer and Convert to Unsigned Integer Word
5303 Format with Saturate */
5304 case 329: /* VSX Scalar Convert Single-Precision to
5305 Double-Precision format */
5306 case 376: /* VSX Scalar Convert Signed Integer
5307 Doubleword to floating-point format and
5308 Round to Double-Precision format */
5309 case 312: /* VSX Scalar Convert Signed Integer
5310 Doubleword to floating-point format and
5311 round to Single-Precision */
5312 case 360: /* VSX Scalar Convert Unsigned Integer
5313 Doubleword to floating-point format and
5314 Round to Double-Precision format */
5315 case 296: /* VSX Scalar Convert Unsigned Integer
5316 Doubleword to floating-point format and
5317 Round to Single-Precision */
5318 case 73: /* VSX Scalar Round to Double-Precision Integer
5319 Using Round to Nearest Away */
5320 case 107: /* VSX Scalar Round to Double-Precision Integer
5321 Exact using Current rounding mode */
5322 case 121: /* VSX Scalar Round to Double-Precision Integer
5323 Using Round toward -Infinity */
5324 case 105: /* VSX Scalar Round to Double-Precision Integer
5325 Using Round toward +Infinity */
5326 case 89: /* VSX Scalar Round to Double-Precision Integer
5327 Using Round toward Zero */
5328 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5329 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5330 case 281: /* VSX Scalar Round to Single-Precision */
5331 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5332 Double-Precision */
5333 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5334 Single-Precision */
5335 case 75: /* VSX Scalar Square Root Double-Precision */
5336 case 11: /* VSX Scalar Square Root Single-Precision */
5337 case 393: /* VSX Vector round Double-Precision to
5338 Single-Precision and Convert to
5339 Single-Precision format */
5340 case 472: /* VSX Vector truncate Double-Precision to
5341 Integer and Convert to Signed Integer
5342 Doubleword format with Saturate */
5343 case 216: /* VSX Vector truncate Double-Precision to
5344 Integer and Convert to Signed Integer Word
5345 Format with Saturate */
5346 case 456: /* VSX Vector truncate Double-Precision to
5347 Integer and Convert to Unsigned Integer
5348 Doubleword format with Saturate */
5349 case 200: /* VSX Vector truncate Double-Precision to
5350 Integer and Convert to Unsigned Integer Word
5351 Format with Saturate */
5352 case 457: /* VSX Vector Convert Single-Precision to
5353 Double-Precision format */
5354 case 408: /* VSX Vector truncate Single-Precision to
5355 Integer and Convert to Signed Integer
5356 Doubleword format with Saturate */
5357 case 152: /* VSX Vector truncate Single-Precision to
5358 Integer and Convert to Signed Integer Word
5359 Format with Saturate */
5360 case 392: /* VSX Vector truncate Single-Precision to
5361 Integer and Convert to Unsigned Integer
5362 Doubleword format with Saturate */
5363 case 136: /* VSX Vector truncate Single-Precision to
5364 Integer and Convert to Unsigned Integer Word
5365 Format with Saturate */
5366 case 504: /* VSX Vector Convert and round Signed Integer
5367 Doubleword to Double-Precision format */
5368 case 440: /* VSX Vector Convert and round Signed Integer
5369 Doubleword to Single-Precision format */
5370 case 248: /* VSX Vector Convert Signed Integer Word to
5371 Double-Precision format */
5372 case 184: /* VSX Vector Convert and round Signed Integer
5373 Word to Single-Precision format */
5374 case 488: /* VSX Vector Convert and round Unsigned
5375 Integer Doubleword to Double-Precision format */
5376 case 424: /* VSX Vector Convert and round Unsigned
5377 Integer Doubleword to Single-Precision format */
5378 case 232: /* VSX Vector Convert and round Unsigned
5379 Integer Word to Double-Precision format */
5380 case 168: /* VSX Vector Convert and round Unsigned
5381 Integer Word to Single-Precision format */
5382 case 201: /* VSX Vector Round to Double-Precision
5383 Integer using round to Nearest Away */
5384 case 235: /* VSX Vector Round to Double-Precision
5385 Integer Exact using Current rounding mode */
5386 case 249: /* VSX Vector Round to Double-Precision
5387 Integer using round toward -Infinity */
5388 case 233: /* VSX Vector Round to Double-Precision
5389 Integer using round toward +Infinity */
5390 case 217: /* VSX Vector Round to Double-Precision
5391 Integer using round toward Zero */
5392 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5393 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5394 case 137: /* VSX Vector Round to Single-Precision Integer
5395 Using Round to Nearest Away */
5396 case 171: /* VSX Vector Round to Single-Precision Integer
5397 Exact Using Current rounding mode */
5398 case 185: /* VSX Vector Round to Single-Precision Integer
5399 Using Round toward -Infinity */
5400 case 169: /* VSX Vector Round to Single-Precision Integer
5401 Using Round toward +Infinity */
5402 case 153: /* VSX Vector Round to Single-Precision Integer
5403 Using round toward Zero */
5404 case 202: /* VSX Vector Reciprocal Square Root Estimate
5405 Double-Precision */
5406 case 138: /* VSX Vector Reciprocal Square Root Estimate
5407 Single-Precision */
5408 case 203: /* VSX Vector Square Root Double-Precision */
5409 case 139: /* VSX Vector Square Root Single-Precision */
5410 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5411 /* FALL-THROUGH */
5412 case 345: /* VSX Scalar Absolute Value Double-Precision */
5413 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5414 Vector Single-Precision format Non-signalling */
5415 case 331: /* VSX Scalar Convert Single-Precision to
5416 Double-Precision format Non-signalling */
5417 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5418 case 377: /* VSX Scalar Negate Double-Precision */
5419 case 473: /* VSX Vector Absolute Value Double-Precision */
5420 case 409: /* VSX Vector Absolute Value Single-Precision */
5421 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5422 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5423 case 505: /* VSX Vector Negate Double-Precision */
5424 case 441: /* VSX Vector Negate Single-Precision */
5425 case 164: /* VSX Splat Word */
5426 case 165: /* VSX Vector Extract Unsigned Word */
5427 case 181: /* VSX Vector Insert Word */
5428 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5429 return 0;
5430
5431 case 298: /* VSX Scalar Test Data Class Single-Precision */
5432 case 362: /* VSX Scalar Test Data Class Double-Precision */
5433 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5434 /* FALL-THROUGH */
5435 case 106: /* VSX Scalar Test for software Square Root
5436 Double-Precision */
5437 case 234: /* VSX Vector Test for software Square Root
5438 Double-Precision */
5439 case 170: /* VSX Vector Test for software Square Root
5440 Single-Precision */
5441 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5442 return 0;
5443
5444 case 347:
5445 switch (PPC_FIELD (insn, 11, 5))
5446 {
5447 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5448 case 1: /* VSX Scalar Extract Significand Double-Precision */
5449 record_full_arch_list_add_reg (regcache,
5450 tdep->ppc_gp0_regnum + PPC_RT (insn));
5451 return 0;
5452 case 16: /* VSX Scalar Convert Half-Precision format to
5453 Double-Precision format */
5454 case 17: /* VSX Scalar round & Convert Double-Precision format
5455 to Half-Precision format */
5456 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5457 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5458 return 0;
5459 }
5460 break;
5461
5462 case 475:
5463 switch (PPC_FIELD (insn, 11, 5))
5464 {
5465 case 24: /* VSX Vector Convert Half-Precision format to
5466 Single-Precision format */
5467 case 25: /* VSX Vector round and Convert Single-Precision format
5468 to Half-Precision format */
5469 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5470 /* FALL-THROUGH */
5471 case 0: /* VSX Vector Extract Exponent Double-Precision */
5472 case 1: /* VSX Vector Extract Significand Double-Precision */
5473 case 7: /* VSX Vector Byte-Reverse Halfword */
5474 case 8: /* VSX Vector Extract Exponent Single-Precision */
5475 case 9: /* VSX Vector Extract Significand Single-Precision */
5476 case 15: /* VSX Vector Byte-Reverse Word */
5477 case 23: /* VSX Vector Byte-Reverse Doubleword */
5478 case 31: /* VSX Vector Byte-Reverse Quadword */
5479 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5480 return 0;
5481 }
5482 break;
5483 }
5484
5485 switch (ext)
5486 {
5487 case 360: /* VSX Vector Splat Immediate Byte */
5488 if (PPC_FIELD (insn, 11, 2) == 0)
5489 {
5490 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5491 return 0;
5492 }
5493 break;
5494 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5495 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5496 return 0;
5497 }
5498
5499 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5500 {
5501 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5502 return 0;
5503 }
5504
5505 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5506 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5507 return -1;
5508 }
5509
5510 /* Parse and record instructions of primary opcode-61 at ADDR.
