gdb/
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "objfiles.h"
30 #include "arch-utils.h"
31 #include "regcache.h"
32 #include "regset.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "parser-defs.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "sim-regno.h"
39 #include "gdb/sim-ppc.h"
40 #include "reggroups.h"
41 #include "dwarf2-frame.h"
42 #include "target-descriptions.h"
43 #include "user-regs.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53
54 #include "solib-svr4.h"
55 #include "ppc-tdep.h"
56
57 #include "gdb_assert.h"
58 #include "dis-asm.h"
59
60 #include "trad-frame.h"
61 #include "frame-unwind.h"
62 #include "frame-base.h"
63
64 #include "features/rs6000/powerpc-32.c"
65 #include "features/rs6000/powerpc-altivec32.c"
66 #include "features/rs6000/powerpc-vsx32.c"
67 #include "features/rs6000/powerpc-403.c"
68 #include "features/rs6000/powerpc-403gc.c"
69 #include "features/rs6000/powerpc-405.c"
70 #include "features/rs6000/powerpc-505.c"
71 #include "features/rs6000/powerpc-601.c"
72 #include "features/rs6000/powerpc-602.c"
73 #include "features/rs6000/powerpc-603.c"
74 #include "features/rs6000/powerpc-604.c"
75 #include "features/rs6000/powerpc-64.c"
76 #include "features/rs6000/powerpc-altivec64.c"
77 #include "features/rs6000/powerpc-vsx64.c"
78 #include "features/rs6000/powerpc-7400.c"
79 #include "features/rs6000/powerpc-750.c"
80 #include "features/rs6000/powerpc-860.c"
81 #include "features/rs6000/powerpc-e500.c"
82 #include "features/rs6000/rs6000.c"
83
84 /* Determine if regnum is an SPE pseudo-register. */
85 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
86 && (regnum) >= (tdep)->ppc_ev0_regnum \
87 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
88
89 /* Determine if regnum is a decimal float pseudo-register. */
90 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_dl0_regnum \
92 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
93
94 /* Determine if regnum is a POWER7 VSX register. */
95 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_vsr0_regnum \
97 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
98
99 /* Determine if regnum is a POWER7 Extended FP register. */
100 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_efpr0_regnum \
102 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
103
104 /* The list of available "set powerpc ..." and "show powerpc ..."
105 commands. */
106 static struct cmd_list_element *setpowerpccmdlist = NULL;
107 static struct cmd_list_element *showpowerpccmdlist = NULL;
108
109 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
110
111 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
112 static const char *powerpc_vector_strings[] =
113 {
114 "auto",
115 "generic",
116 "altivec",
117 "spe",
118 NULL
119 };
120
121 /* A variable that can be configured by the user. */
122 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
123 static const char *powerpc_vector_abi_string = "auto";
124
125 /* To be used by skip_prologue. */
126
127 struct rs6000_framedata
128 {
129 int offset; /* total size of frame --- the distance
130 by which we decrement sp to allocate
131 the frame */
132 int saved_gpr; /* smallest # of saved gpr */
133 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
134 int saved_fpr; /* smallest # of saved fpr */
135 int saved_vr; /* smallest # of saved vr */
136 int saved_ev; /* smallest # of saved ev */
137 int alloca_reg; /* alloca register number (frame ptr) */
138 char frameless; /* true if frameless functions. */
139 char nosavedpc; /* true if pc not saved. */
140 char used_bl; /* true if link register clobbered */
141 int gpr_offset; /* offset of saved gprs from prev sp */
142 int fpr_offset; /* offset of saved fprs from prev sp */
143 int vr_offset; /* offset of saved vrs from prev sp */
144 int ev_offset; /* offset of saved evs from prev sp */
145 int lr_offset; /* offset of saved lr */
146 int lr_register; /* register of saved lr, if trustworthy */
147 int cr_offset; /* offset of saved cr */
148 int vrsave_offset; /* offset of saved vrsave register */
149 };
150
151
152 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
153 int
154 vsx_register_p (struct gdbarch *gdbarch, int regno)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157 if (tdep->ppc_vsr0_regnum < 0)
158 return 0;
159 else
160 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
161 <= tdep->ppc_vsr0_upper_regnum + 31);
162 }
163
164 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
165 int
166 altivec_register_p (struct gdbarch *gdbarch, int regno)
167 {
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
170 return 0;
171 else
172 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
173 }
174
175
176 /* Return true if REGNO is an SPE register, false otherwise. */
177 int
178 spe_register_p (struct gdbarch *gdbarch, int regno)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 /* Is it a reference to EV0 -- EV31, and do we have those? */
183 if (IS_SPE_PSEUDOREG (tdep, regno))
184 return 1;
185
186 /* Is it a reference to one of the raw upper GPR halves? */
187 if (tdep->ppc_ev0_upper_regnum >= 0
188 && tdep->ppc_ev0_upper_regnum <= regno
189 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
190 return 1;
191
192 /* Is it a reference to the 64-bit accumulator, and do we have that? */
193 if (tdep->ppc_acc_regnum >= 0
194 && tdep->ppc_acc_regnum == regno)
195 return 1;
196
197 /* Is it a reference to the SPE floating-point status and control register,
198 and do we have that? */
199 if (tdep->ppc_spefscr_regnum >= 0
200 && tdep->ppc_spefscr_regnum == regno)
201 return 1;
202
203 return 0;
204 }
205
206
207 /* Return non-zero if the architecture described by GDBARCH has
208 floating-point registers (f0 --- f31 and fpscr). */
209 int
210 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213
214 return (tdep->ppc_fp0_regnum >= 0
215 && tdep->ppc_fpscr_regnum >= 0);
216 }
217
218 /* Return non-zero if the architecture described by GDBARCH has
219 VSX registers (vsr0 --- vsr63). */
220 static int
221 ppc_vsx_support_p (struct gdbarch *gdbarch)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224
225 return tdep->ppc_vsr0_regnum >= 0;
226 }
227
228 /* Return non-zero if the architecture described by GDBARCH has
229 Altivec registers (vr0 --- vr31, vrsave and vscr). */
230 int
231 ppc_altivec_support_p (struct gdbarch *gdbarch)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234
235 return (tdep->ppc_vr0_regnum >= 0
236 && tdep->ppc_vrsave_regnum >= 0);
237 }
238
239 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
240 set it to SIM_REGNO.
241
242 This is a helper function for init_sim_regno_table, constructing
243 the table mapping GDB register numbers to sim register numbers; we
244 initialize every element in that table to -1 before we start
245 filling it in. */
246 static void
247 set_sim_regno (int *table, int gdb_regno, int sim_regno)
248 {
249 /* Make sure we don't try to assign any given GDB register a sim
250 register number more than once. */
251 gdb_assert (table[gdb_regno] == -1);
252 table[gdb_regno] = sim_regno;
253 }
254
255
256 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
257 numbers to simulator register numbers, based on the values placed
258 in the ARCH->tdep->ppc_foo_regnum members. */
259 static void
260 init_sim_regno_table (struct gdbarch *arch)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
263 int total_regs = gdbarch_num_regs (arch);
264 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
265 int i;
266 static const char *const segment_regs[] = {
267 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
268 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
269 };
270
271 /* Presume that all registers not explicitly mentioned below are
272 unavailable from the sim. */
273 for (i = 0; i < total_regs; i++)
274 sim_regno[i] = -1;
275
276 /* General-purpose registers. */
277 for (i = 0; i < ppc_num_gprs; i++)
278 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
279
280 /* Floating-point registers. */
281 if (tdep->ppc_fp0_regnum >= 0)
282 for (i = 0; i < ppc_num_fprs; i++)
283 set_sim_regno (sim_regno,
284 tdep->ppc_fp0_regnum + i,
285 sim_ppc_f0_regnum + i);
286 if (tdep->ppc_fpscr_regnum >= 0)
287 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
288
289 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
290 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
291 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
292
293 /* Segment registers. */
294 for (i = 0; i < ppc_num_srs; i++)
295 {
296 int gdb_regno;
297
298 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
299 if (gdb_regno >= 0)
300 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
301 }
302
303 /* Altivec registers. */
304 if (tdep->ppc_vr0_regnum >= 0)
305 {
306 for (i = 0; i < ppc_num_vrs; i++)
307 set_sim_regno (sim_regno,
308 tdep->ppc_vr0_regnum + i,
309 sim_ppc_vr0_regnum + i);
310
311 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
312 we can treat this more like the other cases. */
313 set_sim_regno (sim_regno,
314 tdep->ppc_vr0_regnum + ppc_num_vrs,
315 sim_ppc_vscr_regnum);
316 }
317 /* vsave is a special-purpose register, so the code below handles it. */
318
319 /* SPE APU (E500) registers. */
320 if (tdep->ppc_ev0_upper_regnum >= 0)
321 for (i = 0; i < ppc_num_gprs; i++)
322 set_sim_regno (sim_regno,
323 tdep->ppc_ev0_upper_regnum + i,
324 sim_ppc_rh0_regnum + i);
325 if (tdep->ppc_acc_regnum >= 0)
326 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
327 /* spefscr is a special-purpose register, so the code below handles it. */
328
329 #ifdef WITH_SIM
330 /* Now handle all special-purpose registers. Verify that they
331 haven't mistakenly been assigned numbers by any of the above
332 code. */
333 for (i = 0; i < sim_ppc_num_sprs; i++)
334 {
335 const char *spr_name = sim_spr_register_name (i);
336 int gdb_regno = -1;
337
338 if (spr_name != NULL)
339 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
340
341 if (gdb_regno != -1)
342 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
343 }
344 #endif
345
346 /* Drop the initialized array into place. */
347 tdep->sim_regno = sim_regno;
348 }
349
350
351 /* Given a GDB register number REG, return the corresponding SIM
352 register number. */
353 static int
354 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 int sim_regno;
358
359 if (tdep->sim_regno == NULL)
360 init_sim_regno_table (gdbarch);
361
362 gdb_assert (0 <= reg
363 && reg <= gdbarch_num_regs (gdbarch)
364 + gdbarch_num_pseudo_regs (gdbarch));
365 sim_regno = tdep->sim_regno[reg];
366
367 if (sim_regno >= 0)
368 return sim_regno;
369 else
370 return LEGACY_SIM_REGNO_IGNORE;
371 }
372
373 \f
374
375 /* Register set support functions. */
376
377 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
378 Write the register to REGCACHE. */
379
380 void
381 ppc_supply_reg (struct regcache *regcache, int regnum,
382 const gdb_byte *regs, size_t offset, int regsize)
383 {
384 if (regnum != -1 && offset != -1)
385 {
386 if (regsize > 4)
387 {
388 struct gdbarch *gdbarch = get_regcache_arch (regcache);
389 int gdb_regsize = register_size (gdbarch, regnum);
390 if (gdb_regsize < regsize
391 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
392 offset += regsize - gdb_regsize;
393 }
394 regcache_raw_supply (regcache, regnum, regs + offset);
395 }
396 }
397
398 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
399 in a field REGSIZE wide. Zero pad as necessary. */
400
401 void
402 ppc_collect_reg (const struct regcache *regcache, int regnum,
403 gdb_byte *regs, size_t offset, int regsize)
404 {
405 if (regnum != -1 && offset != -1)
406 {
407 if (regsize > 4)
408 {
409 struct gdbarch *gdbarch = get_regcache_arch (regcache);
410 int gdb_regsize = register_size (gdbarch, regnum);
411 if (gdb_regsize < regsize)
412 {
413 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
414 {
415 memset (regs + offset, 0, regsize - gdb_regsize);
416 offset += regsize - gdb_regsize;
417 }
418 else
419 memset (regs + offset + regsize - gdb_regsize, 0,
420 regsize - gdb_regsize);
421 }
422 }
423 regcache_raw_collect (regcache, regnum, regs + offset);
424 }
425 }
426
427 static int
428 ppc_greg_offset (struct gdbarch *gdbarch,
429 struct gdbarch_tdep *tdep,
430 const struct ppc_reg_offsets *offsets,
431 int regnum,
432 int *regsize)
433 {
434 *regsize = offsets->gpr_size;
435 if (regnum >= tdep->ppc_gp0_regnum
436 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
437 return (offsets->r0_offset
438 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
439
440 if (regnum == gdbarch_pc_regnum (gdbarch))
441 return offsets->pc_offset;
442
443 if (regnum == tdep->ppc_ps_regnum)
444 return offsets->ps_offset;
445
446 if (regnum == tdep->ppc_lr_regnum)
447 return offsets->lr_offset;
448
449 if (regnum == tdep->ppc_ctr_regnum)
450 return offsets->ctr_offset;
451
452 *regsize = offsets->xr_size;
453 if (regnum == tdep->ppc_cr_regnum)
454 return offsets->cr_offset;
455
456 if (regnum == tdep->ppc_xer_regnum)
457 return offsets->xer_offset;
458
459 if (regnum == tdep->ppc_mq_regnum)
460 return offsets->mq_offset;
461
462 return -1;
463 }
464
465 static int
466 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
467 const struct ppc_reg_offsets *offsets,
468 int regnum)
469 {
470 if (regnum >= tdep->ppc_fp0_regnum
471 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
472 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
473
474 if (regnum == tdep->ppc_fpscr_regnum)
475 return offsets->fpscr_offset;
476
477 return -1;
478 }
479
480 static int
481 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
482 const struct ppc_reg_offsets *offsets,
483 int regnum)
484 {
485 if (regnum >= tdep->ppc_vr0_regnum
486 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
487 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
488
489 if (regnum == tdep->ppc_vrsave_regnum - 1)
490 return offsets->vscr_offset;
491
492 if (regnum == tdep->ppc_vrsave_regnum)
493 return offsets->vrsave_offset;
494
495 return -1;
496 }
497
498 /* Supply register REGNUM in the general-purpose register set REGSET
499 from the buffer specified by GREGS and LEN to register cache
500 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
501
502 void
503 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
504 int regnum, const void *gregs, size_t len)
505 {
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508 const struct ppc_reg_offsets *offsets = regset->descr;
509 size_t offset;
510 int regsize;
511
512 if (regnum == -1)
513 {
514 int i;
515 int gpr_size = offsets->gpr_size;
516
517 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
518 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
519 i++, offset += gpr_size)
520 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
521
522 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
523 gregs, offsets->pc_offset, gpr_size);
524 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
525 gregs, offsets->ps_offset, gpr_size);
526 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
527 gregs, offsets->lr_offset, gpr_size);
528 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
529 gregs, offsets->ctr_offset, gpr_size);
