2004-02-17 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_frame_args_address (struct frame_info *fi)
215 {
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
219 else
220 return frame_initial_stack_address (fi);
221 }
222
223 /* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228 static CORE_ADDR
229 rs6000_saved_pc_after_call (struct frame_info *fi)
230 {
231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232 }
233
234 /* Get the ith function argument for the current function. */
235 static CORE_ADDR
236 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238 {
239 CORE_ADDR addr;
240 get_frame_register (frame, 3 + argi, &addr);
241 return addr;
242 }
243
244 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246 static CORE_ADDR
247 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248 {
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292 gdbarch_tdep (current_gdbarch)->wordsize);
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305 }
306 else
307 return -1;
308 break;
309
310 default:
311 return -1;
312 }
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314 }
315
316
317 /* Sequence of bytes for breakpoint instruction. */
318
319 const static unsigned char *
320 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321 {
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324 *bp_size = 4;
325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329 }
330
331
332 /* AIX does not support PT_STEP. Simulate it. */
333
334 void
335 rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
337 {
338 CORE_ADDR dummy;
339 int breakp_sz;
340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
346 if (insert_breakpoints_p)
347 {
348
349 loc = read_pc ();
350
351 insn = read_memory_integer (loc, 4);
352
353 breaks[0] = loc + breakp_sz;
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
360
361 stepBreaks[1].address = 0;
362
363 for (ii = 0; ii < 2; ++ii)
364 {
365
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370 stepBreaks[ii].address = breaks[ii];
371 }
372
373 }
374 else
375 {
376
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
382 }
383 errno = 0; /* FIXME, don't ignore errors! */
384 /* What errors? {read,write}_memory call error(). */
385 }
386
387
388 /* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
398 - saved_vr is the number of the first saved vr.
399 - saved_ev is the number of the first saved ev.
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
404 - vr_offset is the offset of the first saved vr from the previous frame.
405 - ev_offset is the offset of the first saved ev from the previous frame.
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
408 - vrsave_offset is the offset of the saved vrsave register
409 */
410
411 #define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418 /* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420 static int max_skip_non_prologue_insns = 10;
421
422 /* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428
429 /* FIXME: cagney/2004-02-14: This function and logic have largely been
430 superseded by skip_prologue_using_sal. */
431
432 static CORE_ADDR
433 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
434 {
435 struct symtab_and_line prologue_sal;
436
437 prologue_sal = find_pc_line (pc, 0);
438 if (prologue_sal.line != 0)
439 {
440 int i;
441 CORE_ADDR addr = prologue_sal.end;
442
443 /* Handle the case in which compiler's optimizer/scheduler
444 has moved instructions into the prologue. We scan ahead
445 in the function looking for address ranges whose corresponding
446 line number is less than or equal to the first one that we
447 found for the function. (It can be less than when the
448 scheduler puts a body instruction before the first prologue
449 instruction.) */
450 for (i = 2 * max_skip_non_prologue_insns;
451 i > 0 && (lim_pc == 0 || addr < lim_pc);
452 i--)
453 {
454 struct symtab_and_line sal;
455
456 sal = find_pc_line (addr, 0);
457 if (sal.line == 0)
458 break;
459 if (sal.line <= prologue_sal.line
460 && sal.symtab == prologue_sal.symtab)
461 {
462 prologue_sal = sal;
463 }
464 addr = sal.end;
465 }
466
467 if (lim_pc == 0 || prologue_sal.end < lim_pc)
468 lim_pc = prologue_sal.end;
469 }
470 return lim_pc;
471 }
472
473
474 static CORE_ADDR
475 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
476 {
477 CORE_ADDR orig_pc = pc;
478 CORE_ADDR last_prologue_pc = pc;
479 CORE_ADDR li_found_pc = 0;
480 char buf[4];
481 unsigned long op;
482 long offset = 0;
483 long vr_saved_offset = 0;
484 int lr_reg = -1;
485 int cr_reg = -1;
486 int vr_reg = -1;
487 int ev_reg = -1;
488 long ev_offset = 0;
489 int vrsave_reg = -1;
490 int reg;
491 int framep = 0;
492 int minimal_toc_loaded = 0;
493 int prev_insn_was_prologue_insn = 1;
494 int num_skip_non_prologue_insns = 0;
495 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
497
498 /* Attempt to find the end of the prologue when no limit is specified.
499 Note that refine_prologue_limit() has been written so that it may
500 be used to "refine" the limits of non-zero PC values too, but this
501 is only safe if we 1) trust the line information provided by the
502 compiler and 2) iterate enough to actually find the end of the
503 prologue.
504
505 It may become a good idea at some point (for both performance and
506 accuracy) to unconditionally call refine_prologue_limit(). But,
507 until we can make a clear determination that this is beneficial,
508 we'll play it safe and only use it to obtain a limit when none
509 has been specified. */
510 if (lim_pc == 0)
511 lim_pc = refine_prologue_limit (pc, lim_pc);
512
513 memset (fdata, 0, sizeof (struct rs6000_framedata));
514 fdata->saved_gpr = -1;
515 fdata->saved_fpr = -1;
516 fdata->saved_vr = -1;
517 fdata->saved_ev = -1;
518 fdata->alloca_reg = -1;
519 fdata->frameless = 1;
520 fdata->nosavedpc = 1;
521
522 for (;; pc += 4)
523 {
524 /* Sometimes it isn't clear if an instruction is a prologue
525 instruction or not. When we encounter one of these ambiguous
526 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
527 Otherwise, we'll assume that it really is a prologue instruction. */
528 if (prev_insn_was_prologue_insn)
529 last_prologue_pc = pc;
530
531 /* Stop scanning if we've hit the limit. */
532 if (lim_pc != 0 && pc >= lim_pc)
533 break;
534
535 prev_insn_was_prologue_insn = 1;
536
537 /* Fetch the instruction and convert it to an integer. */
538 if (target_read_memory (pc, buf, 4))
539 break;
540 op = extract_signed_integer (buf, 4);
541
542 if ((op & 0xfc1fffff) == 0x7c0802a6)
543 { /* mflr Rx */
544 lr_reg = (op & 0x03e00000);
545 continue;
546
547 }
548 else if ((op & 0xfc1fffff) == 0x7c000026)
549 { /* mfcr Rx */
550 cr_reg = (op & 0x03e00000);
551 continue;
552
553 }
554 else if ((op & 0xfc1f0000) == 0xd8010000)
555 { /* stfd Rx,NUM(r1) */
556 reg = GET_SRC_REG (op);
557 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
558 {
559 fdata->saved_fpr = reg;
560 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
561 }
562 continue;
563
564 }
565 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
566 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
567 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
568 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
569 {
570
571 reg = GET_SRC_REG (op);
572 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
573 {
574 fdata->saved_gpr = reg;
575 if ((op & 0xfc1f0003) == 0xf8010000)
576 op &= ~3UL;
577 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
578 }
579 continue;
580
581 }
582 else if ((op & 0xffff0000) == 0x60000000)
583 {
584 /* nop */
585 /* Allow nops in the prologue, but do not consider them to
586 be part of the prologue unless followed by other prologue
587 instructions. */
588 prev_insn_was_prologue_insn = 0;
589 continue;
590
591 }
592 else if ((op & 0xffff0000) == 0x3c000000)
593 { /* addis 0,0,NUM, used
594 for >= 32k frames */
595 fdata->offset = (op & 0x0000ffff) << 16;
596 fdata->frameless = 0;
597 continue;
598
599 }
600 else if ((op & 0xffff0000) == 0x60000000)
601 { /* ori 0,0,NUM, 2nd ha
602 lf of >= 32k frames */
603 fdata->offset |= (op & 0x0000ffff);
604 fdata->frameless = 0;
605 continue;
606
607 }
608 else if (lr_reg != -1 &&
609 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
610 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
611 /* stw Rx, NUM(r1) */
612 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
613 /* stwu Rx, NUM(r1) */
614 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
615 { /* where Rx == lr */
616 fdata->lr_offset = offset;
617 fdata->nosavedpc = 0;
618 lr_reg = 0;
619 if ((op & 0xfc000003) == 0xf8000000 || /* std */
620 (op & 0xfc000000) == 0x90000000) /* stw */
621 {
622 /* Does not update r1, so add displacement to lr_offset. */
623 fdata->lr_offset += SIGNED_SHORT (op);
624 }
625 continue;
626
627 }
628 else if (cr_reg != -1 &&
629 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
630 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
631 /* stw Rx, NUM(r1) */
632 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
633 /* stwu Rx, NUM(r1) */
634 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
635 { /* where Rx == cr */
636 fdata->cr_offset = offset;
637 cr_reg = 0;
638 if ((op & 0xfc000003) == 0xf8000000 ||
639 (op & 0xfc000000) == 0x90000000)
640 {
641 /* Does not update r1, so add displacement to cr_offset. */
642 fdata->cr_offset += SIGNED_SHORT (op);
643 }
644 continue;
645
646 }
647 else if (op == 0x48000005)
648 { /* bl .+4 used in
649 -mrelocatable */
650 continue;
651
652 }
653 else if (op == 0x48000004)
654 { /* b .+4 (xlc) */
655 break;
656
657 }
658 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
659 in V.4 -mminimal-toc */
660 (op & 0xffff0000) == 0x3bde0000)
661 { /* addi 30,30,foo@l */
662 continue;
663
664 }