5511 Return 0 if successful. */
5512
5513 static int
5514 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5515 CORE_ADDR addr, uint32_t insn)
5516 {
5517 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5518 ULONGEST ea = 0;
5519 int size;
5520
5521 switch (insn & 0x3)
5522 {
5523 case 0: /* Store Floating-Point Double Pair */
5524 case 2: /* Store VSX Scalar Doubleword */
5525 case 3: /* Store VSX Scalar Single */
5526 if (PPC_RA (insn) != 0)
5527 regcache_raw_read_unsigned (regcache,
5528 tdep->ppc_gp0_regnum + PPC_RA (insn),
5529 &ea);
5530 ea += PPC_DS (insn) << 2;
5531 switch (insn & 0x3)
5532 {
5533 case 0: /* Store Floating-Point Double Pair */
5534 size = 16;
5535 break;
5536 case 2: /* Store VSX Scalar Doubleword */
5537 size = 8;
5538 break;
5539 case 3: /* Store VSX Scalar Single */
5540 size = 4;
5541 break;
5542 default:
5543 gdb_assert (0);
5544 }
5545 record_full_arch_list_add_mem (ea, size);
5546 return 0;
5547 }
5548
5549 switch (insn & 0x7)
5550 {
5551 case 1: /* Load VSX Vector */
5552 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5553 return 0;
5554 case 5: /* Store VSX Vector */
5555 if (PPC_RA (insn) != 0)
5556 regcache_raw_read_unsigned (regcache,
5557 tdep->ppc_gp0_regnum + PPC_RA (insn),
5558 &ea);
5559 ea += PPC_DQ (insn) << 4;
5560 record_full_arch_list_add_mem (ea, 16);
5561 return 0;
5562 }
5563
5564 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5565 "at %s.\n", insn, paddress (gdbarch, addr));
5566 return -1;
5567 }
5568
5569 /* Parse and record instructions of primary opcode-63 at ADDR.
5570 Return 0 if successful. */
5571
5572 static int
5573 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5574 CORE_ADDR addr, uint32_t insn)
5575 {
5576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5577 int ext = PPC_EXTOP (insn);
5578 int tmp;
5579
5580 switch (ext & 0x1f)
5581 {
5582 case 18: /* Floating Divide */
5583 case 20: /* Floating Subtract */
5584 case 21: /* Floating Add */
5585 case 22: /* Floating Square Root */
5586 case 24: /* Floating Reciprocal Estimate */
5587 case 25: /* Floating Multiply */
5588 case 26: /* Floating Reciprocal Square Root Estimate */
5589 case 28: /* Floating Multiply-Subtract */
5590 case 29: /* Floating Multiply-Add */
5591 case 30: /* Floating Negative Multiply-Subtract */
5592 case 31: /* Floating Negative Multiply-Add */
5593 record_full_arch_list_add_reg (regcache,
5594 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5595 if (PPC_RC (insn))
5596 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5597 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5598 return 0;
5599
5600 case 23: /* Floating Select */
5601 record_full_arch_list_add_reg (regcache,
5602 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5603 if (PPC_RC (insn))
5604 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5605 return 0;
5606 }
5607
5608 switch (ext & 0xff)
5609 {
5610 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5611 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5612 Precision */
5613 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5614 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5615 return 0;
5616 }
5617
5618 switch (ext)
5619 {
5620 case 2: /* DFP Add Quad */
5621 case 3: /* DFP Quantize Quad */
5622 case 34: /* DFP Multiply Quad */
5623 case 35: /* DFP Reround Quad */
5624 case 67: /* DFP Quantize Immediate Quad */
5625 case 99: /* DFP Round To FP Integer With Inexact Quad */
5626 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5627 case 258: /* DFP Convert To DFP Extended Quad */
5628 case 514: /* DFP Subtract Quad */
5629 case 546: /* DFP Divide Quad */
5630 case 770: /* DFP Round To DFP Long Quad */
5631 case 802: /* DFP Convert From Fixed Quad */
5632 case 834: /* DFP Encode BCD To DPD Quad */
5633 if (PPC_RC (insn))
5634 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5635 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5636 record_full_arch_list_add_reg (regcache, tmp);
5637 record_full_arch_list_add_reg (regcache, tmp + 1);
5638 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5639 return 0;
5640
5641 case 130: /* DFP Compare Ordered Quad */
5642 case 162: /* DFP Test Exponent Quad */
5643 case 194: /* DFP Test Data Class Quad */
5644 case 226: /* DFP Test Data Group Quad */
5645 case 642: /* DFP Compare Unordered Quad */
5646 case 674: /* DFP Test Significance Quad */
5647 case 675: /* DFP Test Significance Immediate Quad */
5648 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5649 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5650 return 0;
5651
5652 case 66: /* DFP Shift Significand Left Immediate Quad */
5653 case 98: /* DFP Shift Significand Right Immediate Quad */
5654 case 322: /* DFP Decode DPD To BCD Quad */
5655 case 866: /* DFP Insert Biased Exponent Quad */
5656 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5657 record_full_arch_list_add_reg (regcache, tmp);
5658 record_full_arch_list_add_reg (regcache, tmp + 1);
5659 if (PPC_RC (insn))
5660 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5661 return 0;
5662
5663 case 290: /* DFP Convert To Fixed Quad */
5664 record_full_arch_list_add_reg (regcache,
5665 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5666 if (PPC_RC (insn))
5667 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5668 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5669 return 0;
5670
5671 case 354: /* DFP Extract Biased Exponent Quad */
5672 record_full_arch_list_add_reg (regcache,
5673 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5674 if (PPC_RC (insn))
5675 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5676 return 0;
5677
5678 case 12: /* Floating Round to Single-Precision */
5679 case 14: /* Floating Convert To Integer Word */
5680 case 15: /* Floating Convert To Integer Word
5681 with round toward Zero */
5682 case 142: /* Floating Convert To Integer Word Unsigned */
5683 case 143: /* Floating Convert To Integer Word Unsigned
5684 with round toward Zero */
5685 case 392: /* Floating Round to Integer Nearest */
5686 case 424: /* Floating Round to Integer Toward Zero */
5687 case 456: /* Floating Round to Integer Plus */
5688 case 488: /* Floating Round to Integer Minus */
5689 case 814: /* Floating Convert To Integer Doubleword */
5690 case 815: /* Floating Convert To Integer Doubleword
5691 with round toward Zero */
5692 case 846: /* Floating Convert From Integer Doubleword */
5693 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5694 case 943: /* Floating Convert To Integer Doubleword Unsigned
5695 with round toward Zero */
5696 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5697 record_full_arch_list_add_reg (regcache,
5698 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5699 if (PPC_RC (insn))
5700 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5701 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5702 return 0;
5703
5704 case 583:
5705 switch (PPC_FIELD (insn, 11, 5))
5706 {
5707 case 1: /* Move From FPSCR & Clear Enables */
5708 case 20: /* Move From FPSCR Control & set DRN */
5709 case 21: /* Move From FPSCR Control & set DRN Immediate */
5710 case 22: /* Move From FPSCR Control & set RN */
5711 case 23: /* Move From FPSCR Control & set RN Immediate */
5712 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5713 /* Fall through. */
5714 case 0: /* Move From FPSCR */
5715 case 24: /* Move From FPSCR Lightweight */
5716 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5717 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5718 record_full_arch_list_add_reg (regcache,
5719 tdep->ppc_fp0_regnum
5720 + PPC_FRT (insn));
5721 return 0;
5722 }
5723 break;
5724
5725 case 8: /* Floating Copy Sign */
5726 case 40: /* Floating Negate */
5727 case 72: /* Floating Move Register */
5728 case 136: /* Floating Negative Absolute Value */
5729 case 264: /* Floating Absolute Value */
5730 record_full_arch_list_add_reg (regcache,
5731 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5732 if (PPC_RC (insn))
5733 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5734 return 0;
5735
5736 case 838: /* Floating Merge Odd Word */
5737 case 966: /* Floating Merge Even Word */
5738 record_full_arch_list_add_reg (regcache,
5739 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5740 return 0;
5741
5742 case 38: /* Move To FPSCR Bit 1 */
5743 case 70: /* Move To FPSCR Bit 0 */
5744 case 134: /* Move To FPSCR Field Immediate */
5745 case 711: /* Move To FPSCR Fields */
5746 if (PPC_RC (insn))
5747 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5748 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5749 return 0;