530 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
531 gregs, offsets->cr_offset, offsets->xr_size);
532 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
533 gregs, offsets->xer_offset, offsets->xr_size);
534 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
535 gregs, offsets->mq_offset, offsets->xr_size);
536 return;
537 }
538
539 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
540 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
541 }
542
543 /* Supply register REGNUM in the floating-point register set REGSET
544 from the buffer specified by FPREGS and LEN to register cache
545 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
546
547 void
548 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
549 int regnum, const void *fpregs, size_t len)
550 {
551 struct gdbarch *gdbarch = get_regcache_arch (regcache);
552 struct gdbarch_tdep *tdep;
553 const struct ppc_reg_offsets *offsets;
554 size_t offset;
555
556 if (!ppc_floating_point_unit_p (gdbarch))
557 return;
558
559 tdep = gdbarch_tdep (gdbarch);
560 offsets = regset->descr;
561 if (regnum == -1)
562 {
563 int i;
564
565 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
566 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
567 i++, offset += 8)
568 ppc_supply_reg (regcache, i, fpregs, offset, 8);
569
570 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
571 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
572 return;
573 }
574
575 offset = ppc_fpreg_offset (tdep, offsets, regnum);
576 ppc_supply_reg (regcache, regnum, fpregs, offset,
577 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
578 }
579
580 /* Supply register REGNUM in the VSX register set REGSET
581 from the buffer specified by VSXREGS and LEN to register cache
582 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
583
584 void
585 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
586 int regnum, const void *vsxregs, size_t len)
587 {
588 struct gdbarch *gdbarch = get_regcache_arch (regcache);
589 struct gdbarch_tdep *tdep;
590
591 if (!ppc_vsx_support_p (gdbarch))
592 return;
593
594 tdep = gdbarch_tdep (gdbarch);
595
596 if (regnum == -1)
597 {
598 int i;
599
600 for (i = tdep->ppc_vsr0_upper_regnum;
601 i < tdep->ppc_vsr0_upper_regnum + 32;
602 i++)
603 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
604
605 return;
606 }
607 else
608 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
609 }
610
611 /* Supply register REGNUM in the Altivec register set REGSET
612 from the buffer specified by VRREGS and LEN to register cache
613 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
614
615 void
616 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
617 int regnum, const void *vrregs, size_t len)
618 {
619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
620 struct gdbarch_tdep *tdep;
621 const struct ppc_reg_offsets *offsets;
622 size_t offset;
623
624 if (!ppc_altivec_support_p (gdbarch))
625 return;
626
627 tdep = gdbarch_tdep (gdbarch);
628 offsets = regset->descr;
629 if (regnum == -1)
630 {
631 int i;
632
633 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
634 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
635 i++, offset += 16)
636 ppc_supply_reg (regcache, i, vrregs, offset, 16);
637
638 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
639 vrregs, offsets->vscr_offset, 4);
640
641 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
642 vrregs, offsets->vrsave_offset, 4);
643 return;
644 }
645
646 offset = ppc_vrreg_offset (tdep, offsets, regnum);
647 if (regnum != tdep->ppc_vrsave_regnum
648 && regnum != tdep->ppc_vrsave_regnum - 1)
649 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
650 else
651 ppc_supply_reg (regcache, regnum,
652 vrregs, offset, 4);
653 }
654
655 /* Collect register REGNUM in the general-purpose register set
656 REGSET from register cache REGCACHE into the buffer specified by
657 GREGS and LEN. If REGNUM is -1, do this for all registers in
658 REGSET. */
659
660 void
661 ppc_collect_gregset (const struct regset *regset,
662 const struct regcache *regcache,
663 int regnum, void *gregs, size_t len)
664 {
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
667 const struct ppc_reg_offsets *offsets = regset->descr;
668 size_t offset;
669 int regsize;
670
671 if (regnum == -1)
672 {
673 int i;
674 int gpr_size = offsets->gpr_size;
675
676 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
677 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
678 i++, offset += gpr_size)
679 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
680
681 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
682 gregs, offsets->pc_offset, gpr_size);
683 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
684 gregs, offsets->ps_offset, gpr_size);
685 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
686 gregs, offsets->lr_offset, gpr_size);
687 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
688 gregs, offsets->ctr_offset, gpr_size);
689 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
690 gregs, offsets->cr_offset, offsets->xr_size);
691 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
692 gregs, offsets->xer_offset, offsets->xr_size);
693 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
694 gregs, offsets->mq_offset, offsets->xr_size);
695 return;
696 }
697
698 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
699 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
700 }
701
702 /* Collect register REGNUM in the floating-point register set
703 REGSET from register cache REGCACHE into the buffer specified by
704 FPREGS and LEN. If REGNUM is -1, do this for all registers in
705 REGSET. */
706
707 void
708 ppc_collect_fpregset (const struct regset *regset,
709 const struct regcache *regcache,
710 int regnum, void *fpregs, size_t len)
711 {
712 struct gdbarch *gdbarch = get_regcache_arch (regcache);
713 struct gdbarch_tdep *tdep;
714 const struct ppc_reg_offsets *offsets;
715 size_t offset;
716
717 if (!ppc_floating_point_unit_p (gdbarch))
718 return;
719
720 tdep = gdbarch_tdep (gdbarch);
721 offsets = regset->descr;
722 if (regnum == -1)
723 {
724 int i;
725
726 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
727 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
728 i++, offset += 8)
729 ppc_collect_reg (regcache, i, fpregs, offset, 8);
730
731 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
732 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
733 return;
734 }
735
736 offset = ppc_fpreg_offset (tdep, offsets, regnum);
737 ppc_collect_reg (regcache, regnum, fpregs, offset,
738 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
739 }
740
741 /* Collect register REGNUM in the VSX register set
742 REGSET from register cache REGCACHE into the buffer specified by
743 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
744 REGSET. */
745
746 void
747 ppc_collect_vsxregset (const struct regset *regset,
748 const struct regcache *regcache,
749 int regnum, void *vsxregs, size_t len)
750 {
751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
752 struct gdbarch_tdep *tdep;
753
754 if (!ppc_vsx_support_p (gdbarch))
755 return;
756
757 tdep = gdbarch_tdep (gdbarch);
758
759 if (regnum == -1)
760 {
761 int i;
762
763 for (i = tdep->ppc_vsr0_upper_regnum;
764 i < tdep->ppc_vsr0_upper_regnum + 32;
765 i++)
766 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
767
768 return;
769 }
770 else
771 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
772 }
773
774
775 /* Collect register REGNUM in the Altivec register set
776 REGSET from register cache REGCACHE into the buffer specified by
777 VRREGS and LEN. If REGNUM is -1, do this for all registers in
778 REGSET. */
779
780 void
781 ppc_collect_vrregset (const struct regset *regset,
782 const struct regcache *regcache,
783 int regnum, void *vrregs, size_t len)
784 {
785 struct gdbarch *gdbarch = get_regcache_arch (regcache);
786 struct gdbarch_tdep *tdep;
787 const struct ppc_reg_offsets *offsets;
788 size_t offset;
789
790 if (!ppc_altivec_support_p (gdbarch))
791 return;
792
793 tdep = gdbarch_tdep (gdbarch);
794 offsets = regset->descr;
795 if (regnum == -1)
796 {
797 int i;
798
799 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
800 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
801 i++, offset += 16)
802 ppc_collect_reg (regcache, i, vrregs, offset, 16);
803
804 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
805 vrregs, offsets->vscr_offset, 4);
806
807 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
808 vrregs, offsets->vrsave_offset, 4);
809 return;
810 }
811
812 offset = ppc_vrreg_offset (tdep, offsets, regnum);
813 if (regnum != tdep->ppc_vrsave_regnum
814 && regnum != tdep->ppc_vrsave_regnum - 1)
815 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
816 else
817 ppc_collect_reg (regcache, regnum,
818 vrregs, offset, 4);
819 }
820 \f
821
822 static int
823 insn_changes_sp_or_jumps (unsigned long insn)
824 {
825 int opcode = (insn >> 26) & 0x03f;
826 int sd = (insn >> 21) & 0x01f;
827 int a = (insn >> 16) & 0x01f;
828 int subcode = (insn >> 1) & 0x3ff;
829
830 /* Changes the stack pointer. */
831
832 /* NOTE: There are many ways to change the value of a given register.
833 The ways below are those used when the register is R1, the SP,
834 in a funtion's epilogue. */
835
836 if (opcode == 31 && subcode == 444 && a == 1)
837 return 1; /* mr R1,Rn */
838 if (opcode == 14 && sd == 1)
839 return 1; /* addi R1,Rn,simm */
840 if (opcode == 58 && sd == 1)
841 return 1; /* ld R1,ds(Rn) */
842
843 /* Transfers control. */
844
845 if (opcode == 18)
846 return 1; /* b */
847 if (opcode == 16)
848 return 1; /* bc */
849 if (opcode == 19 && subcode == 16)
850 return 1; /* bclr */
851 if (opcode == 19 && subcode == 528)
852 return 1; /* bcctr */
853
854 return 0;
855 }
856
857 /* Return true if we are in the function's epilogue, i.e. after the
858 instruction that destroyed the function's stack frame.
859
860 1) scan forward from the point of execution:
861 a) If you find an instruction that modifies the stack pointer
862 or transfers control (except a return), execution is not in
863 an epilogue, return.
864 b) Stop scanning if you find a return instruction or reach the
865 end of the function or reach the hard limit for the size of
866 an epilogue.
867 2) scan backward from the point of execution:
868 a) If you find an instruction that modifies the stack pointer,
869 execution *is* in an epilogue, return.
870 b) Stop scanning if you reach an instruction that transfers
871 control or the beginning of the function or reach the hard
872 limit for the size of an epilogue. */
873
874 static int
875 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
876 {
877 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
878 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
879 bfd_byte insn_buf[PPC_INSN_SIZE];
880 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
881 unsigned long insn;
882 struct frame_info *curfrm;
883
884 /* Find the search limits based on function boundaries and hard limit. */
885
886 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
887 return 0;
888
889 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
890 if (epilogue_start < func_start) epilogue_start = func_start;
891
892 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
893 if (epilogue_end > func_end) epilogue_end = func_end;
894
895 curfrm = get_current_frame ();
896
897 /* Scan forward until next 'blr'. */
898
899 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
900 {
901 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
902 return 0;
903 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
904 if (insn == 0x4e800020)
905 break;
906 /* Assume a bctr is a tail call unless it points strictly within
907 this function. */
908 if (insn == 0x4e800420)
909 {
910 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
911 tdep->ppc_ctr_regnum);
912 if (ctr > func_start && ctr < func_end)
913 return 0;
914 else
915 break;
916 }
917 if (insn_changes_sp_or_jumps (insn))
918 return 0;
919 }
920
921 /* Scan backward until adjustment to stack pointer (R1). */
922
923 for (scan_pc = pc - PPC_INSN_SIZE;
924 scan_pc >= epilogue_start;
925 scan_pc -= PPC_INSN_SIZE)
926 {
927 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
928 return 0;
929 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
930 if (insn_changes_sp_or_jumps (insn))
931 return 1;
932 }
933
934 return 0;
935 }
936
937 /* Get the ith function argument for the current function. */
938 static CORE_ADDR
939 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
940 struct type *type)
941 {
942 return get_frame_register_unsigned (frame, 3 + argi);
943 }
944
945 /* Sequence of bytes for breakpoint instruction. */
946
947 const static unsigned char *
948 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
949 int *bp_size)
950 {
951 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
952 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
953 *bp_size = 4;
954 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
955 return big_breakpoint;
956 else
957 return little_breakpoint;
958 }
959
960 /* Instruction masks for displaced stepping. */
961 #define BRANCH_MASK 0xfc000000
962 #define BP_MASK 0xFC0007FE
963 #define B_INSN 0x48000000
964 #define BC_INSN 0x40000000
965 #define BXL_INSN 0x4c000000
966 #define BP_INSN 0x7C000008
967
968 /* Fix up the state of registers and memory after having single-stepped
969 a displaced instruction. */
970 static void
971 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
972 struct displaced_step_closure *closure,
973 CORE_ADDR from, CORE_ADDR to,
974 struct regcache *regs)
975 {
976 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
977 /* Since we use simple_displaced_step_copy_insn, our closure is a
978 copy of the instruction. */
979 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
980 PPC_INSN_SIZE, byte_order);
981 ULONGEST opcode = 0;
982 /* Offset for non PC-relative instructions. */
983 LONGEST offset = PPC_INSN_SIZE;
984
985 opcode = insn & BRANCH_MASK;
986
987 if (debug_displaced)
988 fprintf_unfiltered (gdb_stdlog,
989 "displaced: (ppc) fixup (%s, %s)\n",
990 paddress (gdbarch, from), paddress (gdbarch, to));
991
992
993 /* Handle PC-relative branch instructions. */
994 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
995 {
996 ULONGEST current_pc;
997
998 /* Read the current PC value after the instruction has been executed
999 in a displaced location. Calculate the offset to be applied to the
1000 original PC value before the displaced stepping. */
1001 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1002 &current_pc);
1003 offset = current_pc - to;
1004
1005 if (opcode != BXL_INSN)
1006 {
1007 /* Check for AA bit indicating whether this is an absolute
1008 addressing or PC-relative (1: absolute, 0: relative). */
1009 if (!(insn & 0x2))
1010 {
1011 /* PC-relative addressing is being used in the branch. */
1012 if (debug_displaced)
1013 fprintf_unfiltered
1014 (gdb_stdlog,
1015 "displaced: (ppc) branch instruction: %s\n"
1016 "displaced: (ppc) adjusted PC from %s to %s\n",
1017 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1018 paddress (gdbarch, from + offset));
