* rs6000-tdep.c (_initialize_rs6000_tdep): Get rid of the unused
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 #include "reggroups.h"
63
64 /* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71 #define SIG_FRAME_PC_OFFSET 96
72 #define SIG_FRAME_LR_OFFSET 108
73 #define SIG_FRAME_FP_OFFSET 284
74
75 /* To be used by skip_prologue. */
76
77 struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
84 int saved_vr; /* smallest # of saved vr */
85 int saved_ev; /* smallest # of saved ev */
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
91 int vr_offset; /* offset of saved vrs from prev sp */
92 int ev_offset; /* offset of saved evs from prev sp */
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
95 int vrsave_offset; /* offset of saved vrsave register */
96 };
97
98 /* Description of a single register. */
99
100 struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
105 unsigned char fpr; /* whether register is floating-point */
106 unsigned char pseudo; /* whether register is pseudo */
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
110 };
111
112 /* Breakpoint shadows for the single step instructions will be kept here. */
113
114 static struct sstep_breaks
115 {
116 /* Address, or 0 if this is not in use. */
117 CORE_ADDR address;
118 /* Shadow contents. */
119 gdb_byte data[4];
120 }
121 stepBreaks[2];
122
123 /* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
126
127 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
128
129 /* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
131
132 void (*rs6000_set_host_arch_hook) (int) = NULL;
133
134 /* Static function prototypes */
135
136 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
137 CORE_ADDR safety);
138 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
140
141 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
142 int
143 altivec_register_p (int regno)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
147 return 0;
148 else
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
150 }
151
152
153 /* Return true if REGNO is an SPE register, false otherwise. */
154 int
155 spe_register_p (int regno)
156 {
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
163 return 1;
164
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
169 return 1;
170
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
174 return 1;
175
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
180 return 1;
181
182 return 0;
183 }
184
185
186 /* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
188 int
189 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
195 }
196
197
198 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
199 set it to SIM_REGNO.
200
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
204 filling it in. */
205 static void
206 set_sim_regno (int *table, int gdb_regno, int sim_regno)
207 {
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
212 }
213
214
215 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
218 static void
219 init_sim_regno_table (struct gdbarch *arch)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
225 int i;
226
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
230 sim_regno[i] = -1;
231
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
235
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
244
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
248
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
255
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
258 {
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
263
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
269 }
270 /* vsave is a special-purpose register, so the code below handles it. */
271
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
286
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
289 code). */
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
293
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
296 }
297
298
299 /* Given a GDB register number REG, return the corresponding SIM
300 register number. */
301 static int
302 rs6000_register_sim_regno (int reg)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
305 int sim_regno;
306
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
309
310 if (sim_regno >= 0)
311 return sim_regno;
312 else
313 return LEGACY_SIM_REGNO_IGNORE;
314 }
315
316 \f
317
318 /* Register set support functions. */
319
320 static void
321 ppc_supply_reg (struct regcache *regcache, int regnum,
322 const gdb_byte *regs, size_t offset)
323 {
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
326 }
327
328 static void
329 ppc_collect_reg (const struct regcache *regcache, int regnum,
330 gdb_byte *regs, size_t offset)
331 {
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
334 }
335
336 /* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
339
340 void
341 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
343 {
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
347 size_t offset;
348 int i;
349
350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
352 i++, offset += 4)
353 {
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
356 }
357
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
377 }
378
379 /* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
382
383 void
384 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
386 {
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
390 size_t offset;
391 int i;
392
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
394
395 offset = offsets->f0_offset;
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
398 i++, offset += 8)
399 {
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
402 }
403
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
407 }
408
409 /* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
412 REGSET. */
413
414 void
415 ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
418 {
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
422 size_t offset;
423 int i;
424
425 offset = offsets->r0_offset;
426 for (i = tdep->ppc_gp0_regnum;
427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
428 i++, offset += 4)
429 {
430 if (regnum == -1 || regnum == i)
431 ppc_collect_reg (regcache, i, gregs, offset);
432 }
433
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
454 }
455
456 /* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
459 REGSET. */
460
461 void
462 ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
465 {
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
469 size_t offset;
470 int i;
471
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
473
474 offset = offsets->f0_offset;
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
477 i++, offset += 8)
478 {
479 if (regnum == -1 || regnum == i)
480 ppc_collect_reg (regcache, i, fpregs, offset);
481 }
482
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
486 }
487 \f
488
489 /* Read a LEN-byte address from debugged memory address MEMADDR. */
490
491 static CORE_ADDR
492 read_memory_addr (CORE_ADDR memaddr, int len)
493 {
494 return read_memory_unsigned_integer (memaddr, len);
495 }
496
497 static CORE_ADDR
498 rs6000_skip_prologue (CORE_ADDR pc)
499 {
500 struct rs6000_framedata frame;
501 pc = skip_prologue (pc, 0, &frame);
502 return pc;
503 }
504
505
506 /* Fill in fi->saved_regs */
507
508 struct frame_extra_info
509 {
510 /* Functions calling alloca() change the value of the stack
511 pointer. We need to use initial stack pointer (which is saved in
512 r31 by gcc) in such cases. If a compiler emits traceback table,
513 then we should use the alloca register specified in traceback
514 table. FIXME. */
515 CORE_ADDR initial_sp; /* initial stack pointer. */
516 };
517
518 /* Get the ith function argument for the current function. */
519 static CORE_ADDR
520 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
521 struct type *type)
522 {
523 return get_frame_register_unsigned (frame, 3 + argi);
524 }
525
526 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
527
528 static CORE_ADDR
529 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
530 {
531 CORE_ADDR dest;
532 int immediate;
533 int absolute;
534 int ext_op;
535
536 absolute = (int) ((instr >> 1) & 1);
537
538 switch (opcode)
539 {
540 case 18:
541 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
542 if (absolute)
543 dest = immediate;
544 else
545 dest = pc + immediate;
546 break;
547
548 case 16:
549 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
550 if (absolute)
551 dest = immediate;
552 else
553 dest = pc + immediate;
554 break;
555
556 case 19:
557 ext_op = (instr >> 1) & 0x3ff;
558
559 if (ext_op == 16) /* br conditional register */
560 {
561 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
562
563 /* If we are about to return from a signal handler, dest is
564 something like 0x3c90. The current frame is a signal handler
565 caller frame, upon completion of the sigreturn system call
566 execution will return to the saved PC in the frame. */
567 if (dest < TEXT_SEGMENT_BASE)
568 {
569 struct frame_info *fi;
570
571 fi = get_current_frame ();
572 if (fi != NULL)
573 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
574 gdbarch_tdep (current_gdbarch)->wordsize);
575 }
576 }
577
578 else if (ext_op == 528) /* br cond to count reg */
579 {
580 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
581
582 /* If we are about to execute a system call, dest is something
583 like 0x22fc or 0x3b00. Upon completion the system call
584 will return to the address in the link register. */
585 if (dest < TEXT_SEGMENT_BASE)
586 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
587 }
588 else
589 return -1;
590 break;
591
592 default:
593 return -1;
594 }
595 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
596 }
597
598
599 /* Sequence of bytes for breakpoint instruction. */
600
601 const static unsigned char *
602 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
603 {
604 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
605 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
606 *bp_size = 4;
607 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
608 return big_breakpoint;
609 else
610 return little_breakpoint;
611 }
612
613
614 /* AIX does not support PT_STEP. Simulate it. */
615
616 void
617 rs6000_software_single_step (enum target_signal signal,
618 int insert_breakpoints_p)
619 {
620 CORE_ADDR dummy;
621 int breakp_sz;
622 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
623 int ii, insn;
624 CORE_ADDR loc;
625 CORE_ADDR breaks[2];
626 int opcode;
627
628 if (insert_breakpoints_p)
629 {
630
631 loc = read_pc ();
632
633 insn = read_memory_integer (loc, 4);
634
635 breaks[0] = loc + breakp_sz;
636 opcode = insn >> 26;
637 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
638
639 /* Don't put two breakpoints on the same address. */
640 if (breaks[1] == breaks[0])
641 breaks[1] = -1;
642
643 stepBreaks[1].address = 0;
644
645 for (ii = 0; ii < 2; ++ii)
646 {
647
648 /* ignore invalid breakpoint. */
649 if (breaks[ii] == -1)
650 continue;
651 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
652 stepBreaks[ii].address = breaks[ii];
653 }
654
655 }
656 else
657 {
658
659 /* remove step breakpoints. */
660 for (ii = 0; ii < 2; ++ii)
661 if (stepBreaks[ii].address != 0)
662 target_remove_breakpoint (stepBreaks[ii].address,
663 stepBreaks[ii].data);
664 }
665 errno = 0; /* FIXME, don't ignore errors! */
666 /* What errors? {read,write}_memory call error(). */
667 }
668
669
670 /* return pc value after skipping a function prologue and also return
671 information about a function frame.
672
673 in struct rs6000_framedata fdata:
674 - frameless is TRUE, if function does not have a frame.
675 - nosavedpc is TRUE, if function does not save %pc value in its frame.
676 - offset is the initial size of this stack frame --- the amount by
677 which we decrement the sp to allocate the frame.
678 - saved_gpr is the number of the first saved gpr.
679 - saved_fpr is the number of the first saved fpr.
680 - saved_vr is the number of the first saved vr.
681 - saved_ev is the number of the first saved ev.
682 - alloca_reg is the number of the register used for alloca() handling.
683 Otherwise -1.
684 - gpr_offset is the offset of the first saved gpr from the previous frame.
685 - fpr_offset is the offset of the first saved fpr from the previous frame.
686 - vr_offset is the offset of the first saved vr from the previous frame.
687 - ev_offset is the offset of the first saved ev from the previous frame.