5750
5751 case 0: /* Floating Compare Unordered */
5752 case 32: /* Floating Compare Ordered */
5753 case 64: /* Move to Condition Register from FPSCR */
5754 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5755 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5756 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5757 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5758 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5759 /* FALL-THROUGH */
5760 case 128: /* Floating Test for software Divide */
5761 case 160: /* Floating Test for software Square Root */
5762 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5763 return 0;
5764
5765 case 4: /* VSX Scalar Add Quad-Precision */
5766 case 36: /* VSX Scalar Multiply Quad-Precision */
5767 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5768 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5769 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5770 case 484: /* VSX Scalar Negative Multiply-Subtract
5771 Quad-Precision */
5772 case 516: /* VSX Scalar Subtract Quad-Precision */
5773 case 548: /* VSX Scalar Divide Quad-Precision */
5774 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5775 /* FALL-THROUGH */
5776 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5777 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5778 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5779 return 0;
5780
5781 case 804:
5782 switch (PPC_FIELD (insn, 11, 5))
5783 {
5784 case 27: /* VSX Scalar Square Root Quad-Precision */
5785 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5786 /* FALL-THROUGH */
5787 case 0: /* VSX Scalar Absolute Quad-Precision */
5788 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5789 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5790 case 16: /* VSX Scalar Negate Quad-Precision */
5791 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5792 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5793 return 0;
5794 }
5795 break;
5796
5797 case 836:
5798 switch (PPC_FIELD (insn, 11, 5))
5799 {
5800 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5801 to Unsigned Word format */
5802 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5803 Quad-Precision format */
5804 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5805 to Signed Word format */
5806 case 10: /* VSX Scalar Convert Signed Doubleword format to
5807 Quad-Precision format */
5808 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5809 to Unsigned Doubleword format */
5810 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5811 Double-Precision format */
5812 case 22: /* VSX Scalar Convert Double-Precision format to
5813 Quad-Precision format */
5814 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5815 to Signed Doubleword format */
5816 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5817 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5818 return 0;
5819 }
5820 }
5821
5822 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5823 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5824 return -1;
5825 }
5826
5827 /* Parse the current instruction and record the values of the registers and
5828 memory that will be changed in current instruction to "record_arch_list".
5829 Return -1 if something wrong. */
5830
5831 int
5832 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5833 CORE_ADDR addr)
5834 {
5835 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5836 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5837 uint32_t insn;
5838 int op6, tmp, i;
5839
5840 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5841 op6 = PPC_OP6 (insn);
5842
5843 switch (op6)
5844 {
5845 case 2: /* Trap Doubleword Immediate */
5846 case 3: /* Trap Word Immediate */
5847 /* Do nothing. */
5848 break;
5849
5850 case 4:
5851 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5852 return -1;
5853 break;
5854
5855 case 17: /* System call */
5856 if (PPC_LEV (insn) != 0)
5857 goto UNKNOWN_OP;
5858
5859 if (tdep->ppc_syscall_record != NULL)
5860 {
5861 if (tdep->ppc_syscall_record (regcache) != 0)
5862 return -1;
5863 }
5864 else
5865 {
5866 printf_unfiltered (_("no syscall record support\n"));
5867 return -1;
5868 }
5869 break;
5870
5871 case 7: /* Multiply Low Immediate */
5872 record_full_arch_list_add_reg (regcache,
5873 tdep->ppc_gp0_regnum + PPC_RT (insn));
5874 break;
5875
5876 case 8: /* Subtract From Immediate Carrying */
5877 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5878 record_full_arch_list_add_reg (regcache,
5879 tdep->ppc_gp0_regnum + PPC_RT (insn));
5880 break;
5881
5882 case 10: /* Compare Logical Immediate */
5883 case 11: /* Compare Immediate */
5884 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5885 break;
5886
5887 case 13: /* Add Immediate Carrying and Record */
5888 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5889 /* FALL-THROUGH */
5890 case 12: /* Add Immediate Carrying */
5891 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5892 /* FALL-THROUGH */
5893 case 14: /* Add Immediate */
5894 case 15: /* Add Immediate Shifted */
5895 record_full_arch_list_add_reg (regcache,
5896 tdep->ppc_gp0_regnum + PPC_RT (insn));
5897 break;
5898
5899 case 16: /* Branch Conditional */
5900 if ((PPC_BO (insn) & 0x4) == 0)
5901 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5902 /* FALL-THROUGH */
5903 case 18: /* Branch */
5904 if (PPC_LK (insn))
5905 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5906 break;
5907
5908 case 19:
5909 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5910 return -1;
5911 break;
5912
5913 case 20: /* Rotate Left Word Immediate then Mask Insert */
5914 case 21: /* Rotate Left Word Immediate then AND with Mask */
5915 case 23: /* Rotate Left Word then AND with Mask */
5916 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5917 /* Rotate Left Doubleword Immediate then Clear Right */
5918 /* Rotate Left Doubleword Immediate then Clear */
5919 /* Rotate Left Doubleword then Clear Left */
5920 /* Rotate Left Doubleword then Clear Right */
5921 /* Rotate Left Doubleword Immediate then Mask Insert */
5922 if (PPC_RC (insn))
5923 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5924 record_full_arch_list_add_reg (regcache,
5925 tdep->ppc_gp0_regnum + PPC_RA (insn));
5926 break;
5927
5928 case 28: /* AND Immediate */
5929 case 29: /* AND Immediate Shifted */
5930 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5931 /* FALL-THROUGH */
5932 case 24: /* OR Immediate */
5933 case 25: /* OR Immediate Shifted */
5934 case 26: /* XOR Immediate */
5935 case 27: /* XOR Immediate Shifted */
5936 record_full_arch_list_add_reg (regcache,
5937 tdep->ppc_gp0_regnum + PPC_RA (insn));
5938 break;
5939
5940 case 31:
5941 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5942 return -1;
5943 break;
5944
5945 case 33: /* Load Word and Zero with Update */
5946 case 35: /* Load Byte and Zero with Update */
5947 case 41: /* Load Halfword and Zero with Update */
5948 case 43: /* Load Halfword Algebraic with Update */
5949 record_full_arch_list_add_reg (regcache,
5950 tdep->ppc_gp0_regnum + PPC_RA (insn));
5951 /* FALL-THROUGH */
5952 case 32: /* Load Word and Zero */
5953 case 34: /* Load Byte and Zero */
5954 case 40: /* Load Halfword and Zero */
5955 case 42: /* Load Halfword Algebraic */
5956 record_full_arch_list_add_reg (regcache,
5957 tdep->ppc_gp0_regnum + PPC_RT (insn));
5958 break;
5959
5960 case 46: /* Load Multiple Word */
5961 for (i = PPC_RT (insn); i < 32; i++)
5962 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5963 break;
5964
5965 case 56: /* Load Quadword */
5966 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5967 record_full_arch_list_add_reg (regcache, tmp);
5968 record_full_arch_list_add_reg (regcache, tmp + 1);
5969 break;
5970
5971 case 49: /* Load Floating-Point Single with Update */
5972 case 51: /* Load Floating-Point Double with Update */
5973 record_full_arch_list_add_reg (regcache,
5974 tdep->ppc_gp0_regnum + PPC_RA (insn));
5975 /* FALL-THROUGH */
5976 case 48: /* Load Floating-Point Single */
5977 case 50: /* Load Floating-Point Double */
5978 record_full_arch_list_add_reg (regcache,
5979 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5980 break;
5981
5982 case 47: /* Store Multiple Word */
5983 {
5984 ULONGEST iaddr = 0;
5985
5986 if (PPC_RA (insn) != 0)
5987 regcache_raw_read_unsigned (regcache,
5988 tdep->ppc_gp0_regnum + PPC_RA (insn),
5989 &iaddr);
5990
5991 iaddr += PPC_D (insn);
5992 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
5993 }
5994 break;
5995
5996 case 37: /* Store Word with Update */