1019
1020 regcache_cooked_write_unsigned (regs,
1021 gdbarch_pc_regnum (gdbarch),
1022 from + offset);
1023 }
1024 }
1025 else
1026 {
1027 /* If we're here, it means we have a branch to LR or CTR. If the
1028 branch was taken, the offset is probably greater than 4 (the next
1029 instruction), so it's safe to assume that an offset of 4 means we
1030 did not take the branch. */
1031 if (offset == PPC_INSN_SIZE)
1032 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1033 from + PPC_INSN_SIZE);
1034 }
1035
1036 /* Check for LK bit indicating whether we should set the link
1037 register to point to the next instruction
1038 (1: Set, 0: Don't set). */
1039 if (insn & 0x1)
1040 {
1041 /* Link register needs to be set to the next instruction's PC. */
1042 regcache_cooked_write_unsigned (regs,
1043 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1044 from + PPC_INSN_SIZE);
1045 if (debug_displaced)
1046 fprintf_unfiltered (gdb_stdlog,
1047 "displaced: (ppc) adjusted LR to %s\n",
1048 paddress (gdbarch, from + PPC_INSN_SIZE));
1049
1050 }
1051 }
1052 /* Check for breakpoints in the inferior. If we've found one, place the PC
1053 right at the breakpoint instruction. */
1054 else if ((insn & BP_MASK) == BP_INSN)
1055 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1056 else
1057 /* Handle any other instructions that do not fit in the categories above. */
1058 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1059 from + offset);
1060 }
1061
1062 /* Always use hardware single-stepping to execute the
1063 displaced instruction. */
1064 static int
1065 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1066 struct displaced_step_closure *closure)
1067 {
1068 return 1;
1069 }
1070
1071 /* Instruction masks used during single-stepping of atomic sequences. */
1072 #define LWARX_MASK 0xfc0007fe
1073 #define LWARX_INSTRUCTION 0x7c000028
1074 #define LDARX_INSTRUCTION 0x7c0000A8
1075 #define STWCX_MASK 0xfc0007ff
1076 #define STWCX_INSTRUCTION 0x7c00012d
1077 #define STDCX_INSTRUCTION 0x7c0001ad
1078
1079 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1080 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1081 is found, attempt to step through it. A breakpoint is placed at the end of
1082 the sequence. */
1083
1084 int
1085 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1086 {
1087 struct gdbarch *gdbarch = get_frame_arch (frame);
1088 struct address_space *aspace = get_frame_address_space (frame);
1089 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1090 CORE_ADDR pc = get_frame_pc (frame);
1091 CORE_ADDR breaks[2] = {-1, -1};
1092 CORE_ADDR loc = pc;
1093 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1094 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1095 int insn_count;
1096 int index;
1097 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1098 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1099 int opcode; /* Branch instruction's OPcode. */
1100 int bc_insn_count = 0; /* Conditional branch instruction count. */
1101
1102 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1103 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1104 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1105 return 0;
1106
1107 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1108 instructions. */
1109 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1110 {
1111 loc += PPC_INSN_SIZE;
1112 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1113
1114 /* Assume that there is at most one conditional branch in the atomic
1115 sequence. If a conditional branch is found, put a breakpoint in
1116 its destination address. */
1117 if ((insn & BRANCH_MASK) == BC_INSN)
1118 {
1119 int immediate = ((insn & ~3) << 16) >> 16;
1120 int absolute = ((insn >> 1) & 1);
1121
1122 if (bc_insn_count >= 1)
1123 return 0; /* More than one conditional branch found, fallback
1124 to the standard single-step code. */
1125
1126 if (absolute)
1127 breaks[1] = immediate;
1128 else
1129 breaks[1] = pc + immediate;
1130
1131 bc_insn_count++;
1132 last_breakpoint++;
1133 }
1134
1135 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1136 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1137 break;
1138 }
1139
1140 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1141 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1142 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1143 return 0;
1144
1145 closing_insn = loc;
1146 loc += PPC_INSN_SIZE;
1147 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1148
1149 /* Insert a breakpoint right after the end of the atomic sequence. */
1150 breaks[0] = loc;
1151
1152 /* Check for duplicated breakpoints. Check also for a breakpoint
1153 placed (branch instruction's destination) at the stwcx/stdcx
1154 instruction, this resets the reservation and take us back to the
1155 lwarx/ldarx instruction at the beginning of the atomic sequence. */
1156 if (last_breakpoint && ((breaks[1] == breaks[0])
1157 || (breaks[1] == closing_insn)))
1158 last_breakpoint = 0;
1159
1160 /* Effectively inserts the breakpoints. */
1161 for (index = 0; index <= last_breakpoint; index++)
1162 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1163
1164 return 1;
1165 }
1166
1167
1168 #define SIGNED_SHORT(x) \
1169 ((sizeof (short) == 2) \
1170 ? ((int)(short)(x)) \
1171 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1172
1173 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1174
1175 /* Limit the number of skipped non-prologue instructions, as the examining
1176 of the prologue is expensive. */
1177 static int max_skip_non_prologue_insns = 10;
1178
1179 /* Return nonzero if the given instruction OP can be part of the prologue
1180 of a function and saves a parameter on the stack. FRAMEP should be
1181 set if one of the previous instructions in the function has set the
1182 Frame Pointer. */
1183
1184 static int
1185 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1186 {
1187 /* Move parameters from argument registers to temporary register. */
1188 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1189 {
1190 /* Rx must be scratch register r0. */
1191 const int rx_regno = (op >> 16) & 31;
1192 /* Ry: Only r3 - r10 are used for parameter passing. */
1193 const int ry_regno = GET_SRC_REG (op);
1194
1195 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1196 {
1197 *r0_contains_arg = 1;
1198 return 1;
1199 }
1200 else
1201 return 0;
1202 }
1203
1204 /* Save a General Purpose Register on stack. */
1205
1206 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1207 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1208 {
1209 /* Rx: Only r3 - r10 are used for parameter passing. */
1210 const int rx_regno = GET_SRC_REG (op);
1211
1212 return (rx_regno >= 3 && rx_regno <= 10);
1213 }
1214
1215 /* Save a General Purpose Register on stack via the Frame Pointer. */
1216
1217 if (framep &&
1218 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1219 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1220 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1221 {
1222 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1223 However, the compiler sometimes uses r0 to hold an argument. */
1224 const int rx_regno = GET_SRC_REG (op);
1225
1226 return ((rx_regno >= 3 && rx_regno <= 10)
1227 || (rx_regno == 0 && *r0_contains_arg));
1228 }
1229
1230 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1231 {
1232 /* Only f2 - f8 are used for parameter passing. */
1233 const int src_regno = GET_SRC_REG (op);
1234
1235 return (src_regno >= 2 && src_regno <= 8);
1236 }
1237
1238 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1239 {
1240 /* Only f2 - f8 are used for parameter passing. */
1241 const int src_regno = GET_SRC_REG (op);
1242
1243 return (src_regno >= 2 && src_regno <= 8);
1244 }
1245
1246 /* Not an insn that saves a parameter on stack. */
1247 return 0;
1248 }
1249
1250 /* Assuming that INSN is a "bl" instruction located at PC, return
1251 nonzero if the destination of the branch is a "blrl" instruction.
1252
1253 This sequence is sometimes found in certain function prologues.
1254 It allows the function to load the LR register with a value that
1255 they can use to access PIC data using PC-relative offsets. */
1256
1257 static int
1258 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1259 {
1260 CORE_ADDR dest;
1261 int immediate;
1262 int absolute;
1263 int dest_insn;
1264
1265 absolute = (int) ((insn >> 1) & 1);
1266 immediate = ((insn & ~3) << 6) >> 6;
1267 if (absolute)
1268 dest = immediate;
1269 else
1270 dest = pc + immediate;
1271
1272 dest_insn = read_memory_integer (dest, 4, byte_order);
1273 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1274 return 1;
1275
1276 return 0;
1277 }
1278
1279 /* Masks for decoding a branch-and-link (bl) instruction.
1280
1281 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1282 The former is anded with the opcode in question; if the result of
1283 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1284 question is a ``bl'' instruction.
1285
1286 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1287 the branch displacement. */
1288
1289 #define BL_MASK 0xfc000001
1290 #define BL_INSTRUCTION 0x48000001
1291 #define BL_DISPLACEMENT_MASK 0x03fffffc
1292
1293 static unsigned long
1294 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1295 {
1296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1297 gdb_byte buf[4];
1298 unsigned long op;
1299
1300 /* Fetch the instruction and convert it to an integer. */
1301 if (target_read_memory (pc, buf, 4))
1302 return 0;
1303 op = extract_unsigned_integer (buf, 4, byte_order);
1304
1305 return op;
1306 }
1307
1308 /* GCC generates several well-known sequences of instructions at the begining
1309 of each function prologue when compiling with -fstack-check. If one of
1310 such sequences starts at START_PC, then return the address of the
1311 instruction immediately past this sequence. Otherwise, return START_PC. */
1312
1313 static CORE_ADDR
1314 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1315 {
1316 CORE_ADDR pc = start_pc;
1317 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1318
1319 /* First possible sequence: A small number of probes.
1320 stw 0, -<some immediate>(1)
1321 [repeat this instruction any (small) number of times]. */
1322
1323 if ((op & 0xffff0000) == 0x90010000)
1324 {
1325 while ((op & 0xffff0000) == 0x90010000)
1326 {
1327 pc = pc + 4;
1328 op = rs6000_fetch_instruction (gdbarch, pc);
1329 }
1330 return pc;
1331 }
1332
1333 /* Second sequence: A probing loop.
1334 addi 12,1,-<some immediate>
1335 lis 0,-<some immediate>
1336 [possibly ori 0,0,<some immediate>]
1337 add 0,12,0
1338 cmpw 0,12,0
1339 beq 0,<disp>
1340 addi 12,12,-<some immediate>
1341 stw 0,0(12)
1342 b <disp>
1343 [possibly one last probe: stw 0,<some immediate>(12)]. */
1344
1345 while (1)
1346 {
1347 /* addi 12,1,-<some immediate> */
1348 if ((op & 0xffff0000) != 0x39810000)
1349 break;
1350
1351 /* lis 0,-<some immediate> */
1352 pc = pc + 4;
1353 op = rs6000_fetch_instruction (gdbarch, pc);
1354 if ((op & 0xffff0000) != 0x3c000000)
1355 break;
1356
1357 pc = pc + 4;
1358 op = rs6000_fetch_instruction (gdbarch, pc);
1359 /* [possibly ori 0,0,<some immediate>] */
1360 if ((op & 0xffff0000) == 0x60000000)
1361 {
1362 pc = pc + 4;
1363 op = rs6000_fetch_instruction (gdbarch, pc);
1364 }
1365 /* add 0,12,0 */
1366 if (op != 0x7c0c0214)
1367 break;
1368
1369 /* cmpw 0,12,0 */
1370 pc = pc + 4;
1371 op = rs6000_fetch_instruction (gdbarch, pc);
1372 if (op != 0x7c0c0000)
1373 break;
1374
1375 /* beq 0,<disp> */
1376 pc = pc + 4;
1377 op = rs6000_fetch_instruction (gdbarch, pc);
1378 if ((op & 0xff9f0001) != 0x41820000)
1379 break;
1380
1381 /* addi 12,12,-<some immediate> */
1382 pc = pc + 4;
1383 op = rs6000_fetch_instruction (gdbarch, pc);
1384 if ((op & 0xffff0000) != 0x398c0000)
1385 break;
1386
1387 /* stw 0,0(12) */
1388 pc = pc + 4;
1389 op = rs6000_fetch_instruction (gdbarch, pc);
1390 if (op != 0x900c0000)
1391 break;
1392
1393 /* b <disp> */
1394 pc = pc + 4;
1395 op = rs6000_fetch_instruction (gdbarch, pc);
1396 if ((op & 0xfc000001) != 0x48000000)
1397 break;
1398
1399 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1400 pc = pc + 4;
1401 op = rs6000_fetch_instruction (gdbarch, pc);
1402 if ((op & 0xffff0000) == 0x900c0000)
1403 {
1404 pc = pc + 4;
1405 op = rs6000_fetch_instruction (gdbarch, pc);
1406 }
1407
1408 /* We found a valid stack-check sequence, return the new PC. */
1409 return pc;
1410 }
1411
1412 /* Third sequence: No probe; instead, a comparizon between the stack size
1413 limit (saved in a run-time global variable) and the current stack
1414 pointer:
1415
1416 addi 0,1,-<some immediate>
1417 lis 12,__gnat_stack_limit@ha
1418 lwz 12,__gnat_stack_limit@l(12)
1419 twllt 0,12
1420
1421 or, with a small variant in the case of a bigger stack frame:
1422 addis 0,1,<some immediate>
1423 addic 0,0,-<some immediate>
1424 lis 12,__gnat_stack_limit@ha
1425 lwz 12,__gnat_stack_limit@l(12)
1426 twllt 0,12
1427 */
1428 while (1)
1429 {
1430 /* addi 0,1,-<some immediate> */
1431 if ((op & 0xffff0000) != 0x38010000)
1432 {
1433 /* small stack frame variant not recognized; try the
1434 big stack frame variant: */
1435
1436 /* addis 0,1,<some immediate> */
1437 if ((op & 0xffff0000) != 0x3c010000)
1438 break;
1439
1440 /* addic 0,0,-<some immediate> */
1441 pc = pc + 4;
1442 op = rs6000_fetch_instruction (gdbarch, pc);
1443 if ((op & 0xffff0000) != 0x30000000)
1444 break;
1445 }
1446
1447 /* lis 12,<some immediate> */
1448 pc = pc + 4;
1449 op = rs6000_fetch_instruction (gdbarch, pc);
1450 if ((op & 0xffff0000) != 0x3d800000)
1451 break;
1452
1453 /* lwz 12,<some immediate>(12) */
1454 pc = pc + 4;
1455 op = rs6000_fetch_instruction (gdbarch, pc);
1456 if ((op & 0xffff0000) != 0x818c0000)
1457 break;
1458
1459 /* twllt 0,12 */
1460 pc = pc + 4;
1461 op = rs6000_fetch_instruction (gdbarch, pc);
1462 if ((op & 0xfffffffe) != 0x7c406008)
1463 break;
1464
1465 /* We found a valid stack-check sequence, return the new PC. */
1466 return pc;
1467 }
1468
1469 /* No stack check code in our prologue, return the start_pc. */
1470 return start_pc;
1471 }
1472
1473 /* return pc value after skipping a function prologue and also return
1474 information about a function frame.
1475
1476 in struct rs6000_framedata fdata:
1477 - frameless is TRUE, if function does not have a frame.
1478 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1479 - offset is the initial size of this stack frame --- the amount by
1480 which we decrement the sp to allocate the frame.
1481 - saved_gpr is the number of the first saved gpr.
1482 - saved_fpr is the number of the first saved fpr.
1483 - saved_vr is the number of the first saved vr.
1484 - saved_ev is the number of the first saved ev.
1485 - alloca_reg is the number of the register used for alloca() handling.
1486 Otherwise -1.
1487 - gpr_offset is the offset of the first saved gpr from the previous frame.
1488 - fpr_offset is the offset of the first saved fpr from the previous frame.
1489 - vr_offset is the offset of the first saved vr from the previous frame.
1490 - ev_offset is the offset of the first saved ev from the previous frame.