688 - lr_offset is the offset of the saved lr
689 - cr_offset is the offset of the saved cr
690 - vrsave_offset is the offset of the saved vrsave register
691 */
692
693 #define SIGNED_SHORT(x) \
694 ((sizeof (short) == 2) \
695 ? ((int)(short)(x)) \
696 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
697
698 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
699
700 /* Limit the number of skipped non-prologue instructions, as the examining
701 of the prologue is expensive. */
702 static int max_skip_non_prologue_insns = 10;
703
704 /* Given PC representing the starting address of a function, and
705 LIM_PC which is the (sloppy) limit to which to scan when looking
706 for a prologue, attempt to further refine this limit by using
707 the line data in the symbol table. If successful, a better guess
708 on where the prologue ends is returned, otherwise the previous
709 value of lim_pc is returned. */
710
711 /* FIXME: cagney/2004-02-14: This function and logic have largely been
712 superseded by skip_prologue_using_sal. */
713
714 static CORE_ADDR
715 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
716 {
717 struct symtab_and_line prologue_sal;
718
719 prologue_sal = find_pc_line (pc, 0);
720 if (prologue_sal.line != 0)
721 {
722 int i;
723 CORE_ADDR addr = prologue_sal.end;
724
725 /* Handle the case in which compiler's optimizer/scheduler
726 has moved instructions into the prologue. We scan ahead
727 in the function looking for address ranges whose corresponding
728 line number is less than or equal to the first one that we
729 found for the function. (It can be less than when the
730 scheduler puts a body instruction before the first prologue
731 instruction.) */
732 for (i = 2 * max_skip_non_prologue_insns;
733 i > 0 && (lim_pc == 0 || addr < lim_pc);
734 i--)
735 {
736 struct symtab_and_line sal;
737
738 sal = find_pc_line (addr, 0);
739 if (sal.line == 0)
740 break;
741 if (sal.line <= prologue_sal.line
742 && sal.symtab == prologue_sal.symtab)
743 {
744 prologue_sal = sal;
745 }
746 addr = sal.end;
747 }
748
749 if (lim_pc == 0 || prologue_sal.end < lim_pc)
750 lim_pc = prologue_sal.end;
751 }
752 return lim_pc;
753 }
754
755 /* Return nonzero if the given instruction OP can be part of the prologue
756 of a function and saves a parameter on the stack. FRAMEP should be
757 set if one of the previous instructions in the function has set the
758 Frame Pointer. */
759
760 static int
761 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
762 {
763 /* Move parameters from argument registers to temporary register. */
764 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
765 {
766 /* Rx must be scratch register r0. */
767 const int rx_regno = (op >> 16) & 31;
768 /* Ry: Only r3 - r10 are used for parameter passing. */
769 const int ry_regno = GET_SRC_REG (op);
770
771 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
772 {
773 *r0_contains_arg = 1;
774 return 1;
775 }
776 else
777 return 0;
778 }
779
780 /* Save a General Purpose Register on stack. */
781
782 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
783 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
784 {
785 /* Rx: Only r3 - r10 are used for parameter passing. */
786 const int rx_regno = GET_SRC_REG (op);
787
788 return (rx_regno >= 3 && rx_regno <= 10);
789 }
790
791 /* Save a General Purpose Register on stack via the Frame Pointer. */
792
793 if (framep &&
794 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
795 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
796 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
797 {
798 /* Rx: Usually, only r3 - r10 are used for parameter passing.
799 However, the compiler sometimes uses r0 to hold an argument. */
800 const int rx_regno = GET_SRC_REG (op);
801
802 return ((rx_regno >= 3 && rx_regno <= 10)
803 || (rx_regno == 0 && *r0_contains_arg));
804 }
805
806 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
807 {
808 /* Only f2 - f8 are used for parameter passing. */
809 const int src_regno = GET_SRC_REG (op);
810
811 return (src_regno >= 2 && src_regno <= 8);
812 }
813
814 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
815 {
816 /* Only f2 - f8 are used for parameter passing. */
817 const int src_regno = GET_SRC_REG (op);
818
819 return (src_regno >= 2 && src_regno <= 8);
820 }
821
822 /* Not an insn that saves a parameter on stack. */
823 return 0;
824 }
825
826 static CORE_ADDR
827 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
828 {
829 CORE_ADDR orig_pc = pc;
830 CORE_ADDR last_prologue_pc = pc;
831 CORE_ADDR li_found_pc = 0;
832 gdb_byte buf[4];
833 unsigned long op;
834 long offset = 0;
835 long vr_saved_offset = 0;
836 int lr_reg = -1;
837 int cr_reg = -1;
838 int vr_reg = -1;
839 int ev_reg = -1;
840 long ev_offset = 0;
841 int vrsave_reg = -1;
842 int reg;
843 int framep = 0;
844 int minimal_toc_loaded = 0;
845 int prev_insn_was_prologue_insn = 1;
846 int num_skip_non_prologue_insns = 0;
847 int r0_contains_arg = 0;
848 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
850
851 /* Attempt to find the end of the prologue when no limit is specified.
852 Note that refine_prologue_limit() has been written so that it may
853 be used to "refine" the limits of non-zero PC values too, but this
854 is only safe if we 1) trust the line information provided by the
855 compiler and 2) iterate enough to actually find the end of the
856 prologue.
857
858 It may become a good idea at some point (for both performance and
859 accuracy) to unconditionally call refine_prologue_limit(). But,
860 until we can make a clear determination that this is beneficial,
861 we'll play it safe and only use it to obtain a limit when none
862 has been specified. */
863 if (lim_pc == 0)
864 lim_pc = refine_prologue_limit (pc, lim_pc);
865
866 memset (fdata, 0, sizeof (struct rs6000_framedata));
867 fdata->saved_gpr = -1;
868 fdata->saved_fpr = -1;
869 fdata->saved_vr = -1;
870 fdata->saved_ev = -1;
871 fdata->alloca_reg = -1;
872 fdata->frameless = 1;
873 fdata->nosavedpc = 1;
874
875 for (;; pc += 4)
876 {
877 /* Sometimes it isn't clear if an instruction is a prologue
878 instruction or not. When we encounter one of these ambiguous
879 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
880 Otherwise, we'll assume that it really is a prologue instruction. */
881 if (prev_insn_was_prologue_insn)
882 last_prologue_pc = pc;
883
884 /* Stop scanning if we've hit the limit. */
885 if (lim_pc != 0 && pc >= lim_pc)
886 break;
887
888 prev_insn_was_prologue_insn = 1;
889
890 /* Fetch the instruction and convert it to an integer. */
891 if (target_read_memory (pc, buf, 4))
892 break;
893 op = extract_signed_integer (buf, 4);
894
895 if ((op & 0xfc1fffff) == 0x7c0802a6)
896 { /* mflr Rx */
897 /* Since shared library / PIC code, which needs to get its
898 address at runtime, can appear to save more than one link
899 register vis:
900
901 *INDENT-OFF*
902 stwu r1,-304(r1)
903 mflr r3
904 bl 0xff570d0 (blrl)
905 stw r30,296(r1)
906 mflr r30
907 stw r31,300(r1)
908 stw r3,308(r1);
909 ...
910 *INDENT-ON*
911
912 remember just the first one, but skip over additional
913 ones. */
914 if (lr_reg < 0)
915 lr_reg = (op & 0x03e00000);
916 if (lr_reg == 0)
917 r0_contains_arg = 0;
918 continue;
919 }
920 else if ((op & 0xfc1fffff) == 0x7c000026)
921 { /* mfcr Rx */
922 cr_reg = (op & 0x03e00000);
923 if (cr_reg == 0)
924 r0_contains_arg = 0;
925 continue;
926
927 }
928 else if ((op & 0xfc1f0000) == 0xd8010000)
929 { /* stfd Rx,NUM(r1) */
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
932 {
933 fdata->saved_fpr = reg;
934 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
935 }
936 continue;
937
938 }
939 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
940 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
941 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
942 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
943 {
944
945 reg = GET_SRC_REG (op);
946 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
947 {
948 fdata->saved_gpr = reg;
949 if ((op & 0xfc1f0003) == 0xf8010000)
950 op &= ~3UL;
951 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
952 }
953 continue;
954
955 }
956 else if ((op & 0xffff0000) == 0x60000000)
957 {
958 /* nop */
959 /* Allow nops in the prologue, but do not consider them to
960 be part of the prologue unless followed by other prologue
961 instructions. */
962 prev_insn_was_prologue_insn = 0;
963 continue;
964
965 }
966 else if ((op & 0xffff0000) == 0x3c000000)
967 { /* addis 0,0,NUM, used
968 for >= 32k frames */
969 fdata->offset = (op & 0x0000ffff) << 16;
970 fdata->frameless = 0;
971 r0_contains_arg = 0;
972 continue;
973
974 }
975 else if ((op & 0xffff0000) == 0x60000000)
976 { /* ori 0,0,NUM, 2nd ha
977 lf of >= 32k frames */
978 fdata->offset |= (op & 0x0000ffff);
979 fdata->frameless = 0;
980 r0_contains_arg = 0;
981 continue;
982
983 }
984 else if (lr_reg >= 0 &&
985 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
986 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
987 /* stw Rx, NUM(r1) */
988 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
989 /* stwu Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
991 { /* where Rx == lr */
992 fdata->lr_offset = offset;
993 fdata->nosavedpc = 0;
994 /* Invalidate lr_reg, but don't set it to -1.
995 That would mean that it had never been set. */
996 lr_reg = -2;
997 if ((op & 0xfc000003) == 0xf8000000 || /* std */
998 (op & 0xfc000000) == 0x90000000) /* stw */
999 {
1000 /* Does not update r1, so add displacement to lr_offset. */
1001 fdata->lr_offset += SIGNED_SHORT (op);
1002 }
1003 continue;
1004
1005 }
1006 else if (cr_reg >= 0 &&
1007 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1008 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1009 /* stw Rx, NUM(r1) */
1010 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1011 /* stwu Rx, NUM(r1) */
1012 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1013 { /* where Rx == cr */
1014 fdata->cr_offset = offset;
1015 /* Invalidate cr_reg, but don't set it to -1.
