Use CORE_ADDR_MAX in various "breaks" arrays
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a POWER7 VSX register. */
100 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
103
104 /* Determine if regnum is a POWER7 Extended FP register. */
105 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
108
109 /* Holds the current set of options to be passed to the disassembler. */
110 static char *powerpc_disassembler_options;
111
112 /* The list of available "set powerpc ..." and "show powerpc ..."
113 commands. */
114 static struct cmd_list_element *setpowerpccmdlist = NULL;
115 static struct cmd_list_element *showpowerpccmdlist = NULL;
116
117 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
118
119 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
120 static const char *const powerpc_vector_strings[] =
121 {
122 "auto",
123 "generic",
124 "altivec",
125 "spe",
126 NULL
127 };
128
129 /* A variable that can be configured by the user. */
130 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
131 static const char *powerpc_vector_abi_string = "auto";
132
133 /* To be used by skip_prologue. */
134
135 struct rs6000_framedata
136 {
137 int offset; /* total size of frame --- the distance
138 by which we decrement sp to allocate
139 the frame */
140 int saved_gpr; /* smallest # of saved gpr */
141 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
142 int saved_fpr; /* smallest # of saved fpr */
143 int saved_vr; /* smallest # of saved vr */
144 int saved_ev; /* smallest # of saved ev */
145 int alloca_reg; /* alloca register number (frame ptr) */
146 char frameless; /* true if frameless functions. */
147 char nosavedpc; /* true if pc not saved. */
148 char used_bl; /* true if link register clobbered */
149 int gpr_offset; /* offset of saved gprs from prev sp */
150 int fpr_offset; /* offset of saved fprs from prev sp */
151 int vr_offset; /* offset of saved vrs from prev sp */
152 int ev_offset; /* offset of saved evs from prev sp */
153 int lr_offset; /* offset of saved lr */
154 int lr_register; /* register of saved lr, if trustworthy */
155 int cr_offset; /* offset of saved cr */
156 int vrsave_offset; /* offset of saved vrsave register */
157 };
158
159
160 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
161 int
162 vsx_register_p (struct gdbarch *gdbarch, int regno)
163 {
164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
165 if (tdep->ppc_vsr0_regnum < 0)
166 return 0;
167 else
168 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
169 <= tdep->ppc_vsr0_upper_regnum + 31);
170 }
171
172 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
173 int
174 altivec_register_p (struct gdbarch *gdbarch, int regno)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
178 return 0;
179 else
180 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
181 }
182
183
184 /* Return true if REGNO is an SPE register, false otherwise. */
185 int
186 spe_register_p (struct gdbarch *gdbarch, int regno)
187 {
188 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
189
190 /* Is it a reference to EV0 -- EV31, and do we have those? */
191 if (IS_SPE_PSEUDOREG (tdep, regno))
192 return 1;
193
194 /* Is it a reference to one of the raw upper GPR halves? */
195 if (tdep->ppc_ev0_upper_regnum >= 0
196 && tdep->ppc_ev0_upper_regnum <= regno
197 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
198 return 1;
199
200 /* Is it a reference to the 64-bit accumulator, and do we have that? */
201 if (tdep->ppc_acc_regnum >= 0
202 && tdep->ppc_acc_regnum == regno)
203 return 1;
204
205 /* Is it a reference to the SPE floating-point status and control register,
206 and do we have that? */
207 if (tdep->ppc_spefscr_regnum >= 0
208 && tdep->ppc_spefscr_regnum == regno)
209 return 1;
210
211 return 0;
212 }
213
214
215 /* Return non-zero if the architecture described by GDBARCH has
216 floating-point registers (f0 --- f31 and fpscr). */
217 int
218 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
219 {
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221
222 return (tdep->ppc_fp0_regnum >= 0
223 && tdep->ppc_fpscr_regnum >= 0);
224 }
225
226 /* Return non-zero if the architecture described by GDBARCH has
227 Altivec registers (vr0 --- vr31, vrsave and vscr). */
228 int
229 ppc_altivec_support_p (struct gdbarch *gdbarch)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232
233 return (tdep->ppc_vr0_regnum >= 0
234 && tdep->ppc_vrsave_regnum >= 0);
235 }
236
237 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
238 set it to SIM_REGNO.
239
240 This is a helper function for init_sim_regno_table, constructing
241 the table mapping GDB register numbers to sim register numbers; we
242 initialize every element in that table to -1 before we start
243 filling it in. */
244 static void
245 set_sim_regno (int *table, int gdb_regno, int sim_regno)
246 {
247 /* Make sure we don't try to assign any given GDB register a sim
248 register number more than once. */
249 gdb_assert (table[gdb_regno] == -1);
250 table[gdb_regno] = sim_regno;
251 }
252
253
254 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
255 numbers to simulator register numbers, based on the values placed
256 in the ARCH->tdep->ppc_foo_regnum members. */
257 static void
258 init_sim_regno_table (struct gdbarch *arch)
259 {
260 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
261 int total_regs = gdbarch_num_regs (arch);
262 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
263 int i;
264 static const char *const segment_regs[] = {
265 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
266 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
267 };
268
269 /* Presume that all registers not explicitly mentioned below are
270 unavailable from the sim. */
271 for (i = 0; i < total_regs; i++)
272 sim_regno[i] = -1;
273
274 /* General-purpose registers. */
275 for (i = 0; i < ppc_num_gprs; i++)
276 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
277
278 /* Floating-point registers. */
279 if (tdep->ppc_fp0_regnum >= 0)
280 for (i = 0; i < ppc_num_fprs; i++)
281 set_sim_regno (sim_regno,
282 tdep->ppc_fp0_regnum + i,
283 sim_ppc_f0_regnum + i);
284 if (tdep->ppc_fpscr_regnum >= 0)
285 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
286
287 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
288 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
289 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
290
291 /* Segment registers. */
292 for (i = 0; i < ppc_num_srs; i++)
293 {
294 int gdb_regno;
295
296 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
297 if (gdb_regno >= 0)
298 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
299 }
300
301 /* Altivec registers. */
302 if (tdep->ppc_vr0_regnum >= 0)
303 {
304 for (i = 0; i < ppc_num_vrs; i++)
305 set_sim_regno (sim_regno,
306 tdep->ppc_vr0_regnum + i,
307 sim_ppc_vr0_regnum + i);
308
309 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
310 we can treat this more like the other cases. */
311 set_sim_regno (sim_regno,
312 tdep->ppc_vr0_regnum + ppc_num_vrs,
313 sim_ppc_vscr_regnum);
314 }
315 /* vsave is a special-purpose register, so the code below handles it. */
316
317 /* SPE APU (E500) registers. */
318 if (tdep->ppc_ev0_upper_regnum >= 0)
319 for (i = 0; i < ppc_num_gprs; i++)
320 set_sim_regno (sim_regno,
321 tdep->ppc_ev0_upper_regnum + i,
322 sim_ppc_rh0_regnum + i);
323 if (tdep->ppc_acc_regnum >= 0)
324 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
325 /* spefscr is a special-purpose register, so the code below handles it. */
326
327 #ifdef WITH_PPC_SIM
328 /* Now handle all special-purpose registers. Verify that they
329 haven't mistakenly been assigned numbers by any of the above
330 code. */
331 for (i = 0; i < sim_ppc_num_sprs; i++)
332 {
333 const char *spr_name = sim_spr_register_name (i);
334 int gdb_regno = -1;
335
336 if (spr_name != NULL)
337 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
338
339 if (gdb_regno != -1)
340 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
341 }
342 #endif
343
344 /* Drop the initialized array into place. */
345 tdep->sim_regno = sim_regno;
346 }
347
348
349 /* Given a GDB register number REG, return the corresponding SIM
350 register number. */
351 static int
352 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
353 {
354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
355 int sim_regno;
356
357 if (tdep->sim_regno == NULL)
358 init_sim_regno_table (gdbarch);
359
360 gdb_assert (0 <= reg
361 && reg <= gdbarch_num_regs (gdbarch)
362 + gdbarch_num_pseudo_regs (gdbarch));
363 sim_regno = tdep->sim_regno[reg];
364
365 if (sim_regno >= 0)
366 return sim_regno;
367 else
368 return LEGACY_SIM_REGNO_IGNORE;
369 }
370
371 \f
372
373 /* Register set support functions. */
374
375 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
376 Write the register to REGCACHE. */
377
378 void
379 ppc_supply_reg (struct regcache *regcache, int regnum,
380 const gdb_byte *regs, size_t offset, int regsize)
381 {
382 if (regnum != -1 && offset != -1)
383 {
384 if (regsize > 4)
385 {
386 struct gdbarch *gdbarch = regcache->arch ();
387 int gdb_regsize = register_size (gdbarch, regnum);
388 if (gdb_regsize < regsize
389 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
390 offset += regsize - gdb_regsize;
391 }
392 regcache->raw_supply (regnum, regs + offset);
393 }
394 }
395
396 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
397 in a field REGSIZE wide. Zero pad as necessary. */
398
399 void
400 ppc_collect_reg (const struct regcache *regcache, int regnum,
401 gdb_byte *regs, size_t offset, int regsize)
402 {
403 if (regnum != -1 && offset != -1)
404 {
405 if (regsize > 4)
406 {
407 struct gdbarch *gdbarch = regcache->arch ();
408 int gdb_regsize = register_size (gdbarch, regnum);
409 if (gdb_regsize < regsize)
410 {
411 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
412 {
413 memset (regs + offset, 0, regsize - gdb_regsize);
414 offset += regsize - gdb_regsize;
415 }
416 else
417 memset (regs + offset + regsize - gdb_regsize, 0,
418 regsize - gdb_regsize);
419 }
420 }
421 regcache->raw_collect (regnum, regs + offset);
422 }
423 }
424
425 static int
426 ppc_greg_offset (struct gdbarch *gdbarch,
427 struct gdbarch_tdep *tdep,
428 const struct ppc_reg_offsets *offsets,
429 int regnum,
430 int *regsize)
431 {
432 *regsize = offsets->gpr_size;
433 if (regnum >= tdep->ppc_gp0_regnum
434 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
435 return (offsets->r0_offset
436 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
437
438 if (regnum == gdbarch_pc_regnum (gdbarch))
439 return offsets->pc_offset;
440
441 if (regnum == tdep->ppc_ps_regnum)
442 return offsets->ps_offset;
443
444 if (regnum == tdep->ppc_lr_regnum)
445 return offsets->lr_offset;
446
447 if (regnum == tdep->ppc_ctr_regnum)
448 return offsets->ctr_offset;
449
450 *regsize = offsets->xr_size;
451 if (regnum == tdep->ppc_cr_regnum)
452 return offsets->cr_offset;
453
454 if (regnum == tdep->ppc_xer_regnum)
455 return offsets->xer_offset;
456
457 if (regnum == tdep->ppc_mq_regnum)
458 return offsets->mq_offset;
459
460 return -1;
461 }
462
463 static int
464 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
465 const struct ppc_reg_offsets *offsets,
466 int regnum)
467 {
468 if (regnum >= tdep->ppc_fp0_regnum
469 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
470 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
471
472 if (regnum == tdep->ppc_fpscr_regnum)
473 return offsets->fpscr_offset;
474
475 return -1;
476 }
477
478 /* Supply register REGNUM in the general-purpose register set REGSET
479 from the buffer specified by GREGS and LEN to register cache
480 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
481
482 void
483 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
484 int regnum, const void *gregs, size_t len)
485 {
486 struct gdbarch *gdbarch = regcache->arch ();
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
488 const struct ppc_reg_offsets *offsets
489 = (const struct ppc_reg_offsets *) regset->regmap;
490 size_t offset;
491 int regsize;
492
493 if (regnum == -1)
494 {
495 int i;
496 int gpr_size = offsets->gpr_size;
497
498 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
499 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
500 i++, offset += gpr_size)
501 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
502 gpr_size);
503
504 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
505 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
506 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
507 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
508 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
509 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
510 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
511 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
512 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
513 (const gdb_byte *) gregs, offsets->cr_offset,
514 offsets->xr_size);
515 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
516 (const gdb_byte *) gregs, offsets->xer_offset,
517 offsets->xr_size);
518 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
519 (const gdb_byte *) gregs, offsets->mq_offset,
520 offsets->xr_size);
521 return;
522 }
523
524 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
525 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
526 }
527
528 /* Supply register REGNUM in the floating-point register set REGSET
529 from the buffer specified by FPREGS and LEN to register cache
530 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
531
532 void
533 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
534 int regnum, const void *fpregs, size_t len)
535 {
536 struct gdbarch *gdbarch = regcache->arch ();
537 struct gdbarch_tdep *tdep;
538 const struct ppc_reg_offsets *offsets;
539 size_t offset;
540
541 if (!ppc_floating_point_unit_p (gdbarch))
542 return;
543
544 tdep = gdbarch_tdep (gdbarch);
545 offsets = (const struct ppc_reg_offsets *) regset->regmap;
546 if (regnum == -1)
547 {
548 int i;
549
550 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
551 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
552 i++, offset += 8)
553 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
554
555 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
556 (const gdb_byte *) fpregs, offsets->fpscr_offset,
557 offsets->fpscr_size);
558 return;
559 }
560
561 offset = ppc_fpreg_offset (tdep, offsets, regnum);
562 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
563 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
564 }
565
566 /* Collect register REGNUM in the general-purpose register set
567 REGSET from register cache REGCACHE into the buffer specified by
568 GREGS and LEN. If REGNUM is -1, do this for all registers in
569 REGSET. */
570
571 void
572 ppc_collect_gregset (const struct regset *regset,
573 const struct regcache *regcache,
574 int regnum, void *gregs, size_t len)
575 {
576 struct gdbarch *gdbarch = regcache->arch ();
577 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
578 const struct ppc_reg_offsets *offsets
579 = (const struct ppc_reg_offsets *) regset->regmap;
580 size_t offset;
581 int regsize;
582
583 if (regnum == -1)
584 {
585 int i;
586 int gpr_size = offsets->gpr_size;
587
588 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
589 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
590 i++, offset += gpr_size)
591 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
592
593 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
594 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
595 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
596 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
597 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
598 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
599 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
600 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
601 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
602 (gdb_byte *) gregs, offsets->cr_offset,
603 offsets->xr_size);
604 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
605 (gdb_byte *) gregs, offsets->xer_offset,
606 offsets->xr_size);
607 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
608 (gdb_byte *) gregs, offsets->mq_offset,
609 offsets->xr_size);
610 return;
611 }
612
613 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
614 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
615 }
616
617 /* Collect register REGNUM in the floating-point register set
618 REGSET from register cache REGCACHE into the buffer specified by
619 FPREGS and LEN. If REGNUM is -1, do this for all registers in
620 REGSET. */
621
622 void
623 ppc_collect_fpregset (const struct regset *regset,
624 const struct regcache *regcache,
625 int regnum, void *fpregs, size_t len)
626 {
627 struct gdbarch *gdbarch = regcache->arch ();
628 struct gdbarch_tdep *tdep;
629 const struct ppc_reg_offsets *offsets;
630 size_t offset;
631
632 if (!ppc_floating_point_unit_p (gdbarch))
633 return;
634
635 tdep = gdbarch_tdep (gdbarch);
636 offsets = (const struct ppc_reg_offsets *) regset->regmap;
637 if (regnum == -1)
638 {
639 int i;
640
641 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
642 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
643 i++, offset += 8)
644 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
645
646 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
647 (gdb_byte *) fpregs, offsets->fpscr_offset,
648 offsets->fpscr_size);
649 return;
650 }
651
652 offset = ppc_fpreg_offset (tdep, offsets, regnum);
653 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
654 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
655 }
656
657 static int
658 insn_changes_sp_or_jumps (unsigned long insn)
659 {
660 int opcode = (insn >> 26) & 0x03f;
661 int sd = (insn >> 21) & 0x01f;
662 int a = (insn >> 16) & 0x01f;
663 int subcode = (insn >> 1) & 0x3ff;
664
665 /* Changes the stack pointer. */
666
667 /* NOTE: There are many ways to change the value of a given register.
668 The ways below are those used when the register is R1, the SP,
669 in a funtion's epilogue. */
670
671 if (opcode == 31 && subcode == 444 && a == 1)
672 return 1; /* mr R1,Rn */
673 if (opcode == 14 && sd == 1)
674 return 1; /* addi R1,Rn,simm */
675 if (opcode == 58 && sd == 1)
676 return 1; /* ld R1,ds(Rn) */
677
678 /* Transfers control. */
679
680 if (opcode == 18)
681 return 1; /* b */
682 if (opcode == 16)
683 return 1; /* bc */
684 if (opcode == 19 && subcode == 16)
685 return 1; /* bclr */
686 if (opcode == 19 && subcode == 528)
687 return 1; /* bcctr */
688
689 return 0;
690 }
691
692 /* Return true if we are in the function's epilogue, i.e. after the
693 instruction that destroyed the function's stack frame.
694
695 1) scan forward from the point of execution:
696 a) If you find an instruction that modifies the stack pointer
697 or transfers control (except a return), execution is not in
698 an epilogue, return.
699 b) Stop scanning if you find a return instruction or reach the
700 end of the function or reach the hard limit for the size of
701 an epilogue.
702 2) scan backward from the point of execution:
703 a) If you find an instruction that modifies the stack pointer,
704 execution *is* in an epilogue, return.
705 b) Stop scanning if you reach an instruction that transfers
706 control or the beginning of the function or reach the hard
707 limit for the size of an epilogue. */
708
709 static int
710 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
711 struct gdbarch *gdbarch, CORE_ADDR pc)
712 {
713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
714 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
715 bfd_byte insn_buf[PPC_INSN_SIZE];
716 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
717 unsigned long insn;
718
719 /* Find the search limits based on function boundaries and hard limit. */
720
721 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
722 return 0;
723
724 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
725 if (epilogue_start < func_start) epilogue_start = func_start;
726
727 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
728 if (epilogue_end > func_end) epilogue_end = func_end;
729
730 /* Scan forward until next 'blr'. */
731
732 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
733 {
734 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
735 return 0;
736 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
737 if (insn == 0x4e800020)
738 break;
739 /* Assume a bctr is a tail call unless it points strictly within
740 this function. */
741 if (insn == 0x4e800420)
742 {
743 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
744 tdep->ppc_ctr_regnum);
745 if (ctr > func_start && ctr < func_end)
746 return 0;
747 else
748 break;
749 }
750 if (insn_changes_sp_or_jumps (insn))
751 return 0;
752 }
753
754 /* Scan backward until adjustment to stack pointer (R1). */
755
756 for (scan_pc = pc - PPC_INSN_SIZE;
757 scan_pc >= epilogue_start;
758 scan_pc -= PPC_INSN_SIZE)
759 {
760 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
761 return 0;
762 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
763 if (insn_changes_sp_or_jumps (insn))
764 return 1;
765 }
766
767 return 0;
768 }
769
770 /* Implement the stack_frame_destroyed_p gdbarch method. */
771
772 static int
773 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
774 {
775 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
776 gdbarch, pc);
777 }
778
779 /* Get the ith function argument for the current function. */
780 static CORE_ADDR
781 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
782 struct type *type)
783 {
784 return get_frame_register_unsigned (frame, 3 + argi);
785 }
786
787 /* Sequence of bytes for breakpoint instruction. */
788
789 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
790 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
791
792 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
793 rs6000_breakpoint;
794
795 /* Instruction masks for displaced stepping. */
796 #define BRANCH_MASK 0xfc000000
797 #define BP_MASK 0xFC0007FE
798 #define B_INSN 0x48000000
799 #define BC_INSN 0x40000000
800 #define BXL_INSN 0x4c000000
801 #define BP_INSN 0x7C000008
802
803 /* Instruction masks used during single-stepping of atomic
804 sequences. */
805 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
806 #define LWARX_INSTRUCTION 0x7c000028
807 #define LDARX_INSTRUCTION 0x7c0000A8
808 #define LBARX_INSTRUCTION 0x7c000068
809 #define LHARX_INSTRUCTION 0x7c0000e8
810 #define LQARX_INSTRUCTION 0x7c000228
811 #define STORE_CONDITIONAL_MASK 0xfc0007ff
812 #define STWCX_INSTRUCTION 0x7c00012d
813 #define STDCX_INSTRUCTION 0x7c0001ad
814 #define STBCX_INSTRUCTION 0x7c00056d
815 #define STHCX_INSTRUCTION 0x7c0005ad
816 #define STQCX_INSTRUCTION 0x7c00016d
817
818 /* Check if insn is one of the Load And Reserve instructions used for atomic
819 sequences. */
820 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
821 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
822 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
823 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
824 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
825 /* Check if insn is one of the Store Conditional instructions used for atomic
826 sequences. */
827 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
828 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
829 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
830 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
831 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
832
833 typedef buf_displaced_step_closure ppc_displaced_step_closure;
834
835 /* We can't displaced step atomic sequences. */
836
837 static struct displaced_step_closure *
838 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
839 CORE_ADDR from, CORE_ADDR to,
840 struct regcache *regs)
841 {
842 size_t len = gdbarch_max_insn_length (gdbarch);
843 std::unique_ptr<ppc_displaced_step_closure> closure
844 (new ppc_displaced_step_closure (len));
845 gdb_byte *buf = closure->buf.data ();
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847 int insn;
848
849 read_memory (from, buf, len);
850
851 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
852
853 /* Assume all atomic sequences start with a Load and Reserve instruction. */
854 if (IS_LOAD_AND_RESERVE_INSN (insn))
855 {
856 if (debug_displaced)
857 {
858 fprintf_unfiltered (gdb_stdlog,
859 "displaced: can't displaced step "
860 "atomic sequence at %s\n",
861 paddress (gdbarch, from));
862 }
863
864 return NULL;
865 }
866
867 write_memory (to, buf, len);
868
869 if (debug_displaced)
870 {
871 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
872 paddress (gdbarch, from), paddress (gdbarch, to));
873 displaced_step_dump_bytes (gdb_stdlog, buf, len);
874 }
875
876 return closure.release ();
877 }
878
879 /* Fix up the state of registers and memory after having single-stepped
880 a displaced instruction. */
881 static void
882 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
883 struct displaced_step_closure *closure_,
884 CORE_ADDR from, CORE_ADDR to,
885 struct regcache *regs)
886 {
887 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
888 /* Our closure is a copy of the instruction. */
889 ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
890 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
891 PPC_INSN_SIZE, byte_order);
892 ULONGEST opcode = 0;
893 /* Offset for non PC-relative instructions. */
894 LONGEST offset = PPC_INSN_SIZE;
895
896 opcode = insn & BRANCH_MASK;
897
898 if (debug_displaced)
899 fprintf_unfiltered (gdb_stdlog,
900 "displaced: (ppc) fixup (%s, %s)\n",
901 paddress (gdbarch, from), paddress (gdbarch, to));
902
903
904 /* Handle PC-relative branch instructions. */
905 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
906 {
907 ULONGEST current_pc;
908
909 /* Read the current PC value after the instruction has been executed
910 in a displaced location. Calculate the offset to be applied to the
911 original PC value before the displaced stepping. */
912 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
913 &current_pc);
914 offset = current_pc - to;
915
916 if (opcode != BXL_INSN)
917 {
918 /* Check for AA bit indicating whether this is an absolute
919 addressing or PC-relative (1: absolute, 0: relative). */
920 if (!(insn & 0x2))
921 {
922 /* PC-relative addressing is being used in the branch. */
923 if (debug_displaced)
924 fprintf_unfiltered
925 (gdb_stdlog,
926 "displaced: (ppc) branch instruction: %s\n"
927 "displaced: (ppc) adjusted PC from %s to %s\n",
928 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
929 paddress (gdbarch, from + offset));
930
931 regcache_cooked_write_unsigned (regs,
932 gdbarch_pc_regnum (gdbarch),
933 from + offset);
934 }
935 }
936 else
937 {
938 /* If we're here, it means we have a branch to LR or CTR. If the
939 branch was taken, the offset is probably greater than 4 (the next
940 instruction), so it's safe to assume that an offset of 4 means we
941 did not take the branch. */
942 if (offset == PPC_INSN_SIZE)
943 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
944 from + PPC_INSN_SIZE);
945 }
946
947 /* Check for LK bit indicating whether we should set the link
948 register to point to the next instruction
949 (1: Set, 0: Don't set). */
950 if (insn & 0x1)
951 {
952 /* Link register needs to be set to the next instruction's PC. */
953 regcache_cooked_write_unsigned (regs,
954 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
955 from + PPC_INSN_SIZE);
956 if (debug_displaced)
957 fprintf_unfiltered (gdb_stdlog,
958 "displaced: (ppc) adjusted LR to %s\n",
959 paddress (gdbarch, from + PPC_INSN_SIZE));
960
961 }
962 }
963 /* Check for breakpoints in the inferior. If we've found one, place the PC
964 right at the breakpoint instruction. */
965 else if ((insn & BP_MASK) == BP_INSN)
966 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
967 else
968 /* Handle any other instructions that do not fit in the categories above. */
969 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
970 from + offset);
971 }
972
973 /* Always use hardware single-stepping to execute the
974 displaced instruction. */
975 static int
976 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
977 struct displaced_step_closure *closure)
978 {
979 return 1;
980 }
981
982 /* Checks for an atomic sequence of instructions beginning with a
983 Load And Reserve instruction and ending with a Store Conditional
984 instruction. If such a sequence is found, attempt to step through it.