1491 - lr_offset is the offset of the saved lr
1492 - cr_offset is the offset of the saved cr
1493 - vrsave_offset is the offset of the saved vrsave register. */
1494
1495 static CORE_ADDR
1496 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1497 struct rs6000_framedata *fdata)
1498 {
1499 CORE_ADDR orig_pc = pc;
1500 CORE_ADDR last_prologue_pc = pc;
1501 CORE_ADDR li_found_pc = 0;
1502 gdb_byte buf[4];
1503 unsigned long op;
1504 long offset = 0;
1505 long vr_saved_offset = 0;
1506 int lr_reg = -1;
1507 int cr_reg = -1;
1508 int vr_reg = -1;
1509 int ev_reg = -1;
1510 long ev_offset = 0;
1511 int vrsave_reg = -1;
1512 int reg;
1513 int framep = 0;
1514 int minimal_toc_loaded = 0;
1515 int prev_insn_was_prologue_insn = 1;
1516 int num_skip_non_prologue_insns = 0;
1517 int r0_contains_arg = 0;
1518 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1519 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1521
1522 memset (fdata, 0, sizeof (struct rs6000_framedata));
1523 fdata->saved_gpr = -1;
1524 fdata->saved_fpr = -1;
1525 fdata->saved_vr = -1;
1526 fdata->saved_ev = -1;
1527 fdata->alloca_reg = -1;
1528 fdata->frameless = 1;
1529 fdata->nosavedpc = 1;
1530 fdata->lr_register = -1;
1531
1532 pc = rs6000_skip_stack_check (gdbarch, pc);
1533 if (pc >= lim_pc)
1534 pc = lim_pc;
1535
1536 for (;; pc += 4)
1537 {
1538 /* Sometimes it isn't clear if an instruction is a prologue
1539 instruction or not. When we encounter one of these ambiguous
1540 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1541 Otherwise, we'll assume that it really is a prologue instruction. */
1542 if (prev_insn_was_prologue_insn)
1543 last_prologue_pc = pc;
1544
1545 /* Stop scanning if we've hit the limit. */
1546 if (pc >= lim_pc)
1547 break;
1548
1549 prev_insn_was_prologue_insn = 1;
1550
1551 /* Fetch the instruction and convert it to an integer. */
1552 if (target_read_memory (pc, buf, 4))
1553 break;
1554 op = extract_unsigned_integer (buf, 4, byte_order);
1555
1556 if ((op & 0xfc1fffff) == 0x7c0802a6)
1557 { /* mflr Rx */
1558 /* Since shared library / PIC code, which needs to get its
1559 address at runtime, can appear to save more than one link
1560 register vis:
1561
1562 *INDENT-OFF*
1563 stwu r1,-304(r1)
1564 mflr r3
1565 bl 0xff570d0 (blrl)
1566 stw r30,296(r1)
1567 mflr r30
1568 stw r31,300(r1)
1569 stw r3,308(r1);
1570 ...
1571 *INDENT-ON*
1572
1573 remember just the first one, but skip over additional
1574 ones. */
1575 if (lr_reg == -1)
1576 lr_reg = (op & 0x03e00000) >> 21;
1577 if (lr_reg == 0)
1578 r0_contains_arg = 0;
1579 continue;
1580 }
1581 else if ((op & 0xfc1fffff) == 0x7c000026)
1582 { /* mfcr Rx */
1583 cr_reg = (op & 0x03e00000);
1584 if (cr_reg == 0)
1585 r0_contains_arg = 0;
1586 continue;
1587
1588 }
1589 else if ((op & 0xfc1f0000) == 0xd8010000)
1590 { /* stfd Rx,NUM(r1) */
1591 reg = GET_SRC_REG (op);
1592 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1593 {
1594 fdata->saved_fpr = reg;
1595 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1596 }
1597 continue;
1598
1599 }
1600 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1601 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1602 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1603 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1604 {
1605
1606 reg = GET_SRC_REG (op);
1607 if ((op & 0xfc1f0000) == 0xbc010000)
1608 fdata->gpr_mask |= ~((1U << reg) - 1);
1609 else
1610 fdata->gpr_mask |= 1U << reg;
1611 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1612 {
1613 fdata->saved_gpr = reg;
1614 if ((op & 0xfc1f0003) == 0xf8010000)
1615 op &= ~3UL;
1616 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1617 }
1618 continue;
1619
1620 }
1621 else if ((op & 0xffff0000) == 0x60000000)
1622 {
1623 /* nop */
1624 /* Allow nops in the prologue, but do not consider them to
1625 be part of the prologue unless followed by other prologue
1626 instructions. */
1627 prev_insn_was_prologue_insn = 0;
1628 continue;
1629
1630 }
1631 else if ((op & 0xffff0000) == 0x3c000000)
1632 { /* addis 0,0,NUM, used
1633 for >= 32k frames */
1634 fdata->offset = (op & 0x0000ffff) << 16;
1635 fdata->frameless = 0;
1636 r0_contains_arg = 0;
1637 continue;
1638
1639 }
1640 else if ((op & 0xffff0000) == 0x60000000)
1641 { /* ori 0,0,NUM, 2nd ha
1642 lf of >= 32k frames */
1643 fdata->offset |= (op & 0x0000ffff);
1644 fdata->frameless = 0;
1645 r0_contains_arg = 0;
1646 continue;
1647
1648 }
1649 else if (lr_reg >= 0 &&
1650 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1651 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1652 /* stw Rx, NUM(r1) */
1653 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1654 /* stwu Rx, NUM(r1) */
1655 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1656 { /* where Rx == lr */
1657 fdata->lr_offset = offset;
1658 fdata->nosavedpc = 0;
1659 /* Invalidate lr_reg, but don't set it to -1.
1660 That would mean that it had never been set. */
1661 lr_reg = -2;
1662 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1663 (op & 0xfc000000) == 0x90000000) /* stw */
1664 {
1665 /* Does not update r1, so add displacement to lr_offset. */
1666 fdata->lr_offset += SIGNED_SHORT (op);
1667 }
1668 continue;
1669
1670 }
1671 else if (cr_reg >= 0 &&
1672 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1673 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1674 /* stw Rx, NUM(r1) */
1675 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1676 /* stwu Rx, NUM(r1) */
1677 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1678 { /* where Rx == cr */
1679 fdata->cr_offset = offset;
1680 /* Invalidate cr_reg, but don't set it to -1.
1681 That would mean that it had never been set. */
1682 cr_reg = -2;
1683 if ((op & 0xfc000003) == 0xf8000000 ||
1684 (op & 0xfc000000) == 0x90000000)
1685 {
1686 /* Does not update r1, so add displacement to cr_offset. */
1687 fdata->cr_offset += SIGNED_SHORT (op);
1688 }
1689 continue;
1690
1691 }
1692 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1693 {
1694 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1695 prediction bits. If the LR has already been saved, we can
1696 skip it. */
1697 continue;
1698 }
1699 else if (op == 0x48000005)
1700 { /* bl .+4 used in
1701 -mrelocatable */
1702 fdata->used_bl = 1;
1703 continue;
1704
1705 }
1706 else if (op == 0x48000004)
1707 { /* b .+4 (xlc) */
1708 break;
1709
1710 }
1711 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1712 in V.4 -mminimal-toc */
1713 (op & 0xffff0000) == 0x3bde0000)
1714 { /* addi 30,30,foo@l */
1715 continue;
1716
1717 }
1718 else if ((op & 0xfc000001) == 0x48000001)
1719 { /* bl foo,
1720 to save fprs??? */
1721
1722 fdata->frameless = 0;
1723
1724 /* If the return address has already been saved, we can skip
1725 calls to blrl (for PIC). */
1726 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1727 {
1728 fdata->used_bl = 1;
1729 continue;
1730 }
1731
1732 /* Don't skip over the subroutine call if it is not within
1733 the first three instructions of the prologue and either
1734 we have no line table information or the line info tells
1735 us that the subroutine call is not part of the line
1736 associated with the prologue. */
1737 if ((pc - orig_pc) > 8)
1738 {
1739 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1740 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1741
1742 if ((prologue_sal.line == 0)
1743 || (prologue_sal.line != this_sal.line))
1744 break;
1745 }
1746
1747 op = read_memory_integer (pc + 4, 4, byte_order);
1748
1749 /* At this point, make sure this is not a trampoline
1750 function (a function that simply calls another functions,
1751 and nothing else). If the next is not a nop, this branch
1752 was part of the function prologue. */
1753
1754 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1755 break; /* Don't skip over
1756 this branch. */
1757
1758 fdata->used_bl = 1;
1759 continue;
1760 }
1761 /* update stack pointer */
1762 else if ((op & 0xfc1f0000) == 0x94010000)
1763 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1764 fdata->frameless = 0;
1765 fdata->offset = SIGNED_SHORT (op);
1766 offset = fdata->offset;
1767 continue;
1768 }
1769 else if ((op & 0xfc1f016a) == 0x7c01016e)
1770 { /* stwux rX,r1,rY */
1771 /* No way to figure out what r1 is going to be. */
1772 fdata->frameless = 0;
1773 offset = fdata->offset;
1774 continue;
1775 }
1776 else if ((op & 0xfc1f0003) == 0xf8010001)
1777 { /* stdu rX,NUM(r1) */
1778 fdata->frameless = 0;
1779 fdata->offset = SIGNED_SHORT (op & ~3UL);
1780 offset = fdata->offset;
1781 continue;
1782 }
1783 else if ((op & 0xfc1f016a) == 0x7c01016a)
1784 { /* stdux rX,r1,rY */
1785 /* No way to figure out what r1 is going to be. */
1786 fdata->frameless = 0;
1787 offset = fdata->offset;
1788 continue;
1789 }
1790 else if ((op & 0xffff0000) == 0x38210000)
1791 { /* addi r1,r1,SIMM */
1792 fdata->frameless = 0;
1793 fdata->offset += SIGNED_SHORT (op);
1794 offset = fdata->offset;
1795 continue;
1796 }
1797 /* Load up minimal toc pointer. Do not treat an epilogue restore
1798 of r31 as a minimal TOC load. */
1799 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1800 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1801 && !framep
1802 && !minimal_toc_loaded)
1803 {
1804 minimal_toc_loaded = 1;
1805 continue;
1806
1807 /* move parameters from argument registers to local variable
1808 registers */
1809 }
1810 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1811 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1812 (((op >> 21) & 31) <= 10) &&
1813 ((long) ((op >> 16) & 31)
1814 >= fdata->saved_gpr)) /* Rx: local var reg */
1815 {
1816 continue;
1817
1818 /* store parameters in stack */
1819 }
1820 /* Move parameters from argument registers to temporary register. */
1821 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1822 {
1823 continue;
1824
1825 /* Set up frame pointer */
1826 }
1827 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1828 || op == 0x7c3f0b78)
1829 { /* mr r31, r1 */
1830 fdata->frameless = 0;
1831 framep = 1;
1832 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1833 continue;
1834
1835 /* Another way to set up the frame pointer. */
1836 }
1837 else if ((op & 0xfc1fffff) == 0x38010000)
1838 { /* addi rX, r1, 0x0 */
1839 fdata->frameless = 0;
1840 framep = 1;
1841 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1842 + ((op & ~0x38010000) >> 21));
1843 continue;
1844 }
1845 /* AltiVec related instructions. */
1846 /* Store the vrsave register (spr 256) in another register for
1847 later manipulation, or load a register into the vrsave
1848 register. 2 instructions are used: mfvrsave and
1849 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1850 and mtspr SPR256, Rn. */
1851 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1852 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1853 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1854 {
1855 vrsave_reg = GET_SRC_REG (op);
1856 continue;
1857 }
1858 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1859 {
1860 continue;
1861 }
1862 /* Store the register where vrsave was saved to onto the stack:
1863 rS is the register where vrsave was stored in a previous
1864 instruction. */
1865 /* 100100 sssss 00001 dddddddd dddddddd */
1866 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1867 {
1868 if (vrsave_reg == GET_SRC_REG (op))
1869 {
1870 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1871 vrsave_reg = -1;
1872 }
1873 continue;
1874 }
1875 /* Compute the new value of vrsave, by modifying the register
1876 where vrsave was saved to. */
1877 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1878 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1879 {
1880 continue;
1881 }
1882 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1883 in a pair of insns to save the vector registers on the
1884 stack. */
1885 /* 001110 00000 00000 iiii iiii iiii iiii */
1886 /* 001110 01110 00000 iiii iiii iiii iiii */
1887 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1888 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1889 {
1890 if ((op & 0xffff0000) == 0x38000000)
1891 r0_contains_arg = 0;
1892 li_found_pc = pc;
1893 vr_saved_offset = SIGNED_SHORT (op);
1894
1895 /* This insn by itself is not part of the prologue, unless
1896 if part of the pair of insns mentioned above. So do not
1897 record this insn as part of the prologue yet. */
1898 prev_insn_was_prologue_insn = 0;
1899 }
1900 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1901 /* 011111 sssss 11111 00000 00111001110 */
1902 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1903 {
1904 if (pc == (li_found_pc + 4))
1905 {
1906 vr_reg = GET_SRC_REG (op);
1907 /* If this is the first vector reg to be saved, or if
1908 it has a lower number than others previously seen,
1909 reupdate the frame info. */
1910 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1911 {
1912 fdata->saved_vr = vr_reg;
1913 fdata->vr_offset = vr_saved_offset + offset;
1914 }
1915 vr_saved_offset = -1;
1916 vr_reg = -1;
1917 li_found_pc = 0;
1918 }
1919 }
1920 /* End AltiVec related instructions. */
1921
1922 /* Start BookE related instructions. */
1923 /* Store gen register S at (r31+uimm).
1924 Any register less than r13 is volatile, so we don't care. */
1925 /* 000100 sssss 11111 iiiii 01100100001 */
1926 else if (arch_info->mach == bfd_mach_ppc_e500
1927 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1928 {
1929 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1930 {
1931 unsigned int imm;
1932 ev_reg = GET_SRC_REG (op);
1933 imm = (op >> 11) & 0x1f;
1934 ev_offset = imm * 8;
1935 /* If this is the first vector reg to be saved, or if
1936 it has a lower number than others previously seen,
1937 reupdate the frame info. */
1938 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1939 {
1940 fdata->saved_ev = ev_reg;
1941 fdata->ev_offset = ev_offset + offset;
1942 }
1943 }
1944 continue;
1945 }
1946 /* Store gen register rS at (r1+rB). */
1947 /* 000100 sssss 00001 bbbbb 01100100000 */
1948 else if (arch_info->mach == bfd_mach_ppc_e500
1949 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1950 {
1951 if (pc == (li_found_pc + 4))
1952 {
1953 ev_reg = GET_SRC_REG (op);
1954 /* If this is the first vector reg to be saved, or if
1955 it has a lower number than others previously seen,
1956 reupdate the frame info. */
1957 /* We know the contents of rB from the previous instruction. */
1958 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1959 {
1960 fdata->saved_ev = ev_reg;
1961 fdata->ev_offset = vr_saved_offset + offset;
1962 }
1963 vr_saved_offset = -1;
1964 ev_reg = -1;
1965 li_found_pc = 0;
1966 }
1967 continue;
1968 }
1969 /* Store gen register r31 at (rA+uimm). */
1970 /* 000100 11111 aaaaa iiiii 01100100001 */
1971 else if (arch_info->mach == bfd_mach_ppc_e500
1972 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1973 {
1974 /* Wwe know that the source register is 31 already, but
1975 it can't hurt to compute it. */
1976 ev_reg = GET_SRC_REG (op);
1977 ev_offset = ((op >> 11) & 0x1f) * 8;
1978 /* If this is the first vector reg to be saved, or if
1979 it has a lower number than others previously seen,
1980 reupdate the frame info. */
1981 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1982 {
1983 fdata->saved_ev = ev_reg;
1984 fdata->ev_offset = ev_offset + offset;
1985 }
1986
1987 continue;
1988 }
1989 /* Store gen register S at (r31+r0).