5997 case 39: /* Store Byte with Update */
5998 case 45: /* Store Halfword with Update */
5999 case 53: /* Store Floating-Point Single with Update */
6000 case 55: /* Store Floating-Point Double with Update */
6001 record_full_arch_list_add_reg (regcache,
6002 tdep->ppc_gp0_regnum + PPC_RA (insn));
6003 /* FALL-THROUGH */
6004 case 36: /* Store Word */
6005 case 38: /* Store Byte */
6006 case 44: /* Store Halfword */
6007 case 52: /* Store Floating-Point Single */
6008 case 54: /* Store Floating-Point Double */
6009 {
6010 ULONGEST iaddr = 0;
6011 int size = -1;
6012
6013 if (PPC_RA (insn) != 0)
6014 regcache_raw_read_unsigned (regcache,
6015 tdep->ppc_gp0_regnum + PPC_RA (insn),
6016 &iaddr);
6017 iaddr += PPC_D (insn);
6018
6019 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6020 size = 4;
6021 else if (op6 == 54 || op6 == 55)
6022 size = 8;
6023 else if (op6 == 44 || op6 == 45)
6024 size = 2;
6025 else if (op6 == 38 || op6 == 39)
6026 size = 1;
6027 else
6028 gdb_assert (0);
6029
6030 record_full_arch_list_add_mem (iaddr, size);
6031 }
6032 break;
6033
6034 case 57:
6035 switch (insn & 0x3)
6036 {
6037 case 0: /* Load Floating-Point Double Pair */
6038 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6039 record_full_arch_list_add_reg (regcache, tmp);
6040 record_full_arch_list_add_reg (regcache, tmp + 1);
6041 break;
6042 case 2: /* Load VSX Scalar Doubleword */
6043 case 3: /* Load VSX Scalar Single */
6044 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6045 break;
6046 default:
6047 goto UNKNOWN_OP;
6048 }
6049 break;
6050
6051 case 58: /* Load Doubleword */
6052 /* Load Doubleword with Update */
6053 /* Load Word Algebraic */
6054 if (PPC_FIELD (insn, 30, 2) > 2)
6055 goto UNKNOWN_OP;
6056
6057 record_full_arch_list_add_reg (regcache,
6058 tdep->ppc_gp0_regnum + PPC_RT (insn));
6059 if (PPC_BIT (insn, 31))
6060 record_full_arch_list_add_reg (regcache,
6061 tdep->ppc_gp0_regnum + PPC_RA (insn));
6062 break;
6063
6064 case 59:
6065 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6066 return -1;
6067 break;
6068
6069 case 60:
6070 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6071 return -1;
6072 break;
6073
6074 case 61:
6075 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6076 return -1;
6077 break;
6078
6079 case 62: /* Store Doubleword */
6080 /* Store Doubleword with Update */
6081 /* Store Quadword with Update */
6082 {
6083 ULONGEST iaddr = 0;
6084 int size;
6085 int sub2 = PPC_FIELD (insn, 30, 2);
6086
6087 if (sub2 > 2)
6088 goto UNKNOWN_OP;
6089
6090 if (PPC_RA (insn) != 0)
6091 regcache_raw_read_unsigned (regcache,
6092 tdep->ppc_gp0_regnum + PPC_RA (insn),
6093 &iaddr);
6094
6095 size = (sub2 == 2) ? 16 : 8;
6096
6097 iaddr += PPC_DS (insn) << 2;
6098 record_full_arch_list_add_mem (iaddr, size);
6099
6100 if (op6 == 62 && sub2 == 1)
6101 record_full_arch_list_add_reg (regcache,
6102 tdep->ppc_gp0_regnum +
6103 PPC_RA (insn));
6104
6105 break;
6106 }
6107
6108 case 63:
6109 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6110 return -1;
6111 break;
6112
6113 default:
6114 UNKNOWN_OP:
6115 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6116 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
6117 return -1;
6118 }
6119
6120 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6121 return -1;
6122 if (record_full_arch_list_add_end ())
6123 return -1;
6124 return 0;
6125 }
6126
6127 /* Initialize the current architecture based on INFO. If possible, re-use an
6128 architecture from ARCHES, which is a list of architectures already created
6129 during this debugging session.
6130
6131 Called e.g. at program startup, when reading a core file, and when reading
6132 a binary file. */
6133
6134 static struct gdbarch *
6135 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6136 {
6137 struct gdbarch *gdbarch;
6138 struct gdbarch_tdep *tdep;
6139 int wordsize, from_xcoff_exec, from_elf_exec;
6140 enum bfd_architecture arch;
6141 unsigned long mach;
6142 bfd abfd;
6143 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6144 int soft_float;
6145 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
6146 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
6147 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
6148 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
6149 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
6150 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6151 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6152 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6153 int have_htm_tar = 0;
6154 int tdesc_wordsize = -1;
6155 const struct target_desc *tdesc = info.target_desc;
6156 struct tdesc_arch_data *tdesc_data = NULL;
6157 int num_pseudoregs = 0;
6158 int cur_reg;
6159
6160 /* INFO may refer to a binary that is not of the PowerPC architecture,
6161 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
6162 In this case, we must not attempt to infer properties of the (PowerPC
6163 side) of the target system from properties of that executable. Trust
6164 the target description instead. */
6165 if (info.abfd
6166 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
6167 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
6168 info.abfd = NULL;
6169
6170 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
6171 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6172
6173 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6174 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6175
6176 /* Check word size. If INFO is from a binary file, infer it from
6177 that, else choose a likely default. */
6178 if (from_xcoff_exec)
6179 {
6180 if (bfd_xcoff_is_xcoff64 (info.abfd))
6181 wordsize = 8;
6182 else
6183 wordsize = 4;
6184 }
6185 else if (from_elf_exec)
6186 {
6187 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6188 wordsize = 8;
6189 else
6190 wordsize = 4;
6191 }
6192 else if (tdesc_has_registers (tdesc))
6193 wordsize = -1;
6194 else
6195 {
6196 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6197 wordsize = (info.bfd_arch_info->bits_per_word
6198 / info.bfd_arch_info->bits_per_byte);
6199 else
6200 wordsize = 4;
6201 }
6202
6203 /* Get the architecture and machine from the BFD. */
6204 arch = info.bfd_arch_info->arch;
6205 mach = info.bfd_arch_info->mach;
6206
6207 /* For e500 executables, the apuinfo section is of help here. Such
6208 section contains the identifier and revision number of each
6209 Application-specific Processing Unit that is present on the
6210 chip. The content of the section is determined by the assembler
6211 which looks at each instruction and determines which unit (and
6212 which version of it) can execute it. Grovel through the section
6213 looking for relevant e500 APUs. */
6214
6215 if (bfd_uses_spe_extensions (info.abfd))
6216 {
6217 arch = info.bfd_arch_info->arch;
6218 mach = bfd_mach_ppc_e500;
6219 bfd_default_set_arch_mach (&abfd, arch, mach);
6220 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6221 }
6222
6223 /* Find a default target description which describes our register
6224 layout, if we do not already have one. */
6225 if (! tdesc_has_registers (tdesc))
6226 {
6227 const struct variant *v;
6228
6229 /* Choose variant. */
6230 v = find_variant_by_arch (arch, mach);
6231 if (!v)
6232 return NULL;
6233
6234 tdesc = *v->tdesc;
6235 }
6236
6237 gdb_assert (tdesc_has_registers (tdesc));
6238
6239 /* Check any target description for validity. */
6240 if (tdesc_has_registers (tdesc))
6241 {
6242 static const char *const gprs[] = {
6243 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6244 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6245 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6246 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6247 };
6248 const struct tdesc_feature *feature;
6249 int i, valid_p;
6250 static const char *const msr_names[] = { "msr", "ps" };
6251 static const char *const cr_names[] = { "cr", "cnd" };
6252 static const char *const ctr_names[] = { "ctr", "cnt" };
6253
6254 feature = tdesc_find_feature (tdesc,
6255 "org.gnu.gdb.power.core");
6256 if (feature == NULL)
6257 return NULL;
6258
6259 tdesc_data = tdesc_data_alloc ();
6260
6261 valid_p = 1;
6262 for (i = 0; i < ppc_num_gprs; i++)
6263 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6264 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6265 "pc");
6266 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6267 "lr");
6268 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6269 "xer");
6270
6271 /* Allow alternate names for these registers, to accomodate GDB's
