* rs6000-tdep.c (rs6000_extract_return_value): When extracting a float,
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39
40 #include "libbfd.h" /* for bfd_default_set_arch_mach */
41 #include "coff/internal.h" /* for libcoff.h */
42 #include "libcoff.h" /* for xcoff_data */
43 #include "coff/xcoff.h"
44 #include "libxcoff.h"
45
46 #include "elf-bfd.h"
47
48 #include "solib-svr4.h"
49 #include "ppc-tdep.h"
50
51 #include "gdb_assert.h"
52 #include "dis-asm.h"
53
54 #include "trad-frame.h"
55 #include "frame-unwind.h"
56 #include "frame-base.h"
57
58 /* If the kernel has to deliver a signal, it pushes a sigcontext
59 structure on the stack and then calls the signal handler, passing
60 the address of the sigcontext in an argument register. Usually
61 the signal handler doesn't save this register, so we have to
62 access the sigcontext structure via an offset from the signal handler
63 frame.
64 The following constants were determined by experimentation on AIX 3.2. */
65 #define SIG_FRAME_PC_OFFSET 96
66 #define SIG_FRAME_LR_OFFSET 108
67 #define SIG_FRAME_FP_OFFSET 284
68
69 /* To be used by skip_prologue. */
70
71 struct rs6000_framedata
72 {
73 int offset; /* total size of frame --- the distance
74 by which we decrement sp to allocate
75 the frame */
76 int saved_gpr; /* smallest # of saved gpr */
77 int saved_fpr; /* smallest # of saved fpr */
78 int saved_vr; /* smallest # of saved vr */
79 int saved_ev; /* smallest # of saved ev */
80 int alloca_reg; /* alloca register number (frame ptr) */
81 char frameless; /* true if frameless functions. */
82 char nosavedpc; /* true if pc not saved. */
83 int gpr_offset; /* offset of saved gprs from prev sp */
84 int fpr_offset; /* offset of saved fprs from prev sp */
85 int vr_offset; /* offset of saved vrs from prev sp */
86 int ev_offset; /* offset of saved evs from prev sp */
87 int lr_offset; /* offset of saved lr */
88 int cr_offset; /* offset of saved cr */
89 int vrsave_offset; /* offset of saved vrsave register */
90 };
91
92 /* Description of a single register. */
93
94 struct reg
95 {
96 char *name; /* name of register */
97 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
98 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
99 unsigned char fpr; /* whether register is floating-point */
100 unsigned char pseudo; /* whether register is pseudo */
101 };
102
103 /* Breakpoint shadows for the single step instructions will be kept here. */
104
105 static struct sstep_breaks
106 {
107 /* Address, or 0 if this is not in use. */
108 CORE_ADDR address;
109 /* Shadow contents. */
110 char data[4];
111 }
112 stepBreaks[2];
113
114 /* Hook for determining the TOC address when calling functions in the
115 inferior under AIX. The initialization code in rs6000-nat.c sets
116 this hook to point to find_toc_address. */
117
118 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
119
120 /* Hook to set the current architecture when starting a child process.
121 rs6000-nat.c sets this. */
122
123 void (*rs6000_set_host_arch_hook) (int) = NULL;
124
125 /* Static function prototypes */
126
127 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
128 CORE_ADDR safety);
129 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
130 struct rs6000_framedata *);
131
132 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
133 int
134 altivec_register_p (int regno)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
137 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
138 return 0;
139 else
140 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
141 }
142
143 /* Use the architectures FP registers? */
144 int
145 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
146 {
147 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
148 if (info->arch == bfd_arch_powerpc)
149 return (info->mach != bfd_mach_ppc_e500);
150 if (info->arch == bfd_arch_rs6000)
151 return 1;
152 return 0;
153 }
154 \f
155
156 /* Register set support functions. */
157
158 static void
159 ppc_supply_reg (struct regcache *regcache, int regnum,
160 const char *regs, size_t offset)
161 {
162 if (regnum != -1 && offset != -1)
163 regcache_raw_supply (regcache, regnum, regs + offset);
164 }
165
166 static void
167 ppc_collect_reg (const struct regcache *regcache, int regnum,
168 char *regs, size_t offset)
169 {
170 if (regnum != -1 && offset != -1)
171 regcache_raw_collect (regcache, regnum, regs + offset);
172 }
173
174 /* Supply register REGNUM in the general-purpose register set REGSET
175 from the buffer specified by GREGS and LEN to register cache
176 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
177
178 void
179 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
180 int regnum, const void *gregs, size_t len)
181 {
182 struct gdbarch *gdbarch = get_regcache_arch (regcache);
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184 const struct ppc_reg_offsets *offsets = regset->descr;
185 size_t offset;
186 int i;
187
188 for (i = 0, offset = offsets->r0_offset; i < 32; i++, offset += 4)
189 {
190 if (regnum == -1 || regnum == i)
191 ppc_supply_reg (regcache, i, gregs, offset);
192 }
193
194 if (regnum == -1 || regnum == PC_REGNUM)
195 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
196 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
197 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
198 gregs, offsets->ps_offset);
199 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
200 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
201 gregs, offsets->cr_offset);
202 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
203 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
204 gregs, offsets->lr_offset);
205 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
206 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
207 gregs, offsets->ctr_offset);
208 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
209 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
210 gregs, offsets->cr_offset);
211 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
212 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
213 }
214
215 /* Supply register REGNUM in the floating-point register set REGSET
216 from the buffer specified by FPREGS and LEN to register cache
217 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
218
219 void
220 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
221 int regnum, const void *fpregs, size_t len)
222 {
223 struct gdbarch *gdbarch = get_regcache_arch (regcache);
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225 const struct ppc_reg_offsets *offsets = regset->descr;
226 size_t offset;
227 int i;
228
229 offset = offsets->f0_offset;
230 for (i = FP0_REGNUM; i < FP0_REGNUM + 32; i++, offset += 4)
231 {
232 if (regnum == -1 || regnum == i)
233 ppc_supply_reg (regcache, i, fpregs, offset);
234 }
235
236 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
237 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
238 fpregs, offsets->fpscr_offset);
239 }
240
241 /* Collect register REGNUM in the general-purpose register set
242 REGSET. from register cache REGCACHE into the buffer specified by
243 GREGS and LEN. If REGNUM is -1, do this for all registers in
244 REGSET. */
245
246 void
247 ppc_collect_gregset (const struct regset *regset,
248 const struct regcache *regcache,
249 int regnum, void *gregs, size_t len)
250 {
251 struct gdbarch *gdbarch = get_regcache_arch (regcache);
252 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
253 const struct ppc_reg_offsets *offsets = regset->descr;
254 size_t offset;
255 int i;
256
257 offset = offsets->r0_offset;
258 for (i = 0; i <= 32; i++, offset += 4)
259 {
260 if (regnum == -1 || regnum == i)
261 ppc_collect_reg (regcache, regnum, gregs, offset);
262 }
263
264 if (regnum == -1 || regnum == PC_REGNUM)
265 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
266 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
267 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
268 gregs, offsets->ps_offset);
269 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
270 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
271 gregs, offsets->cr_offset);
272 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
273 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
274 gregs, offsets->lr_offset);
275 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
276 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
277 gregs, offsets->ctr_offset);
278 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
279 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
280 gregs, offsets->xer_offset);
281 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
282 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
283 gregs, offsets->mq_offset);
284 }
285
286 /* Collect register REGNUM in the floating-point register set
287 REGSET. from register cache REGCACHE into the buffer specified by
288 FPREGS and LEN. If REGNUM is -1, do this for all registers in
289 REGSET. */
290
291 void
292 ppc_collect_fpregset (const struct regset *regset,
293 const struct regcache *regcache,
294 int regnum, void *fpregs, size_t len)
295 {
296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 const struct ppc_reg_offsets *offsets = regset->descr;
299 size_t offset;
300 int i;
301
302 offset = offsets->f0_offset;
303 for (i = FP0_REGNUM; i <= FP0_REGNUM + 32; i++, offset += 4)
304 {
305 if (regnum == -1 || regnum == i)
306 ppc_collect_reg (regcache, regnum, fpregs, offset);
307 }
308
309 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
310 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
311 fpregs, offsets->fpscr_offset);
312 }
313 \f
314
315 /* Read a LEN-byte address from debugged memory address MEMADDR. */
316
317 static CORE_ADDR
318 read_memory_addr (CORE_ADDR memaddr, int len)
319 {
320 return read_memory_unsigned_integer (memaddr, len);
321 }
322
323 static CORE_ADDR
324 rs6000_skip_prologue (CORE_ADDR pc)
325 {
326 struct rs6000_framedata frame;
327 pc = skip_prologue (pc, 0, &frame);
328 return pc;
329 }
330
331
332 /* Fill in fi->saved_regs */
333
334 struct frame_extra_info
335 {
336 /* Functions calling alloca() change the value of the stack
337 pointer. We need to use initial stack pointer (which is saved in
338 r31 by gcc) in such cases. If a compiler emits traceback table,
339 then we should use the alloca register specified in traceback
340 table. FIXME. */
341 CORE_ADDR initial_sp; /* initial stack pointer. */
342 };
343
344 /* Get the ith function argument for the current function. */
345 static CORE_ADDR
346 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
347 struct type *type)
348 {
349 CORE_ADDR addr;
350 get_frame_register (frame, 3 + argi, &addr);
351 return addr;
352 }
353
354 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
355
356 static CORE_ADDR
357 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
358 {
359 CORE_ADDR dest;
360 int immediate;
361 int absolute;
362 int ext_op;
363
364 absolute = (int) ((instr >> 1) & 1);
365
366 switch (opcode)
367 {
368 case 18:
369 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
370 if (absolute)
371 dest = immediate;
372 else
373 dest = pc + immediate;
374 break;
375
376 case 16:
377 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
378 if (absolute)
379 dest = immediate;
380 else
381 dest = pc + immediate;
382 break;
383
384 case 19:
385 ext_op = (instr >> 1) & 0x3ff;
386
387 if (ext_op == 16) /* br conditional register */
388 {
389 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
390
391 /* If we are about to return from a signal handler, dest is
392 something like 0x3c90. The current frame is a signal handler
393 caller frame, upon completion of the sigreturn system call
394 execution will return to the saved PC in the frame. */
395 if (dest < TEXT_SEGMENT_BASE)
396 {
397 struct frame_info *fi;
398
399 fi = get_current_frame ();
400 if (fi != NULL)
401 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
402 gdbarch_tdep (current_gdbarch)->wordsize);
403 }
404 }
405
406 else if (ext_op == 528) /* br cond to count reg */
407 {
408 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
409
410 /* If we are about to execute a system call, dest is something
411 like 0x22fc or 0x3b00. Upon completion the system call
412 will return to the address in the link register. */
413 if (dest < TEXT_SEGMENT_BASE)
414 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
415 }
416 else
417 return -1;
418 break;
419
420 default:
421 return -1;
422 }
423 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
424 }
425
426
427 /* Sequence of bytes for breakpoint instruction. */
428
429 const static unsigned char *
430 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
431 {
432 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
433 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
434 *bp_size = 4;
435 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
436 return big_breakpoint;
437 else
438 return little_breakpoint;
439 }
440
441
442 /* AIX does not support PT_STEP. Simulate it. */
443
444 void
445 rs6000_software_single_step (enum target_signal signal,
446 int insert_breakpoints_p)
447 {
448 CORE_ADDR dummy;
449 int breakp_sz;
450 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
451 int ii, insn;
452 CORE_ADDR loc;
453 CORE_ADDR breaks[2];
454 int opcode;
455
456 if (insert_breakpoints_p)
457 {
458
459 loc = read_pc ();
460
461 insn = read_memory_integer (loc, 4);
462
463 breaks[0] = loc + breakp_sz;
464 opcode = insn >> 26;
465 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
466
467 /* Don't put two breakpoints on the same address. */
468 if (breaks[1] == breaks[0])
469 breaks[1] = -1;
470
471 stepBreaks[1].address = 0;
472
473 for (ii = 0; ii < 2; ++ii)
474 {
475
476 /* ignore invalid breakpoint. */
477 if (breaks[ii] == -1)
478 continue;
479 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
480 stepBreaks[ii].address = breaks[ii];
481 }
482
483 }
484 else
485 {
486
487 /* remove step breakpoints. */
488 for (ii = 0; ii < 2; ++ii)
489 if (stepBreaks[ii].address != 0)
490 target_remove_breakpoint (stepBreaks[ii].address,
491 stepBreaks[ii].data);
492 }
493 errno = 0; /* FIXME, don't ignore errors! */
494 /* What errors? {read,write}_memory call error(). */
495 }
496
497
498 /* return pc value after skipping a function prologue and also return
499 information about a function frame.