1990 Store param on stack when offset from SP bigger than 4 bytes. */
1991 /* 000100 sssss 11111 00000 01100100000 */
1992 else if (arch_info->mach == bfd_mach_ppc_e500
1993 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1994 {
1995 if (pc == (li_found_pc + 4))
1996 {
1997 if ((op & 0x03e00000) >= 0x01a00000)
1998 {
1999 ev_reg = GET_SRC_REG (op);
2000 /* If this is the first vector reg to be saved, or if
2001 it has a lower number than others previously seen,
2002 reupdate the frame info. */
2003 /* We know the contents of r0 from the previous
2004 instruction. */
2005 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2006 {
2007 fdata->saved_ev = ev_reg;
2008 fdata->ev_offset = vr_saved_offset + offset;
2009 }
2010 ev_reg = -1;
2011 }
2012 vr_saved_offset = -1;
2013 li_found_pc = 0;
2014 continue;
2015 }
2016 }
2017 /* End BookE related instructions. */
2018
2019 else
2020 {
2021 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2022
2023 /* Not a recognized prologue instruction.
2024 Handle optimizer code motions into the prologue by continuing
2025 the search if we have no valid frame yet or if the return
2026 address is not yet saved in the frame. Also skip instructions
2027 if some of the GPRs expected to be saved are not yet saved. */
2028 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2029 && (fdata->gpr_mask & all_mask) == all_mask)
2030 break;
2031
2032 if (op == 0x4e800020 /* blr */
2033 || op == 0x4e800420) /* bctr */
2034 /* Do not scan past epilogue in frameless functions or
2035 trampolines. */
2036 break;
2037 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2038 /* Never skip branches. */
2039 break;
2040
2041 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2042 /* Do not scan too many insns, scanning insns is expensive with
2043 remote targets. */
2044 break;
2045
2046 /* Continue scanning. */
2047 prev_insn_was_prologue_insn = 0;
2048 continue;
2049 }
2050 }
2051
2052 #if 0
2053 /* I have problems with skipping over __main() that I need to address
2054 * sometime. Previously, I used to use misc_function_vector which
2055 * didn't work as well as I wanted to be. -MGO */
2056
2057 /* If the first thing after skipping a prolog is a branch to a function,
2058 this might be a call to an initializer in main(), introduced by gcc2.
2059 We'd like to skip over it as well. Fortunately, xlc does some extra
2060 work before calling a function right after a prologue, thus we can
2061 single out such gcc2 behaviour. */
2062
2063
2064 if ((op & 0xfc000001) == 0x48000001)
2065 { /* bl foo, an initializer function? */
2066 op = read_memory_integer (pc + 4, 4, byte_order);
2067
2068 if (op == 0x4def7b82)
2069 { /* cror 0xf, 0xf, 0xf (nop) */
2070
2071 /* Check and see if we are in main. If so, skip over this
2072 initializer function as well. */
2073
2074 tmp = find_pc_misc_function (pc);
2075 if (tmp >= 0
2076 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2077 return pc + 8;
2078 }
2079 }
2080 #endif /* 0 */
2081
2082 if (pc == lim_pc && lr_reg >= 0)
2083 fdata->lr_register = lr_reg;
2084
2085 fdata->offset = -fdata->offset;
2086 return last_prologue_pc;
2087 }
2088
2089 static CORE_ADDR
2090 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2091 {
2092 struct rs6000_framedata frame;
2093 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2094
2095 /* See if we can determine the end of the prologue via the symbol table.
2096 If so, then return either PC, or the PC after the prologue, whichever
2097 is greater. */
2098 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2099 {
2100 CORE_ADDR post_prologue_pc
2101 = skip_prologue_using_sal (gdbarch, func_addr);
2102 if (post_prologue_pc != 0)
2103 return max (pc, post_prologue_pc);
2104 }
2105
2106 /* Can't determine prologue from the symbol table, need to examine
2107 instructions. */
2108
2109 /* Find an upper limit on the function prologue using the debug
2110 information. If the debug information could not be used to provide
2111 that bound, then use an arbitrary large number as the upper bound. */
2112 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2113 if (limit_pc == 0)
2114 limit_pc = pc + 100; /* Magic. */
2115
2116 /* Do not allow limit_pc to be past the function end, if we know
2117 where that end is... */
2118 if (func_end_addr && limit_pc > func_end_addr)
2119 limit_pc = func_end_addr;
2120
2121 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2122 return pc;
2123 }
2124
2125 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2126 in the prologue of main().
2127
2128 The function below examines the code pointed at by PC and checks to
2129 see if it corresponds to a call to __eabi. If so, it returns the
2130 address of the instruction following that call. Otherwise, it simply
2131 returns PC. */
2132
2133 static CORE_ADDR
2134 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2135 {
2136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2137 gdb_byte buf[4];
2138 unsigned long op;
2139
2140 if (target_read_memory (pc, buf, 4))
2141 return pc;
2142 op = extract_unsigned_integer (buf, 4, byte_order);
2143
2144 if ((op & BL_MASK) == BL_INSTRUCTION)
2145 {
2146 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2147 CORE_ADDR call_dest = pc + 4 + displ;
2148 struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
2149
2150 /* We check for ___eabi (three leading underscores) in addition
2151 to __eabi in case the GCC option "-fleading-underscore" was
2152 used to compile the program. */
2153 if (s != NULL
2154 && SYMBOL_LINKAGE_NAME (s) != NULL
2155 && (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
2156 || strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
2157 pc += 4;
2158 }
2159 return pc;
2160 }
2161
2162 /* All the ABI's require 16 byte alignment. */
2163 static CORE_ADDR
2164 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2165 {
2166 return (addr & -16);
2167 }
2168
2169 /* Return whether handle_inferior_event() should proceed through code
2170 starting at PC in function NAME when stepping.
2171
2172 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2173 handle memory references that are too distant to fit in instructions
2174 generated by the compiler. For example, if 'foo' in the following
2175 instruction:
2176
2177 lwz r9,foo(r2)
2178
2179 is greater than 32767, the linker might replace the lwz with a branch to
2180 somewhere in @FIX1 that does the load in 2 instructions and then branches
2181 back to where execution should continue.
2182
2183 GDB should silently step over @FIX code, just like AIX dbx does.
2184 Unfortunately, the linker uses the "b" instruction for the
2185 branches, meaning that the link register doesn't get set.
2186 Therefore, GDB's usual step_over_function () mechanism won't work.
2187
2188 Instead, use the gdbarch_skip_trampoline_code and
2189 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2190 @FIX code. */
2191
2192 static int
2193 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2194 CORE_ADDR pc, char *name)
2195 {
2196 return name && !strncmp (name, "@FIX", 4);
2197 }
2198
2199 /* Skip code that the user doesn't want to see when stepping:
2200
2201 1. Indirect function calls use a piece of trampoline code to do context
2202 switching, i.e. to set the new TOC table. Skip such code if we are on
2203 its first instruction (as when we have single-stepped to here).
2204
2205 2. Skip shared library trampoline code (which is different from
2206 indirect function call trampolines).
2207
2208 3. Skip bigtoc fixup code.
2209
2210 Result is desired PC to step until, or NULL if we are not in
2211 code that should be skipped. */
2212
2213 static CORE_ADDR
2214 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2215 {
2216 struct gdbarch *gdbarch = get_frame_arch (frame);
2217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2219 unsigned int ii, op;
2220 int rel;
2221 CORE_ADDR solib_target_pc;
2222 struct minimal_symbol *msymbol;
2223
2224 static unsigned trampoline_code[] =
2225 {
2226 0x800b0000, /* l r0,0x0(r11) */
2227 0x90410014, /* st r2,0x14(r1) */
2228 0x7c0903a6, /* mtctr r0 */
2229 0x804b0004, /* l r2,0x4(r11) */
2230 0x816b0008, /* l r11,0x8(r11) */
2231 0x4e800420, /* bctr */
2232 0x4e800020, /* br */
2233 0
2234 };
2235
2236 /* Check for bigtoc fixup code. */
2237 msymbol = lookup_minimal_symbol_by_pc (pc);
2238 if (msymbol
2239 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2240 SYMBOL_LINKAGE_NAME (msymbol)))
2241 {
2242 /* Double-check that the third instruction from PC is relative "b". */
2243 op = read_memory_integer (pc + 8, 4, byte_order);
2244 if ((op & 0xfc000003) == 0x48000000)
2245 {
2246 /* Extract bits 6-29 as a signed 24-bit relative word address and
2247 add it to the containing PC. */
2248 rel = ((int)(op << 6) >> 6);
2249 return pc + 8 + rel;
2250 }
2251 }
2252
2253 /* If pc is in a shared library trampoline, return its target. */
2254 solib_target_pc = find_solib_trampoline_target (frame, pc);
2255 if (solib_target_pc)
2256 return solib_target_pc;
2257
2258 for (ii = 0; trampoline_code[ii]; ++ii)
2259 {
2260 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2261 if (op != trampoline_code[ii])
2262 return 0;
2263 }
2264 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2265 addr. */
2266 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2267 return pc;
2268 }
2269
2270 /* ISA-specific vector types. */
2271
2272 static struct type *
2273 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2274 {
2275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2276
2277 if (!tdep->ppc_builtin_type_vec64)
2278 {
2279 const struct builtin_type *bt = builtin_type (gdbarch);
2280
2281 /* The type we're building is this: */
2282 #if 0
2283 union __gdb_builtin_type_vec64
2284 {
2285 int64_t uint64;
2286 float v2_float[2];
2287 int32_t v2_int32[2];
2288 int16_t v4_int16[4];
2289 int8_t v8_int8[8];
2290 };
2291 #endif
2292
2293 struct type *t;
2294
2295 t = arch_composite_type (gdbarch,
2296 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2297 append_composite_type_field (t, "uint64", bt->builtin_int64);
2298 append_composite_type_field (t, "v2_float",
2299 init_vector_type (bt->builtin_float, 2));
2300 append_composite_type_field (t, "v2_int32",
2301 init_vector_type (bt->builtin_int32, 2));
2302 append_composite_type_field (t, "v4_int16",
2303 init_vector_type (bt->builtin_int16, 4));
2304 append_composite_type_field (t, "v8_int8",
2305 init_vector_type (bt->builtin_int8, 8));
2306
2307 TYPE_VECTOR (t) = 1;
2308 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2309 tdep->ppc_builtin_type_vec64 = t;
2310 }
2311
2312 return tdep->ppc_builtin_type_vec64;
2313 }
2314
2315 /* Vector 128 type. */
2316
2317 static struct type *
2318 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2319 {
2320 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2321
2322 if (!tdep->ppc_builtin_type_vec128)
2323 {
2324 const struct builtin_type *bt = builtin_type (gdbarch);
2325
2326 /* The type we're building is this
2327
2328 type = union __ppc_builtin_type_vec128 {
2329 uint128_t uint128;
2330 double v2_double[2];
2331 float v4_float[4];
2332 int32_t v4_int32[4];
2333 int16_t v8_int16[8];
2334 int8_t v16_int8[16];
2335 }
2336 */
2337
2338 struct type *t;
2339
2340 t = arch_composite_type (gdbarch,
2341 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2342 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2343 append_composite_type_field (t, "v2_double",
2344 init_vector_type (bt->builtin_double, 2));
2345 append_composite_type_field (t, "v4_float",
2346 init_vector_type (bt->builtin_float, 4));
2347 append_composite_type_field (t, "v4_int32",
2348 init_vector_type (bt->builtin_int32, 4));
2349 append_composite_type_field (t, "v8_int16",
2350 init_vector_type (bt->builtin_int16, 8));
2351 append_composite_type_field (t, "v16_int8",
2352 init_vector_type (bt->builtin_int8, 16));
2353
2354 TYPE_VECTOR (t) = 1;
2355 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2356 tdep->ppc_builtin_type_vec128 = t;
2357 }
2358
2359 return tdep->ppc_builtin_type_vec128;
2360 }
2361
2362 /* Return the name of register number REGNO, or the empty string if it
2363 is an anonymous register. */
2364
2365 static const char *
2366 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2367 {
2368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2369
2370 /* The upper half "registers" have names in the XML description,
2371 but we present only the low GPRs and the full 64-bit registers
2372 to the user. */
2373 if (tdep->ppc_ev0_upper_regnum >= 0
2374 && tdep->ppc_ev0_upper_regnum <= regno
2375 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2376 return "";
2377
2378 /* Hide the upper halves of the vs0~vs31 registers. */
2379 if (tdep->ppc_vsr0_regnum >= 0
2380 && tdep->ppc_vsr0_upper_regnum <= regno
2381 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2382 return "";
2383
2384 /* Check if the SPE pseudo registers are available. */
2385 if (IS_SPE_PSEUDOREG (tdep, regno))
2386 {
2387 static const char *const spe_regnames[] = {
2388 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2389 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2390 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2391 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2392 };
2393 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2394 }
2395
2396 /* Check if the decimal128 pseudo-registers are available. */
2397 if (IS_DFP_PSEUDOREG (tdep, regno))
2398 {
2399 static const char *const dfp128_regnames[] = {
2400 "dl0", "dl1", "dl2", "dl3",
2401 "dl4", "dl5", "dl6", "dl7",
2402 "dl8", "dl9", "dl10", "dl11",
2403 "dl12", "dl13", "dl14", "dl15"
2404 };
2405 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2406 }
2407
2408 /* Check if this is a VSX pseudo-register. */
2409 if (IS_VSX_PSEUDOREG (tdep, regno))
2410 {
2411 static const char *const vsx_regnames[] = {
2412 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2413 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2414 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2415 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2416 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2417 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2418 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2419 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2420 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2421 };
2422 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2423 }
2424
2425 /* Check if the this is a Extended FP pseudo-register. */
2426 if (IS_EFP_PSEUDOREG (tdep, regno))
2427 {
2428 static const char *const efpr_regnames[] = {
2429 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2430 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2431 "f46", "f47", "f48", "f49", "f50", "f51",
2432 "f52", "f53", "f54", "f55", "f56", "f57",
2433 "f58", "f59", "f60", "f61", "f62", "f63"
2434 };
2435 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2436 }
2437
2438 return tdesc_register_name (gdbarch, regno);
2439 }
2440
2441 /* Return the GDB type object for the "standard" data type of data in
2442 register N. */
2443
2444 static struct type *
2445 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2446 {
2447 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2448
2449 /* These are the only pseudo-registers we support. */
2450 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2451 || IS_DFP_PSEUDOREG (tdep, regnum)
2452 || IS_VSX_PSEUDOREG (tdep, regnum)
2453 || IS_EFP_PSEUDOREG (tdep, regnum));
2454
2455 /* These are the e500 pseudo-registers. */
2456 if (IS_SPE_PSEUDOREG (tdep, regnum))
2457 return rs6000_builtin_type_vec64 (gdbarch);
2458 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2459 /* PPC decimal128 pseudo-registers. */
2460 return builtin_type (gdbarch)->builtin_declong;
2461 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2462 /* POWER7 VSX pseudo-registers. */
2463 return rs6000_builtin_type_vec128 (gdbarch);
2464 else
2465 /* POWER7 Extended FP pseudo-registers. */
2466 return builtin_type (gdbarch)->builtin_double;
2467 }
2468
2469 /* Is REGNUM a member of REGGROUP? */
2470 static int
2471 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2472 struct reggroup *group)
2473 {
2474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2475
2476 /* These are the only pseudo-registers we support. */
2477 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2478 || IS_DFP_PSEUDOREG (tdep, regnum)
2479 || IS_VSX_PSEUDOREG (tdep, regnum)
2480 || IS_EFP_PSEUDOREG (tdep, regnum));
2481
2482 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2483 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2484 return group == all_reggroup || group == vector_reggroup;
2485 else
2486 /* PPC decimal128 or Extended FP pseudo-registers. */
2487 return group == all_reggroup || group == float_reggroup;
2488 }
2489
2490 /* The register format for RS/6000 floating point registers is always
2491 double, we need a conversion if the memory format is float. */
2492
2493 static int
2494 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2495 struct type *type)
2496 {
2497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2498
2499 return (tdep->ppc_fp0_regnum >= 0
2500 && regnum >= tdep->ppc_fp0_regnum
2501 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2502 && TYPE_CODE (type) == TYPE_CODE_FLT
2503 && TYPE_LENGTH (type)
2504 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2505 }
2506
2507 static int
2508 rs6000_register_to_value (struct frame_info *frame,
2509 int regnum,
2510 struct type *type,
2511 gdb_byte *to,
2512 int *optimizedp, int *unavailablep)
2513 {
2514 struct gdbarch *gdbarch = get_frame_arch (frame);
2515 gdb_byte from[MAX_REGISTER_SIZE];
2516
2517 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2518
2519 if (!get_frame_register_bytes (frame, regnum, 0,
2520 register_size (gdbarch, regnum),
2521 from, optimizedp, unavailablep))
2522 return 0;
2523
2524 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2525 to, type);
2526 *optimizedp = *unavailablep = 0;
2527 return 1;
2528 }
2529
2530 static void
2531 rs6000_value_to_register (struct frame_info *frame,
2532 int regnum,
2533 struct type *type,
2534 const gdb_byte *from)
2535 {
2536 struct gdbarch *gdbarch = get_frame_arch (frame);
2537 gdb_byte to[MAX_REGISTER_SIZE];
2538
2539 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2540
2541 convert_typed_floating (from, type,
2542 to, builtin_type (gdbarch)->builtin_double);
2543 put_frame_register (frame, regnum, to);
2544 }
2545
2546 /* The type of a function that moves the value of REG between CACHE
2547 or BUF --- in either direction. */
2548 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2549 int, void *);
2550
2551 /* Move SPE vector register values between a 64-bit buffer and the two
2552 32-bit raw register halves in a regcache. This function handles
2553 both splitting a 64-bit value into two 32-bit halves, and joining
2554 two halves into a whole 64-bit value, depending on the function
2555 passed as the MOVE argument.