6272 historic naming. */
6273 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6274 PPC_MSR_REGNUM, msr_names);
6275 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6276 PPC_CR_REGNUM, cr_names);
6277 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6278 PPC_CTR_REGNUM, ctr_names);
6279
6280 if (!valid_p)
6281 {
6282 tdesc_data_cleanup (tdesc_data);
6283 return NULL;
6284 }
6285
6286 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6287 "mq");
6288
6289 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
6290 if (wordsize == -1)
6291 wordsize = tdesc_wordsize;
6292
6293 feature = tdesc_find_feature (tdesc,
6294 "org.gnu.gdb.power.fpu");
6295 if (feature != NULL)
6296 {
6297 static const char *const fprs[] = {
6298 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6299 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6300 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6301 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6302 };
6303 valid_p = 1;
6304 for (i = 0; i < ppc_num_fprs; i++)
6305 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6306 PPC_F0_REGNUM + i, fprs[i]);
6307 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6308 PPC_FPSCR_REGNUM, "fpscr");
6309
6310 if (!valid_p)
6311 {
6312 tdesc_data_cleanup (tdesc_data);
6313 return NULL;
6314 }
6315 have_fpu = 1;
6316
6317 /* The fpscr register was expanded in isa 2.05 to 64 bits
6318 along with the addition of the decimal floating point
6319 facility. */
6320 if (tdesc_register_bitsize (feature, "fpscr") > 32)
6321 have_dfp = 1;
6322 }
6323 else
6324 have_fpu = 0;
6325
6326 feature = tdesc_find_feature (tdesc,
6327 "org.gnu.gdb.power.altivec");
6328 if (feature != NULL)
6329 {
6330 static const char *const vector_regs[] = {
6331 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6332 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6333 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6334 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6335 };
6336
6337 valid_p = 1;
6338 for (i = 0; i < ppc_num_gprs; i++)
6339 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6340 PPC_VR0_REGNUM + i,
6341 vector_regs[i]);
6342 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6343 PPC_VSCR_REGNUM, "vscr");
6344 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6345 PPC_VRSAVE_REGNUM, "vrsave");
6346
6347 if (have_spe || !valid_p)
6348 {
6349 tdesc_data_cleanup (tdesc_data);
6350 return NULL;
6351 }
6352 have_altivec = 1;
6353 }
6354 else
6355 have_altivec = 0;
6356
6357 /* Check for POWER7 VSX registers support. */
6358 feature = tdesc_find_feature (tdesc,
6359 "org.gnu.gdb.power.vsx");
6360
6361 if (feature != NULL)
6362 {
6363 static const char *const vsx_regs[] = {
6364 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6365 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6366 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6367 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6368 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6369 "vs30h", "vs31h"
6370 };
6371
6372 valid_p = 1;
6373
6374 for (i = 0; i < ppc_num_vshrs; i++)
6375 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6376 PPC_VSR0_UPPER_REGNUM + i,
6377 vsx_regs[i]);
6378
6379 if (!valid_p || !have_fpu || !have_altivec)
6380 {
6381 tdesc_data_cleanup (tdesc_data);
6382 return NULL;
6383 }
6384
6385 have_vsx = 1;
6386 }
6387 else
6388 have_vsx = 0;
6389
6390 /* On machines supporting the SPE APU, the general-purpose registers
6391 are 64 bits long. There are SIMD vector instructions to treat them
6392 as pairs of floats, but the rest of the instruction set treats them
6393 as 32-bit registers, and only operates on their lower halves.
6394
6395 In the GDB regcache, we treat their high and low halves as separate
6396 registers. The low halves we present as the general-purpose
6397 registers, and then we have pseudo-registers that stitch together
6398 the upper and lower halves and present them as pseudo-registers.
6399
6400 Thus, the target description is expected to supply the upper
6401 halves separately. */
6402
6403 feature = tdesc_find_feature (tdesc,
6404 "org.gnu.gdb.power.spe");
6405 if (feature != NULL)
6406 {
6407 static const char *const upper_spe[] = {
6408 "ev0h", "ev1h", "ev2h", "ev3h",
6409 "ev4h", "ev5h", "ev6h", "ev7h",
6410 "ev8h", "ev9h", "ev10h", "ev11h",
6411 "ev12h", "ev13h", "ev14h", "ev15h",
6412 "ev16h", "ev17h", "ev18h", "ev19h",
6413 "ev20h", "ev21h", "ev22h", "ev23h",
6414 "ev24h", "ev25h", "ev26h", "ev27h",
6415 "ev28h", "ev29h", "ev30h", "ev31h"
6416 };
6417
6418 valid_p = 1;
6419 for (i = 0; i < ppc_num_gprs; i++)
6420 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6421 PPC_SPE_UPPER_GP0_REGNUM + i,
6422 upper_spe[i]);
6423 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6424 PPC_SPE_ACC_REGNUM, "acc");
6425 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6426 PPC_SPE_FSCR_REGNUM, "spefscr");
6427
6428 if (have_mq || have_fpu || !valid_p)
6429 {
6430 tdesc_data_cleanup (tdesc_data);
6431 return NULL;
6432 }
6433 have_spe = 1;
6434 }
6435 else
6436 have_spe = 0;
6437
6438 /* Program Priority Register. */
6439 feature = tdesc_find_feature (tdesc,
6440 "org.gnu.gdb.power.ppr");
6441 if (feature != NULL)
6442 {
6443 valid_p = 1;
6444 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6445 PPC_PPR_REGNUM, "ppr");
6446
6447 if (!valid_p)
6448 {
6449 tdesc_data_cleanup (tdesc_data);
6450 return NULL;
6451 }
6452 have_ppr = 1;
6453 }
6454 else
6455 have_ppr = 0;
6456
6457 /* Data Stream Control Register. */
6458 feature = tdesc_find_feature (tdesc,
6459 "org.gnu.gdb.power.dscr");
6460 if (feature != NULL)
6461 {
6462 valid_p = 1;
6463 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6464 PPC_DSCR_REGNUM, "dscr");
6465
6466 if (!valid_p)
6467 {
6468 tdesc_data_cleanup (tdesc_data);
6469 return NULL;
6470 }
6471 have_dscr = 1;
6472 }
6473 else
6474 have_dscr = 0;
6475
6476 /* Target Address Register. */
6477 feature = tdesc_find_feature (tdesc,
6478 "org.gnu.gdb.power.tar");
6479 if (feature != NULL)
6480 {
6481 valid_p = 1;
6482 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6483 PPC_TAR_REGNUM, "tar");
6484
6485 if (!valid_p)
6486 {
6487 tdesc_data_cleanup (tdesc_data);
6488 return NULL;
6489 }
6490 have_tar = 1;
6491 }
6492 else
6493 have_tar = 0;
6494
6495 /* Event-based Branching Registers. */
6496 feature = tdesc_find_feature (tdesc,
6497 "org.gnu.gdb.power.ebb");
6498 if (feature != NULL)
6499 {
6500 static const char *const ebb_regs[] = {
6501 "bescr", "ebbhr", "ebbrr"
6502 };
6503
6504 valid_p = 1;
6505 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
6506 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6507 PPC_BESCR_REGNUM + i,
6508 ebb_regs[i]);
6509 if (!valid_p)
6510 {
6511 tdesc_data_cleanup (tdesc_data);
6512 return NULL;
6513 }
6514 have_ebb = 1;
6515 }
6516 else
6517 have_ebb = 0;
6518
6519 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6520 by Linux. */
6521 feature = tdesc_find_feature (tdesc,
6522 "org.gnu.gdb.power.linux.pmu");
6523 if (feature != NULL)
6524 {
6525 valid_p = 1;
6526
6527 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6528 PPC_MMCR0_REGNUM,
6529 "mmcr0");
6530 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6531 PPC_MMCR2_REGNUM,
6532 "mmcr2");
6533 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6534 PPC_SIAR_REGNUM,
6535 "siar");
6536 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6537 PPC_SDAR_REGNUM,
6538 "sdar");
6539 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6540 PPC_SIER_REGNUM,
6541 "sier");
6542
6543 if (!valid_p)
6544 {
6545 tdesc_data_cleanup (tdesc_data);
6546 return NULL;
6547 }
6548 have_pmu = 1;
6549 }
6550 else
6551 have_pmu = 0;
6552
6553 /* Hardware Transactional Memory Registers. */
6554 feature = tdesc_find_feature (tdesc,
6555 "org.gnu.gdb.power.htm.spr");
6556 if (feature != NULL)
6557 {
6558 static const char *const tm_spr_regs[] = {
6559 "tfhar", "texasr", "tfiar"
6560 };
6561
6562 valid_p = 1;
6563 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
6564 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6565 PPC_TFHAR_REGNUM + i,
6566 tm_spr_regs[i]);
6567 if (!valid_p)
6568 {
6569 tdesc_data_cleanup (tdesc_data);
6570 return NULL;
6571 }
6572
6573 have_htm_spr = 1;
6574 }
6575 else
6576 have_htm_spr = 0;
6577
6578 feature = tdesc_find_feature (tdesc,
6579 "org.gnu.gdb.power.htm.core");
6580 if (feature != NULL)
6581 {
6582 static const char *const cgprs[] = {