1016 That would mean that it had never been set. */
1017 cr_reg = -2;
1018 if ((op & 0xfc000003) == 0xf8000000 ||
1019 (op & 0xfc000000) == 0x90000000)
1020 {
1021 /* Does not update r1, so add displacement to cr_offset. */
1022 fdata->cr_offset += SIGNED_SHORT (op);
1023 }
1024 continue;
1025
1026 }
1027 else if (op == 0x48000005)
1028 { /* bl .+4 used in
1029 -mrelocatable */
1030 continue;
1031
1032 }
1033 else if (op == 0x48000004)
1034 { /* b .+4 (xlc) */
1035 break;
1036
1037 }
1038 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1039 in V.4 -mminimal-toc */
1040 (op & 0xffff0000) == 0x3bde0000)
1041 { /* addi 30,30,foo@l */
1042 continue;
1043
1044 }
1045 else if ((op & 0xfc000001) == 0x48000001)
1046 { /* bl foo,
1047 to save fprs??? */
1048
1049 fdata->frameless = 0;
1050 /* Don't skip over the subroutine call if it is not within
1051 the first three instructions of the prologue and either
1052 we have no line table information or the line info tells
1053 us that the subroutine call is not part of the line
1054 associated with the prologue. */
1055 if ((pc - orig_pc) > 8)
1056 {
1057 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1058 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1059
1060 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1061 break;
1062 }
1063
1064 op = read_memory_integer (pc + 4, 4);
1065
1066 /* At this point, make sure this is not a trampoline
1067 function (a function that simply calls another functions,
1068 and nothing else). If the next is not a nop, this branch
1069 was part of the function prologue. */
1070
1071 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1072 break; /* don't skip over
1073 this branch */
1074 continue;
1075
1076 }
1077 /* update stack pointer */
1078 else if ((op & 0xfc1f0000) == 0x94010000)
1079 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1080 fdata->frameless = 0;
1081 fdata->offset = SIGNED_SHORT (op);
1082 offset = fdata->offset;
1083 continue;
1084 }
1085 else if ((op & 0xfc1f016a) == 0x7c01016e)
1086 { /* stwux rX,r1,rY */
1087 /* no way to figure out what r1 is going to be */
1088 fdata->frameless = 0;
1089 offset = fdata->offset;
1090 continue;
1091 }
1092 else if ((op & 0xfc1f0003) == 0xf8010001)
1093 { /* stdu rX,NUM(r1) */
1094 fdata->frameless = 0;
1095 fdata->offset = SIGNED_SHORT (op & ~3UL);
1096 offset = fdata->offset;
1097 continue;
1098 }
1099 else if ((op & 0xfc1f016a) == 0x7c01016a)
1100 { /* stdux rX,r1,rY */
1101 /* no way to figure out what r1 is going to be */
1102 fdata->frameless = 0;
1103 offset = fdata->offset;
1104 continue;
1105 }
1106 /* Load up minimal toc pointer */
1107 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1108 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1109 && !minimal_toc_loaded)
1110 {
1111 minimal_toc_loaded = 1;
1112 continue;
1113
1114 /* move parameters from argument registers to local variable
1115 registers */
1116 }
1117 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1118 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1119 (((op >> 21) & 31) <= 10) &&
1120 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1121 {
1122 continue;
1123
1124 /* store parameters in stack */
1125 }
1126 /* Move parameters from argument registers to temporary register. */
1127 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1128 {
1129 continue;
1130
1131 /* Set up frame pointer */
1132 }
1133 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1134 || op == 0x7c3f0b78)
1135 { /* mr r31, r1 */
1136 fdata->frameless = 0;
1137 framep = 1;
1138 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1139 continue;
1140
1141 /* Another way to set up the frame pointer. */
1142 }
1143 else if ((op & 0xfc1fffff) == 0x38010000)
1144 { /* addi rX, r1, 0x0 */
1145 fdata->frameless = 0;
1146 framep = 1;
1147 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1148 + ((op & ~0x38010000) >> 21));
1149 continue;
1150 }
1151 /* AltiVec related instructions. */
1152 /* Store the vrsave register (spr 256) in another register for
1153 later manipulation, or load a register into the vrsave
1154 register. 2 instructions are used: mfvrsave and
1155 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1156 and mtspr SPR256, Rn. */
1157 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1158 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1159 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1160 {
1161 vrsave_reg = GET_SRC_REG (op);
1162 continue;
1163 }
1164 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1165 {
1166 continue;
1167 }
1168 /* Store the register where vrsave was saved to onto the stack:
1169 rS is the register where vrsave was stored in a previous
1170 instruction. */
1171 /* 100100 sssss 00001 dddddddd dddddddd */
1172 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1173 {
1174 if (vrsave_reg == GET_SRC_REG (op))
1175 {
1176 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1177 vrsave_reg = -1;
1178 }
1179 continue;
1180 }
1181 /* Compute the new value of vrsave, by modifying the register
1182 where vrsave was saved to. */
1183 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1184 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1185 {
1186 continue;
1187 }
1188 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1189 in a pair of insns to save the vector registers on the
1190 stack. */
1191 /* 001110 00000 00000 iiii iiii iiii iiii */
1192 /* 001110 01110 00000 iiii iiii iiii iiii */
1193 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1194 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1195 {
1196 if ((op & 0xffff0000) == 0x38000000)
1197 r0_contains_arg = 0;
1198 li_found_pc = pc;
1199 vr_saved_offset = SIGNED_SHORT (op);
1200
1201 /* This insn by itself is not part of the prologue, unless
1202 if part of the pair of insns mentioned above. So do not
1203 record this insn as part of the prologue yet. */
1204 prev_insn_was_prologue_insn = 0;
1205 }
1206 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1207 /* 011111 sssss 11111 00000 00111001110 */
1208 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1209 {
1210 if (pc == (li_found_pc + 4))
1211 {
1212 vr_reg = GET_SRC_REG (op);
1213 /* If this is the first vector reg to be saved, or if
1214 it has a lower number than others previously seen,
1215 reupdate the frame info. */
1216 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1217 {
1218 fdata->saved_vr = vr_reg;
1219 fdata->vr_offset = vr_saved_offset + offset;
1220 }
1221 vr_saved_offset = -1;
1222 vr_reg = -1;
1223 li_found_pc = 0;
1224 }
1225 }
1226 /* End AltiVec related instructions. */
1227
1228 /* Start BookE related instructions. */
1229 /* Store gen register S at (r31+uimm).
1230 Any register less than r13 is volatile, so we don't care. */
1231 /* 000100 sssss 11111 iiiii 01100100001 */
1232 else if (arch_info->mach == bfd_mach_ppc_e500
1233 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1234 {
1235 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1236 {
1237 unsigned int imm;
1238 ev_reg = GET_SRC_REG (op);
1239 imm = (op >> 11) & 0x1f;
1240 ev_offset = imm * 8;
1241 /* If this is the first vector reg to be saved, or if
1242 it has a lower number than others previously seen,
1243 reupdate the frame info. */
1244 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1245 {
1246 fdata->saved_ev = ev_reg;
1247 fdata->ev_offset = ev_offset + offset;
1248 }
1249 }
1250 continue;
1251 }
1252 /* Store gen register rS at (r1+rB). */
1253 /* 000100 sssss 00001 bbbbb 01100100000 */
1254 else if (arch_info->mach == bfd_mach_ppc_e500
1255 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1256 {
1257 if (pc == (li_found_pc + 4))
1258 {
1259 ev_reg = GET_SRC_REG (op);
1260 /* If this is the first vector reg to be saved, or if
1261 it has a lower number than others previously seen,
1262 reupdate the frame info. */
1263 /* We know the contents of rB from the previous instruction. */
1264 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1265 {
1266 fdata->saved_ev = ev_reg;
1267 fdata->ev_offset = vr_saved_offset + offset;
1268 }
1269 vr_saved_offset = -1;
1270 ev_reg = -1;
1271 li_found_pc = 0;
1272 }
1273 continue;
1274 }
1275 /* Store gen register r31 at (rA+uimm). */
1276 /* 000100 11111 aaaaa iiiii 01100100001 */
1277 else if (arch_info->mach == bfd_mach_ppc_e500
1278 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1279 {
1280 /* Wwe know that the source register is 31 already, but
1281 it can't hurt to compute it. */
1282 ev_reg = GET_SRC_REG (op);
1283 ev_offset = ((op >> 11) & 0x1f) * 8;
1284 /* If this is the first vector reg to be saved, or if
1285 it has a lower number than others previously seen,
1286 reupdate the frame info. */
1287 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1288 {
1289 fdata->saved_ev = ev_reg;
1290 fdata->ev_offset = ev_offset + offset;
1291 }
1292
1293 continue;
1294 }
1295 /* Store gen register S at (r31+r0).
1296 Store param on stack when offset from SP bigger than 4 bytes. */
1297 /* 000100 sssss 11111 00000 01100100000 */
1298 else if (arch_info->mach == bfd_mach_ppc_e500
1299 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1300 {
1301 if (pc == (li_found_pc + 4))
1302 {
1303 if ((op & 0x03e00000) >= 0x01a00000)
1304 {
1305 ev_reg = GET_SRC_REG (op);
1306 /* If this is the first vector reg to be saved, or if
1307 it has a lower number than others previously seen,
1308 reupdate the frame info. */
1309 /* We know the contents of r0 from the previous
1310 instruction. */
1311 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1312 {
1313 fdata->saved_ev = ev_reg;
1314 fdata->ev_offset = vr_saved_offset + offset;
1315 }
1316 ev_reg = -1;
1317 }
1318 vr_saved_offset = -1;
1319 li_found_pc = 0;
1320 continue;
1321 }
1322 }
1323 /* End BookE related instructions. */
1324
1325 else
1326 {
1327 /* Not a recognized prologue instruction.
1328 Handle optimizer code motions into the prologue by continuing
1329 the search if we have no valid frame yet or if the return
1330 address is not yet saved in the frame. */
1331 if (fdata->frameless == 0
1332 && (lr_reg == -1 || fdata->nosavedpc == 0))
1333 break;
1334
1335 if (op == 0x4e800020 /* blr */
1336 || op == 0x4e800420) /* bctr */
1337 /* Do not scan past epilogue in frameless functions or
1338 trampolines. */
1339 break;
1340 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1341 /* Never skip branches. */
1342 break;
1343
1344 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1345 /* Do not scan too many insns, scanning insns is expensive with
1346 remote targets. */
1347 break;
1348
1349 /* Continue scanning. */
1350 prev_insn_was_prologue_insn = 0;
1351 continue;
1352 }
1353 }
1354
1355 #if 0
1356 /* I have problems with skipping over __main() that I need to address
1357 * sometime. Previously, I used to use misc_function_vector which
1358 * didn't work as well as I wanted to be. -MGO */
1359
1360 /* If the first thing after skipping a prolog is a branch to a function,
1361 this might be a call to an initializer in main(), introduced by gcc2.
1362 We'd like to skip over it as well. Fortunately, xlc does some extra
1363 work before calling a function right after a prologue, thus we can
1364 single out such gcc2 behaviour. */
1365
1366
1367 if ((op & 0xfc000001) == 0x48000001)
1368 { /* bl foo, an initializer function? */
1369 op = read_memory_integer (pc + 4, 4);
1370
1371 if (op == 0x4def7b82)
1372 { /* cror 0xf, 0xf, 0xf (nop) */
1373
1374 /* Check and see if we are in main. If so, skip over this
1375 initializer function as well. */
1376
1377 tmp = find_pc_misc_function (pc);
1378 if (tmp >= 0
1379 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1380 return pc + 8;
1381 }
1382 }
1383 #endif /* 0 */
1384
1385 fdata->offset = -fdata->offset;
1386 return last_prologue_pc;
1387 }
1388
1389
1390 /*************************************************************************
1391 Support for creating pushing a dummy frame into the stack, and popping
1392 frames, etc.
1393 *************************************************************************/
1394
1395
1396 /* All the ABI's require 16 byte alignment. */
1397 static CORE_ADDR
1398 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1399 {
1400 return (addr & -16);
1401 }
1402
1403 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1404 the first eight words of the argument list (that might be less than
1405 eight parameters if some parameters occupy more than one word) are
1406 passed in r3..r10 registers. float and double parameters are
1407 passed in fpr's, in addition to that. Rest of the parameters if any
1408 are passed in user stack. There might be cases in which half of the
1409 parameter is copied into registers, the other half is pushed into
1410 stack.
1411
1412 Stack must be aligned on 64-bit boundaries when synthesizing
1413 function calls.
1414
1415 If the function is returning a structure, then the return address is passed
1416 in r3, then the first 7 words of the parameters can be passed in registers,
1417 starting from r4. */
1418
1419 static CORE_ADDR
1420 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1421 struct regcache *regcache, CORE_ADDR bp_addr,
1422 int nargs, struct value **args, CORE_ADDR sp,
1423 int struct_return, CORE_ADDR struct_addr)
1424 {
1425 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1426 int ii;
1427 int len = 0;
1428 int argno; /* current argument number */
1429 int argbytes; /* current argument byte */
1430 gdb_byte tmp_buffer[50];
1431 int f_argno = 0; /* current floating point argno */
1432 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1433 CORE_ADDR func_addr = find_function_addr (function, NULL);
1434
1435 struct value *arg = 0;
1436 struct type *type;
1437
1438 CORE_ADDR saved_sp;
1439
1440 /* The calling convention this function implements assumes the
1441 processor has floating-point registers. We shouldn't be using it
1442 on PPC variants that lack them. */
1443 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1444
1445 /* The first eight words of ther arguments are passed in registers.
1446 Copy them appropriately. */
1447 ii = 0;
1448
1449 /* If the function is returning a `struct', then the first word
1450 (which will be passed in r3) is used for struct return address.
1451 In that case we should advance one word and start from r4
1452 register to copy parameters. */
1453 if (struct_return)
1454 {
1455 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1456 struct_addr);
1457 ii++;
1458 }
1459
1460 /*
1461 effectively indirect call... gcc does...
