* rs6000-tdep.c (store_param_on_stack_p): New function,
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39
40 #include "libbfd.h" /* for bfd_default_set_arch_mach */
41 #include "coff/internal.h" /* for libcoff.h */
42 #include "libcoff.h" /* for xcoff_data */
43 #include "coff/xcoff.h"
44 #include "libxcoff.h"
45
46 #include "elf-bfd.h"
47
48 #include "solib-svr4.h"
49 #include "ppc-tdep.h"
50
51 #include "gdb_assert.h"
52 #include "dis-asm.h"
53
54 #include "trad-frame.h"
55 #include "frame-unwind.h"
56 #include "frame-base.h"
57
58 /* If the kernel has to deliver a signal, it pushes a sigcontext
59 structure on the stack and then calls the signal handler, passing
60 the address of the sigcontext in an argument register. Usually
61 the signal handler doesn't save this register, so we have to
62 access the sigcontext structure via an offset from the signal handler
63 frame.
64 The following constants were determined by experimentation on AIX 3.2. */
65 #define SIG_FRAME_PC_OFFSET 96
66 #define SIG_FRAME_LR_OFFSET 108
67 #define SIG_FRAME_FP_OFFSET 284
68
69 /* To be used by skip_prologue. */
70
71 struct rs6000_framedata
72 {
73 int offset; /* total size of frame --- the distance
74 by which we decrement sp to allocate
75 the frame */
76 int saved_gpr; /* smallest # of saved gpr */
77 int saved_fpr; /* smallest # of saved fpr */
78 int saved_vr; /* smallest # of saved vr */
79 int saved_ev; /* smallest # of saved ev */
80 int alloca_reg; /* alloca register number (frame ptr) */
81 char frameless; /* true if frameless functions. */
82 char nosavedpc; /* true if pc not saved. */
83 int gpr_offset; /* offset of saved gprs from prev sp */
84 int fpr_offset; /* offset of saved fprs from prev sp */
85 int vr_offset; /* offset of saved vrs from prev sp */
86 int ev_offset; /* offset of saved evs from prev sp */
87 int lr_offset; /* offset of saved lr */
88 int cr_offset; /* offset of saved cr */
89 int vrsave_offset; /* offset of saved vrsave register */
90 };
91
92 /* Description of a single register. */
93
94 struct reg
95 {
96 char *name; /* name of register */
97 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
98 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
99 unsigned char fpr; /* whether register is floating-point */
100 unsigned char pseudo; /* whether register is pseudo */
101 };
102
103 /* Breakpoint shadows for the single step instructions will be kept here. */
104
105 static struct sstep_breaks
106 {
107 /* Address, or 0 if this is not in use. */
108 CORE_ADDR address;
109 /* Shadow contents. */
110 char data[4];
111 }
112 stepBreaks[2];
113
114 /* Hook for determining the TOC address when calling functions in the
115 inferior under AIX. The initialization code in rs6000-nat.c sets
116 this hook to point to find_toc_address. */
117
118 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
119
120 /* Hook to set the current architecture when starting a child process.
121 rs6000-nat.c sets this. */
122
123 void (*rs6000_set_host_arch_hook) (int) = NULL;
124
125 /* Static function prototypes */
126
127 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
128 CORE_ADDR safety);
129 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
130 struct rs6000_framedata *);
131
132 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
133 int
134 altivec_register_p (int regno)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
137 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
138 return 0;
139 else
140 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
141 }
142
143
144 /* Return non-zero if the architecture described by GDBARCH has
145 floating-point registers (f0 --- f31 and fpscr). */
146 int
147 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
148 {
149 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
150
151 return (tdep->ppc_fp0_regnum >= 0
152 && tdep->ppc_fpscr_regnum >= 0);
153 }
154 \f
155
156 /* Register set support functions. */
157
158 static void
159 ppc_supply_reg (struct regcache *regcache, int regnum,
160 const char *regs, size_t offset)
161 {
162 if (regnum != -1 && offset != -1)
163 regcache_raw_supply (regcache, regnum, regs + offset);
164 }
165
166 static void
167 ppc_collect_reg (const struct regcache *regcache, int regnum,
168 char *regs, size_t offset)
169 {
170 if (regnum != -1 && offset != -1)
171 regcache_raw_collect (regcache, regnum, regs + offset);
172 }
173
174 /* Supply register REGNUM in the general-purpose register set REGSET
175 from the buffer specified by GREGS and LEN to register cache
176 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
177
178 void
179 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
180 int regnum, const void *gregs, size_t len)
181 {
182 struct gdbarch *gdbarch = get_regcache_arch (regcache);
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184 const struct ppc_reg_offsets *offsets = regset->descr;
185 size_t offset;
186 int i;
187
188 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
189 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
190 i++, offset += 4)
191 {
192 if (regnum == -1 || regnum == i)
193 ppc_supply_reg (regcache, i, gregs, offset);
194 }
195
196 if (regnum == -1 || regnum == PC_REGNUM)
197 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
198 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
199 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
200 gregs, offsets->ps_offset);
201 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
202 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
203 gregs, offsets->cr_offset);
204 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
205 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
206 gregs, offsets->lr_offset);
207 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
208 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
209 gregs, offsets->ctr_offset);
210 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
211 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
212 gregs, offsets->cr_offset);
213 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
214 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
215 }
216
217 /* Supply register REGNUM in the floating-point register set REGSET
218 from the buffer specified by FPREGS and LEN to register cache
219 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
220
221 void
222 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
223 int regnum, const void *fpregs, size_t len)
224 {
225 struct gdbarch *gdbarch = get_regcache_arch (regcache);
226 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
227 const struct ppc_reg_offsets *offsets = regset->descr;
228 size_t offset;
229 int i;
230
231 gdb_assert (ppc_floating_point_unit_p (gdbarch));
232
233 offset = offsets->f0_offset;
234 for (i = tdep->ppc_fp0_regnum;
235 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
236 i++, offset += 4)
237 {
238 if (regnum == -1 || regnum == i)
239 ppc_supply_reg (regcache, i, fpregs, offset);
240 }
241
242 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
243 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
244 fpregs, offsets->fpscr_offset);
245 }
246
247 /* Collect register REGNUM in the general-purpose register set
248 REGSET. from register cache REGCACHE into the buffer specified by
249 GREGS and LEN. If REGNUM is -1, do this for all registers in
250 REGSET. */
251
252 void
253 ppc_collect_gregset (const struct regset *regset,
254 const struct regcache *regcache,
255 int regnum, void *gregs, size_t len)
256 {
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
259 const struct ppc_reg_offsets *offsets = regset->descr;
260 size_t offset;
261 int i;
262
263 offset = offsets->r0_offset;
264 for (i = tdep->ppc_gp0_regnum;
265 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
266 i++, offset += 4)
267 {
268 if (regnum == -1 || regnum == i)
269 ppc_collect_reg (regcache, i, gregs, offset);
270 }
271
272 if (regnum == -1 || regnum == PC_REGNUM)
273 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
274 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
275 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
276 gregs, offsets->ps_offset);
277 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
278 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
279 gregs, offsets->cr_offset);
280 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
281 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
282 gregs, offsets->lr_offset);
283 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
284 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
285 gregs, offsets->ctr_offset);
286 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
287 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
288 gregs, offsets->xer_offset);
289 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
290 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
291 gregs, offsets->mq_offset);
292 }
293
294 /* Collect register REGNUM in the floating-point register set
295 REGSET. from register cache REGCACHE into the buffer specified by
296 FPREGS and LEN. If REGNUM is -1, do this for all registers in
297 REGSET. */
298
299 void
300 ppc_collect_fpregset (const struct regset *regset,
301 const struct regcache *regcache,
302 int regnum, void *fpregs, size_t len)
303 {
304 struct gdbarch *gdbarch = get_regcache_arch (regcache);
305 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
306 const struct ppc_reg_offsets *offsets = regset->descr;
307 size_t offset;
308 int i;
309
310 gdb_assert (ppc_floating_point_unit_p (gdbarch));
311
312 offset = offsets->f0_offset;
313 for (i = tdep->ppc_fp0_regnum;
314 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
315 i++, offset += 4)
316 {
317 if (regnum == -1 || regnum == i)
318 ppc_collect_reg (regcache, regnum, fpregs, offset);
319 }
320
321 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
322 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
323 fpregs, offsets->fpscr_offset);
324 }
325 \f
326
327 /* Read a LEN-byte address from debugged memory address MEMADDR. */
328
329 static CORE_ADDR
330 read_memory_addr (CORE_ADDR memaddr, int len)
331 {
332 return read_memory_unsigned_integer (memaddr, len);
333 }
334
335 static CORE_ADDR
336 rs6000_skip_prologue (CORE_ADDR pc)
337 {
338 struct rs6000_framedata frame;
339 pc = skip_prologue (pc, 0, &frame);
340 return pc;
341 }
342
343
344 /* Fill in fi->saved_regs */
345
346 struct frame_extra_info
347 {
348 /* Functions calling alloca() change the value of the stack
349 pointer. We need to use initial stack pointer (which is saved in
350 r31 by gcc) in such cases. If a compiler emits traceback table,
351 then we should use the alloca register specified in traceback
352 table. FIXME. */
353 CORE_ADDR initial_sp; /* initial stack pointer. */
354 };
355
356 /* Get the ith function argument for the current function. */
357 static CORE_ADDR
358 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
359 struct type *type)
360 {
361 CORE_ADDR addr;
362 get_frame_register (frame, 3 + argi, &addr);
363 return addr;
364 }
365
366 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
367
368 static CORE_ADDR
369 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
370 {
371 CORE_ADDR dest;
372 int immediate;
373 int absolute;
374 int ext_op;
375
376 absolute = (int) ((instr >> 1) & 1);
377
378 switch (opcode)
379 {
380 case 18:
381 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
382 if (absolute)
383 dest = immediate;
384 else
385 dest = pc + immediate;
386 break;
387
388 case 16:
389 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
390 if (absolute)
391 dest = immediate;
392 else
393 dest = pc + immediate;
394 break;
395
396 case 19:
397 ext_op = (instr >> 1) & 0x3ff;
398
399 if (ext_op == 16) /* br conditional register */
400 {
401 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
402
403 /* If we are about to return from a signal handler, dest is
404 something like 0x3c90. The current frame is a signal handler
405 caller frame, upon completion of the sigreturn system call
406 execution will return to the saved PC in the frame. */
407 if (dest < TEXT_SEGMENT_BASE)
408 {
409 struct frame_info *fi;
410
411 fi = get_current_frame ();
412 if (fi != NULL)
413 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
414 gdbarch_tdep (current_gdbarch)->wordsize);
415 }
416 }
417
418 else if (ext_op == 528) /* br cond to count reg */
419 {
420 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
421
422 /* If we are about to execute a system call, dest is something
423 like 0x22fc or 0x3b00. Upon completion the system call
424 will return to the address in the link register. */
425 if (dest < TEXT_SEGMENT_BASE)
426 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
427 }
428 else
429 return -1;
430 break;
431
432 default:
433 return -1;
434 }
435 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
436 }
437
438
439 /* Sequence of bytes for breakpoint instruction. */
440
441 const static unsigned char *
442 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
443 {
444 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
445 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
446 *bp_size = 4;
447 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
448 return big_breakpoint;
449 else
450 return little_breakpoint;
451 }
452
453
454 /* AIX does not support PT_STEP. Simulate it. */
455
456 void
457 rs6000_software_single_step (enum target_signal signal,
458 int insert_breakpoints_p)
459 {
460 CORE_ADDR dummy;
461 int breakp_sz;
462 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
463 int ii, insn;
464 CORE_ADDR loc;
465 CORE_ADDR breaks[2];
466 int opcode;
467
468 if (insert_breakpoints_p)
469 {
470
471 loc = read_pc ();
472
473 insn = read_memory_integer (loc, 4);
474
475 breaks[0] = loc + breakp_sz;
476 opcode = insn >> 26;
477 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
478
479 /* Don't put two breakpoints on the same address. */
480 if (breaks[1] == breaks[0])
481 breaks[1] = -1;
482
483 stepBreaks[1].address = 0;
484
485 for (ii = 0; ii < 2; ++ii)
486 {
487
488 /* ignore invalid breakpoint. */
489 if (breaks[ii] == -1)
490 continue;
491 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
492 stepBreaks[ii].address = breaks[ii];
493 }
494
495 }
496 else
497 {
498
499 /* remove step breakpoints. */
500 for (ii = 0; ii < 2; ++ii)
501 if (stepBreaks[ii].address != 0)
502 target_remove_breakpoint (stepBreaks[ii].address,
503 stepBreaks[ii].data);
504 }
505 errno = 0; /* FIXME, don't ignore errors! */
506 /* What errors? {read,write}_memory call error(). */
507 }
508
509
510 /* return pc value after skipping a function prologue and also return
511 information about a function frame.