665 else if ((op & 0xfc000001) == 0x48000001)
666 { /* bl foo,
667 to save fprs??? */
668
669 fdata->frameless = 0;
670 /* Don't skip over the subroutine call if it is not within
671 the first three instructions of the prologue. */
672 if ((pc - orig_pc) > 8)
673 break;
674
675 op = read_memory_integer (pc + 4, 4);
676
677 /* At this point, make sure this is not a trampoline
678 function (a function that simply calls another functions,
679 and nothing else). If the next is not a nop, this branch
680 was part of the function prologue. */
681
682 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
683 break; /* don't skip over
684 this branch */
685 continue;
686
687 }
688 /* update stack pointer */
689 else if ((op & 0xfc1f0000) == 0x94010000)
690 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
691 fdata->frameless = 0;
692 fdata->offset = SIGNED_SHORT (op);
693 offset = fdata->offset;
694 continue;
695 }
696 else if ((op & 0xfc1f016a) == 0x7c01016e)
697 { /* stwux rX,r1,rY */
698 /* no way to figure out what r1 is going to be */
699 fdata->frameless = 0;
700 offset = fdata->offset;
701 continue;
702 }
703 else if ((op & 0xfc1f0003) == 0xf8010001)
704 { /* stdu rX,NUM(r1) */
705 fdata->frameless = 0;
706 fdata->offset = SIGNED_SHORT (op & ~3UL);
707 offset = fdata->offset;
708 continue;
709 }
710 else if ((op & 0xfc1f016a) == 0x7c01016a)
711 { /* stdux rX,r1,rY */
712 /* no way to figure out what r1 is going to be */
713 fdata->frameless = 0;
714 offset = fdata->offset;
715 continue;
716 }
717 /* Load up minimal toc pointer */
718 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
719 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
720 && !minimal_toc_loaded)
721 {
722 minimal_toc_loaded = 1;
723 continue;
724
725 /* move parameters from argument registers to local variable
726 registers */
727 }
728 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
729 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
730 (((op >> 21) & 31) <= 10) &&
731 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
732 {
733 continue;
734
735 /* store parameters in stack */
736 }
737 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
738 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
739 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
740 {
741 continue;
742
743 /* store parameters in stack via frame pointer */
744 }
745 else if (framep &&
746 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
747 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
748 (op & 0xfc1f0000) == 0xfc1f0000))
749 { /* frsp, fp?,NUM(r1) */
750 continue;
751
752 /* Set up frame pointer */
753 }
754 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
755 || op == 0x7c3f0b78)
756 { /* mr r31, r1 */
757 fdata->frameless = 0;
758 framep = 1;
759 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
760 continue;
761
762 /* Another way to set up the frame pointer. */
763 }
764 else if ((op & 0xfc1fffff) == 0x38010000)
765 { /* addi rX, r1, 0x0 */
766 fdata->frameless = 0;
767 framep = 1;
768 fdata->alloca_reg = (tdep->ppc_gp0_regnum
769 + ((op & ~0x38010000) >> 21));
770 continue;
771 }
772 /* AltiVec related instructions. */
773 /* Store the vrsave register (spr 256) in another register for
774 later manipulation, or load a register into the vrsave
775 register. 2 instructions are used: mfvrsave and
776 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
777 and mtspr SPR256, Rn. */
778 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
779 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
780 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
781 {
782 vrsave_reg = GET_SRC_REG (op);
783 continue;
784 }
785 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
786 {
787 continue;
788 }
789 /* Store the register where vrsave was saved to onto the stack:
790 rS is the register where vrsave was stored in a previous
791 instruction. */
792 /* 100100 sssss 00001 dddddddd dddddddd */
793 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
794 {
795 if (vrsave_reg == GET_SRC_REG (op))
796 {
797 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
798 vrsave_reg = -1;
799 }
800 continue;
801 }
802 /* Compute the new value of vrsave, by modifying the register
803 where vrsave was saved to. */
804 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
805 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
806 {
807 continue;
808 }
809 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
810 in a pair of insns to save the vector registers on the
811 stack. */
812 /* 001110 00000 00000 iiii iiii iiii iiii */
813 /* 001110 01110 00000 iiii iiii iiii iiii */
814 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
815 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
816 {
817 li_found_pc = pc;
818 vr_saved_offset = SIGNED_SHORT (op);
819 }
820 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
821 /* 011111 sssss 11111 00000 00111001110 */
822 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
823 {
824 if (pc == (li_found_pc + 4))
825 {
826 vr_reg = GET_SRC_REG (op);
827 /* If this is the first vector reg to be saved, or if
828 it has a lower number than others previously seen,
829 reupdate the frame info. */
830 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
831 {
832 fdata->saved_vr = vr_reg;
833 fdata->vr_offset = vr_saved_offset + offset;
834 }
835 vr_saved_offset = -1;
836 vr_reg = -1;
837 li_found_pc = 0;
838 }
839 }
840 /* End AltiVec related instructions. */
841
842 /* Start BookE related instructions. */
843 /* Store gen register S at (r31+uimm).
844 Any register less than r13 is volatile, so we don't care. */
845 /* 000100 sssss 11111 iiiii 01100100001 */
846 else if (arch_info->mach == bfd_mach_ppc_e500
847 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
848 {
849 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
850 {
851 unsigned int imm;
852 ev_reg = GET_SRC_REG (op);
853 imm = (op >> 11) & 0x1f;
854 ev_offset = imm * 8;
855 /* If this is the first vector reg to be saved, or if
856 it has a lower number than others previously seen,
857 reupdate the frame info. */
858 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
859 {
860 fdata->saved_ev = ev_reg;
861 fdata->ev_offset = ev_offset + offset;
862 }
863 }
864 continue;
865 }
866 /* Store gen register rS at (r1+rB). */
867 /* 000100 sssss 00001 bbbbb 01100100000 */
868 else if (arch_info->mach == bfd_mach_ppc_e500
869 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
870 {
871 if (pc == (li_found_pc + 4))
872 {
873 ev_reg = GET_SRC_REG (op);
874 /* If this is the first vector reg to be saved, or if
875 it has a lower number than others previously seen,
876 reupdate the frame info. */
877 /* We know the contents of rB from the previous instruction. */
878 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
879 {
880 fdata->saved_ev = ev_reg;
881 fdata->ev_offset = vr_saved_offset + offset;
882 }
883 vr_saved_offset = -1;
884 ev_reg = -1;
885 li_found_pc = 0;
886 }
887 continue;
888 }
889 /* Store gen register r31 at (rA+uimm). */
890 /* 000100 11111 aaaaa iiiii 01100100001 */
891 else if (arch_info->mach == bfd_mach_ppc_e500
892 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
893 {
894 /* Wwe know that the source register is 31 already, but
895 it can't hurt to compute it. */
896 ev_reg = GET_SRC_REG (op);
897 ev_offset = ((op >> 11) & 0x1f) * 8;
898 /* If this is the first vector reg to be saved, or if
899 it has a lower number than others previously seen,
900 reupdate the frame info. */
901 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
902 {
903 fdata->saved_ev = ev_reg;
904 fdata->ev_offset = ev_offset + offset;
905 }
906
907 continue;
908 }
909 /* Store gen register S at (r31+r0).
910 Store param on stack when offset from SP bigger than 4 bytes. */
911 /* 000100 sssss 11111 00000 01100100000 */
912 else if (arch_info->mach == bfd_mach_ppc_e500
913 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
914 {
915 if (pc == (li_found_pc + 4))
916 {
917 if ((op & 0x03e00000) >= 0x01a00000)
918 {
919 ev_reg = GET_SRC_REG (op);
920 /* If this is the first vector reg to be saved, or if
921 it has a lower number than others previously seen,
922 reupdate the frame info. */
923 /* We know the contents of r0 from the previous
924 instruction. */
925 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
926 {
927 fdata->saved_ev = ev_reg;
928 fdata->ev_offset = vr_saved_offset + offset;
929 }
930 ev_reg = -1;
931 }
932 vr_saved_offset = -1;
933 li_found_pc = 0;
934 continue;
935 }
936 }
937 /* End BookE related instructions. */
938
939 else
940 {
941 /* Not a recognized prologue instruction.
942 Handle optimizer code motions into the prologue by continuing
943 the search if we have no valid frame yet or if the return
944 address is not yet saved in the frame. */
945 if (fdata->frameless == 0
946 && (lr_reg == -1 || fdata->nosavedpc == 0))
947 break;
948
949 if (op == 0x4e800020 /* blr */
950 || op == 0x4e800420) /* bctr */
951 /* Do not scan past epilogue in frameless functions or
952 trampolines. */
953 break;
954 if ((op & 0xf4000000) == 0x40000000) /* bxx */
955 /* Never skip branches. */
956 break;
957
958 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
959 /* Do not scan too many insns, scanning insns is expensive with
960 remote targets. */
961 break;
962
963 /* Continue scanning. */
964 prev_insn_was_prologue_insn = 0;
965 continue;
966 }
967 }
968
969 #if 0
970 /* I have problems with skipping over __main() that I need to address
971 * sometime. Previously, I used to use misc_function_vector which
972 * didn't work as well as I wanted to be. -MGO */
973
974 /* If the first thing after skipping a prolog is a branch to a function,
975 this might be a call to an initializer in main(), introduced by gcc2.