500
501 in struct rs6000_framedata fdata:
502 - frameless is TRUE, if function does not have a frame.
503 - nosavedpc is TRUE, if function does not save %pc value in its frame.
504 - offset is the initial size of this stack frame --- the amount by
505 which we decrement the sp to allocate the frame.
506 - saved_gpr is the number of the first saved gpr.
507 - saved_fpr is the number of the first saved fpr.
508 - saved_vr is the number of the first saved vr.
509 - saved_ev is the number of the first saved ev.
510 - alloca_reg is the number of the register used for alloca() handling.
511 Otherwise -1.
512 - gpr_offset is the offset of the first saved gpr from the previous frame.
513 - fpr_offset is the offset of the first saved fpr from the previous frame.
514 - vr_offset is the offset of the first saved vr from the previous frame.
515 - ev_offset is the offset of the first saved ev from the previous frame.
516 - lr_offset is the offset of the saved lr
517 - cr_offset is the offset of the saved cr
518 - vrsave_offset is the offset of the saved vrsave register
519 */
520
521 #define SIGNED_SHORT(x) \
522 ((sizeof (short) == 2) \
523 ? ((int)(short)(x)) \
524 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
525
526 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
527
528 /* Limit the number of skipped non-prologue instructions, as the examining
529 of the prologue is expensive. */
530 static int max_skip_non_prologue_insns = 10;
531
532 /* Given PC representing the starting address of a function, and
533 LIM_PC which is the (sloppy) limit to which to scan when looking
534 for a prologue, attempt to further refine this limit by using
535 the line data in the symbol table. If successful, a better guess
536 on where the prologue ends is returned, otherwise the previous
537 value of lim_pc is returned. */
538
539 /* FIXME: cagney/2004-02-14: This function and logic have largely been
540 superseded by skip_prologue_using_sal. */
541
542 static CORE_ADDR
543 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
544 {
545 struct symtab_and_line prologue_sal;
546
547 prologue_sal = find_pc_line (pc, 0);
548 if (prologue_sal.line != 0)
549 {
550 int i;
551 CORE_ADDR addr = prologue_sal.end;
552
553 /* Handle the case in which compiler's optimizer/scheduler
554 has moved instructions into the prologue. We scan ahead
555 in the function looking for address ranges whose corresponding
556 line number is less than or equal to the first one that we
557 found for the function. (It can be less than when the
558 scheduler puts a body instruction before the first prologue
559 instruction.) */
560 for (i = 2 * max_skip_non_prologue_insns;
561 i > 0 && (lim_pc == 0 || addr < lim_pc);
562 i--)
563 {
564 struct symtab_and_line sal;
565
566 sal = find_pc_line (addr, 0);
567 if (sal.line == 0)
568 break;
569 if (sal.line <= prologue_sal.line
570 && sal.symtab == prologue_sal.symtab)
571 {
572 prologue_sal = sal;
573 }
574 addr = sal.end;
575 }
576
577 if (lim_pc == 0 || prologue_sal.end < lim_pc)
578 lim_pc = prologue_sal.end;
579 }
580 return lim_pc;
581 }
582
583
584 static CORE_ADDR
585 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
586 {
587 CORE_ADDR orig_pc = pc;
588 CORE_ADDR last_prologue_pc = pc;
589 CORE_ADDR li_found_pc = 0;
590 char buf[4];
591 unsigned long op;
592 long offset = 0;
593 long vr_saved_offset = 0;
594 int lr_reg = -1;
595 int cr_reg = -1;
596 int vr_reg = -1;
597 int ev_reg = -1;
598 long ev_offset = 0;
599 int vrsave_reg = -1;
600 int reg;
601 int framep = 0;
602 int minimal_toc_loaded = 0;
603 int prev_insn_was_prologue_insn = 1;
604 int num_skip_non_prologue_insns = 0;
605 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
606 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
607
608 /* Attempt to find the end of the prologue when no limit is specified.
609 Note that refine_prologue_limit() has been written so that it may
610 be used to "refine" the limits of non-zero PC values too, but this
611 is only safe if we 1) trust the line information provided by the
612 compiler and 2) iterate enough to actually find the end of the
613 prologue.
614
615 It may become a good idea at some point (for both performance and
616 accuracy) to unconditionally call refine_prologue_limit(). But,
617 until we can make a clear determination that this is beneficial,
618 we'll play it safe and only use it to obtain a limit when none
619 has been specified. */
620 if (lim_pc == 0)
621 lim_pc = refine_prologue_limit (pc, lim_pc);
622
623 memset (fdata, 0, sizeof (struct rs6000_framedata));
624 fdata->saved_gpr = -1;
625 fdata->saved_fpr = -1;
626 fdata->saved_vr = -1;
627 fdata->saved_ev = -1;
628 fdata->alloca_reg = -1;
629 fdata->frameless = 1;
630 fdata->nosavedpc = 1;
631
632 for (;; pc += 4)
633 {
634 /* Sometimes it isn't clear if an instruction is a prologue
635 instruction or not. When we encounter one of these ambiguous
636 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
637 Otherwise, we'll assume that it really is a prologue instruction. */
638 if (prev_insn_was_prologue_insn)
639 last_prologue_pc = pc;
640
641 /* Stop scanning if we've hit the limit. */
642 if (lim_pc != 0 && pc >= lim_pc)
643 break;
644
645 prev_insn_was_prologue_insn = 1;
646
647 /* Fetch the instruction and convert it to an integer. */
648 if (target_read_memory (pc, buf, 4))
649 break;
650 op = extract_signed_integer (buf, 4);
651
652 if ((op & 0xfc1fffff) == 0x7c0802a6)
653 { /* mflr Rx */
654 /* Since shared library / PIC code, which needs to get its
655 address at runtime, can appear to save more than one link
656 register vis:
657
658 *INDENT-OFF*
659 stwu r1,-304(r1)
660 mflr r3
661 bl 0xff570d0 (blrl)
662 stw r30,296(r1)
663 mflr r30
664 stw r31,300(r1)
665 stw r3,308(r1);
666 ...