512
513 in struct rs6000_framedata fdata:
514 - frameless is TRUE, if function does not have a frame.
515 - nosavedpc is TRUE, if function does not save %pc value in its frame.
516 - offset is the initial size of this stack frame --- the amount by
517 which we decrement the sp to allocate the frame.
518 - saved_gpr is the number of the first saved gpr.
519 - saved_fpr is the number of the first saved fpr.
520 - saved_vr is the number of the first saved vr.
521 - saved_ev is the number of the first saved ev.
522 - alloca_reg is the number of the register used for alloca() handling.
523 Otherwise -1.
524 - gpr_offset is the offset of the first saved gpr from the previous frame.
525 - fpr_offset is the offset of the first saved fpr from the previous frame.
526 - vr_offset is the offset of the first saved vr from the previous frame.
527 - ev_offset is the offset of the first saved ev from the previous frame.
528 - lr_offset is the offset of the saved lr
529 - cr_offset is the offset of the saved cr
530 - vrsave_offset is the offset of the saved vrsave register
531 */
532
533 #define SIGNED_SHORT(x) \
534 ((sizeof (short) == 2) \
535 ? ((int)(short)(x)) \
536 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
537
538 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
539
540 /* Limit the number of skipped non-prologue instructions, as the examining
541 of the prologue is expensive. */
542 static int max_skip_non_prologue_insns = 10;
543
544 /* Given PC representing the starting address of a function, and
545 LIM_PC which is the (sloppy) limit to which to scan when looking
546 for a prologue, attempt to further refine this limit by using
547 the line data in the symbol table. If successful, a better guess
548 on where the prologue ends is returned, otherwise the previous
549 value of lim_pc is returned. */
550
551 /* FIXME: cagney/2004-02-14: This function and logic have largely been
552 superseded by skip_prologue_using_sal. */
553
554 static CORE_ADDR
555 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
556 {
557 struct symtab_and_line prologue_sal;
558
559 prologue_sal = find_pc_line (pc, 0);
560 if (prologue_sal.line != 0)
561 {
562 int i;
563 CORE_ADDR addr = prologue_sal.end;
564
565 /* Handle the case in which compiler's optimizer/scheduler
566 has moved instructions into the prologue. We scan ahead
567 in the function looking for address ranges whose corresponding
568 line number is less than or equal to the first one that we
569 found for the function. (It can be less than when the
570 scheduler puts a body instruction before the first prologue
571 instruction.) */
572 for (i = 2 * max_skip_non_prologue_insns;
573 i > 0 && (lim_pc == 0 || addr < lim_pc);
574 i--)
575 {
576 struct symtab_and_line sal;
577
578 sal = find_pc_line (addr, 0);
579 if (sal.line == 0)
580 break;
581 if (sal.line <= prologue_sal.line
582 && sal.symtab == prologue_sal.symtab)
583 {
584 prologue_sal = sal;
585 }
586 addr = sal.end;
587 }
588
589 if (lim_pc == 0 || prologue_sal.end < lim_pc)
590 lim_pc = prologue_sal.end;
591 }
592 return lim_pc;
593 }
594
595 /* Return nonzero if the given instruction OP can be part of the prologue
596 of a function and saves a parameter on the stack. FRAMEP should be
597 set if one of the previous instructions in the function has set the
598 Frame Pointer. */
599
600 static int
601 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
602 {
603 /* Move parameters from argument registers to temporary register. */
604 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
605 {
606 /* Rx must be scratch register r0. */
607 const int rx_regno = (op >> 16) & 31;
608 /* Ry: Only r3 - r10 are used for parameter passing. */
609 const int ry_regno = GET_SRC_REG (op);
610
611 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
612 {
613 *r0_contains_arg = 1;
614 return 1;
615 }
616 else
617 return 0;
618 }
619
620 /* Save a General Purpose Register on stack. */
621
622 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
623 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
624 {
625 /* Rx: Only r3 - r10 are used for parameter passing. */
626 const int rx_regno = GET_SRC_REG (op);
627
628 return (rx_regno >= 3 && rx_regno <= 10);
629 }
630
631 /* Save a General Purpose Register on stack via the Frame Pointer. */
632
633 if (framep &&
634 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
635 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
636 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
637 {
638 /* Rx: Usually, only r3 - r10 are used for parameter passing.
639 However, the compiler sometimes uses r0 to hold an argument. */
640 const int rx_regno = GET_SRC_REG (op);
641
642 return ((rx_regno >= 3 && rx_regno <= 10)
643 || (rx_regno == 0 && *r0_contains_arg));
644 }
645
646 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
647 {
648 /* Only f2 - f8 are used for parameter passing. */
649 const int src_regno = GET_SRC_REG (op);
650
651 return (src_regno >= 2 && src_regno <= 8);
652 }
653
654 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
655 {
656 /* Only f2 - f8 are used for parameter passing. */
657 const int src_regno = GET_SRC_REG (op);
658
659 return (src_regno >= 2 && src_regno <= 8);
660 }
661
662 /* Not an insn that saves a parameter on stack. */
663 return 0;
664 }
665
666 static CORE_ADDR
667 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
668 {
669 CORE_ADDR orig_pc = pc;
670 CORE_ADDR last_prologue_pc = pc;
671 CORE_ADDR li_found_pc = 0;
672 char buf[4];
673 unsigned long op;
674 long offset = 0;
675 long vr_saved_offset = 0;
676 int lr_reg = -1;
677 int cr_reg = -1;
678 int vr_reg = -1;
679 int ev_reg = -1;
680 long ev_offset = 0;
681 int vrsave_reg = -1;
682 int reg;
683 int framep = 0;
684 int minimal_toc_loaded = 0;
685 int prev_insn_was_prologue_insn = 1;
686 int num_skip_non_prologue_insns = 0;
687 int r0_contains_arg = 0;
688 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
689 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
690
691 /* Attempt to find the end of the prologue when no limit is specified.
692 Note that refine_prologue_limit() has been written so that it may
693 be used to "refine" the limits of non-zero PC values too, but this
694 is only safe if we 1) trust the line information provided by the
695 compiler and 2) iterate enough to actually find the end of the
696 prologue.
697
698 It may become a good idea at some point (for both performance and
699 accuracy) to unconditionally call refine_prologue_limit(). But,
700 until we can make a clear determination that this is beneficial,
701 we'll play it safe and only use it to obtain a limit when none
702 has been specified. */
703 if (lim_pc == 0)
704 lim_pc = refine_prologue_limit (pc, lim_pc);
705
706 memset (fdata, 0, sizeof (struct rs6000_framedata));
707 fdata->saved_gpr = -1;
708 fdata->saved_fpr = -1;
709 fdata->saved_vr = -1;
710 fdata->saved_ev = -1;
711 fdata->alloca_reg = -1;
712 fdata->frameless = 1;
713 fdata->nosavedpc = 1;
714
715 for (;; pc += 4)
716 {
717 /* Sometimes it isn't clear if an instruction is a prologue
718 instruction or not. When we encounter one of these ambiguous
719 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
720 Otherwise, we'll assume that it really is a prologue instruction. */
721 if (prev_insn_was_prologue_insn)
722 last_prologue_pc = pc;
723
724 /* Stop scanning if we've hit the limit. */
725 if (lim_pc != 0 && pc >= lim_pc)
726 break;
727
728 prev_insn_was_prologue_insn = 1;
729
730 /* Fetch the instruction and convert it to an integer. */
731 if (target_read_memory (pc, buf, 4))
732 break;
733 op = extract_signed_integer (buf, 4);
734
735 if ((op & 0xfc1fffff) == 0x7c0802a6)
736 { /* mflr Rx */
737 /* Since shared library / PIC code, which needs to get its
738 address at runtime, can appear to save more than one link
739 register vis:
740
741 *INDENT-OFF*
742 stwu r1,-304(r1)
743 mflr r3
744 bl 0xff570d0 (blrl)
745 stw r30,296(r1)
746 mflr r30
747 stw r31,300(r1)
748 stw r3,308(r1);
749 ...