985 A breakpoint is placed at the end of the sequence. */
986 std::vector<CORE_ADDR>
987 ppc_deal_with_atomic_sequence (struct regcache *regcache)
988 {
989 struct gdbarch *gdbarch = regcache->arch ();
990 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
991 CORE_ADDR pc = regcache_read_pc (regcache);
992 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
993 CORE_ADDR loc = pc;
994 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
995 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
996 int insn_count;
997 int index;
998 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
999 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1000 int bc_insn_count = 0; /* Conditional branch instruction count. */
1001
1002 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1003 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1004 return {};
1005
1006 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1007 instructions. */
1008 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1009 {
1010 loc += PPC_INSN_SIZE;
1011 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1012
1013 /* Assume that there is at most one conditional branch in the atomic
1014 sequence. If a conditional branch is found, put a breakpoint in
1015 its destination address. */
1016 if ((insn & BRANCH_MASK) == BC_INSN)
1017 {
1018 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1019 int absolute = insn & 2;
1020
1021 if (bc_insn_count >= 1)
1022 return {}; /* More than one conditional branch found, fallback
1023 to the standard single-step code. */
1024
1025 if (absolute)
1026 breaks[1] = immediate;
1027 else
1028 breaks[1] = loc + immediate;
1029
1030 bc_insn_count++;
1031 last_breakpoint++;
1032 }
1033
1034 if (IS_STORE_CONDITIONAL_INSN (insn))
1035 break;
1036 }
1037
1038 /* Assume that the atomic sequence ends with a Store Conditional
1039 instruction. */
1040 if (!IS_STORE_CONDITIONAL_INSN (insn))
1041 return {};
1042
1043 closing_insn = loc;
1044 loc += PPC_INSN_SIZE;
1045
1046 /* Insert a breakpoint right after the end of the atomic sequence. */
1047 breaks[0] = loc;
1048
1049 /* Check for duplicated breakpoints. Check also for a breakpoint
1050 placed (branch instruction's destination) anywhere in sequence. */
1051 if (last_breakpoint
1052 && (breaks[1] == breaks[0]
1053 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1054 last_breakpoint = 0;
1055
1056 std::vector<CORE_ADDR> next_pcs;
1057
1058 for (index = 0; index <= last_breakpoint; index++)
1059 next_pcs.push_back (breaks[index]);
1060
1061 return next_pcs;
1062 }
1063
1064
1065 #define SIGNED_SHORT(x) \
1066 ((sizeof (short) == 2) \
1067 ? ((int)(short)(x)) \
1068 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1069
1070 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1071
1072 /* Limit the number of skipped non-prologue instructions, as the examining
1073 of the prologue is expensive. */
1074 static int max_skip_non_prologue_insns = 10;
1075
1076 /* Return nonzero if the given instruction OP can be part of the prologue
1077 of a function and saves a parameter on the stack. FRAMEP should be
1078 set if one of the previous instructions in the function has set the
1079 Frame Pointer. */
1080
1081 static int
1082 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1083 {
1084 /* Move parameters from argument registers to temporary register. */
1085 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1086 {
1087 /* Rx must be scratch register r0. */
1088 const int rx_regno = (op >> 16) & 31;
1089 /* Ry: Only r3 - r10 are used for parameter passing. */
1090 const int ry_regno = GET_SRC_REG (op);
1091
1092 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1093 {
1094 *r0_contains_arg = 1;
1095 return 1;
1096 }
1097 else
1098 return 0;
1099 }
1100
1101 /* Save a General Purpose Register on stack. */
1102
1103 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1104 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1105 {
1106 /* Rx: Only r3 - r10 are used for parameter passing. */
1107 const int rx_regno = GET_SRC_REG (op);
1108
1109 return (rx_regno >= 3 && rx_regno <= 10);
1110 }
1111
1112 /* Save a General Purpose Register on stack via the Frame Pointer. */
1113
1114 if (framep &&
1115 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1116 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1117 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1118 {
1119 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1120 However, the compiler sometimes uses r0 to hold an argument. */
1121 const int rx_regno = GET_SRC_REG (op);
1122
1123 return ((rx_regno >= 3 && rx_regno <= 10)
1124 || (rx_regno == 0 && *r0_contains_arg));
1125 }
1126
1127 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1128 {
1129 /* Only f2 - f8 are used for parameter passing. */
1130 const int src_regno = GET_SRC_REG (op);
1131
1132 return (src_regno >= 2 && src_regno <= 8);
1133 }
1134
1135 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1136 {
1137 /* Only f2 - f8 are used for parameter passing. */
1138 const int src_regno = GET_SRC_REG (op);
1139
1140 return (src_regno >= 2 && src_regno <= 8);
1141 }
1142
1143 /* Not an insn that saves a parameter on stack. */
1144 return 0;
1145 }
1146
1147 /* Assuming that INSN is a "bl" instruction located at PC, return
1148 nonzero if the destination of the branch is a "blrl" instruction.
1149
1150 This sequence is sometimes found in certain function prologues.
1151 It allows the function to load the LR register with a value that
1152 they can use to access PIC data using PC-relative offsets. */
1153
1154 static int
1155 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1156 {
1157 CORE_ADDR dest;
1158 int immediate;
1159 int absolute;
1160 int dest_insn;
1161
1162 absolute = (int) ((insn >> 1) & 1);
1163 immediate = ((insn & ~3) << 6) >> 6;
1164 if (absolute)
1165 dest = immediate;
1166 else
1167 dest = pc + immediate;
1168
1169 dest_insn = read_memory_integer (dest, 4, byte_order);
1170 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1171 return 1;
1172
1173 return 0;
1174 }
1175
1176 /* Return true if OP is a stw or std instruction with
1177 register operands RS and RA and any immediate offset.
1178
1179 If WITH_UPDATE is true, also return true if OP is
1180 a stwu or stdu instruction with the same operands.
1181
1182 Return false otherwise.
1183 */
1184 static bool
1185 store_insn_p (unsigned long op, unsigned long rs,
1186 unsigned long ra, bool with_update)
1187 {
1188 rs = rs << 21;
1189 ra = ra << 16;
1190
1191 if (/* std RS, SIMM(RA) */
1192 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1193 /* stw RS, SIMM(RA) */
1194 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1195 return true;
1196
1197 if (with_update)
1198 {
1199 if (/* stdu RS, SIMM(RA) */
1200 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1201 /* stwu RS, SIMM(RA) */
1202 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1203 return true;
1204 }
1205
1206 return false;
1207 }
1208
1209 /* Masks for decoding a branch-and-link (bl) instruction.
1210
1211 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1212 The former is anded with the opcode in question; if the result of
1213 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1214 question is a ``bl'' instruction.
1215
1216 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1217 the branch displacement. */
1218
1219 #define BL_MASK 0xfc000001
1220 #define BL_INSTRUCTION 0x48000001
1221 #define BL_DISPLACEMENT_MASK 0x03fffffc
1222
1223 static unsigned long
1224 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1225 {
1226 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1227 gdb_byte buf[4];
1228 unsigned long op;
1229
1230 /* Fetch the instruction and convert it to an integer. */
1231 if (target_read_memory (pc, buf, 4))
1232 return 0;
1233 op = extract_unsigned_integer (buf, 4, byte_order);
1234
1235 return op;
1236 }
1237
1238 /* GCC generates several well-known sequences of instructions at the begining
1239 of each function prologue when compiling with -fstack-check. If one of
1240 such sequences starts at START_PC, then return the address of the
1241 instruction immediately past this sequence. Otherwise, return START_PC. */
1242
1243 static CORE_ADDR
1244 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1245 {
1246 CORE_ADDR pc = start_pc;
1247 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1248
1249 /* First possible sequence: A small number of probes.
1250 stw 0, -<some immediate>(1)
1251 [repeat this instruction any (small) number of times]. */
1252
1253 if ((op & 0xffff0000) == 0x90010000)
1254 {
1255 while ((op & 0xffff0000) == 0x90010000)
1256 {
1257 pc = pc + 4;
1258 op = rs6000_fetch_instruction (gdbarch, pc);
1259 }
1260 return pc;
1261 }
1262
1263 /* Second sequence: A probing loop.
1264 addi 12,1,-<some immediate>
1265 lis 0,-<some immediate>
1266 [possibly ori 0,0,<some immediate>]
1267 add 0,12,0
1268 cmpw 0,12,0
1269 beq 0,<disp>
1270 addi 12,12,-<some immediate>
1271 stw 0,0(12)
1272 b <disp>
1273 [possibly one last probe: stw 0,<some immediate>(12)]. */
1274
1275 while (1)
1276 {
1277 /* addi 12,1,-<some immediate> */
1278 if ((op & 0xffff0000) != 0x39810000)
1279 break;
1280
1281 /* lis 0,-<some immediate> */
1282 pc = pc + 4;
1283 op = rs6000_fetch_instruction (gdbarch, pc);
1284 if ((op & 0xffff0000) != 0x3c000000)
1285 break;
1286
1287 pc = pc + 4;
1288 op = rs6000_fetch_instruction (gdbarch, pc);
1289 /* [possibly ori 0,0,<some immediate>] */
1290 if ((op & 0xffff0000) == 0x60000000)
1291 {
1292 pc = pc + 4;
1293 op = rs6000_fetch_instruction (gdbarch, pc);
1294 }
1295 /* add 0,12,0 */
1296 if (op != 0x7c0c0214)
1297 break;
1298
1299 /* cmpw 0,12,0 */
1300 pc = pc + 4;
1301 op = rs6000_fetch_instruction (gdbarch, pc);
1302 if (op != 0x7c0c0000)
1303 break;
1304
1305 /* beq 0,<disp> */
1306 pc = pc + 4;
1307 op = rs6000_fetch_instruction (gdbarch, pc);
1308 if ((op & 0xff9f0001) != 0x41820000)
1309 break;
1310
1311 /* addi 12,12,-<some immediate> */
1312 pc = pc + 4;
1313 op = rs6000_fetch_instruction (gdbarch, pc);
1314 if ((op & 0xffff0000) != 0x398c0000)
1315 break;
1316
1317 /* stw 0,0(12) */
1318 pc = pc + 4;
1319 op = rs6000_fetch_instruction (gdbarch, pc);
1320 if (op != 0x900c0000)
1321 break;
1322
1323 /* b <disp> */
1324 pc = pc + 4;
1325 op = rs6000_fetch_instruction (gdbarch, pc);
1326 if ((op & 0xfc000001) != 0x48000000)
1327 break;
1328
1329 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1330 pc = pc + 4;
1331 op = rs6000_fetch_instruction (gdbarch, pc);
1332 if ((op & 0xffff0000) == 0x900c0000)
1333 {
1334 pc = pc + 4;
1335 op = rs6000_fetch_instruction (gdbarch, pc);
1336 }
1337
1338 /* We found a valid stack-check sequence, return the new PC. */
1339 return pc;
1340 }
1341
1342 /* Third sequence: No probe; instead, a comparizon between the stack size
1343 limit (saved in a run-time global variable) and the current stack
1344 pointer:
1345
1346 addi 0,1,-<some immediate>
1347 lis 12,__gnat_stack_limit@ha
1348 lwz 12,__gnat_stack_limit@l(12)
1349 twllt 0,12
1350
1351 or, with a small variant in the case of a bigger stack frame:
1352 addis 0,1,<some immediate>
1353 addic 0,0,-<some immediate>
1354 lis 12,__gnat_stack_limit@ha
1355 lwz 12,__gnat_stack_limit@l(12)
1356 twllt 0,12
1357 */
1358 while (1)
1359 {
1360 /* addi 0,1,-<some immediate> */
1361 if ((op & 0xffff0000) != 0x38010000)
1362 {
1363 /* small stack frame variant not recognized; try the
1364 big stack frame variant: */
1365
1366 /* addis 0,1,<some immediate> */
1367 if ((op & 0xffff0000) != 0x3c010000)
1368 break;
1369
1370 /* addic 0,0,-<some immediate> */
1371 pc = pc + 4;
1372 op = rs6000_fetch_instruction (gdbarch, pc);
1373 if ((op & 0xffff0000) != 0x30000000)
1374 break;
1375 }
1376
1377 /* lis 12,<some immediate> */
1378 pc = pc + 4;
1379 op = rs6000_fetch_instruction (gdbarch, pc);
1380 if ((op & 0xffff0000) != 0x3d800000)
1381 break;
1382
1383 /* lwz 12,<some immediate>(12) */
1384 pc = pc + 4;
1385 op = rs6000_fetch_instruction (gdbarch, pc);
1386 if ((op & 0xffff0000) != 0x818c0000)
1387 break;
1388
1389 /* twllt 0,12 */
1390 pc = pc + 4;
1391 op = rs6000_fetch_instruction (gdbarch, pc);
1392 if ((op & 0xfffffffe) != 0x7c406008)
1393 break;
1394
1395 /* We found a valid stack-check sequence, return the new PC. */
1396 return pc;
1397 }
1398
1399 /* No stack check code in our prologue, return the start_pc. */
1400 return start_pc;
1401 }
1402
1403 /* return pc value after skipping a function prologue and also return
1404 information about a function frame.
1405
1406 in struct rs6000_framedata fdata:
1407 - frameless is TRUE, if function does not have a frame.
1408 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1409 - offset is the initial size of this stack frame --- the amount by
1410 which we decrement the sp to allocate the frame.
1411 - saved_gpr is the number of the first saved gpr.
1412 - saved_fpr is the number of the first saved fpr.
1413 - saved_vr is the number of the first saved vr.
1414 - saved_ev is the number of the first saved ev.
1415 - alloca_reg is the number of the register used for alloca() handling.
1416 Otherwise -1.
1417 - gpr_offset is the offset of the first saved gpr from the previous frame.
1418 - fpr_offset is the offset of the first saved fpr from the previous frame.
1419 - vr_offset is the offset of the first saved vr from the previous frame.
1420 - ev_offset is the offset of the first saved ev from the previous frame.
1421 - lr_offset is the offset of the saved lr
1422 - cr_offset is the offset of the saved cr
1423 - vrsave_offset is the offset of the saved vrsave register. */
1424
1425 static CORE_ADDR
1426 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1427 struct rs6000_framedata *fdata)
1428 {
1429 CORE_ADDR orig_pc = pc;
1430 CORE_ADDR last_prologue_pc = pc;
1431 CORE_ADDR li_found_pc = 0;
1432 gdb_byte buf[4];
1433 unsigned long op;
1434 long offset = 0;
1435 long alloca_reg_offset = 0;
1436 long vr_saved_offset = 0;
1437 int lr_reg = -1;
1438 int cr_reg = -1;
1439 int vr_reg = -1;
1440 int ev_reg = -1;
1441 long ev_offset = 0;
1442 int vrsave_reg = -1;
1443 int reg;
1444 int framep = 0;
1445 int minimal_toc_loaded = 0;
1446 int prev_insn_was_prologue_insn = 1;
1447 int num_skip_non_prologue_insns = 0;
1448 int r0_contains_arg = 0;
1449 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1450 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1451 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1452
1453 memset (fdata, 0, sizeof (struct rs6000_framedata));
1454 fdata->saved_gpr = -1;
1455 fdata->saved_fpr = -1;
1456 fdata->saved_vr = -1;
1457 fdata->saved_ev = -1;
1458 fdata->alloca_reg = -1;
1459 fdata->frameless = 1;
1460 fdata->nosavedpc = 1;
1461 fdata->lr_register = -1;
1462
1463 pc = rs6000_skip_stack_check (gdbarch, pc);
1464 if (pc >= lim_pc)
1465 pc = lim_pc;
1466
1467 for (;; pc += 4)
1468 {
1469 /* Sometimes it isn't clear if an instruction is a prologue
1470 instruction or not. When we encounter one of these ambiguous
1471 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1472 Otherwise, we'll assume that it really is a prologue instruction. */
1473 if (prev_insn_was_prologue_insn)
1474 last_prologue_pc = pc;
1475
1476 /* Stop scanning if we've hit the limit. */
1477 if (pc >= lim_pc)
1478 break;
1479
1480 prev_insn_was_prologue_insn = 1;
1481
1482 /* Fetch the instruction and convert it to an integer. */
1483 if (target_read_memory (pc, buf, 4))
1484 break;
1485 op = extract_unsigned_integer (buf, 4, byte_order);
1486
1487 if ((op & 0xfc1fffff) == 0x7c0802a6)
1488 { /* mflr Rx */
1489 /* Since shared library / PIC code, which needs to get its
1490 address at runtime, can appear to save more than one link
1491 register vis:
1492
1493 *INDENT-OFF*
1494 stwu r1,-304(r1)
1495 mflr r3
1496 bl 0xff570d0 (blrl)
1497 stw r30,296(r1)
1498 mflr r30
1499 stw r31,300(r1)
1500 stw r3,308(r1);
1501 ...
1502 *INDENT-ON*
1503
1504 remember just the first one, but skip over additional
1505 ones. */
1506 if (lr_reg == -1)
1507 lr_reg = (op & 0x03e00000) >> 21;
1508 if (lr_reg == 0)
1509 r0_contains_arg = 0;
1510 continue;
1511 }
1512 else if ((op & 0xfc1fffff) == 0x7c000026)
1513 { /* mfcr Rx */
1514 cr_reg = (op & 0x03e00000) >> 21;
1515 if (cr_reg == 0)
1516 r0_contains_arg = 0;
1517 continue;
1518
1519 }
1520 else if ((op & 0xfc1f0000) == 0xd8010000)
1521 { /* stfd Rx,NUM(r1) */
1522 reg = GET_SRC_REG (op);
1523 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1524 {
1525 fdata->saved_fpr = reg;
1526 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1527 }
1528 continue;
1529
1530 }
1531 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1532 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1533 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1534 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1535 {
1536
1537 reg = GET_SRC_REG (op);
1538 if ((op & 0xfc1f0000) == 0xbc010000)
1539 fdata->gpr_mask |= ~((1U << reg) - 1);
1540 else
1541 fdata->gpr_mask |= 1U << reg;
1542 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1543 {
1544 fdata->saved_gpr = reg;
1545 if ((op & 0xfc1f0003) == 0xf8010000)
1546 op &= ~3UL;
1547 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1548 }
1549 continue;
1550
1551 }
1552 else if ((op & 0xffff0000) == 0x3c4c0000
1553 || (op & 0xffff0000) == 0x3c400000
1554 || (op & 0xffff0000) == 0x38420000)
1555 {
1556 /* . 0: addis 2,12,.TOC.-0b@ha
1557 . addi 2,2,.TOC.-0b@l
1558 or
1559 . lis 2,.TOC.@ha
1560 . addi 2,2,.TOC.@l
1561 used by ELFv2 global entry points to set up r2. */
1562 continue;
1563 }
1564 else if (op == 0x60000000)
1565 {
1566 /* nop */
1567 /* Allow nops in the prologue, but do not consider them to
1568 be part of the prologue unless followed by other prologue
1569 instructions. */
1570 prev_insn_was_prologue_insn = 0;
1571 continue;
1572
1573 }
1574 else if ((op & 0xffff0000) == 0x3c000000)
1575 { /* addis 0,0,NUM, used for >= 32k frames */
1576 fdata->offset = (op & 0x0000ffff) << 16;
1577 fdata->frameless = 0;
1578 r0_contains_arg = 0;
1579 continue;
1580
1581 }
1582 else if ((op & 0xffff0000) == 0x60000000)
1583 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1584 fdata->offset |= (op & 0x0000ffff);
1585 fdata->frameless = 0;
1586 r0_contains_arg = 0;
1587 continue;
1588
1589 }
1590 else if (lr_reg >= 0 &&
1591 ((store_insn_p (op, lr_reg, 1, true)) ||
1592 (framep &&
1593 (store_insn_p (op, lr_reg,
1594 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1595 false)))))
1596 {
1597 if (store_insn_p (op, lr_reg, 1, true))
1598 fdata->lr_offset = offset;
1599 else /* LR save through frame pointer. */
1600 fdata->lr_offset = alloca_reg_offset;
1601
1602 fdata->nosavedpc = 0;
1603 /* Invalidate lr_reg, but don't set it to -1.
1604 That would mean that it had never been set. */
1605 lr_reg = -2;
1606 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1607 (op & 0xfc000000) == 0x90000000) /* stw */
1608 {
1609 /* Does not update r1, so add displacement to lr_offset. */
1610 fdata->lr_offset += SIGNED_SHORT (op);
1611 }
1612 continue;
1613
1614 }
1615 else if (cr_reg >= 0 &&
1616 (store_insn_p (op, cr_reg, 1, true)))
1617 {
1618 fdata->cr_offset = offset;
1619 /* Invalidate cr_reg, but don't set it to -1.
1620 That would mean that it had never been set. */
1621 cr_reg = -2;
1622 if ((op & 0xfc000003) == 0xf8000000 ||
1623 (op & 0xfc000000) == 0x90000000)
1624 {
1625 /* Does not update r1, so add displacement to cr_offset. */
1626 fdata->cr_offset += SIGNED_SHORT (op);
1627 }
1628 continue;
1629
1630 }
1631 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1632 {
1633 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1634 prediction bits. If the LR has already been saved, we can
1635 skip it. */
1636 continue;
1637 }
1638 else if (op == 0x48000005)
1639 { /* bl .+4 used in
1640 -mrelocatable */
1641 fdata->used_bl = 1;
1642 continue;
1643
1644 }
1645 else if (op == 0x48000004)
1646 { /* b .+4 (xlc) */
1647 break;
1648
1649 }
1650 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1651 in V.4 -mminimal-toc */
1652 (op & 0xffff0000) == 0x3bde0000)
1653 { /* addi 30,30,foo@l */
1654 continue;
1655
1656 }
1657 else if ((op & 0xfc000001) == 0x48000001)
1658 { /* bl foo,
1659 to save fprs??? */
1660
1661 fdata->frameless = 0;
1662
1663 /* If the return address has already been saved, we can skip
1664 calls to blrl (for PIC). */
1665 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1666 {
1667 fdata->used_bl = 1;
1668 continue;
1669 }
1670
1671 /* Don't skip over the subroutine call if it is not within
1672 the first three instructions of the prologue and either
1673 we have no line table information or the line info tells
1674 us that the subroutine call is not part of the line
1675 associated with the prologue. */
1676 if ((pc - orig_pc) > 8)
1677 {
1678 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1679 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1680
1681 if ((prologue_sal.line == 0)
1682 || (prologue_sal.line != this_sal.line))
1683 break;
1684 }
1685
1686 op = read_memory_integer (pc + 4, 4, byte_order);
1687
1688 /* At this point, make sure this is not a trampoline
1689 function (a function that simply calls another functions,
1690 and nothing else). If the next is not a nop, this branch
1691 was part of the function prologue. */
1692
1693 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1694 break; /* Don't skip over
1695 this branch. */
1696
1697 fdata->used_bl = 1;
1698 continue;
1699 }
1700 /* update stack pointer */
1701 else if ((op & 0xfc1f0000) == 0x94010000)
1702 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1703 fdata->frameless = 0;
1704 fdata->offset = SIGNED_SHORT (op);
1705 offset = fdata->offset;
1706 continue;
1707 }
1708 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1709 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1710 /* No way to figure out what r1 is going to be. */
1711 fdata->frameless = 0;
1712 offset = fdata->offset;
1713 continue;
1714 }
1715 else if ((op & 0xfc1f0003) == 0xf8010001)
1716 { /* stdu rX,NUM(r1) */
1717 fdata->frameless = 0;
1718 fdata->offset = SIGNED_SHORT (op & ~3UL);
1719 offset = fdata->offset;
1720 continue;
1721 }
1722 else if ((op & 0xffff0000) == 0x38210000)
1723 { /* addi r1,r1,SIMM */
1724 fdata->frameless = 0;
1725 fdata->offset += SIGNED_SHORT (op);
1726 offset = fdata->offset;
1727 continue;
1728 }
1729 /* Load up minimal toc pointer. Do not treat an epilogue restore
1730 of r31 as a minimal TOC load. */
1731 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1732 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1733 && !framep
1734 && !minimal_toc_loaded)
1735 {
1736 minimal_toc_loaded = 1;
1737 continue;
1738
1739 /* move parameters from argument registers to local variable
1740 registers */
1741 }
1742 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1743 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1744 (((op >> 21) & 31) <= 10) &&
1745 ((long) ((op >> 16) & 31)
1746 >= fdata->saved_gpr)) /* Rx: local var reg */
1747 {
1748 continue;
1749
1750 /* store parameters in stack */
1751 }
1752 /* Move parameters from argument registers to temporary register. */
1753 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1754 {
1755 continue;
1756
1757 /* Set up frame pointer */
1758 }
1759 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1760 {
1761 fdata->frameless = 0;
1762 framep = 1;
1763 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1764 alloca_reg_offset = offset;
1765 continue;
1766
1767 /* Another way to set up the frame pointer. */
1768 }
1769 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1770 || op == 0x7c3f0b78)
1771 { /* mr r31, r1 */
1772 fdata->frameless = 0;
1773 framep = 1;
1774 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1775 alloca_reg_offset = offset;
1776 continue;
1777
1778 /* Another way to set up the frame pointer. */
1779 }
1780 else if ((op & 0xfc1fffff) == 0x38010000)
1781 { /* addi rX, r1, 0x0 */
1782 fdata->frameless = 0;
1783 framep = 1;
1784 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1785 + ((op & ~0x38010000) >> 21));
1786 alloca_reg_offset = offset;
1787 continue;
1788 }
1789 /* AltiVec related instructions. */
1790 /* Store the vrsave register (spr 256) in another register for
1791 later manipulation, or load a register into the vrsave
1792 register. 2 instructions are used: mfvrsave and
1793 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1794 and mtspr SPR256, Rn. */
1795 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1796 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1797 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1798 {
1799 vrsave_reg = GET_SRC_REG (op);
1800 continue;
1801 }
1802 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1803 {
1804 continue;
1805 }
1806 /* Store the register where vrsave was saved to onto the stack:
1807 rS is the register where vrsave was stored in a previous
1808 instruction. */
1809 /* 100100 sssss 00001 dddddddd dddddddd */
1810 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1811 {
1812 if (vrsave_reg == GET_SRC_REG (op))
1813 {
1814 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1815 vrsave_reg = -1;
1816 }
1817 continue;
1818 }
1819 /* Compute the new value of vrsave, by modifying the register
1820 where vrsave was saved to. */
1821 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1822 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1823 {
1824 continue;
1825 }
1826 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1827 in a pair of insns to save the vector registers on the
1828 stack. */
1829 /* 001110 00000 00000 iiii iiii iiii iiii */
1830 /* 001110 01110 00000 iiii iiii iiii iiii */
1831 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1832 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1833 {
1834 if ((op & 0xffff0000) == 0x38000000)
1835 r0_contains_arg = 0;
1836 li_found_pc = pc;
1837 vr_saved_offset = SIGNED_SHORT (op);
1838
1839 /* This insn by itself is not part of the prologue, unless
1840 if part of the pair of insns mentioned above. So do not
1841 record this insn as part of the prologue yet. */
1842 prev_insn_was_prologue_insn = 0;
1843 }
1844 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1845 /* 011111 sssss 11111 00000 00111001110 */
1846 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1847 {
1848 if (pc == (li_found_pc + 4))
1849 {
1850 vr_reg = GET_SRC_REG (op);
1851 /* If this is the first vector reg to be saved, or if
1852 it has a lower number than others previously seen,
1853 reupdate the frame info. */
1854 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1855 {
1856 fdata->saved_vr = vr_reg;
1857 fdata->vr_offset = vr_saved_offset + offset;
1858 }
1859 vr_saved_offset = -1;
1860 vr_reg = -1;
1861 li_found_pc = 0;
1862 }
1863 }
1864 /* End AltiVec related instructions. */
1865
1866 /* Start BookE related instructions. */
1867 /* Store gen register S at (r31+uimm).