1462
1463 return_val example( float, int);
1464
1465 eabi:
1466 float in fp0, int in r3
1467 offset of stack on overflow 8/16
1468 for varargs, must go by type.
1469 power open:
1470 float in r3&r4, int in r5
1471 offset of stack on overflow different
1472 both:
1473 return in r3 or f0. If no float, must study how gcc emulates floats;
1474 pay attention to arg promotion.
1475 User may have to cast\args to handle promotion correctly
1476 since gdb won't know if prototype supplied or not.
1477 */
1478
1479 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1480 {
1481 int reg_size = register_size (current_gdbarch, ii + 3);
1482
1483 arg = args[argno];
1484 type = check_typedef (value_type (arg));
1485 len = TYPE_LENGTH (type);
1486
1487 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1488 {
1489
1490 /* Floating point arguments are passed in fpr's, as well as gpr's.
1491 There are 13 fpr's reserved for passing parameters. At this point
1492 there is no way we would run out of them. */
1493
1494 gdb_assert (len <= 8);
1495
1496 regcache_cooked_write (regcache,
1497 tdep->ppc_fp0_regnum + 1 + f_argno,
1498 value_contents (arg));
1499 ++f_argno;
1500 }
1501
1502 if (len > reg_size)
1503 {
1504
1505 /* Argument takes more than one register. */
1506 while (argbytes < len)
1507 {
1508 gdb_byte word[MAX_REGISTER_SIZE];
1509 memset (word, 0, reg_size);
1510 memcpy (word,
1511 ((char *) value_contents (arg)) + argbytes,
1512 (len - argbytes) > reg_size
1513 ? reg_size : len - argbytes);
1514 regcache_cooked_write (regcache,
1515 tdep->ppc_gp0_regnum + 3 + ii,
1516 word);
1517 ++ii, argbytes += reg_size;
1518
1519 if (ii >= 8)
1520 goto ran_out_of_registers_for_arguments;
1521 }
1522 argbytes = 0;
1523 --ii;
1524 }
1525 else
1526 {
1527 /* Argument can fit in one register. No problem. */
1528 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1529 gdb_byte word[MAX_REGISTER_SIZE];
1530
1531 memset (word, 0, reg_size);
1532 memcpy (word, value_contents (arg), len);
1533 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1534 }
1535 ++argno;
1536 }
1537
1538 ran_out_of_registers_for_arguments:
1539
1540 saved_sp = read_sp ();
1541
1542 /* Location for 8 parameters are always reserved. */
1543 sp -= wordsize * 8;
1544
1545 /* Another six words for back chain, TOC register, link register, etc. */
1546 sp -= wordsize * 6;
1547
1548 /* Stack pointer must be quadword aligned. */
1549 sp &= -16;
1550
1551 /* If there are more arguments, allocate space for them in
1552 the stack, then push them starting from the ninth one. */
1553
1554 if ((argno < nargs) || argbytes)
1555 {
1556 int space = 0, jj;
1557
1558 if (argbytes)
1559 {
1560 space += ((len - argbytes + 3) & -4);
1561 jj = argno + 1;
1562 }
1563 else
1564 jj = argno;
1565
1566 for (; jj < nargs; ++jj)
1567 {
1568 struct value *val = args[jj];
1569 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1570 }
1571
1572 /* Add location required for the rest of the parameters. */
1573 space = (space + 15) & -16;
1574 sp -= space;
1575
1576 /* This is another instance we need to be concerned about
1577 securing our stack space. If we write anything underneath %sp
1578 (r1), we might conflict with the kernel who thinks he is free
1579 to use this area. So, update %sp first before doing anything
1580 else. */
1581
1582 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1583
1584 /* If the last argument copied into the registers didn't fit there
1585 completely, push the rest of it into stack. */
1586
1587 if (argbytes)
1588 {
1589 write_memory (sp + 24 + (ii * 4),
1590 value_contents (arg) + argbytes,
1591 len - argbytes);
1592 ++argno;
1593 ii += ((len - argbytes + 3) & -4) / 4;
1594 }
1595
1596 /* Push the rest of the arguments into stack. */
1597 for (; argno < nargs; ++argno)
1598 {
1599
1600 arg = args[argno];
1601 type = check_typedef (value_type (arg));
1602 len = TYPE_LENGTH (type);
1603
1604
1605 /* Float types should be passed in fpr's, as well as in the
1606 stack. */
1607 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1608 {
1609
1610 gdb_assert (len <= 8);
1611
1612 regcache_cooked_write (regcache,
1613 tdep->ppc_fp0_regnum + 1 + f_argno,
1614 value_contents (arg));
1615 ++f_argno;
1616 }
1617
1618 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1619 ii += ((len + 3) & -4) / 4;
1620 }
1621 }
1622
1623 /* Set the stack pointer. According to the ABI, the SP is meant to
1624 be set _before_ the corresponding stack space is used. On AIX,
1625 this even applies when the target has been completely stopped!
1626 Not doing this can lead to conflicts with the kernel which thinks
1627 that it still has control over this not-yet-allocated stack
1628 region. */
1629 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1630
1631 /* Set back chain properly. */
1632 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1633 write_memory (sp, tmp_buffer, 4);
1634
1635 /* Point the inferior function call's return address at the dummy's
1636 breakpoint. */
1637 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1638
1639 /* Set the TOC register, get the value from the objfile reader
1640 which, in turn, gets it from the VMAP table. */
1641 if (rs6000_find_toc_address_hook != NULL)
1642 {
1643 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1644 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1645 }
1646
1647 target_store_registers (-1);
1648 return sp;
1649 }
1650
1651 /* PowerOpen always puts structures in memory. Vectors, which were
1652 added later, do get returned in a register though. */
1653
1654 static int
1655 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1656 {
1657 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1658 && TYPE_VECTOR (value_type))
1659 return 0;
1660 return 1;
1661 }
1662
1663 static void
1664 rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1665 gdb_byte *valbuf)
1666 {
1667 int offset = 0;
1668 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1669
1670 /* The calling convention this function implements assumes the
1671 processor has floating-point registers. We shouldn't be using it
1672 on PPC variants that lack them. */
1673 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1674
1675 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1676 {
1677
1678 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1679 We need to truncate the return value into float size (4 byte) if
1680 necessary. */
1681
1682 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1683 (tdep->ppc_fp0_regnum + 1)],
1684 builtin_type_double,
1685 valbuf,
1686 valtype);
1687 }
1688 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1689 && TYPE_LENGTH (valtype) == 16
1690 && TYPE_VECTOR (valtype))
1691 {
1692 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1693 TYPE_LENGTH (valtype));
1694 }
1695 else
1696 {
1697 /* return value is copied starting from r3. */
1698 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1699 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1700 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1701
1702 memcpy (valbuf,
1703 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1704 TYPE_LENGTH (valtype));
1705 }
1706 }
1707
1708 /* Return whether handle_inferior_event() should proceed through code
1709 starting at PC in function NAME when stepping.
1710
1711 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1712 handle memory references that are too distant to fit in instructions
1713 generated by the compiler. For example, if 'foo' in the following
1714 instruction:
1715
1716 lwz r9,foo(r2)
1717
1718 is greater than 32767, the linker might replace the lwz with a branch to
1719 somewhere in @FIX1 that does the load in 2 instructions and then branches
1720 back to where execution should continue.
1721
1722 GDB should silently step over @FIX code, just like AIX dbx does.
1723 Unfortunately, the linker uses the "b" instruction for the
1724 branches, meaning that the link register doesn't get set.
1725 Therefore, GDB's usual step_over_function () mechanism won't work.
1726
1727 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1728 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1729 @FIX code. */
1730
1731 int
1732 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1733 {
1734 return name && !strncmp (name, "@FIX", 4);
1735 }
1736
1737 /* Skip code that the user doesn't want to see when stepping:
1738
1739 1. Indirect function calls use a piece of trampoline code to do context
1740 switching, i.e. to set the new TOC table. Skip such code if we are on
1741 its first instruction (as when we have single-stepped to here).
1742
1743 2. Skip shared library trampoline code (which is different from
1744 indirect function call trampolines).
1745
1746 3. Skip bigtoc fixup code.