667 *INDENT-ON*
668
669 remember just the first one, but skip over additional
670 ones. */
671 if (lr_reg < 0)
672 lr_reg = (op & 0x03e00000);
673 continue;
674 }
675 else if ((op & 0xfc1fffff) == 0x7c000026)
676 { /* mfcr Rx */
677 cr_reg = (op & 0x03e00000);
678 continue;
679
680 }
681 else if ((op & 0xfc1f0000) == 0xd8010000)
682 { /* stfd Rx,NUM(r1) */
683 reg = GET_SRC_REG (op);
684 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
685 {
686 fdata->saved_fpr = reg;
687 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
688 }
689 continue;
690
691 }
692 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
693 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
694 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
695 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
696 {
697
698 reg = GET_SRC_REG (op);
699 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
700 {
701 fdata->saved_gpr = reg;
702 if ((op & 0xfc1f0003) == 0xf8010000)
703 op &= ~3UL;
704 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
705 }
706 continue;
707
708 }
709 else if ((op & 0xffff0000) == 0x60000000)
710 {
711 /* nop */
712 /* Allow nops in the prologue, but do not consider them to
713 be part of the prologue unless followed by other prologue
714 instructions. */
715 prev_insn_was_prologue_insn = 0;
716 continue;
717
718 }
719 else if ((op & 0xffff0000) == 0x3c000000)
720 { /* addis 0,0,NUM, used
721 for >= 32k frames */
722 fdata->offset = (op & 0x0000ffff) << 16;
723 fdata->frameless = 0;
724 continue;
725
726 }
727 else if ((op & 0xffff0000) == 0x60000000)
728 { /* ori 0,0,NUM, 2nd ha
729 lf of >= 32k frames */
730 fdata->offset |= (op & 0x0000ffff);
731 fdata->frameless = 0;
732 continue;
733
734 }
735 else if (lr_reg != -1 &&
736 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
737 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
738 /* stw Rx, NUM(r1) */
739 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
740 /* stwu Rx, NUM(r1) */
741 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
742 { /* where Rx == lr */
743 fdata->lr_offset = offset;
744 fdata->nosavedpc = 0;
745 lr_reg = 0;
746 if ((op & 0xfc000003) == 0xf8000000 || /* std */
747 (op & 0xfc000000) == 0x90000000) /* stw */
748 {
749 /* Does not update r1, so add displacement to lr_offset. */
750 fdata->lr_offset += SIGNED_SHORT (op);
751 }
752 continue;
753
754 }
755 else if (cr_reg != -1 &&
756 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
757 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
758 /* stw Rx, NUM(r1) */
759 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
760 /* stwu Rx, NUM(r1) */
761 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
762 { /* where Rx == cr */
763 fdata->cr_offset = offset;
764 cr_reg = 0;
765 if ((op & 0xfc000003) == 0xf8000000 ||
766 (op & 0xfc000000) == 0x90000000)
767 {
768 /* Does not update r1, so add displacement to cr_offset. */
769 fdata->cr_offset += SIGNED_SHORT (op);
770 }
771 continue;
772
773 }
774 else if (op == 0x48000005)
775 { /* bl .+4 used in
776 -mrelocatable */
777 continue;
778
779 }
780 else if (op == 0x48000004)
781 { /* b .+4 (xlc) */
782 break;
783
784 }
785 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
786 in V.4 -mminimal-toc */
787 (op & 0xffff0000) == 0x3bde0000)
788 { /* addi 30,30,foo@l */
789 continue;
790
791 }
792 else if ((op & 0xfc000001) == 0x48000001)
793 { /* bl foo,
794 to save fprs??? */
795
796 fdata->frameless = 0;
797 /* Don't skip over the subroutine call if it is not within
798 the first three instructions of the prologue. */
799 if ((pc - orig_pc) > 8)
800 break;
801
802 op = read_memory_integer (pc + 4, 4);
803
804 /* At this point, make sure this is not a trampoline
805 function (a function that simply calls another functions,
806 and nothing else). If the next is not a nop, this branch
807 was part of the function prologue. */
808
809 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
810 break; /* don't skip over
811 this branch */
812 continue;
813
814 }
815 /* update stack pointer */
816 else if ((op & 0xfc1f0000) == 0x94010000)
817 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
818 fdata->frameless = 0;
819 fdata->offset = SIGNED_SHORT (op);
820 offset = fdata->offset;
821 continue;
822 }
823 else if ((op & 0xfc1f016a) == 0x7c01016e)
824 { /* stwux rX,r1,rY */
825 /* no way to figure out what r1 is going to be */
826 fdata->frameless = 0;
827 offset = fdata->offset;
828 continue;
829 }
830 else if ((op & 0xfc1f0003) == 0xf8010001)
831 { /* stdu rX,NUM(r1) */
832 fdata->frameless = 0;
833 fdata->offset = SIGNED_SHORT (op & ~3UL);
834 offset = fdata->offset;
835 continue;
836 }
837 else if ((op & 0xfc1f016a) == 0x7c01016a)
838 { /* stdux rX,r1,rY */
839 /* no way to figure out what r1 is going to be */
840 fdata->frameless = 0;
841 offset = fdata->offset;
842 continue;
843 }
844 /* Load up minimal toc pointer */
845 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
846 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
847 && !minimal_toc_loaded)
848 {
849 minimal_toc_loaded = 1;
850 continue;
851
852 /* move parameters from argument registers to local variable
853 registers */
854 }
855 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
856 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
857 (((op >> 21) & 31) <= 10) &&
858 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
859 {
860 continue;
861
862 /* store parameters in stack */
863 }
864 /* Move parameters from argument registers to temporary register. */
865 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
866 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
867 (((op >> 21) & 31) <= 10) &&
868 (((op >> 16) & 31) == 0)) /* Rx: scratch register r0 */
869 {
870 continue;
871 }
872 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
873 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
874 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
875 {
876 continue;
877
878 /* store parameters in stack via frame pointer */
879 }
880 else if (framep &&
881 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
882 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
883 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r31) */
884 (op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
885 {
886 continue;
887
888 /* Set up frame pointer */
889 }
890 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
891 || op == 0x7c3f0b78)
892 { /* mr r31, r1 */
893 fdata->frameless = 0;
894 framep = 1;
895 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
896 continue;
897
898 /* Another way to set up the frame pointer. */
899 }
900 else if ((op & 0xfc1fffff) == 0x38010000)
901 { /* addi rX, r1, 0x0 */
902 fdata->frameless = 0;
903 framep = 1;
904 fdata->alloca_reg = (tdep->ppc_gp0_regnum
905 + ((op & ~0x38010000) >> 21));
906 continue;
907 }
908 /* AltiVec related instructions. */
909 /* Store the vrsave register (spr 256) in another register for
910 later manipulation, or load a register into the vrsave
911 register. 2 instructions are used: mfvrsave and
912 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
913 and mtspr SPR256, Rn. */
914 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
915 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
916 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
917 {
918 vrsave_reg = GET_SRC_REG (op);
919 continue;
920 }
921 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
922 {
923 continue;
924 }
925 /* Store the register where vrsave was saved to onto the stack:
926 rS is the register where vrsave was stored in a previous
927 instruction. */
928 /* 100100 sssss 00001 dddddddd dddddddd */
929 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
930 {
931 if (vrsave_reg == GET_SRC_REG (op))
932 {
933 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
934 vrsave_reg = -1;
935 }
936 continue;
937 }
938 /* Compute the new value of vrsave, by modifying the register
939 where vrsave was saved to. */
940 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
941 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
942 {
943 continue;
944 }
945 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
946 in a pair of insns to save the vector registers on the
947 stack. */
948 /* 001110 00000 00000 iiii iiii iiii iiii */
949 /* 001110 01110 00000 iiii iiii iiii iiii */
950 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
951 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
952 {
953 li_found_pc = pc;
954 vr_saved_offset = SIGNED_SHORT (op);
955 }
956 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
957 /* 011111 sssss 11111 00000 00111001110 */
958 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
959 {
960 if (pc == (li_found_pc + 4))
961 {
962 vr_reg = GET_SRC_REG (op);
963 /* If this is the first vector reg to be saved, or if
964 it has a lower number than others previously seen,
965 reupdate the frame info. */
966 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
967 {
968 fdata->saved_vr = vr_reg;
969 fdata->vr_offset = vr_saved_offset + offset;
970 }
971 vr_saved_offset = -1;
972 vr_reg = -1;
973 li_found_pc = 0;
974 }
975 }
976 /* End AltiVec related instructions. */
977
978 /* Start BookE related instructions. */
979 /* Store gen register S at (r31+uimm).
980 Any register less than r13 is volatile, so we don't care. */
981 /* 000100 sssss 11111 iiiii 01100100001 */
982 else if (arch_info->mach == bfd_mach_ppc_e500
983 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
984 {
985 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
986 {
987 unsigned int imm;
988 ev_reg = GET_SRC_REG (op);
989 imm = (op >> 11) & 0x1f;
990 ev_offset = imm * 8;
991 /* If this is the first vector reg to be saved, or if
992 it has a lower number than others previously seen,
993 reupdate the frame info. */
994 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
995 {
996 fdata->saved_ev = ev_reg;
997 fdata->ev_offset = ev_offset + offset;
998 }
999 }
1000 continue;
1001 }
1002 /* Store gen register rS at (r1+rB). */
1003 /* 000100 sssss 00001 bbbbb 01100100000 */
1004 else if (arch_info->mach == bfd_mach_ppc_e500
1005 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1006 {
1007 if (pc == (li_found_pc + 4))
1008 {
1009 ev_reg = GET_SRC_REG (op);
1010 /* If this is the first vector reg to be saved, or if
1011 it has a lower number than others previously seen,
1012 reupdate the frame info. */
1013 /* We know the contents of rB from the previous instruction. */
1014 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1015 {
1016 fdata->saved_ev = ev_reg;
1017 fdata->ev_offset = vr_saved_offset + offset;
1018 }
1019 vr_saved_offset = -1;
1020 ev_reg = -1;
1021 li_found_pc = 0;
1022 }
1023 continue;
1024 }
1025 /* Store gen register r31 at (rA+uimm). */
1026 /* 000100 11111 aaaaa iiiii 01100100001 */
1027 else if (arch_info->mach == bfd_mach_ppc_e500
1028 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1029 {
1030 /* Wwe know that the source register is 31 already, but
1031 it can't hurt to compute it. */
1032 ev_reg = GET_SRC_REG (op);
1033 ev_offset = ((op >> 11) & 0x1f) * 8;
1034 /* If this is the first vector reg to be saved, or if
1035 it has a lower number than others previously seen,
1036 reupdate the frame info. */
1037 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1038 {
1039 fdata->saved_ev = ev_reg;
1040 fdata->ev_offset = ev_offset + offset;
1041 }
1042
1043 continue;
1044 }
1045 /* Store gen register S at (r31+r0).
1046 Store param on stack when offset from SP bigger than 4 bytes. */
1047 /* 000100 sssss 11111 00000 01100100000 */
1048 else if (arch_info->mach == bfd_mach_ppc_e500
1049 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1050 {
1051 if (pc == (li_found_pc + 4))
1052 {
1053 if ((op & 0x03e00000) >= 0x01a00000)
1054 {
1055 ev_reg = GET_SRC_REG (op);
1056 /* If this is the first vector reg to be saved, or if
1057 it has a lower number than others previously seen,
1058 reupdate the frame info. */
1059 /* We know the contents of r0 from the previous
1060 instruction. */
1061 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1062 {
1063 fdata->saved_ev = ev_reg;
1064 fdata->ev_offset = vr_saved_offset + offset;
1065 }
1066 ev_reg = -1;
1067 }
1068 vr_saved_offset = -1;
1069 li_found_pc = 0;
1070 continue;
1071 }
1072 }
1073 /* End BookE related instructions. */
1074
1075 else
1076 {
1077 /* Not a recognized prologue instruction.
1078 Handle optimizer code motions into the prologue by continuing
1079 the search if we have no valid frame yet or if the return
1080 address is not yet saved in the frame. */
1081 if (fdata->frameless == 0
1082 && (lr_reg == -1 || fdata->nosavedpc == 0))
1083 break;
1084
1085 if (op == 0x4e800020 /* blr */
1086 || op == 0x4e800420) /* bctr */
1087 /* Do not scan past epilogue in frameless functions or
1088 trampolines. */
1089 break;
1090 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1091 /* Never skip branches. */
1092 break;
1093
1094 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1095 /* Do not scan too many insns, scanning insns is expensive with
1096 remote targets. */
1097 break;
1098
1099 /* Continue scanning. */
1100 prev_insn_was_prologue_insn = 0;
1101 continue;
1102 }
1103 }
1104
1105 #if 0
1106 /* I have problems with skipping over __main() that I need to address
1107 * sometime. Previously, I used to use misc_function_vector which
1108 * didn't work as well as I wanted to be. -MGO */
1109
1110 /* If the first thing after skipping a prolog is a branch to a function,
1111 this might be a call to an initializer in main(), introduced by gcc2.