750 *INDENT-ON*
751
752 remember just the first one, but skip over additional
753 ones. */
754 if (lr_reg < 0)
755 lr_reg = (op & 0x03e00000);
756 if (lr_reg == 0)
757 r0_contains_arg = 0;
758 continue;
759 }
760 else if ((op & 0xfc1fffff) == 0x7c000026)
761 { /* mfcr Rx */
762 cr_reg = (op & 0x03e00000);
763 if (cr_reg == 0)
764 r0_contains_arg = 0;
765 continue;
766
767 }
768 else if ((op & 0xfc1f0000) == 0xd8010000)
769 { /* stfd Rx,NUM(r1) */
770 reg = GET_SRC_REG (op);
771 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
772 {
773 fdata->saved_fpr = reg;
774 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
775 }
776 continue;
777
778 }
779 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
780 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
781 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
782 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
783 {
784
785 reg = GET_SRC_REG (op);
786 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
787 {
788 fdata->saved_gpr = reg;
789 if ((op & 0xfc1f0003) == 0xf8010000)
790 op &= ~3UL;
791 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
792 }
793 continue;
794
795 }
796 else if ((op & 0xffff0000) == 0x60000000)
797 {
798 /* nop */
799 /* Allow nops in the prologue, but do not consider them to
800 be part of the prologue unless followed by other prologue
801 instructions. */
802 prev_insn_was_prologue_insn = 0;
803 continue;
804
805 }
806 else if ((op & 0xffff0000) == 0x3c000000)
807 { /* addis 0,0,NUM, used
808 for >= 32k frames */
809 fdata->offset = (op & 0x0000ffff) << 16;
810 fdata->frameless = 0;
811 r0_contains_arg = 0;
812 continue;
813
814 }
815 else if ((op & 0xffff0000) == 0x60000000)
816 { /* ori 0,0,NUM, 2nd ha
817 lf of >= 32k frames */
818 fdata->offset |= (op & 0x0000ffff);
819 fdata->frameless = 0;
820 r0_contains_arg = 0;
821 continue;
822
823 }
824 else if (lr_reg != -1 &&
825 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
826 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
827 /* stw Rx, NUM(r1) */
828 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
829 /* stwu Rx, NUM(r1) */
830 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
831 { /* where Rx == lr */
832 fdata->lr_offset = offset;
833 fdata->nosavedpc = 0;
834 lr_reg = 0;
835 if ((op & 0xfc000003) == 0xf8000000 || /* std */
836 (op & 0xfc000000) == 0x90000000) /* stw */
837 {
838 /* Does not update r1, so add displacement to lr_offset. */
839 fdata->lr_offset += SIGNED_SHORT (op);
840 }
841 continue;
842
843 }
844 else if (cr_reg != -1 &&
845 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
846 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
847 /* stw Rx, NUM(r1) */
848 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
849 /* stwu Rx, NUM(r1) */
850 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
851 { /* where Rx == cr */
852 fdata->cr_offset = offset;
853 cr_reg = 0;
854 if ((op & 0xfc000003) == 0xf8000000 ||
855 (op & 0xfc000000) == 0x90000000)
856 {
857 /* Does not update r1, so add displacement to cr_offset. */
858 fdata->cr_offset += SIGNED_SHORT (op);
859 }
860 continue;
861
862 }
863 else if (op == 0x48000005)
864 { /* bl .+4 used in
865 -mrelocatable */
866 continue;
867
868 }
869 else if (op == 0x48000004)
870 { /* b .+4 (xlc) */
871 break;
872
873 }
874 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
875 in V.4 -mminimal-toc */
876 (op & 0xffff0000) == 0x3bde0000)
877 { /* addi 30,30,foo@l */
878 continue;
879
880 }
881 else if ((op & 0xfc000001) == 0x48000001)
882 { /* bl foo,
883 to save fprs??? */
884
885 fdata->frameless = 0;
886 /* Don't skip over the subroutine call if it is not within
887 the first three instructions of the prologue. */
888 if ((pc - orig_pc) > 8)
889 break;
890
891 op = read_memory_integer (pc + 4, 4);
892
893 /* At this point, make sure this is not a trampoline
894 function (a function that simply calls another functions,
895 and nothing else). If the next is not a nop, this branch
896 was part of the function prologue. */
897
898 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
899 break; /* don't skip over
900 this branch */
901 continue;
902
903 }
904 /* update stack pointer */
905 else if ((op & 0xfc1f0000) == 0x94010000)
906 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
907 fdata->frameless = 0;
908 fdata->offset = SIGNED_SHORT (op);
909 offset = fdata->offset;
910 continue;
911 }
912 else if ((op & 0xfc1f016a) == 0x7c01016e)
913 { /* stwux rX,r1,rY */
914 /* no way to figure out what r1 is going to be */
915 fdata->frameless = 0;
916 offset = fdata->offset;
917 continue;
918 }
919 else if ((op & 0xfc1f0003) == 0xf8010001)
920 { /* stdu rX,NUM(r1) */
921 fdata->frameless = 0;
922 fdata->offset = SIGNED_SHORT (op & ~3UL);
923 offset = fdata->offset;
924 continue;
925 }
926 else if ((op & 0xfc1f016a) == 0x7c01016a)
927 { /* stdux rX,r1,rY */
928 /* no way to figure out what r1 is going to be */
929 fdata->frameless = 0;
930 offset = fdata->offset;
931 continue;
932 }
933 /* Load up minimal toc pointer */
934 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
935 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
936 && !minimal_toc_loaded)
937 {
938 minimal_toc_loaded = 1;
939 continue;
940
941 /* move parameters from argument registers to local variable
942 registers */
943 }
944 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
945 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
946 (((op >> 21) & 31) <= 10) &&
947 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
948 {
949 continue;
950
951 /* store parameters in stack */
952 }
953 /* Move parameters from argument registers to temporary register. */
954 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
955 {
956 continue;
957
958 /* Set up frame pointer */
959 }
960 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
961 || op == 0x7c3f0b78)
962 { /* mr r31, r1 */
963 fdata->frameless = 0;
964 framep = 1;
965 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
966 continue;
967
968 /* Another way to set up the frame pointer. */
969 }
970 else if ((op & 0xfc1fffff) == 0x38010000)
971 { /* addi rX, r1, 0x0 */
972 fdata->frameless = 0;
973 framep = 1;
974 fdata->alloca_reg = (tdep->ppc_gp0_regnum
975 + ((op & ~0x38010000) >> 21));
976 continue;
977 }
978 /* AltiVec related instructions. */
979 /* Store the vrsave register (spr 256) in another register for
980 later manipulation, or load a register into the vrsave
981 register. 2 instructions are used: mfvrsave and
982 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
983 and mtspr SPR256, Rn. */
984 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
985 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
986 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
987 {
988 vrsave_reg = GET_SRC_REG (op);
989 continue;
990 }
991 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
992 {
993 continue;
994 }
995 /* Store the register where vrsave was saved to onto the stack:
996 rS is the register where vrsave was stored in a previous
997 instruction. */
998 /* 100100 sssss 00001 dddddddd dddddddd */
999 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1000 {
1001 if (vrsave_reg == GET_SRC_REG (op))
1002 {
1003 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1004 vrsave_reg = -1;
1005 }
1006 continue;
1007 }
1008 /* Compute the new value of vrsave, by modifying the register
1009 where vrsave was saved to. */
1010 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1011 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1012 {
1013 continue;
1014 }
1015 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1016 in a pair of insns to save the vector registers on the
1017 stack. */
1018 /* 001110 00000 00000 iiii iiii iiii iiii */
1019 /* 001110 01110 00000 iiii iiii iiii iiii */
1020 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1021 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1022 {
1023 if ((op & 0xffff0000) == 0x38000000)
1024 r0_contains_arg = 0;
1025 li_found_pc = pc;
1026 vr_saved_offset = SIGNED_SHORT (op);
1027
1028 /* This insn by itself is not part of the prologue, unless
1029 if part of the pair of insns mentioned above. So do not
1030 record this insn as part of the prologue yet. */
1031 prev_insn_was_prologue_insn = 0;
1032 }
1033 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1034 /* 011111 sssss 11111 00000 00111001110 */
1035 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1036 {
1037 if (pc == (li_found_pc + 4))
1038 {
1039 vr_reg = GET_SRC_REG (op);
1040 /* If this is the first vector reg to be saved, or if
1041 it has a lower number than others previously seen,
1042 reupdate the frame info. */
1043 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1044 {
1045 fdata->saved_vr = vr_reg;
1046 fdata->vr_offset = vr_saved_offset + offset;
1047 }
1048 vr_saved_offset = -1;
1049 vr_reg = -1;
1050 li_found_pc = 0;
1051 }
1052 }
1053 /* End AltiVec related instructions. */
1054
1055 /* Start BookE related instructions. */
1056 /* Store gen register S at (r31+uimm).
1057 Any register less than r13 is volatile, so we don't care. */
1058 /* 000100 sssss 11111 iiiii 01100100001 */
1059 else if (arch_info->mach == bfd_mach_ppc_e500
1060 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1061 {
1062 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1063 {
1064 unsigned int imm;
1065 ev_reg = GET_SRC_REG (op);
1066 imm = (op >> 11) & 0x1f;
1067 ev_offset = imm * 8;
1068 /* If this is the first vector reg to be saved, or if
1069 it has a lower number than others previously seen,
1070 reupdate the frame info. */
1071 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1072 {
1073 fdata->saved_ev = ev_reg;
1074 fdata->ev_offset = ev_offset + offset;
1075 }
1076 }
1077 continue;
1078 }
1079 /* Store gen register rS at (r1+rB). */
1080 /* 000100 sssss 00001 bbbbb 01100100000 */
1081 else if (arch_info->mach == bfd_mach_ppc_e500
1082 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1083 {
1084 if (pc == (li_found_pc + 4))
1085 {
1086 ev_reg = GET_SRC_REG (op);
1087 /* If this is the first vector reg to be saved, or if
1088 it has a lower number than others previously seen,
1089 reupdate the frame info. */
1090 /* We know the contents of rB from the previous instruction. */
1091 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1092 {
1093 fdata->saved_ev = ev_reg;
1094 fdata->ev_offset = vr_saved_offset + offset;
1095 }
1096 vr_saved_offset = -1;
1097 ev_reg = -1;
1098 li_found_pc = 0;
1099 }
1100 continue;
1101 }
1102 /* Store gen register r31 at (rA+uimm). */
1103 /* 000100 11111 aaaaa iiiii 01100100001 */
1104 else if (arch_info->mach == bfd_mach_ppc_e500
1105 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1106 {
1107 /* Wwe know that the source register is 31 already, but
1108 it can't hurt to compute it. */
1109 ev_reg = GET_SRC_REG (op);
1110 ev_offset = ((op >> 11) & 0x1f) * 8;
1111 /* If this is the first vector reg to be saved, or if
1112 it has a lower number than others previously seen,
1113 reupdate the frame info. */
1114 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1115 {
1116 fdata->saved_ev = ev_reg;
1117 fdata->ev_offset = ev_offset + offset;
1118 }
1119
1120 continue;
1121 }
1122 /* Store gen register S at (r31+r0).
1123 Store param on stack when offset from SP bigger than 4 bytes. */
1124 /* 000100 sssss 11111 00000 01100100000 */
1125 else if (arch_info->mach == bfd_mach_ppc_e500
1126 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1127 {
1128 if (pc == (li_found_pc + 4))
1129 {
1130 if ((op & 0x03e00000) >= 0x01a00000)
1131 {
1132 ev_reg = GET_SRC_REG (op);
1133 /* If this is the first vector reg to be saved, or if
1134 it has a lower number than others previously seen,
1135 reupdate the frame info. */
1136 /* We know the contents of r0 from the previous
1137 instruction. */
1138 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1139 {
1140 fdata->saved_ev = ev_reg;
1141 fdata->ev_offset = vr_saved_offset + offset;
1142 }
1143 ev_reg = -1;
1144 }
1145 vr_saved_offset = -1;
1146 li_found_pc = 0;
1147 continue;
1148 }
1149 }
1150 /* End BookE related instructions. */
1151
1152 else
1153 {
1154 /* Not a recognized prologue instruction.