6583 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6584 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6585 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6586 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6587 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6588 };
6589
6590 valid_p = 1;
6591
6592 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
6593 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6594 PPC_CR0_REGNUM + i,
6595 cgprs[i]);
6596 if (!valid_p)
6597 {
6598 tdesc_data_cleanup (tdesc_data);
6599 return NULL;
6600 }
6601
6602 have_htm_core = 1;
6603 }
6604 else
6605 have_htm_core = 0;
6606
6607 feature = tdesc_find_feature (tdesc,
6608 "org.gnu.gdb.power.htm.fpu");
6609 if (feature != NULL)
6610 {
6611 valid_p = 1;
6612
6613 static const char *const cfprs[] = {
6614 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6615 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6616 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6617 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6618 "cf30", "cf31", "cfpscr"
6619 };
6620
6621 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
6622 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6623 PPC_CF0_REGNUM + i,
6624 cfprs[i]);
6625
6626 if (!valid_p)
6627 {
6628 tdesc_data_cleanup (tdesc_data);
6629 return NULL;
6630 }
6631 have_htm_fpu = 1;
6632 }
6633 else
6634 have_htm_fpu = 0;
6635
6636 feature = tdesc_find_feature (tdesc,
6637 "org.gnu.gdb.power.htm.altivec");
6638 if (feature != NULL)
6639 {
6640 valid_p = 1;
6641
6642 static const char *const cvmx[] = {
6643 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6644 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6645 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6646 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6647 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6648 "cvrsave"
6649 };
6650
6651 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
6652 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6653 PPC_CVR0_REGNUM + i,
6654 cvmx[i]);
6655
6656 if (!valid_p)
6657 {
6658 tdesc_data_cleanup (tdesc_data);
6659 return NULL;
6660 }
6661 have_htm_altivec = 1;
6662 }
6663 else
6664 have_htm_altivec = 0;
6665
6666 feature = tdesc_find_feature (tdesc,
6667 "org.gnu.gdb.power.htm.vsx");
6668 if (feature != NULL)
6669 {
6670 valid_p = 1;
6671
6672 static const char *const cvsx[] = {
6673 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6674 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6675 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6676 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6677 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6678 "cvs30h", "cvs31h"
6679 };
6680
6681 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
6682 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6683 (PPC_CVSR0_UPPER_REGNUM
6684 + i),
6685 cvsx[i]);
6686
6687 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
6688 {
6689 tdesc_data_cleanup (tdesc_data);
6690 return NULL;
6691 }
6692 have_htm_vsx = 1;
6693 }
6694 else
6695 have_htm_vsx = 0;
6696
6697 feature = tdesc_find_feature (tdesc,
6698 "org.gnu.gdb.power.htm.ppr");
6699 if (feature != NULL)
6700 {
6701 valid_p = tdesc_numbered_register (feature, tdesc_data,
6702 PPC_CPPR_REGNUM, "cppr");
6703
6704 if (!valid_p)
6705 {
6706 tdesc_data_cleanup (tdesc_data);
6707 return NULL;
6708 }
6709 have_htm_ppr = 1;
6710 }
6711 else
6712 have_htm_ppr = 0;
6713
6714 feature = tdesc_find_feature (tdesc,
6715 "org.gnu.gdb.power.htm.dscr");
6716 if (feature != NULL)
6717 {
6718 valid_p = tdesc_numbered_register (feature, tdesc_data,
6719 PPC_CDSCR_REGNUM, "cdscr");
6720
6721 if (!valid_p)
6722 {
6723 tdesc_data_cleanup (tdesc_data);
6724 return NULL;
6725 }
6726 have_htm_dscr = 1;
6727 }
6728 else
6729 have_htm_dscr = 0;
6730
6731 feature = tdesc_find_feature (tdesc,
6732 "org.gnu.gdb.power.htm.tar");
6733 if (feature != NULL)
6734 {
6735 valid_p = tdesc_numbered_register (feature, tdesc_data,
6736 PPC_CTAR_REGNUM, "ctar");
6737
6738 if (!valid_p)
6739 {
6740 tdesc_data_cleanup (tdesc_data);
6741 return NULL;
6742 }
6743 have_htm_tar = 1;
6744 }
6745 else
6746 have_htm_tar = 0;
6747 }
6748
6749 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6750 complain for a 32-bit binary on a 64-bit target; we do not yet
6751 support that. For instance, the 32-bit ABI routines expect
6752 32-bit GPRs.
6753
6754 As long as there isn't an explicit target description, we'll
6755 choose one based on the BFD architecture and get a word size
6756 matching the binary (probably powerpc:common or
6757 powerpc:common64). So there is only trouble if a 64-bit target
6758 supplies a 64-bit description while debugging a 32-bit
6759 binary. */
6760 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6761 {
6762 tdesc_data_cleanup (tdesc_data);
6763 return NULL;
6764 }
6765
6766 #ifdef HAVE_ELF
6767 if (from_elf_exec)
6768 {
6769 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6770 {
6771 case 1:
6772 elf_abi = POWERPC_ELF_V1;
6773 break;
6774 case 2:
6775 elf_abi = POWERPC_ELF_V2;
6776 break;
6777 default:
6778 break;
6779 }
6780 }
6781
6782 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6783 {
6784 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6785 Tag_GNU_Power_ABI_FP) & 3)
6786 {
6787 case 1:
6788 soft_float_flag = AUTO_BOOLEAN_FALSE;
6789 break;
6790 case 2:
6791 soft_float_flag = AUTO_BOOLEAN_TRUE;
6792 break;
6793 default:
6794 break;
6795 }
6796 }
6797
6798 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6799 {
6800 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6801 Tag_GNU_Power_ABI_FP) >> 2)
6802 {
6803 case 1:
6804 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6805 break;
6806 case 3:
6807 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6808 break;
6809 default:
6810 break;
6811 }
6812 }
6813
6814 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6815 {
6816 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6817 Tag_GNU_Power_ABI_Vector))
6818 {
6819 case 1:
6820 vector_abi = POWERPC_VEC_GENERIC;
6821 break;
6822 case 2:
6823 vector_abi = POWERPC_VEC_ALTIVEC;
6824 break;
6825 case 3:
6826 vector_abi = POWERPC_VEC_SPE;
6827 break;
6828 default:
6829 break;
6830 }
6831 }
6832 #endif
6833
6834 /* At this point, the only supported ELF-based 64-bit little-endian
6835 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6836 default. All other supported ELF-based operating systems use the
6837 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6838 e.g. because we run a legacy binary, or have attached to a process
6839 and have not found any associated binary file, set the default
6840 according to this heuristic. */
6841 if (elf_abi == POWERPC_ELF_AUTO)
6842 {
6843 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6844 elf_abi = POWERPC_ELF_V2;
6845 else
6846 elf_abi = POWERPC_ELF_V1;
6847 }
6848
6849 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6850 soft_float = 1;
6851 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6852 soft_float = 0;
6853 else
6854 soft_float = !have_fpu;
6855
6856 /* If we have a hard float binary or setting but no floating point
6857 registers, downgrade to soft float anyway. We're still somewhat
6858 useful in this scenario. */
6859 if (!soft_float && !have_fpu)
6860 soft_float = 1;
6861
6862 /* Similarly for vector registers. */
6863 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6864 vector_abi = POWERPC_VEC_GENERIC;
6865
6866 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6867 vector_abi = POWERPC_VEC_GENERIC;
6868
6869 if (vector_abi == POWERPC_VEC_AUTO)
6870 {
6871 if (have_altivec)
6872 vector_abi = POWERPC_VEC_ALTIVEC;
6873 else if (have_spe)
6874 vector_abi = POWERPC_VEC_SPE;
6875 else
6876 vector_abi = POWERPC_VEC_GENERIC;
6877 }
6878
6879 /* Do not limit the vector ABI based on available hardware, since we
6880 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6881
6882 /* Find a candidate among extant architectures. */
6883 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6884 arches != NULL;
6885 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6886 {
6887 /* Word size in the various PowerPC bfd_arch_info structs isn't
6888 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6889 separate word size check. */
6890 tdep = gdbarch_tdep (arches->gdbarch);
6891 if (tdep && tdep->elf_abi != elf_abi)
6892 continue;
6893 if (tdep && tdep->soft_float != soft_float)
6894 continue;
6895 if (tdep && tdep->long_double_abi != long_double_abi)
6896 continue;
6897 if (tdep && tdep->vector_abi != vector_abi)
6898 continue;
6899 if (tdep && tdep->wordsize == wordsize)
6900 {
6901 if (tdesc_data != NULL)