1868 Any register less than r13 is volatile, so we don't care. */
1869 /* 000100 sssss 11111 iiiii 01100100001 */
1870 else if (arch_info->mach == bfd_mach_ppc_e500
1871 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1872 {
1873 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1874 {
1875 unsigned int imm;
1876 ev_reg = GET_SRC_REG (op);
1877 imm = (op >> 11) & 0x1f;
1878 ev_offset = imm * 8;
1879 /* If this is the first vector reg to be saved, or if
1880 it has a lower number than others previously seen,
1881 reupdate the frame info. */
1882 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1883 {
1884 fdata->saved_ev = ev_reg;
1885 fdata->ev_offset = ev_offset + offset;
1886 }
1887 }
1888 continue;
1889 }
1890 /* Store gen register rS at (r1+rB). */
1891 /* 000100 sssss 00001 bbbbb 01100100000 */
1892 else if (arch_info->mach == bfd_mach_ppc_e500
1893 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1894 {
1895 if (pc == (li_found_pc + 4))
1896 {
1897 ev_reg = GET_SRC_REG (op);
1898 /* If this is the first vector reg to be saved, or if
1899 it has a lower number than others previously seen,
1900 reupdate the frame info. */
1901 /* We know the contents of rB from the previous instruction. */
1902 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1903 {
1904 fdata->saved_ev = ev_reg;
1905 fdata->ev_offset = vr_saved_offset + offset;
1906 }
1907 vr_saved_offset = -1;
1908 ev_reg = -1;
1909 li_found_pc = 0;
1910 }
1911 continue;
1912 }
1913 /* Store gen register r31 at (rA+uimm). */
1914 /* 000100 11111 aaaaa iiiii 01100100001 */
1915 else if (arch_info->mach == bfd_mach_ppc_e500
1916 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1917 {
1918 /* Wwe know that the source register is 31 already, but
1919 it can't hurt to compute it. */
1920 ev_reg = GET_SRC_REG (op);
1921 ev_offset = ((op >> 11) & 0x1f) * 8;
1922 /* If this is the first vector reg to be saved, or if
1923 it has a lower number than others previously seen,
1924 reupdate the frame info. */
1925 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1926 {
1927 fdata->saved_ev = ev_reg;
1928 fdata->ev_offset = ev_offset + offset;
1929 }
1930
1931 continue;
1932 }
1933 /* Store gen register S at (r31+r0).
1934 Store param on stack when offset from SP bigger than 4 bytes. */
1935 /* 000100 sssss 11111 00000 01100100000 */
1936 else if (arch_info->mach == bfd_mach_ppc_e500
1937 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1938 {
1939 if (pc == (li_found_pc + 4))
1940 {
1941 if ((op & 0x03e00000) >= 0x01a00000)
1942 {
1943 ev_reg = GET_SRC_REG (op);
1944 /* If this is the first vector reg to be saved, or if
1945 it has a lower number than others previously seen,
1946 reupdate the frame info. */
1947 /* We know the contents of r0 from the previous
1948 instruction. */
1949 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1950 {
1951 fdata->saved_ev = ev_reg;
1952 fdata->ev_offset = vr_saved_offset + offset;
1953 }
1954 ev_reg = -1;
1955 }
1956 vr_saved_offset = -1;
1957 li_found_pc = 0;
1958 continue;
1959 }
1960 }
1961 /* End BookE related instructions. */
1962
1963 else
1964 {
1965 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
1966
1967 /* Not a recognized prologue instruction.
1968 Handle optimizer code motions into the prologue by continuing
1969 the search if we have no valid frame yet or if the return
1970 address is not yet saved in the frame. Also skip instructions
1971 if some of the GPRs expected to be saved are not yet saved. */
1972 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1973 && (fdata->gpr_mask & all_mask) == all_mask)
1974 break;
1975
1976 if (op == 0x4e800020 /* blr */
1977 || op == 0x4e800420) /* bctr */
1978 /* Do not scan past epilogue in frameless functions or
1979 trampolines. */
1980 break;
1981 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1982 /* Never skip branches. */
1983 break;
1984
1985 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1986 /* Do not scan too many insns, scanning insns is expensive with
1987 remote targets. */
1988 break;
1989
1990 /* Continue scanning. */
1991 prev_insn_was_prologue_insn = 0;
1992 continue;
1993 }
1994 }
1995
1996 #if 0
1997 /* I have problems with skipping over __main() that I need to address
1998 * sometime. Previously, I used to use misc_function_vector which
1999 * didn't work as well as I wanted to be. -MGO */
2000
2001 /* If the first thing after skipping a prolog is a branch to a function,
2002 this might be a call to an initializer in main(), introduced by gcc2.
2003 We'd like to skip over it as well. Fortunately, xlc does some extra
2004 work before calling a function right after a prologue, thus we can
2005 single out such gcc2 behaviour. */
2006
2007
2008 if ((op & 0xfc000001) == 0x48000001)
2009 { /* bl foo, an initializer function? */
2010 op = read_memory_integer (pc + 4, 4, byte_order);
2011
2012 if (op == 0x4def7b82)
2013 { /* cror 0xf, 0xf, 0xf (nop) */
2014
2015 /* Check and see if we are in main. If so, skip over this
2016 initializer function as well. */
2017
2018 tmp = find_pc_misc_function (pc);
2019 if (tmp >= 0
2020 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2021 return pc + 8;
2022 }
2023 }
2024 #endif /* 0 */
2025
2026 if (pc == lim_pc && lr_reg >= 0)
2027 fdata->lr_register = lr_reg;
2028
2029 fdata->offset = -fdata->offset;
2030 return last_prologue_pc;
2031 }
2032
2033 static CORE_ADDR
2034 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2035 {
2036 struct rs6000_framedata frame;
2037 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2038
2039 /* See if we can determine the end of the prologue via the symbol table.
2040 If so, then return either PC, or the PC after the prologue, whichever
2041 is greater. */
2042 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2043 {
2044 CORE_ADDR post_prologue_pc
2045 = skip_prologue_using_sal (gdbarch, func_addr);
2046 if (post_prologue_pc != 0)
2047 return std::max (pc, post_prologue_pc);
2048 }
2049
2050 /* Can't determine prologue from the symbol table, need to examine
2051 instructions. */
2052
2053 /* Find an upper limit on the function prologue using the debug
2054 information. If the debug information could not be used to provide
2055 that bound, then use an arbitrary large number as the upper bound. */
2056 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2057 if (limit_pc == 0)
2058 limit_pc = pc + 100; /* Magic. */
2059
2060 /* Do not allow limit_pc to be past the function end, if we know
2061 where that end is... */
2062 if (func_end_addr && limit_pc > func_end_addr)
2063 limit_pc = func_end_addr;
2064
2065 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2066 return pc;
2067 }
2068
2069 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2070 in the prologue of main().
2071
2072 The function below examines the code pointed at by PC and checks to
2073 see if it corresponds to a call to __eabi. If so, it returns the
2074 address of the instruction following that call. Otherwise, it simply
2075 returns PC. */
2076
2077 static CORE_ADDR
2078 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2079 {
2080 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2081 gdb_byte buf[4];
2082 unsigned long op;
2083
2084 if (target_read_memory (pc, buf, 4))
2085 return pc;
2086 op = extract_unsigned_integer (buf, 4, byte_order);
2087
2088 if ((op & BL_MASK) == BL_INSTRUCTION)
2089 {
2090 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2091 CORE_ADDR call_dest = pc + 4 + displ;
2092 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2093
2094 /* We check for ___eabi (three leading underscores) in addition
2095 to __eabi in case the GCC option "-fleading-underscore" was
2096 used to compile the program. */
2097 if (s.minsym != NULL
2098 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2099 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2100 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2101 pc += 4;
2102 }
2103 return pc;
2104 }
2105
2106 /* All the ABI's require 16 byte alignment. */
2107 static CORE_ADDR
2108 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2109 {
2110 return (addr & -16);
2111 }
2112
2113 /* Return whether handle_inferior_event() should proceed through code
2114 starting at PC in function NAME when stepping.
2115
2116 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2117 handle memory references that are too distant to fit in instructions
2118 generated by the compiler. For example, if 'foo' in the following
2119 instruction:
2120
2121 lwz r9,foo(r2)
2122
2123 is greater than 32767, the linker might replace the lwz with a branch to
2124 somewhere in @FIX1 that does the load in 2 instructions and then branches
2125 back to where execution should continue.
2126
2127 GDB should silently step over @FIX code, just like AIX dbx does.
2128 Unfortunately, the linker uses the "b" instruction for the
2129 branches, meaning that the link register doesn't get set.
2130 Therefore, GDB's usual step_over_function () mechanism won't work.
2131
2132 Instead, use the gdbarch_skip_trampoline_code and
2133 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2134 @FIX code. */
2135
2136 static int
2137 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2138 CORE_ADDR pc, const char *name)
2139 {
2140 return name && startswith (name, "@FIX");
2141 }
2142
2143 /* Skip code that the user doesn't want to see when stepping:
2144
2145 1. Indirect function calls use a piece of trampoline code to do context
2146 switching, i.e. to set the new TOC table. Skip such code if we are on
2147 its first instruction (as when we have single-stepped to here).
2148
2149 2. Skip shared library trampoline code (which is different from
2150 indirect function call trampolines).
2151
2152 3. Skip bigtoc fixup code.
2153
2154 Result is desired PC to step until, or NULL if we are not in
2155 code that should be skipped. */
2156
2157 static CORE_ADDR
2158 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2159 {
2160 struct gdbarch *gdbarch = get_frame_arch (frame);
2161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2163 unsigned int ii, op;
2164 int rel;
2165 CORE_ADDR solib_target_pc;
2166 struct bound_minimal_symbol msymbol;
2167
2168 static unsigned trampoline_code[] =
2169 {
2170 0x800b0000, /* l r0,0x0(r11) */
2171 0x90410014, /* st r2,0x14(r1) */
2172 0x7c0903a6, /* mtctr r0 */
2173 0x804b0004, /* l r2,0x4(r11) */
2174 0x816b0008, /* l r11,0x8(r11) */
2175 0x4e800420, /* bctr */
2176 0x4e800020, /* br */
2177 0
2178 };
2179
2180 /* Check for bigtoc fixup code. */
2181 msymbol = lookup_minimal_symbol_by_pc (pc);
2182 if (msymbol.minsym
2183 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2184 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2185 {
2186 /* Double-check that the third instruction from PC is relative "b". */
2187 op = read_memory_integer (pc + 8, 4, byte_order);
2188 if ((op & 0xfc000003) == 0x48000000)
2189 {
2190 /* Extract bits 6-29 as a signed 24-bit relative word address and
2191 add it to the containing PC. */
2192 rel = ((int)(op << 6) >> 6);
2193 return pc + 8 + rel;
2194 }
2195 }
2196
2197 /* If pc is in a shared library trampoline, return its target. */
2198 solib_target_pc = find_solib_trampoline_target (frame, pc);
2199 if (solib_target_pc)
2200 return solib_target_pc;
2201
2202 for (ii = 0; trampoline_code[ii]; ++ii)
2203 {
2204 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2205 if (op != trampoline_code[ii])
2206 return 0;
2207 }
2208 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2209 addr. */
2210 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2211 return pc;
2212 }
2213
2214 /* ISA-specific vector types. */
2215
2216 static struct type *
2217 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2218 {
2219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2220
2221 if (!tdep->ppc_builtin_type_vec64)
2222 {
2223 const struct builtin_type *bt = builtin_type (gdbarch);
2224
2225 /* The type we're building is this: */
2226 #if 0
2227 union __gdb_builtin_type_vec64
2228 {
2229 int64_t uint64;
2230 float v2_float[2];
2231 int32_t v2_int32[2];
2232 int16_t v4_int16[4];
2233 int8_t v8_int8[8];
2234 };
2235 #endif
2236
2237 struct type *t;
2238
2239 t = arch_composite_type (gdbarch,
2240 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2241 append_composite_type_field (t, "uint64", bt->builtin_int64);
2242 append_composite_type_field (t, "v2_float",
2243 init_vector_type (bt->builtin_float, 2));
2244 append_composite_type_field (t, "v2_int32",
2245 init_vector_type (bt->builtin_int32, 2));
2246 append_composite_type_field (t, "v4_int16",
2247 init_vector_type (bt->builtin_int16, 4));
2248 append_composite_type_field (t, "v8_int8",
2249 init_vector_type (bt->builtin_int8, 8));
2250
2251 TYPE_VECTOR (t) = 1;
2252 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2253 tdep->ppc_builtin_type_vec64 = t;
2254 }
2255
2256 return tdep->ppc_builtin_type_vec64;
2257 }
2258
2259 /* Vector 128 type. */
2260
2261 static struct type *
2262 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2263 {
2264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2265
2266 if (!tdep->ppc_builtin_type_vec128)
2267 {
2268 const struct builtin_type *bt = builtin_type (gdbarch);
2269
2270 /* The type we're building is this
2271
2272 type = union __ppc_builtin_type_vec128 {
2273 uint128_t uint128;
2274 double v2_double[2];
2275 float v4_float[4];
2276 int32_t v4_int32[4];
2277 int16_t v8_int16[8];
2278 int8_t v16_int8[16];
2279 }
2280 */
2281
2282 struct type *t;
2283
2284 t = arch_composite_type (gdbarch,
2285 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2286 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2287 append_composite_type_field (t, "v2_double",
2288 init_vector_type (bt->builtin_double, 2));
2289 append_composite_type_field (t, "v4_float",
2290 init_vector_type (bt->builtin_float, 4));
2291 append_composite_type_field (t, "v4_int32",
2292 init_vector_type (bt->builtin_int32, 4));
2293 append_composite_type_field (t, "v8_int16",
2294 init_vector_type (bt->builtin_int16, 8));
2295 append_composite_type_field (t, "v16_int8",
2296 init_vector_type (bt->builtin_int8, 16));
2297
2298 TYPE_VECTOR (t) = 1;
2299 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2300 tdep->ppc_builtin_type_vec128 = t;
2301 }
2302
2303 return tdep->ppc_builtin_type_vec128;
2304 }
2305
2306 /* Return the name of register number REGNO, or the empty string if it
2307 is an anonymous register. */
2308
2309 static const char *
2310 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2311 {
2312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2313
2314 /* The upper half "registers" have names in the XML description,
2315 but we present only the low GPRs and the full 64-bit registers
2316 to the user. */
2317 if (tdep->ppc_ev0_upper_regnum >= 0
2318 && tdep->ppc_ev0_upper_regnum <= regno
2319 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2320 return "";
2321
2322 /* Hide the upper halves of the vs0~vs31 registers. */
2323 if (tdep->ppc_vsr0_regnum >= 0
2324 && tdep->ppc_vsr0_upper_regnum <= regno
2325 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2326 return "";
2327
2328 /* Check if the SPE pseudo registers are available. */
2329 if (IS_SPE_PSEUDOREG (tdep, regno))
2330 {
2331 static const char *const spe_regnames[] = {
2332 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2333 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2334 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2335 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2336 };
2337 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2338 }
2339
2340 /* Check if the decimal128 pseudo-registers are available. */
2341 if (IS_DFP_PSEUDOREG (tdep, regno))
2342 {
2343 static const char *const dfp128_regnames[] = {
2344 "dl0", "dl1", "dl2", "dl3",
2345 "dl4", "dl5", "dl6", "dl7",
2346 "dl8", "dl9", "dl10", "dl11",
2347 "dl12", "dl13", "dl14", "dl15"
2348 };
2349 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2350 }
2351
2352 /* Check if this is a VSX pseudo-register. */
2353 if (IS_VSX_PSEUDOREG (tdep, regno))
2354 {
2355 static const char *const vsx_regnames[] = {
2356 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2357 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2358 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2359 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2360 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2361 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2362 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2363 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2364 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2365 };
2366 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2367 }
2368
2369 /* Check if the this is a Extended FP pseudo-register. */
2370 if (IS_EFP_PSEUDOREG (tdep, regno))
2371 {
2372 static const char *const efpr_regnames[] = {
2373 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2374 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2375 "f46", "f47", "f48", "f49", "f50", "f51",
2376 "f52", "f53", "f54", "f55", "f56", "f57",
2377 "f58", "f59", "f60", "f61", "f62", "f63"
2378 };
2379 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2380 }
2381
2382 return tdesc_register_name (gdbarch, regno);
2383 }
2384
2385 /* Return the GDB type object for the "standard" data type of data in
2386 register N. */
2387
2388 static struct type *
2389 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2390 {
2391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2392
2393 /* These are the only pseudo-registers we support. */
2394 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2395 || IS_DFP_PSEUDOREG (tdep, regnum)
2396 || IS_VSX_PSEUDOREG (tdep, regnum)
2397 || IS_EFP_PSEUDOREG (tdep, regnum));
2398
2399 /* These are the e500 pseudo-registers. */
2400 if (IS_SPE_PSEUDOREG (tdep, regnum))
2401 return rs6000_builtin_type_vec64 (gdbarch);
2402 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2403 /* PPC decimal128 pseudo-registers. */
2404 return builtin_type (gdbarch)->builtin_declong;
2405 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2406 /* POWER7 VSX pseudo-registers. */
2407 return rs6000_builtin_type_vec128 (gdbarch);
2408 else
2409 /* POWER7 Extended FP pseudo-registers. */
2410 return builtin_type (gdbarch)->builtin_double;
2411 }
2412
2413 /* Is REGNUM a member of REGGROUP? */
2414 static int
2415 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2416 struct reggroup *group)
2417 {
2418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2419
2420 /* These are the only pseudo-registers we support. */
2421 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2422 || IS_DFP_PSEUDOREG (tdep, regnum)
2423 || IS_VSX_PSEUDOREG (tdep, regnum)
2424 || IS_EFP_PSEUDOREG (tdep, regnum));
2425
2426 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2427 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2428 return group == all_reggroup || group == vector_reggroup;
2429 else
2430 /* PPC decimal128 or Extended FP pseudo-registers. */
2431 return group == all_reggroup || group == float_reggroup;
2432 }
2433
2434 /* The register format for RS/6000 floating point registers is always
2435 double, we need a conversion if the memory format is float. */
2436
2437 static int
2438 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2439 struct type *type)
2440 {
2441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2442
2443 return (tdep->ppc_fp0_regnum >= 0
2444 && regnum >= tdep->ppc_fp0_regnum
2445 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2446 && TYPE_CODE (type) == TYPE_CODE_FLT
2447 && TYPE_LENGTH (type)
2448 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2449 }
2450
2451 static int
2452 rs6000_register_to_value (struct frame_info *frame,
2453 int regnum,
2454 struct type *type,
2455 gdb_byte *to,
2456 int *optimizedp, int *unavailablep)
2457 {
2458 struct gdbarch *gdbarch = get_frame_arch (frame);
2459 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2460
2461 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2462
2463 if (!get_frame_register_bytes (frame, regnum, 0,
2464 register_size (gdbarch, regnum),
2465 from, optimizedp, unavailablep))
2466 return 0;
2467
2468 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2469 to, type);
2470 *optimizedp = *unavailablep = 0;
2471 return 1;
2472 }
2473
2474 static void
2475 rs6000_value_to_register (struct frame_info *frame,
2476 int regnum,
2477 struct type *type,
2478 const gdb_byte *from)
2479 {
2480 struct gdbarch *gdbarch = get_frame_arch (frame);
2481 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2482
2483 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2484
2485 target_float_convert (from, type,
2486 to, builtin_type (gdbarch)->builtin_double);
2487 put_frame_register (frame, regnum, to);
2488 }
2489
2490 /* The type of a function that moves the value of REG between CACHE
2491 or BUF --- in either direction. */
2492 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2493 int, void *);
2494
2495 /* Move SPE vector register values between a 64-bit buffer and the two
2496 32-bit raw register halves in a regcache. This function handles
2497 both splitting a 64-bit value into two 32-bit halves, and joining
2498 two halves into a whole 64-bit value, depending on the function
2499 passed as the MOVE argument.
2500
2501 EV_REG must be the number of an SPE evN vector register --- a
2502 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2503 64-bit buffer.
2504
2505 Call MOVE once for each 32-bit half of that register, passing
2506 REGCACHE, the number of the raw register corresponding to that
2507 half, and the address of the appropriate half of BUFFER.
2508
2509 For example, passing 'regcache_raw_read' as the MOVE function will
2510 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2511 'regcache_raw_supply' will supply the contents of BUFFER to the
2512 appropriate pair of raw registers in REGCACHE.