1155 Handle optimizer code motions into the prologue by continuing
1156 the search if we have no valid frame yet or if the return
1157 address is not yet saved in the frame. */
1158 if (fdata->frameless == 0
1159 && (lr_reg == -1 || fdata->nosavedpc == 0))
1160 break;
1161
1162 if (op == 0x4e800020 /* blr */
1163 || op == 0x4e800420) /* bctr */
1164 /* Do not scan past epilogue in frameless functions or
1165 trampolines. */
1166 break;
1167 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1168 /* Never skip branches. */
1169 break;
1170
1171 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1172 /* Do not scan too many insns, scanning insns is expensive with
1173 remote targets. */
1174 break;
1175
1176 /* Continue scanning. */
1177 prev_insn_was_prologue_insn = 0;
1178 continue;
1179 }
1180 }
1181
1182 #if 0
1183 /* I have problems with skipping over __main() that I need to address
1184 * sometime. Previously, I used to use misc_function_vector which
1185 * didn't work as well as I wanted to be. -MGO */
1186
1187 /* If the first thing after skipping a prolog is a branch to a function,
1188 this might be a call to an initializer in main(), introduced by gcc2.
1189 We'd like to skip over it as well. Fortunately, xlc does some extra
1190 work before calling a function right after a prologue, thus we can
1191 single out such gcc2 behaviour. */
1192
1193
1194 if ((op & 0xfc000001) == 0x48000001)
1195 { /* bl foo, an initializer function? */
1196 op = read_memory_integer (pc + 4, 4);
1197
1198 if (op == 0x4def7b82)
1199 { /* cror 0xf, 0xf, 0xf (nop) */
1200
1201 /* Check and see if we are in main. If so, skip over this
1202 initializer function as well. */
1203
1204 tmp = find_pc_misc_function (pc);
1205 if (tmp >= 0
1206 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1207 return pc + 8;
1208 }
1209 }
1210 #endif /* 0 */
1211
1212 fdata->offset = -fdata->offset;
1213 return last_prologue_pc;
1214 }
1215
1216
1217 /*************************************************************************
1218 Support for creating pushing a dummy frame into the stack, and popping
1219 frames, etc.
1220 *************************************************************************/
1221
1222
1223 /* All the ABI's require 16 byte alignment. */
1224 static CORE_ADDR
1225 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1226 {
1227 return (addr & -16);
1228 }
1229
1230 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1231 the first eight words of the argument list (that might be less than
1232 eight parameters if some parameters occupy more than one word) are
1233 passed in r3..r10 registers. float and double parameters are
1234 passed in fpr's, in addition to that. Rest of the parameters if any
1235 are passed in user stack. There might be cases in which half of the
1236 parameter is copied into registers, the other half is pushed into
1237 stack.
1238
1239 Stack must be aligned on 64-bit boundaries when synthesizing
1240 function calls.
1241
1242 If the function is returning a structure, then the return address is passed
1243 in r3, then the first 7 words of the parameters can be passed in registers,
1244 starting from r4. */
1245
1246 static CORE_ADDR
1247 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1248 struct regcache *regcache, CORE_ADDR bp_addr,
1249 int nargs, struct value **args, CORE_ADDR sp,
1250 int struct_return, CORE_ADDR struct_addr)
1251 {
1252 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1253 int ii;
1254 int len = 0;
1255 int argno; /* current argument number */
1256 int argbytes; /* current argument byte */
1257 char tmp_buffer[50];
1258 int f_argno = 0; /* current floating point argno */
1259 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1260
1261 struct value *arg = 0;
1262 struct type *type;
1263
1264 CORE_ADDR saved_sp;
1265
1266 /* The calling convention this function implements assumes the
1267 processor has floating-point registers. We shouldn't be using it
1268 on PPC variants that lack them. */
1269 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1270
1271 /* The first eight words of ther arguments are passed in registers.
1272 Copy them appropriately. */
1273 ii = 0;
1274
1275 /* If the function is returning a `struct', then the first word
1276 (which will be passed in r3) is used for struct return address.
1277 In that case we should advance one word and start from r4
1278 register to copy parameters. */
1279 if (struct_return)
1280 {
1281 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1282 struct_addr);
1283 ii++;
1284 }
1285
1286 /*
1287 effectively indirect call... gcc does...
1288
1289 return_val example( float, int);
1290
1291 eabi:
1292 float in fp0, int in r3
1293 offset of stack on overflow 8/16
1294 for varargs, must go by type.
1295 power open:
1296 float in r3&r4, int in r5
1297 offset of stack on overflow different
1298 both:
1299 return in r3 or f0. If no float, must study how gcc emulates floats;
1300 pay attention to arg promotion.
1301 User may have to cast\args to handle promotion correctly
1302 since gdb won't know if prototype supplied or not.
1303 */
1304
1305 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1306 {
1307 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1308
1309 arg = args[argno];
1310 type = check_typedef (VALUE_TYPE (arg));
1311 len = TYPE_LENGTH (type);
1312
1313 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1314 {
1315
1316 /* Floating point arguments are passed in fpr's, as well as gpr's.
1317 There are 13 fpr's reserved for passing parameters. At this point
1318 there is no way we would run out of them. */
1319
1320 if (len > 8)
1321 printf_unfiltered (
1322 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1323
1324 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE
1325 (tdep->ppc_fp0_regnum + 1 + f_argno)],
1326 VALUE_CONTENTS (arg),
1327 len);
1328 ++f_argno;
1329 }
1330
1331 if (len > reg_size)
1332 {
1333
1334 /* Argument takes more than one register. */
1335 while (argbytes < len)
1336 {
1337 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1338 reg_size);
1339 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1340 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1341 (len - argbytes) > reg_size
1342 ? reg_size : len - argbytes);
1343 ++ii, argbytes += reg_size;
1344
1345 if (ii >= 8)
1346 goto ran_out_of_registers_for_arguments;
1347 }
1348 argbytes = 0;
1349 --ii;
1350 }
1351 else
1352 {
1353 /* Argument can fit in one register. No problem. */
1354 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1355 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1356 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1357 VALUE_CONTENTS (arg), len);
1358 }
1359 ++argno;
1360 }
1361
1362 ran_out_of_registers_for_arguments:
1363
1364 saved_sp = read_sp ();
1365
1366 /* Location for 8 parameters are always reserved. */
1367 sp -= wordsize * 8;
1368
1369 /* Another six words for back chain, TOC register, link register, etc. */
1370 sp -= wordsize * 6;
1371
1372 /* Stack pointer must be quadword aligned. */
1373 sp &= -16;
1374
1375 /* If there are more arguments, allocate space for them in
1376 the stack, then push them starting from the ninth one. */
1377
1378 if ((argno < nargs) || argbytes)
1379 {
1380 int space = 0, jj;
1381
1382 if (argbytes)
1383 {
1384 space += ((len - argbytes + 3) & -4);
1385 jj = argno + 1;
1386 }
1387 else
1388 jj = argno;
1389
1390 for (; jj < nargs; ++jj)
1391 {
1392 struct value *val = args[jj];
1393 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1394 }
1395
1396 /* Add location required for the rest of the parameters. */
1397 space = (space + 15) & -16;
1398 sp -= space;
1399
1400 /* This is another instance we need to be concerned about
1401 securing our stack space. If we write anything underneath %sp
1402 (r1), we might conflict with the kernel who thinks he is free
1403 to use this area. So, update %sp first before doing anything
1404 else. */
1405
1406 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1407
1408 /* If the last argument copied into the registers didn't fit there
1409 completely, push the rest of it into stack. */
1410
1411 if (argbytes)
1412 {
1413 write_memory (sp + 24 + (ii * 4),
1414 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1415 len - argbytes);
1416 ++argno;
1417 ii += ((len - argbytes + 3) & -4) / 4;
1418 }
1419
1420 /* Push the rest of the arguments into stack. */
1421 for (; argno < nargs; ++argno)
1422 {
1423
1424 arg = args[argno];
1425 type = check_typedef (VALUE_TYPE (arg));
1426 len = TYPE_LENGTH (type);
1427
1428
1429 /* Float types should be passed in fpr's, as well as in the
1430 stack. */
1431 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1432 {
1433
1434 if (len > 8)
1435 printf_unfiltered (
1436 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1437
1438 memcpy (&(deprecated_registers
1439 [DEPRECATED_REGISTER_BYTE
1440 (tdep->ppc_fp0_regnum + 1 + f_argno)]),
1441 VALUE_CONTENTS (arg),
1442 len);
1443 ++f_argno;
1444 }
1445
1446 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1447 ii += ((len + 3) & -4) / 4;
1448 }
1449 }
1450
1451 /* Set the stack pointer. According to the ABI, the SP is meant to
1452 be set _before_ the corresponding stack space is used. On AIX,
1453 this even applies when the target has been completely stopped!
1454 Not doing this can lead to conflicts with the kernel which thinks
1455 that it still has control over this not-yet-allocated stack
1456 region. */
1457 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1458
1459 /* Set back chain properly. */
1460 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1461 write_memory (sp, tmp_buffer, 4);
1462
1463 /* Point the inferior function call's return address at the dummy's
1464 breakpoint. */
1465 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1466
1467 /* Set the TOC register, get the value from the objfile reader
1468 which, in turn, gets it from the VMAP table. */
1469 if (rs6000_find_toc_address_hook != NULL)
1470 {
1471 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1472 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1473 }
1474
1475 target_store_registers (-1);
1476 return sp;
1477 }
1478
1479 /* PowerOpen always puts structures in memory. Vectors, which were
1480 added later, do get returned in a register though. */
1481
1482 static int
1483 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1484 {
1485 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1486 && TYPE_VECTOR (value_type))
1487 return 0;
1488 return 1;
1489 }
1490
1491 static void
1492 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1493 {
1494 int offset = 0;
1495 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1496
1497 /* The calling convention this function implements assumes the
1498 processor has floating-point registers. We shouldn't be using it
1499 on PPC variants that lack them. */
1500 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1501
1502 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1503 {
1504
1505 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1506 We need to truncate the return value into float size (4 byte) if
1507 necessary. */
1508
1509 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1510 (tdep->ppc_fp0_regnum + 1)],
1511 builtin_type_double,
1512 valbuf,
1513 valtype);
1514 }
1515 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1516 && TYPE_LENGTH (valtype) == 16
1517 && TYPE_VECTOR (valtype))
1518 {
1519 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1520 TYPE_LENGTH (valtype));
1521 }
1522 else
1523 {
1524 /* return value is copied starting from r3. */
1525 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1526 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1527 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1528
1529 memcpy (valbuf,
1530 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1531 TYPE_LENGTH (valtype));
1532 }
1533 }
1534
1535 /* Return whether handle_inferior_event() should proceed through code
1536 starting at PC in function NAME when stepping.