6902 tdesc_data_cleanup (tdesc_data);
6903 return arches->gdbarch;
6904 }
6905 }
6906
6907 /* None found, create a new architecture from INFO, whose bfd_arch_info
6908 validity depends on the source:
6909 - executable useless
6910 - rs6000_host_arch() good
6911 - core file good
6912 - "set arch" trust blindly
6913 - GDB startup useless but harmless */
6914
6915 tdep = XCNEW (struct gdbarch_tdep);
6916 tdep->wordsize = wordsize;
6917 tdep->elf_abi = elf_abi;
6918 tdep->soft_float = soft_float;
6919 tdep->long_double_abi = long_double_abi;
6920 tdep->vector_abi = vector_abi;
6921
6922 gdbarch = gdbarch_alloc (&info, tdep);
6923
6924 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6925 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6926 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6927 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6928 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6929 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6930 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6931 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6932
6933 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6934 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6935 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6936 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6937 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6938 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6939 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6940 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6941 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6942 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
6943 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
6944 tdep->have_ebb = have_ebb;
6945
6946 /* If additional pmu registers are added, care must be taken when
6947 setting new fields in the tdep below, to maintain compatibility
6948 with features that only provide some of the registers. Currently
6949 gdb access to the pmu registers is only supported in linux, and
6950 linux only provides a subset of the pmu registers defined in the
6951 architecture. */
6952
6953 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6954 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6955 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6956 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6957 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
6958
6959 tdep->have_htm_spr = have_htm_spr;
6960 tdep->have_htm_core = have_htm_core;
6961 tdep->have_htm_fpu = have_htm_fpu;
6962 tdep->have_htm_altivec = have_htm_altivec;
6963 tdep->have_htm_vsx = have_htm_vsx;
6964 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6965 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6966 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6967
6968 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6969 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6970 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6971 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6972
6973 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6974 GDB traditionally called it "ps", though, so let GDB add an
6975 alias. */
6976 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6977
6978 if (wordsize == 8)
6979 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6980 else
6981 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6982
6983 /* Set lr_frame_offset. */
6984 if (wordsize == 8)
6985 tdep->lr_frame_offset = 16;
6986 else
6987 tdep->lr_frame_offset = 4;
6988
6989 if (have_spe || have_dfp || have_altivec
6990 || have_vsx || have_htm_fpu || have_htm_vsx)
6991 {
6992 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6993 set_gdbarch_pseudo_register_write (gdbarch,
6994 rs6000_pseudo_register_write);
6995 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6996 rs6000_ax_pseudo_register_collect);
6997 }
6998
6999 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
7000
7001 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
7002
7003 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
7004
7005 if (have_spe)
7006 num_pseudoregs += 32;
7007 if (have_dfp)
7008 num_pseudoregs += 16;
7009 if (have_altivec)
7010 num_pseudoregs += 32;
7011 if (have_vsx)
7012 /* Include both VSX and Extended FP registers. */
7013 num_pseudoregs += 96;
7014 if (have_htm_fpu)
7015 num_pseudoregs += 16;
7016 /* Include both checkpointed VSX and EFP registers. */
7017 if (have_htm_vsx)
7018 num_pseudoregs += 64 + 32;
7019
7020 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7021
7022 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7023 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
7024 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7025 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7026 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7027 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7028 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7029 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
7030 set_gdbarch_char_signed (gdbarch, 0);
7031
7032 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7033 if (wordsize == 8)
7034 /* PPC64 SYSV. */
7035 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7036
7037 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7038 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7039 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7040
7041 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7042 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
7043
7044 if (wordsize == 4)
7045 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
7046 else if (wordsize == 8)
7047 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7048
7049 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
7050 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
7051 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
7052
7053 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7054
7055 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7056 rs6000_breakpoint::kind_from_pc);
7057 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7058 rs6000_breakpoint::bp_from_kind);
7059
7060 /* The value of symbols of type N_SO and N_FUN maybe null when
7061 it shouldn't be. */
7062 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7063
7064 /* Handles single stepping of atomic sequences. */
7065 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
7066
7067 /* Not sure on this. FIXMEmgo */
7068 set_gdbarch_frame_args_skip (gdbarch, 8);
7069
7070 /* Helpers for function argument information. */
7071 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7072
7073 /* Trampoline. */
7074 set_gdbarch_in_solib_return_trampoline
7075 (gdbarch, rs6000_in_solib_return_trampoline);
7076 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7077
7078 /* Hook in the DWARF CFI frame unwinder. */
7079 dwarf2_append_unwinders (gdbarch);
7080 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7081
7082 /* Frame handling. */
7083 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7084
7085 /* Setup displaced stepping. */
7086 set_gdbarch_displaced_step_copy_insn (gdbarch,
7087 ppc_displaced_step_copy_insn);
7088 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7089 ppc_displaced_step_hw_singlestep);
7090 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
7091 set_gdbarch_displaced_step_location (gdbarch,
7092 displaced_step_at_entry_point);
7093
7094 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
7095
7096 /* Hook in ABI-specific overrides, if they have been registered. */
7097 info.target_desc = tdesc;
7098 info.tdesc_data = tdesc_data;
7099 gdbarch_init_osabi (info, gdbarch);
7100
7101 switch (info.osabi)
7102 {
7103 case GDB_OSABI_LINUX:
7104 case GDB_OSABI_NETBSD:
7105 case GDB_OSABI_UNKNOWN:
7106 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
7107 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7108 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7109 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
7110 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7111 break;
7112 default:
7113 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7114
7115 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
7116 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7117 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7118 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
7119 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7120 }
7121
7122 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