2556
2557 EV_REG must be the number of an SPE evN vector register --- a
2558 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2559 64-bit buffer.
2560
2561 Call MOVE once for each 32-bit half of that register, passing
2562 REGCACHE, the number of the raw register corresponding to that
2563 half, and the address of the appropriate half of BUFFER.
2564
2565 For example, passing 'regcache_raw_read' as the MOVE function will
2566 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2567 'regcache_raw_supply' will supply the contents of BUFFER to the
2568 appropriate pair of raw registers in REGCACHE.
2569
2570 You may need to cast away some 'const' qualifiers when passing
2571 MOVE, since this function can't tell at compile-time which of
2572 REGCACHE or BUFFER is acting as the source of the data. If C had
2573 co-variant type qualifiers, ... */
2574
2575 static enum register_status
2576 e500_move_ev_register (move_ev_register_func move,
2577 struct regcache *regcache, int ev_reg, void *buffer)
2578 {
2579 struct gdbarch *arch = get_regcache_arch (regcache);
2580 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2581 int reg_index;
2582 gdb_byte *byte_buffer = buffer;
2583 enum register_status status;
2584
2585 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2586
2587 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2588
2589 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2590 {
2591 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2592 byte_buffer);
2593 if (status == REG_VALID)
2594 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2595 byte_buffer + 4);
2596 }
2597 else
2598 {
2599 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2600 if (status == REG_VALID)
2601 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2602 byte_buffer + 4);
2603 }
2604
2605 return status;
2606 }
2607
2608 static enum register_status
2609 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2610 {
2611 return regcache_raw_read (regcache, regnum, buffer);
2612 }
2613
2614 static enum register_status
2615 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2616 {
2617 regcache_raw_write (regcache, regnum, buffer);
2618
2619 return REG_VALID;
2620 }
2621
2622 static enum register_status
2623 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2624 int reg_nr, gdb_byte *buffer)
2625 {
2626 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2627 }
2628
2629 static void
2630 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2631 int reg_nr, const gdb_byte *buffer)
2632 {
2633 e500_move_ev_register (do_regcache_raw_write, regcache,
2634 reg_nr, (void *) buffer);
2635 }
2636
2637 /* Read method for DFP pseudo-registers. */
2638 static enum register_status
2639 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2640 int reg_nr, gdb_byte *buffer)
2641 {
2642 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2643 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2644 enum register_status status;
2645
2646 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2647 {
2648 /* Read two FP registers to form a whole dl register. */
2649 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2650 2 * reg_index, buffer);
2651 if (status == REG_VALID)
2652 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2653 2 * reg_index + 1, buffer + 8);
2654 }
2655 else
2656 {
2657 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2658 2 * reg_index + 1, buffer + 8);
2659 if (status == REG_VALID)
2660 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2661 2 * reg_index, buffer);
2662 }
2663
2664 return status;
2665 }
2666
2667 /* Write method for DFP pseudo-registers. */
2668 static void
2669 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2670 int reg_nr, const gdb_byte *buffer)
2671 {
2672 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2673 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2674
2675 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2676 {
2677 /* Write each half of the dl register into a separate
2678 FP register. */
2679 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2680 2 * reg_index, buffer);
2681 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2682 2 * reg_index + 1, buffer + 8);
2683 }
2684 else
2685 {
2686 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2687 2 * reg_index + 1, buffer + 8);
2688 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2689 2 * reg_index, buffer);
2690 }
2691 }
2692
2693 /* Read method for POWER7 VSX pseudo-registers. */
2694 static enum register_status
2695 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2696 int reg_nr, gdb_byte *buffer)
2697 {
2698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2699 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2700 enum register_status status;
2701
2702 /* Read the portion that overlaps the VMX registers. */
2703 if (reg_index > 31)
2704 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2705 reg_index - 32, buffer);
2706 else
2707 /* Read the portion that overlaps the FPR registers. */
2708 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2709 {
2710 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2711 reg_index, buffer);
2712 if (status == REG_VALID)
2713 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2714 reg_index, buffer + 8);
2715 }
2716 else
2717 {
2718 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2719 reg_index, buffer + 8);
2720 if (status == REG_VALID)
2721 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2722 reg_index, buffer);
2723 }
2724
2725 return status;
2726 }
2727
2728 /* Write method for POWER7 VSX pseudo-registers. */
2729 static void
2730 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2731 int reg_nr, const gdb_byte *buffer)
2732 {
2733 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2734 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2735
2736 /* Write the portion that overlaps the VMX registers. */
2737 if (reg_index > 31)
2738 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2739 reg_index - 32, buffer);
2740 else
2741 /* Write the portion that overlaps the FPR registers. */
2742 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2743 {
2744 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2745 reg_index, buffer);
2746 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2747 reg_index, buffer + 8);
2748 }
2749 else
2750 {
2751 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2752 reg_index, buffer + 8);
2753 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2754 reg_index, buffer);
2755 }
2756 }
2757
2758 /* Read method for POWER7 Extended FP pseudo-registers. */
2759 static enum register_status
2760 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2761 int reg_nr, gdb_byte *buffer)
2762 {
2763 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2764 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2765
2766 /* Read the portion that overlaps the VMX register. */
2767 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index, 0,
2768 register_size (gdbarch, reg_nr), buffer);
2769 }
2770
2771 /* Write method for POWER7 Extended FP pseudo-registers. */
2772 static void
2773 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2774 int reg_nr, const gdb_byte *buffer)
2775 {
2776 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2777 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2778
2779 /* Write the portion that overlaps the VMX register. */
2780 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index, 0,
2781 register_size (gdbarch, reg_nr), buffer);
2782 }
2783
2784 static enum register_status
2785 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2786 struct regcache *regcache,
2787 int reg_nr, gdb_byte *buffer)
2788 {
2789 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2790 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2791
2792 gdb_assert (regcache_arch == gdbarch);
2793
2794 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2795 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2796 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2797 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2798 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2799 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2800 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2801 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2802 else
2803 internal_error (__FILE__, __LINE__,
2804 _("rs6000_pseudo_register_read: "
2805 "called on unexpected register '%s' (%d)"),
2806 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2807 }
2808
2809 static void
2810 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2811 struct regcache *regcache,
2812 int reg_nr, const gdb_byte *buffer)
2813 {
2814 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2815 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2816
2817 gdb_assert (regcache_arch == gdbarch);
2818
2819 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2820 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2821 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2822 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2823 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2824 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2825 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2826 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2827 else
2828 internal_error (__FILE__, __LINE__,
2829 _("rs6000_pseudo_register_write: "
2830 "called on unexpected register '%s' (%d)"),
2831 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2832 }
2833
2834 /* Convert a DBX STABS register number to a GDB register number. */
2835 static int
2836 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2837 {
2838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2839
2840 if (0 <= num && num <= 31)
2841 return tdep->ppc_gp0_regnum + num;
2842 else if (32 <= num && num <= 63)
2843 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2844 specifies registers the architecture doesn't have? Our
2845 callers don't check the value we return. */
2846 return tdep->ppc_fp0_regnum + (num - 32);
2847 else if (77 <= num && num <= 108)
2848 return tdep->ppc_vr0_regnum + (num - 77);
2849 else if (1200 <= num && num < 1200 + 32)
2850 return tdep->ppc_ev0_regnum + (num - 1200);
2851 else
2852 switch (num)
2853 {
2854 case 64:
2855 return tdep->ppc_mq_regnum;
2856 case 65:
2857 return tdep->ppc_lr_regnum;
2858 case 66:
2859 return tdep->ppc_ctr_regnum;
2860 case 76:
2861 return tdep->ppc_xer_regnum;
2862 case 109:
2863 return tdep->ppc_vrsave_regnum;
2864 case 110:
2865 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2866 case 111:
2867 return tdep->ppc_acc_regnum;
2868 case 112:
2869 return tdep->ppc_spefscr_regnum;
2870 default:
2871 return num;
2872 }
2873 }
2874
2875
2876 /* Convert a Dwarf 2 register number to a GDB register number. */
2877 static int
2878 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2879 {
2880 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2881
2882 if (0 <= num && num <= 31)
2883 return tdep->ppc_gp0_regnum + num;
2884 else if (32 <= num && num <= 63)
2885 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2886 specifies registers the architecture doesn't have? Our
2887 callers don't check the value we return. */
2888 return tdep->ppc_fp0_regnum + (num - 32);
2889 else if (1124 <= num && num < 1124 + 32)
2890 return tdep->ppc_vr0_regnum + (num - 1124);
2891 else if (1200 <= num && num < 1200 + 32)
2892 return tdep->ppc_ev0_regnum + (num - 1200);
2893 else
2894 switch (num)
2895 {
2896 case 64:
2897 return tdep->ppc_cr_regnum;
2898 case 67:
2899 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2900 case 99:
2901 return tdep->ppc_acc_regnum;
2902 case 100:
2903 return tdep->ppc_mq_regnum;
2904 case 101:
2905 return tdep->ppc_xer_regnum;
2906 case 108:
2907 return tdep->ppc_lr_regnum;
2908 case 109:
2909 return tdep->ppc_ctr_regnum;
2910 case 356:
2911 return tdep->ppc_vrsave_regnum;
2912 case 612:
2913 return tdep->ppc_spefscr_regnum;
2914 default:
2915 return num;
2916 }
2917 }
2918
2919 /* Translate a .eh_frame register to DWARF register, or adjust a
2920 .debug_frame register. */
2921
2922 static int
2923 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2924 {
2925 /* GCC releases before 3.4 use GCC internal register numbering in
2926 .debug_frame (and .debug_info, et cetera). The numbering is
2927 different from the standard SysV numbering for everything except
2928 for GPRs and FPRs. We can not detect this problem in most cases
2929 - to get accurate debug info for variables living in lr, ctr, v0,
2930 et cetera, use a newer version of GCC. But we must detect
2931 one important case - lr is in column 65 in .debug_frame output,
2932 instead of 108.
2933
2934 GCC 3.4, and the "hammer" branch, have a related problem. They
2935 record lr register saves in .debug_frame as 108, but still record
2936 the return column as 65. We fix that up too.