1747
1748 Result is desired PC to step until, or NULL if we are not in
1749 code that should be skipped. */
1750
1751 CORE_ADDR
1752 rs6000_skip_trampoline_code (CORE_ADDR pc)
1753 {
1754 unsigned int ii, op;
1755 int rel;
1756 CORE_ADDR solib_target_pc;
1757 struct minimal_symbol *msymbol;
1758
1759 static unsigned trampoline_code[] =
1760 {
1761 0x800b0000, /* l r0,0x0(r11) */
1762 0x90410014, /* st r2,0x14(r1) */
1763 0x7c0903a6, /* mtctr r0 */
1764 0x804b0004, /* l r2,0x4(r11) */
1765 0x816b0008, /* l r11,0x8(r11) */
1766 0x4e800420, /* bctr */
1767 0x4e800020, /* br */
1768 0
1769 };
1770
1771 /* Check for bigtoc fixup code. */
1772 msymbol = lookup_minimal_symbol_by_pc (pc);
1773 if (msymbol
1774 && rs6000_in_solib_return_trampoline (pc,
1775 DEPRECATED_SYMBOL_NAME (msymbol)))
1776 {
1777 /* Double-check that the third instruction from PC is relative "b". */
1778 op = read_memory_integer (pc + 8, 4);
1779 if ((op & 0xfc000003) == 0x48000000)
1780 {
1781 /* Extract bits 6-29 as a signed 24-bit relative word address and
1782 add it to the containing PC. */
1783 rel = ((int)(op << 6) >> 6);
1784 return pc + 8 + rel;
1785 }
1786 }
1787
1788 /* If pc is in a shared library trampoline, return its target. */
1789 solib_target_pc = find_solib_trampoline_target (pc);
1790 if (solib_target_pc)
1791 return solib_target_pc;
1792
1793 for (ii = 0; trampoline_code[ii]; ++ii)
1794 {
1795 op = read_memory_integer (pc + (ii * 4), 4);
1796 if (op != trampoline_code[ii])
1797 return 0;
1798 }
1799 ii = read_register (11); /* r11 holds destination addr */
1800 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1801 return pc;
1802 }
1803
1804 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1805 isn't available with that word size, return 0. */
1806
1807 static int
1808 regsize (const struct reg *reg, int wordsize)
1809 {
1810 return wordsize == 8 ? reg->sz64 : reg->sz32;
1811 }
1812
1813 /* Return the name of register number N, or null if no such register exists
1814 in the current architecture. */
1815
1816 static const char *
1817 rs6000_register_name (int n)
1818 {
1819 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1820 const struct reg *reg = tdep->regs + n;
1821
1822 if (!regsize (reg, tdep->wordsize))
1823 return NULL;
1824 return reg->name;
1825 }
1826
1827 /* Return the GDB type object for the "standard" data type
1828 of data in register N. */
1829
1830 static struct type *
1831 rs6000_register_type (struct gdbarch *gdbarch, int n)
1832 {
1833 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1834 const struct reg *reg = tdep->regs + n;
1835
1836 if (reg->fpr)
1837 return builtin_type_double;
1838 else
1839 {
1840 int size = regsize (reg, tdep->wordsize);
1841 switch (size)
1842 {
1843 case 0:
1844 return builtin_type_int0;
1845 case 4:
1846 return builtin_type_uint32;
1847 case 8:
1848 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1849 return builtin_type_vec64;
1850 else
1851 return builtin_type_uint64;
1852 break;
1853 case 16:
1854 return builtin_type_vec128;
1855 break;
1856 default:
1857 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1858 n, size);
1859 }
1860 }
1861 }
1862
1863 /* Is REGNUM a member of REGGROUP? */
1864 static int
1865 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1866 struct reggroup *group)
1867 {
1868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1869 int float_p;
1870 int vector_p;
1871 int general_p;
1872
1873 if (REGISTER_NAME (regnum) == NULL
1874 || *REGISTER_NAME (regnum) == '\0')
1875 return 0;
1876 if (group == all_reggroup)
1877 return 1;
1878
1879 float_p = (regnum == tdep->ppc_fpscr_regnum
1880 || (regnum >= tdep->ppc_fp0_regnum
1881 && regnum < tdep->ppc_fp0_regnum + 32));
1882 if (group == float_reggroup)
1883 return float_p;
1884
1885 vector_p = ((tdep->ppc_vr0_regnum >= 0
1886 && regnum >= tdep->ppc_vr0_regnum
1887 && regnum < tdep->ppc_vr0_regnum + 32)
1888 || (tdep->ppc_ev0_regnum >= 0
1889 && regnum >= tdep->ppc_ev0_regnum
1890 && regnum < tdep->ppc_ev0_regnum + 32)
1891 || regnum == tdep->ppc_vrsave_regnum
1892 || regnum == tdep->ppc_acc_regnum
1893 || regnum == tdep->ppc_spefscr_regnum);
1894 if (group == vector_reggroup)
1895 return vector_p;
1896
1897 /* Note that PS aka MSR isn't included - it's a system register (and
1898 besides, due to GCC's CFI foobar you do not want to restore
1899 it). */
1900 general_p = ((regnum >= tdep->ppc_gp0_regnum
1901 && regnum < tdep->ppc_gp0_regnum + 32)
1902 || regnum == tdep->ppc_toc_regnum
1903 || regnum == tdep->ppc_cr_regnum
1904 || regnum == tdep->ppc_lr_regnum
1905 || regnum == tdep->ppc_ctr_regnum
1906 || regnum == tdep->ppc_xer_regnum
1907 || regnum == PC_REGNUM);
1908 if (group == general_reggroup)
1909 return general_p;
1910
1911 if (group == save_reggroup || group == restore_reggroup)
1912 return general_p || vector_p || float_p;
1913
1914 return 0;
1915 }
1916
1917 /* The register format for RS/6000 floating point registers is always
1918 double, we need a conversion if the memory format is float. */
1919
1920 static int
1921 rs6000_convert_register_p (int regnum, struct type *type)
1922 {
1923 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1924
1925 return (reg->fpr
1926 && TYPE_CODE (type) == TYPE_CODE_FLT
1927 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
1928 }
1929
1930 static void
1931 rs6000_register_to_value (struct frame_info *frame,
1932 int regnum,
1933 struct type *type,
1934 gdb_byte *to)
1935 {
1936 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1937 gdb_byte from[MAX_REGISTER_SIZE];
1938
1939 gdb_assert (reg->fpr);
1940 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1941
1942 get_frame_register (frame, regnum, from);
1943 convert_typed_floating (from, builtin_type_double, to, type);
1944 }
1945
1946 static void
1947 rs6000_value_to_register (struct frame_info *frame,
1948 int regnum,
1949 struct type *type,
1950 const gdb_byte *from)
1951 {
1952 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1953 gdb_byte to[MAX_REGISTER_SIZE];
1954
1955 gdb_assert (reg->fpr);
1956 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1957
1958 convert_typed_floating (from, type, to, builtin_type_double);
1959 put_frame_register (frame, regnum, to);
1960 }
1961
1962 /* Move SPE vector register values between a 64-bit buffer and the two
1963 32-bit raw register halves in a regcache. This function handles
1964 both splitting a 64-bit value into two 32-bit halves, and joining
1965 two halves into a whole 64-bit value, depending on the function
1966 passed as the MOVE argument.
1967
1968 EV_REG must be the number of an SPE evN vector register --- a
1969 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1970 64-bit buffer.
1971
1972 Call MOVE once for each 32-bit half of that register, passing
1973 REGCACHE, the number of the raw register corresponding to that
1974 half, and the address of the appropriate half of BUFFER.
1975
1976 For example, passing 'regcache_raw_read' as the MOVE function will
1977 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1978 'regcache_raw_supply' will supply the contents of BUFFER to the
1979 appropriate pair of raw registers in REGCACHE.
1980
1981 You may need to cast away some 'const' qualifiers when passing
1982 MOVE, since this function can't tell at compile-time which of
1983 REGCACHE or BUFFER is acting as the source of the data. If C had
1984 co-variant type qualifiers, ... */
1985 static void
1986 e500_move_ev_register (void (*move) (struct regcache *regcache,
1987 int regnum, gdb_byte *buf),
1988 struct regcache *regcache, int ev_reg,
1989 gdb_byte *buffer)
1990 {
1991 struct gdbarch *arch = get_regcache_arch (regcache);
1992 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1993 int reg_index;
1994 gdb_byte *byte_buffer = buffer;
1995
1996 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1997 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1998
1999 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2000
2001 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2002 {
2003 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2004 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2005 }
2006 else
2007 {
2008 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2009 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2010 }
2011 }
2012
2013 static void
2014 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2015 int reg_nr, gdb_byte *buffer)
2016 {
2017 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2019
2020 gdb_assert (regcache_arch == gdbarch);
2021
2022 if (tdep->ppc_ev0_regnum <= reg_nr
2023 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2024 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2025 else
2026 internal_error (__FILE__, __LINE__,
2027 _("e500_pseudo_register_read: "
2028 "called on unexpected register '%s' (%d)"),
2029 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2030 }
2031
2032 static void
2033 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2034 int reg_nr, const gdb_byte *buffer)
2035 {
2036 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2038
2039 gdb_assert (regcache_arch == gdbarch);
2040
2041 if (tdep->ppc_ev0_regnum <= reg_nr
2042 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2043 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2044 regcache_raw_write,
2045 regcache, reg_nr, (gdb_byte *) buffer);
2046 else
2047 internal_error (__FILE__, __LINE__,
2048 _("e500_pseudo_register_read: "
2049 "called on unexpected register '%s' (%d)"),
2050 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2051 }
2052
2053 /* The E500 needs a custom reggroup function: it has anonymous raw
2054 registers, and default_register_reggroup_p assumes that anonymous
2055 registers are not members of any reggroup. */
2056 static int
2057 e500_register_reggroup_p (struct gdbarch *gdbarch,
2058 int regnum,
2059 struct reggroup *group)
2060 {
2061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2062
2063 /* The save and restore register groups need to include the
2064 upper-half registers, even though they're anonymous. */
2065 if ((group == save_reggroup
2066 || group == restore_reggroup)
2067 && (tdep->ppc_ev0_upper_regnum <= regnum
2068 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2069 return 1;
2070
2071 /* In all other regards, the default reggroup definition is fine. */
2072 return default_register_reggroup_p (gdbarch, regnum, group);
2073 }
2074
2075 /* Convert a DBX STABS register number to a GDB register number. */
2076 static int
2077 rs6000_stab_reg_to_regnum (int num)
2078 {
2079 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2080
2081 if (0 <= num && num <= 31)
2082 return tdep->ppc_gp0_regnum + num;
2083 else if (32 <= num && num <= 63)
2084 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2085 specifies registers the architecture doesn't have? Our
2086 callers don't check the value we return. */
2087 return tdep->ppc_fp0_regnum + (num - 32);
2088 else if (77 <= num && num <= 108)
2089 return tdep->ppc_vr0_regnum + (num - 77);
2090 else if (1200 <= num && num < 1200 + 32)
2091 return tdep->ppc_ev0_regnum + (num - 1200);
2092 else
2093 switch (num)
2094 {
2095 case 64:
2096 return tdep->ppc_mq_regnum;
2097 case 65:
2098 return tdep->ppc_lr_regnum;
2099 case 66:
2100 return tdep->ppc_ctr_regnum;
2101 case 76:
2102 return tdep->ppc_xer_regnum;
2103 case 109:
2104 return tdep->ppc_vrsave_regnum;
2105 case 110:
2106 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2107 case 111:
2108 return tdep->ppc_acc_regnum;
2109 case 112:
2110 return tdep->ppc_spefscr_regnum;
2111 default:
2112 return num;
2113 }
2114 }
2115
2116
2117 /* Convert a Dwarf 2 register number to a GDB register number. */
2118 static int
2119 rs6000_dwarf2_reg_to_regnum (int num)
2120 {
2121 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2122
2123 if (0 <= num && num <= 31)
2124 return tdep->ppc_gp0_regnum + num;
2125 else if (32 <= num && num <= 63)
2126 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2127 specifies registers the architecture doesn't have? Our
2128 callers don't check the value we return. */
2129 return tdep->ppc_fp0_regnum + (num - 32);
2130 else if (1124 <= num && num < 1124 + 32)
2131 return tdep->ppc_vr0_regnum + (num - 1124);
2132 else if (1200 <= num && num < 1200 + 32)
2133 return tdep->ppc_ev0_regnum + (num - 1200);
2134 else
2135 switch (num)
2136 {
2137 case 67:
2138 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2139 case 99:
2140 return tdep->ppc_acc_regnum;
2141 case 100:
2142 return tdep->ppc_mq_regnum;
2143 case 101:
2144 return tdep->ppc_xer_regnum;
2145 case 108:
2146 return tdep->ppc_lr_regnum;
2147 case 109:
2148 return tdep->ppc_ctr_regnum;
2149 case 356:
2150 return tdep->ppc_vrsave_regnum;
2151 case 612:
2152 return tdep->ppc_spefscr_regnum;
2153 default:
2154 return num;
2155 }
2156 }
2157
2158
2159 static void
2160 rs6000_store_return_value (struct type *type,
2161 struct regcache *regcache,
2162 const gdb_byte *valbuf)
2163 {
2164 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2166 int regnum = -1;
2167
2168 /* The calling convention this function implements assumes the
2169 processor has floating-point registers. We shouldn't be using it
2170 on PPC variants that lack them. */
2171 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2172
2173 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2174 /* Floating point values are returned starting from FPR1 and up.