976 We'd like to skip over it as well. Fortunately, xlc does some extra
977 work before calling a function right after a prologue, thus we can
978 single out such gcc2 behaviour. */
979
980
981 if ((op & 0xfc000001) == 0x48000001)
982 { /* bl foo, an initializer function? */
983 op = read_memory_integer (pc + 4, 4);
984
985 if (op == 0x4def7b82)
986 { /* cror 0xf, 0xf, 0xf (nop) */
987
988 /* Check and see if we are in main. If so, skip over this
989 initializer function as well. */
990
991 tmp = find_pc_misc_function (pc);
992 if (tmp >= 0
993 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
994 return pc + 8;
995 }
996 }
997 #endif /* 0 */
998
999 fdata->offset = -fdata->offset;
1000 return last_prologue_pc;
1001 }
1002
1003
1004 /*************************************************************************
1005 Support for creating pushing a dummy frame into the stack, and popping
1006 frames, etc.
1007 *************************************************************************/
1008
1009
1010 /* Pop the innermost frame, go back to the caller. */
1011
1012 static void
1013 rs6000_pop_frame (void)
1014 {
1015 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1016 struct rs6000_framedata fdata;
1017 struct frame_info *frame = get_current_frame ();
1018 int ii, wordsize;
1019
1020 pc = read_pc ();
1021 sp = get_frame_base (frame);
1022
1023 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1024 get_frame_base (frame),
1025 get_frame_base (frame)))
1026 {
1027 generic_pop_dummy_frame ();
1028 flush_cached_frames ();
1029 return;
1030 }
1031
1032 /* Make sure that all registers are valid. */
1033 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1034
1035 /* Figure out previous %pc value. If the function is frameless, it is
1036 still in the link register, otherwise walk the frames and retrieve the
1037 saved %pc value in the previous frame. */
1038
1039 addr = get_frame_func (frame);
1040 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1041
1042 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1043 if (fdata.frameless)
1044 prev_sp = sp;
1045 else
1046 prev_sp = read_memory_addr (sp, wordsize);
1047 if (fdata.lr_offset == 0)
1048 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1049 else
1050 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1051
1052 /* reset %pc value. */
1053 write_register (PC_REGNUM, lr);
1054
1055 /* reset register values if any was saved earlier. */
1056
1057 if (fdata.saved_gpr != -1)
1058 {
1059 addr = prev_sp + fdata.gpr_offset;
1060 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1061 {
1062 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
1063 wordsize);
1064 addr += wordsize;
1065 }
1066 }
1067
1068 if (fdata.saved_fpr != -1)
1069 {
1070 addr = prev_sp + fdata.fpr_offset;
1071 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1072 {
1073 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1074 addr += 8;
1075 }
1076 }
1077
1078 write_register (SP_REGNUM, prev_sp);
1079 target_store_registers (-1);
1080 flush_cached_frames ();
1081 }
1082
1083 /* All the ABI's require 16 byte alignment. */
1084 static CORE_ADDR
1085 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1086 {
1087 return (addr & -16);
1088 }
1089
1090 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1091 the first eight words of the argument list (that might be less than
1092 eight parameters if some parameters occupy more than one word) are
1093 passed in r3..r10 registers. float and double parameters are
1094 passed in fpr's, in addition to that. Rest of the parameters if any
1095 are passed in user stack. There might be cases in which half of the
1096 parameter is copied into registers, the other half is pushed into
1097 stack.
1098
1099 Stack must be aligned on 64-bit boundaries when synthesizing
1100 function calls.
1101
1102 If the function is returning a structure, then the return address is passed
1103 in r3, then the first 7 words of the parameters can be passed in registers,
1104 starting from r4. */
1105
1106 static CORE_ADDR
1107 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1108 struct regcache *regcache, CORE_ADDR bp_addr,
1109 int nargs, struct value **args, CORE_ADDR sp,
1110 int struct_return, CORE_ADDR struct_addr)
1111 {
1112 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1113 int ii;
1114 int len = 0;
1115 int argno; /* current argument number */
1116 int argbytes; /* current argument byte */
1117 char tmp_buffer[50];
1118 int f_argno = 0; /* current floating point argno */
1119 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1120
1121 struct value *arg = 0;
1122 struct type *type;
1123
1124 CORE_ADDR saved_sp;
1125
1126 /* The first eight words of ther arguments are passed in registers.
1127 Copy them appropriately. */
1128 ii = 0;
1129
1130 /* If the function is returning a `struct', then the first word
1131 (which will be passed in r3) is used for struct return address.
1132 In that case we should advance one word and start from r4
1133 register to copy parameters. */
1134 if (struct_return)
1135 {
1136 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1137 struct_addr);
1138 ii++;
1139 }
1140
1141 /*
1142 effectively indirect call... gcc does...
1143
1144 return_val example( float, int);
1145
1146 eabi:
1147 float in fp0, int in r3
1148 offset of stack on overflow 8/16
1149 for varargs, must go by type.
1150 power open:
1151 float in r3&r4, int in r5
1152 offset of stack on overflow different
1153 both:
1154 return in r3 or f0. If no float, must study how gcc emulates floats;
1155 pay attention to arg promotion.
1156 User may have to cast\args to handle promotion correctly
1157 since gdb won't know if prototype supplied or not.
1158 */
1159
1160 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1161 {
1162 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1163
1164 arg = args[argno];
1165 type = check_typedef (VALUE_TYPE (arg));
1166 len = TYPE_LENGTH (type);
1167
1168 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1169 {
1170
1171 /* Floating point arguments are passed in fpr's, as well as gpr's.
1172 There are 13 fpr's reserved for passing parameters. At this point
1173 there is no way we would run out of them. */
1174
1175 if (len > 8)
1176 printf_unfiltered (
1177 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1178
1179 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1180 VALUE_CONTENTS (arg),
1181 len);
1182 ++f_argno;
1183 }
1184
1185 if (len > reg_size)
1186 {
1187
1188 /* Argument takes more than one register. */
1189 while (argbytes < len)
1190 {
1191 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1192 reg_size);
1193 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1194 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1195 (len - argbytes) > reg_size
1196 ? reg_size : len - argbytes);
1197 ++ii, argbytes += reg_size;
1198
1199 if (ii >= 8)
1200 goto ran_out_of_registers_for_arguments;
1201 }
1202 argbytes = 0;
1203 --ii;
1204 }
1205 else
1206 {
1207 /* Argument can fit in one register. No problem. */
1208 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1209 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1210 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1211 VALUE_CONTENTS (arg), len);
1212 }
1213 ++argno;
1214 }
1215
1216 ran_out_of_registers_for_arguments:
1217
1218 saved_sp = read_sp ();
1219
1220 /* Location for 8 parameters are always reserved. */
1221 sp -= wordsize * 8;
1222
1223 /* Another six words for back chain, TOC register, link register, etc. */
1224 sp -= wordsize * 6;
1225
1226 /* Stack pointer must be quadword aligned. */
1227 sp &= -16;
1228
1229 /* If there are more arguments, allocate space for them in
1230 the stack, then push them starting from the ninth one. */
1231
1232 if ((argno < nargs) || argbytes)
1233 {
1234 int space = 0, jj;
1235
1236 if (argbytes)
1237 {
1238 space += ((len - argbytes + 3) & -4);
1239 jj = argno + 1;
1240 }
1241 else
1242 jj = argno;
1243
1244 for (; jj < nargs; ++jj)
1245 {
1246 struct value *val = args[jj];
1247 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1248 }
1249
1250 /* Add location required for the rest of the parameters. */
1251 space = (space + 15) & -16;
1252 sp -= space;
1253
1254 /* This is another instance we need to be concerned about
1255 securing our stack space. If we write anything underneath %sp
1256 (r1), we might conflict with the kernel who thinks he is free
1257 to use this area. So, update %sp first before doing anything
1258 else. */
1259
1260 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1261
1262 /* If the last argument copied into the registers didn't fit there
1263 completely, push the rest of it into stack. */
1264
1265 if (argbytes)
1266 {
1267 write_memory (sp + 24 + (ii * 4),
1268 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1269 len - argbytes);
1270 ++argno;
1271 ii += ((len - argbytes + 3) & -4) / 4;
1272 }
1273
1274 /* Push the rest of the arguments into stack. */
1275 for (; argno < nargs; ++argno)
1276 {
1277
1278 arg = args[argno];
1279 type = check_typedef (VALUE_TYPE (arg));
1280 len = TYPE_LENGTH (type);
1281
1282
1283 /* Float types should be passed in fpr's, as well as in the
1284 stack. */
1285 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1286 {
1287
1288 if (len > 8)
1289 printf_unfiltered (
1290 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1291
1292 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1293 VALUE_CONTENTS (arg),
1294 len);
1295 ++f_argno;
1296 }
1297
1298 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1299 ii += ((len + 3) & -4) / 4;
1300 }
1301 }
1302
1303 /* Set the stack pointer. According to the ABI, the SP is meant to
1304 be set _before_ the corresponding stack space is used. On AIX,
1305 this even applies when the target has been completely stopped!