2513
2514 You may need to cast away some 'const' qualifiers when passing
2515 MOVE, since this function can't tell at compile-time which of
2516 REGCACHE or BUFFER is acting as the source of the data. If C had
2517 co-variant type qualifiers, ... */
2518
2519 static enum register_status
2520 e500_move_ev_register (move_ev_register_func move,
2521 struct regcache *regcache, int ev_reg, void *buffer)
2522 {
2523 struct gdbarch *arch = regcache->arch ();
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2525 int reg_index;
2526 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2527 enum register_status status;
2528
2529 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2530
2531 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2532
2533 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2534 {
2535 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2536 byte_buffer);
2537 if (status == REG_VALID)
2538 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2539 byte_buffer + 4);
2540 }
2541 else
2542 {
2543 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2544 if (status == REG_VALID)
2545 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2546 byte_buffer + 4);
2547 }
2548
2549 return status;
2550 }
2551
2552 static enum register_status
2553 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2554 {
2555 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2556
2557 return REG_VALID;
2558 }
2559
2560 static enum register_status
2561 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2562 int ev_reg, gdb_byte *buffer)
2563 {
2564 struct gdbarch *arch = regcache->arch ();
2565 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2566 int reg_index;
2567 enum register_status status;
2568
2569 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2570
2571 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2572
2573 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2574 {
2575 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2576 buffer);
2577 if (status == REG_VALID)
2578 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2579 buffer + 4);
2580 }
2581 else
2582 {
2583 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2584 if (status == REG_VALID)
2585 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2586 buffer + 4);
2587 }
2588
2589 return status;
2590
2591 }
2592
2593 static void
2594 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2595 int reg_nr, const gdb_byte *buffer)
2596 {
2597 e500_move_ev_register (do_regcache_raw_write, regcache,
2598 reg_nr, (void *) buffer);
2599 }
2600
2601 /* Read method for DFP pseudo-registers. */
2602 static enum register_status
2603 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2604 int reg_nr, gdb_byte *buffer)
2605 {
2606 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2607 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2608 enum register_status status;
2609
2610 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2611 {
2612 /* Read two FP registers to form a whole dl register. */
2613 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2614 2 * reg_index, buffer);
2615 if (status == REG_VALID)
2616 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2617 2 * reg_index + 1, buffer + 8);
2618 }
2619 else
2620 {
2621 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2622 2 * reg_index + 1, buffer);
2623 if (status == REG_VALID)
2624 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2625 2 * reg_index, buffer + 8);
2626 }
2627
2628 return status;
2629 }
2630
2631 /* Write method for DFP pseudo-registers. */
2632 static void
2633 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2634 int reg_nr, const gdb_byte *buffer)
2635 {
2636 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2637 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2638
2639 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2640 {
2641 /* Write each half of the dl register into a separate
2642 FP register. */
2643 regcache->raw_write (tdep->ppc_fp0_regnum +
2644 2 * reg_index, buffer);
2645 regcache->raw_write (tdep->ppc_fp0_regnum +
2646 2 * reg_index + 1, buffer + 8);
2647 }
2648 else
2649 {
2650 regcache->raw_write (tdep->ppc_fp0_regnum +
2651 2 * reg_index + 1, buffer);
2652 regcache->raw_write (tdep->ppc_fp0_regnum +
2653 2 * reg_index, buffer + 8);
2654 }
2655 }
2656
2657 /* Read method for POWER7 VSX pseudo-registers. */
2658 static enum register_status
2659 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2660 int reg_nr, gdb_byte *buffer)
2661 {
2662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2663 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2664 enum register_status status;
2665
2666 /* Read the portion that overlaps the VMX registers. */
2667 if (reg_index > 31)
2668 status = regcache->raw_read (tdep->ppc_vr0_regnum +
2669 reg_index - 32, buffer);
2670 else
2671 /* Read the portion that overlaps the FPR registers. */
2672 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2673 {
2674 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2675 reg_index, buffer);
2676 if (status == REG_VALID)
2677 status = regcache->raw_read (tdep->ppc_vsr0_upper_regnum +
2678 reg_index, buffer + 8);
2679 }
2680 else
2681 {
2682 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2683 reg_index, buffer + 8);
2684 if (status == REG_VALID)
2685 status = regcache->raw_read (tdep->ppc_vsr0_upper_regnum +
2686 reg_index, buffer);
2687 }
2688
2689 return status;
2690 }
2691
2692 /* Write method for POWER7 VSX pseudo-registers. */
2693 static void
2694 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2695 int reg_nr, const gdb_byte *buffer)
2696 {
2697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2698 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2699
2700 /* Write the portion that overlaps the VMX registers. */
2701 if (reg_index > 31)
2702 regcache->raw_write (tdep->ppc_vr0_regnum +
2703 reg_index - 32, buffer);
2704 else
2705 /* Write the portion that overlaps the FPR registers. */
2706 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2707 {
2708 regcache->raw_write (tdep->ppc_fp0_regnum +
2709 reg_index, buffer);
2710 regcache->raw_write (tdep->ppc_vsr0_upper_regnum +
2711 reg_index, buffer + 8);
2712 }
2713 else
2714 {
2715 regcache->raw_write (tdep->ppc_fp0_regnum +
2716 reg_index, buffer + 8);
2717 regcache->raw_write (tdep->ppc_vsr0_upper_regnum +
2718 reg_index, buffer);
2719 }
2720 }
2721
2722 /* Read method for POWER7 Extended FP pseudo-registers. */
2723 static enum register_status
2724 efpr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2725 int reg_nr, gdb_byte *buffer)
2726 {
2727 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2728 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2729 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2730
2731 /* Read the portion that overlaps the VMX register. */
2732 return regcache->raw_read_part (tdep->ppc_vr0_regnum + reg_index,
2733 offset, register_size (gdbarch, reg_nr),
2734 buffer);
2735 }
2736
2737 /* Write method for POWER7 Extended FP pseudo-registers. */
2738 static void
2739 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2740 int reg_nr, const gdb_byte *buffer)
2741 {
2742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2743 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2744 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2745
2746 /* Write the portion that overlaps the VMX register. */
2747 regcache->raw_write_part (tdep->ppc_vr0_regnum + reg_index, offset,
2748 register_size (gdbarch, reg_nr), buffer);
2749 }
2750
2751 static enum register_status
2752 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2753 readable_regcache *regcache,
2754 int reg_nr, gdb_byte *buffer)
2755 {
2756 struct gdbarch *regcache_arch = regcache->arch ();
2757 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2758
2759 gdb_assert (regcache_arch == gdbarch);
2760
2761 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2762 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2763 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2764 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2765 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2766 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2767 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2768 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2769 else
2770 internal_error (__FILE__, __LINE__,
2771 _("rs6000_pseudo_register_read: "
2772 "called on unexpected register '%s' (%d)"),
2773 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2774 }
2775
2776 static void
2777 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2778 struct regcache *regcache,
2779 int reg_nr, const gdb_byte *buffer)
2780 {
2781 struct gdbarch *regcache_arch = regcache->arch ();
2782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2783
2784 gdb_assert (regcache_arch == gdbarch);
2785
2786 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2787 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2788 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2789 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2790 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2791 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2792 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2793 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2794 else
2795 internal_error (__FILE__, __LINE__,
2796 _("rs6000_pseudo_register_write: "
2797 "called on unexpected register '%s' (%d)"),
2798 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2799 }
2800
2801 static int
2802 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2803 struct agent_expr *ax, int reg_nr)
2804 {
2805 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2806 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2807 {
2808 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2809 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2810 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2811 }
2812 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2813 {
2814 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2815 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2816 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2817 }
2818 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2819 {
2820 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2821 if (reg_index > 31)
2822 {
2823 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2824 }
2825 else
2826 {
2827 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2828 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2829 }
2830 }
2831 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2832 {
2833 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2834 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2835 }
2836 else
2837 internal_error (__FILE__, __LINE__,
2838 _("rs6000_pseudo_register_collect: "
2839 "called on unexpected register '%s' (%d)"),
2840 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2841 return 0;
2842 }
2843
2844
2845 static void
2846 rs6000_gen_return_address (struct gdbarch *gdbarch,
2847 struct agent_expr *ax, struct axs_value *value,
2848 CORE_ADDR scope)
2849 {
2850 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2851 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
2852 value->kind = axs_lvalue_register;
2853 value->u.reg = tdep->ppc_lr_regnum;
2854 }
2855
2856
2857 /* Convert a DBX STABS register number to a GDB register number. */
2858 static int
2859 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2860 {
2861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2862
2863 if (0 <= num && num <= 31)
2864 return tdep->ppc_gp0_regnum + num;
2865 else if (32 <= num && num <= 63)
2866 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2867 specifies registers the architecture doesn't have? Our
2868 callers don't check the value we return. */
2869 return tdep->ppc_fp0_regnum + (num - 32);
2870 else if (77 <= num && num <= 108)
2871 return tdep->ppc_vr0_regnum + (num - 77);
2872 else if (1200 <= num && num < 1200 + 32)
2873 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2874 else
2875 switch (num)
2876 {
2877 case 64:
2878 return tdep->ppc_mq_regnum;
2879 case 65:
2880 return tdep->ppc_lr_regnum;
2881 case 66:
2882 return tdep->ppc_ctr_regnum;
2883 case 76:
2884 return tdep->ppc_xer_regnum;
2885 case 109:
2886 return tdep->ppc_vrsave_regnum;
2887 case 110:
2888 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2889 case 111:
2890 return tdep->ppc_acc_regnum;
2891 case 112:
2892 return tdep->ppc_spefscr_regnum;
2893 default:
2894 return num;
2895 }
2896 }
2897
2898
2899 /* Convert a Dwarf 2 register number to a GDB register number. */
2900 static int
2901 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2902 {
2903 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2904
2905 if (0 <= num && num <= 31)
2906 return tdep->ppc_gp0_regnum + num;
2907 else if (32 <= num && num <= 63)
2908 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2909 specifies registers the architecture doesn't have? Our
2910 callers don't check the value we return. */
2911 return tdep->ppc_fp0_regnum + (num - 32);
2912 else if (1124 <= num && num < 1124 + 32)
2913 return tdep->ppc_vr0_regnum + (num - 1124);
2914 else if (1200 <= num && num < 1200 + 32)
2915 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2916 else
2917 switch (num)
2918 {
2919 case 64:
2920 return tdep->ppc_cr_regnum;
2921 case 67:
2922 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2923 case 99:
2924 return tdep->ppc_acc_regnum;
2925 case 100:
2926 return tdep->ppc_mq_regnum;
2927 case 101:
2928 return tdep->ppc_xer_regnum;
2929 case 108:
2930 return tdep->ppc_lr_regnum;
2931 case 109:
2932 return tdep->ppc_ctr_regnum;
2933 case 356:
2934 return tdep->ppc_vrsave_regnum;
2935 case 612:
2936 return tdep->ppc_spefscr_regnum;
2937 default:
2938 return num;
2939 }
2940 }
2941
2942 /* Translate a .eh_frame register to DWARF register, or adjust a
2943 .debug_frame register. */
2944
2945 static int
2946 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2947 {
2948 /* GCC releases before 3.4 use GCC internal register numbering in
2949 .debug_frame (and .debug_info, et cetera). The numbering is
2950 different from the standard SysV numbering for everything except
2951 for GPRs and FPRs. We can not detect this problem in most cases
2952 - to get accurate debug info for variables living in lr, ctr, v0,
2953 et cetera, use a newer version of GCC. But we must detect
2954 one important case - lr is in column 65 in .debug_frame output,
2955 instead of 108.
2956
2957 GCC 3.4, and the "hammer" branch, have a related problem. They
2958 record lr register saves in .debug_frame as 108, but still record
2959 the return column as 65. We fix that up too.
2960
2961 We can do this because 65 is assigned to fpsr, and GCC never
2962 generates debug info referring to it. To add support for
2963 handwritten debug info that restores fpsr, we would need to add a
2964 producer version check to this. */
2965 if (!eh_frame_p)
2966 {
2967 if (num == 65)
2968 return 108;
2969 else
2970 return num;
2971 }
2972
2973 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2974 internal register numbering; translate that to the standard DWARF2
2975 register numbering. */
2976 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2977 return num;
2978 else if (68 <= num && num <= 75) /* cr0-cr8 */
2979 return num - 68 + 86;
2980 else if (77 <= num && num <= 108) /* vr0-vr31 */
2981 return num - 77 + 1124;
2982 else
2983 switch (num)
2984 {
2985 case 64: /* mq */
2986 return 100;
2987 case 65: /* lr */
2988 return 108;
2989 case 66: /* ctr */
2990 return 109;
2991 case 76: /* xer */
2992 return 101;
2993 case 109: /* vrsave */
2994 return 356;
2995 case 110: /* vscr */
2996 return 67;
2997 case 111: /* spe_acc */
2998 return 99;
2999 case 112: /* spefscr */
3000 return 612;
3001 default:
3002 return num;
3003 }
3004 }
3005 \f
3006
3007 /* Handling the various POWER/PowerPC variants. */
3008
3009 /* Information about a particular processor variant. */
3010
3011 struct variant
3012 {
3013 /* Name of this variant. */
3014 const char *name;
3015
3016 /* English description of the variant. */
3017 const char *description;
3018
3019 /* bfd_arch_info.arch corresponding to variant. */
3020 enum bfd_architecture arch;
3021
3022 /* bfd_arch_info.mach corresponding to variant. */
3023 unsigned long mach;
3024
3025 /* Target description for this variant. */
3026 struct target_desc **tdesc;
3027 };
3028
3029 static struct variant variants[] =
3030 {
3031 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3032 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3033 {"power", "POWER user-level", bfd_arch_rs6000,
3034 bfd_mach_rs6k, &tdesc_rs6000},
3035 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3036 bfd_mach_ppc_403, &tdesc_powerpc_403},
3037 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3038 bfd_mach_ppc_405, &tdesc_powerpc_405},
3039 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3040 bfd_mach_ppc_601, &tdesc_powerpc_601},
3041 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3042 bfd_mach_ppc_602, &tdesc_powerpc_602},
3043 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3044 bfd_mach_ppc_603, &tdesc_powerpc_603},
3045 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3046 604, &tdesc_powerpc_604},
3047 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3048 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3049 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3050 bfd_mach_ppc_505, &tdesc_powerpc_505},
3051 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3052 bfd_mach_ppc_860, &tdesc_powerpc_860},
3053 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3054 bfd_mach_ppc_750, &tdesc_powerpc_750},
3055 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3056 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3057 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3058 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3059
3060 /* 64-bit */
3061 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3062 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3063 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3064 bfd_mach_ppc_620, &tdesc_powerpc_64},
3065 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3066 bfd_mach_ppc_630, &tdesc_powerpc_64},
3067 {"a35", "PowerPC A35", bfd_arch_powerpc,
3068 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3069 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3070 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3071 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3072 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3073
3074 /* FIXME: I haven't checked the register sets of the following. */
3075 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3076 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3077 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3078 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3079 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3080 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3081
3082 {0, 0, (enum bfd_architecture) 0, 0, 0}
3083 };
3084
3085 /* Return the variant corresponding to architecture ARCH and machine number
3086 MACH. If no such variant exists, return null. */
3087
3088 static const struct variant *
3089 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3090 {
3091 const struct variant *v;
3092
3093 for (v = variants; v->name; v++)
3094 if (arch == v->arch && mach == v->mach)
3095 return v;
3096
3097 return NULL;
3098 }
3099
3100 \f
3101 static CORE_ADDR
3102 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3103 {
3104 return frame_unwind_register_unsigned (next_frame,
3105 gdbarch_pc_regnum (gdbarch));
3106 }
3107
3108 static struct frame_id
3109 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3110 {
3111 return frame_id_build (get_frame_register_unsigned
3112 (this_frame, gdbarch_sp_regnum (gdbarch)),
3113 get_frame_pc (this_frame));
3114 }
3115
3116 struct rs6000_frame_cache
3117 {
3118 CORE_ADDR base;
3119 CORE_ADDR initial_sp;
3120 struct trad_frame_saved_reg *saved_regs;
3121
3122 /* Set BASE_P to true if this frame cache is properly initialized.
3123 Otherwise set to false because some registers or memory cannot
3124 collected. */
3125 int base_p;
3126 /* Cache PC for building unavailable frame. */
3127 CORE_ADDR pc;
3128 };
3129
3130 static struct rs6000_frame_cache *
3131 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3132 {
3133 struct rs6000_frame_cache *cache;
3134 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3137 struct rs6000_framedata fdata;
3138 int wordsize = tdep->wordsize;
3139 CORE_ADDR func = 0, pc = 0;
3140
3141 if ((*this_cache) != NULL)
3142 return (struct rs6000_frame_cache *) (*this_cache);
3143 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3144 (*this_cache) = cache;
3145 cache->pc = 0;
3146 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3147
3148 TRY
3149 {
3150 func = get_frame_func (this_frame);
3151 cache->pc = func;
3152 pc = get_frame_pc (this_frame);
3153 skip_prologue (gdbarch, func, pc, &fdata);
3154
3155 /* Figure out the parent's stack pointer. */
3156
3157 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3158 address of the current frame. Things might be easier if the
3159 ->frame pointed to the outer-most address of the frame. In
3160 the mean time, the address of the prev frame is used as the
3161 base address of this frame. */
3162 cache->base = get_frame_register_unsigned
3163 (this_frame, gdbarch_sp_regnum (gdbarch));
3164 }
3165 CATCH (ex, RETURN_MASK_ERROR)
3166 {
3167 if (ex.error != NOT_AVAILABLE_ERROR)
3168 throw_exception (ex);
3169 return (struct rs6000_frame_cache *) (*this_cache);
3170 }
3171 END_CATCH
3172
3173 /* If the function appears to be frameless, check a couple of likely
3174 indicators that we have simply failed to find the frame setup.
3175 Two common cases of this are missing symbols (i.e.
3176 get_frame_func returns the wrong address or 0), and assembly
3177 stubs which have a fast exit path but set up a frame on the slow
3178 path.
3179
3180 If the LR appears to return to this function, then presume that
3181 we have an ABI compliant frame that we failed to find. */
3182 if (fdata.frameless && fdata.lr_offset == 0)
3183 {
3184 CORE_ADDR saved_lr;
3185 int make_frame = 0;
3186
3187 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3188 if (func == 0 && saved_lr == pc)
3189 make_frame = 1;
3190 else if (func != 0)
3191 {
3192 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3193 if (func == saved_func)
3194 make_frame = 1;
3195 }
3196
3197 if (make_frame)
3198 {
3199 fdata.frameless = 0;
3200 fdata.lr_offset = tdep->lr_frame_offset;
3201 }
3202 }
3203
3204 if (!fdata.frameless)
3205 {
3206 /* Frameless really means stackless. */
3207 ULONGEST backchain;
3208
3209 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3210 byte_order, &backchain))
3211 cache->base = (CORE_ADDR) backchain;
3212 }
3213
3214 trad_frame_set_value (cache->saved_regs,
3215 gdbarch_sp_regnum (gdbarch), cache->base);
3216
3217 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3218 All fpr's from saved_fpr to fp31 are saved. */
3219
3220 if (fdata.saved_fpr >= 0)
3221 {
3222 int i;
3223 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3224
3225 /* If skip_prologue says floating-point registers were saved,
3226 but the current architecture has no floating-point registers,
3227 then that's strange. But we have no indices to even record
3228 the addresses under, so we just ignore it. */
3229 if (ppc_floating_point_unit_p (gdbarch))
3230 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3231 {
3232 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3233 fpr_addr += 8;
3234 }
3235 }
3236
3237 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3238 All gpr's from saved_gpr to gpr31 are saved (except during the
3239 prologue). */
3240
3241 if (fdata.saved_gpr >= 0)
3242 {
3243 int i;
3244 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3245 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3246 {
3247 if (fdata.gpr_mask & (1U << i))
3248 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3249 gpr_addr += wordsize;
3250 }
3251 }
3252
3253 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3254 All vr's from saved_vr to vr31 are saved. */
3255 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3256 {
3257 if (fdata.saved_vr >= 0)
3258 {
3259 int i;
3260 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3261 for (i = fdata.saved_vr; i < 32; i++)
3262 {
3263 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3264 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3265 }
3266 }
3267 }
3268
3269 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3270 All vr's from saved_ev to ev31 are saved. ????? */
3271 if (tdep->ppc_ev0_regnum != -1)
3272 {
3273 if (fdata.saved_ev >= 0)
3274 {
3275 int i;
3276 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3277 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3278
3279 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3280 {
3281 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3282 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3283 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3284 }
3285 }
3286 }
3287
3288 /* If != 0, fdata.cr_offset is the offset from the frame that
3289 holds the CR. */
3290 if (fdata.cr_offset != 0)
3291 cache->saved_regs[tdep->ppc_cr_regnum].addr
3292 = cache->base + fdata.cr_offset;
3293
3294 /* If != 0, fdata.lr_offset is the offset from the frame that
3295 holds the LR. */
3296 if (fdata.lr_offset != 0)
3297 cache->saved_regs[tdep->ppc_lr_regnum].addr
3298 = cache->base + fdata.lr_offset;
3299 else if (fdata.lr_register != -1)
3300 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3301 /* The PC is found in the link register. */
3302 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3303 cache->saved_regs[tdep->ppc_lr_regnum];
3304
3305 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3306 holds the VRSAVE. */
3307 if (fdata.vrsave_offset != 0)
3308 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3309 = cache->base + fdata.vrsave_offset;
3310
3311 if (fdata.alloca_reg < 0)
3312 /* If no alloca register used, then fi->frame is the value of the
3313 %sp for this frame, and it is good enough. */
3314 cache->initial_sp
3315 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3316 else
3317 cache->initial_sp
3318 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3319
3320 cache->base_p = 1;
3321 return cache;
3322 }
3323
3324 static void
3325 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3326 struct frame_id *this_id)
3327 {
3328 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3329 this_cache);
3330
3331 if (!info->base_p)
3332 {
3333 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3334 return;
3335 }
3336
3337 /* This marks the outermost frame. */
3338 if (info->base == 0)
3339 return;
3340
3341 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3342 }
3343
3344 static struct value *
3345 rs6000_frame_prev_register (struct frame_info *this_frame,
3346 void **this_cache, int regnum)
3347 {
3348 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3349 this_cache);
3350 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3351 }
3352
3353 static const struct frame_unwind rs6000_frame_unwind =
3354 {
3355 NORMAL_FRAME,
3356 default_frame_unwind_stop_reason,
3357 rs6000_frame_this_id,
3358 rs6000_frame_prev_register,
3359 NULL,
3360 default_frame_sniffer
3361 };
3362
3363 /* Allocate and initialize a frame cache for an epilogue frame.
3364 SP is restored and prev-PC is stored in LR. */
3365
3366 static struct rs6000_frame_cache *
3367 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3368 {
3369 struct rs6000_frame_cache *cache;
3370 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3372
3373 if (*this_cache)
3374 return (struct rs6000_frame_cache *) *this_cache;
3375
3376 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3377 (*this_cache) = cache;
3378 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3379
3380 TRY
3381 {
3382 /* At this point the stack looks as if we just entered the
3383 function, and the return address is stored in LR. */
3384 CORE_ADDR sp, lr;
3385
3386 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3387 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3388
3389 cache->base = sp;
3390 cache->initial_sp = sp;
3391
3392 trad_frame_set_value (cache->saved_regs,
3393 gdbarch_pc_regnum (gdbarch), lr);
3394 }
3395 CATCH (ex, RETURN_MASK_ERROR)
3396 {
3397 if (ex.error != NOT_AVAILABLE_ERROR)
3398 throw_exception (ex);
3399 }
3400 END_CATCH
3401
3402 return cache;
3403 }
3404
3405 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3406 Return the frame ID of an epilogue frame. */
3407
3408 static void
3409 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3410 void **this_cache, struct frame_id *this_id)
3411 {
3412 CORE_ADDR pc;
3413 struct rs6000_frame_cache *info =
3414 rs6000_epilogue_frame_cache (this_frame, this_cache);
3415
3416 pc = get_frame_func (this_frame);
3417 if (info->base == 0)
3418 (*this_id) = frame_id_build_unavailable_stack (pc);
3419 else
3420 (*this_id) = frame_id_build (info->base, pc);
3421 }
3422
3423 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3424 Return the register value of REGNUM in previous frame. */
3425
3426 static struct value *
3427 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3428 void **this_cache, int regnum)
3429 {
3430 struct rs6000_frame_cache *info =
3431 rs6000_epilogue_frame_cache (this_frame, this_cache);
3432 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3433 }
3434
3435 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3436 Check whether this an epilogue frame. */
3437
3438 static int
3439 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3440 struct frame_info *this_frame,
3441 void **this_prologue_cache)
3442 {
3443 if (frame_relative_level (this_frame) == 0)
3444 return rs6000_in_function_epilogue_frame_p (this_frame,
3445 get_frame_arch (this_frame),
3446 get_frame_pc (this_frame));
3447 else
3448 return 0;
3449 }
3450
3451 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3452 a function without debug information. */
3453
3454 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3455 {
3456 NORMAL_FRAME,
3457 default_frame_unwind_stop_reason,
3458 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3459 NULL,
3460 rs6000_epilogue_frame_sniffer
3461 };
3462 \f
3463
3464 static CORE_ADDR
3465 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3466 {
3467 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3468 this_cache);
3469 return info->initial_sp;
3470 }
3471
3472 static const struct frame_base rs6000_frame_base = {
3473 &rs6000_frame_unwind,
3474 rs6000_frame_base_address,
3475 rs6000_frame_base_address,
3476 rs6000_frame_base_address
3477 };
3478
3479 static const struct frame_base *
3480 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3481 {
3482 return &rs6000_frame_base;
3483 }
3484
3485 /* DWARF-2 frame support. Used to handle the detection of
3486 clobbered registers during function calls. */
3487
3488 static void
3489 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3490 struct dwarf2_frame_state_reg *reg,
3491 struct frame_info *this_frame)
3492 {
3493 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3494
3495 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3496 non-volatile registers. We will use the same code for both. */
3497
3498 /* Call-saved GP registers. */
3499 if ((regnum >= tdep->ppc_gp0_regnum + 14
3500 && regnum <= tdep->ppc_gp0_regnum + 31)
3501 || (regnum == tdep->ppc_gp0_regnum + 1))
3502 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3503
3504 /* Call-clobbered GP registers. */
3505 if ((regnum >= tdep->ppc_gp0_regnum + 3
3506 && regnum <= tdep->ppc_gp0_regnum + 12)
3507 || (regnum == tdep->ppc_gp0_regnum))
3508 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3509
3510 /* Deal with FP registers, if supported. */
3511 if (tdep->ppc_fp0_regnum >= 0)
3512 {
3513 /* Call-saved FP registers. */
3514 if ((regnum >= tdep->ppc_fp0_regnum + 14
3515 && regnum <= tdep->ppc_fp0_regnum + 31))
3516 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3517
3518 /* Call-clobbered FP registers. */
3519 if ((regnum >= tdep->ppc_fp0_regnum
3520 && regnum <= tdep->ppc_fp0_regnum + 13))
3521 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3522 }
3523
3524 /* Deal with ALTIVEC registers, if supported. */
3525 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3526 {
3527 /* Call-saved Altivec registers. */
3528 if ((regnum >= tdep->ppc_vr0_regnum + 20
3529 && regnum <= tdep->ppc_vr0_regnum + 31)
3530 || regnum == tdep->ppc_vrsave_regnum)
3531 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3532
3533 /* Call-clobbered Altivec registers. */
3534 if ((regnum >= tdep->ppc_vr0_regnum
3535 && regnum <= tdep->ppc_vr0_regnum + 19))
3536 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3537 }
3538
3539 /* Handle PC register and Stack Pointer correctly. */
3540 if (regnum == gdbarch_pc_regnum (gdbarch))
3541 reg->how = DWARF2_FRAME_REG_RA;
3542 else if (regnum == gdbarch_sp_regnum (gdbarch))
3543 reg->how = DWARF2_FRAME_REG_CFA;
3544 }
3545
3546
3547 /* Return true if a .gnu_attributes section exists in BFD and it
3548 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3549 section exists in BFD and it indicates that SPE extensions are in
3550 use. Check the .gnu.attributes section first, as the binary might be
3551 compiled for SPE, but not actually using SPE instructions. */
3552
3553 static int
3554 bfd_uses_spe_extensions (bfd *abfd)
3555 {
3556 asection *sect;
3557 gdb_byte *contents = NULL;
3558 bfd_size_type size;
3559 gdb_byte *ptr;
3560 int success = 0;
3561
3562 if (!abfd)
3563 return 0;
3564
3565 #ifdef HAVE_ELF
3566 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3567 could be using the SPE vector abi without actually using any spe
3568 bits whatsoever. But it's close enough for now. */
3569 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3570 Tag_GNU_Power_ABI_Vector);
3571 if (vector_abi == 3)
3572 return 1;
3573 #endif
3574
3575 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3576 if (!sect)
3577 return 0;
3578
3579 size = bfd_get_section_size (sect);
3580 contents = (gdb_byte *) xmalloc (size);
3581 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3582 {
3583 xfree (contents);
3584 return 0;
3585 }
3586
3587 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3588
3589 struct {
3590 uint32 name_len;
3591 uint32 data_len;
3592 uint32 type;
3593 char name[name_len rounded up to 4-byte alignment];
3594 char data[data_len];
3595 };
3596
3597 Technically, there's only supposed to be one such structure in a
3598 given apuinfo section, but the linker is not always vigilant about
3599 merging apuinfo sections from input files. Just go ahead and parse
3600 them all, exiting early when we discover the binary uses SPE
3601 insns.
3602
3603 It's not specified in what endianness the information in this
3604 section is stored. Assume that it's the endianness of the BFD. */
3605 ptr = contents;
3606 while (1)
3607 {
3608 unsigned int name_len;
3609 unsigned int data_len;
3610 unsigned int type;
3611
3612 /* If we can't read the first three fields, we're done. */
3613 if (size < 12)
3614 break;
3615
3616 name_len = bfd_get_32 (abfd, ptr);
3617 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3618 data_len = bfd_get_32 (abfd, ptr + 4);
3619 type = bfd_get_32 (abfd, ptr + 8);
3620 ptr += 12;
3621
3622 /* The name must be "APUinfo\0". */
3623 if (name_len != 8
3624 && strcmp ((const char *) ptr, "APUinfo") != 0)
3625 break;
3626 ptr += name_len;
3627
3628 /* The type must be 2. */
3629 if (type != 2)
3630 break;
3631
3632 /* The data is stored as a series of uint32. The upper half of
3633 each uint32 indicates the particular APU used and the lower
3634 half indicates the revision of that APU. We just care about
3635 the upper half. */
3636
3637 /* Not 4-byte quantities. */
3638 if (data_len & 3U)
3639 break;
3640
3641 while (data_len)
3642 {
3643 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3644 unsigned int apu = apuinfo >> 16;
3645 ptr += 4;
3646 data_len -= 4;
3647
3648 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3649 either. */
3650 if (apu == 0x100 || apu == 0x101)
3651 {
3652 success = 1;
3653 data_len = 0;
3654 }
3655 }
3656
3657 if (success)
3658 break;
3659 }
3660
3661 xfree (contents);
3662 return success;
3663 }
3664
3665 /* These are macros for parsing instruction fields (I.1.6.28) */
3666
3667 #define PPC_FIELD(value, from, len) \
3668 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3669 #define PPC_SEXT(v, bs) \
3670 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3671 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3672 - ((CORE_ADDR) 1 << ((bs) - 1)))
3673 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3674 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3675 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3676 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3677 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3678 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3679 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3680 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3681 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3682 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3683 | (PPC_FIELD (insn, 16, 5) << 5))
3684 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3685 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3686 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3687 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3688 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3689 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3690 #define PPC_OE(insn) PPC_BIT (insn, 21)
3691 #define PPC_RC(insn) PPC_BIT (insn, 31)
3692 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3693 #define PPC_LK(insn) PPC_BIT (insn, 31)
3694 #define PPC_TX(insn) PPC_BIT (insn, 31)
3695 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3696
3697 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3698 #define PPC_XER_NB(xer) (xer & 0x7f)
3699
3700 /* Record Vector-Scalar Registers.