1537
1538 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1539 handle memory references that are too distant to fit in instructions
1540 generated by the compiler. For example, if 'foo' in the following
1541 instruction:
1542
1543 lwz r9,foo(r2)
1544
1545 is greater than 32767, the linker might replace the lwz with a branch to
1546 somewhere in @FIX1 that does the load in 2 instructions and then branches
1547 back to where execution should continue.
1548
1549 GDB should silently step over @FIX code, just like AIX dbx does.
1550 Unfortunately, the linker uses the "b" instruction for the branches,
1551 meaning that the link register doesn't get set. Therefore, GDB's usual
1552 step_over_function() mechanism won't work.
1553
1554 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1555 in handle_inferior_event() to skip past @FIX code. */
1556
1557 int
1558 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1559 {
1560 return name && !strncmp (name, "@FIX", 4);
1561 }
1562
1563 /* Skip code that the user doesn't want to see when stepping:
1564
1565 1. Indirect function calls use a piece of trampoline code to do context
1566 switching, i.e. to set the new TOC table. Skip such code if we are on
1567 its first instruction (as when we have single-stepped to here).
1568
1569 2. Skip shared library trampoline code (which is different from
1570 indirect function call trampolines).
1571
1572 3. Skip bigtoc fixup code.
1573
1574 Result is desired PC to step until, or NULL if we are not in
1575 code that should be skipped. */
1576
1577 CORE_ADDR
1578 rs6000_skip_trampoline_code (CORE_ADDR pc)
1579 {
1580 unsigned int ii, op;
1581 int rel;
1582 CORE_ADDR solib_target_pc;
1583 struct minimal_symbol *msymbol;
1584
1585 static unsigned trampoline_code[] =
1586 {
1587 0x800b0000, /* l r0,0x0(r11) */
1588 0x90410014, /* st r2,0x14(r1) */
1589 0x7c0903a6, /* mtctr r0 */
1590 0x804b0004, /* l r2,0x4(r11) */
1591 0x816b0008, /* l r11,0x8(r11) */
1592 0x4e800420, /* bctr */
1593 0x4e800020, /* br */
1594 0
1595 };
1596
1597 /* Check for bigtoc fixup code. */
1598 msymbol = lookup_minimal_symbol_by_pc (pc);
1599 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1600 {
1601 /* Double-check that the third instruction from PC is relative "b". */
1602 op = read_memory_integer (pc + 8, 4);
1603 if ((op & 0xfc000003) == 0x48000000)
1604 {
1605 /* Extract bits 6-29 as a signed 24-bit relative word address and
1606 add it to the containing PC. */
1607 rel = ((int)(op << 6) >> 6);
1608 return pc + 8 + rel;
1609 }
1610 }
1611
1612 /* If pc is in a shared library trampoline, return its target. */
1613 solib_target_pc = find_solib_trampoline_target (pc);
1614 if (solib_target_pc)
1615 return solib_target_pc;
1616
1617 for (ii = 0; trampoline_code[ii]; ++ii)
1618 {
1619 op = read_memory_integer (pc + (ii * 4), 4);
1620 if (op != trampoline_code[ii])
1621 return 0;
1622 }
1623 ii = read_register (11); /* r11 holds destination addr */
1624 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1625 return pc;
1626 }
1627
1628 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1629 isn't available with that word size, return 0. */
1630
1631 static int
1632 regsize (const struct reg *reg, int wordsize)
1633 {
1634 return wordsize == 8 ? reg->sz64 : reg->sz32;
1635 }
1636
1637 /* Return the name of register number N, or null if no such register exists
1638 in the current architecture. */
1639
1640 static const char *
1641 rs6000_register_name (int n)
1642 {
1643 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1644 const struct reg *reg = tdep->regs + n;
1645
1646 if (!regsize (reg, tdep->wordsize))
1647 return NULL;
1648 return reg->name;
1649 }
1650
1651 /* Index within `registers' of the first byte of the space for
1652 register N. */
1653
1654 static int
1655 rs6000_register_byte (int n)
1656 {
1657 return gdbarch_tdep (current_gdbarch)->regoff[n];
1658 }
1659
1660 /* Return the number of bytes of storage in the actual machine representation
1661 for register N if that register is available, else return 0. */
1662
1663 static int
1664 rs6000_register_raw_size (int n)
1665 {
1666 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1667 const struct reg *reg = tdep->regs + n;
1668 return regsize (reg, tdep->wordsize);
1669 }
1670
1671 /* Return the GDB type object for the "standard" data type
1672 of data in register N. */
1673
1674 static struct type *
1675 rs6000_register_virtual_type (int n)
1676 {
1677 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1678 const struct reg *reg = tdep->regs + n;
1679
1680 if (reg->fpr)
1681 return builtin_type_double;
1682 else
1683 {
1684 int size = regsize (reg, tdep->wordsize);
1685 switch (size)
1686 {
1687 case 0:
1688 return builtin_type_int0;
1689 case 4:
1690 return builtin_type_uint32;
1691 case 8:
1692 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1693 return builtin_type_vec64;
1694 else
1695 return builtin_type_uint64;
1696 break;
1697 case 16:
1698 return builtin_type_vec128;
1699 break;
1700 default:
1701 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1702 n, size);
1703 }
1704 }
1705 }
1706
1707 /* Return whether register N requires conversion when moving from raw format
1708 to virtual format.
1709
1710 The register format for RS/6000 floating point registers is always
1711 double, we need a conversion if the memory format is float. */
1712
1713 static int
1714 rs6000_register_convertible (int n)
1715 {
1716 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1717 return reg->fpr;
1718 }
1719
1720 /* Convert data from raw format for register N in buffer FROM
1721 to virtual format with type TYPE in buffer TO. */
1722
1723 static void
1724 rs6000_register_convert_to_virtual (int n, struct type *type,
1725 char *from, char *to)
1726 {
1727 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1728 {
1729 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1730 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1731 }
1732 else
1733 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1734 }
1735
1736 /* Convert data from virtual format with type TYPE in buffer FROM
1737 to raw format for register N in buffer TO. */
1738
1739 static void
1740 rs6000_register_convert_to_raw (struct type *type, int n,
1741 const char *from, char *to)
1742 {
1743 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1744 {
1745 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1746 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1747 }
1748 else
1749 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1750 }
1751
1752 static void
1753 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1754 int reg_nr, void *buffer)
1755 {
1756 int base_regnum;
1757 int offset = 0;
1758 char temp_buffer[MAX_REGISTER_SIZE];
1759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1760
1761 if (reg_nr >= tdep->ppc_gp0_regnum
1762 && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs)
1763 {
1764 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1765
1766 /* Build the value in the provided buffer. */
1767 /* Read the raw register of which this one is the lower portion. */
1768 regcache_raw_read (regcache, base_regnum, temp_buffer);
1769 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1770 offset = 4;
1771 memcpy ((char *) buffer, temp_buffer + offset, 4);
1772 }
1773 }
1774
1775 static void
1776 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1777 int reg_nr, const void *buffer)
1778 {
1779 int base_regnum;
1780 int offset = 0;
1781 char temp_buffer[MAX_REGISTER_SIZE];
1782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1783
1784 if (reg_nr >= tdep->ppc_gp0_regnum
1785 && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs)
1786 {
1787 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1788 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1789 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1790 offset = 4;
1791
1792 /* Let's read the value of the base register into a temporary
1793 buffer, so that overwriting the last four bytes with the new
1794 value of the pseudo will leave the upper 4 bytes unchanged. */
1795 regcache_raw_read (regcache, base_regnum, temp_buffer);
1796
1797 /* Write as an 8 byte quantity. */
1798 memcpy (temp_buffer + offset, (char *) buffer, 4);
1799 regcache_raw_write (regcache, base_regnum, temp_buffer);
1800 }
1801 }
1802
1803 /* Convert a dbx stab or Dwarf 2 register number (from `r'
1804 declaration) to a gdb REGNUM. */
1805 static int
1806 rs6000_dwarf2_stab_reg_to_regnum (int num)
1807 {
1808 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1809
1810 if (0 <= num && num <= 31)
1811 return tdep->ppc_gp0_regnum + num;
1812 else if (32 <= num && num <= 63)
1813 /* FIXME: jimb/2004-05-05: What should we do when the debug info
1814 specifies registers the architecture doesn't have? Our
1815 callers don't check the value we return. */
1816 return tdep->ppc_fp0_regnum + (num - 32);
1817 else if (1200 <= num && num < 1200 + 32)
1818 return tdep->ppc_ev0_regnum + (num - 1200);
1819 else
1820 switch (num)
1821 {
1822 case 64:
1823 return tdep->ppc_mq_regnum;
1824 case 65:
1825 return tdep->ppc_lr_regnum;
1826 case 66:
1827 return tdep->ppc_ctr_regnum;
1828 case 76:
1829 return tdep->ppc_xer_regnum;
1830 case 109:
1831 return tdep->ppc_vrsave_regnum;
1832 default:
1833 return num;
1834 }
1835
1836 /* FIXME: jimb/2004-03-28: Doesn't something need to be done here
1837 for the Altivec registers, too?
1838
1839 Looking at GCC, the headers in config/rs6000 never define a
1840 DBX_REGISTER_NUMBER macro, so the debug info uses the same
1841 numbers GCC does internally. Then, looking at the REGISTER_NAMES
1842 macro defined in config/rs6000/rs6000.h, it seems that GCC gives
1843 v0 -- v31 the numbers 77 -- 108. But we number them 119 -- 150.
1844
1845 I don't have a way to test this ready to hand, but I noticed it
1846 and thought I should include a note. */
1847 }
1848
1849 static void
1850 rs6000_store_return_value (struct type *type, char *valbuf)
1851 {
1852 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1853
1854 /* The calling convention this function implements assumes the
1855 processor has floating-point registers. We shouldn't be using it
1856 on PPC variants that lack them. */
1857 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1858
1859 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1860
1861 /* Floating point values are returned starting from FPR1 and up.