7123 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7124 rs6000_pseudo_register_reggroup_p);
7125 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7126
7127 /* Override the normal target description method to make the SPE upper
7128 halves anonymous. */
7129 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7130
7131 /* Choose register numbers for all supported pseudo-registers. */
7132 tdep->ppc_ev0_regnum = -1;
7133 tdep->ppc_dl0_regnum = -1;
7134 tdep->ppc_v0_alias_regnum = -1;
7135 tdep->ppc_vsr0_regnum = -1;
7136 tdep->ppc_efpr0_regnum = -1;
7137 tdep->ppc_cdl0_regnum = -1;
7138 tdep->ppc_cvsr0_regnum = -1;
7139 tdep->ppc_cefpr0_regnum = -1;
7140
7141 cur_reg = gdbarch_num_regs (gdbarch);
7142
7143 if (have_spe)
7144 {
7145 tdep->ppc_ev0_regnum = cur_reg;
7146 cur_reg += 32;
7147 }
7148 if (have_dfp)
7149 {
7150 tdep->ppc_dl0_regnum = cur_reg;
7151 cur_reg += 16;
7152 }
7153 if (have_altivec)
7154 {
7155 tdep->ppc_v0_alias_regnum = cur_reg;
7156 cur_reg += 32;
7157 }
7158 if (have_vsx)
7159 {
7160 tdep->ppc_vsr0_regnum = cur_reg;
7161 cur_reg += 64;
7162 tdep->ppc_efpr0_regnum = cur_reg;
7163 cur_reg += 32;
7164 }
7165 if (have_htm_fpu)
7166 {
7167 tdep->ppc_cdl0_regnum = cur_reg;
7168 cur_reg += 16;
7169 }
7170 if (have_htm_vsx)
7171 {
7172 tdep->ppc_cvsr0_regnum = cur_reg;
7173 cur_reg += 64;
7174 tdep->ppc_cefpr0_regnum = cur_reg;
7175 cur_reg += 32;
7176 }
7177
7178 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
7179
7180 /* Register the ravenscar_arch_ops. */
7181 if (mach == bfd_mach_ppc_e500)
7182 register_e500_ravenscar_ops (gdbarch);
7183 else
7184 register_ppc_ravenscar_ops (gdbarch);
7185
7186 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7187 set_gdbarch_valid_disassembler_options (gdbarch,
7188 disassembler_options_powerpc ());
7189
7190 return gdbarch;
7191 }
7192
7193 static void
7194 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7195 {
7196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7197
7198 if (tdep == NULL)
7199 return;
7200
7201 /* FIXME: Dump gdbarch_tdep. */
7202 }
7203
7204 /* PowerPC-specific commands. */
7205
7206 static void
7207 set_powerpc_command (const char *args, int from_tty)
7208 {
7209 printf_unfiltered (_("\
7210 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
7211 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
7212 }
7213
7214 static void
7215 show_powerpc_command (const char *args, int from_tty)
7216 {
7217 cmd_show_list (showpowerpccmdlist, from_tty, "");
7218 }
7219
7220 static void
7221 powerpc_set_soft_float (const char *args, int from_tty,
7222 struct cmd_list_element *c)
7223 {
7224 struct gdbarch_info info;
7225
7226 /* Update the architecture. */
7227 gdbarch_info_init (&info);
7228 if (!gdbarch_update_p (info))
7229 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7230 }
7231
7232 static void
7233 powerpc_set_vector_abi (const char *args, int from_tty,
7234 struct cmd_list_element *c)
7235 {
7236 struct gdbarch_info info;
7237 int vector_abi;
7238
7239 for (vector_abi = POWERPC_VEC_AUTO;
7240 vector_abi != POWERPC_VEC_LAST;
7241 vector_abi++)
7242 if (strcmp (powerpc_vector_abi_string,
7243 powerpc_vector_strings[vector_abi]) == 0)
7244 {
7245 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
7246 break;
7247 }
7248
7249 if (vector_abi == POWERPC_VEC_LAST)
7250 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7251 powerpc_vector_abi_string);
7252
7253 /* Update the architecture. */
7254 gdbarch_info_init (&info);
7255 if (!gdbarch_update_p (info))
7256 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7257 }
7258
7259 /* Show the current setting of the exact watchpoints flag. */
7260
7261 static void
7262 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7263 struct cmd_list_element *c,
7264 const char *value)
7265 {
7266 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7267 }
7268
7269 /* Read a PPC instruction from memory. */
7270
7271 static unsigned int
7272 read_insn (struct frame_info *frame, CORE_ADDR pc)
7273 {
7274 struct gdbarch *gdbarch = get_frame_arch (frame);
7275 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7276
7277 return read_memory_unsigned_integer (pc, 4, byte_order);
7278 }
7279
7280 /* Return non-zero if the instructions at PC match the series
7281 described in PATTERN, or zero otherwise. PATTERN is an array of
7282 'struct ppc_insn_pattern' objects, terminated by an entry whose
7283 mask is zero.
7284
7285 When the match is successful, fill INSNS[i] with what PATTERN[i]
7286 matched. If PATTERN[i] is optional, and the instruction wasn't
7287 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7288 INSNS should have as many elements as PATTERN, minus the terminator.
7289 Note that, if PATTERN contains optional instructions which aren't
7290 present in memory, then INSNS will have holes, so INSNS[i] isn't
7291 necessarily the i'th instruction in memory. */
7292
7293 int
7294 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7295 const struct ppc_insn_pattern *pattern,
7296 unsigned int *insns)
7297 {
7298 int i;
7299 unsigned int insn;
7300
7301 for (i = 0, insn = 0; pattern[i].mask; i++)
7302 {
7303 if (insn == 0)
7304 insn = read_insn (frame, pc);
7305 insns[i] = 0;
7306 if ((insn & pattern[i].mask) == pattern[i].data)
7307 {
7308 insns[i] = insn;
7309 pc += 4;
7310 insn = 0;
7311 }
7312 else if (!pattern[i].optional)
7313 return 0;
7314 }
7315
7316 return 1;
7317 }
7318
7319 /* Return the 'd' field of the d-form instruction INSN, properly
7320 sign-extended. */
7321
7322 CORE_ADDR
7323 ppc_insn_d_field (unsigned int insn)
7324 {
7325 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7326 }
7327
7328 /* Return the 'ds' field of the ds-form instruction INSN, with the two
7329 zero bits concatenated at the right, and properly
7330 sign-extended. */
7331
7332 CORE_ADDR
7333 ppc_insn_ds_field (unsigned int insn)
7334 {
7335 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7336 }
7337
7338 /* Initialization code. */
7339
7340 void
7341 _initialize_rs6000_tdep (void)
7342 {
7343 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7344 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7345
7346 /* Initialize the standard target descriptions. */
7347 initialize_tdesc_powerpc_32 ();
7348 initialize_tdesc_powerpc_altivec32 ();
7349 initialize_tdesc_powerpc_vsx32 ();
7350 initialize_tdesc_powerpc_403 ();
7351 initialize_tdesc_powerpc_403gc ();
7352 initialize_tdesc_powerpc_405 ();
7353 initialize_tdesc_powerpc_505 ();
7354 initialize_tdesc_powerpc_601 ();
7355 initialize_tdesc_powerpc_602 ();
7356 initialize_tdesc_powerpc_603 ();
7357 initialize_tdesc_powerpc_604 ();
7358 initialize_tdesc_powerpc_64 ();
7359 initialize_tdesc_powerpc_altivec64 ();
7360 initialize_tdesc_powerpc_vsx64 ();
7361 initialize_tdesc_powerpc_7400 ();
7362 initialize_tdesc_powerpc_750 ();
7363 initialize_tdesc_powerpc_860 ();
7364 initialize_tdesc_powerpc_e500 ();
7365 initialize_tdesc_rs6000 ();
7366
7367 /* Add root prefix command for all "set powerpc"/"show powerpc"
7368 commands. */
7369 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
7370 _("Various PowerPC-specific commands."),
7371 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
7372
7373 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
7374 _("Various PowerPC-specific commands."),
7375 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
7376
7377 /* Add a command to allow the user to force the ABI. */
7378 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7379 &powerpc_soft_float_global,
7380 _("Set whether to use a soft-float ABI."),
7381 _("Show whether to use a soft-float ABI."),
7382 NULL,
7383 powerpc_set_soft_float, NULL,
7384 &setpowerpccmdlist, &showpowerpccmdlist);
7385
7386 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7387 &powerpc_vector_abi_string,
7388 _("Set the vector ABI."),
7389 _("Show the vector ABI."),
7390 NULL, powerpc_set_vector_abi, NULL,
7391 &setpowerpccmdlist, &showpowerpccmdlist);
7392
7393 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7394 &target_exact_watchpoints,
7395 _("\
7396 Set whether to use just one debug register for watchpoints on scalars."),
7397 _("\
7398 Show whether to use just one debug register for watchpoints on scalars."),
7399 _("\
7400 If true, GDB will use only one debug register when watching a variable of\n\
7401 scalar type, thus assuming that the variable is accessed through the address\n\
7402 of its first byte."),
7403 NULL, show_powerpc_exact_watchpoints,
7404 &setpowerpccmdlist, &showpowerpccmdlist);
7405 }
This page took 0.33253 seconds and 5 git commands to generate.