3701 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3702 Otherwise, it's just a VR register. Record them accordingly. */
3703
3704 static int
3705 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3706 {
3707 if (vsr < 0 || vsr >= 64)
3708 return -1;
3709
3710 if (vsr >= 32)
3711 {
3712 if (tdep->ppc_vr0_regnum >= 0)
3713 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3714 }
3715 else
3716 {
3717 if (tdep->ppc_fp0_regnum >= 0)
3718 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3719 if (tdep->ppc_vsr0_upper_regnum >= 0)
3720 record_full_arch_list_add_reg (regcache,
3721 tdep->ppc_vsr0_upper_regnum + vsr);
3722 }
3723
3724 return 0;
3725 }
3726
3727 /* Parse and record instructions primary opcode-4 at ADDR.
3728 Return 0 if successful. */
3729
3730 static int
3731 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3732 CORE_ADDR addr, uint32_t insn)
3733 {
3734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3735 int ext = PPC_FIELD (insn, 21, 11);
3736 int vra = PPC_FIELD (insn, 11, 5);
3737
3738 switch (ext & 0x3f)
3739 {
3740 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3741 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3742 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3743 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3744 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3745 /* FALL-THROUGH */
3746 case 42: /* Vector Select */
3747 case 43: /* Vector Permute */
3748 case 59: /* Vector Permute Right-indexed */
3749 case 44: /* Vector Shift Left Double by Octet Immediate */
3750 case 45: /* Vector Permute and Exclusive-OR */
3751 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3752 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3753 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3754 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3755 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3756 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
3757 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3758 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3759 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3760 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3761 case 46: /* Vector Multiply-Add Single-Precision */
3762 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3763 record_full_arch_list_add_reg (regcache,
3764 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3765 return 0;
3766
3767 case 48: /* Multiply-Add High Doubleword */
3768 case 49: /* Multiply-Add High Doubleword Unsigned */
3769 case 51: /* Multiply-Add Low Doubleword */
3770 record_full_arch_list_add_reg (regcache,
3771 tdep->ppc_gp0_regnum + PPC_RT (insn));
3772 return 0;
3773 }
3774
3775 switch ((ext & 0x1ff))
3776 {
3777 case 385:
3778 if (vra != 0 /* Decimal Convert To Signed Quadword */
3779 && vra != 2 /* Decimal Convert From Signed Quadword */
3780 && vra != 4 /* Decimal Convert To Zoned */
3781 && vra != 5 /* Decimal Convert To National */
3782 && vra != 6 /* Decimal Convert From Zoned */
3783 && vra != 7 /* Decimal Convert From National */
3784 && vra != 31) /* Decimal Set Sign */
3785 break;
3786 /* Fall through. */
3787 /* 5.16 Decimal Integer Arithmetic Instructions */
3788 case 1: /* Decimal Add Modulo */
3789 case 65: /* Decimal Subtract Modulo */
3790
3791 case 193: /* Decimal Shift */
3792 case 129: /* Decimal Unsigned Shift */
3793 case 449: /* Decimal Shift and Round */
3794
3795 case 257: /* Decimal Truncate */
3796 case 321: /* Decimal Unsigned Truncate */
3797
3798 /* Bit-21 should be set. */
3799 if (!PPC_BIT (insn, 21))
3800 break;
3801
3802 record_full_arch_list_add_reg (regcache,
3803 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3804 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3805 return 0;
3806 }
3807
3808 /* Bit-21 is used for RC */
3809 switch (ext & 0x3ff)
3810 {
3811 case 6: /* Vector Compare Equal To Unsigned Byte */
3812 case 70: /* Vector Compare Equal To Unsigned Halfword */
3813 case 134: /* Vector Compare Equal To Unsigned Word */
3814 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3815 case 774: /* Vector Compare Greater Than Signed Byte */
3816 case 838: /* Vector Compare Greater Than Signed Halfword */
3817 case 902: /* Vector Compare Greater Than Signed Word */
3818 case 967: /* Vector Compare Greater Than Signed Doubleword */
3819 case 518: /* Vector Compare Greater Than Unsigned Byte */
3820 case 646: /* Vector Compare Greater Than Unsigned Word */
3821 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3822 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3823 case 966: /* Vector Compare Bounds Single-Precision */
3824 case 198: /* Vector Compare Equal To Single-Precision */
3825 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3826 case 710: /* Vector Compare Greater Than Single-Precision */
3827 case 7: /* Vector Compare Not Equal Byte */
3828 case 71: /* Vector Compare Not Equal Halfword */
3829 case 135: /* Vector Compare Not Equal Word */
3830 case 263: /* Vector Compare Not Equal or Zero Byte */
3831 case 327: /* Vector Compare Not Equal or Zero Halfword */
3832 case 391: /* Vector Compare Not Equal or Zero Word */
3833 if (PPC_Rc (insn))
3834 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3835 record_full_arch_list_add_reg (regcache,
3836 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3837 return 0;
3838 }
3839
3840 if (ext == 1538)
3841 {
3842 switch (vra)
3843 {
3844 case 0: /* Vector Count Leading Zero Least-Significant Bits
3845 Byte */
3846 case 1: /* Vector Count Trailing Zero Least-Significant Bits
3847 Byte */
3848 record_full_arch_list_add_reg (regcache,
3849 tdep->ppc_gp0_regnum + PPC_RT (insn));
3850 return 0;
3851
3852 case 6: /* Vector Negate Word */
3853 case 7: /* Vector Negate Doubleword */
3854 case 8: /* Vector Parity Byte Word */
3855 case 9: /* Vector Parity Byte Doubleword */
3856 case 10: /* Vector Parity Byte Quadword */
3857 case 16: /* Vector Extend Sign Byte To Word */
3858 case 17: /* Vector Extend Sign Halfword To Word */
3859 case 24: /* Vector Extend Sign Byte To Doubleword */
3860 case 25: /* Vector Extend Sign Halfword To Doubleword */
3861 case 26: /* Vector Extend Sign Word To Doubleword */
3862 case 28: /* Vector Count Trailing Zeros Byte */
3863 case 29: /* Vector Count Trailing Zeros Halfword */
3864 case 30: /* Vector Count Trailing Zeros Word */
3865 case 31: /* Vector Count Trailing Zeros Doubleword */
3866 record_full_arch_list_add_reg (regcache,
3867 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3868 return 0;
3869 }
3870 }
3871
3872 switch (ext)
3873 {
3874 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
3875 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
3876 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
3877 case 334: /* Vector Pack Signed Word Unsigned Saturate */
3878 case 398: /* Vector Pack Signed Halfword Signed Saturate */
3879 case 462: /* Vector Pack Signed Word Signed Saturate */
3880 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
3881 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
3882 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
3883 case 512: /* Vector Add Unsigned Byte Saturate */
3884 case 576: /* Vector Add Unsigned Halfword Saturate */
3885 case 640: /* Vector Add Unsigned Word Saturate */
3886 case 768: /* Vector Add Signed Byte Saturate */
3887 case 832: /* Vector Add Signed Halfword Saturate */
3888 case 896: /* Vector Add Signed Word Saturate */
3889 case 1536: /* Vector Subtract Unsigned Byte Saturate */
3890 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
3891 case 1664: /* Vector Subtract Unsigned Word Saturate */
3892 case 1792: /* Vector Subtract Signed Byte Saturate */
3893 case 1856: /* Vector Subtract Signed Halfword Saturate */
3894 case 1920: /* Vector Subtract Signed Word Saturate */
3895
3896 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
3897 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
3898 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
3899 case 1672: /* Vector Sum across Half Signed Word Saturate */
3900 case 1928: /* Vector Sum across Signed Word Saturate */
3901 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
3902 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
3903 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3904 /* FALL-THROUGH */
3905 case 12: /* Vector Merge High Byte */
3906 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
3907 case 76: /* Vector Merge High Halfword */
3908 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
3909 case 140: /* Vector Merge High Word */
3910 case 268: /* Vector Merge Low Byte */
3911 case 332: /* Vector Merge Low Halfword */
3912 case 396: /* Vector Merge Low Word */
3913 case 526: /* Vector Unpack High Signed Byte */
3914 case 590: /* Vector Unpack High Signed Halfword */
3915 case 654: /* Vector Unpack Low Signed Byte */
3916 case 718: /* Vector Unpack Low Signed Halfword */
3917 case 782: /* Vector Pack Pixel */
3918 case 846: /* Vector Unpack High Pixel */
3919 case 974: /* Vector Unpack Low Pixel */
3920 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
3921 case 1614: /* Vector Unpack High Signed Word */
3922 case 1676: /* Vector Merge Odd Word */
3923 case 1742: /* Vector Unpack Low Signed Word */
3924 case 1932: /* Vector Merge Even Word */
3925 case 524: /* Vector Splat Byte */
3926 case 588: /* Vector Splat Halfword */
3927 case 652: /* Vector Splat Word */
3928 case 780: /* Vector Splat Immediate Signed Byte */
3929 case 844: /* Vector Splat Immediate Signed Halfword */
3930 case 908: /* Vector Splat Immediate Signed Word */
3931 case 452: /* Vector Shift Left */
3932 case 708: /* Vector Shift Right */
3933 case 1036: /* Vector Shift Left by Octet */
3934 case 1100: /* Vector Shift Right by Octet */
3935 case 0: /* Vector Add Unsigned Byte Modulo */
3936 case 64: /* Vector Add Unsigned Halfword Modulo */
3937 case 128: /* Vector Add Unsigned Word Modulo */
3938 case 192: /* Vector Add Unsigned Doubleword Modulo */
3939 case 256: /* Vector Add Unsigned Quadword Modulo */
3940 case 320: /* Vector Add & write Carry Unsigned Quadword */
3941 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
3942 case 8: /* Vector Multiply Odd Unsigned Byte */
3943 case 72: /* Vector Multiply Odd Unsigned Halfword */
3944 case 136: /* Vector Multiply Odd Unsigned Word */
3945 case 264: /* Vector Multiply Odd Signed Byte */
3946 case 328: /* Vector Multiply Odd Signed Halfword */
3947 case 392: /* Vector Multiply Odd Signed Word */
3948 case 520: /* Vector Multiply Even Unsigned Byte */
3949 case 584: /* Vector Multiply Even Unsigned Halfword */
3950 case 648: /* Vector Multiply Even Unsigned Word */
3951 case 776: /* Vector Multiply Even Signed Byte */
3952 case 840: /* Vector Multiply Even Signed Halfword */
3953 case 904: /* Vector Multiply Even Signed Word */
3954 case 137: /* Vector Multiply Unsigned Word Modulo */
3955 case 1024: /* Vector Subtract Unsigned Byte Modulo */
3956 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
3957 case 1152: /* Vector Subtract Unsigned Word Modulo */
3958 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
3959 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
3960 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
3961 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
3962 case 1282: /* Vector Average Signed Byte */
3963 case 1346: /* Vector Average Signed Halfword */
3964 case 1410: /* Vector Average Signed Word */
3965 case 1026: /* Vector Average Unsigned Byte */
3966 case 1090: /* Vector Average Unsigned Halfword */
3967 case 1154: /* Vector Average Unsigned Word */
3968 case 258: /* Vector Maximum Signed Byte */
3969 case 322: /* Vector Maximum Signed Halfword */
3970 case 386: /* Vector Maximum Signed Word */
3971 case 450: /* Vector Maximum Signed Doubleword */
3972 case 2: /* Vector Maximum Unsigned Byte */
3973 case 66: /* Vector Maximum Unsigned Halfword */
3974 case 130: /* Vector Maximum Unsigned Word */
3975 case 194: /* Vector Maximum Unsigned Doubleword */
3976 case 770: /* Vector Minimum Signed Byte */
3977 case 834: /* Vector Minimum Signed Halfword */
3978 case 898: /* Vector Minimum Signed Word */
3979 case 962: /* Vector Minimum Signed Doubleword */
3980 case 514: /* Vector Minimum Unsigned Byte */
3981 case 578: /* Vector Minimum Unsigned Halfword */
3982 case 642: /* Vector Minimum Unsigned Word */
3983 case 706: /* Vector Minimum Unsigned Doubleword */
3984 case 1028: /* Vector Logical AND */
3985 case 1668: /* Vector Logical Equivalent */
3986 case 1092: /* Vector Logical AND with Complement */
3987 case 1412: /* Vector Logical NAND */
3988 case 1348: /* Vector Logical OR with Complement */
3989 case 1156: /* Vector Logical OR */
3990 case 1284: /* Vector Logical NOR */
3991 case 1220: /* Vector Logical XOR */
3992 case 4: /* Vector Rotate Left Byte */
3993 case 132: /* Vector Rotate Left Word VX-form */
3994 case 68: /* Vector Rotate Left Halfword */
3995 case 196: /* Vector Rotate Left Doubleword */
3996 case 260: /* Vector Shift Left Byte */
3997 case 388: /* Vector Shift Left Word */
3998 case 324: /* Vector Shift Left Halfword */
3999 case 1476: /* Vector Shift Left Doubleword */
4000 case 516: /* Vector Shift Right Byte */
4001 case 644: /* Vector Shift Right Word */
4002 case 580: /* Vector Shift Right Halfword */
4003 case 1732: /* Vector Shift Right Doubleword */
4004 case 772: /* Vector Shift Right Algebraic Byte */
4005 case 900: /* Vector Shift Right Algebraic Word */
4006 case 836: /* Vector Shift Right Algebraic Halfword */
4007 case 964: /* Vector Shift Right Algebraic Doubleword */
4008 case 10: /* Vector Add Single-Precision */
4009 case 74: /* Vector Subtract Single-Precision */
4010 case 1034: /* Vector Maximum Single-Precision */
4011 case 1098: /* Vector Minimum Single-Precision */
4012 case 842: /* Vector Convert From Signed Fixed-Point Word */
4013 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4014 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4015 case 522: /* Vector Round to Single-Precision Integer Nearest */
4016 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4017 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4018 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4019 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4020 case 266: /* Vector Reciprocal Estimate Single-Precision */
4021 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4022 case 1288: /* Vector AES Cipher */
4023 case 1289: /* Vector AES Cipher Last */
4024 case 1352: /* Vector AES Inverse Cipher */
4025 case 1353: /* Vector AES Inverse Cipher Last */
4026 case 1480: /* Vector AES SubBytes */
4027 case 1730: /* Vector SHA-512 Sigma Doubleword */
4028 case 1666: /* Vector SHA-256 Sigma Word */
4029 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4030 case 1160: /* Vector Polynomial Multiply-Sum Word */
4031 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4032 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4033 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4034 case 1794: /* Vector Count Leading Zeros Byte */
4035 case 1858: /* Vector Count Leading Zeros Halfword */
4036 case 1922: /* Vector Count Leading Zeros Word */
4037 case 1986: /* Vector Count Leading Zeros Doubleword */
4038 case 1795: /* Vector Population Count Byte */
4039 case 1859: /* Vector Population Count Halfword */
4040 case 1923: /* Vector Population Count Word */
4041 case 1987: /* Vector Population Count Doubleword */
4042 case 1356: /* Vector Bit Permute Quadword */
4043 case 1484: /* Vector Bit Permute Doubleword */
4044 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4045 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4046 Quadword */
4047 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4048 case 65: /* Vector Multiply-by-10 Extended & write Carry
4049 Unsigned Quadword */
4050 case 1027: /* Vector Absolute Difference Unsigned Byte */
4051 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4052 case 1155: /* Vector Absolute Difference Unsigned Word */
4053 case 1796: /* Vector Shift Right Variable */
4054 case 1860: /* Vector Shift Left Variable */
4055 case 133: /* Vector Rotate Left Word then Mask Insert */
4056 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4057 case 389: /* Vector Rotate Left Word then AND with Mask */
4058 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4059 case 525: /* Vector Extract Unsigned Byte */
4060 case 589: /* Vector Extract Unsigned Halfword */
4061 case 653: /* Vector Extract Unsigned Word */
4062 case 717: /* Vector Extract Doubleword */
4063 case 781: /* Vector Insert Byte */
4064 case 845: /* Vector Insert Halfword */
4065 case 909: /* Vector Insert Word */
4066 case 973: /* Vector Insert Doubleword */
4067 record_full_arch_list_add_reg (regcache,
4068 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4069 return 0;
4070
4071 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4072 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4073 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4074 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4075 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4076 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4077 record_full_arch_list_add_reg (regcache,
4078 tdep->ppc_gp0_regnum + PPC_RT (insn));
4079 return 0;
4080
4081 case 1604: /* Move To Vector Status and Control Register */
4082 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4083 return 0;
4084 case 1540: /* Move From Vector Status and Control Register */
4085 record_full_arch_list_add_reg (regcache,
4086 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4087 return 0;
4088 case 833: /* Decimal Copy Sign */
4089 record_full_arch_list_add_reg (regcache,
4090 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4091 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4092 return 0;
4093 }
4094
4095 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4096 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4097 return -1;
4098 }
4099
4100 /* Parse and record instructions of primary opcode-19 at ADDR.
4101 Return 0 if successful. */
4102
4103 static int
4104 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4105 CORE_ADDR addr, uint32_t insn)
4106 {
4107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4108 int ext = PPC_EXTOP (insn);
4109
4110 switch (ext & 0x01f)
4111 {
4112 case 2: /* Add PC Immediate Shifted */
4113 record_full_arch_list_add_reg (regcache,
4114 tdep->ppc_gp0_regnum + PPC_RT (insn));
4115 return 0;
4116 }
4117
4118 switch (ext)
4119 {
4120 case 0: /* Move Condition Register Field */
4121 case 33: /* Condition Register NOR */
4122 case 129: /* Condition Register AND with Complement */
4123 case 193: /* Condition Register XOR */
4124 case 225: /* Condition Register NAND */
4125 case 257: /* Condition Register AND */
4126 case 289: /* Condition Register Equivalent */
4127 case 417: /* Condition Register OR with Complement */
4128 case 449: /* Condition Register OR */
4129 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4130 return 0;
4131
4132 case 16: /* Branch Conditional */
4133 case 560: /* Branch Conditional to Branch Target Address Register */
4134 if ((PPC_BO (insn) & 0x4) == 0)
4135 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4136 /* FALL-THROUGH */
4137 case 528: /* Branch Conditional to Count Register */
4138 if (PPC_LK (insn))
4139 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4140 return 0;
4141
4142 case 150: /* Instruction Synchronize */
4143 /* Do nothing. */
4144 return 0;
4145 }
4146
4147 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4148 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4149 return -1;
4150 }
4151
4152 /* Parse and record instructions of primary opcode-31 at ADDR.
4153 Return 0 if successful. */
4154
4155 static int
4156 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4157 CORE_ADDR addr, uint32_t insn)
4158 {
4159 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4160 int ext = PPC_EXTOP (insn);
4161 int tmp, nr, nb, i;
4162 CORE_ADDR at_dcsz, ea = 0;
4163 ULONGEST rb, ra, xer;
4164 int size = 0;
4165
4166 /* These instructions have OE bit. */
4167 switch (ext & 0x1ff)
4168 {
4169 /* These write RT and XER. Update CR if RC is set. */
4170 case 8: /* Subtract from carrying */
4171 case 10: /* Add carrying */
4172 case 136: /* Subtract from extended */
4173 case 138: /* Add extended */
4174 case 200: /* Subtract from zero extended */
4175 case 202: /* Add to zero extended */
4176 case 232: /* Subtract from minus one extended */
4177 case 234: /* Add to minus one extended */
4178 /* CA is always altered, but SO/OV are only altered when OE=1.