1306 Not doing this can lead to conflicts with the kernel which thinks
1307 that it still has control over this not-yet-allocated stack
1308 region. */
1309 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1310
1311 /* Set back chain properly. */
1312 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1313 write_memory (sp, tmp_buffer, 4);
1314
1315 /* Point the inferior function call's return address at the dummy's
1316 breakpoint. */
1317 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1318
1319 /* Set the TOC register, get the value from the objfile reader
1320 which, in turn, gets it from the VMAP table. */
1321 if (rs6000_find_toc_address_hook != NULL)
1322 {
1323 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1324 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1325 }
1326
1327 target_store_registers (-1);
1328 return sp;
1329 }
1330
1331 /* PowerOpen always puts structures in memory. Vectors, which were
1332 added later, do get returned in a register though. */
1333
1334 static int
1335 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1336 {
1337 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1338 && TYPE_VECTOR (value_type))
1339 return 0;
1340 return 1;
1341 }
1342
1343 static void
1344 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1345 {
1346 int offset = 0;
1347 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1348
1349 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1350 {
1351
1352 double dd;
1353 float ff;
1354 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1355 We need to truncate the return value into float size (4 byte) if
1356 necessary. */
1357
1358 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1359 memcpy (valbuf,
1360 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
1361 TYPE_LENGTH (valtype));
1362 else
1363 { /* float */
1364 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1365 ff = (float) dd;
1366 memcpy (valbuf, &ff, sizeof (float));
1367 }
1368 }
1369 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1370 && TYPE_LENGTH (valtype) == 16
1371 && TYPE_VECTOR (valtype))
1372 {
1373 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1374 TYPE_LENGTH (valtype));
1375 }
1376 else
1377 {
1378 /* return value is copied starting from r3. */
1379 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1380 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1381 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1382
1383 memcpy (valbuf,
1384 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1385 TYPE_LENGTH (valtype));
1386 }
1387 }
1388
1389 /* Return whether handle_inferior_event() should proceed through code
1390 starting at PC in function NAME when stepping.
1391
1392 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1393 handle memory references that are too distant to fit in instructions
1394 generated by the compiler. For example, if 'foo' in the following
1395 instruction:
1396
1397 lwz r9,foo(r2)
1398
1399 is greater than 32767, the linker might replace the lwz with a branch to
1400 somewhere in @FIX1 that does the load in 2 instructions and then branches
1401 back to where execution should continue.
1402
1403 GDB should silently step over @FIX code, just like AIX dbx does.
1404 Unfortunately, the linker uses the "b" instruction for the branches,
1405 meaning that the link register doesn't get set. Therefore, GDB's usual
1406 step_over_function() mechanism won't work.
1407
1408 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1409 in handle_inferior_event() to skip past @FIX code. */
1410
1411 int
1412 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1413 {
1414 return name && !strncmp (name, "@FIX", 4);
1415 }
1416
1417 /* Skip code that the user doesn't want to see when stepping:
1418
1419 1. Indirect function calls use a piece of trampoline code to do context
1420 switching, i.e. to set the new TOC table. Skip such code if we are on
1421 its first instruction (as when we have single-stepped to here).
1422
1423 2. Skip shared library trampoline code (which is different from
1424 indirect function call trampolines).
1425
1426 3. Skip bigtoc fixup code.
1427
1428 Result is desired PC to step until, or NULL if we are not in
1429 code that should be skipped. */
1430
1431 CORE_ADDR
1432 rs6000_skip_trampoline_code (CORE_ADDR pc)
1433 {
1434 unsigned int ii, op;
1435 int rel;
1436 CORE_ADDR solib_target_pc;
1437 struct minimal_symbol *msymbol;
1438
1439 static unsigned trampoline_code[] =
1440 {
1441 0x800b0000, /* l r0,0x0(r11) */
1442 0x90410014, /* st r2,0x14(r1) */
1443 0x7c0903a6, /* mtctr r0 */
1444 0x804b0004, /* l r2,0x4(r11) */
1445 0x816b0008, /* l r11,0x8(r11) */
1446 0x4e800420, /* bctr */
1447 0x4e800020, /* br */
1448 0
1449 };
1450
1451 /* Check for bigtoc fixup code. */
1452 msymbol = lookup_minimal_symbol_by_pc (pc);
1453 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1454 {
1455 /* Double-check that the third instruction from PC is relative "b". */
1456 op = read_memory_integer (pc + 8, 4);
1457 if ((op & 0xfc000003) == 0x48000000)
1458 {
1459 /* Extract bits 6-29 as a signed 24-bit relative word address and
1460 add it to the containing PC. */
1461 rel = ((int)(op << 6) >> 6);
1462 return pc + 8 + rel;
1463 }
1464 }
1465
1466 /* If pc is in a shared library trampoline, return its target. */
1467 solib_target_pc = find_solib_trampoline_target (pc);
1468 if (solib_target_pc)
1469 return solib_target_pc;
1470
1471 for (ii = 0; trampoline_code[ii]; ++ii)
1472 {
1473 op = read_memory_integer (pc + (ii * 4), 4);
1474 if (op != trampoline_code[ii])
1475 return 0;
1476 }
1477 ii = read_register (11); /* r11 holds destination addr */
1478 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1479 return pc;
1480 }
1481
1482 /* Determines whether the function FI has a frame on the stack or not. */
1483
1484 int
1485 rs6000_frameless_function_invocation (struct frame_info *fi)
1486 {
1487 CORE_ADDR func_start;
1488 struct rs6000_framedata fdata;
1489
1490 /* Don't even think about framelessness except on the innermost frame
1491 or if the function was interrupted by a signal. */
1492 if (get_next_frame (fi) != NULL
1493 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1494 return 0;
1495
1496 func_start = get_frame_func (fi);
1497
1498 /* If we failed to find the start of the function, it is a mistake
1499 to inspect the instructions. */
1500
1501 if (!func_start)
1502 {
1503 /* A frame with a zero PC is usually created by dereferencing a NULL
1504 function pointer, normally causing an immediate core dump of the
1505 inferior. Mark function as frameless, as the inferior has no chance
1506 of setting up a stack frame. */
1507 if (get_frame_pc (fi) == 0)
1508 return 1;
1509 else
1510 return 0;
1511 }
1512
1513 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1514 return fdata.frameless;
1515 }
1516
1517 /* Return the PC saved in a frame. */
1518
1519 CORE_ADDR
1520 rs6000_frame_saved_pc (struct frame_info *fi)
1521 {
1522 CORE_ADDR func_start;
1523 struct rs6000_framedata fdata;
1524 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1525 int wordsize = tdep->wordsize;
1526
1527 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1528 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1529 wordsize);
1530
1531 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1532 get_frame_base (fi),
1533 get_frame_base (fi)))
1534 return deprecated_read_register_dummy (get_frame_pc (fi),
1535 get_frame_base (fi), PC_REGNUM);
1536
1537 func_start = get_frame_func (fi);
1538
1539 /* If we failed to find the start of the function, it is a mistake
1540 to inspect the instructions. */
1541 if (!func_start)
1542 return 0;
1543
1544 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1545
1546 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1547 {
1548 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1549 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1550 + SIG_FRAME_LR_OFFSET),
1551 wordsize);
1552 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1553 /* The link register wasn't saved by this frame and the next
1554 (inner, newer) frame is a dummy. Get the link register
1555 value by unwinding it from that [dummy] frame. */
1556 {
1557 ULONGEST lr;
1558 frame_unwind_unsigned_register (get_next_frame (fi),
1559 tdep->ppc_lr_regnum, &lr);
1560 return lr;
1561 }
1562 else
1563 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1564 + tdep->lr_frame_offset,
1565 wordsize);
1566 }
1567
1568 if (fdata.lr_offset == 0)
1569 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1570
1571 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1572 wordsize);
1573 }
1574
1575 /* If saved registers of frame FI are not known yet, read and cache them.