1862 Say a double_double_double type could be returned in
1863 FPR1/FPR2/FPR3 triple. */
1864
1865 deprecated_write_register_bytes
1866 (DEPRECATED_REGISTER_BYTE (tdep->ppc_fp0_regnum + 1),
1867 valbuf,
1868 TYPE_LENGTH (type));
1869 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1870 {
1871 if (TYPE_LENGTH (type) == 16
1872 && TYPE_VECTOR (type))
1873 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1874 valbuf, TYPE_LENGTH (type));
1875 }
1876 else
1877 /* Everything else is returned in GPR3 and up. */
1878 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1879 valbuf, TYPE_LENGTH (type));
1880 }
1881
1882 /* Extract from an array REGBUF containing the (raw) register state
1883 the address in which a function should return its structure value,
1884 as a CORE_ADDR (or an expression that can be used as one). */
1885
1886 static CORE_ADDR
1887 rs6000_extract_struct_value_address (struct regcache *regcache)
1888 {
1889 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
1890 function call GDB knows the address of the struct return value
1891 and hence, should not need to call this function. Unfortunately,
1892 the current call_function_by_hand() code only saves the most
1893 recent struct address leading to occasional calls. The code
1894 should instead maintain a stack of such addresses (in the dummy
1895 frame object). */
1896 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
1897 really got no idea where the return value is being stored. While
1898 r3, on function entry, contained the address it will have since
1899 been reused (scratch) and hence wouldn't be valid */
1900 return 0;
1901 }
1902
1903 /* Hook called when a new child process is started. */
1904
1905 void
1906 rs6000_create_inferior (int pid)
1907 {
1908 if (rs6000_set_host_arch_hook)
1909 rs6000_set_host_arch_hook (pid);
1910 }
1911 \f
1912 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
1913
1914 Usually a function pointer's representation is simply the address
1915 of the function. On the RS/6000 however, a function pointer is
1916 represented by a pointer to a TOC entry. This TOC entry contains
1917 three words, the first word is the address of the function, the
1918 second word is the TOC pointer (r2), and the third word is the
1919 static chain value. Throughout GDB it is currently assumed that a
1920 function pointer contains the address of the function, which is not
1921 easy to fix. In addition, the conversion of a function address to
1922 a function pointer would require allocation of a TOC entry in the
1923 inferior's memory space, with all its drawbacks. To be able to
1924 call C++ virtual methods in the inferior (which are called via
1925 function pointers), find_function_addr uses this function to get the
1926 function address from a function pointer. */
1927
1928 /* Return real function address if ADDR (a function pointer) is in the data
1929 space and is therefore a special function pointer. */
1930
1931 static CORE_ADDR
1932 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1933 CORE_ADDR addr,
1934 struct target_ops *targ)
1935 {
1936 struct obj_section *s;
1937
1938 s = find_pc_section (addr);
1939 if (s && s->the_bfd_section->flags & SEC_CODE)
1940 return addr;
1941
1942 /* ADDR is in the data space, so it's a special function pointer. */
1943 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
1944 }
1945 \f
1946
1947 /* Handling the various POWER/PowerPC variants. */
1948
1949
1950 /* The arrays here called registers_MUMBLE hold information about available
1951 registers.
1952
1953 For each family of PPC variants, I've tried to isolate out the
1954 common registers and put them up front, so that as long as you get
1955 the general family right, GDB will correctly identify the registers
1956 common to that family. The common register sets are:
1957
1958 For the 60x family: hid0 hid1 iabr dabr pir
1959
1960 For the 505 and 860 family: eie eid nri
1961
1962 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
1963 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1964 pbu1 pbl2 pbu2
1965
1966 Most of these register groups aren't anything formal. I arrived at
1967 them by looking at the registers that occurred in more than one
1968 processor.
1969
1970 Note: kevinb/2002-04-30: Support for the fpscr register was added
1971 during April, 2002. Slot 70 is being used for PowerPC and slot 71
1972 for Power. For PowerPC, slot 70 was unused and was already in the
1973 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
1974 slot 70 was being used for "mq", so the next available slot (71)
1975 was chosen. It would have been nice to be able to make the
1976 register numbers the same across processor cores, but this wasn't
1977 possible without either 1) renumbering some registers for some
1978 processors or 2) assigning fpscr to a really high slot that's
1979 larger than any current register number. Doing (1) is bad because
1980 existing stubs would break. Doing (2) is undesirable because it
1981 would introduce a really large gap between fpscr and the rest of
1982 the registers for most processors. */
1983
1984 /* Convenience macros for populating register arrays. */
1985
1986 /* Within another macro, convert S to a string. */
1987
1988 #define STR(s) #s
1989
1990 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
1991 and 64 bits on 64-bit systems. */
1992 #define R(name) { STR(name), 4, 8, 0, 0 }
1993
1994 /* Return a struct reg defining register NAME that's 32 bits on all
1995 systems. */
1996 #define R4(name) { STR(name), 4, 4, 0, 0 }
1997
1998 /* Return a struct reg defining register NAME that's 64 bits on all
1999 systems. */
2000 #define R8(name) { STR(name), 8, 8, 0, 0 }
2001
2002 /* Return a struct reg defining register NAME that's 128 bits on all
2003 systems. */
2004 #define R16(name) { STR(name), 16, 16, 0, 0 }
2005
2006 /* Return a struct reg defining floating-point register NAME. */
2007 #define F(name) { STR(name), 8, 8, 1, 0 }
2008
2009 /* Return a struct reg defining a pseudo register NAME. */
2010 #define P(name) { STR(name), 4, 8, 0, 1}
2011
2012 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2013 systems and that doesn't exist on 64-bit systems. */
2014 #define R32(name) { STR(name), 4, 0, 0, 0 }
2015
2016 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2017 systems and that doesn't exist on 32-bit systems. */
2018 #define R64(name) { STR(name), 0, 8, 0, 0 }
2019
2020 /* Return a struct reg placeholder for a register that doesn't exist. */
2021 #define R0 { 0, 0, 0, 0, 0 }
2022
2023 /* UISA registers common across all architectures, including POWER. */
2024
2025 #define COMMON_UISA_REGS \
2026 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2027 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2028 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2029 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2030 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2031 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2032 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2033 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2034 /* 64 */ R(pc), R(ps)
2035
2036 #define COMMON_UISA_NOFP_REGS \
2037 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2038 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2039 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2040 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2041 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2042 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2043 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2044 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2045 /* 64 */ R(pc), R(ps)
2046
2047 /* UISA-level SPRs for PowerPC. */
2048 #define PPC_UISA_SPRS \
2049 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2050
2051 /* UISA-level SPRs for PowerPC without floating point support. */
2052 #define PPC_UISA_NOFP_SPRS \
2053 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2054
2055 /* Segment registers, for PowerPC. */
2056 #define PPC_SEGMENT_REGS \
2057 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2058 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2059 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2060 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2061
2062 /* OEA SPRs for PowerPC. */
2063 #define PPC_OEA_SPRS \
2064 /* 87 */ R4(pvr), \
2065 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2066 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2067 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2068 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2069 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2070 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2071 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2072 /* 116 */ R4(dec), R(dabr), R4(ear)
2073
2074 /* AltiVec registers. */
2075 #define PPC_ALTIVEC_REGS \
2076 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2077 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2078 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2079 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2080 /*151*/R4(vscr), R4(vrsave)
2081
2082 /* Vectors of hi-lo general purpose registers. */
2083 #define PPC_EV_REGS \
2084 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2085 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2086 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2087 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2088
2089 /* Lower half of the EV registers. */
2090 #define PPC_GPRS_PSEUDO_REGS \
2091 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2092 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2093 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2094 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2095
2096 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2097 user-level SPR's. */
2098 static const struct reg registers_power[] =
2099 {
2100 COMMON_UISA_REGS,
2101 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2102 /* 71 */ R4(fpscr)
2103 };
2104
2105 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2106 view of the PowerPC. */
2107 static const struct reg registers_powerpc[] =
2108 {
2109 COMMON_UISA_REGS,
2110 PPC_UISA_SPRS,
2111 PPC_ALTIVEC_REGS
2112 };
2113
2114 /* PowerPC UISA - a PPC processor as viewed by user-level
2115 code, but without floating point registers. */
2116 static const struct reg registers_powerpc_nofp[] =
2117 {
2118 COMMON_UISA_NOFP_REGS,
2119 PPC_UISA_SPRS
2120 };
2121
2122 /* IBM PowerPC 403. */
2123 static const struct reg registers_403[] =
2124 {
2125 COMMON_UISA_REGS,
2126 PPC_UISA_SPRS,
2127 PPC_SEGMENT_REGS,
2128 PPC_OEA_SPRS,
2129 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2130 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2131 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2132 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2133 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2134 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2135 };
2136
2137 /* IBM PowerPC 403GC. */
2138 static const struct reg registers_403GC[] =
2139 {
2140 COMMON_UISA_REGS,
2141 PPC_UISA_SPRS,
2142 PPC_SEGMENT_REGS,
2143 PPC_OEA_SPRS,
2144 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2145 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2146 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2147 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2148 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2149 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2150 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2151 /* 147 */ R(tbhu), R(tblu)
2152 };
2153
2154 /* Motorola PowerPC 505. */
2155 static const struct reg registers_505[] =
2156 {
2157 COMMON_UISA_REGS,
2158 PPC_UISA_SPRS,
2159 PPC_SEGMENT_REGS,
2160 PPC_OEA_SPRS,
2161 /* 119 */ R(eie), R(eid), R(nri)
2162 };
2163
2164 /* Motorola PowerPC 860 or 850. */
2165 static const struct reg registers_860[] =
2166 {
2167 COMMON_UISA_REGS,
2168 PPC_UISA_SPRS,
2169 PPC_SEGMENT_REGS,
2170 PPC_OEA_SPRS,
2171 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2172 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2173 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2174 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2175 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2176 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2177 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2178 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2179 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2180 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2181 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2182 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2183 };
2184
2185 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2186 for reading and writing RTCU and RTCL. However, how one reads and writes a
2187 register is the stub's problem. */
2188 static const struct reg registers_601[] =
2189 {
2190 COMMON_UISA_REGS,
2191 PPC_UISA_SPRS,
2192 PPC_SEGMENT_REGS,
2193 PPC_OEA_SPRS,
2194 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2195 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2196 };
2197
2198 /* Motorola PowerPC 602. */
2199 static const struct reg registers_602[] =
2200 {
2201 COMMON_UISA_REGS,
2202 PPC_UISA_SPRS,
2203 PPC_SEGMENT_REGS,
2204 PPC_OEA_SPRS,
2205 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2206 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2207 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2208 };
2209
2210 /* Motorola/IBM PowerPC 603 or 603e. */
2211 static const struct reg registers_603[] =
2212 {
2213 COMMON_UISA_REGS,
2214 PPC_UISA_SPRS,
2215 PPC_SEGMENT_REGS,
2216 PPC_OEA_SPRS,
2217 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2218 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2219 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2220 };
2221
2222 /* Motorola PowerPC 604 or 604e. */
2223 static const struct reg registers_604[] =
2224 {
2225 COMMON_UISA_REGS,
2226 PPC_UISA_SPRS,
2227 PPC_SEGMENT_REGS,
2228 PPC_OEA_SPRS,
2229 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2230 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2231 /* 127 */ R(sia), R(sda)
2232 };
2233
2234 /* Motorola/IBM PowerPC 750 or 740. */
2235 static const struct reg registers_750[] =
2236 {
2237 COMMON_UISA_REGS,
2238 PPC_UISA_SPRS,
2239 PPC_SEGMENT_REGS,
2240 PPC_OEA_SPRS,
2241 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2242 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2243 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2244 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2245 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2246 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2247 };
2248
2249
2250 /* Motorola PowerPC 7400. */
2251 static const struct reg registers_7400[] =
2252 {
2253 /* gpr0-gpr31, fpr0-fpr31 */
2254 COMMON_UISA_REGS,
2255 /* cr, lr, ctr, xer, fpscr */
2256 PPC_UISA_SPRS,
2257 /* sr0-sr15 */
2258 PPC_SEGMENT_REGS,
2259 PPC_OEA_SPRS,
2260 /* vr0-vr31, vrsave, vscr */
2261 PPC_ALTIVEC_REGS
2262 /* FIXME? Add more registers? */
2263 };
2264
2265 /* Motorola e500. */
2266 static const struct reg registers_e500[] =
2267 {
2268 R(pc), R(ps),
2269 /* cr, lr, ctr, xer, "" */
2270 PPC_UISA_NOFP_SPRS,
2271 /* 7...38 */
2272 PPC_EV_REGS,
2273 R8(acc), R(spefscr),
2274 /* NOTE: Add new registers here the end of the raw register
2275 list and just before the first pseudo register. */
2276 /* 41...72 */
2277 PPC_GPRS_PSEUDO_REGS
2278 };
2279
2280 /* Information about a particular processor variant. */
2281
2282 struct variant
2283 {
2284 /* Name of this variant. */
2285 char *name;
2286
2287 /* English description of the variant. */
2288 char *description;
2289
2290 /* bfd_arch_info.arch corresponding to variant. */
2291 enum bfd_architecture arch;
2292
2293 /* bfd_arch_info.mach corresponding to variant. */
2294 unsigned long mach;
2295
2296 /* Number of real registers. */
2297 int nregs;
2298
2299 /* Number of pseudo registers. */
2300 int npregs;
2301
2302 /* Number of total registers (the sum of nregs and npregs). */
2303 int num_tot_regs;
2304
2305 /* Table of register names; registers[R] is the name of the register
2306 number R. */
2307 const struct reg *regs;
2308 };
2309
2310 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2311
2312 static int
2313 num_registers (const struct reg *reg_list, int num_tot_regs)
2314 {
2315 int i;
2316 int nregs = 0;
2317
2318 for (i = 0; i < num_tot_regs; i++)
2319 if (!reg_list[i].pseudo)
2320 nregs++;
2321
2322 return nregs;
2323 }
2324
2325 static int
2326 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2327 {
2328 int i;
2329 int npregs = 0;
2330
2331 for (i = 0; i < num_tot_regs; i++)
2332 if (reg_list[i].pseudo)
2333 npregs ++;
2334
2335 return npregs;
2336 }
2337
2338 /* Information in this table comes from the following web sites:
2339 IBM: http://www.chips.ibm.com:80/products/embedded/
2340 Motorola: http://www.mot.com/SPS/PowerPC/
2341
2342 I'm sure I've got some of the variant descriptions not quite right.
2343 Please report any inaccuracies you find to GDB's maintainer.
2344
2345 If you add entries to this table, please be sure to allow the new
2346 value as an argument to the --with-cpu flag, in configure.in. */
2347
2348 static struct variant variants[] =
2349 {
2350
2351 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2352 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2353 registers_powerpc},
2354 {"power", "POWER user-level", bfd_arch_rs6000,
2355 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2356 registers_power},
2357 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2358 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2359 registers_403},
2360 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2361 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2362 registers_601},
2363 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2364 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2365 registers_602},
2366 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2367 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2368 registers_603},
2369 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2370 604, -1, -1, tot_num_registers (registers_604),
2371 registers_604},
2372 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2373 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2374 registers_403GC},
2375 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2376 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2377 registers_505},
2378 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2379 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2380 registers_860},
2381 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2382 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2383 registers_750},
2384 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2385 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2386 registers_7400},
2387 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2388 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2389 registers_e500},
2390
2391 /* 64-bit */
2392 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2393 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2394 registers_powerpc},
2395 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2396 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2397 registers_powerpc},
2398 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2399 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2400 registers_powerpc},
2401 {"a35", "PowerPC A35", bfd_arch_powerpc,
2402 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2403 registers_powerpc},
2404 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2405 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2406 registers_powerpc},
2407 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2408 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2409 registers_powerpc},
2410
2411 /* FIXME: I haven't checked the register sets of the following. */
2412 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2413 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2414 registers_power},
2415 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2416 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2417 registers_power},
2418 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2419 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2420 registers_power},
2421
2422 {0, 0, 0, 0, 0, 0, 0, 0}
2423 };
2424
2425 /* Initialize the number of registers and pseudo registers in each variant. */
2426
2427 static void
2428 init_variants (void)
2429 {
2430 struct variant *v;
2431
2432 for (v = variants; v->name; v++)
2433 {
2434 if (v->nregs == -1)
2435 v->nregs = num_registers (v->regs, v->num_tot_regs);
2436 if (v->npregs == -1)
2437 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2438 }
2439 }
2440
2441 /* Return the variant corresponding to architecture ARCH and machine number
2442 MACH. If no such variant exists, return null. */
2443
2444 static const struct variant *
2445 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2446 {
2447 const struct variant *v;
2448
2449 for (v = variants; v->name; v++)
2450 if (arch == v->arch && mach == v->mach)
2451 return v;
2452
2453 return NULL;
2454 }
2455
2456 static int
2457 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2458 {
2459 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2460 return print_insn_big_powerpc (memaddr, info);
2461 else
2462 return print_insn_little_powerpc (memaddr, info);
2463 }
2464 \f
2465 static CORE_ADDR
2466 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2467 {
2468 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2469 }
2470
2471 static struct frame_id
2472 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2473 {
2474 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2475 SP_REGNUM),
2476 frame_pc_unwind (next_frame));
2477 }
2478
2479 struct rs6000_frame_cache
2480 {
2481 CORE_ADDR base;
2482 CORE_ADDR initial_sp;
2483 struct trad_frame_saved_reg *saved_regs;
2484 };
2485
2486 static struct rs6000_frame_cache *
2487 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2488 {
2489 struct rs6000_frame_cache *cache;
2490 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2492 struct rs6000_framedata fdata;
2493 int wordsize = tdep->wordsize;
2494
2495 if ((*this_cache) != NULL)
2496 return (*this_cache);
2497 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2498 (*this_cache) = cache;
2499 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2500
2501 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2502 &fdata);
2503
2504 /* If there were any saved registers, figure out parent's stack
2505 pointer. */
2506 /* The following is true only if the frame doesn't have a call to
2507 alloca(), FIXME. */
2508
2509 if (fdata.saved_fpr == 0
2510 && fdata.saved_gpr == 0
2511 && fdata.saved_vr == 0
2512 && fdata.saved_ev == 0
2513 && fdata.lr_offset == 0
2514 && fdata.cr_offset == 0
2515 && fdata.vr_offset == 0
2516 && fdata.ev_offset == 0)
2517 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2518 else
2519 {
2520 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2521 address of the current frame. Things might be easier if the
2522 ->frame pointed to the outer-most address of the frame. In
2523 the mean time, the address of the prev frame is used as the
2524 base address of this frame. */
2525 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2526 if (!fdata.frameless)
2527 /* Frameless really means stackless. */
2528 cache->base = read_memory_addr (cache->base, wordsize);
2529 }
2530 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2531
2532 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2533 All fpr's from saved_fpr to fp31 are saved. */
2534
2535 if (fdata.saved_fpr >= 0)
2536 {
2537 int i;
2538 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2539
2540 /* If skip_prologue says floating-point registers were saved,
2541 but the current architecture has no floating-point registers,
2542 then that's strange. But we have no indices to even record
2543 the addresses under, so we just ignore it. */
2544 if (ppc_floating_point_unit_p (gdbarch))
2545 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2546 {
2547 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2548 fpr_addr += 8;
2549 }
2550 }
2551
2552 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2553 All gpr's from saved_gpr to gpr31 are saved. */
2554
2555 if (fdata.saved_gpr >= 0)
2556 {
2557 int i;
2558 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2559 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2560 {
2561 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2562 gpr_addr += wordsize;
2563 }
2564 }
2565
2566 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2567 All vr's from saved_vr to vr31 are saved. */
2568 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2569 {
2570 if (fdata.saved_vr >= 0)
2571 {
2572 int i;
2573 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2574 for (i = fdata.saved_vr; i < 32; i++)
2575 {
2576 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2577 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2578 }
2579 }
2580 }
2581
2582 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2583 All vr's from saved_ev to ev31 are saved. ????? */
2584 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2585 {
2586 if (fdata.saved_ev >= 0)
2587 {
2588 int i;
2589 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2590 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2591 {
2592 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2593 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2594 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2595 }
2596 }
2597 }
2598
2599 /* If != 0, fdata.cr_offset is the offset from the frame that
2600 holds the CR. */
2601 if (fdata.cr_offset != 0)
2602 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2603
2604 /* If != 0, fdata.lr_offset is the offset from the frame that
2605 holds the LR. */
2606 if (fdata.lr_offset != 0)
2607 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2608 /* The PC is found in the link register. */
2609 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2610
2611 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2612 holds the VRSAVE. */
2613 if (fdata.vrsave_offset != 0)
2614 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2615
2616 if (fdata.alloca_reg < 0)
2617 /* If no alloca register used, then fi->frame is the value of the
2618 %sp for this frame, and it is good enough. */
2619 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2620 else
2621 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2622 fdata.alloca_reg);
2623
2624 return cache;
2625 }
2626
2627 static void
2628 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2629 struct frame_id *this_id)
2630 {
2631 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2632 this_cache);
2633 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2634 }
2635
2636 static void
2637 rs6000_frame_prev_register (struct frame_info *next_frame,
2638 void **this_cache,
2639 int regnum, int *optimizedp,
2640 enum lval_type *lvalp, CORE_ADDR *addrp,
2641 int *realnump, void *valuep)
2642 {
2643 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2644 this_cache);
2645 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
2646 optimizedp, lvalp, addrp, realnump, valuep);
2647 }
2648
2649 static const struct frame_unwind rs6000_frame_unwind =
2650 {
2651 NORMAL_FRAME,
2652 rs6000_frame_this_id,
2653 rs6000_frame_prev_register
2654 };
2655
2656 static const struct frame_unwind *
2657 rs6000_frame_sniffer (struct frame_info *next_frame)
2658 {
2659 return &rs6000_frame_unwind;
2660 }
2661
2662 \f
2663
2664 static CORE_ADDR
2665 rs6000_frame_base_address (struct frame_info *next_frame,
2666 void **this_cache)
2667 {
2668 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2669 this_cache);
2670 return info->initial_sp;
2671 }
2672
2673 static const struct frame_base rs6000_frame_base = {
2674 &rs6000_frame_unwind,
2675 rs6000_frame_base_address,
2676 rs6000_frame_base_address,
2677 rs6000_frame_base_address
2678 };
2679
2680 static const struct frame_base *
2681 rs6000_frame_base_sniffer (struct frame_info *next_frame)
2682 {
2683 return &rs6000_frame_base;
2684 }
2685
2686 /* Initialize the current architecture based on INFO. If possible, re-use an
2687 architecture from ARCHES, which is a list of architectures already created
2688 during this debugging session.