4179 In any case, XER is always altered. */
4180 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4181 if (PPC_RC (insn))
4182 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4183 record_full_arch_list_add_reg (regcache,
4184 tdep->ppc_gp0_regnum + PPC_RT (insn));
4185 return 0;
4186
4187 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4188 case 40: /* Subtract from */
4189 case 104: /* Negate */
4190 case 233: /* Multiply low doubleword */
4191 case 235: /* Multiply low word */
4192 case 266: /* Add */
4193 case 393: /* Divide Doubleword Extended Unsigned */
4194 case 395: /* Divide Word Extended Unsigned */
4195 case 425: /* Divide Doubleword Extended */
4196 case 427: /* Divide Word Extended */
4197 case 457: /* Divide Doubleword Unsigned */
4198 case 459: /* Divide Word Unsigned */
4199 case 489: /* Divide Doubleword */
4200 case 491: /* Divide Word */
4201 if (PPC_OE (insn))
4202 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4203 /* FALL-THROUGH */
4204 case 9: /* Multiply High Doubleword Unsigned */
4205 case 11: /* Multiply High Word Unsigned */
4206 case 73: /* Multiply High Doubleword */
4207 case 75: /* Multiply High Word */
4208 if (PPC_RC (insn))
4209 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4210 record_full_arch_list_add_reg (regcache,
4211 tdep->ppc_gp0_regnum + PPC_RT (insn));
4212 return 0;
4213 }
4214
4215 if ((ext & 0x1f) == 15)
4216 {
4217 /* Integer Select. bit[16:20] is used for BC. */
4218 record_full_arch_list_add_reg (regcache,
4219 tdep->ppc_gp0_regnum + PPC_RT (insn));
4220 return 0;
4221 }
4222
4223 if ((ext & 0xff) == 170)
4224 {
4225 /* Add Extended using alternate carry bits */
4226 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4227 record_full_arch_list_add_reg (regcache,
4228 tdep->ppc_gp0_regnum + PPC_RT (insn));
4229 return 0;
4230 }
4231
4232 switch (ext)
4233 {
4234 case 78: /* Determine Leftmost Zero Byte */
4235 if (PPC_RC (insn))
4236 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4237 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4238 record_full_arch_list_add_reg (regcache,
4239 tdep->ppc_gp0_regnum + PPC_RT (insn));
4240 return 0;
4241
4242 /* These only write RT. */
4243 case 19: /* Move from condition register */
4244 /* Move From One Condition Register Field */
4245 case 74: /* Add and Generate Sixes */
4246 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4247 case 302: /* Move From Branch History Rolling Buffer */
4248 case 339: /* Move From Special Purpose Register */
4249 case 371: /* Move From Time Base [Phased-Out] */
4250 case 309: /* Load Doubleword Monitored Indexed */
4251 case 128: /* Set Boolean */
4252 case 755: /* Deliver A Random Number */
4253 record_full_arch_list_add_reg (regcache,
4254 tdep->ppc_gp0_regnum + PPC_RT (insn));
4255 return 0;
4256
4257 /* These only write to RA. */
4258 case 51: /* Move From VSR Doubleword */
4259 case 115: /* Move From VSR Word and Zero */
4260 case 122: /* Population count bytes */
4261 case 378: /* Population count words */
4262 case 506: /* Population count doublewords */
4263 case 154: /* Parity Word */
4264 case 186: /* Parity Doubleword */
4265 case 252: /* Bit Permute Doubleword */
4266 case 282: /* Convert Declets To Binary Coded Decimal */
4267 case 314: /* Convert Binary Coded Decimal To Declets */
4268 case 508: /* Compare bytes */
4269 case 307: /* Move From VSR Lower Doubleword */
4270 record_full_arch_list_add_reg (regcache,
4271 tdep->ppc_gp0_regnum + PPC_RA (insn));
4272 return 0;
4273
4274 /* These write CR and optional RA. */
4275 case 792: /* Shift Right Algebraic Word */
4276 case 794: /* Shift Right Algebraic Doubleword */
4277 case 824: /* Shift Right Algebraic Word Immediate */
4278 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4279 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4280 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4281 record_full_arch_list_add_reg (regcache,
4282 tdep->ppc_gp0_regnum + PPC_RA (insn));
4283 /* FALL-THROUGH */
4284 case 0: /* Compare */
4285 case 32: /* Compare logical */
4286 case 144: /* Move To Condition Register Fields */
4287 /* Move To One Condition Register Field */
4288 case 192: /* Compare Ranged Byte */
4289 case 224: /* Compare Equal Byte */
4290 case 576: /* Move XER to CR Extended */
4291 case 902: /* Paste (should always fail due to single-stepping and
4292 the memory location might not be accessible, so
4293 record only CR) */
4294 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4295 return 0;
4296
4297 /* These write to RT. Update RA if 'update indexed.' */
4298 case 53: /* Load Doubleword with Update Indexed */
4299 case 119: /* Load Byte and Zero with Update Indexed */
4300 case 311: /* Load Halfword and Zero with Update Indexed */
4301 case 55: /* Load Word and Zero with Update Indexed */
4302 case 375: /* Load Halfword Algebraic with Update Indexed */
4303 case 373: /* Load Word Algebraic with Update Indexed */
4304 record_full_arch_list_add_reg (regcache,
4305 tdep->ppc_gp0_regnum + PPC_RA (insn));
4306 /* FALL-THROUGH */
4307 case 21: /* Load Doubleword Indexed */
4308 case 52: /* Load Byte And Reserve Indexed */
4309 case 116: /* Load Halfword And Reserve Indexed */
4310 case 20: /* Load Word And Reserve Indexed */
4311 case 84: /* Load Doubleword And Reserve Indexed */
4312 case 87: /* Load Byte and Zero Indexed */
4313 case 279: /* Load Halfword and Zero Indexed */
4314 case 23: /* Load Word and Zero Indexed */
4315 case 343: /* Load Halfword Algebraic Indexed */
4316 case 341: /* Load Word Algebraic Indexed */
4317 case 790: /* Load Halfword Byte-Reverse Indexed */
4318 case 534: /* Load Word Byte-Reverse Indexed */
4319 case 532: /* Load Doubleword Byte-Reverse Indexed */
4320 case 582: /* Load Word Atomic */
4321 case 614: /* Load Doubleword Atomic */
4322 case 265: /* Modulo Unsigned Doubleword */
4323 case 777: /* Modulo Signed Doubleword */
4324 case 267: /* Modulo Unsigned Word */
4325 case 779: /* Modulo Signed Word */
4326 record_full_arch_list_add_reg (regcache,
4327 tdep->ppc_gp0_regnum + PPC_RT (insn));
4328 return 0;
4329
4330 case 597: /* Load String Word Immediate */
4331 case 533: /* Load String Word Indexed */
4332 if (ext == 597)
4333 {
4334 nr = PPC_NB (insn);
4335 if (nr == 0)
4336 nr = 32;
4337 }
4338 else
4339 {
4340 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4341 nr = PPC_XER_NB (xer);
4342 }
4343
4344 nr = (nr + 3) >> 2;
4345
4346 /* If n=0, the contents of register RT are undefined. */
4347 if (nr == 0)
4348 nr = 1;
4349
4350 for (i = 0; i < nr; i++)
4351 record_full_arch_list_add_reg (regcache,
4352 tdep->ppc_gp0_regnum
4353 + ((PPC_RT (insn) + i) & 0x1f));
4354 return 0;
4355
4356 case 276: /* Load Quadword And Reserve Indexed */
4357 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4358 record_full_arch_list_add_reg (regcache, tmp);
4359 record_full_arch_list_add_reg (regcache, tmp + 1);
4360 return 0;
4361
4362 /* These write VRT. */
4363 case 6: /* Load Vector for Shift Left Indexed */
4364 case 38: /* Load Vector for Shift Right Indexed */
4365 case 7: /* Load Vector Element Byte Indexed */
4366 case 39: /* Load Vector Element Halfword Indexed */
4367 case 71: /* Load Vector Element Word Indexed */
4368 case 103: /* Load Vector Indexed */
4369 case 359: /* Load Vector Indexed LRU */
4370 record_full_arch_list_add_reg (regcache,
4371 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4372 return 0;
4373
4374 /* These write FRT. Update RA if 'update indexed.' */
4375 case 567: /* Load Floating-Point Single with Update Indexed */
4376 case 631: /* Load Floating-Point Double with Update Indexed */
4377 record_full_arch_list_add_reg (regcache,
4378 tdep->ppc_gp0_regnum + PPC_RA (insn));
4379 /* FALL-THROUGH */
4380 case 535: /* Load Floating-Point Single Indexed */
4381 case 599: /* Load Floating-Point Double Indexed */
4382 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4383 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4384 record_full_arch_list_add_reg (regcache,
4385 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4386 return 0;
4387
4388 case 791: /* Load Floating-Point Double Pair Indexed */
4389 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4390 record_full_arch_list_add_reg (regcache, tmp);
4391 record_full_arch_list_add_reg (regcache, tmp + 1);
4392 return 0;
4393
4394 case 179: /* Move To VSR Doubleword */
4395 case 211: /* Move To VSR Word Algebraic */
4396 case 243: /* Move To VSR Word and Zero */
4397 case 588: /* Load VSX Scalar Doubleword Indexed */
4398 case 524: /* Load VSX Scalar Single-Precision Indexed */
4399 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4400 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4401 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4402 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4403 case 780: /* Load VSX Vector Word*4 Indexed */
4404 case 268: /* Load VSX Vector Indexed */
4405 case 364: /* Load VSX Vector Word & Splat Indexed */
4406 case 812: /* Load VSX Vector Halfword*8 Indexed */
4407 case 876: /* Load VSX Vector Byte*16 Indexed */
4408 case 269: /* Load VSX Vector with Length */
4409 case 301: /* Load VSX Vector Left-justified with Length */
4410 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4411 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4412 case 403: /* Move To VSR Word & Splat */
4413 case 435: /* Move To VSR Double Doubleword */
4414 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4415 return 0;
4416
4417 /* These write RA. Update CR if RC is set. */
4418 case 24: /* Shift Left Word */
4419 case 26: /* Count Leading Zeros Word */
4420 case 27: /* Shift Left Doubleword */
4421 case 28: /* AND */
4422 case 58: /* Count Leading Zeros Doubleword */
4423 case 60: /* AND with Complement */
4424 case 124: /* NOR */
4425 case 284: /* Equivalent */
4426 case 316: /* XOR */
4427 case 476: /* NAND */
4428 case 412: /* OR with Complement */
4429 case 444: /* OR */
4430 case 536: /* Shift Right Word */
4431 case 539: /* Shift Right Doubleword */
4432 case 922: /* Extend Sign Halfword */
4433 case 954: /* Extend Sign Byte */
4434 case 986: /* Extend Sign Word */
4435 case 538: /* Count Trailing Zeros Word */
4436 case 570: /* Count Trailing Zeros Doubleword */
4437 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4438 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4439 if (PPC_RC (insn))
4440 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4441 record_full_arch_list_add_reg (regcache,
4442 tdep->ppc_gp0_regnum + PPC_RA (insn));
4443 return 0;
4444
4445 /* Store memory. */
4446 case 181: /* Store Doubleword with Update Indexed */
4447 case 183: /* Store Word with Update Indexed */
4448 case 247: /* Store Byte with Update Indexed */
4449 case 439: /* Store Half Word with Update Indexed */
4450 case 695: /* Store Floating-Point Single with Update Indexed */
4451 case 759: /* Store Floating-Point Double with Update Indexed */
4452 record_full_arch_list_add_reg (regcache,
4453 tdep->ppc_gp0_regnum + PPC_RA (insn));
4454 /* FALL-THROUGH */
4455 case 135: /* Store Vector Element Byte Indexed */
4456 case 167: /* Store Vector Element Halfword Indexed */
4457 case 199: /* Store Vector Element Word Indexed */
4458 case 231: /* Store Vector Indexed */
4459 case 487: /* Store Vector Indexed LRU */
4460 case 716: /* Store VSX Scalar Doubleword Indexed */
4461 case 140: /* Store VSX Scalar as Integer Word Indexed */
4462 case 652: /* Store VSX Scalar Single-Precision Indexed */
4463 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4464 case 908: /* Store VSX Vector Word*4 Indexed */
4465 case 149: /* Store Doubleword Indexed */
4466 case 151: /* Store Word Indexed */
4467 case 215: /* Store Byte Indexed */
4468 case 407: /* Store Half Word Indexed */
4469 case 694: /* Store Byte Conditional Indexed */
4470 case 726: /* Store Halfword Conditional Indexed */
4471 case 150: /* Store Word Conditional Indexed */
4472 case 214: /* Store Doubleword Conditional Indexed */
4473 case 182: /* Store Quadword Conditional Indexed */
4474 case 662: /* Store Word Byte-Reverse Indexed */
4475 case 918: /* Store Halfword Byte-Reverse Indexed */
4476 case 660: /* Store Doubleword Byte-Reverse Indexed */
4477 case 663: /* Store Floating-Point Single Indexed */
4478 case 727: /* Store Floating-Point Double Indexed */
4479 case 919: /* Store Floating-Point Double Pair Indexed */
4480 case 983: /* Store Floating-Point as Integer Word Indexed */
4481 case 396: /* Store VSX Vector Indexed */
4482 case 940: /* Store VSX Vector Halfword*8 Indexed */
4483 case 1004: /* Store VSX Vector Byte*16 Indexed */
4484 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4485 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4486 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4487 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4488
4489 ra = 0;
4490 if (PPC_RA (insn) != 0)
4491 regcache_raw_read_unsigned (regcache,
4492 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4493 regcache_raw_read_unsigned (regcache,
4494 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4495 ea = ra + rb;
4496
4497 switch (ext)
4498 {
4499 case 183: /* Store Word with Update Indexed */
4500 case 199: /* Store Vector Element Word Indexed */
4501 case 140: /* Store VSX Scalar as Integer Word Indexed */
4502 case 652: /* Store VSX Scalar Single-Precision Indexed */
4503 case 151: /* Store Word Indexed */
4504 case 150: /* Store Word Conditional Indexed */
4505 case 662: /* Store Word Byte-Reverse Indexed */
4506 case 663: /* Store Floating-Point Single Indexed */
4507 case 695: /* Store Floating-Point Single with Update Indexed */
4508 case 983: /* Store Floating-Point as Integer Word Indexed */
4509 size = 4;
4510 break;
4511 case 247: /* Store Byte with Update Indexed */
4512 case 135: /* Store Vector Element Byte Indexed */
4513 case 215: /* Store Byte Indexed */
4514 case 694: /* Store Byte Conditional Indexed */
4515 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4516 size = 1;
4517 break;
4518 case 439: /* Store Halfword with Update Indexed */
4519 case 167: /* Store Vector Element Halfword Indexed */
4520 case 407: /* Store Halfword Indexed */
4521 case 726: /* Store Halfword Conditional Indexed */
4522 case 918: /* Store Halfword Byte-Reverse Indexed */
4523 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4524 size = 2;
4525 break;
4526 case 181: /* Store Doubleword with Update Indexed */
4527 case 716: /* Store VSX Scalar Doubleword Indexed */
4528 case 149: /* Store Doubleword Indexed */
4529 case 214: /* Store Doubleword Conditional Indexed */
4530 case 660: /* Store Doubleword Byte-Reverse Indexed */
4531 case 727: /* Store Floating-Point Double Indexed */
4532 case 759: /* Store Floating-Point Double with Update Indexed */
4533 size = 8;
4534 break;
4535 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4536 case 908: /* Store VSX Vector Word*4 Indexed */
4537 case 182: /* Store Quadword Conditional Indexed */
4538 case 231: /* Store Vector Indexed */
4539 case 487: /* Store Vector Indexed LRU */
4540 case 919: /* Store Floating-Point Double Pair Indexed */
4541 case 396: /* Store VSX Vector Indexed */
4542 case 940: /* Store VSX Vector Halfword*8 Indexed */
4543 case 1004: /* Store VSX Vector Byte*16 Indexed */
4544 size = 16;
4545 break;
4546 default:
4547 gdb_assert (0);
4548 }
4549
4550 /* Align address for Store Vector instructions. */
4551 switch (ext)
4552 {
4553 case 167: /* Store Vector Element Halfword Indexed */
4554 addr = addr & ~0x1ULL;
4555 break;
4556
4557 case 199: /* Store Vector Element Word Indexed */
4558 addr = addr & ~0x3ULL;
4559 break;
4560
4561 case 231: /* Store Vector Indexed */
4562 case 487: /* Store Vector Indexed LRU */
4563 addr = addr & ~0xfULL;
4564 break;
4565 }
4566
4567 record_full_arch_list_add_mem (addr, size);
4568 return 0;
4569
4570 case 397: /* Store VSX Vector with Length */
4571 case 429: /* Store VSX Vector Left-justified with Length */
4572 ra = 0;
4573 if (PPC_RA (insn) != 0)
4574 regcache_raw_read_unsigned (regcache,
4575 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4576 ea = ra;
4577 regcache_raw_read_unsigned (regcache,
4578 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4579 /* Store up to 16 bytes. */
4580 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4581 if (nb > 0)
4582 record_full_arch_list_add_mem (ea, nb);
4583 return 0;
4584
4585 case 710: /* Store Word Atomic */
4586 case 742: /* Store Doubleword Atomic */
4587 ra = 0;
4588 if (PPC_RA (insn) != 0)
4589 regcache_raw_read_unsigned (regcache,
4590 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4591 ea = ra;
4592 switch (ext)
4593 {
4594 case 710: /* Store Word Atomic */
4595 size = 8;
4596 break;
4597 case 742: /* Store Doubleword Atomic */
4598 size = 16;
4599 break;
4600 default:
4601 gdb_assert (0);
4602 }
4603 record_full_arch_list_add_mem (ea, size);
4604 return 0;
4605
4606 case 725: /* Store String Word Immediate */
4607 ra = 0;
4608 if (PPC_RA (insn) != 0)
4609 regcache_raw_read_unsigned (regcache,
4610 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4611 ea += ra;
4612
4613 nb = PPC_NB (insn);
4614 if (nb == 0)
4615 nb = 32;
4616
4617 record_full_arch_list_add_mem (ea, nb);
4618
4619 return 0;
4620
4621 case 661: /* Store String Word Indexed */
4622 ra = 0;
4623 if (PPC_RA (insn) != 0)
4624 regcache_raw_read_unsigned (regcache,
4625 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4626 ea += ra;
4627
4628 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4629 nb = PPC_XER_NB (xer);
4630
4631 if (nb != 0)
4632 {
4633 regcache_raw_read_unsigned (regcache,
4634 tdep->ppc_gp0_regnum + PPC_RB (insn),
4635 &rb);
4636 ea += rb;
4637 record_full_arch_list_add_mem (ea, nb);
4638 }
4639
4640 return 0;
4641
4642 case 467: /* Move To Special Purpose Register */
4643 switch (PPC_SPR (insn))
4644 {
4645 case 1: /* XER */
4646 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4647 return 0;
4648 case 8: /* LR */
4649 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4650 return 0;
4651 case 9: /* CTR */
4652 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4653 return 0;
4654 case 256: /* VRSAVE */
4655 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4656 return 0;
4657 }
4658
4659 goto UNKNOWN_OP;
4660
4661 case 147: /* Move To Split Little Endian */
4662 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4663 return 0;
4664
4665 case 512: /* Move to Condition Register from XER */
4666 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4667 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4668 return 0;
4669
4670 case 4: /* Trap Word */
4671 case 68: /* Trap Doubleword */
4672 case 430: /* Clear BHRB */
4673 case 598: /* Synchronize */
4674 case 62: /* Wait for Interrupt */
4675 case 30: /* Wait */
4676 case 22: /* Instruction Cache Block Touch */
4677 case 854: /* Enforce In-order Execution of I/O */
4678 case 246: /* Data Cache Block Touch for Store */
4679 case 54: /* Data Cache Block Store */
4680 case 86: /* Data Cache Block Flush */
4681 case 278: /* Data Cache Block Touch */
4682 case 758: /* Data Cache Block Allocate */
4683 case 982: /* Instruction Cache Block Invalidate */
4684 case 774: /* Copy */
4685 case 838: /* CP_Abort */
4686 return 0;
4687
4688 case 654: /* Transaction Begin */
4689 case 686: /* Transaction End */
4690 case 750: /* Transaction Suspend or Resume */
4691 case 782: /* Transaction Abort Word Conditional */
4692 case 814: /* Transaction Abort Doubleword Conditional */
4693 case 846: /* Transaction Abort Word Conditional Immediate */
4694 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4695 case 910: /* Transaction Abort */
4696 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4697 /* FALL-THROUGH */
4698 case 718: /* Transaction Check */
4699 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4700 return 0;
4701
4702 case 1014: /* Data Cache Block set to Zero */
4703 if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
4704 || at_dcsz == 0)
4705 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4706
4707 ra = 0;
4708 if (PPC_RA (insn) != 0)
4709 regcache_raw_read_unsigned (regcache,
4710 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4711 regcache_raw_read_unsigned (regcache,
4712 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4713 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4714 record_full_arch_list_add_mem (ea, at_dcsz);
4715 return 0;
4716 }
4717
4718 UNKNOWN_OP:
4719 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4720 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
4721 return -1;
4722 }
4723
4724 /* Parse and record instructions of primary opcode-59 at ADDR.
4725 Return 0 if successful. */
4726
4727 static int
4728 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4729 CORE_ADDR addr, uint32_t insn)
4730 {
4731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4732 int ext = PPC_EXTOP (insn);
4733
4734 switch (ext & 0x1f)
4735 {
4736 case 18: /* Floating Divide */
4737 case 20: /* Floating Subtract */
4738 case 21: /* Floating Add */
4739 case 22: /* Floating Square Root */
4740 case 24: /* Floating Reciprocal Estimate */
4741 case 25: /* Floating Multiply */
4742 case 26: /* Floating Reciprocal Square Root Estimate */
4743 case 28: /* Floating Multiply-Subtract */
4744 case 29: /* Floating Multiply-Add */
4745 case 30: /* Floating Negative Multiply-Subtract */
4746 case 31: /* Floating Negative Multiply-Add */
4747 record_full_arch_list_add_reg (regcache,
4748 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4749 if (PPC_RC (insn))
4750 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4751 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4752
4753 return 0;
4754 }
4755
4756 switch (ext)
4757 {
4758 case 2: /* DFP Add */
4759 case 3: /* DFP Quantize */
4760 case 34: /* DFP Multiply */
4761 case 35: /* DFP Reround */
4762 case 67: /* DFP Quantize Immediate */
4763 case 99: /* DFP Round To FP Integer With Inexact */
4764 case 227: /* DFP Round To FP Integer Without Inexact */
4765 case 258: /* DFP Convert To DFP Long! */
4766 case 290: /* DFP Convert To Fixed */
4767 case 514: /* DFP Subtract */
4768 case 546: /* DFP Divide */
4769 case 770: /* DFP Round To DFP Short! */
4770 case 802: /* DFP Convert From Fixed */
4771 case 834: /* DFP Encode BCD To DPD */
4772 if (PPC_RC (insn))
4773 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4774 record_full_arch_list_add_reg (regcache,
4775 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4776 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4777 return 0;
4778
4779 case 130: /* DFP Compare Ordered */
4780 case 162: /* DFP Test Exponent */
4781 case 194: /* DFP Test Data Class */
4782 case 226: /* DFP Test Data Group */
4783 case 642: /* DFP Compare Unordered */
4784 case 674: /* DFP Test Significance */
4785 case 675: /* DFP Test Significance Immediate */
4786 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4787 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4788 return 0;
4789
4790 case 66: /* DFP Shift Significand Left Immediate */
4791 case 98: /* DFP Shift Significand Right Immediate */
4792 case 322: /* DFP Decode DPD To BCD */
4793 case 354: /* DFP Extract Biased Exponent */
4794 case 866: /* DFP Insert Biased Exponent */
4795 record_full_arch_list_add_reg (regcache,
4796 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4797 if (PPC_RC (insn))
4798 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4799 return 0;
4800
4801 case 846: /* Floating Convert From Integer Doubleword Single */
4802 case 974: /* Floating Convert From Integer Doubleword Unsigned
4803 Single */
4804 record_full_arch_list_add_reg (regcache,
4805 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4806 if (PPC_RC (insn))
4807 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4808 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4809
4810 return 0;
4811 }
4812
4813 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4814 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
4815 return -1;
4816 }
4817
4818 /* Parse and record instructions of primary opcode-60 at ADDR.
4819 Return 0 if successful. */
4820
4821 static int
4822 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4823 CORE_ADDR addr, uint32_t insn)
4824 {
4825 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4826 int ext = PPC_EXTOP (insn);
4827
4828 switch (ext >> 2)
4829 {
4830 case 0: /* VSX Scalar Add Single-Precision */
4831 case 32: /* VSX Scalar Add Double-Precision */
4832 case 24: /* VSX Scalar Divide Single-Precision */
4833 case 56: /* VSX Scalar Divide Double-Precision */
4834 case 176: /* VSX Scalar Copy Sign Double-Precision */
4835 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4836 case 41: /* ditto */
4837 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4838 case 9: /* ditto */
4839 case 160: /* VSX Scalar Maximum Double-Precision */
4840 case 168: /* VSX Scalar Minimum Double-Precision */
4841 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4842 case 57: /* ditto */
4843 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4844 case 25: /* ditto */
4845 case 48: /* VSX Scalar Multiply Double-Precision */
4846 case 16: /* VSX Scalar Multiply Single-Precision */
4847 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4848 case 169: /* ditto */
4849 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4850 case 137: /* ditto */
4851 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4852 case 185: /* ditto */
4853 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4854 case 153: /* ditto */
4855 case 40: /* VSX Scalar Subtract Double-Precision */
4856 case 8: /* VSX Scalar Subtract Single-Precision */
4857 case 96: /* VSX Vector Add Double-Precision */
4858 case 64: /* VSX Vector Add Single-Precision */
4859 case 120: /* VSX Vector Divide Double-Precision */
4860 case 88: /* VSX Vector Divide Single-Precision */
4861 case 97: /* VSX Vector Multiply-Add Double-Precision */
4862 case 105: /* ditto */
4863 case 65: /* VSX Vector Multiply-Add Single-Precision */
4864 case 73: /* ditto */
4865 case 224: /* VSX Vector Maximum Double-Precision */
4866 case 192: /* VSX Vector Maximum Single-Precision */
4867 case 232: /* VSX Vector Minimum Double-Precision */
4868 case 200: /* VSX Vector Minimum Single-Precision */
4869 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4870 case 121: /* ditto */
4871 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4872 case 89: /* ditto */
4873 case 112: /* VSX Vector Multiply Double-Precision */
4874 case 80: /* VSX Vector Multiply Single-Precision */
4875 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
4876 case 233: /* ditto */
4877 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
4878 case 201: /* ditto */
4879 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
4880 case 249: /* ditto */
4881 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
4882 case 217: /* ditto */
4883 case 104: /* VSX Vector Subtract Double-Precision */
4884 case 72: /* VSX Vector Subtract Single-Precision */
4885 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
4886 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
4887 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
4888 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
4889 case 3: /* VSX Scalar Compare Equal Double-Precision */
4890 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
4891 case 19: /* VSX Scalar Compare Greater Than or Equal
4892 Double-Precision */
4893 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4894 /* FALL-THROUGH */
4895 case 240: /* VSX Vector Copy Sign Double-Precision */
4896 case 208: /* VSX Vector Copy Sign Single-Precision */
4897 case 130: /* VSX Logical AND */
4898 case 138: /* VSX Logical AND with Complement */
4899 case 186: /* VSX Logical Equivalence */
4900 case 178: /* VSX Logical NAND */
4901 case 170: /* VSX Logical OR with Complement */
4902 case 162: /* VSX Logical NOR */
4903 case 146: /* VSX Logical OR */
4904 case 154: /* VSX Logical XOR */
4905 case 18: /* VSX Merge High Word */
4906 case 50: /* VSX Merge Low Word */
4907 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
4908 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
4909 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
4910 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
4911 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
4912 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
4913 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
4914 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
4915 case 216: /* VSX Vector Insert Exponent Single-Precision */
4916 case 248: /* VSX Vector Insert Exponent Double-Precision */
4917 case 26: /* VSX Vector Permute */
4918 case 58: /* VSX Vector Permute Right-indexed */
4919 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
4920 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
4921 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
4922 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
4923 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4924 return 0;
4925
4926 case 61: /* VSX Scalar Test for software Divide Double-Precision */
4927 case 125: /* VSX Vector Test for software Divide Double-Precision */
4928 case 93: /* VSX Vector Test for software Divide Single-Precision */
4929 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4930 return 0;
4931
4932 case 35: /* VSX Scalar Compare Unordered Double-Precision */
4933 case 43: /* VSX Scalar Compare Ordered Double-Precision */
4934 case 59: /* VSX Scalar Compare Exponents Double-Precision */
4935 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4936 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4937 return 0;
4938 }
4939
4940 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
4941 {
4942 case 99: /* VSX Vector Compare Equal To Double-Precision */
4943 case 67: /* VSX Vector Compare Equal To Single-Precision */
4944 case 115: /* VSX Vector Compare Greater Than or
4945 Equal To Double-Precision */
4946 case 83: /* VSX Vector Compare Greater Than or
4947 Equal To Single-Precision */
4948 case 107: /* VSX Vector Compare Greater Than Double-Precision */
4949 case 75: /* VSX Vector Compare Greater Than Single-Precision */
4950 if (PPC_Rc (insn))
4951 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4952 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4953 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4954 return 0;
4955 }
4956
4957 switch (ext >> 1)
4958 {
4959 case 265: /* VSX Scalar round Double-Precision to
4960 Single-Precision and Convert to
4961 Single-Precision format */
4962 case 344: /* VSX Scalar truncate Double-Precision to
4963 Integer and Convert to Signed Integer
4964 Doubleword format with Saturate */
4965 case 88: /* VSX Scalar truncate Double-Precision to
4966 Integer and Convert to Signed Integer Word
4967 Format with Saturate */
4968 case 328: /* VSX Scalar truncate Double-Precision integer
4969 and Convert to Unsigned Integer Doubleword
4970 Format with Saturate */
4971 case 72: /* VSX Scalar truncate Double-Precision to
4972 Integer and Convert to Unsigned Integer Word
4973 Format with Saturate */
4974 case 329: /* VSX Scalar Convert Single-Precision to
4975 Double-Precision format */
4976 case 376: /* VSX Scalar Convert Signed Integer
4977 Doubleword to floating-point format and
4978 Round to Double-Precision format */
4979 case 312: /* VSX Scalar Convert Signed Integer
4980 Doubleword to floating-point format and
4981 round to Single-Precision */
4982 case 360: /* VSX Scalar Convert Unsigned Integer
4983 Doubleword to floating-point format and
4984 Round to Double-Precision format */
4985 case 296: /* VSX Scalar Convert Unsigned Integer
4986 Doubleword to floating-point format and
4987 Round to Single-Precision */
4988 case 73: /* VSX Scalar Round to Double-Precision Integer
4989 Using Round to Nearest Away */
4990 case 107: /* VSX Scalar Round to Double-Precision Integer
4991 Exact using Current rounding mode */
4992 case 121: /* VSX Scalar Round to Double-Precision Integer
4993 Using Round toward -Infinity */
4994 case 105: /* VSX Scalar Round to Double-Precision Integer
4995 Using Round toward +Infinity */
4996 case 89: /* VSX Scalar Round to Double-Precision Integer
4997 Using Round toward Zero */
4998 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
4999 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5000 case 281: /* VSX Scalar Round to Single-Precision */
5001 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5002 Double-Precision */
5003 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5004 Single-Precision */
5005 case 75: /* VSX Scalar Square Root Double-Precision */
5006 case 11: /* VSX Scalar Square Root Single-Precision */
5007 case 393: /* VSX Vector round Double-Precision to
5008 Single-Precision and Convert to
5009 Single-Precision format */
5010 case 472: /* VSX Vector truncate Double-Precision to
5011 Integer and Convert to Signed Integer
5012 Doubleword format with Saturate */
5013 case 216: /* VSX Vector truncate Double-Precision to
5014 Integer and Convert to Signed Integer Word
5015 Format with Saturate */
5016 case 456: /* VSX Vector truncate Double-Precision to
5017 Integer and Convert to Unsigned Integer
5018 Doubleword format with Saturate */
5019 case 200: /* VSX Vector truncate Double-Precision to
5020 Integer and Convert to Unsigned Integer Word
5021 Format with Saturate */
5022 case 457: /* VSX Vector Convert Single-Precision to
5023 Double-Precision format */
5024 case 408: /* VSX Vector truncate Single-Precision to
5025 Integer and Convert to Signed Integer
5026 Doubleword format with Saturate */
5027 case 152: /* VSX Vector truncate Single-Precision to
5028 Integer and Convert to Signed Integer Word
5029 Format with Saturate */
5030 case 392: /* VSX Vector truncate Single-Precision to
5031 Integer and Convert to Unsigned Integer
5032 Doubleword format with Saturate */
5033 case 136: /* VSX Vector truncate Single-Precision to
5034 Integer and Convert to Unsigned Integer Word
5035 Format with Saturate */
5036 case 504: /* VSX Vector Convert and round Signed Integer
5037 Doubleword to Double-Precision format */
5038 case 440: /* VSX Vector Convert and round Signed Integer
5039 Doubleword to Single-Precision format */
5040 case 248: /* VSX Vector Convert Signed Integer Word to
5041 Double-Precision format */
5042 case 184: /* VSX Vector Convert and round Signed Integer
5043 Word to Single-Precision format */
5044 case 488: /* VSX Vector Convert and round Unsigned
5045 Integer Doubleword to Double-Precision format */
5046 case 424: /* VSX Vector Convert and round Unsigned
5047 Integer Doubleword to Single-Precision format */
5048 case 232: /* VSX Vector Convert and round Unsigned
5049 Integer Word to Double-Precision format */
5050 case 168: /* VSX Vector Convert and round Unsigned
5051 Integer Word to Single-Precision format */
5052 case 201: /* VSX Vector Round to Double-Precision
5053 Integer using round to Nearest Away */
5054 case 235: /* VSX Vector Round to Double-Precision
5055 Integer Exact using Current rounding mode */
5056 case 249: /* VSX Vector Round to Double-Precision
5057 Integer using round toward -Infinity */
5058 case 233: /* VSX Vector Round to Double-Precision
5059 Integer using round toward +Infinity */
5060 case 217: /* VSX Vector Round to Double-Precision
5061 Integer using round toward Zero */
5062 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5063 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5064 case 137: /* VSX Vector Round to Single-Precision Integer
5065 Using Round to Nearest Away */
5066 case 171: /* VSX Vector Round to Single-Precision Integer
5067 Exact Using Current rounding mode */
5068 case 185: /* VSX Vector Round to Single-Precision Integer
5069 Using Round toward -Infinity */
5070 case 169: /* VSX Vector Round to Single-Precision Integer
5071 Using Round toward +Infinity */
5072 case 153: /* VSX Vector Round to Single-Precision Integer
5073 Using round toward Zero */
5074 case 202: /* VSX Vector Reciprocal Square Root Estimate
5075 Double-Precision */
5076 case 138: /* VSX Vector Reciprocal Square Root Estimate
5077 Single-Precision */
5078 case 203: /* VSX Vector Square Root Double-Precision */
5079 case 139: /* VSX Vector Square Root Single-Precision */
5080 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5081 /* FALL-THROUGH */
5082 case 345: /* VSX Scalar Absolute Value Double-Precision */
5083 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5084 Vector Single-Precision format Non-signalling */
5085 case 331: /* VSX Scalar Convert Single-Precision to
5086 Double-Precision format Non-signalling */
5087 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5088 case 377: /* VSX Scalar Negate Double-Precision */
5089 case 473: /* VSX Vector Absolute Value Double-Precision */
5090 case 409: /* VSX Vector Absolute Value Single-Precision */
5091 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5092 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5093 case 505: /* VSX Vector Negate Double-Precision */
5094 case 441: /* VSX Vector Negate Single-Precision */
5095 case 164: /* VSX Splat Word */
5096 case 165: /* VSX Vector Extract Unsigned Word */
5097 case 181: /* VSX Vector Insert Word */
5098 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5099 return 0;
5100
5101 case 298: /* VSX Scalar Test Data Class Single-Precision */
5102 case 362: /* VSX Scalar Test Data Class Double-Precision */
5103 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5104 /* FALL-THROUGH */
5105 case 106: /* VSX Scalar Test for software Square Root
5106 Double-Precision */
5107 case 234: /* VSX Vector Test for software Square Root
5108 Double-Precision */
5109 case 170: /* VSX Vector Test for software Square Root
5110 Single-Precision */
5111 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5112 return 0;
5113
5114 case 347:
5115 switch (PPC_FIELD (insn, 11, 5))
5116 {
5117 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5118 case 1: /* VSX Scalar Extract Significand Double-Precision */
5119 record_full_arch_list_add_reg (regcache,
5120 tdep->ppc_gp0_regnum + PPC_RT (insn));
5121 return 0;
5122 case 16: /* VSX Scalar Convert Half-Precision format to
5123 Double-Precision format */
5124 case 17: /* VSX Scalar round & Convert Double-Precision format
5125 to Half-Precision format */
5126 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5127 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5128 return 0;
5129 }
5130 break;
5131
5132 case 475:
5133 switch (PPC_FIELD (insn, 11, 5))
5134 {
5135 case 24: /* VSX Vector Convert Half-Precision format to
5136 Single-Precision format */
5137 case 25: /* VSX Vector round and Convert Single-Precision format
5138 to Half-Precision format */
5139 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5140 /* FALL-THROUGH */
5141 case 0: /* VSX Vector Extract Exponent Double-Precision */
5142 case 1: /* VSX Vector Extract Significand Double-Precision */
5143 case 7: /* VSX Vector Byte-Reverse Halfword */
5144 case 8: /* VSX Vector Extract Exponent Single-Precision */
5145 case 9: /* VSX Vector Extract Significand Single-Precision */
5146 case 15: /* VSX Vector Byte-Reverse Word */
5147 case 23: /* VSX Vector Byte-Reverse Doubleword */
5148 case 31: /* VSX Vector Byte-Reverse Quadword */
5149 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5150 return 0;
5151 }
5152 break;
5153 }
5154
5155 switch (ext)
5156 {
5157 case 360: /* VSX Vector Splat Immediate Byte */
5158 if (PPC_FIELD (insn, 11, 2) == 0)
5159 {
5160 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5161 return 0;
5162 }
5163 break;
5164 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5165 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5166 return 0;
5167 }
5168
5169 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5170 {
5171 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5172 return 0;
5173 }
5174
5175 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5176 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5177 return -1;
5178 }
5179
5180 /* Parse and record instructions of primary opcode-61 at ADDR.