1576 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1577 in which case the framedata are read. */
1578
1579 static void
1580 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1581 {
1582 CORE_ADDR frame_addr;
1583 struct rs6000_framedata work_fdata;
1584 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1585 int wordsize = tdep->wordsize;
1586
1587 if (deprecated_get_frame_saved_regs (fi))
1588 return;
1589
1590 if (fdatap == NULL)
1591 {
1592 fdatap = &work_fdata;
1593 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1594 }
1595
1596 frame_saved_regs_zalloc (fi);
1597
1598 /* If there were any saved registers, figure out parent's stack
1599 pointer. */
1600 /* The following is true only if the frame doesn't have a call to
1601 alloca(), FIXME. */
1602
1603 if (fdatap->saved_fpr == 0
1604 && fdatap->saved_gpr == 0
1605 && fdatap->saved_vr == 0
1606 && fdatap->saved_ev == 0
1607 && fdatap->lr_offset == 0
1608 && fdatap->cr_offset == 0
1609 && fdatap->vr_offset == 0
1610 && fdatap->ev_offset == 0)
1611 frame_addr = 0;
1612 else
1613 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1614 address of the current frame. Things might be easier if the
1615 ->frame pointed to the outer-most address of the frame. In the
1616 mean time, the address of the prev frame is used as the base
1617 address of this frame. */
1618 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1619
1620 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1621 All fpr's from saved_fpr to fp31 are saved. */
1622
1623 if (fdatap->saved_fpr >= 0)
1624 {
1625 int i;
1626 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1627 for (i = fdatap->saved_fpr; i < 32; i++)
1628 {
1629 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1630 fpr_addr += 8;
1631 }
1632 }
1633
1634 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1635 All gpr's from saved_gpr to gpr31 are saved. */
1636
1637 if (fdatap->saved_gpr >= 0)
1638 {
1639 int i;
1640 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1641 for (i = fdatap->saved_gpr; i < 32; i++)
1642 {
1643 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1644 gpr_addr += wordsize;
1645 }
1646 }
1647
1648 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1649 All vr's from saved_vr to vr31 are saved. */
1650 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1651 {
1652 if (fdatap->saved_vr >= 0)
1653 {
1654 int i;
1655 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1656 for (i = fdatap->saved_vr; i < 32; i++)
1657 {
1658 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1659 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1660 }
1661 }
1662 }
1663
1664 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1665 All vr's from saved_ev to ev31 are saved. ????? */
1666 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1667 {
1668 if (fdatap->saved_ev >= 0)
1669 {
1670 int i;
1671 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1672 for (i = fdatap->saved_ev; i < 32; i++)
1673 {
1674 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1675 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1676 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1677 }
1678 }
1679 }
1680
1681 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1682 the CR. */
1683 if (fdatap->cr_offset != 0)
1684 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1685
1686 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1687 the LR. */
1688 if (fdatap->lr_offset != 0)
1689 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1690
1691 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1692 the VRSAVE. */
1693 if (fdatap->vrsave_offset != 0)
1694 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1695 }
1696
1697 /* Return the address of a frame. This is the inital %sp value when the frame
1698 was first allocated. For functions calling alloca(), it might be saved in
1699 an alloca register. */
1700
1701 static CORE_ADDR
1702 frame_initial_stack_address (struct frame_info *fi)
1703 {
1704 CORE_ADDR tmpaddr;
1705 struct rs6000_framedata fdata;
1706 struct frame_info *callee_fi;
1707
1708 /* If the initial stack pointer (frame address) of this frame is known,
1709 just return it. */
1710
1711 if (get_frame_extra_info (fi)->initial_sp)
1712 return get_frame_extra_info (fi)->initial_sp;
1713
1714 /* Find out if this function is using an alloca register. */
1715
1716 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1717
1718 /* If saved registers of this frame are not known yet, read and
1719 cache them. */
1720
1721 if (!deprecated_get_frame_saved_regs (fi))
1722 frame_get_saved_regs (fi, &fdata);
1723
1724 /* If no alloca register used, then fi->frame is the value of the %sp for
1725 this frame, and it is good enough. */
1726
1727 if (fdata.alloca_reg < 0)
1728 {
1729 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1730 return get_frame_extra_info (fi)->initial_sp;
1731 }
1732
1733 /* There is an alloca register, use its value, in the current frame,
1734 as the initial stack pointer. */
1735 {
1736 char tmpbuf[MAX_REGISTER_SIZE];
1737 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1738 {
1739 get_frame_extra_info (fi)->initial_sp
1740 = extract_unsigned_integer (tmpbuf,
1741 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
1742 }
1743 else
1744 /* NOTE: cagney/2002-04-17: At present the only time
1745 frame_register_read will fail is when the register isn't
1746 available. If that does happen, use the frame. */
1747 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1748 }
1749 return get_frame_extra_info (fi)->initial_sp;
1750 }
1751
1752 /* Describe the pointer in each stack frame to the previous stack frame
1753 (its caller). */
1754
1755 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1756 the frame's chain-pointer. */
1757
1758 /* In the case of the RS/6000, the frame's nominal address
1759 is the address of a 4-byte word containing the calling frame's address. */
1760
1761 CORE_ADDR
1762 rs6000_frame_chain (struct frame_info *thisframe)
1763 {
1764 CORE_ADDR fp, fpp, lr;
1765 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1766
1767 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1768 get_frame_base (thisframe),
1769 get_frame_base (thisframe)))
1770 /* A dummy frame always correctly chains back to the previous
1771 frame. */
1772 return read_memory_addr (get_frame_base (thisframe), wordsize);
1773
1774 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
1775 || get_frame_pc (thisframe) == entry_point_address ())
1776 return 0;
1777
1778 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1779 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1780 wordsize);
1781 else if (get_next_frame (thisframe) != NULL
1782 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1783 && (DEPRECATED_FRAMELESS_FUNCTION_INVOCATION_P ()
1784 && DEPRECATED_FRAMELESS_FUNCTION_INVOCATION (thisframe)))
1785 /* A frameless function interrupted by a signal did not change the
1786 frame pointer. */
1787 fp = get_frame_base (thisframe);
1788 else
1789 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1790 return fp;
1791 }
1792
1793 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1794 isn't available with that word size, return 0. */
1795
1796 static int
1797 regsize (const struct reg *reg, int wordsize)
1798 {
1799 return wordsize == 8 ? reg->sz64 : reg->sz32;
1800 }
1801
1802 /* Return the name of register number N, or null if no such register exists
1803 in the current architecture. */
1804
1805 static const char *
1806 rs6000_register_name (int n)
1807 {
1808 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1809 const struct reg *reg = tdep->regs + n;
1810
1811 if (!regsize (reg, tdep->wordsize))
1812 return NULL;
1813 return reg->name;
1814 }
1815
1816 /* Index within `registers' of the first byte of the space for
1817 register N. */
1818
1819 static int
1820 rs6000_register_byte (int n)
1821 {
1822 return gdbarch_tdep (current_gdbarch)->regoff[n];
1823 }
1824
1825 /* Return the number of bytes of storage in the actual machine representation
1826 for register N if that register is available, else return 0. */
1827
1828 static int
1829 rs6000_register_raw_size (int n)
1830 {
1831 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1832 const struct reg *reg = tdep->regs + n;
1833 return regsize (reg, tdep->wordsize);
1834 }
1835
1836 /* Return the GDB type object for the "standard" data type
1837 of data in register N. */
1838
1839 static struct type *
1840 rs6000_register_virtual_type (int n)
1841 {
1842 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1843 const struct reg *reg = tdep->regs + n;
1844
1845 if (reg->fpr)
1846 return builtin_type_double;
1847 else
1848 {
1849 int size = regsize (reg, tdep->wordsize);
1850 switch (size)
1851 {
1852 case 0:
1853 return builtin_type_int0;
1854 case 4:
1855 return builtin_type_int32;
1856 case 8:
1857 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1858 return builtin_type_vec64;
1859 else
1860 return builtin_type_int64;
1861 break;
1862 case 16:
1863 return builtin_type_vec128;
1864 break;
1865 default:
1866 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1867 n, size);
1868 }
1869 }
1870 }
1871
1872 /* Return whether register N requires conversion when moving from raw format
1873 to virtual format.
1874
1875 The register format for RS/6000 floating point registers is always
1876 double, we need a conversion if the memory format is float. */
1877
1878 static int
1879 rs6000_register_convertible (int n)
1880 {
1881 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1882 return reg->fpr;
1883 }
1884
1885 /* Convert data from raw format for register N in buffer FROM
1886 to virtual format with type TYPE in buffer TO. */
1887
1888 static void
1889 rs6000_register_convert_to_virtual (int n, struct type *type,
1890 char *from, char *to)
1891 {
1892 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1893 {
1894 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1895 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1896 }
1897 else
1898 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1899 }
1900
1901 /* Convert data from virtual format with type TYPE in buffer FROM
1902 to raw format for register N in buffer TO. */
1903
1904 static void
1905 rs6000_register_convert_to_raw (struct type *type, int n,
1906 const char *from, char *to)
1907 {
1908 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1909 {
1910 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1911 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1912 }
1913 else
1914 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1915 }
1916
1917 static void
1918 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1919 int reg_nr, void *buffer)
1920 {
1921 int base_regnum;
1922 int offset = 0;
1923 char temp_buffer[MAX_REGISTER_SIZE];
1924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1925
1926 if (reg_nr >= tdep->ppc_gp0_regnum
1927 && reg_nr <= tdep->ppc_gplast_regnum)
1928 {
1929 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1930
1931 /* Build the value in the provided buffer. */
1932 /* Read the raw register of which this one is the lower portion. */
1933 regcache_raw_read (regcache, base_regnum, temp_buffer);
1934 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1935 offset = 4;
1936 memcpy ((char *) buffer, temp_buffer + offset, 4);
1937 }
1938 }
1939
1940 static void
1941 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1942 int reg_nr, const void *buffer)
1943 {
1944 int base_regnum;
1945 int offset = 0;
1946 char temp_buffer[MAX_REGISTER_SIZE];
1947 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1948
1949 if (reg_nr >= tdep->ppc_gp0_regnum
1950 && reg_nr <= tdep->ppc_gplast_regnum)
1951 {
1952 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1953 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1954 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1955 offset = 4;
1956
1957 /* Let's read the value of the base register into a temporary
1958 buffer, so that overwriting the last four bytes with the new
1959 value of the pseudo will leave the upper 4 bytes unchanged. */
1960 regcache_raw_read (regcache, base_regnum, temp_buffer);
1961
1962 /* Write as an 8 byte quantity. */
1963 memcpy (temp_buffer + offset, (char *) buffer, 4);
1964 regcache_raw_write (regcache, base_regnum, temp_buffer);
1965 }
1966 }
1967
1968 /* Convert a dwarf2 register number to a gdb REGNUM. */
1969 static int
1970 e500_dwarf2_reg_to_regnum (int num)
1971 {
1972 int regnum;
1973 if (0 <= num && num <= 31)
1974 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1975 else
1976 return num;
1977 }
1978
1979 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1980 REGNUM. */
1981 static int
1982 rs6000_stab_reg_to_regnum (int num)
1983 {
1984 int regnum;
1985 switch (num)
1986 {
1987 case 64:
1988 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1989 break;
1990 case 65:
1991 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1992 break;
1993 case 66:
1994 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1995 break;
1996 case 76:
1997 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1998 break;
1999 default:
2000 regnum = num;
2001 break;
2002 }
2003 return regnum;
2004 }
2005
2006 static void
2007 rs6000_store_return_value (struct type *type, char *valbuf)
2008 {
2009 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2010
2011 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2012
2013 /* Floating point values are returned starting from FPR1 and up.