2175 Say a double_double_double type could be returned in
2176 FPR1/FPR2/FPR3 triple. */
2177 regnum = tdep->ppc_fp0_regnum + 1;
2178 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2179 {
2180 if (TYPE_LENGTH (type) == 16
2181 && TYPE_VECTOR (type))
2182 regnum = tdep->ppc_vr0_regnum + 2;
2183 else
2184 internal_error (__FILE__, __LINE__,
2185 _("rs6000_store_return_value: "
2186 "unexpected array return type"));
2187 }
2188 else
2189 /* Everything else is returned in GPR3 and up. */
2190 regnum = tdep->ppc_gp0_regnum + 3;
2191
2192 {
2193 size_t bytes_written = 0;
2194
2195 while (bytes_written < TYPE_LENGTH (type))
2196 {
2197 /* How much of this value can we write to this register? */
2198 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2199 register_size (gdbarch, regnum));
2200 regcache_cooked_write_part (regcache, regnum,
2201 0, bytes_to_write,
2202 valbuf + bytes_written);
2203 regnum++;
2204 bytes_written += bytes_to_write;
2205 }
2206 }
2207 }
2208
2209
2210 /* Extract from an array REGBUF containing the (raw) register state
2211 the address in which a function should return its structure value,
2212 as a CORE_ADDR (or an expression that can be used as one). */
2213
2214 static CORE_ADDR
2215 rs6000_extract_struct_value_address (struct regcache *regcache)
2216 {
2217 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2218 function call GDB knows the address of the struct return value
2219 and hence, should not need to call this function. Unfortunately,
2220 the current call_function_by_hand() code only saves the most
2221 recent struct address leading to occasional calls. The code
2222 should instead maintain a stack of such addresses (in the dummy
2223 frame object). */
2224 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2225 really got no idea where the return value is being stored. While
2226 r3, on function entry, contained the address it will have since
2227 been reused (scratch) and hence wouldn't be valid */
2228 return 0;
2229 }
2230
2231 /* Hook called when a new child process is started. */
2232
2233 void
2234 rs6000_create_inferior (int pid)
2235 {
2236 if (rs6000_set_host_arch_hook)
2237 rs6000_set_host_arch_hook (pid);
2238 }
2239 \f
2240 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2241
2242 Usually a function pointer's representation is simply the address
2243 of the function. On the RS/6000 however, a function pointer is
2244 represented by a pointer to a TOC entry. This TOC entry contains
2245 three words, the first word is the address of the function, the
2246 second word is the TOC pointer (r2), and the third word is the
2247 static chain value. Throughout GDB it is currently assumed that a
2248 function pointer contains the address of the function, which is not
2249 easy to fix. In addition, the conversion of a function address to
2250 a function pointer would require allocation of a TOC entry in the
2251 inferior's memory space, with all its drawbacks. To be able to
2252 call C++ virtual methods in the inferior (which are called via
2253 function pointers), find_function_addr uses this function to get the
2254 function address from a function pointer. */
2255
2256 /* Return real function address if ADDR (a function pointer) is in the data
2257 space and is therefore a special function pointer. */
2258
2259 static CORE_ADDR
2260 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2261 CORE_ADDR addr,
2262 struct target_ops *targ)
2263 {
2264 struct obj_section *s;
2265
2266 s = find_pc_section (addr);
2267 if (s && s->the_bfd_section->flags & SEC_CODE)
2268 return addr;
2269
2270 /* ADDR is in the data space, so it's a special function pointer. */
2271 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2272 }
2273 \f
2274
2275 /* Handling the various POWER/PowerPC variants. */
2276
2277
2278 /* The arrays here called registers_MUMBLE hold information about available
2279 registers.
2280
2281 For each family of PPC variants, I've tried to isolate out the
2282 common registers and put them up front, so that as long as you get
2283 the general family right, GDB will correctly identify the registers
2284 common to that family. The common register sets are:
2285
2286 For the 60x family: hid0 hid1 iabr dabr pir
2287
2288 For the 505 and 860 family: eie eid nri
2289
2290 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2291 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2292 pbu1 pbl2 pbu2
2293
2294 Most of these register groups aren't anything formal. I arrived at
2295 them by looking at the registers that occurred in more than one
2296 processor.
2297
2298 Note: kevinb/2002-04-30: Support for the fpscr register was added
2299 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2300 for Power. For PowerPC, slot 70 was unused and was already in the
2301 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2302 slot 70 was being used for "mq", so the next available slot (71)
2303 was chosen. It would have been nice to be able to make the
2304 register numbers the same across processor cores, but this wasn't
2305 possible without either 1) renumbering some registers for some
2306 processors or 2) assigning fpscr to a really high slot that's
2307 larger than any current register number. Doing (1) is bad because
2308 existing stubs would break. Doing (2) is undesirable because it
2309 would introduce a really large gap between fpscr and the rest of
2310 the registers for most processors. */
2311
2312 /* Convenience macros for populating register arrays. */
2313
2314 /* Within another macro, convert S to a string. */
2315
2316 #define STR(s) #s
2317
2318 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2319 and 64 bits on 64-bit systems. */
2320 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2321
2322 /* Return a struct reg defining register NAME that's 32 bits on all
2323 systems. */
2324 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2325
2326 /* Return a struct reg defining register NAME that's 64 bits on all
2327 systems. */
2328 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2329
2330 /* Return a struct reg defining register NAME that's 128 bits on all
2331 systems. */
2332 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2333
2334 /* Return a struct reg defining floating-point register NAME. */
2335 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2336
2337 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2338 long on all systems. */
2339 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2340
2341 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2342 systems and that doesn't exist on 64-bit systems. */
2343 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2344
2345 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2346 systems and that doesn't exist on 32-bit systems. */
2347 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2348
2349 /* Return a struct reg placeholder for a register that doesn't exist. */
2350 #define R0 { 0, 0, 0, 0, 0, -1 }
2351
2352 /* Return a struct reg defining an anonymous raw register that's 32
2353 bits on all systems. */
2354 #define A4 { 0, 4, 4, 0, 0, -1 }
2355
2356 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2357 32-bit systems and 64 bits on 64-bit systems. */
2358 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2359
2360 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2361 all systems. */
2362 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2363
2364 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2365 all systems, and whose SPR number is NUMBER. */
2366 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2367
2368 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2369 64-bit systems and that doesn't exist on 32-bit systems. */
2370 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2371
2372 /* UISA registers common across all architectures, including POWER. */
2373
2374 #define COMMON_UISA_REGS \
2375 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2376 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2377 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2378 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2379 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2380 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2381 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2382 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2383 /* 64 */ R(pc), R(ps)
2384
2385 /* UISA-level SPRs for PowerPC. */
2386 #define PPC_UISA_SPRS \
2387 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2388
2389 /* UISA-level SPRs for PowerPC without floating point support. */
2390 #define PPC_UISA_NOFP_SPRS \
2391 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2392
2393 /* Segment registers, for PowerPC. */
2394 #define PPC_SEGMENT_REGS \
2395 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2396 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2397 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2398 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2399
2400 /* OEA SPRs for PowerPC. */
2401 #define PPC_OEA_SPRS \
2402 /* 87 */ S4(pvr), \
2403 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2404 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2405 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2406 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2407 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2408 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2409 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2410 /* 116 */ S4(dec), S(dabr), S4(ear)
2411
2412 /* AltiVec registers. */
2413 #define PPC_ALTIVEC_REGS \
2414 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2415 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2416 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2417 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2418 /*151*/R4(vscr), R4(vrsave)
2419
2420
2421 /* On machines supporting the SPE APU, the general-purpose registers
2422 are 64 bits long. There are SIMD vector instructions to treat them
2423 as pairs of floats, but the rest of the instruction set treats them
2424 as 32-bit registers, and only operates on their lower halves.
2425
2426 In the GDB regcache, we treat their high and low halves as separate
2427 registers. The low halves we present as the general-purpose
2428 registers, and then we have pseudo-registers that stitch together
2429 the upper and lower halves and present them as pseudo-registers. */
2430
2431 /* SPE GPR lower halves --- raw registers. */
2432 #define PPC_SPE_GP_REGS \
2433 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2434 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2435 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2436 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2437
2438 /* SPE GPR upper halves --- anonymous raw registers. */
2439 #define PPC_SPE_UPPER_GP_REGS \
2440 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2441 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2442 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2443 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2444
2445 /* SPE GPR vector registers --- pseudo registers based on underlying
2446 gprs and the anonymous upper half raw registers. */
2447 #define PPC_EV_PSEUDO_REGS \
2448 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2449 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2450 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2451 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2452
2453 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2454 user-level SPR's. */
2455 static const struct reg registers_power[] =
2456 {
2457 COMMON_UISA_REGS,
2458 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2459 /* 71 */ R4(fpscr)
2460 };
2461
2462 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2463 view of the PowerPC. */
2464 static const struct reg registers_powerpc[] =
2465 {
2466 COMMON_UISA_REGS,
2467 PPC_UISA_SPRS,
2468 PPC_ALTIVEC_REGS
2469 };
2470
2471 /* IBM PowerPC 403.
2472
2473 Some notes about the "tcr" special-purpose register:
2474 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2475 403's programmable interval timer, fixed interval timer, and
2476 watchdog timer.
2477 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2478 watchdog timer, and nothing else.
2479
2480 Some of the fields are similar between the two, but they're not
2481 compatible with each other. Since the two variants have different
2482 registers, with different numbers, but the same name, we can't
2483 splice the register name to get the SPR number. */
2484 static const struct reg registers_403[] =
2485 {
2486 COMMON_UISA_REGS,
2487 PPC_UISA_SPRS,
2488 PPC_SEGMENT_REGS,
2489 PPC_OEA_SPRS,
2490 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2491 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2492 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2493 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2494 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2495 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2496 };
2497
2498 /* IBM PowerPC 403GC.
2499 See the comments about 'tcr' for the 403, above. */
2500 static const struct reg registers_403GC[] =
2501 {
2502 COMMON_UISA_REGS,
2503 PPC_UISA_SPRS,
2504 PPC_SEGMENT_REGS,
2505 PPC_OEA_SPRS,
2506 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2507 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2508 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2509 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2510 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2511 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2512 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2513 /* 147 */ S(tbhu), S(tblu)
2514 };
2515
2516 /* Motorola PowerPC 505. */
2517 static const struct reg registers_505[] =
2518 {
2519 COMMON_UISA_REGS,
2520 PPC_UISA_SPRS,
2521 PPC_SEGMENT_REGS,
2522 PPC_OEA_SPRS,
2523 /* 119 */ S(eie), S(eid), S(nri)
2524 };
2525
2526 /* Motorola PowerPC 860 or 850. */
2527 static const struct reg registers_860[] =
2528 {
2529 COMMON_UISA_REGS,
2530 PPC_UISA_SPRS,
2531 PPC_SEGMENT_REGS,
2532 PPC_OEA_SPRS,
2533 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2534 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2535 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2536 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2537 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2538 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2539 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2540 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2541 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2542 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2543 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2544 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2545 };
2546
2547 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2548 for reading and writing RTCU and RTCL. However, how one reads and writes a
2549 register is the stub's problem. */
2550 static const struct reg registers_601[] =
2551 {
2552 COMMON_UISA_REGS,
2553 PPC_UISA_SPRS,
2554 PPC_SEGMENT_REGS,
2555 PPC_OEA_SPRS,
2556 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2557 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2558 };
2559
2560 /* Motorola PowerPC 602.