5181 Return 0 if successful. */
5182
5183 static int
5184 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5185 CORE_ADDR addr, uint32_t insn)
5186 {
5187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5188 ULONGEST ea = 0;
5189 int size;
5190
5191 switch (insn & 0x3)
5192 {
5193 case 0: /* Store Floating-Point Double Pair */
5194 case 2: /* Store VSX Scalar Doubleword */
5195 case 3: /* Store VSX Scalar Single */
5196 if (PPC_RA (insn) != 0)
5197 regcache_raw_read_unsigned (regcache,
5198 tdep->ppc_gp0_regnum + PPC_RA (insn),
5199 &ea);
5200 ea += PPC_DS (insn) << 2;
5201 switch (insn & 0x3)
5202 {
5203 case 0: /* Store Floating-Point Double Pair */
5204 size = 16;
5205 break;
5206 case 2: /* Store VSX Scalar Doubleword */
5207 size = 8;
5208 break;
5209 case 3: /* Store VSX Scalar Single */
5210 size = 4;
5211 break;
5212 default:
5213 gdb_assert (0);
5214 }
5215 record_full_arch_list_add_mem (ea, size);
5216 return 0;
5217 }
5218
5219 switch (insn & 0x7)
5220 {
5221 case 1: /* Load VSX Vector */
5222 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5223 return 0;
5224 case 5: /* Store VSX Vector */
5225 if (PPC_RA (insn) != 0)
5226 regcache_raw_read_unsigned (regcache,
5227 tdep->ppc_gp0_regnum + PPC_RA (insn),
5228 &ea);
5229 ea += PPC_DQ (insn) << 4;
5230 record_full_arch_list_add_mem (ea, 16);
5231 return 0;
5232 }
5233
5234 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5235 "at %s.\n", insn, paddress (gdbarch, addr));
5236 return -1;
5237 }
5238
5239 /* Parse and record instructions of primary opcode-63 at ADDR.
5240 Return 0 if successful. */
5241
5242 static int
5243 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5244 CORE_ADDR addr, uint32_t insn)
5245 {
5246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5247 int ext = PPC_EXTOP (insn);
5248 int tmp;
5249
5250 switch (ext & 0x1f)
5251 {
5252 case 18: /* Floating Divide */
5253 case 20: /* Floating Subtract */
5254 case 21: /* Floating Add */
5255 case 22: /* Floating Square Root */
5256 case 24: /* Floating Reciprocal Estimate */
5257 case 25: /* Floating Multiply */
5258 case 26: /* Floating Reciprocal Square Root Estimate */
5259 case 28: /* Floating Multiply-Subtract */
5260 case 29: /* Floating Multiply-Add */
5261 case 30: /* Floating Negative Multiply-Subtract */
5262 case 31: /* Floating Negative Multiply-Add */
5263 record_full_arch_list_add_reg (regcache,
5264 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5265 if (PPC_RC (insn))
5266 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5267 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5268 return 0;
5269
5270 case 23: /* Floating Select */
5271 record_full_arch_list_add_reg (regcache,
5272 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5273 if (PPC_RC (insn))
5274 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5275 return 0;
5276 }
5277
5278 switch (ext & 0xff)
5279 {
5280 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5281 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5282 Precision */
5283 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5284 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5285 return 0;
5286 }
5287
5288 switch (ext)
5289 {
5290 case 2: /* DFP Add Quad */
5291 case 3: /* DFP Quantize Quad */
5292 case 34: /* DFP Multiply Quad */
5293 case 35: /* DFP Reround Quad */
5294 case 67: /* DFP Quantize Immediate Quad */
5295 case 99: /* DFP Round To FP Integer With Inexact Quad */
5296 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5297 case 258: /* DFP Convert To DFP Extended Quad */
5298 case 514: /* DFP Subtract Quad */
5299 case 546: /* DFP Divide Quad */
5300 case 770: /* DFP Round To DFP Long Quad */
5301 case 802: /* DFP Convert From Fixed Quad */
5302 case 834: /* DFP Encode BCD To DPD Quad */
5303 if (PPC_RC (insn))
5304 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5305 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5306 record_full_arch_list_add_reg (regcache, tmp);
5307 record_full_arch_list_add_reg (regcache, tmp + 1);
5308 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5309 return 0;
5310
5311 case 130: /* DFP Compare Ordered Quad */
5312 case 162: /* DFP Test Exponent Quad */
5313 case 194: /* DFP Test Data Class Quad */
5314 case 226: /* DFP Test Data Group Quad */
5315 case 642: /* DFP Compare Unordered Quad */
5316 case 674: /* DFP Test Significance Quad */
5317 case 675: /* DFP Test Significance Immediate Quad */
5318 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5319 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5320 return 0;
5321
5322 case 66: /* DFP Shift Significand Left Immediate Quad */
5323 case 98: /* DFP Shift Significand Right Immediate Quad */
5324 case 322: /* DFP Decode DPD To BCD Quad */
5325 case 866: /* DFP Insert Biased Exponent Quad */
5326 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5327 record_full_arch_list_add_reg (regcache, tmp);
5328 record_full_arch_list_add_reg (regcache, tmp + 1);
5329 if (PPC_RC (insn))
5330 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5331 return 0;
5332
5333 case 290: /* DFP Convert To Fixed Quad */
5334 record_full_arch_list_add_reg (regcache,
5335 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5336 if (PPC_RC (insn))
5337 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5338 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5339 return 0;
5340
5341 case 354: /* DFP Extract Biased Exponent Quad */
5342 record_full_arch_list_add_reg (regcache,
5343 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5344 if (PPC_RC (insn))
5345 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5346 return 0;
5347
5348 case 12: /* Floating Round to Single-Precision */
5349 case 14: /* Floating Convert To Integer Word */
5350 case 15: /* Floating Convert To Integer Word
5351 with round toward Zero */
5352 case 142: /* Floating Convert To Integer Word Unsigned */
5353 case 143: /* Floating Convert To Integer Word Unsigned
5354 with round toward Zero */
5355 case 392: /* Floating Round to Integer Nearest */
5356 case 424: /* Floating Round to Integer Toward Zero */
5357 case 456: /* Floating Round to Integer Plus */
5358 case 488: /* Floating Round to Integer Minus */
5359 case 814: /* Floating Convert To Integer Doubleword */
5360 case 815: /* Floating Convert To Integer Doubleword
5361 with round toward Zero */
5362 case 846: /* Floating Convert From Integer Doubleword */
5363 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5364 case 943: /* Floating Convert To Integer Doubleword Unsigned
5365 with round toward Zero */
5366 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5367 record_full_arch_list_add_reg (regcache,
5368 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5369 if (PPC_RC (insn))
5370 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5371 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5372 return 0;
5373
5374 case 583:
5375 switch (PPC_FIELD (insn, 11, 5))
5376 {
5377 case 1: /* Move From FPSCR & Clear Enables */
5378 case 20: /* Move From FPSCR Control & set DRN */
5379 case 21: /* Move From FPSCR Control & set DRN Immediate */
5380 case 22: /* Move From FPSCR Control & set RN */
5381 case 23: /* Move From FPSCR Control & set RN Immediate */
5382 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5383 /* Fall through. */
5384 case 0: /* Move From FPSCR */
5385 case 24: /* Move From FPSCR Lightweight */
5386 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5387 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5388 record_full_arch_list_add_reg (regcache,
5389 tdep->ppc_fp0_regnum
5390 + PPC_FRT (insn));
5391 return 0;
5392 }
5393 break;
5394
5395 case 8: /* Floating Copy Sign */
5396 case 40: /* Floating Negate */
5397 case 72: /* Floating Move Register */
5398 case 136: /* Floating Negative Absolute Value */
5399 case 264: /* Floating Absolute Value */
5400 record_full_arch_list_add_reg (regcache,
5401 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5402 if (PPC_RC (insn))
5403 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5404 return 0;
5405
5406 case 838: /* Floating Merge Odd Word */
5407 case 966: /* Floating Merge Even Word */
5408 record_full_arch_list_add_reg (regcache,
5409 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5410 return 0;
5411
5412 case 38: /* Move To FPSCR Bit 1 */
5413 case 70: /* Move To FPSCR Bit 0 */
5414 case 134: /* Move To FPSCR Field Immediate */
5415 case 711: /* Move To FPSCR Fields */
5416 if (PPC_RC (insn))
5417 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5418 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5419 return 0;
5420
5421 case 0: /* Floating Compare Unordered */
5422 case 32: /* Floating Compare Ordered */
5423 case 64: /* Move to Condition Register from FPSCR */
5424 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5425 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5426 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5427 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5428 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5429 /* FALL-THROUGH */
5430 case 128: /* Floating Test for software Divide */
5431 case 160: /* Floating Test for software Square Root */
5432 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5433 return 0;
5434
5435 case 4: /* VSX Scalar Add Quad-Precision */
5436 case 36: /* VSX Scalar Multiply Quad-Precision */
5437 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5438 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5439 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5440 case 484: /* VSX Scalar Negative Multiply-Subtract
5441 Quad-Precision */
5442 case 516: /* VSX Scalar Subtract Quad-Precision */
5443 case 548: /* VSX Scalar Divide Quad-Precision */
5444 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5445 /* FALL-THROUGH */
5446 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5447 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5448 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5449 return 0;
5450
5451 case 804:
5452 switch (PPC_FIELD (insn, 11, 5))
5453 {
5454 case 27: /* VSX Scalar Square Root Quad-Precision */
5455 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5456 /* FALL-THROUGH */
5457 case 0: /* VSX Scalar Absolute Quad-Precision */
5458 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5459 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5460 case 16: /* VSX Scalar Negate Quad-Precision */
5461 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5462 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5463 return 0;
5464 }
5465 break;
5466
5467 case 836:
5468 switch (PPC_FIELD (insn, 11, 5))
5469 {
5470 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5471 to Unsigned Word format */
5472 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5473 Quad-Precision format */
5474 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5475 to Signed Word format */
5476 case 10: /* VSX Scalar Convert Signed Doubleword format to
5477 Quad-Precision format */
5478 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5479 to Unsigned Doubleword format */
5480 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5481 Double-Precision format */
5482 case 22: /* VSX Scalar Convert Double-Precision format to
5483 Quad-Precision format */
5484 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5485 to Signed Doubleword format */
5486 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5487 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5488 return 0;
5489 }
5490 }
5491
5492 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5493 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5494 return -1;
5495 }
5496
5497 /* Parse the current instruction and record the values of the registers and
5498 memory that will be changed in current instruction to "record_arch_list".
5499 Return -1 if something wrong. */
5500
5501 int
5502 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5503 CORE_ADDR addr)
5504 {
5505 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5506 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5507 uint32_t insn;
5508 int op6, tmp, i;
5509
5510 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5511 op6 = PPC_OP6 (insn);
5512
5513 switch (op6)
5514 {
5515 case 2: /* Trap Doubleword Immediate */
5516 case 3: /* Trap Word Immediate */
5517 /* Do nothing. */
5518 break;
5519
5520 case 4:
5521 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5522 return -1;
5523 break;
5524
5525 case 17: /* System call */
5526 if (PPC_LEV (insn) != 0)
5527 goto UNKNOWN_OP;
5528
5529 if (tdep->ppc_syscall_record != NULL)
5530 {
5531 if (tdep->ppc_syscall_record (regcache) != 0)
5532 return -1;
5533 }
5534 else
5535 {
5536 printf_unfiltered (_("no syscall record support\n"));
5537 return -1;
5538 }
5539 break;
5540
5541 case 7: /* Multiply Low Immediate */
5542 record_full_arch_list_add_reg (regcache,
5543 tdep->ppc_gp0_regnum + PPC_RT (insn));
5544 break;
5545
5546 case 8: /* Subtract From Immediate Carrying */
5547 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5548 record_full_arch_list_add_reg (regcache,
5549 tdep->ppc_gp0_regnum + PPC_RT (insn));
5550 break;
5551
5552 case 10: /* Compare Logical Immediate */
5553 case 11: /* Compare Immediate */
5554 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5555 break;
5556
5557 case 13: /* Add Immediate Carrying and Record */
5558 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5559 /* FALL-THROUGH */
5560 case 12: /* Add Immediate Carrying */
5561 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5562 /* FALL-THROUGH */
5563 case 14: /* Add Immediate */
5564 case 15: /* Add Immediate Shifted */
5565 record_full_arch_list_add_reg (regcache,
5566 tdep->ppc_gp0_regnum + PPC_RT (insn));
5567 break;
5568
5569 case 16: /* Branch Conditional */
5570 if ((PPC_BO (insn) & 0x4) == 0)
5571 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5572 /* FALL-THROUGH */
5573 case 18: /* Branch */
5574 if (PPC_LK (insn))
5575 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5576 break;
5577
5578 case 19:
5579 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5580 return -1;
5581 break;
5582
5583 case 20: /* Rotate Left Word Immediate then Mask Insert */
5584 case 21: /* Rotate Left Word Immediate then AND with Mask */
5585 case 23: /* Rotate Left Word then AND with Mask */
5586 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5587 /* Rotate Left Doubleword Immediate then Clear Right */
5588 /* Rotate Left Doubleword Immediate then Clear */
5589 /* Rotate Left Doubleword then Clear Left */
5590 /* Rotate Left Doubleword then Clear Right */
5591 /* Rotate Left Doubleword Immediate then Mask Insert */
5592 if (PPC_RC (insn))
5593 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5594 record_full_arch_list_add_reg (regcache,
5595 tdep->ppc_gp0_regnum + PPC_RA (insn));
5596 break;
5597
5598 case 28: /* AND Immediate */
5599 case 29: /* AND Immediate Shifted */
5600 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5601 /* FALL-THROUGH */
5602 case 24: /* OR Immediate */
5603 case 25: /* OR Immediate Shifted */
5604 case 26: /* XOR Immediate */
5605 case 27: /* XOR Immediate Shifted */
5606 record_full_arch_list_add_reg (regcache,
5607 tdep->ppc_gp0_regnum + PPC_RA (insn));
5608 break;
5609
5610 case 31:
5611 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5612 return -1;
5613 break;
5614
5615 case 33: /* Load Word and Zero with Update */
5616 case 35: /* Load Byte and Zero with Update */
5617 case 41: /* Load Halfword and Zero with Update */
5618 case 43: /* Load Halfword Algebraic with Update */
5619 record_full_arch_list_add_reg (regcache,
5620 tdep->ppc_gp0_regnum + PPC_RA (insn));
5621 /* FALL-THROUGH */
5622 case 32: /* Load Word and Zero */
5623 case 34: /* Load Byte and Zero */
5624 case 40: /* Load Halfword and Zero */
5625 case 42: /* Load Halfword Algebraic */
5626 record_full_arch_list_add_reg (regcache,
5627 tdep->ppc_gp0_regnum + PPC_RT (insn));
5628 break;
5629
5630 case 46: /* Load Multiple Word */
5631 for (i = PPC_RT (insn); i < 32; i++)
5632 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5633 break;
5634
5635 case 56: /* Load Quadword */
5636 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5637 record_full_arch_list_add_reg (regcache, tmp);
5638 record_full_arch_list_add_reg (regcache, tmp + 1);
5639 break;
5640
5641 case 49: /* Load Floating-Point Single with Update */
5642 case 51: /* Load Floating-Point Double with Update */
5643 record_full_arch_list_add_reg (regcache,
5644 tdep->ppc_gp0_regnum + PPC_RA (insn));
5645 /* FALL-THROUGH */
5646 case 48: /* Load Floating-Point Single */
5647 case 50: /* Load Floating-Point Double */
5648 record_full_arch_list_add_reg (regcache,
5649 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5650 break;
5651
5652 case 47: /* Store Multiple Word */
5653 {
5654 ULONGEST addr = 0;
5655
5656 if (PPC_RA (insn) != 0)
5657 regcache_raw_read_unsigned (regcache,
5658 tdep->ppc_gp0_regnum + PPC_RA (insn),
5659 &addr);
5660
5661 addr += PPC_D (insn);
5662 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5663 }
5664 break;
5665
5666 case 37: /* Store Word with Update */
5667 case 39: /* Store Byte with Update */
5668 case 45: /* Store Halfword with Update */
5669 case 53: /* Store Floating-Point Single with Update */
5670 case 55: /* Store Floating-Point Double with Update */
5671 record_full_arch_list_add_reg (regcache,
5672 tdep->ppc_gp0_regnum + PPC_RA (insn));
5673 /* FALL-THROUGH */
5674 case 36: /* Store Word */
5675 case 38: /* Store Byte */
5676 case 44: /* Store Halfword */
5677 case 52: /* Store Floating-Point Single */
5678 case 54: /* Store Floating-Point Double */
5679 {
5680 ULONGEST addr = 0;
5681 int size = -1;
5682
5683 if (PPC_RA (insn) != 0)
5684 regcache_raw_read_unsigned (regcache,
5685 tdep->ppc_gp0_regnum + PPC_RA (insn),
5686 &addr);
5687 addr += PPC_D (insn);
5688
5689 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5690 size = 4;
5691 else if (op6 == 54 || op6 == 55)
5692 size = 8;
5693 else if (op6 == 44 || op6 == 45)
5694 size = 2;
5695 else if (op6 == 38 || op6 == 39)
5696 size = 1;
5697 else
5698 gdb_assert (0);
5699
5700 record_full_arch_list_add_mem (addr, size);
5701 }
5702 break;
5703
5704 case 57:
5705 switch (insn & 0x3)
5706 {
5707 case 0: /* Load Floating-Point Double Pair */
5708 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5709 record_full_arch_list_add_reg (regcache, tmp);
5710 record_full_arch_list_add_reg (regcache, tmp + 1);
5711 break;
5712 case 2: /* Load VSX Scalar Doubleword */
5713 case 3: /* Load VSX Scalar Single */
5714 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5715 break;
5716 default:
5717 goto UNKNOWN_OP;
5718 }
5719 break;
5720
5721 case 58: /* Load Doubleword */
5722 /* Load Doubleword with Update */
5723 /* Load Word Algebraic */
5724 if (PPC_FIELD (insn, 30, 2) > 2)
5725 goto UNKNOWN_OP;
5726
5727 record_full_arch_list_add_reg (regcache,
5728 tdep->ppc_gp0_regnum + PPC_RT (insn));
5729 if (PPC_BIT (insn, 31))
5730 record_full_arch_list_add_reg (regcache,
5731 tdep->ppc_gp0_regnum + PPC_RA (insn));
5732 break;
5733
5734 case 59:
5735 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5736 return -1;
5737 break;
5738
5739 case 60:
5740 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5741 return -1;
5742 break;
5743
5744 case 61:
5745 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
5746 return -1;
5747 break;
5748
5749 case 62: /* Store Doubleword */
5750 /* Store Doubleword with Update */
5751 /* Store Quadword with Update */
5752 {
5753 ULONGEST addr = 0;
5754 int size;
5755 int sub2 = PPC_FIELD (insn, 30, 2);
5756
5757 if (sub2 > 2)
5758 goto UNKNOWN_OP;
5759
5760 if (PPC_RA (insn) != 0)
5761 regcache_raw_read_unsigned (regcache,
5762 tdep->ppc_gp0_regnum + PPC_RA (insn),
5763 &addr);
5764
5765 size = (sub2 == 2) ? 16 : 8;
5766
5767 addr += PPC_DS (insn) << 2;
5768 record_full_arch_list_add_mem (addr, size);
5769
5770 if (op6 == 62 && sub2 == 1)
5771 record_full_arch_list_add_reg (regcache,
5772 tdep->ppc_gp0_regnum +
5773 PPC_RA (insn));
5774
5775 break;
5776 }
5777
5778 case 63:
5779 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5780 return -1;
5781 break;
5782
5783 default:
5784 UNKNOWN_OP:
5785 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5786 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
5787 return -1;
5788 }
5789
5790 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5791 return -1;
5792 if (record_full_arch_list_add_end ())
5793 return -1;
5794 return 0;
5795 }
5796
5797 /* Initialize the current architecture based on INFO. If possible, re-use an
5798 architecture from ARCHES, which is a list of architectures already created
5799 during this debugging session.