2014 Say a double_double_double type could be returned in
2015 FPR1/FPR2/FPR3 triple. */
2016
2017 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2018 TYPE_LENGTH (type));
2019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2020 {
2021 if (TYPE_LENGTH (type) == 16
2022 && TYPE_VECTOR (type))
2023 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2024 valbuf, TYPE_LENGTH (type));
2025 }
2026 else
2027 /* Everything else is returned in GPR3 and up. */
2028 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2029 valbuf, TYPE_LENGTH (type));
2030 }
2031
2032 /* Extract from an array REGBUF containing the (raw) register state
2033 the address in which a function should return its structure value,
2034 as a CORE_ADDR (or an expression that can be used as one). */
2035
2036 static CORE_ADDR
2037 rs6000_extract_struct_value_address (struct regcache *regcache)
2038 {
2039 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2040 function call GDB knows the address of the struct return value
2041 and hence, should not need to call this function. Unfortunately,
2042 the current call_function_by_hand() code only saves the most
2043 recent struct address leading to occasional calls. The code
2044 should instead maintain a stack of such addresses (in the dummy
2045 frame object). */
2046 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2047 really got no idea where the return value is being stored. While
2048 r3, on function entry, contained the address it will have since
2049 been reused (scratch) and hence wouldn't be valid */
2050 return 0;
2051 }
2052
2053 /* Hook called when a new child process is started. */
2054
2055 void
2056 rs6000_create_inferior (int pid)
2057 {
2058 if (rs6000_set_host_arch_hook)
2059 rs6000_set_host_arch_hook (pid);
2060 }
2061 \f
2062 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2063
2064 Usually a function pointer's representation is simply the address
2065 of the function. On the RS/6000 however, a function pointer is
2066 represented by a pointer to a TOC entry. This TOC entry contains
2067 three words, the first word is the address of the function, the
2068 second word is the TOC pointer (r2), and the third word is the
2069 static chain value. Throughout GDB it is currently assumed that a
2070 function pointer contains the address of the function, which is not
2071 easy to fix. In addition, the conversion of a function address to
2072 a function pointer would require allocation of a TOC entry in the
2073 inferior's memory space, with all its drawbacks. To be able to
2074 call C++ virtual methods in the inferior (which are called via
2075 function pointers), find_function_addr uses this function to get the
2076 function address from a function pointer. */
2077
2078 /* Return real function address if ADDR (a function pointer) is in the data
2079 space and is therefore a special function pointer. */
2080
2081 static CORE_ADDR
2082 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2083 CORE_ADDR addr,
2084 struct target_ops *targ)
2085 {
2086 struct obj_section *s;
2087
2088 s = find_pc_section (addr);
2089 if (s && s->the_bfd_section->flags & SEC_CODE)
2090 return addr;
2091
2092 /* ADDR is in the data space, so it's a special function pointer. */
2093 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2094 }
2095 \f
2096
2097 /* Handling the various POWER/PowerPC variants. */
2098
2099
2100 /* The arrays here called registers_MUMBLE hold information about available
2101 registers.
2102
2103 For each family of PPC variants, I've tried to isolate out the
2104 common registers and put them up front, so that as long as you get
2105 the general family right, GDB will correctly identify the registers
2106 common to that family. The common register sets are:
2107
2108 For the 60x family: hid0 hid1 iabr dabr pir
2109
2110 For the 505 and 860 family: eie eid nri
2111
2112 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2113 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2114 pbu1 pbl2 pbu2
2115
2116 Most of these register groups aren't anything formal. I arrived at
2117 them by looking at the registers that occurred in more than one
2118 processor.
2119
2120 Note: kevinb/2002-04-30: Support for the fpscr register was added
2121 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2122 for Power. For PowerPC, slot 70 was unused and was already in the
2123 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2124 slot 70 was being used for "mq", so the next available slot (71)
2125 was chosen. It would have been nice to be able to make the
2126 register numbers the same across processor cores, but this wasn't
2127 possible without either 1) renumbering some registers for some
2128 processors or 2) assigning fpscr to a really high slot that's
2129 larger than any current register number. Doing (1) is bad because
2130 existing stubs would break. Doing (2) is undesirable because it
2131 would introduce a really large gap between fpscr and the rest of
2132 the registers for most processors. */
2133
2134 /* Convenience macros for populating register arrays. */
2135
2136 /* Within another macro, convert S to a string. */
2137
2138 #define STR(s) #s
2139
2140 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2141 and 64 bits on 64-bit systems. */
2142 #define R(name) { STR(name), 4, 8, 0, 0 }
2143
2144 /* Return a struct reg defining register NAME that's 32 bits on all
2145 systems. */
2146 #define R4(name) { STR(name), 4, 4, 0, 0 }
2147
2148 /* Return a struct reg defining register NAME that's 64 bits on all
2149 systems. */
2150 #define R8(name) { STR(name), 8, 8, 0, 0 }
2151
2152 /* Return a struct reg defining register NAME that's 128 bits on all
2153 systems. */
2154 #define R16(name) { STR(name), 16, 16, 0, 0 }
2155
2156 /* Return a struct reg defining floating-point register NAME. */
2157 #define F(name) { STR(name), 8, 8, 1, 0 }
2158
2159 /* Return a struct reg defining a pseudo register NAME. */
2160 #define P(name) { STR(name), 4, 8, 0, 1}
2161
2162 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2163 systems and that doesn't exist on 64-bit systems. */
2164 #define R32(name) { STR(name), 4, 0, 0, 0 }
2165
2166 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2167 systems and that doesn't exist on 32-bit systems. */
2168 #define R64(name) { STR(name), 0, 8, 0, 0 }
2169
2170 /* Return a struct reg placeholder for a register that doesn't exist. */
2171 #define R0 { 0, 0, 0, 0, 0 }
2172
2173 /* UISA registers common across all architectures, including POWER. */
2174
2175 #define COMMON_UISA_REGS \
2176 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2177 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2178 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2179 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2180 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2181 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2182 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2183 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2184 /* 64 */ R(pc), R(ps)
2185
2186 #define COMMON_UISA_NOFP_REGS \
2187 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2188 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2189 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2190 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2191 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2192 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2193 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2194 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2195 /* 64 */ R(pc), R(ps)
2196
2197 /* UISA-level SPRs for PowerPC. */
2198 #define PPC_UISA_SPRS \
2199 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2200
2201 /* UISA-level SPRs for PowerPC without floating point support. */
2202 #define PPC_UISA_NOFP_SPRS \
2203 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2204
2205 /* Segment registers, for PowerPC. */
2206 #define PPC_SEGMENT_REGS \
2207 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2208 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2209 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2210 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2211
2212 /* OEA SPRs for PowerPC. */
2213 #define PPC_OEA_SPRS \
2214 /* 87 */ R4(pvr), \
2215 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2216 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2217 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2218 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2219 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2220 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2221 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2222 /* 116 */ R4(dec), R(dabr), R4(ear)
2223
2224 /* AltiVec registers. */
2225 #define PPC_ALTIVEC_REGS \
2226 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2227 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2228 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2229 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2230 /*151*/R4(vscr), R4(vrsave)
2231
2232 /* Vectors of hi-lo general purpose registers. */
2233 #define PPC_EV_REGS \
2234 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2235 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2236 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2237 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2238
2239 /* Lower half of the EV registers. */
2240 #define PPC_GPRS_PSEUDO_REGS \
2241 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2242 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2243 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2244 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2245
2246 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2247 user-level SPR's. */
2248 static const struct reg registers_power[] =
2249 {
2250 COMMON_UISA_REGS,
2251 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2252 /* 71 */ R4(fpscr)
2253 };
2254
2255 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2256 view of the PowerPC. */
2257 static const struct reg registers_powerpc[] =
2258 {
2259 COMMON_UISA_REGS,
2260 PPC_UISA_SPRS,
2261 PPC_ALTIVEC_REGS
2262 };
2263
2264 /* PowerPC UISA - a PPC processor as viewed by user-level
2265 code, but without floating point registers. */
2266 static const struct reg registers_powerpc_nofp[] =
2267 {
2268 COMMON_UISA_NOFP_REGS,
2269 PPC_UISA_SPRS
2270 };
2271
2272 /* IBM PowerPC 403. */
2273 static const struct reg registers_403[] =
2274 {
2275 COMMON_UISA_REGS,
2276 PPC_UISA_SPRS,
2277 PPC_SEGMENT_REGS,
2278 PPC_OEA_SPRS,
2279 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2280 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2281 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2282 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2283 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2284 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2285 };