1112 We'd like to skip over it as well. Fortunately, xlc does some extra
1113 work before calling a function right after a prologue, thus we can
1114 single out such gcc2 behaviour. */
1115
1116
1117 if ((op & 0xfc000001) == 0x48000001)
1118 { /* bl foo, an initializer function? */
1119 op = read_memory_integer (pc + 4, 4);
1120
1121 if (op == 0x4def7b82)
1122 { /* cror 0xf, 0xf, 0xf (nop) */
1123
1124 /* Check and see if we are in main. If so, skip over this
1125 initializer function as well. */
1126
1127 tmp = find_pc_misc_function (pc);
1128 if (tmp >= 0
1129 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1130 return pc + 8;
1131 }
1132 }
1133 #endif /* 0 */
1134
1135 fdata->offset = -fdata->offset;
1136 return last_prologue_pc;
1137 }
1138
1139
1140 /*************************************************************************
1141 Support for creating pushing a dummy frame into the stack, and popping
1142 frames, etc.
1143 *************************************************************************/
1144
1145
1146 /* All the ABI's require 16 byte alignment. */
1147 static CORE_ADDR
1148 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1149 {
1150 return (addr & -16);
1151 }
1152
1153 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1154 the first eight words of the argument list (that might be less than
1155 eight parameters if some parameters occupy more than one word) are
1156 passed in r3..r10 registers. float and double parameters are
1157 passed in fpr's, in addition to that. Rest of the parameters if any
1158 are passed in user stack. There might be cases in which half of the
1159 parameter is copied into registers, the other half is pushed into
1160 stack.
1161
1162 Stack must be aligned on 64-bit boundaries when synthesizing
1163 function calls.
1164
1165 If the function is returning a structure, then the return address is passed
1166 in r3, then the first 7 words of the parameters can be passed in registers,
1167 starting from r4. */
1168
1169 static CORE_ADDR
1170 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1171 struct regcache *regcache, CORE_ADDR bp_addr,
1172 int nargs, struct value **args, CORE_ADDR sp,
1173 int struct_return, CORE_ADDR struct_addr)
1174 {
1175 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1176 int ii;
1177 int len = 0;
1178 int argno; /* current argument number */
1179 int argbytes; /* current argument byte */
1180 char tmp_buffer[50];
1181 int f_argno = 0; /* current floating point argno */
1182 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1183
1184 struct value *arg = 0;
1185 struct type *type;
1186
1187 CORE_ADDR saved_sp;
1188
1189 /* The first eight words of ther arguments are passed in registers.
1190 Copy them appropriately. */
1191 ii = 0;
1192
1193 /* If the function is returning a `struct', then the first word
1194 (which will be passed in r3) is used for struct return address.
1195 In that case we should advance one word and start from r4
1196 register to copy parameters. */
1197 if (struct_return)
1198 {
1199 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1200 struct_addr);
1201 ii++;
1202 }
1203
1204 /*
1205 effectively indirect call... gcc does...
1206
1207 return_val example( float, int);
1208
1209 eabi:
1210 float in fp0, int in r3
1211 offset of stack on overflow 8/16
1212 for varargs, must go by type.
1213 power open:
1214 float in r3&r4, int in r5
1215 offset of stack on overflow different
1216 both:
1217 return in r3 or f0. If no float, must study how gcc emulates floats;
1218 pay attention to arg promotion.
1219 User may have to cast\args to handle promotion correctly
1220 since gdb won't know if prototype supplied or not.
1221 */
1222
1223 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1224 {
1225 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1226
1227 arg = args[argno];
1228 type = check_typedef (VALUE_TYPE (arg));
1229 len = TYPE_LENGTH (type);
1230
1231 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1232 {
1233
1234 /* Floating point arguments are passed in fpr's, as well as gpr's.
1235 There are 13 fpr's reserved for passing parameters. At this point
1236 there is no way we would run out of them. */
1237
1238 if (len > 8)
1239 printf_unfiltered (
1240 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1241
1242 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1243 VALUE_CONTENTS (arg),
1244 len);
1245 ++f_argno;
1246 }
1247
1248 if (len > reg_size)
1249 {
1250
1251 /* Argument takes more than one register. */
1252 while (argbytes < len)
1253 {
1254 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1255 reg_size);
1256 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1257 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1258 (len - argbytes) > reg_size
1259 ? reg_size : len - argbytes);
1260 ++ii, argbytes += reg_size;
1261
1262 if (ii >= 8)
1263 goto ran_out_of_registers_for_arguments;
1264 }
1265 argbytes = 0;
1266 --ii;
1267 }
1268 else
1269 {
1270 /* Argument can fit in one register. No problem. */
1271 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1272 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1273 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1274 VALUE_CONTENTS (arg), len);
1275 }
1276 ++argno;
1277 }
1278
1279 ran_out_of_registers_for_arguments:
1280
1281 saved_sp = read_sp ();
1282
1283 /* Location for 8 parameters are always reserved. */
1284 sp -= wordsize * 8;
1285
1286 /* Another six words for back chain, TOC register, link register, etc. */
1287 sp -= wordsize * 6;
1288
1289 /* Stack pointer must be quadword aligned. */
1290 sp &= -16;
1291
1292 /* If there are more arguments, allocate space for them in
1293 the stack, then push them starting from the ninth one. */
1294
1295 if ((argno < nargs) || argbytes)
1296 {
1297 int space = 0, jj;
1298
1299 if (argbytes)
1300 {
1301 space += ((len - argbytes + 3) & -4);
1302 jj = argno + 1;
1303 }
1304 else
1305 jj = argno;
1306
1307 for (; jj < nargs; ++jj)
1308 {
1309 struct value *val = args[jj];
1310 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1311 }
1312
1313 /* Add location required for the rest of the parameters. */
1314 space = (space + 15) & -16;
1315 sp -= space;
1316
1317 /* This is another instance we need to be concerned about
1318 securing our stack space. If we write anything underneath %sp
1319 (r1), we might conflict with the kernel who thinks he is free
1320 to use this area. So, update %sp first before doing anything
1321 else. */
1322
1323 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1324
1325 /* If the last argument copied into the registers didn't fit there
1326 completely, push the rest of it into stack. */
1327
1328 if (argbytes)
1329 {
1330 write_memory (sp + 24 + (ii * 4),
1331 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1332 len - argbytes);
1333 ++argno;
1334 ii += ((len - argbytes + 3) & -4) / 4;
1335 }
1336
1337 /* Push the rest of the arguments into stack. */
1338 for (; argno < nargs; ++argno)
1339 {
1340
1341 arg = args[argno];
1342 type = check_typedef (VALUE_TYPE (arg));
1343 len = TYPE_LENGTH (type);
1344
1345
1346 /* Float types should be passed in fpr's, as well as in the
1347 stack. */
1348 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1349 {
1350
1351 if (len > 8)
1352 printf_unfiltered (
1353 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1354
1355 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1356 VALUE_CONTENTS (arg),
1357 len);
1358 ++f_argno;
1359 }
1360
1361 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1362 ii += ((len + 3) & -4) / 4;
1363 }
1364 }
1365
1366 /* Set the stack pointer. According to the ABI, the SP is meant to
1367 be set _before_ the corresponding stack space is used. On AIX,
1368 this even applies when the target has been completely stopped!
1369 Not doing this can lead to conflicts with the kernel which thinks
1370 that it still has control over this not-yet-allocated stack
1371 region. */
1372 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1373
1374 /* Set back chain properly. */
1375 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1376 write_memory (sp, tmp_buffer, 4);
1377
1378 /* Point the inferior function call's return address at the dummy's
1379 breakpoint. */
1380 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1381
1382 /* Set the TOC register, get the value from the objfile reader
1383 which, in turn, gets it from the VMAP table. */
1384 if (rs6000_find_toc_address_hook != NULL)
1385 {
1386 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1387 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1388 }
1389
1390 target_store_registers (-1);
1391 return sp;
1392 }
1393
1394 /* PowerOpen always puts structures in memory. Vectors, which were
1395 added later, do get returned in a register though. */
1396
1397 static int
1398 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1399 {
1400 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1401 && TYPE_VECTOR (value_type))
1402 return 0;
1403 return 1;
1404 }
1405
1406 static void
1407 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1408 {
1409 int offset = 0;
1410 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1411
1412 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1413 {
1414
1415 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1416 We need to truncate the return value into float size (4 byte) if
1417 necessary. */
1418
1419 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1420 (FP0_REGNUM + 1)],
1421 builtin_type_double,
1422 valbuf,
1423 valtype);
1424 }
1425 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1426 && TYPE_LENGTH (valtype) == 16
1427 && TYPE_VECTOR (valtype))
1428 {
1429 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1430 TYPE_LENGTH (valtype));
1431 }
1432 else
1433 {
1434 /* return value is copied starting from r3. */
1435 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1436 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1437 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1438
1439 memcpy (valbuf,
1440 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1441 TYPE_LENGTH (valtype));
1442 }
1443 }
1444
1445 /* Return whether handle_inferior_event() should proceed through code
1446 starting at PC in function NAME when stepping.
1447
1448 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1449 handle memory references that are too distant to fit in instructions
1450 generated by the compiler. For example, if 'foo' in the following
1451 instruction:
1452
1453 lwz r9,foo(r2)
1454
1455 is greater than 32767, the linker might replace the lwz with a branch to
1456 somewhere in @FIX1 that does the load in 2 instructions and then branches
1457 back to where execution should continue.
1458
1459 GDB should silently step over @FIX code, just like AIX dbx does.
1460 Unfortunately, the linker uses the "b" instruction for the branches,
1461 meaning that the link register doesn't get set. Therefore, GDB's usual
1462 step_over_function() mechanism won't work.
1463
1464 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1465 in handle_inferior_event() to skip past @FIX code. */
1466
1467 int
1468 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1469 {
1470 return name && !strncmp (name, "@FIX", 4);
1471 }
1472
1473 /* Skip code that the user doesn't want to see when stepping:
1474
1475 1. Indirect function calls use a piece of trampoline code to do context
1476 switching, i.e. to set the new TOC table. Skip such code if we are on
1477 its first instruction (as when we have single-stepped to here).
1478
1479 2. Skip shared library trampoline code (which is different from
1480 indirect function call trampolines).