5800
5801 Called e.g. at program startup, when reading a core file, and when reading
5802 a binary file. */
5803
5804 static struct gdbarch *
5805 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5806 {
5807 struct gdbarch *gdbarch;
5808 struct gdbarch_tdep *tdep;
5809 int wordsize, from_xcoff_exec, from_elf_exec;
5810 enum bfd_architecture arch;
5811 unsigned long mach;
5812 bfd abfd;
5813 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5814 int soft_float;
5815 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
5816 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
5817 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
5818 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5819 have_vsx = 0;
5820 int tdesc_wordsize = -1;
5821 const struct target_desc *tdesc = info.target_desc;
5822 struct tdesc_arch_data *tdesc_data = NULL;
5823 int num_pseudoregs = 0;
5824 int cur_reg;
5825
5826 /* INFO may refer to a binary that is not of the PowerPC architecture,
5827 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5828 In this case, we must not attempt to infer properties of the (PowerPC
5829 side) of the target system from properties of that executable. Trust
5830 the target description instead. */
5831 if (info.abfd
5832 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5833 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5834 info.abfd = NULL;
5835
5836 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
5837 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5838
5839 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5840 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5841
5842 /* Check word size. If INFO is from a binary file, infer it from
5843 that, else choose a likely default. */
5844 if (from_xcoff_exec)
5845 {
5846 if (bfd_xcoff_is_xcoff64 (info.abfd))
5847 wordsize = 8;
5848 else
5849 wordsize = 4;
5850 }
5851 else if (from_elf_exec)
5852 {
5853 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5854 wordsize = 8;
5855 else
5856 wordsize = 4;
5857 }
5858 else if (tdesc_has_registers (tdesc))
5859 wordsize = -1;
5860 else
5861 {
5862 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
5863 wordsize = (info.bfd_arch_info->bits_per_word
5864 / info.bfd_arch_info->bits_per_byte);
5865 else
5866 wordsize = 4;
5867 }
5868
5869 /* Get the architecture and machine from the BFD. */
5870 arch = info.bfd_arch_info->arch;
5871 mach = info.bfd_arch_info->mach;
5872
5873 /* For e500 executables, the apuinfo section is of help here. Such
5874 section contains the identifier and revision number of each
5875 Application-specific Processing Unit that is present on the
5876 chip. The content of the section is determined by the assembler
5877 which looks at each instruction and determines which unit (and
5878 which version of it) can execute it. Grovel through the section
5879 looking for relevant e500 APUs. */
5880
5881 if (bfd_uses_spe_extensions (info.abfd))
5882 {
5883 arch = info.bfd_arch_info->arch;
5884 mach = bfd_mach_ppc_e500;
5885 bfd_default_set_arch_mach (&abfd, arch, mach);
5886 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5887 }
5888
5889 /* Find a default target description which describes our register
5890 layout, if we do not already have one. */
5891 if (! tdesc_has_registers (tdesc))
5892 {
5893 const struct variant *v;
5894
5895 /* Choose variant. */
5896 v = find_variant_by_arch (arch, mach);
5897 if (!v)
5898 return NULL;
5899
5900 tdesc = *v->tdesc;
5901 }
5902
5903 gdb_assert (tdesc_has_registers (tdesc));
5904
5905 /* Check any target description for validity. */
5906 if (tdesc_has_registers (tdesc))
5907 {
5908 static const char *const gprs[] = {
5909 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5910 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5911 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5912 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5913 };
5914 const struct tdesc_feature *feature;
5915 int i, valid_p;
5916 static const char *const msr_names[] = { "msr", "ps" };
5917 static const char *const cr_names[] = { "cr", "cnd" };
5918 static const char *const ctr_names[] = { "ctr", "cnt" };
5919
5920 feature = tdesc_find_feature (tdesc,
5921 "org.gnu.gdb.power.core");
5922 if (feature == NULL)
5923 return NULL;
5924
5925 tdesc_data = tdesc_data_alloc ();
5926
5927 valid_p = 1;
5928 for (i = 0; i < ppc_num_gprs; i++)
5929 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
5930 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
5931 "pc");
5932 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
5933 "lr");
5934 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
5935 "xer");
5936
5937 /* Allow alternate names for these registers, to accomodate GDB's
5938 historic naming. */
5939 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5940 PPC_MSR_REGNUM, msr_names);
5941 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5942 PPC_CR_REGNUM, cr_names);
5943 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5944 PPC_CTR_REGNUM, ctr_names);
5945
5946 if (!valid_p)
5947 {
5948 tdesc_data_cleanup (tdesc_data);
5949 return NULL;
5950 }
5951
5952 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
5953 "mq");
5954
5955 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
5956 if (wordsize == -1)
5957 wordsize = tdesc_wordsize;
5958
5959 feature = tdesc_find_feature (tdesc,
5960 "org.gnu.gdb.power.fpu");
5961 if (feature != NULL)
5962 {
5963 static const char *const fprs[] = {
5964 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5965 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5966 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5967 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
5968 };
5969 valid_p = 1;
5970 for (i = 0; i < ppc_num_fprs; i++)
5971 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5972 PPC_F0_REGNUM + i, fprs[i]);
5973 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5974 PPC_FPSCR_REGNUM, "fpscr");
5975
5976 if (!valid_p)
5977 {
5978 tdesc_data_cleanup (tdesc_data);
5979 return NULL;
5980 }
5981 have_fpu = 1;
5982
5983 /* The fpscr register was expanded in isa 2.05 to 64 bits
5984 along with the addition of the decimal floating point
5985 facility. */
5986 if (tdesc_register_bitsize (feature, "fpscr") > 32)
5987 have_dfp = 1;
5988 }
5989 else
5990 have_fpu = 0;
5991
5992 feature = tdesc_find_feature (tdesc,
5993 "org.gnu.gdb.power.altivec");
5994 if (feature != NULL)
5995 {
5996 static const char *const vector_regs[] = {
5997 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
5998 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
5999 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6000 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6001 };
6002
6003 valid_p = 1;
6004 for (i = 0; i < ppc_num_gprs; i++)
6005 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6006 PPC_VR0_REGNUM + i,
6007 vector_regs[i]);
6008 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6009 PPC_VSCR_REGNUM, "vscr");
6010 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6011 PPC_VRSAVE_REGNUM, "vrsave");
6012
6013 if (have_spe || !valid_p)
6014 {
6015 tdesc_data_cleanup (tdesc_data);
6016 return NULL;
6017 }
6018 have_altivec = 1;
6019 }
6020 else
6021 have_altivec = 0;
6022
6023 /* Check for POWER7 VSX registers support. */
6024 feature = tdesc_find_feature (tdesc,
6025 "org.gnu.gdb.power.vsx");
6026
6027 if (feature != NULL)
6028 {
6029 static const char *const vsx_regs[] = {
6030 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6031 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6032 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6033 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6034 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6035 "vs30h", "vs31h"
6036 };
6037
6038 valid_p = 1;
6039
6040 for (i = 0; i < ppc_num_vshrs; i++)
6041 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6042 PPC_VSR0_UPPER_REGNUM + i,
6043 vsx_regs[i]);
6044 if (!valid_p)
6045 {
6046 tdesc_data_cleanup (tdesc_data);
6047 return NULL;
6048 }
6049
6050 have_vsx = 1;
6051 }
6052 else
6053 have_vsx = 0;
6054
6055 /* On machines supporting the SPE APU, the general-purpose registers
6056 are 64 bits long. There are SIMD vector instructions to treat them
6057 as pairs of floats, but the rest of the instruction set treats them
6058 as 32-bit registers, and only operates on their lower halves.
6059
6060 In the GDB regcache, we treat their high and low halves as separate
6061 registers. The low halves we present as the general-purpose
6062 registers, and then we have pseudo-registers that stitch together
6063 the upper and lower halves and present them as pseudo-registers.
6064
6065 Thus, the target description is expected to supply the upper
6066 halves separately. */
6067
6068 feature = tdesc_find_feature (tdesc,
6069 "org.gnu.gdb.power.spe");
6070 if (feature != NULL)
6071 {
6072 static const char *const upper_spe[] = {
6073 "ev0h", "ev1h", "ev2h", "ev3h",
6074 "ev4h", "ev5h", "ev6h", "ev7h",
6075 "ev8h", "ev9h", "ev10h", "ev11h",
6076 "ev12h", "ev13h", "ev14h", "ev15h",
6077 "ev16h", "ev17h", "ev18h", "ev19h",
6078 "ev20h", "ev21h", "ev22h", "ev23h",
6079 "ev24h", "ev25h", "ev26h", "ev27h",
6080 "ev28h", "ev29h", "ev30h", "ev31h"
6081 };
6082
6083 valid_p = 1;
6084 for (i = 0; i < ppc_num_gprs; i++)
6085 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6086 PPC_SPE_UPPER_GP0_REGNUM + i,
6087 upper_spe[i]);
6088 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6089 PPC_SPE_ACC_REGNUM, "acc");
6090 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6091 PPC_SPE_FSCR_REGNUM, "spefscr");
6092
6093 if (have_mq || have_fpu || !valid_p)
6094 {
6095 tdesc_data_cleanup (tdesc_data);
6096 return NULL;
6097 }
6098 have_spe = 1;
6099 }
6100 else
6101 have_spe = 0;
6102 }
6103
6104 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6105 complain for a 32-bit binary on a 64-bit target; we do not yet
6106 support that. For instance, the 32-bit ABI routines expect
6107 32-bit GPRs.
6108
6109 As long as there isn't an explicit target description, we'll
6110 choose one based on the BFD architecture and get a word size
6111 matching the binary (probably powerpc:common or
6112 powerpc:common64). So there is only trouble if a 64-bit target
6113 supplies a 64-bit description while debugging a 32-bit
6114 binary. */
6115 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6116 {
6117 tdesc_data_cleanup (tdesc_data);
6118 return NULL;
6119 }
6120
6121 #ifdef HAVE_ELF
6122 if (from_elf_exec)
6123 {
6124 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6125 {
6126 case 1:
6127 elf_abi = POWERPC_ELF_V1;
6128 break;
6129 case 2:
6130 elf_abi = POWERPC_ELF_V2;
6131 break;
6132 default:
6133 break;
6134 }
6135 }
6136
6137 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6138 {
6139 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6140 Tag_GNU_Power_ABI_FP) & 3)
6141 {
6142 case 1:
6143 soft_float_flag = AUTO_BOOLEAN_FALSE;
6144 break;
6145 case 2:
6146 soft_float_flag = AUTO_BOOLEAN_TRUE;
6147 break;
6148 default:
6149 break;
6150 }
6151 }
6152
6153 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6154 {
6155 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6156 Tag_GNU_Power_ABI_FP) >> 2)
6157 {
6158 case 1:
6159 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6160 break;
6161 case 3:
6162 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6163 break;
6164 default:
6165 break;
6166 }
6167 }
6168
6169 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6170 {
6171 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6172 Tag_GNU_Power_ABI_Vector))
6173 {
6174 case 1:
6175 vector_abi = POWERPC_VEC_GENERIC;
6176 break;
6177 case 2:
6178 vector_abi = POWERPC_VEC_ALTIVEC;
6179 break;
6180 case 3:
6181 vector_abi = POWERPC_VEC_SPE;
6182 break;
6183 default:
6184 break;
6185 }
6186 }
6187 #endif
6188
6189 /* At this point, the only supported ELF-based 64-bit little-endian
6190 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6191 default. All other supported ELF-based operating systems use the
6192 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6193 e.g. because we run a legacy binary, or have attached to a process
6194 and have not found any associated binary file, set the default
6195 according to this heuristic. */
6196 if (elf_abi == POWERPC_ELF_AUTO)
6197 {
6198 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6199 elf_abi = POWERPC_ELF_V2;
6200 else
6201 elf_abi = POWERPC_ELF_V1;
6202 }
6203
6204 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6205 soft_float = 1;
6206 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6207 soft_float = 0;
6208 else
6209 soft_float = !have_fpu;
6210
6211 /* If we have a hard float binary or setting but no floating point
6212 registers, downgrade to soft float anyway. We're still somewhat
6213 useful in this scenario. */
6214 if (!soft_float && !have_fpu)
6215 soft_float = 1;
6216
6217 /* Similarly for vector registers. */
6218 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6219 vector_abi = POWERPC_VEC_GENERIC;
6220
6221 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6222 vector_abi = POWERPC_VEC_GENERIC;
6223
6224 if (vector_abi == POWERPC_VEC_AUTO)
6225 {
6226 if (have_altivec)
6227 vector_abi = POWERPC_VEC_ALTIVEC;
6228 else if (have_spe)
6229 vector_abi = POWERPC_VEC_SPE;
6230 else
6231 vector_abi = POWERPC_VEC_GENERIC;
6232 }
6233
6234 /* Do not limit the vector ABI based on available hardware, since we
6235 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6236
6237 /* Find a candidate among extant architectures. */
6238 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6239 arches != NULL;
6240 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6241 {
6242 /* Word size in the various PowerPC bfd_arch_info structs isn't
6243 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6244 separate word size check. */
6245 tdep = gdbarch_tdep (arches->gdbarch);
6246 if (tdep && tdep->elf_abi != elf_abi)
6247 continue;
6248 if (tdep && tdep->soft_float != soft_float)
6249 continue;
6250 if (tdep && tdep->long_double_abi != long_double_abi)
6251 continue;
6252 if (tdep && tdep->vector_abi != vector_abi)
6253 continue;
6254 if (tdep && tdep->wordsize == wordsize)
6255 {
6256 if (tdesc_data != NULL)
6257 tdesc_data_cleanup (tdesc_data);
6258 return arches->gdbarch;
6259 }
6260 }
6261
6262 /* None found, create a new architecture from INFO, whose bfd_arch_info
6263 validity depends on the source:
6264 - executable useless
6265 - rs6000_host_arch() good
6266 - core file good
6267 - "set arch" trust blindly
6268 - GDB startup useless but harmless */
6269
6270 tdep = XCNEW (struct gdbarch_tdep);
6271 tdep->wordsize = wordsize;
6272 tdep->elf_abi = elf_abi;
6273 tdep->soft_float = soft_float;
6274 tdep->long_double_abi = long_double_abi;
6275 tdep->vector_abi = vector_abi;
6276
6277 gdbarch = gdbarch_alloc (&info, tdep);
6278
6279 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6280 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6281 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6282 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6283 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6284 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6285 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6286 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6287
6288 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6289 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6290 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6291 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6292 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6293 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6294 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6295 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6296
6297 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6298 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6299 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6300 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6301
6302 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6303 GDB traditionally called it "ps", though, so let GDB add an
6304 alias. */
6305 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6306
6307 if (wordsize == 8)
6308 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6309 else
6310 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6311
6312 /* Set lr_frame_offset. */
6313 if (wordsize == 8)
6314 tdep->lr_frame_offset = 16;
6315 else
6316 tdep->lr_frame_offset = 4;
6317
6318 if (have_spe || have_dfp || have_vsx)
6319 {
6320 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6321 set_gdbarch_pseudo_register_write (gdbarch,
6322 rs6000_pseudo_register_write);
6323 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6324 rs6000_ax_pseudo_register_collect);
6325 }
6326
6327 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6328
6329 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6330
6331 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6332
6333 if (have_spe)
6334 num_pseudoregs += 32;
6335 if (have_dfp)
6336 num_pseudoregs += 16;
6337 if (have_vsx)
6338 /* Include both VSX and Extended FP registers. */
6339 num_pseudoregs += 96;
6340
6341 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6342
6343 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6344 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6345 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6346 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6347 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6348 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6349 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6350 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6351 set_gdbarch_char_signed (gdbarch, 0);
6352
6353 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6354 if (wordsize == 8)
6355 /* PPC64 SYSV. */
6356 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6357
6358 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6359 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6360 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6361
6362 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6363 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6364
6365 if (wordsize == 4)
6366 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6367 else if (wordsize == 8)
6368 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6369
6370 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6371 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6372 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6373
6374 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6375
6376 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
6377 rs6000_breakpoint::kind_from_pc);
6378 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
6379 rs6000_breakpoint::bp_from_kind);
6380
6381 /* The value of symbols of type N_SO and N_FUN maybe null when
6382 it shouldn't be. */
6383 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6384
6385 /* Handles single stepping of atomic sequences. */
6386 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6387
6388 /* Not sure on this. FIXMEmgo */
6389 set_gdbarch_frame_args_skip (gdbarch, 8);
6390
6391 /* Helpers for function argument information. */
6392 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6393
6394 /* Trampoline. */
6395 set_gdbarch_in_solib_return_trampoline
6396 (gdbarch, rs6000_in_solib_return_trampoline);
6397 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6398
6399 /* Hook in the DWARF CFI frame unwinder. */
6400 dwarf2_append_unwinders (gdbarch);
6401 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6402
6403 /* Frame handling. */
6404 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6405
6406 /* Setup displaced stepping. */
6407 set_gdbarch_displaced_step_copy_insn (gdbarch,
6408 ppc_displaced_step_copy_insn);
6409 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6410 ppc_displaced_step_hw_singlestep);
6411 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6412 set_gdbarch_displaced_step_location (gdbarch,
6413 displaced_step_at_entry_point);
6414
6415 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6416
6417 /* Hook in ABI-specific overrides, if they have been registered. */
6418 info.target_desc = tdesc;
6419 info.tdesc_data = tdesc_data;
6420 gdbarch_init_osabi (info, gdbarch);
6421
6422 switch (info.osabi)
6423 {
6424 case GDB_OSABI_LINUX:
6425 case GDB_OSABI_NETBSD:
6426 case GDB_OSABI_UNKNOWN:
6427 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6428 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6429 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6430 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6431 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6432 break;
6433 default:
6434 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
6435
6436 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6437 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6438 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6439 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6440 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6441 }
6442
6443 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6444 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6445 rs6000_pseudo_register_reggroup_p);
6446 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6447
6448 /* Override the normal target description method to make the SPE upper
6449 halves anonymous. */
6450 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6451
6452 /* Choose register numbers for all supported pseudo-registers. */
6453 tdep->ppc_ev0_regnum = -1;
6454 tdep->ppc_dl0_regnum = -1;
6455 tdep->ppc_vsr0_regnum = -1;
6456 tdep->ppc_efpr0_regnum = -1;
6457
6458 cur_reg = gdbarch_num_regs (gdbarch);
6459
6460 if (have_spe)
6461 {
6462 tdep->ppc_ev0_regnum = cur_reg;
6463 cur_reg += 32;
6464 }
6465 if (have_dfp)
6466 {
6467 tdep->ppc_dl0_regnum = cur_reg;
6468 cur_reg += 16;
6469 }
6470 if (have_vsx)
6471 {
6472 tdep->ppc_vsr0_regnum = cur_reg;
6473 cur_reg += 64;
6474 tdep->ppc_efpr0_regnum = cur_reg;
6475 cur_reg += 32;
6476 }
6477
6478 gdb_assert (gdbarch_num_regs (gdbarch)
6479 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
6480
6481 /* Register the ravenscar_arch_ops. */
6482 if (mach == bfd_mach_ppc_e500)
6483 register_e500_ravenscar_ops (gdbarch);
6484 else
6485 register_ppc_ravenscar_ops (gdbarch);
6486
6487 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
6488 set_gdbarch_valid_disassembler_options (gdbarch,
6489 disassembler_options_powerpc ());
6490
6491 return gdbarch;
6492 }
6493
6494 static void
6495 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6496 {
6497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6498
6499 if (tdep == NULL)
6500 return;
6501
6502 /* FIXME: Dump gdbarch_tdep. */
6503 }
6504
6505 /* PowerPC-specific commands. */
6506
6507 static void
6508 set_powerpc_command (const char *args, int from_tty)
6509 {
6510 printf_unfiltered (_("\
6511 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
6512 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6513 }
6514
6515 static void
6516 show_powerpc_command (const char *args, int from_tty)
6517 {
6518 cmd_show_list (showpowerpccmdlist, from_tty, "");
6519 }
6520
6521 static void
6522 powerpc_set_soft_float (const char *args, int from_tty,
6523 struct cmd_list_element *c)
6524 {
6525 struct gdbarch_info info;
6526
6527 /* Update the architecture. */
6528 gdbarch_info_init (&info);
6529 if (!gdbarch_update_p (info))
6530 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6531 }
6532
6533 static void
6534 powerpc_set_vector_abi (const char *args, int from_tty,
6535 struct cmd_list_element *c)
6536 {
6537 struct gdbarch_info info;
6538 int vector_abi;
6539
6540 for (vector_abi = POWERPC_VEC_AUTO;
6541 vector_abi != POWERPC_VEC_LAST;
6542 vector_abi++)
6543 if (strcmp (powerpc_vector_abi_string,
6544 powerpc_vector_strings[vector_abi]) == 0)
6545 {
6546 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
6547 break;
6548 }
6549
6550 if (vector_abi == POWERPC_VEC_LAST)
6551 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6552 powerpc_vector_abi_string);
6553
6554 /* Update the architecture. */
6555 gdbarch_info_init (&info);
6556 if (!gdbarch_update_p (info))
6557 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6558 }
6559
6560 /* Show the current setting of the exact watchpoints flag. */
6561
6562 static void
6563 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6564 struct cmd_list_element *c,
6565 const char *value)
6566 {
6567 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6568 }
6569
6570 /* Read a PPC instruction from memory. */
6571
6572 static unsigned int
6573 read_insn (struct frame_info *frame, CORE_ADDR pc)
6574 {
6575 struct gdbarch *gdbarch = get_frame_arch (frame);
6576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6577
6578 return read_memory_unsigned_integer (pc, 4, byte_order);
6579 }
6580
6581 /* Return non-zero if the instructions at PC match the series
6582 described in PATTERN, or zero otherwise. PATTERN is an array of
6583 'struct ppc_insn_pattern' objects, terminated by an entry whose
6584 mask is zero.
6585
6586 When the match is successful, fill INSNS[i] with what PATTERN[i]
6587 matched. If PATTERN[i] is optional, and the instruction wasn't
6588 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
6589 INSNS should have as many elements as PATTERN, minus the terminator.
6590 Note that, if PATTERN contains optional instructions which aren't
6591 present in memory, then INSNS will have holes, so INSNS[i] isn't
6592 necessarily the i'th instruction in memory. */
6593
6594 int
6595 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6596 const struct ppc_insn_pattern *pattern,
6597 unsigned int *insns)
6598 {
6599 int i;
6600 unsigned int insn;
6601
6602 for (i = 0, insn = 0; pattern[i].mask; i++)
6603 {
6604 if (insn == 0)
6605 insn = read_insn (frame, pc);
6606 insns[i] = 0;
6607 if ((insn & pattern[i].mask) == pattern[i].data)
6608 {
6609 insns[i] = insn;
6610 pc += 4;
6611 insn = 0;
6612 }
6613 else if (!pattern[i].optional)
6614 return 0;
6615 }
6616
6617 return 1;
6618 }
6619
6620 /* Return the 'd' field of the d-form instruction INSN, properly
6621 sign-extended. */
6622
6623 CORE_ADDR
6624 ppc_insn_d_field (unsigned int insn)
6625 {
6626 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6627 }
6628
6629 /* Return the 'ds' field of the ds-form instruction INSN, with the two
6630 zero bits concatenated at the right, and properly
6631 sign-extended. */
6632
6633 CORE_ADDR
6634 ppc_insn_ds_field (unsigned int insn)
6635 {
6636 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6637 }
6638
6639 /* Initialization code. */
6640
6641 void
6642 _initialize_rs6000_tdep (void)
6643 {
6644 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6645 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6646
6647 /* Initialize the standard target descriptions. */
6648 initialize_tdesc_powerpc_32 ();
6649 initialize_tdesc_powerpc_altivec32 ();
6650 initialize_tdesc_powerpc_vsx32 ();
6651 initialize_tdesc_powerpc_403 ();
6652 initialize_tdesc_powerpc_403gc ();
6653 initialize_tdesc_powerpc_405 ();
6654 initialize_tdesc_powerpc_505 ();
6655 initialize_tdesc_powerpc_601 ();
6656 initialize_tdesc_powerpc_602 ();
6657 initialize_tdesc_powerpc_603 ();
6658 initialize_tdesc_powerpc_604 ();
6659 initialize_tdesc_powerpc_64 ();
6660 initialize_tdesc_powerpc_altivec64 ();
6661 initialize_tdesc_powerpc_vsx64 ();
6662 initialize_tdesc_powerpc_7400 ();
6663 initialize_tdesc_powerpc_750 ();
6664 initialize_tdesc_powerpc_860 ();
6665 initialize_tdesc_powerpc_e500 ();
6666 initialize_tdesc_rs6000 ();
6667
6668 /* Add root prefix command for all "set powerpc"/"show powerpc"
6669 commands. */
6670 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6671 _("Various PowerPC-specific commands."),
6672 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6673
6674 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6675 _("Various PowerPC-specific commands."),
6676 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6677
6678 /* Add a command to allow the user to force the ABI. */
6679 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6680 &powerpc_soft_float_global,
6681 _("Set whether to use a soft-float ABI."),
6682 _("Show whether to use a soft-float ABI."),
6683 NULL,
6684 powerpc_set_soft_float, NULL,
6685 &setpowerpccmdlist, &showpowerpccmdlist);
6686
6687 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6688 &powerpc_vector_abi_string,
6689 _("Set the vector ABI."),
6690 _("Show the vector ABI."),
6691 NULL, powerpc_set_vector_abi, NULL,
6692 &setpowerpccmdlist, &showpowerpccmdlist);
6693
6694 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6695 &target_exact_watchpoints,
6696 _("\
6697 Set whether to use just one debug register for watchpoints on scalars."),
6698 _("\
6699 Show whether to use just one debug register for watchpoints on scalars."),
6700 _("\
6701 If true, GDB will use only one debug register when watching a variable of\n\
6702 scalar type, thus assuming that the variable is accessed through the address\n\
6703 of its first byte."),
6704 NULL, show_powerpc_exact_watchpoints,
6705 &setpowerpccmdlist, &showpowerpccmdlist);
6706 }
This page took 0.244181 seconds and 5 git commands to generate.