2937
2938 We can do this because 65 is assigned to fpsr, and GCC never
2939 generates debug info referring to it. To add support for
2940 handwritten debug info that restores fpsr, we would need to add a
2941 producer version check to this. */
2942 if (!eh_frame_p)
2943 {
2944 if (num == 65)
2945 return 108;
2946 else
2947 return num;
2948 }
2949
2950 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2951 internal register numbering; translate that to the standard DWARF2
2952 register numbering. */
2953 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2954 return num;
2955 else if (68 <= num && num <= 75) /* cr0-cr8 */
2956 return num - 68 + 86;
2957 else if (77 <= num && num <= 108) /* vr0-vr31 */
2958 return num - 77 + 1124;
2959 else
2960 switch (num)
2961 {
2962 case 64: /* mq */
2963 return 100;
2964 case 65: /* lr */
2965 return 108;
2966 case 66: /* ctr */
2967 return 109;
2968 case 76: /* xer */
2969 return 101;
2970 case 109: /* vrsave */
2971 return 356;
2972 case 110: /* vscr */
2973 return 67;
2974 case 111: /* spe_acc */
2975 return 99;
2976 case 112: /* spefscr */
2977 return 612;
2978 default:
2979 return num;
2980 }
2981 }
2982 \f
2983
2984 /* Handling the various POWER/PowerPC variants. */
2985
2986 /* Information about a particular processor variant. */
2987
2988 struct variant
2989 {
2990 /* Name of this variant. */
2991 char *name;
2992
2993 /* English description of the variant. */
2994 char *description;
2995
2996 /* bfd_arch_info.arch corresponding to variant. */
2997 enum bfd_architecture arch;
2998
2999 /* bfd_arch_info.mach corresponding to variant. */
3000 unsigned long mach;
3001
3002 /* Target description for this variant. */
3003 struct target_desc **tdesc;
3004 };
3005
3006 static struct variant variants[] =
3007 {
3008 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3009 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3010 {"power", "POWER user-level", bfd_arch_rs6000,
3011 bfd_mach_rs6k, &tdesc_rs6000},
3012 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3013 bfd_mach_ppc_403, &tdesc_powerpc_403},
3014 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3015 bfd_mach_ppc_405, &tdesc_powerpc_405},
3016 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3017 bfd_mach_ppc_601, &tdesc_powerpc_601},
3018 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3019 bfd_mach_ppc_602, &tdesc_powerpc_602},
3020 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3021 bfd_mach_ppc_603, &tdesc_powerpc_603},
3022 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3023 604, &tdesc_powerpc_604},
3024 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3025 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3026 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3027 bfd_mach_ppc_505, &tdesc_powerpc_505},
3028 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3029 bfd_mach_ppc_860, &tdesc_powerpc_860},
3030 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3031 bfd_mach_ppc_750, &tdesc_powerpc_750},
3032 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3033 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3034 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3035 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3036
3037 /* 64-bit */
3038 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3039 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3040 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3041 bfd_mach_ppc_620, &tdesc_powerpc_64},
3042 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3043 bfd_mach_ppc_630, &tdesc_powerpc_64},
3044 {"a35", "PowerPC A35", bfd_arch_powerpc,
3045 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3046 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3047 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3048 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3049 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3050
3051 /* FIXME: I haven't checked the register sets of the following. */
3052 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3053 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3054 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3055 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3056 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3057 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3058
3059 {0, 0, 0, 0, 0}
3060 };
3061
3062 /* Return the variant corresponding to architecture ARCH and machine number
3063 MACH. If no such variant exists, return null. */
3064
3065 static const struct variant *
3066 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3067 {
3068 const struct variant *v;
3069
3070 for (v = variants; v->name; v++)
3071 if (arch == v->arch && mach == v->mach)
3072 return v;
3073
3074 return NULL;
3075 }
3076
3077 static int
3078 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3079 {
3080 if (!info->disassembler_options)
3081 {
3082 /* When debugging E500 binaries and disassembling code containing
3083 E500-specific (SPE) instructions, one sometimes sees AltiVec
3084 instructions instead. The opcode spaces for SPE instructions
3085 and AltiVec instructions overlap, and specifiying the "any" cpu
3086 looks for AltiVec instructions first. If we know we're
3087 debugging an E500 binary, however, we can specify the "e500x2"
3088 cpu and get much more sane disassembly output. */
3089 if (info->mach == bfd_mach_ppc_e500)
3090 info->disassembler_options = "e500x2";
3091 else
3092 info->disassembler_options = "any";
3093 }
3094
3095 if (info->endian == BFD_ENDIAN_BIG)
3096 return print_insn_big_powerpc (memaddr, info);
3097 else
3098 return print_insn_little_powerpc (memaddr, info);
3099 }
3100 \f
3101 static CORE_ADDR
3102 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3103 {
3104 return frame_unwind_register_unsigned (next_frame,
3105 gdbarch_pc_regnum (gdbarch));
3106 }
3107
3108 static struct frame_id
3109 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3110 {
3111 return frame_id_build (get_frame_register_unsigned
3112 (this_frame, gdbarch_sp_regnum (gdbarch)),
3113 get_frame_pc (this_frame));
3114 }
3115
3116 struct rs6000_frame_cache
3117 {
3118 CORE_ADDR base;
3119 CORE_ADDR initial_sp;
3120 struct trad_frame_saved_reg *saved_regs;
3121 };
3122
3123 static struct rs6000_frame_cache *
3124 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3125 {
3126 struct rs6000_frame_cache *cache;
3127 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3129 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3130 struct rs6000_framedata fdata;
3131 int wordsize = tdep->wordsize;
3132 CORE_ADDR func, pc;
3133
3134 if ((*this_cache) != NULL)
3135 return (*this_cache);
3136 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3137 (*this_cache) = cache;
3138 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3139
3140 func = get_frame_func (this_frame);
3141 pc = get_frame_pc (this_frame);
3142 skip_prologue (gdbarch, func, pc, &fdata);
3143
3144 /* Figure out the parent's stack pointer. */
3145
3146 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3147 address of the current frame. Things might be easier if the
3148 ->frame pointed to the outer-most address of the frame. In
3149 the mean time, the address of the prev frame is used as the
3150 base address of this frame. */
3151 cache->base = get_frame_register_unsigned
3152 (this_frame, gdbarch_sp_regnum (gdbarch));
3153
3154 /* If the function appears to be frameless, check a couple of likely
3155 indicators that we have simply failed to find the frame setup.
3156 Two common cases of this are missing symbols (i.e.
3157 get_frame_func returns the wrong address or 0), and assembly
3158 stubs which have a fast exit path but set up a frame on the slow
3159 path.
3160
3161 If the LR appears to return to this function, then presume that
3162 we have an ABI compliant frame that we failed to find. */
3163 if (fdata.frameless && fdata.lr_offset == 0)
3164 {
3165 CORE_ADDR saved_lr;
3166 int make_frame = 0;
3167
3168 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3169 if (func == 0 && saved_lr == pc)
3170 make_frame = 1;
3171 else if (func != 0)
3172 {
3173 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3174 if (func == saved_func)
3175 make_frame = 1;
3176 }
3177
3178 if (make_frame)
3179 {
3180 fdata.frameless = 0;
3181 fdata.lr_offset = tdep->lr_frame_offset;
3182 }
3183 }
3184
3185 if (!fdata.frameless)
3186 /* Frameless really means stackless. */
3187 cache->base
3188 = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
3189
3190 trad_frame_set_value (cache->saved_regs,
3191 gdbarch_sp_regnum (gdbarch), cache->base);
3192
3193 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3194 All fpr's from saved_fpr to fp31 are saved. */
3195
3196 if (fdata.saved_fpr >= 0)
3197 {
3198 int i;
3199 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3200
3201 /* If skip_prologue says floating-point registers were saved,
3202 but the current architecture has no floating-point registers,
3203 then that's strange. But we have no indices to even record
3204 the addresses under, so we just ignore it. */
3205 if (ppc_floating_point_unit_p (gdbarch))
3206 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3207 {
3208 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3209 fpr_addr += 8;
3210 }
3211 }
3212
3213 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3214 All gpr's from saved_gpr to gpr31 are saved (except during the
3215 prologue). */
3216
3217 if (fdata.saved_gpr >= 0)
3218 {
3219 int i;
3220 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3221 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3222 {
3223 if (fdata.gpr_mask & (1U << i))
3224 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3225 gpr_addr += wordsize;
3226 }
3227 }
3228
3229 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3230 All vr's from saved_vr to vr31 are saved. */
3231 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3232 {
3233 if (fdata.saved_vr >= 0)
3234 {
3235 int i;
3236 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3237 for (i = fdata.saved_vr; i < 32; i++)
3238 {
3239 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3240 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3241 }
3242 }
3243 }
3244
3245 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3246 All vr's from saved_ev to ev31 are saved. ????? */
3247 if (tdep->ppc_ev0_regnum != -1)
3248 {
3249 if (fdata.saved_ev >= 0)
3250 {
3251 int i;
3252 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3253 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3254 {
3255 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3256 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3257 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3258 }
3259 }
3260 }
3261
3262 /* If != 0, fdata.cr_offset is the offset from the frame that
3263 holds the CR. */
3264 if (fdata.cr_offset != 0)
3265 cache->saved_regs[tdep->ppc_cr_regnum].addr
3266 = cache->base + fdata.cr_offset;
3267
3268 /* If != 0, fdata.lr_offset is the offset from the frame that
3269 holds the LR. */
3270 if (fdata.lr_offset != 0)
3271 cache->saved_regs[tdep->ppc_lr_regnum].addr
3272 = cache->base + fdata.lr_offset;
3273 else if (fdata.lr_register != -1)
3274 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3275 /* The PC is found in the link register. */
3276 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3277 cache->saved_regs[tdep->ppc_lr_regnum];
3278
3279 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3280 holds the VRSAVE. */
3281 if (fdata.vrsave_offset != 0)
3282 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3283 = cache->base + fdata.vrsave_offset;
3284
3285 if (fdata.alloca_reg < 0)
3286 /* If no alloca register used, then fi->frame is the value of the
3287 %sp for this frame, and it is good enough. */
3288 cache->initial_sp
3289 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3290 else
3291 cache->initial_sp
3292 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3293
3294 return cache;
3295 }
3296
3297 static void
3298 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3299 struct frame_id *this_id)
3300 {
3301 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3302 this_cache);
3303 /* This marks the outermost frame. */
3304 if (info->base == 0)
3305 return;
3306
3307 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3308 }
3309
3310 static struct value *
3311 rs6000_frame_prev_register (struct frame_info *this_frame,
3312 void **this_cache, int regnum)
3313 {
3314 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3315 this_cache);
3316 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3317 }
3318
3319 static const struct frame_unwind rs6000_frame_unwind =
3320 {
3321 NORMAL_FRAME,
3322 rs6000_frame_this_id,
3323 rs6000_frame_prev_register,
3324 NULL,
3325 default_frame_sniffer
3326 };
3327 \f
3328
3329 static CORE_ADDR
3330 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3331 {
3332 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3333 this_cache);
3334 return info->initial_sp;
3335 }
3336
3337 static const struct frame_base rs6000_frame_base = {
3338 &rs6000_frame_unwind,
3339 rs6000_frame_base_address,
3340 rs6000_frame_base_address,
3341 rs6000_frame_base_address
3342 };
3343
3344 static const struct frame_base *
3345 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3346 {
3347 return &rs6000_frame_base;
3348 }
3349
3350 /* DWARF-2 frame support. Used to handle the detection of
3351 clobbered registers during function calls. */
3352
3353 static void
3354 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3355 struct dwarf2_frame_state_reg *reg,
3356 struct frame_info *this_frame)
3357 {
3358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3359
3360 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3361 non-volatile registers. We will use the same code for both. */
3362
3363 /* Call-saved GP registers. */
3364 if ((regnum >= tdep->ppc_gp0_regnum + 14
3365 && regnum <= tdep->ppc_gp0_regnum + 31)
3366 || (regnum == tdep->ppc_gp0_regnum + 1))
3367 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3368
3369 /* Call-clobbered GP registers. */
3370 if ((regnum >= tdep->ppc_gp0_regnum + 3
3371 && regnum <= tdep->ppc_gp0_regnum + 12)
3372 || (regnum == tdep->ppc_gp0_regnum))
3373 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3374
3375 /* Deal with FP registers, if supported. */
3376 if (tdep->ppc_fp0_regnum >= 0)
3377 {
3378 /* Call-saved FP registers. */
3379 if ((regnum >= tdep->ppc_fp0_regnum + 14
3380 && regnum <= tdep->ppc_fp0_regnum + 31))
3381 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3382
3383 /* Call-clobbered FP registers. */
3384 if ((regnum >= tdep->ppc_fp0_regnum
3385 && regnum <= tdep->ppc_fp0_regnum + 13))
3386 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3387 }
3388
3389 /* Deal with ALTIVEC registers, if supported. */
3390 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3391 {
3392 /* Call-saved Altivec registers. */
3393 if ((regnum >= tdep->ppc_vr0_regnum + 20
3394 && regnum <= tdep->ppc_vr0_regnum + 31)
3395 || regnum == tdep->ppc_vrsave_regnum)
3396 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3397
3398 /* Call-clobbered Altivec registers. */
3399 if ((regnum >= tdep->ppc_vr0_regnum
3400 && regnum <= tdep->ppc_vr0_regnum + 19))
3401 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3402 }
3403
3404 /* Handle PC register and Stack Pointer correctly. */
3405 if (regnum == gdbarch_pc_regnum (gdbarch))
3406 reg->how = DWARF2_FRAME_REG_RA;
3407 else if (regnum == gdbarch_sp_regnum (gdbarch))
3408 reg->how = DWARF2_FRAME_REG_CFA;
3409 }
3410
3411
3412 /* Return true if a .gnu_attributes section exists in BFD and it
3413 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3414 section exists in BFD and it indicates that SPE extensions are in
3415 use. Check the .gnu.attributes section first, as the binary might be
3416 compiled for SPE, but not actually using SPE instructions. */
3417
3418 static int
3419 bfd_uses_spe_extensions (bfd *abfd)
3420 {
3421 asection *sect;
3422 gdb_byte *contents = NULL;
3423 bfd_size_type size;
3424 gdb_byte *ptr;
3425 int success = 0;
3426 int vector_abi;
3427
3428 if (!abfd)
3429 return 0;
3430
3431 #ifdef HAVE_ELF
3432 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3433 could be using the SPE vector abi without actually using any spe
3434 bits whatsoever. But it's close enough for now. */
3435 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3436 Tag_GNU_Power_ABI_Vector);
3437 if (vector_abi == 3)
3438 return 1;
3439 #endif
3440
3441 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3442 if (!sect)
3443 return 0;
3444
3445 size = bfd_get_section_size (sect);
3446 contents = xmalloc (size);
3447 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3448 {
3449 xfree (contents);
3450 return 0;
3451 }
3452
3453 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3454
3455 struct {
3456 uint32 name_len;
3457 uint32 data_len;
3458 uint32 type;
3459 char name[name_len rounded up to 4-byte alignment];
3460 char data[data_len];
3461 };
3462
3463 Technically, there's only supposed to be one such structure in a
3464 given apuinfo section, but the linker is not always vigilant about
3465 merging apuinfo sections from input files. Just go ahead and parse
3466 them all, exiting early when we discover the binary uses SPE
3467 insns.
3468
3469 It's not specified in what endianness the information in this
3470 section is stored. Assume that it's the endianness of the BFD. */
3471 ptr = contents;
3472 while (1)
3473 {
3474 unsigned int name_len;
3475 unsigned int data_len;
3476 unsigned int type;
3477
3478 /* If we can't read the first three fields, we're done. */
3479 if (size < 12)
3480 break;
3481
3482 name_len = bfd_get_32 (abfd, ptr);
3483 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3484 data_len = bfd_get_32 (abfd, ptr + 4);
3485 type = bfd_get_32 (abfd, ptr + 8);
3486 ptr += 12;
3487
3488 /* The name must be "APUinfo\0". */
3489 if (name_len != 8
3490 && strcmp ((const char *) ptr, "APUinfo") != 0)
3491 break;
3492 ptr += name_len;
3493
3494 /* The type must be 2. */
3495 if (type != 2)
3496 break;
3497
3498 /* The data is stored as a series of uint32. The upper half of
3499 each uint32 indicates the particular APU used and the lower
3500 half indicates the revision of that APU. We just care about
3501 the upper half. */
3502
3503 /* Not 4-byte quantities. */
3504 if (data_len & 3U)
3505 break;
3506
3507 while (data_len)
3508 {
3509 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3510 unsigned int apu = apuinfo >> 16;
3511 ptr += 4;
3512 data_len -= 4;
3513
3514 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3515 either. */
3516 if (apu == 0x100 || apu == 0x101)
3517 {
3518 success = 1;
3519 data_len = 0;
3520 }
3521 }
3522
3523 if (success)
3524 break;
3525 }
3526
3527 xfree (contents);
3528 return success;
3529 }
3530
3531 /* Initialize the current architecture based on INFO. If possible, re-use an
3532 architecture from ARCHES, which is a list of architectures already created
3533 during this debugging session.