1481
1482 3. Skip bigtoc fixup code.
1483
1484 Result is desired PC to step until, or NULL if we are not in
1485 code that should be skipped. */
1486
1487 CORE_ADDR
1488 rs6000_skip_trampoline_code (CORE_ADDR pc)
1489 {
1490 unsigned int ii, op;
1491 int rel;
1492 CORE_ADDR solib_target_pc;
1493 struct minimal_symbol *msymbol;
1494
1495 static unsigned trampoline_code[] =
1496 {
1497 0x800b0000, /* l r0,0x0(r11) */
1498 0x90410014, /* st r2,0x14(r1) */
1499 0x7c0903a6, /* mtctr r0 */
1500 0x804b0004, /* l r2,0x4(r11) */
1501 0x816b0008, /* l r11,0x8(r11) */
1502 0x4e800420, /* bctr */
1503 0x4e800020, /* br */
1504 0
1505 };
1506
1507 /* Check for bigtoc fixup code. */
1508 msymbol = lookup_minimal_symbol_by_pc (pc);
1509 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1510 {
1511 /* Double-check that the third instruction from PC is relative "b". */
1512 op = read_memory_integer (pc + 8, 4);
1513 if ((op & 0xfc000003) == 0x48000000)
1514 {
1515 /* Extract bits 6-29 as a signed 24-bit relative word address and
1516 add it to the containing PC. */
1517 rel = ((int)(op << 6) >> 6);
1518 return pc + 8 + rel;
1519 }
1520 }
1521
1522 /* If pc is in a shared library trampoline, return its target. */
1523 solib_target_pc = find_solib_trampoline_target (pc);
1524 if (solib_target_pc)
1525 return solib_target_pc;
1526
1527 for (ii = 0; trampoline_code[ii]; ++ii)
1528 {
1529 op = read_memory_integer (pc + (ii * 4), 4);
1530 if (op != trampoline_code[ii])
1531 return 0;
1532 }
1533 ii = read_register (11); /* r11 holds destination addr */
1534 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1535 return pc;
1536 }
1537
1538 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1539 isn't available with that word size, return 0. */
1540
1541 static int
1542 regsize (const struct reg *reg, int wordsize)
1543 {
1544 return wordsize == 8 ? reg->sz64 : reg->sz32;
1545 }
1546
1547 /* Return the name of register number N, or null if no such register exists
1548 in the current architecture. */
1549
1550 static const char *
1551 rs6000_register_name (int n)
1552 {
1553 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1554 const struct reg *reg = tdep->regs + n;
1555
1556 if (!regsize (reg, tdep->wordsize))
1557 return NULL;
1558 return reg->name;
1559 }
1560
1561 /* Index within `registers' of the first byte of the space for
1562 register N. */
1563
1564 static int
1565 rs6000_register_byte (int n)
1566 {
1567 return gdbarch_tdep (current_gdbarch)->regoff[n];
1568 }
1569
1570 /* Return the number of bytes of storage in the actual machine representation
1571 for register N if that register is available, else return 0. */
1572
1573 static int
1574 rs6000_register_raw_size (int n)
1575 {
1576 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1577 const struct reg *reg = tdep->regs + n;
1578 return regsize (reg, tdep->wordsize);
1579 }
1580
1581 /* Return the GDB type object for the "standard" data type
1582 of data in register N. */
1583
1584 static struct type *
1585 rs6000_register_virtual_type (int n)
1586 {
1587 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1588 const struct reg *reg = tdep->regs + n;
1589
1590 if (reg->fpr)
1591 return builtin_type_double;
1592 else
1593 {
1594 int size = regsize (reg, tdep->wordsize);
1595 switch (size)
1596 {
1597 case 0:
1598 return builtin_type_int0;
1599 case 4:
1600 return builtin_type_uint32;
1601 case 8:
1602 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1603 return builtin_type_vec64;
1604 else
1605 return builtin_type_uint64;
1606 break;
1607 case 16:
1608 return builtin_type_vec128;
1609 break;
1610 default:
1611 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1612 n, size);
1613 }
1614 }
1615 }
1616
1617 /* Return whether register N requires conversion when moving from raw format
1618 to virtual format.
1619
1620 The register format for RS/6000 floating point registers is always
1621 double, we need a conversion if the memory format is float. */
1622
1623 static int
1624 rs6000_register_convertible (int n)
1625 {
1626 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1627 return reg->fpr;
1628 }
1629
1630 /* Convert data from raw format for register N in buffer FROM
1631 to virtual format with type TYPE in buffer TO. */
1632
1633 static void
1634 rs6000_register_convert_to_virtual (int n, struct type *type,
1635 char *from, char *to)
1636 {
1637 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1638 {
1639 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1640 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1641 }
1642 else
1643 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1644 }
1645
1646 /* Convert data from virtual format with type TYPE in buffer FROM
1647 to raw format for register N in buffer TO. */
1648
1649 static void
1650 rs6000_register_convert_to_raw (struct type *type, int n,
1651 const char *from, char *to)
1652 {
1653 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1654 {
1655 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1656 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1657 }
1658 else
1659 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1660 }
1661
1662 static void
1663 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1664 int reg_nr, void *buffer)
1665 {
1666 int base_regnum;
1667 int offset = 0;
1668 char temp_buffer[MAX_REGISTER_SIZE];
1669 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1670
1671 if (reg_nr >= tdep->ppc_gp0_regnum
1672 && reg_nr <= tdep->ppc_gplast_regnum)
1673 {
1674 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1675
1676 /* Build the value in the provided buffer. */
1677 /* Read the raw register of which this one is the lower portion. */
1678 regcache_raw_read (regcache, base_regnum, temp_buffer);
1679 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1680 offset = 4;
1681 memcpy ((char *) buffer, temp_buffer + offset, 4);
1682 }
1683 }
1684
1685 static void
1686 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1687 int reg_nr, const void *buffer)
1688 {
1689 int base_regnum;
1690 int offset = 0;
1691 char temp_buffer[MAX_REGISTER_SIZE];
1692 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1693
1694 if (reg_nr >= tdep->ppc_gp0_regnum
1695 && reg_nr <= tdep->ppc_gplast_regnum)
1696 {
1697 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1698 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1699 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1700 offset = 4;
1701
1702 /* Let's read the value of the base register into a temporary
1703 buffer, so that overwriting the last four bytes with the new
1704 value of the pseudo will leave the upper 4 bytes unchanged. */
1705 regcache_raw_read (regcache, base_regnum, temp_buffer);
1706
1707 /* Write as an 8 byte quantity. */
1708 memcpy (temp_buffer + offset, (char *) buffer, 4);
1709 regcache_raw_write (regcache, base_regnum, temp_buffer);
1710 }
1711 }
1712
1713 /* Convert a dbx stab or Dwarf 2 register number (from `r'
1714 declaration) to a gdb REGNUM. */
1715 static int
1716 rs6000_dwarf2_stab_reg_to_regnum (int num)
1717 {
1718 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1719
1720 if (0 <= num && num <= 31)
1721 return tdep->ppc_gp0_regnum + num;
1722 else if (32 <= num && num <= 63)
1723 return FP0_REGNUM + (num - 32);
1724 else if (1200 <= num && num < 1200 + 32)
1725 return tdep->ppc_ev0_regnum + (num - 1200);
1726 else
1727 switch (num)
1728 {
1729 case 64:
1730 return tdep->ppc_mq_regnum;
1731 case 65:
1732 return tdep->ppc_lr_regnum;
1733 case 66:
1734 return tdep->ppc_ctr_regnum;
1735 case 76:
1736 return tdep->ppc_xer_regnum;
1737 case 109:
1738 return tdep->ppc_vrsave_regnum;
1739 default:
1740 return num;
1741 }
1742
1743 /* FIXME: jimb/2004-03-28: Doesn't something need to be done here
1744 for the Altivec registers, too?
1745
1746 Looking at GCC, the headers in config/rs6000 never define a
1747 DBX_REGISTER_NUMBER macro, so the debug info uses the same
1748 numbers GCC does internally. Then, looking at the REGISTER_NAMES
1749 macro defined in config/rs6000/rs6000.h, it seems that GCC gives
1750 v0 -- v31 the numbers 77 -- 108. But we number them 119 -- 150.
1751
1752 I don't have a way to test this ready to hand, but I noticed it
1753 and thought I should include a note. */
1754 }
1755
1756 static void
1757 rs6000_store_return_value (struct type *type, char *valbuf)
1758 {
1759 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1760
1761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1762
1763 /* Floating point values are returned starting from FPR1 and up.
1764 Say a double_double_double type could be returned in
1765 FPR1/FPR2/FPR3 triple. */
1766
1767 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1768 TYPE_LENGTH (type));
1769 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1770 {
1771 if (TYPE_LENGTH (type) == 16
1772 && TYPE_VECTOR (type))
1773 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1774 valbuf, TYPE_LENGTH (type));
1775 }
1776 else
1777 /* Everything else is returned in GPR3 and up. */
1778 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1779 valbuf, TYPE_LENGTH (type));
1780 }
1781
1782 /* Extract from an array REGBUF containing the (raw) register state
1783 the address in which a function should return its structure value,
1784 as a CORE_ADDR (or an expression that can be used as one). */
1785
1786 static CORE_ADDR
1787 rs6000_extract_struct_value_address (struct regcache *regcache)
1788 {
1789 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
1790 function call GDB knows the address of the struct return value
1791 and hence, should not need to call this function. Unfortunately,
1792 the current call_function_by_hand() code only saves the most
1793 recent struct address leading to occasional calls. The code
1794 should instead maintain a stack of such addresses (in the dummy
1795 frame object). */
1796 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
1797 really got no idea where the return value is being stored. While
1798 r3, on function entry, contained the address it will have since
1799 been reused (scratch) and hence wouldn't be valid */
1800 return 0;
1801 }
1802
1803 /* Hook called when a new child process is started. */
1804
1805 void
1806 rs6000_create_inferior (int pid)
1807 {
1808 if (rs6000_set_host_arch_hook)
1809 rs6000_set_host_arch_hook (pid);
1810 }
1811 \f
1812 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
1813
1814 Usually a function pointer's representation is simply the address
1815 of the function. On the RS/6000 however, a function pointer is
1816 represented by a pointer to a TOC entry. This TOC entry contains
1817 three words, the first word is the address of the function, the
1818 second word is the TOC pointer (r2), and the third word is the
1819 static chain value. Throughout GDB it is currently assumed that a
1820 function pointer contains the address of the function, which is not
1821 easy to fix. In addition, the conversion of a function address to
1822 a function pointer would require allocation of a TOC entry in the
1823 inferior's memory space, with all its drawbacks. To be able to
1824 call C++ virtual methods in the inferior (which are called via
1825 function pointers), find_function_addr uses this function to get the
1826 function address from a function pointer. */
1827
1828 /* Return real function address if ADDR (a function pointer) is in the data
1829 space and is therefore a special function pointer. */
1830
1831 static CORE_ADDR
1832 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1833 CORE_ADDR addr,
1834 struct target_ops *targ)
1835 {
1836 struct obj_section *s;
1837
1838 s = find_pc_section (addr);
1839 if (s && s->the_bfd_section->flags & SEC_CODE)
1840 return addr;
1841
1842 /* ADDR is in the data space, so it's a special function pointer. */
1843 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
1844 }
1845 \f
1846
1847 /* Handling the various POWER/PowerPC variants. */
1848
1849
1850 /* The arrays here called registers_MUMBLE hold information about available
1851 registers.