2286
2287 /* IBM PowerPC 403GC. */
2288 static const struct reg registers_403GC[] =
2289 {
2290 COMMON_UISA_REGS,
2291 PPC_UISA_SPRS,
2292 PPC_SEGMENT_REGS,
2293 PPC_OEA_SPRS,
2294 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2295 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2296 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2297 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2298 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2299 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2300 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2301 /* 147 */ R(tbhu), R(tblu)
2302 };
2303
2304 /* Motorola PowerPC 505. */
2305 static const struct reg registers_505[] =
2306 {
2307 COMMON_UISA_REGS,
2308 PPC_UISA_SPRS,
2309 PPC_SEGMENT_REGS,
2310 PPC_OEA_SPRS,
2311 /* 119 */ R(eie), R(eid), R(nri)
2312 };
2313
2314 /* Motorola PowerPC 860 or 850. */
2315 static const struct reg registers_860[] =
2316 {
2317 COMMON_UISA_REGS,
2318 PPC_UISA_SPRS,
2319 PPC_SEGMENT_REGS,
2320 PPC_OEA_SPRS,
2321 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2322 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2323 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2324 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2325 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2326 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2327 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2328 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2329 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2330 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2331 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2332 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2333 };
2334
2335 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2336 for reading and writing RTCU and RTCL. However, how one reads and writes a
2337 register is the stub's problem. */
2338 static const struct reg registers_601[] =
2339 {
2340 COMMON_UISA_REGS,
2341 PPC_UISA_SPRS,
2342 PPC_SEGMENT_REGS,
2343 PPC_OEA_SPRS,
2344 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2345 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2346 };
2347
2348 /* Motorola PowerPC 602. */
2349 static const struct reg registers_602[] =
2350 {
2351 COMMON_UISA_REGS,
2352 PPC_UISA_SPRS,
2353 PPC_SEGMENT_REGS,
2354 PPC_OEA_SPRS,
2355 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2356 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2357 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2358 };
2359
2360 /* Motorola/IBM PowerPC 603 or 603e. */
2361 static const struct reg registers_603[] =
2362 {
2363 COMMON_UISA_REGS,
2364 PPC_UISA_SPRS,
2365 PPC_SEGMENT_REGS,
2366 PPC_OEA_SPRS,
2367 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2368 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2369 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2370 };
2371
2372 /* Motorola PowerPC 604 or 604e. */
2373 static const struct reg registers_604[] =
2374 {
2375 COMMON_UISA_REGS,
2376 PPC_UISA_SPRS,
2377 PPC_SEGMENT_REGS,
2378 PPC_OEA_SPRS,
2379 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2380 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2381 /* 127 */ R(sia), R(sda)
2382 };
2383
2384 /* Motorola/IBM PowerPC 750 or 740. */
2385 static const struct reg registers_750[] =
2386 {
2387 COMMON_UISA_REGS,
2388 PPC_UISA_SPRS,
2389 PPC_SEGMENT_REGS,
2390 PPC_OEA_SPRS,
2391 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2392 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2393 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2394 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2395 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2396 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2397 };
2398
2399
2400 /* Motorola PowerPC 7400. */
2401 static const struct reg registers_7400[] =
2402 {
2403 /* gpr0-gpr31, fpr0-fpr31 */
2404 COMMON_UISA_REGS,
2405 /* ctr, xre, lr, cr */
2406 PPC_UISA_SPRS,
2407 /* sr0-sr15 */
2408 PPC_SEGMENT_REGS,
2409 PPC_OEA_SPRS,
2410 /* vr0-vr31, vrsave, vscr */
2411 PPC_ALTIVEC_REGS
2412 /* FIXME? Add more registers? */
2413 };
2414
2415 /* Motorola e500. */
2416 static const struct reg registers_e500[] =
2417 {
2418 R(pc), R(ps),
2419 /* cr, lr, ctr, xer, "" */
2420 PPC_UISA_NOFP_SPRS,
2421 /* 7...38 */
2422 PPC_EV_REGS,
2423 R8(acc), R(spefscr),
2424 /* NOTE: Add new registers here the end of the raw register
2425 list and just before the first pseudo register. */
2426 /* 39...70 */
2427 PPC_GPRS_PSEUDO_REGS
2428 };
2429
2430 /* Information about a particular processor variant. */
2431
2432 struct variant
2433 {
2434 /* Name of this variant. */
2435 char *name;
2436
2437 /* English description of the variant. */
2438 char *description;
2439
2440 /* bfd_arch_info.arch corresponding to variant. */
2441 enum bfd_architecture arch;
2442
2443 /* bfd_arch_info.mach corresponding to variant. */
2444 unsigned long mach;
2445
2446 /* Number of real registers. */
2447 int nregs;
2448
2449 /* Number of pseudo registers. */
2450 int npregs;
2451
2452 /* Number of total registers (the sum of nregs and npregs). */
2453 int num_tot_regs;
2454
2455 /* Table of register names; registers[R] is the name of the register
2456 number R. */
2457 const struct reg *regs;
2458 };
2459
2460 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2461
2462 static int
2463 num_registers (const struct reg *reg_list, int num_tot_regs)
2464 {
2465 int i;
2466 int nregs = 0;
2467
2468 for (i = 0; i < num_tot_regs; i++)
2469 if (!reg_list[i].pseudo)
2470 nregs++;
2471
2472 return nregs;
2473 }
2474
2475 static int
2476 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2477 {
2478 int i;
2479 int npregs = 0;
2480
2481 for (i = 0; i < num_tot_regs; i++)
2482 if (reg_list[i].pseudo)
2483 npregs ++;
2484
2485 return npregs;
2486 }
2487
2488 /* Information in this table comes from the following web sites:
2489 IBM: http://www.chips.ibm.com:80/products/embedded/
2490 Motorola: http://www.mot.com/SPS/PowerPC/
2491
2492 I'm sure I've got some of the variant descriptions not quite right.
2493 Please report any inaccuracies you find to GDB's maintainer.
2494
2495 If you add entries to this table, please be sure to allow the new
2496 value as an argument to the --with-cpu flag, in configure.in. */
2497
2498 static struct variant variants[] =
2499 {
2500
2501 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2502 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2503 registers_powerpc},
2504 {"power", "POWER user-level", bfd_arch_rs6000,
2505 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2506 registers_power},
2507 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2508 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2509 registers_403},
2510 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2511 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2512 registers_601},
2513 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2514 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2515 registers_602},
2516 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2517 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2518 registers_603},
2519 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2520 604, -1, -1, tot_num_registers (registers_604),
2521 registers_604},
2522 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2523 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2524 registers_403GC},
2525 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2526 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2527 registers_505},
2528 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2529 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2530 registers_860},
2531 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2532 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2533 registers_750},
2534 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2535 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2536 registers_7400},
2537 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2538 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2539 registers_e500},
2540
2541 /* 64-bit */
2542 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2543 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2544 registers_powerpc},
2545 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2546 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2547 registers_powerpc},
2548 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2549 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2550 registers_powerpc},
2551 {"a35", "PowerPC A35", bfd_arch_powerpc,
2552 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2553 registers_powerpc},
2554 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2555 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2556 registers_powerpc},
2557 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2558 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2559 registers_powerpc},
2560
2561 /* FIXME: I haven't checked the register sets of the following. */
2562 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2563 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2564 registers_power},
2565 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2566 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2567 registers_power},
2568 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2569 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2570 registers_power},
2571
2572 {0, 0, 0, 0, 0, 0, 0, 0}
2573 };
2574
2575 /* Initialize the number of registers and pseudo registers in each variant. */
2576
2577 static void
2578 init_variants (void)
2579 {
2580 struct variant *v;
2581
2582 for (v = variants; v->name; v++)
2583 {
2584 if (v->nregs == -1)
2585 v->nregs = num_registers (v->regs, v->num_tot_regs);
2586 if (v->npregs == -1)
2587 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2588 }
2589 }
2590
2591 /* Return the variant corresponding to architecture ARCH and machine number
2592 MACH. If no such variant exists, return null. */
2593
2594 static const struct variant *
2595 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2596 {
2597 const struct variant *v;
2598
2599 for (v = variants; v->name; v++)
2600 if (arch == v->arch && mach == v->mach)
2601 return v;
2602
2603 return NULL;
2604 }
2605
2606 static int
2607 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2608 {
2609 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2610 return print_insn_big_powerpc (memaddr, info);
2611 else
2612 return print_insn_little_powerpc (memaddr, info);
2613 }
2614 \f
2615 /* Initialize the current architecture based on INFO. If possible, re-use an
2616 architecture from ARCHES, which is a list of architectures already created
2617 during this debugging session.