2561 See the notes under the 403 about 'tcr'. */
2562 static const struct reg registers_602[] =
2563 {
2564 COMMON_UISA_REGS,
2565 PPC_UISA_SPRS,
2566 PPC_SEGMENT_REGS,
2567 PPC_OEA_SPRS,
2568 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2569 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2570 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2571 };
2572
2573 /* Motorola/IBM PowerPC 603 or 603e. */
2574 static const struct reg registers_603[] =
2575 {
2576 COMMON_UISA_REGS,
2577 PPC_UISA_SPRS,
2578 PPC_SEGMENT_REGS,
2579 PPC_OEA_SPRS,
2580 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2581 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2582 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2583 };
2584
2585 /* Motorola PowerPC 604 or 604e. */
2586 static const struct reg registers_604[] =
2587 {
2588 COMMON_UISA_REGS,
2589 PPC_UISA_SPRS,
2590 PPC_SEGMENT_REGS,
2591 PPC_OEA_SPRS,
2592 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2593 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2594 /* 127 */ S(sia), S(sda)
2595 };
2596
2597 /* Motorola/IBM PowerPC 750 or 740. */
2598 static const struct reg registers_750[] =
2599 {
2600 COMMON_UISA_REGS,
2601 PPC_UISA_SPRS,
2602 PPC_SEGMENT_REGS,
2603 PPC_OEA_SPRS,
2604 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2605 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2606 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2607 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2608 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2609 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2610 };
2611
2612
2613 /* Motorola PowerPC 7400. */
2614 static const struct reg registers_7400[] =
2615 {
2616 /* gpr0-gpr31, fpr0-fpr31 */
2617 COMMON_UISA_REGS,
2618 /* cr, lr, ctr, xer, fpscr */
2619 PPC_UISA_SPRS,
2620 /* sr0-sr15 */
2621 PPC_SEGMENT_REGS,
2622 PPC_OEA_SPRS,
2623 /* vr0-vr31, vrsave, vscr */
2624 PPC_ALTIVEC_REGS
2625 /* FIXME? Add more registers? */
2626 };
2627
2628 /* Motorola e500. */
2629 static const struct reg registers_e500[] =
2630 {
2631 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2632 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2633 /* 64 .. 65 */ R(pc), R(ps),
2634 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2635 /* 71 .. 72 */ R8(acc), S4(spefscr),
2636 /* NOTE: Add new registers here the end of the raw register
2637 list and just before the first pseudo register. */
2638 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2639 };
2640
2641 /* Information about a particular processor variant. */
2642
2643 struct variant
2644 {
2645 /* Name of this variant. */
2646 char *name;
2647
2648 /* English description of the variant. */
2649 char *description;
2650
2651 /* bfd_arch_info.arch corresponding to variant. */
2652 enum bfd_architecture arch;
2653
2654 /* bfd_arch_info.mach corresponding to variant. */
2655 unsigned long mach;
2656
2657 /* Number of real registers. */
2658 int nregs;
2659
2660 /* Number of pseudo registers. */
2661 int npregs;
2662
2663 /* Number of total registers (the sum of nregs and npregs). */
2664 int num_tot_regs;
2665
2666 /* Table of register names; registers[R] is the name of the register
2667 number R. */
2668 const struct reg *regs;
2669 };
2670
2671 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2672
2673 static int
2674 num_registers (const struct reg *reg_list, int num_tot_regs)
2675 {
2676 int i;
2677 int nregs = 0;
2678
2679 for (i = 0; i < num_tot_regs; i++)
2680 if (!reg_list[i].pseudo)
2681 nregs++;
2682
2683 return nregs;
2684 }
2685
2686 static int
2687 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2688 {
2689 int i;
2690 int npregs = 0;
2691
2692 for (i = 0; i < num_tot_regs; i++)
2693 if (reg_list[i].pseudo)
2694 npregs ++;
2695
2696 return npregs;
2697 }
2698
2699 /* Information in this table comes from the following web sites:
2700 IBM: http://www.chips.ibm.com:80/products/embedded/
2701 Motorola: http://www.mot.com/SPS/PowerPC/
2702
2703 I'm sure I've got some of the variant descriptions not quite right.
2704 Please report any inaccuracies you find to GDB's maintainer.
2705
2706 If you add entries to this table, please be sure to allow the new
2707 value as an argument to the --with-cpu flag, in configure.in. */
2708
2709 static struct variant variants[] =
2710 {
2711
2712 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2713 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2714 registers_powerpc},
2715 {"power", "POWER user-level", bfd_arch_rs6000,
2716 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2717 registers_power},
2718 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2719 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2720 registers_403},
2721 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2722 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2723 registers_601},
2724 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2725 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2726 registers_602},
2727 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2728 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2729 registers_603},
2730 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2731 604, -1, -1, tot_num_registers (registers_604),
2732 registers_604},
2733 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2734 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2735 registers_403GC},
2736 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2737 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2738 registers_505},
2739 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2740 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2741 registers_860},
2742 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2743 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2744 registers_750},
2745 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2746 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2747 registers_7400},
2748 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2749 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2750 registers_e500},
2751
2752 /* 64-bit */
2753 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2754 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2755 registers_powerpc},
2756 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2757 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2758 registers_powerpc},
2759 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2760 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2761 registers_powerpc},
2762 {"a35", "PowerPC A35", bfd_arch_powerpc,
2763 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2764 registers_powerpc},
2765 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2766 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2767 registers_powerpc},
2768 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2769 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2770 registers_powerpc},
2771
2772 /* FIXME: I haven't checked the register sets of the following. */
2773 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2774 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2775 registers_power},
2776 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2777 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2778 registers_power},
2779 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2780 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2781 registers_power},
2782
2783 {0, 0, 0, 0, 0, 0, 0, 0}
2784 };
2785
2786 /* Initialize the number of registers and pseudo registers in each variant. */
2787
2788 static void
2789 init_variants (void)
2790 {
2791 struct variant *v;
2792
2793 for (v = variants; v->name; v++)
2794 {
2795 if (v->nregs == -1)
2796 v->nregs = num_registers (v->regs, v->num_tot_regs);
2797 if (v->npregs == -1)
2798 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2799 }
2800 }
2801
2802 /* Return the variant corresponding to architecture ARCH and machine number
2803 MACH. If no such variant exists, return null. */
2804
2805 static const struct variant *
2806 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2807 {
2808 const struct variant *v;
2809
2810 for (v = variants; v->name; v++)
2811 if (arch == v->arch && mach == v->mach)
2812 return v;
2813
2814 return NULL;
2815 }
2816
2817 static int
2818 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2819 {
2820 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2821 return print_insn_big_powerpc (memaddr, info);
2822 else
2823 return print_insn_little_powerpc (memaddr, info);
2824 }
2825 \f
2826 static CORE_ADDR
2827 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2828 {
2829 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2830 }
2831
2832 static struct frame_id
2833 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2834 {
2835 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2836 SP_REGNUM),
2837 frame_pc_unwind (next_frame));
2838 }
2839
2840 struct rs6000_frame_cache
2841 {
2842 CORE_ADDR base;
2843 CORE_ADDR initial_sp;
2844 struct trad_frame_saved_reg *saved_regs;
2845 };
2846
2847 static struct rs6000_frame_cache *
2848 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2849 {
2850 struct rs6000_frame_cache *cache;
2851 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2852 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2853 struct rs6000_framedata fdata;
2854 int wordsize = tdep->wordsize;
2855
2856 if ((*this_cache) != NULL)
2857 return (*this_cache);
2858 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2859 (*this_cache) = cache;
2860 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2861
2862 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2863 &fdata);
2864
2865 /* If there were any saved registers, figure out parent's stack
2866 pointer. */
2867 /* The following is true only if the frame doesn't have a call to
2868 alloca(), FIXME. */
2869
2870 if (fdata.saved_fpr == 0
2871 && fdata.saved_gpr == 0
2872 && fdata.saved_vr == 0
2873 && fdata.saved_ev == 0
2874 && fdata.lr_offset == 0
2875 && fdata.cr_offset == 0
2876 && fdata.vr_offset == 0
2877 && fdata.ev_offset == 0)
2878 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2879 else
2880 {
2881 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2882 address of the current frame. Things might be easier if the
2883 ->frame pointed to the outer-most address of the frame. In
2884 the mean time, the address of the prev frame is used as the
2885 base address of this frame. */
2886 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2887 if (!fdata.frameless)
2888 /* Frameless really means stackless. */
2889 cache->base = read_memory_addr (cache->base, wordsize);
2890 }
2891 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2892
2893 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2894 All fpr's from saved_fpr to fp31 are saved. */
2895
2896 if (fdata.saved_fpr >= 0)
2897 {
2898 int i;
2899 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2900
2901 /* If skip_prologue says floating-point registers were saved,
2902 but the current architecture has no floating-point registers,
2903 then that's strange. But we have no indices to even record
2904 the addresses under, so we just ignore it. */
2905 if (ppc_floating_point_unit_p (gdbarch))
2906 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2907 {
2908 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2909 fpr_addr += 8;
2910 }
2911 }
2912
2913 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2914 All gpr's from saved_gpr to gpr31 are saved. */
2915
2916 if (fdata.saved_gpr >= 0)
2917 {
2918 int i;
2919 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2920 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2921 {
2922 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2923 gpr_addr += wordsize;
2924 }
2925 }
2926
2927 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2928 All vr's from saved_vr to vr31 are saved. */
2929 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2930 {
2931 if (fdata.saved_vr >= 0)
2932 {
2933 int i;
2934 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2935 for (i = fdata.saved_vr; i < 32; i++)
2936 {
2937 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2938 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2939 }
2940 }
2941 }
2942
2943 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2944 All vr's from saved_ev to ev31 are saved. ????? */
2945 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2946 {
2947 if (fdata.saved_ev >= 0)
2948 {
2949 int i;
2950 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2951 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2952 {
2953 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2954 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2955 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2956 }
2957 }
2958 }
2959
2960 /* If != 0, fdata.cr_offset is the offset from the frame that
2961 holds the CR. */
2962 if (fdata.cr_offset != 0)
2963 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2964
2965 /* If != 0, fdata.lr_offset is the offset from the frame that
2966 holds the LR. */
2967 if (fdata.lr_offset != 0)
2968 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2969 /* The PC is found in the link register. */
2970 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2971
2972 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2973 holds the VRSAVE. */
2974 if (fdata.vrsave_offset != 0)
2975 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2976
2977 if (fdata.alloca_reg < 0)
2978 /* If no alloca register used, then fi->frame is the value of the
2979 %sp for this frame, and it is good enough. */
2980 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2981 else
2982 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2983 fdata.alloca_reg);
2984
2985 return cache;
2986 }
2987
2988 static void
2989 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2990 struct frame_id *this_id)
2991 {
2992 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2993 this_cache);
2994 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2995 }
2996
2997 static void
2998 rs6000_frame_prev_register (struct frame_info *next_frame,
2999 void **this_cache,
3000 int regnum, int *optimizedp,
3001 enum lval_type *lvalp, CORE_ADDR *addrp,
3002 int *realnump, gdb_byte *valuep)
3003 {
3004 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3005 this_cache);
3006 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3007 optimizedp, lvalp, addrp, realnump, valuep);
3008 }
3009
3010 static const struct frame_unwind rs6000_frame_unwind =
3011 {
3012 NORMAL_FRAME,
3013 rs6000_frame_this_id,
3014 rs6000_frame_prev_register
3015 };
3016
3017 static const struct frame_unwind *
3018 rs6000_frame_sniffer (struct frame_info *next_frame)
3019 {
3020 return &rs6000_frame_unwind;
3021 }
3022
3023 \f
3024
3025 static CORE_ADDR
3026 rs6000_frame_base_address (struct frame_info *next_frame,
3027 void **this_cache)
3028 {
3029 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3030 this_cache);
3031 return info->initial_sp;
3032 }
3033
3034 static const struct frame_base rs6000_frame_base = {
3035 &rs6000_frame_unwind,
3036 rs6000_frame_base_address,
3037 rs6000_frame_base_address,
3038 rs6000_frame_base_address
3039 };
3040
3041 static const struct frame_base *
3042 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3043 {
3044 return &rs6000_frame_base;
3045 }
3046
3047 /* Initialize the current architecture based on INFO. If possible, re-use an
3048 architecture from ARCHES, which is a list of architectures already created
3049 during this debugging session.