2689
2690 Called e.g. at program startup, when reading a core file, and when reading
2691 a binary file. */
2692
2693 static struct gdbarch *
2694 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2695 {
2696 struct gdbarch *gdbarch;
2697 struct gdbarch_tdep *tdep;
2698 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2699 struct reg *regs;
2700 const struct variant *v;
2701 enum bfd_architecture arch;
2702 unsigned long mach;
2703 bfd abfd;
2704 int sysv_abi;
2705 asection *sect;
2706
2707 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2708 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2709
2710 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2711 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2712
2713 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2714
2715 /* Check word size. If INFO is from a binary file, infer it from
2716 that, else choose a likely default. */
2717 if (from_xcoff_exec)
2718 {
2719 if (bfd_xcoff_is_xcoff64 (info.abfd))
2720 wordsize = 8;
2721 else
2722 wordsize = 4;
2723 }
2724 else if (from_elf_exec)
2725 {
2726 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2727 wordsize = 8;
2728 else
2729 wordsize = 4;
2730 }
2731 else
2732 {
2733 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2734 wordsize = info.bfd_arch_info->bits_per_word /
2735 info.bfd_arch_info->bits_per_byte;
2736 else
2737 wordsize = 4;
2738 }
2739
2740 /* Find a candidate among extant architectures. */
2741 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2742 arches != NULL;
2743 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2744 {
2745 /* Word size in the various PowerPC bfd_arch_info structs isn't
2746 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2747 separate word size check. */
2748 tdep = gdbarch_tdep (arches->gdbarch);
2749 if (tdep && tdep->wordsize == wordsize)
2750 return arches->gdbarch;
2751 }
2752
2753 /* None found, create a new architecture from INFO, whose bfd_arch_info
2754 validity depends on the source:
2755 - executable useless
2756 - rs6000_host_arch() good
2757 - core file good
2758 - "set arch" trust blindly
2759 - GDB startup useless but harmless */
2760
2761 if (!from_xcoff_exec)
2762 {
2763 arch = info.bfd_arch_info->arch;
2764 mach = info.bfd_arch_info->mach;
2765 }
2766 else
2767 {
2768 arch = bfd_arch_powerpc;
2769 bfd_default_set_arch_mach (&abfd, arch, 0);
2770 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2771 mach = info.bfd_arch_info->mach;
2772 }
2773 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2774 tdep->wordsize = wordsize;
2775
2776 /* For e500 executables, the apuinfo section is of help here. Such
2777 section contains the identifier and revision number of each
2778 Application-specific Processing Unit that is present on the
2779 chip. The content of the section is determined by the assembler
2780 which looks at each instruction and determines which unit (and
2781 which version of it) can execute it. In our case we just look for
2782 the existance of the section. */
2783
2784 if (info.abfd)
2785 {
2786 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2787 if (sect)
2788 {
2789 arch = info.bfd_arch_info->arch;
2790 mach = bfd_mach_ppc_e500;
2791 bfd_default_set_arch_mach (&abfd, arch, mach);
2792 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2793 }
2794 }
2795
2796 gdbarch = gdbarch_alloc (&info, tdep);
2797 power = arch == bfd_arch_rs6000;
2798
2799 /* Initialize the number of real and pseudo registers in each variant. */
2800 init_variants ();
2801
2802 /* Choose variant. */
2803 v = find_variant_by_arch (arch, mach);
2804 if (!v)
2805 return NULL;
2806
2807 tdep->regs = v->regs;
2808
2809 tdep->ppc_gp0_regnum = 0;
2810 tdep->ppc_toc_regnum = 2;
2811 tdep->ppc_ps_regnum = 65;
2812 tdep->ppc_cr_regnum = 66;
2813 tdep->ppc_lr_regnum = 67;
2814 tdep->ppc_ctr_regnum = 68;
2815 tdep->ppc_xer_regnum = 69;
2816 if (v->mach == bfd_mach_ppc_601)
2817 tdep->ppc_mq_regnum = 124;
2818 else if (power)
2819 tdep->ppc_mq_regnum = 70;
2820 else
2821 tdep->ppc_mq_regnum = -1;
2822 tdep->ppc_fp0_regnum = 32;
2823 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2824
2825 set_gdbarch_pc_regnum (gdbarch, 64);
2826 set_gdbarch_sp_regnum (gdbarch, 1);
2827 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2828 if (sysv_abi && wordsize == 8)
2829 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2830 else if (sysv_abi && wordsize == 4)
2831 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2832 else
2833 {
2834 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2835 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2836 }
2837
2838 if (v->arch == bfd_arch_powerpc)
2839 switch (v->mach)
2840 {
2841 case bfd_mach_ppc:
2842 tdep->ppc_vr0_regnum = 71;
2843 tdep->ppc_vrsave_regnum = 104;
2844 tdep->ppc_ev0_regnum = -1;
2845 tdep->ppc_ev31_regnum = -1;
2846 break;
2847 case bfd_mach_ppc_7400:
2848 tdep->ppc_vr0_regnum = 119;
2849 tdep->ppc_vrsave_regnum = 152;
2850 tdep->ppc_ev0_regnum = -1;
2851 tdep->ppc_ev31_regnum = -1;
2852 break;
2853 case bfd_mach_ppc_e500:
2854 tdep->ppc_gp0_regnum = 41;
2855 tdep->ppc_toc_regnum = -1;
2856 tdep->ppc_ps_regnum = 1;
2857 tdep->ppc_cr_regnum = 2;
2858 tdep->ppc_lr_regnum = 3;
2859 tdep->ppc_ctr_regnum = 4;
2860 tdep->ppc_xer_regnum = 5;
2861 tdep->ppc_ev0_regnum = 7;
2862 tdep->ppc_ev31_regnum = 38;
2863 tdep->ppc_fp0_regnum = -1;
2864 tdep->ppc_fpscr_regnum = -1;
2865 set_gdbarch_pc_regnum (gdbarch, 0);
2866 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2867 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2868 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2869 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2870 break;
2871 default:
2872 tdep->ppc_vr0_regnum = -1;
2873 tdep->ppc_vrsave_regnum = -1;
2874 tdep->ppc_ev0_regnum = -1;
2875 tdep->ppc_ev31_regnum = -1;
2876 break;
2877 }
2878
2879 /* Sanity check on registers. */
2880 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2881
2882 /* Set lr_frame_offset. */
2883 if (wordsize == 8)
2884 tdep->lr_frame_offset = 16;
2885 else if (sysv_abi)
2886 tdep->lr_frame_offset = 4;
2887 else
2888 tdep->lr_frame_offset = 8;
2889
2890 /* Calculate byte offsets in raw register array. */
2891 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2892 for (i = off = 0; i < v->num_tot_regs; i++)
2893 {
2894 tdep->regoff[i] = off;
2895 off += regsize (v->regs + i, wordsize);
2896 }
2897
2898 /* Select instruction printer. */
2899 if (arch == power)
2900 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2901 else
2902 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2903
2904 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2905
2906 set_gdbarch_num_regs (gdbarch, v->nregs);
2907 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2908 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2909 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2910 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2911 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2912 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2913 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2914
2915 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2916 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2917 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2918 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2919 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2920 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2921 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2922 if (sysv_abi)
2923 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2924 else
2925 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2926 set_gdbarch_char_signed (gdbarch, 0);
2927
2928 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2929 if (sysv_abi && wordsize == 8)
2930 /* PPC64 SYSV. */
2931 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2932 else if (!sysv_abi && wordsize == 4)
2933 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2934 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2935 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2936 224. */
2937 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2938
2939 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2940 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2941 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2942 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_dwarf2_stab_reg_to_regnum);
2943 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_stab_reg_to_regnum);
2944 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2945 is correct for the SysV ABI when the wordsize is 8, but I'm also
2946 fairly certain that ppc_sysv_abi_push_arguments() will give even
2947 worse results since it only works for 32-bit code. So, for the moment,
2948 we're better off calling rs6000_push_arguments() since it works for
2949 64-bit code. At some point in the future, this matter needs to be
2950 revisited. */
2951 if (sysv_abi && wordsize == 4)
2952 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2953 else if (sysv_abi && wordsize == 8)
2954 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2955 else
2956 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2957
2958 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2959
2960 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2961 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2962 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2963
2964 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2965 for the descriptor and ".FN" for the entry-point -- a user
2966 specifying "break FN" will unexpectedly end up with a breakpoint
2967 on the descriptor and not the function. This architecture method
2968 transforms any breakpoints on descriptors into breakpoints on the
2969 corresponding entry point. */
2970 if (sysv_abi && wordsize == 8)
2971 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2972
2973 /* Not sure on this. FIXMEmgo */
2974 set_gdbarch_frame_args_skip (gdbarch, 8);
2975
2976 if (!sysv_abi)
2977 set_gdbarch_use_struct_convention (gdbarch,
2978 rs6000_use_struct_convention);
2979
2980 if (!sysv_abi)
2981 {
2982 /* Handle RS/6000 function pointers (which are really function
2983 descriptors). */
2984 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2985 rs6000_convert_from_func_ptr_addr);
2986 }
2987
2988 /* Helpers for function argument information. */
2989 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2990
2991 /* Hook in ABI-specific overrides, if they have been registered. */
2992 gdbarch_init_osabi (info, gdbarch);
2993
2994 switch (info.osabi)
2995 {
2996 case GDB_OSABI_NETBSD_AOUT:
2997 case GDB_OSABI_NETBSD_ELF:
2998 case GDB_OSABI_UNKNOWN:
2999 case GDB_OSABI_LINUX:
3000 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3001 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3002 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3003 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3004 break;
3005 default:
3006 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3007
3008 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3009 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3010 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3011 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3012 }
3013
3014 if (from_xcoff_exec)
3015 {
3016 /* NOTE: jimix/2003-06-09: This test should really check for
3017 GDB_OSABI_AIX when that is defined and becomes
3018 available. (Actually, once things are properly split apart,
3019 the test goes away.) */
3020 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3021 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3022 }
3023
3024 return gdbarch;
3025 }
3026
3027 static void
3028 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3029 {
3030 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3031
3032 if (tdep == NULL)
3033 return;
3034
3035 /* FIXME: Dump gdbarch_tdep. */
3036 }
3037
3038 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3039
3040 static void
3041 rs6000_info_powerpc_command (char *args, int from_tty)
3042 {
3043 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3044 }
3045
3046 /* Initialization code. */
3047
3048 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3049
3050 void
3051 _initialize_rs6000_tdep (void)
3052 {
3053 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3054 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3055
3056 /* Add root prefix command for "info powerpc" commands */
3057 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3058 "Various POWERPC info specific commands.",
3059 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3060 }
This page took 0.117999 seconds and 5 git commands to generate.