2618
2619 Called e.g. at program startup, when reading a core file, and when reading
2620 a binary file. */
2621
2622 static struct gdbarch *
2623 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2624 {
2625 struct gdbarch *gdbarch;
2626 struct gdbarch_tdep *tdep;
2627 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2628 struct reg *regs;
2629 const struct variant *v;
2630 enum bfd_architecture arch;
2631 unsigned long mach;
2632 bfd abfd;
2633 int sysv_abi;
2634 asection *sect;
2635
2636 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2637 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2638
2639 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2640 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2641
2642 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2643
2644 /* Check word size. If INFO is from a binary file, infer it from
2645 that, else choose a likely default. */
2646 if (from_xcoff_exec)
2647 {
2648 if (bfd_xcoff_is_xcoff64 (info.abfd))
2649 wordsize = 8;
2650 else
2651 wordsize = 4;
2652 }
2653 else if (from_elf_exec)
2654 {
2655 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2656 wordsize = 8;
2657 else
2658 wordsize = 4;
2659 }
2660 else
2661 {
2662 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2663 wordsize = info.bfd_arch_info->bits_per_word /
2664 info.bfd_arch_info->bits_per_byte;
2665 else
2666 wordsize = 4;
2667 }
2668
2669 /* Find a candidate among extant architectures. */
2670 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2671 arches != NULL;
2672 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2673 {
2674 /* Word size in the various PowerPC bfd_arch_info structs isn't
2675 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2676 separate word size check. */
2677 tdep = gdbarch_tdep (arches->gdbarch);
2678 if (tdep && tdep->wordsize == wordsize)
2679 return arches->gdbarch;
2680 }
2681
2682 /* None found, create a new architecture from INFO, whose bfd_arch_info
2683 validity depends on the source:
2684 - executable useless
2685 - rs6000_host_arch() good
2686 - core file good
2687 - "set arch" trust blindly
2688 - GDB startup useless but harmless */
2689
2690 if (!from_xcoff_exec)
2691 {
2692 arch = info.bfd_arch_info->arch;
2693 mach = info.bfd_arch_info->mach;
2694 }
2695 else
2696 {
2697 arch = bfd_arch_powerpc;
2698 bfd_default_set_arch_mach (&abfd, arch, 0);
2699 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2700 mach = info.bfd_arch_info->mach;
2701 }
2702 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2703 tdep->wordsize = wordsize;
2704
2705 /* For e500 executables, the apuinfo section is of help here. Such
2706 section contains the identifier and revision number of each
2707 Application-specific Processing Unit that is present on the
2708 chip. The content of the section is determined by the assembler
2709 which looks at each instruction and determines which unit (and
2710 which version of it) can execute it. In our case we just look for
2711 the existance of the section. */
2712
2713 if (info.abfd)
2714 {
2715 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2716 if (sect)
2717 {
2718 arch = info.bfd_arch_info->arch;
2719 mach = bfd_mach_ppc_e500;
2720 bfd_default_set_arch_mach (&abfd, arch, mach);
2721 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2722 }
2723 }
2724
2725 gdbarch = gdbarch_alloc (&info, tdep);
2726 power = arch == bfd_arch_rs6000;
2727
2728 /* Initialize the number of real and pseudo registers in each variant. */
2729 init_variants ();
2730
2731 /* Choose variant. */
2732 v = find_variant_by_arch (arch, mach);
2733 if (!v)
2734 return NULL;
2735
2736 tdep->regs = v->regs;
2737
2738 tdep->ppc_gp0_regnum = 0;
2739 tdep->ppc_gplast_regnum = 31;
2740 tdep->ppc_toc_regnum = 2;
2741 tdep->ppc_ps_regnum = 65;
2742 tdep->ppc_cr_regnum = 66;
2743 tdep->ppc_lr_regnum = 67;
2744 tdep->ppc_ctr_regnum = 68;
2745 tdep->ppc_xer_regnum = 69;
2746 if (v->mach == bfd_mach_ppc_601)
2747 tdep->ppc_mq_regnum = 124;
2748 else if (power)
2749 tdep->ppc_mq_regnum = 70;
2750 else
2751 tdep->ppc_mq_regnum = -1;
2752 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2753
2754 set_gdbarch_pc_regnum (gdbarch, 64);
2755 set_gdbarch_sp_regnum (gdbarch, 1);
2756 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2757 if (sysv_abi && wordsize == 8)
2758 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2759 else if (sysv_abi && wordsize == 4)
2760 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2761 else
2762 {
2763 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2764 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2765 }
2766
2767 if (v->arch == bfd_arch_powerpc)
2768 switch (v->mach)
2769 {
2770 case bfd_mach_ppc:
2771 tdep->ppc_vr0_regnum = 71;
2772 tdep->ppc_vrsave_regnum = 104;
2773 tdep->ppc_ev0_regnum = -1;
2774 tdep->ppc_ev31_regnum = -1;
2775 break;
2776 case bfd_mach_ppc_7400:
2777 tdep->ppc_vr0_regnum = 119;
2778 tdep->ppc_vrsave_regnum = 152;
2779 tdep->ppc_ev0_regnum = -1;
2780 tdep->ppc_ev31_regnum = -1;
2781 break;
2782 case bfd_mach_ppc_e500:
2783 tdep->ppc_gp0_regnum = 41;
2784 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2785 tdep->ppc_toc_regnum = -1;
2786 tdep->ppc_ps_regnum = 1;
2787 tdep->ppc_cr_regnum = 2;
2788 tdep->ppc_lr_regnum = 3;
2789 tdep->ppc_ctr_regnum = 4;
2790 tdep->ppc_xer_regnum = 5;
2791 tdep->ppc_ev0_regnum = 7;
2792 tdep->ppc_ev31_regnum = 38;
2793 set_gdbarch_pc_regnum (gdbarch, 0);
2794 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2795 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2796 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2797 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2798 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2799 break;
2800 default:
2801 tdep->ppc_vr0_regnum = -1;
2802 tdep->ppc_vrsave_regnum = -1;
2803 tdep->ppc_ev0_regnum = -1;
2804 tdep->ppc_ev31_regnum = -1;
2805 break;
2806 }
2807
2808 /* Sanity check on registers. */
2809 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2810
2811 /* Set lr_frame_offset. */
2812 if (wordsize == 8)
2813 tdep->lr_frame_offset = 16;
2814 else if (sysv_abi)
2815 tdep->lr_frame_offset = 4;
2816 else
2817 tdep->lr_frame_offset = 8;
2818
2819 /* Calculate byte offsets in raw register array. */
2820 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2821 for (i = off = 0; i < v->num_tot_regs; i++)
2822 {
2823 tdep->regoff[i] = off;
2824 off += regsize (v->regs + i, wordsize);
2825 }
2826
2827 /* Select instruction printer. */
2828 if (arch == power)
2829 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2830 else
2831 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2832
2833 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2834
2835 set_gdbarch_num_regs (gdbarch, v->nregs);
2836 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2837 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2838 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2839 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2840 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2841 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2842 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2843
2844 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2845 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2846 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2847 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2848 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2849 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2850 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2851 if (sysv_abi)
2852 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2853 else
2854 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2855 set_gdbarch_char_signed (gdbarch, 0);
2856
2857 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2858 if (sysv_abi && wordsize == 8)
2859 /* PPC64 SYSV. */
2860 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2861 else if (!sysv_abi && wordsize == 4)
2862 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2863 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2864 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2865 224. */
2866 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2867 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2868 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2869
2870 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2871 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2872 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2873 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2874 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2875 is correct for the SysV ABI when the wordsize is 8, but I'm also
2876 fairly certain that ppc_sysv_abi_push_arguments() will give even
2877 worse results since it only works for 32-bit code. So, for the moment,
2878 we're better off calling rs6000_push_arguments() since it works for
2879 64-bit code. At some point in the future, this matter needs to be
2880 revisited. */
2881 if (sysv_abi && wordsize == 4)
2882 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2883 else if (sysv_abi && wordsize == 8)
2884 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2885 else
2886 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2887
2888 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2889 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2890
2891 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2892 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2893 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2894
2895 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2896 for the descriptor and ".FN" for the entry-point -- a user
2897 specifying "break FN" will unexpectedly end up with a breakpoint
2898 on the descriptor and not the function. This architecture method
2899 transforms any breakpoints on descriptors into breakpoints on the
2900 corresponding entry point. */
2901 if (sysv_abi && wordsize == 8)
2902 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2903
2904 /* Not sure on this. FIXMEmgo */
2905 set_gdbarch_frame_args_skip (gdbarch, 8);
2906
2907 if (!sysv_abi)
2908 set_gdbarch_use_struct_convention (gdbarch,
2909 rs6000_use_struct_convention);
2910
2911 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, rs6000_frameless_function_invocation);
2912 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2913 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2914
2915 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2916 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2917
2918 if (!sysv_abi)
2919 {
2920 /* Handle RS/6000 function pointers (which are really function
2921 descriptors). */
2922 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2923 rs6000_convert_from_func_ptr_addr);
2924 }
2925 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2926 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
2927 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2928
2929 /* Helpers for function argument information. */
2930 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2931
2932 /* Hook in ABI-specific overrides, if they have been registered. */
2933 gdbarch_init_osabi (info, gdbarch);
2934
2935 if (from_xcoff_exec)
2936 {
2937 /* NOTE: jimix/2003-06-09: This test should really check for
2938 GDB_OSABI_AIX when that is defined and becomes
2939 available. (Actually, once things are properly split apart,
2940 the test goes away.) */
2941 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2942 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2943 }
2944
2945 return gdbarch;
2946 }
2947
2948 static void
2949 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2950 {
2951 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2952
2953 if (tdep == NULL)
2954 return;
2955
2956 /* FIXME: Dump gdbarch_tdep. */
2957 }
2958
2959 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2960
2961 static void
2962 rs6000_info_powerpc_command (char *args, int from_tty)
2963 {
2964 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2965 }
2966
2967 /* Initialization code. */
2968
2969 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
2970
2971 void
2972 _initialize_rs6000_tdep (void)
2973 {
2974 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2975 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2976
2977 /* Add root prefix command for "info powerpc" commands */
2978 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2979 "Various POWERPC info specific commands.",
2980 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2981 }
This page took 0.087569 seconds and 5 git commands to generate.