3050
3051 Called e.g. at program startup, when reading a core file, and when reading
3052 a binary file. */
3053
3054 static struct gdbarch *
3055 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3056 {
3057 struct gdbarch *gdbarch;
3058 struct gdbarch_tdep *tdep;
3059 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3060 struct reg *regs;
3061 const struct variant *v;
3062 enum bfd_architecture arch;
3063 unsigned long mach;
3064 bfd abfd;
3065 int sysv_abi;
3066 asection *sect;
3067
3068 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3069 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3070
3071 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3072 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3073
3074 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3075
3076 /* Check word size. If INFO is from a binary file, infer it from
3077 that, else choose a likely default. */
3078 if (from_xcoff_exec)
3079 {
3080 if (bfd_xcoff_is_xcoff64 (info.abfd))
3081 wordsize = 8;
3082 else
3083 wordsize = 4;
3084 }
3085 else if (from_elf_exec)
3086 {
3087 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3088 wordsize = 8;
3089 else
3090 wordsize = 4;
3091 }
3092 else
3093 {
3094 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3095 wordsize = info.bfd_arch_info->bits_per_word /
3096 info.bfd_arch_info->bits_per_byte;
3097 else
3098 wordsize = 4;
3099 }
3100
3101 /* Find a candidate among extant architectures. */
3102 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3103 arches != NULL;
3104 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3105 {
3106 /* Word size in the various PowerPC bfd_arch_info structs isn't
3107 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3108 separate word size check. */
3109 tdep = gdbarch_tdep (arches->gdbarch);
3110 if (tdep && tdep->wordsize == wordsize)
3111 return arches->gdbarch;
3112 }
3113
3114 /* None found, create a new architecture from INFO, whose bfd_arch_info
3115 validity depends on the source:
3116 - executable useless
3117 - rs6000_host_arch() good
3118 - core file good
3119 - "set arch" trust blindly
3120 - GDB startup useless but harmless */
3121
3122 if (!from_xcoff_exec)
3123 {
3124 arch = info.bfd_arch_info->arch;
3125 mach = info.bfd_arch_info->mach;
3126 }
3127 else
3128 {
3129 arch = bfd_arch_powerpc;
3130 bfd_default_set_arch_mach (&abfd, arch, 0);
3131 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3132 mach = info.bfd_arch_info->mach;
3133 }
3134 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3135 tdep->wordsize = wordsize;
3136
3137 /* For e500 executables, the apuinfo section is of help here. Such
3138 section contains the identifier and revision number of each
3139 Application-specific Processing Unit that is present on the
3140 chip. The content of the section is determined by the assembler
3141 which looks at each instruction and determines which unit (and
3142 which version of it) can execute it. In our case we just look for
3143 the existance of the section. */
3144
3145 if (info.abfd)
3146 {
3147 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3148 if (sect)
3149 {
3150 arch = info.bfd_arch_info->arch;
3151 mach = bfd_mach_ppc_e500;
3152 bfd_default_set_arch_mach (&abfd, arch, mach);
3153 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3154 }
3155 }
3156
3157 gdbarch = gdbarch_alloc (&info, tdep);
3158
3159 /* Initialize the number of real and pseudo registers in each variant. */
3160 init_variants ();
3161
3162 /* Choose variant. */
3163 v = find_variant_by_arch (arch, mach);
3164 if (!v)
3165 return NULL;
3166
3167 tdep->regs = v->regs;
3168
3169 tdep->ppc_gp0_regnum = 0;
3170 tdep->ppc_toc_regnum = 2;
3171 tdep->ppc_ps_regnum = 65;
3172 tdep->ppc_cr_regnum = 66;
3173 tdep->ppc_lr_regnum = 67;
3174 tdep->ppc_ctr_regnum = 68;
3175 tdep->ppc_xer_regnum = 69;
3176 if (v->mach == bfd_mach_ppc_601)
3177 tdep->ppc_mq_regnum = 124;
3178 else if (arch == bfd_arch_rs6000)
3179 tdep->ppc_mq_regnum = 70;
3180 else
3181 tdep->ppc_mq_regnum = -1;
3182 tdep->ppc_fp0_regnum = 32;
3183 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3184 tdep->ppc_sr0_regnum = 71;
3185 tdep->ppc_vr0_regnum = -1;
3186 tdep->ppc_vrsave_regnum = -1;
3187 tdep->ppc_ev0_upper_regnum = -1;
3188 tdep->ppc_ev0_regnum = -1;
3189 tdep->ppc_ev31_regnum = -1;
3190 tdep->ppc_acc_regnum = -1;
3191 tdep->ppc_spefscr_regnum = -1;
3192
3193 set_gdbarch_pc_regnum (gdbarch, 64);
3194 set_gdbarch_sp_regnum (gdbarch, 1);
3195 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3196 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3197 if (sysv_abi && wordsize == 8)
3198 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3199 else if (sysv_abi && wordsize == 4)
3200 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3201 else
3202 {
3203 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3204 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3205 }
3206
3207 /* Set lr_frame_offset. */
3208 if (wordsize == 8)
3209 tdep->lr_frame_offset = 16;
3210 else if (sysv_abi)
3211 tdep->lr_frame_offset = 4;
3212 else
3213 tdep->lr_frame_offset = 8;
3214
3215 if (v->arch == bfd_arch_rs6000)
3216 tdep->ppc_sr0_regnum = -1;
3217 else if (v->arch == bfd_arch_powerpc)
3218 switch (v->mach)
3219 {
3220 case bfd_mach_ppc:
3221 tdep->ppc_sr0_regnum = -1;
3222 tdep->ppc_vr0_regnum = 71;
3223 tdep->ppc_vrsave_regnum = 104;
3224 break;
3225 case bfd_mach_ppc_7400:
3226 tdep->ppc_vr0_regnum = 119;
3227 tdep->ppc_vrsave_regnum = 152;
3228 break;
3229 case bfd_mach_ppc_e500:
3230 tdep->ppc_toc_regnum = -1;
3231 tdep->ppc_ev0_upper_regnum = 32;
3232 tdep->ppc_ev0_regnum = 73;
3233 tdep->ppc_ev31_regnum = 104;
3234 tdep->ppc_acc_regnum = 71;
3235 tdep->ppc_spefscr_regnum = 72;
3236 tdep->ppc_fp0_regnum = -1;
3237 tdep->ppc_fpscr_regnum = -1;
3238 tdep->ppc_sr0_regnum = -1;
3239 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3240 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3241 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3242 break;
3243
3244 case bfd_mach_ppc64:
3245 case bfd_mach_ppc_620:
3246 case bfd_mach_ppc_630:
3247 case bfd_mach_ppc_a35:
3248 case bfd_mach_ppc_rs64ii:
3249 case bfd_mach_ppc_rs64iii:
3250 /* These processor's register sets don't have segment registers. */
3251 tdep->ppc_sr0_regnum = -1;
3252 break;
3253 }
3254 else
3255 internal_error (__FILE__, __LINE__,
3256 _("rs6000_gdbarch_init: "
3257 "received unexpected BFD 'arch' value"));
3258
3259 /* Sanity check on registers. */
3260 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3261
3262 /* Select instruction printer. */
3263 if (arch == bfd_arch_rs6000)
3264 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3265 else
3266 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3267
3268 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3269
3270 set_gdbarch_num_regs (gdbarch, v->nregs);
3271 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3272 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3273 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3274 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3275
3276 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3277 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3278 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3279 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3280 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3281 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3282 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3283 if (sysv_abi)
3284 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3285 else
3286 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3287 set_gdbarch_char_signed (gdbarch, 0);
3288
3289 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3290 if (sysv_abi && wordsize == 8)
3291 /* PPC64 SYSV. */
3292 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3293 else if (!sysv_abi && wordsize == 4)
3294 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3295 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3296 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3297 224. */
3298 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3299
3300 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3301 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3302 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3303
3304 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3305 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3306 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3307 is correct for the SysV ABI when the wordsize is 8, but I'm also
3308 fairly certain that ppc_sysv_abi_push_arguments() will give even
3309 worse results since it only works for 32-bit code. So, for the moment,
3310 we're better off calling rs6000_push_arguments() since it works for
3311 64-bit code. At some point in the future, this matter needs to be
3312 revisited. */
3313 if (sysv_abi && wordsize == 4)
3314 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3315 else if (sysv_abi && wordsize == 8)
3316 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3317 else
3318 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3319
3320 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3321
3322 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3323 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3324 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3325
3326 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3327 for the descriptor and ".FN" for the entry-point -- a user
3328 specifying "break FN" will unexpectedly end up with a breakpoint
3329 on the descriptor and not the function. This architecture method
3330 transforms any breakpoints on descriptors into breakpoints on the
3331 corresponding entry point. */
3332 if (sysv_abi && wordsize == 8)
3333 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3334
3335 /* Not sure on this. FIXMEmgo */
3336 set_gdbarch_frame_args_skip (gdbarch, 8);
3337
3338 if (!sysv_abi)
3339 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3340
3341 if (!sysv_abi)
3342 {
3343 /* Handle RS/6000 function pointers (which are really function
3344 descriptors). */
3345 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3346 rs6000_convert_from_func_ptr_addr);
3347 }
3348
3349 /* Helpers for function argument information. */
3350 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3351
3352 /* Hook in ABI-specific overrides, if they have been registered. */
3353 gdbarch_init_osabi (info, gdbarch);
3354
3355 switch (info.osabi)
3356 {
3357 case GDB_OSABI_NETBSD_AOUT:
3358 case GDB_OSABI_NETBSD_ELF:
3359 case GDB_OSABI_UNKNOWN:
3360 case GDB_OSABI_LINUX:
3361 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3362 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3363 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3364 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3365 break;
3366 default:
3367 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3368
3369 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3370 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3371 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3372 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3373 }
3374
3375 if (from_xcoff_exec)
3376 {
3377 /* NOTE: jimix/2003-06-09: This test should really check for
3378 GDB_OSABI_AIX when that is defined and becomes
3379 available. (Actually, once things are properly split apart,
3380 the test goes away.) */
3381 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3382 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3383 }
3384
3385 init_sim_regno_table (gdbarch);
3386
3387 return gdbarch;
3388 }
3389
3390 static void
3391 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3392 {
3393 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3394
3395 if (tdep == NULL)
3396 return;
3397
3398 /* FIXME: Dump gdbarch_tdep. */
3399 }
3400
3401 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3402
3403 static void
3404 rs6000_info_powerpc_command (char *args, int from_tty)
3405 {
3406 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3407 }
3408
3409 /* Initialization code. */
3410
3411 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3412
3413 void
3414 _initialize_rs6000_tdep (void)
3415 {
3416 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3417 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3418 }
This page took 0.103216 seconds and 5 git commands to generate.