1852
1853 For each family of PPC variants, I've tried to isolate out the
1854 common registers and put them up front, so that as long as you get
1855 the general family right, GDB will correctly identify the registers
1856 common to that family. The common register sets are:
1857
1858 For the 60x family: hid0 hid1 iabr dabr pir
1859
1860 For the 505 and 860 family: eie eid nri
1861
1862 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
1863 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1864 pbu1 pbl2 pbu2
1865
1866 Most of these register groups aren't anything formal. I arrived at
1867 them by looking at the registers that occurred in more than one
1868 processor.
1869
1870 Note: kevinb/2002-04-30: Support for the fpscr register was added
1871 during April, 2002. Slot 70 is being used for PowerPC and slot 71
1872 for Power. For PowerPC, slot 70 was unused and was already in the
1873 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
1874 slot 70 was being used for "mq", so the next available slot (71)
1875 was chosen. It would have been nice to be able to make the
1876 register numbers the same across processor cores, but this wasn't
1877 possible without either 1) renumbering some registers for some
1878 processors or 2) assigning fpscr to a really high slot that's
1879 larger than any current register number. Doing (1) is bad because
1880 existing stubs would break. Doing (2) is undesirable because it
1881 would introduce a really large gap between fpscr and the rest of
1882 the registers for most processors. */
1883
1884 /* Convenience macros for populating register arrays. */
1885
1886 /* Within another macro, convert S to a string. */
1887
1888 #define STR(s) #s
1889
1890 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
1891 and 64 bits on 64-bit systems. */
1892 #define R(name) { STR(name), 4, 8, 0, 0 }
1893
1894 /* Return a struct reg defining register NAME that's 32 bits on all
1895 systems. */
1896 #define R4(name) { STR(name), 4, 4, 0, 0 }
1897
1898 /* Return a struct reg defining register NAME that's 64 bits on all
1899 systems. */
1900 #define R8(name) { STR(name), 8, 8, 0, 0 }
1901
1902 /* Return a struct reg defining register NAME that's 128 bits on all
1903 systems. */
1904 #define R16(name) { STR(name), 16, 16, 0, 0 }
1905
1906 /* Return a struct reg defining floating-point register NAME. */
1907 #define F(name) { STR(name), 8, 8, 1, 0 }
1908
1909 /* Return a struct reg defining a pseudo register NAME. */
1910 #define P(name) { STR(name), 4, 8, 0, 1}
1911
1912 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
1913 systems and that doesn't exist on 64-bit systems. */
1914 #define R32(name) { STR(name), 4, 0, 0, 0 }
1915
1916 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
1917 systems and that doesn't exist on 32-bit systems. */
1918 #define R64(name) { STR(name), 0, 8, 0, 0 }
1919
1920 /* Return a struct reg placeholder for a register that doesn't exist. */
1921 #define R0 { 0, 0, 0, 0, 0 }
1922
1923 /* UISA registers common across all architectures, including POWER. */
1924
1925 #define COMMON_UISA_REGS \
1926 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1927 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1928 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1929 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1930 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1931 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1932 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1933 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1934 /* 64 */ R(pc), R(ps)
1935
1936 #define COMMON_UISA_NOFP_REGS \
1937 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1938 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1939 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1940 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1941 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1942 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1943 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1944 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1945 /* 64 */ R(pc), R(ps)
1946
1947 /* UISA-level SPRs for PowerPC. */
1948 #define PPC_UISA_SPRS \
1949 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
1950
1951 /* UISA-level SPRs for PowerPC without floating point support. */
1952 #define PPC_UISA_NOFP_SPRS \
1953 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
1954
1955 /* Segment registers, for PowerPC. */
1956 #define PPC_SEGMENT_REGS \
1957 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
1958 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
1959 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
1960 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
1961
1962 /* OEA SPRs for PowerPC. */
1963 #define PPC_OEA_SPRS \
1964 /* 87 */ R4(pvr), \
1965 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
1966 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
1967 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
1968 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
1969 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
1970 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
1971 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
1972 /* 116 */ R4(dec), R(dabr), R4(ear)
1973
1974 /* AltiVec registers. */
1975 #define PPC_ALTIVEC_REGS \
1976 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
1977 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
1978 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
1979 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
1980 /*151*/R4(vscr), R4(vrsave)
1981
1982 /* Vectors of hi-lo general purpose registers. */
1983 #define PPC_EV_REGS \
1984 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
1985 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
1986 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
1987 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
1988
1989 /* Lower half of the EV registers. */
1990 #define PPC_GPRS_PSEUDO_REGS \
1991 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
1992 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
1993 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
1994 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
1995
1996 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
1997 user-level SPR's. */
1998 static const struct reg registers_power[] =
1999 {
2000 COMMON_UISA_REGS,
2001 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2002 /* 71 */ R4(fpscr)
2003 };
2004
2005 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2006 view of the PowerPC. */
2007 static const struct reg registers_powerpc[] =
2008 {
2009 COMMON_UISA_REGS,
2010 PPC_UISA_SPRS,
2011 PPC_ALTIVEC_REGS
2012 };
2013
2014 /* PowerPC UISA - a PPC processor as viewed by user-level
2015 code, but without floating point registers. */
2016 static const struct reg registers_powerpc_nofp[] =
2017 {
2018 COMMON_UISA_NOFP_REGS,
2019 PPC_UISA_SPRS
2020 };
2021
2022 /* IBM PowerPC 403. */
2023 static const struct reg registers_403[] =
2024 {
2025 COMMON_UISA_REGS,
2026 PPC_UISA_SPRS,
2027 PPC_SEGMENT_REGS,
2028 PPC_OEA_SPRS,
2029 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2030 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2031 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2032 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2033 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2034 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2035 };
2036
2037 /* IBM PowerPC 403GC. */
2038 static const struct reg registers_403GC[] =
2039 {
2040 COMMON_UISA_REGS,
2041 PPC_UISA_SPRS,
2042 PPC_SEGMENT_REGS,
2043 PPC_OEA_SPRS,
2044 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2045 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2046 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2047 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2048 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2049 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2050 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2051 /* 147 */ R(tbhu), R(tblu)
2052 };
2053
2054 /* Motorola PowerPC 505. */
2055 static const struct reg registers_505[] =
2056 {
2057 COMMON_UISA_REGS,
2058 PPC_UISA_SPRS,
2059 PPC_SEGMENT_REGS,
2060 PPC_OEA_SPRS,
2061 /* 119 */ R(eie), R(eid), R(nri)
2062 };
2063
2064 /* Motorola PowerPC 860 or 850. */
2065 static const struct reg registers_860[] =
2066 {
2067 COMMON_UISA_REGS,
2068 PPC_UISA_SPRS,
2069 PPC_SEGMENT_REGS,
2070 PPC_OEA_SPRS,
2071 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2072 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2073 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2074 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2075 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2076 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2077 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2078 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2079 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2080 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2081 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2082 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2083 };
2084
2085 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2086 for reading and writing RTCU and RTCL. However, how one reads and writes a
2087 register is the stub's problem. */
2088 static const struct reg registers_601[] =
2089 {
2090 COMMON_UISA_REGS,
2091 PPC_UISA_SPRS,
2092 PPC_SEGMENT_REGS,
2093 PPC_OEA_SPRS,
2094 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2095 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2096 };
2097
2098 /* Motorola PowerPC 602. */
2099 static const struct reg registers_602[] =
2100 {
2101 COMMON_UISA_REGS,
2102 PPC_UISA_SPRS,
2103 PPC_SEGMENT_REGS,
2104 PPC_OEA_SPRS,
2105 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2106 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2107 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2108 };
2109
2110 /* Motorola/IBM PowerPC 603 or 603e. */
2111 static const struct reg registers_603[] =
2112 {
2113 COMMON_UISA_REGS,
2114 PPC_UISA_SPRS,
2115 PPC_SEGMENT_REGS,
2116 PPC_OEA_SPRS,
2117 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2118 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2119 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2120 };
2121
2122 /* Motorola PowerPC 604 or 604e. */
2123 static const struct reg registers_604[] =
2124 {
2125 COMMON_UISA_REGS,
2126 PPC_UISA_SPRS,
2127 PPC_SEGMENT_REGS,
2128 PPC_OEA_SPRS,
2129 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2130 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2131 /* 127 */ R(sia), R(sda)
2132 };
2133
2134 /* Motorola/IBM PowerPC 750 or 740. */
2135 static const struct reg registers_750[] =
2136 {
2137 COMMON_UISA_REGS,
2138 PPC_UISA_SPRS,
2139 PPC_SEGMENT_REGS,
2140 PPC_OEA_SPRS,
2141 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2142 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2143 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2144 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2145 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2146 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2147 };
2148
2149
2150 /* Motorola PowerPC 7400. */
2151 static const struct reg registers_7400[] =
2152 {
2153 /* gpr0-gpr31, fpr0-fpr31 */
2154 COMMON_UISA_REGS,
2155 /* cr, lr, ctr, xer, fpscr */
2156 PPC_UISA_SPRS,
2157 /* sr0-sr15 */
2158 PPC_SEGMENT_REGS,
2159 PPC_OEA_SPRS,
2160 /* vr0-vr31, vrsave, vscr */
2161 PPC_ALTIVEC_REGS
2162 /* FIXME? Add more registers? */
2163 };
2164
2165 /* Motorola e500. */
2166 static const struct reg registers_e500[] =
2167 {
2168 R(pc), R(ps),
2169 /* cr, lr, ctr, xer, "" */
2170 PPC_UISA_NOFP_SPRS,
2171 /* 7...38 */
2172 PPC_EV_REGS,
2173 R8(acc), R(spefscr),
2174 /* NOTE: Add new registers here the end of the raw register
2175 list and just before the first pseudo register. */
2176 /* 41...72 */
2177 PPC_GPRS_PSEUDO_REGS
2178 };
2179
2180 /* Information about a particular processor variant. */
2181
2182 struct variant
2183 {
2184 /* Name of this variant. */
2185 char *name;
2186
2187 /* English description of the variant. */
2188 char *description;
2189
2190 /* bfd_arch_info.arch corresponding to variant. */
2191 enum bfd_architecture arch;
2192
2193 /* bfd_arch_info.mach corresponding to variant. */
2194 unsigned long mach;
2195
2196 /* Number of real registers. */
2197 int nregs;
2198
2199 /* Number of pseudo registers. */
2200 int npregs;
2201
2202 /* Number of total registers (the sum of nregs and npregs). */
2203 int num_tot_regs;
2204
2205 /* Table of register names; registers[R] is the name of the register
2206 number R. */
2207 const struct reg *regs;
2208 };
2209
2210 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2211
2212 static int
2213 num_registers (const struct reg *reg_list, int num_tot_regs)
2214 {
2215 int i;
2216 int nregs = 0;
2217
2218 for (i = 0; i < num_tot_regs; i++)
2219 if (!reg_list[i].pseudo)
2220 nregs++;
2221
2222 return nregs;
2223 }
2224
2225 static int
2226 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2227 {
2228 int i;
2229 int npregs = 0;
2230
2231 for (i = 0; i < num_tot_regs; i++)
2232 if (reg_list[i].pseudo)
2233 npregs ++;
2234
2235 return npregs;
2236 }
2237
2238 /* Information in this table comes from the following web sites:
2239 IBM: http://www.chips.ibm.com:80/products/embedded/
2240 Motorola: http://www.mot.com/SPS/PowerPC/
2241
2242 I'm sure I've got some of the variant descriptions not quite right.
2243 Please report any inaccuracies you find to GDB's maintainer.
2244
2245 If you add entries to this table, please be sure to allow the new
2246 value as an argument to the --with-cpu flag, in configure.in. */
2247
2248 static struct variant variants[] =
2249 {
2250
2251 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2252 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2253 registers_powerpc},
2254 {"power", "POWER user-level", bfd_arch_rs6000,
2255 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2256 registers_power},
2257 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2258 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2259 registers_403},
2260 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2261 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2262 registers_601},
2263 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2264 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2265 registers_602},
2266 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2267 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2268 registers_603},
2269 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2270 604, -1, -1, tot_num_registers (registers_604),
2271 registers_604},
2272 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2273 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2274 registers_403GC},
2275 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2276 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2277 registers_505},
2278 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2279 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2280 registers_860},
2281 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2282 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2283 registers_750},
2284 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2285 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2286 registers_7400},
2287 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2288 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2289 registers_e500},
2290
2291 /* 64-bit */
2292 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2293 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2294 registers_powerpc},
2295 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2296 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2297 registers_powerpc},
2298 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2299 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2300 registers_powerpc},
2301 {"a35", "PowerPC A35", bfd_arch_powerpc,
2302 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2303 registers_powerpc},
2304 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2305 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2306 registers_powerpc},
2307 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2308 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2309 registers_powerpc},
2310
2311 /* FIXME: I haven't checked the register sets of the following. */
2312 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2313 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2314 registers_power},
2315 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2316 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2317 registers_power},
2318 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2319 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2320 registers_power},
2321
2322 {0, 0, 0, 0, 0, 0, 0, 0}
2323 };
2324
2325 /* Initialize the number of registers and pseudo registers in each variant. */
2326
2327 static void
2328 init_variants (void)
2329 {
2330 struct variant *v;
2331
2332 for (v = variants; v->name; v++)
2333 {
2334 if (v->nregs == -1)
2335 v->nregs = num_registers (v->regs, v->num_tot_regs);
2336 if (v->npregs == -1)
2337 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2338 }
2339 }
2340
2341 /* Return the variant corresponding to architecture ARCH and machine number
2342 MACH. If no such variant exists, return null. */
2343
2344 static const struct variant *
2345 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2346 {
2347 const struct variant *v;
2348
2349 for (v = variants; v->name; v++)
2350 if (arch == v->arch && mach == v->mach)
2351 return v;
2352
2353 return NULL;
2354 }
2355
2356 static int
2357 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2358 {
2359 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2360 return print_insn_big_powerpc (memaddr, info);
2361 else
2362 return print_insn_little_powerpc (memaddr, info);
2363 }
2364 \f
2365 static CORE_ADDR
2366 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2367 {
2368 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2369 }
2370
2371 static struct frame_id
2372 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2373 {
2374 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2375 SP_REGNUM),
2376 frame_pc_unwind (next_frame));
2377 }
2378
2379 struct rs6000_frame_cache
2380 {
2381 CORE_ADDR base;
2382 CORE_ADDR initial_sp;
2383 struct trad_frame_saved_reg *saved_regs;
2384 };
2385
2386 static struct rs6000_frame_cache *
2387 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2388 {
2389 struct rs6000_frame_cache *cache;
2390 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2392 struct rs6000_framedata fdata;
2393 int wordsize = tdep->wordsize;
2394
2395 if ((*this_cache) != NULL)
2396 return (*this_cache);
2397 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2398 (*this_cache) = cache;
2399 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2400
2401 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2402 &fdata);
2403
2404 /* If there were any saved registers, figure out parent's stack
2405 pointer. */
2406 /* The following is true only if the frame doesn't have a call to
2407 alloca(), FIXME. */
2408
2409 if (fdata.saved_fpr == 0
2410 && fdata.saved_gpr == 0
2411 && fdata.saved_vr == 0
2412 && fdata.saved_ev == 0
2413 && fdata.lr_offset == 0
2414 && fdata.cr_offset == 0
2415 && fdata.vr_offset == 0
2416 && fdata.ev_offset == 0)
2417 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2418 else
2419 {
2420 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2421 address of the current frame. Things might be easier if the
2422 ->frame pointed to the outer-most address of the frame. In
2423 the mean time, the address of the prev frame is used as the
2424 base address of this frame. */
2425 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2426 if (!fdata.frameless)
2427 /* Frameless really means stackless. */
2428 cache->base = read_memory_addr (cache->base, wordsize);
2429 }
2430 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2431
2432 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2433 All fpr's from saved_fpr to fp31 are saved. */
2434
2435 if (fdata.saved_fpr >= 0)
2436 {
2437 int i;
2438 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2439 for (i = fdata.saved_fpr; i < 32; i++)
2440 {
2441 cache->saved_regs[FP0_REGNUM + i].addr = fpr_addr;
2442 fpr_addr += 8;
2443 }
2444 }
2445
2446 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2447 All gpr's from saved_gpr to gpr31 are saved. */
2448
2449 if (fdata.saved_gpr >= 0)
2450 {
2451 int i;
2452 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2453 for (i = fdata.saved_gpr; i < 32; i++)
2454 {
2455 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2456 gpr_addr += wordsize;
2457 }
2458 }
2459
2460 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2461 All vr's from saved_vr to vr31 are saved. */
2462 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2463 {
2464 if (fdata.saved_vr >= 0)
2465 {
2466 int i;
2467 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2468 for (i = fdata.saved_vr; i < 32; i++)
2469 {
2470 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2471 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2472 }
2473 }
2474 }
2475
2476 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2477 All vr's from saved_ev to ev31 are saved. ????? */
2478 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2479 {
2480 if (fdata.saved_ev >= 0)
2481 {
2482 int i;
2483 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2484 for (i = fdata.saved_ev; i < 32; i++)
2485 {
2486 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2487 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2488 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2489 }
2490 }
2491 }
2492
2493 /* If != 0, fdata.cr_offset is the offset from the frame that
2494 holds the CR. */
2495 if (fdata.cr_offset != 0)
2496 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2497
2498 /* If != 0, fdata.lr_offset is the offset from the frame that
2499 holds the LR. */
2500 if (fdata.lr_offset != 0)
2501 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2502 /* The PC is found in the link register. */
2503 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2504
2505 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2506 holds the VRSAVE. */
2507 if (fdata.vrsave_offset != 0)
2508 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2509
2510 if (fdata.alloca_reg < 0)
2511 /* If no alloca register used, then fi->frame is the value of the
2512 %sp for this frame, and it is good enough. */
2513 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2514 else
2515 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2516 fdata.alloca_reg);
2517
2518 return cache;
2519 }
2520
2521 static void
2522 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2523 struct frame_id *this_id)
2524 {
2525 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2526 this_cache);
2527 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2528 }
2529
2530 static void
2531 rs6000_frame_prev_register (struct frame_info *next_frame,
2532 void **this_cache,
2533 int regnum, int *optimizedp,
2534 enum lval_type *lvalp, CORE_ADDR *addrp,
2535 int *realnump, void *valuep)
2536 {
2537 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2538 this_cache);
2539 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
2540 optimizedp, lvalp, addrp, realnump, valuep);
2541 }
2542
2543 static const struct frame_unwind rs6000_frame_unwind =
2544 {
2545 NORMAL_FRAME,
2546 rs6000_frame_this_id,
2547 rs6000_frame_prev_register
2548 };
2549
2550 static const struct frame_unwind *
2551 rs6000_frame_sniffer (struct frame_info *next_frame)
2552 {
2553 return &rs6000_frame_unwind;
2554 }
2555
2556 \f
2557
2558 static CORE_ADDR
2559 rs6000_frame_base_address (struct frame_info *next_frame,
2560 void **this_cache)
2561 {
2562 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2563 this_cache);
2564 return info->initial_sp;
2565 }
2566
2567 static const struct frame_base rs6000_frame_base = {
2568 &rs6000_frame_unwind,
2569 rs6000_frame_base_address,
2570 rs6000_frame_base_address,
2571 rs6000_frame_base_address
2572 };
2573
2574 static const struct frame_base *
2575 rs6000_frame_base_sniffer (struct frame_info *next_frame)
2576 {
2577 return &rs6000_frame_base;
2578 }
2579
2580 /* Initialize the current architecture based on INFO. If possible, re-use an
2581 architecture from ARCHES, which is a list of architectures already created
2582 during this debugging session.
2583
2584 Called e.g. at program startup, when reading a core file, and when reading
2585 a binary file. */
2586
2587 static struct gdbarch *
2588 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2589 {
2590 struct gdbarch *gdbarch;
2591 struct gdbarch_tdep *tdep;
2592 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2593 struct reg *regs;
2594 const struct variant *v;
2595 enum bfd_architecture arch;
2596 unsigned long mach;
2597 bfd abfd;
2598 int sysv_abi;
2599 asection *sect;
2600
2601 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2602 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2603
2604 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2605 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2606
2607 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2608
2609 /* Check word size. If INFO is from a binary file, infer it from
2610 that, else choose a likely default. */
2611 if (from_xcoff_exec)
2612 {
2613 if (bfd_xcoff_is_xcoff64 (info.abfd))
2614 wordsize = 8;
2615 else
2616 wordsize = 4;
2617 }
2618 else if (from_elf_exec)
2619 {
2620 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2621 wordsize = 8;
2622 else
2623 wordsize = 4;
2624 }
2625 else
2626 {
2627 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2628 wordsize = info.bfd_arch_info->bits_per_word /
2629 info.bfd_arch_info->bits_per_byte;
2630 else
2631 wordsize = 4;
2632 }
2633
2634 /* Find a candidate among extant architectures. */
2635 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2636 arches != NULL;
2637 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2638 {
2639 /* Word size in the various PowerPC bfd_arch_info structs isn't
2640 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2641 separate word size check. */
2642 tdep = gdbarch_tdep (arches->gdbarch);
2643 if (tdep && tdep->wordsize == wordsize)
2644 return arches->gdbarch;
2645 }
2646
2647 /* None found, create a new architecture from INFO, whose bfd_arch_info
2648 validity depends on the source:
2649 - executable useless
2650 - rs6000_host_arch() good
2651 - core file good
2652 - "set arch" trust blindly
2653 - GDB startup useless but harmless */
2654
2655 if (!from_xcoff_exec)
2656 {
2657 arch = info.bfd_arch_info->arch;
2658 mach = info.bfd_arch_info->mach;
2659 }
2660 else
2661 {
2662 arch = bfd_arch_powerpc;
2663 bfd_default_set_arch_mach (&abfd, arch, 0);
2664 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2665 mach = info.bfd_arch_info->mach;
2666 }
2667 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2668 tdep->wordsize = wordsize;
2669
2670 /* For e500 executables, the apuinfo section is of help here. Such
2671 section contains the identifier and revision number of each
2672 Application-specific Processing Unit that is present on the
2673 chip. The content of the section is determined by the assembler
2674 which looks at each instruction and determines which unit (and
2675 which version of it) can execute it. In our case we just look for
2676 the existance of the section. */
2677
2678 if (info.abfd)
2679 {
2680 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2681 if (sect)
2682 {
2683 arch = info.bfd_arch_info->arch;
2684 mach = bfd_mach_ppc_e500;
2685 bfd_default_set_arch_mach (&abfd, arch, mach);
2686 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2687 }
2688 }
2689
2690 gdbarch = gdbarch_alloc (&info, tdep);
2691 power = arch == bfd_arch_rs6000;
2692
2693 /* Initialize the number of real and pseudo registers in each variant. */
2694 init_variants ();
2695
2696 /* Choose variant. */
2697 v = find_variant_by_arch (arch, mach);
2698 if (!v)
2699 return NULL;
2700
2701 tdep->regs = v->regs;
2702
2703 tdep->ppc_gp0_regnum = 0;
2704 tdep->ppc_gplast_regnum = 31;
2705 tdep->ppc_toc_regnum = 2;
2706 tdep->ppc_ps_regnum = 65;
2707 tdep->ppc_cr_regnum = 66;
2708 tdep->ppc_lr_regnum = 67;
2709 tdep->ppc_ctr_regnum = 68;
2710 tdep->ppc_xer_regnum = 69;
2711 if (v->mach == bfd_mach_ppc_601)
2712 tdep->ppc_mq_regnum = 124;
2713 else if (power)
2714 tdep->ppc_mq_regnum = 70;
2715 else
2716 tdep->ppc_mq_regnum = -1;
2717 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2718
2719 set_gdbarch_pc_regnum (gdbarch, 64);
2720 set_gdbarch_sp_regnum (gdbarch, 1);
2721 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2722 if (sysv_abi && wordsize == 8)
2723 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2724 else if (sysv_abi && wordsize == 4)
2725 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2726 else
2727 {
2728 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2729 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2730 }
2731
2732 if (v->arch == bfd_arch_powerpc)
2733 switch (v->mach)
2734 {
2735 case bfd_mach_ppc:
2736 tdep->ppc_vr0_regnum = 71;
2737 tdep->ppc_vrsave_regnum = 104;
2738 tdep->ppc_ev0_regnum = -1;
2739 tdep->ppc_ev31_regnum = -1;
2740 break;
2741 case bfd_mach_ppc_7400:
2742 tdep->ppc_vr0_regnum = 119;
2743 tdep->ppc_vrsave_regnum = 152;
2744 tdep->ppc_ev0_regnum = -1;
2745 tdep->ppc_ev31_regnum = -1;
2746 break;
2747 case bfd_mach_ppc_e500:
2748 tdep->ppc_gp0_regnum = 41;
2749 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2750 tdep->ppc_toc_regnum = -1;
2751 tdep->ppc_ps_regnum = 1;
2752 tdep->ppc_cr_regnum = 2;
2753 tdep->ppc_lr_regnum = 3;
2754 tdep->ppc_ctr_regnum = 4;
2755 tdep->ppc_xer_regnum = 5;
2756 tdep->ppc_ev0_regnum = 7;
2757 tdep->ppc_ev31_regnum = 38;
2758 set_gdbarch_pc_regnum (gdbarch, 0);
2759 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2760 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2761 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2762 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2763 break;
2764 default:
2765 tdep->ppc_vr0_regnum = -1;
2766 tdep->ppc_vrsave_regnum = -1;
2767 tdep->ppc_ev0_regnum = -1;
2768 tdep->ppc_ev31_regnum = -1;
2769 break;
2770 }
2771
2772 /* Sanity check on registers. */
2773 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2774
2775 /* Set lr_frame_offset. */
2776 if (wordsize == 8)
2777 tdep->lr_frame_offset = 16;
2778 else if (sysv_abi)
2779 tdep->lr_frame_offset = 4;
2780 else
2781 tdep->lr_frame_offset = 8;
2782
2783 /* Calculate byte offsets in raw register array. */
2784 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2785 for (i = off = 0; i < v->num_tot_regs; i++)
2786 {
2787 tdep->regoff[i] = off;
2788 off += regsize (v->regs + i, wordsize);
2789 }
2790
2791 /* Select instruction printer. */
2792 if (arch == power)
2793 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2794 else
2795 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2796
2797 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2798
2799 set_gdbarch_num_regs (gdbarch, v->nregs);
2800 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2801 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2802 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2803 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2804 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2805 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2806 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2807
2808 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2809 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2810 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2811 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2812 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2813 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2814 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2815 if (sysv_abi)
2816 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2817 else
2818 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2819 set_gdbarch_char_signed (gdbarch, 0);
2820
2821 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2822 if (sysv_abi && wordsize == 8)
2823 /* PPC64 SYSV. */
2824 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2825 else if (!sysv_abi && wordsize == 4)
2826 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2827 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2828 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2829 224. */
2830 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2831
2832 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2833 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2834 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2835 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_dwarf2_stab_reg_to_regnum);
2836 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_stab_reg_to_regnum);
2837 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2838 is correct for the SysV ABI when the wordsize is 8, but I'm also
2839 fairly certain that ppc_sysv_abi_push_arguments() will give even
2840 worse results since it only works for 32-bit code. So, for the moment,
2841 we're better off calling rs6000_push_arguments() since it works for
2842 64-bit code. At some point in the future, this matter needs to be
2843 revisited. */
2844 if (sysv_abi && wordsize == 4)
2845 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2846 else if (sysv_abi && wordsize == 8)
2847 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2848 else
2849 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2850
2851 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2852
2853 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2854 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2855 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2856
2857 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2858 for the descriptor and ".FN" for the entry-point -- a user
2859 specifying "break FN" will unexpectedly end up with a breakpoint
2860 on the descriptor and not the function. This architecture method
2861 transforms any breakpoints on descriptors into breakpoints on the
2862 corresponding entry point. */
2863 if (sysv_abi && wordsize == 8)
2864 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2865
2866 /* Not sure on this. FIXMEmgo */
2867 set_gdbarch_frame_args_skip (gdbarch, 8);
2868
2869 if (!sysv_abi)
2870 set_gdbarch_use_struct_convention (gdbarch,
2871 rs6000_use_struct_convention);
2872
2873 if (!sysv_abi)
2874 {
2875 /* Handle RS/6000 function pointers (which are really function
2876 descriptors). */
2877 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2878 rs6000_convert_from_func_ptr_addr);
2879 }
2880
2881 /* Helpers for function argument information. */
2882 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2883
2884 /* Hook in ABI-specific overrides, if they have been registered. */
2885 gdbarch_init_osabi (info, gdbarch);
2886
2887 switch (info.osabi)
2888 {
2889 case GDB_OSABI_NETBSD_AOUT:
2890 case GDB_OSABI_NETBSD_ELF:
2891 case GDB_OSABI_UNKNOWN:
2892 case GDB_OSABI_LINUX:
2893 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2894 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
2895 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
2896 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
2897 break;
2898 default:
2899 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2900 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2901
2902 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2903 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
2904 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
2905 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
2906 }
2907
2908 if (from_xcoff_exec)
2909 {
2910 /* NOTE: jimix/2003-06-09: This test should really check for
2911 GDB_OSABI_AIX when that is defined and becomes
2912 available. (Actually, once things are properly split apart,
2913 the test goes away.) */
2914 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2915 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2916 }
2917
2918 return gdbarch;
2919 }
2920
2921 static void
2922 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2923 {
2924 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2925
2926 if (tdep == NULL)
2927 return;
2928
2929 /* FIXME: Dump gdbarch_tdep. */
2930 }
2931
2932 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2933
2934 static void
2935 rs6000_info_powerpc_command (char *args, int from_tty)
2936 {
2937 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2938 }
2939
2940 /* Initialization code. */
2941
2942 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
2943
2944 void
2945 _initialize_rs6000_tdep (void)
2946 {
2947 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2948 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2949
2950 /* Add root prefix command for "info powerpc" commands */
2951 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2952 "Various POWERPC info specific commands.",
2953 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2954 }
This page took 0.094894 seconds and 5 git commands to generate.