3534
3535 Called e.g. at program startup, when reading a core file, and when reading
3536 a binary file. */
3537
3538 static struct gdbarch *
3539 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3540 {
3541 struct gdbarch *gdbarch;
3542 struct gdbarch_tdep *tdep;
3543 int wordsize, from_xcoff_exec, from_elf_exec;
3544 enum bfd_architecture arch;
3545 unsigned long mach;
3546 bfd abfd;
3547 asection *sect;
3548 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3549 int soft_float;
3550 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3551 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3552 have_vsx = 0;
3553 int tdesc_wordsize = -1;
3554 const struct target_desc *tdesc = info.target_desc;
3555 struct tdesc_arch_data *tdesc_data = NULL;
3556 int num_pseudoregs = 0;
3557 int cur_reg;
3558
3559 /* INFO may refer to a binary that is not of the PowerPC architecture,
3560 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
3561 In this case, we must not attempt to infer properties of the (PowerPC
3562 side) of the target system from properties of that executable. Trust
3563 the target description instead. */
3564 if (info.abfd
3565 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
3566 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
3567 info.abfd = NULL;
3568
3569 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3570 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3571
3572 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3573 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3574
3575 /* Check word size. If INFO is from a binary file, infer it from
3576 that, else choose a likely default. */
3577 if (from_xcoff_exec)
3578 {
3579 if (bfd_xcoff_is_xcoff64 (info.abfd))
3580 wordsize = 8;
3581 else
3582 wordsize = 4;
3583 }
3584 else if (from_elf_exec)
3585 {
3586 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3587 wordsize = 8;
3588 else
3589 wordsize = 4;
3590 }
3591 else if (tdesc_has_registers (tdesc))
3592 wordsize = -1;
3593 else
3594 {
3595 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3596 wordsize = info.bfd_arch_info->bits_per_word /
3597 info.bfd_arch_info->bits_per_byte;
3598 else
3599 wordsize = 4;
3600 }
3601
3602 /* Get the architecture and machine from the BFD. */
3603 arch = info.bfd_arch_info->arch;
3604 mach = info.bfd_arch_info->mach;
3605
3606 /* For e500 executables, the apuinfo section is of help here. Such
3607 section contains the identifier and revision number of each
3608 Application-specific Processing Unit that is present on the
3609 chip. The content of the section is determined by the assembler
3610 which looks at each instruction and determines which unit (and
3611 which version of it) can execute it. Grovel through the section
3612 looking for relevant e500 APUs. */
3613
3614 if (bfd_uses_spe_extensions (info.abfd))
3615 {
3616 arch = info.bfd_arch_info->arch;
3617 mach = bfd_mach_ppc_e500;
3618 bfd_default_set_arch_mach (&abfd, arch, mach);
3619 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3620 }
3621
3622 /* Find a default target description which describes our register
3623 layout, if we do not already have one. */
3624 if (! tdesc_has_registers (tdesc))
3625 {
3626 const struct variant *v;
3627
3628 /* Choose variant. */
3629 v = find_variant_by_arch (arch, mach);
3630 if (!v)
3631 return NULL;
3632
3633 tdesc = *v->tdesc;
3634 }
3635
3636 gdb_assert (tdesc_has_registers (tdesc));
3637
3638 /* Check any target description for validity. */
3639 if (tdesc_has_registers (tdesc))
3640 {
3641 static const char *const gprs[] = {
3642 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3643 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3644 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3645 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3646 };
3647 static const char *const segment_regs[] = {
3648 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3649 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3650 };
3651 const struct tdesc_feature *feature;
3652 int i, valid_p;
3653 static const char *const msr_names[] = { "msr", "ps" };
3654 static const char *const cr_names[] = { "cr", "cnd" };
3655 static const char *const ctr_names[] = { "ctr", "cnt" };
3656
3657 feature = tdesc_find_feature (tdesc,
3658 "org.gnu.gdb.power.core");
3659 if (feature == NULL)
3660 return NULL;
3661
3662 tdesc_data = tdesc_data_alloc ();
3663
3664 valid_p = 1;
3665 for (i = 0; i < ppc_num_gprs; i++)
3666 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3667 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3668 "pc");
3669 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3670 "lr");
3671 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3672 "xer");
3673
3674 /* Allow alternate names for these registers, to accomodate GDB's
3675 historic naming. */
3676 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3677 PPC_MSR_REGNUM, msr_names);
3678 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3679 PPC_CR_REGNUM, cr_names);
3680 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3681 PPC_CTR_REGNUM, ctr_names);
3682
3683 if (!valid_p)
3684 {
3685 tdesc_data_cleanup (tdesc_data);
3686 return NULL;
3687 }
3688
3689 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3690 "mq");
3691
3692 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3693 if (wordsize == -1)
3694 wordsize = tdesc_wordsize;
3695
3696 feature = tdesc_find_feature (tdesc,
3697 "org.gnu.gdb.power.fpu");
3698 if (feature != NULL)
3699 {
3700 static const char *const fprs[] = {
3701 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3702 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3703 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3704 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3705 };
3706 valid_p = 1;
3707 for (i = 0; i < ppc_num_fprs; i++)
3708 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3709 PPC_F0_REGNUM + i, fprs[i]);
3710 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3711 PPC_FPSCR_REGNUM, "fpscr");
3712
3713 if (!valid_p)
3714 {
3715 tdesc_data_cleanup (tdesc_data);
3716 return NULL;
3717 }
3718 have_fpu = 1;
3719 }
3720 else
3721 have_fpu = 0;
3722
3723 /* The DFP pseudo-registers will be available when there are floating
3724 point registers. */
3725 have_dfp = have_fpu;
3726
3727 feature = tdesc_find_feature (tdesc,
3728 "org.gnu.gdb.power.altivec");
3729 if (feature != NULL)
3730 {
3731 static const char *const vector_regs[] = {
3732 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3733 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3734 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3735 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3736 };
3737
3738 valid_p = 1;
3739 for (i = 0; i < ppc_num_gprs; i++)
3740 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3741 PPC_VR0_REGNUM + i,
3742 vector_regs[i]);
3743 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3744 PPC_VSCR_REGNUM, "vscr");
3745 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3746 PPC_VRSAVE_REGNUM, "vrsave");
3747
3748 if (have_spe || !valid_p)
3749 {
3750 tdesc_data_cleanup (tdesc_data);
3751 return NULL;
3752 }
3753 have_altivec = 1;
3754 }
3755 else
3756 have_altivec = 0;
3757
3758 /* Check for POWER7 VSX registers support. */
3759 feature = tdesc_find_feature (tdesc,
3760 "org.gnu.gdb.power.vsx");
3761
3762 if (feature != NULL)
3763 {
3764 static const char *const vsx_regs[] = {
3765 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3766 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3767 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3768 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3769 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3770 "vs30h", "vs31h"
3771 };
3772
3773 valid_p = 1;
3774
3775 for (i = 0; i < ppc_num_vshrs; i++)
3776 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3777 PPC_VSR0_UPPER_REGNUM + i,
3778 vsx_regs[i]);
3779 if (!valid_p)
3780 {
3781 tdesc_data_cleanup (tdesc_data);
3782 return NULL;
3783 }
3784
3785 have_vsx = 1;
3786 }
3787 else
3788 have_vsx = 0;
3789
3790 /* On machines supporting the SPE APU, the general-purpose registers
3791 are 64 bits long. There are SIMD vector instructions to treat them
3792 as pairs of floats, but the rest of the instruction set treats them
3793 as 32-bit registers, and only operates on their lower halves.
3794
3795 In the GDB regcache, we treat their high and low halves as separate
3796 registers. The low halves we present as the general-purpose
3797 registers, and then we have pseudo-registers that stitch together
3798 the upper and lower halves and present them as pseudo-registers.
3799
3800 Thus, the target description is expected to supply the upper
3801 halves separately. */
3802
3803 feature = tdesc_find_feature (tdesc,
3804 "org.gnu.gdb.power.spe");
3805 if (feature != NULL)
3806 {
3807 static const char *const upper_spe[] = {
3808 "ev0h", "ev1h", "ev2h", "ev3h",
3809 "ev4h", "ev5h", "ev6h", "ev7h",
3810 "ev8h", "ev9h", "ev10h", "ev11h",
3811 "ev12h", "ev13h", "ev14h", "ev15h",
3812 "ev16h", "ev17h", "ev18h", "ev19h",
3813 "ev20h", "ev21h", "ev22h", "ev23h",
3814 "ev24h", "ev25h", "ev26h", "ev27h",
3815 "ev28h", "ev29h", "ev30h", "ev31h"
3816 };
3817
3818 valid_p = 1;
3819 for (i = 0; i < ppc_num_gprs; i++)
3820 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3821 PPC_SPE_UPPER_GP0_REGNUM + i,
3822 upper_spe[i]);
3823 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3824 PPC_SPE_ACC_REGNUM, "acc");
3825 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3826 PPC_SPE_FSCR_REGNUM, "spefscr");
3827
3828 if (have_mq || have_fpu || !valid_p)
3829 {
3830 tdesc_data_cleanup (tdesc_data);
3831 return NULL;
3832 }
3833 have_spe = 1;
3834 }
3835 else
3836 have_spe = 0;
3837 }
3838
3839 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3840 complain for a 32-bit binary on a 64-bit target; we do not yet
3841 support that. For instance, the 32-bit ABI routines expect
3842 32-bit GPRs.
3843
3844 As long as there isn't an explicit target description, we'll
3845 choose one based on the BFD architecture and get a word size
3846 matching the binary (probably powerpc:common or
3847 powerpc:common64). So there is only trouble if a 64-bit target
3848 supplies a 64-bit description while debugging a 32-bit
3849 binary. */
3850 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3851 {
3852 tdesc_data_cleanup (tdesc_data);
3853 return NULL;
3854 }
3855
3856 #ifdef HAVE_ELF
3857 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3858 {
3859 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3860 Tag_GNU_Power_ABI_FP))
3861 {
3862 case 1:
3863 soft_float_flag = AUTO_BOOLEAN_FALSE;
3864 break;
3865 case 2:
3866 soft_float_flag = AUTO_BOOLEAN_TRUE;
3867 break;
3868 default:
3869 break;
3870 }
3871 }
3872
3873 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3874 {
3875 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3876 Tag_GNU_Power_ABI_Vector))
3877 {
3878 case 1:
3879 vector_abi = POWERPC_VEC_GENERIC;
3880 break;
3881 case 2:
3882 vector_abi = POWERPC_VEC_ALTIVEC;
3883 break;
3884 case 3:
3885 vector_abi = POWERPC_VEC_SPE;
3886 break;
3887 default:
3888 break;
3889 }
3890 }
3891 #endif
3892
3893 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3894 soft_float = 1;
3895 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3896 soft_float = 0;
3897 else
3898 soft_float = !have_fpu;
3899
3900 /* If we have a hard float binary or setting but no floating point
3901 registers, downgrade to soft float anyway. We're still somewhat
3902 useful in this scenario. */
3903 if (!soft_float && !have_fpu)
3904 soft_float = 1;
3905
3906 /* Similarly for vector registers. */
3907 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3908 vector_abi = POWERPC_VEC_GENERIC;
3909
3910 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3911 vector_abi = POWERPC_VEC_GENERIC;
3912
3913 if (vector_abi == POWERPC_VEC_AUTO)
3914 {
3915 if (have_altivec)
3916 vector_abi = POWERPC_VEC_ALTIVEC;
3917 else if (have_spe)
3918 vector_abi = POWERPC_VEC_SPE;
3919 else
3920 vector_abi = POWERPC_VEC_GENERIC;
3921 }
3922
3923 /* Do not limit the vector ABI based on available hardware, since we
3924 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3925
3926 /* Find a candidate among extant architectures. */
3927 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3928 arches != NULL;
3929 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3930 {
3931 /* Word size in the various PowerPC bfd_arch_info structs isn't
3932 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3933 separate word size check. */
3934 tdep = gdbarch_tdep (arches->gdbarch);
3935 if (tdep && tdep->soft_float != soft_float)
3936 continue;
3937 if (tdep && tdep->vector_abi != vector_abi)
3938 continue;
3939 if (tdep && tdep->wordsize == wordsize)
3940 {
3941 if (tdesc_data != NULL)
3942 tdesc_data_cleanup (tdesc_data);
3943 return arches->gdbarch;
3944 }
3945 }
3946
3947 /* None found, create a new architecture from INFO, whose bfd_arch_info
3948 validity depends on the source:
3949 - executable useless
3950 - rs6000_host_arch() good
3951 - core file good
3952 - "set arch" trust blindly
3953 - GDB startup useless but harmless */
3954
3955 tdep = XCALLOC (1, struct gdbarch_tdep);
3956 tdep->wordsize = wordsize;
3957 tdep->soft_float = soft_float;
3958 tdep->vector_abi = vector_abi;
3959
3960 gdbarch = gdbarch_alloc (&info, tdep);
3961
3962 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3963 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3964 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3965 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3966 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3967 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3968 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3969 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3970
3971 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3972 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3973 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
3974 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3975 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3976 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3977 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3978 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3979
3980 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3981 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3982 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3983 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
3984 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3985
3986 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3987 GDB traditionally called it "ps", though, so let GDB add an
3988 alias. */
3989 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3990
3991 if (wordsize == 8)
3992 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3993 else
3994 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3995
3996 /* Set lr_frame_offset. */
3997 if (wordsize == 8)
3998 tdep->lr_frame_offset = 16;
3999 else
4000 tdep->lr_frame_offset = 4;
4001
4002 if (have_spe || have_dfp || have_vsx)
4003 {
4004 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
4005 set_gdbarch_pseudo_register_write (gdbarch,
4006 rs6000_pseudo_register_write);
4007 }
4008
4009 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4010
4011 /* Select instruction printer. */
4012 if (arch == bfd_arch_rs6000)
4013 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
4014 else
4015 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
4016
4017 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
4018
4019 if (have_spe)
4020 num_pseudoregs += 32;
4021 if (have_dfp)
4022 num_pseudoregs += 16;
4023 if (have_vsx)
4024 /* Include both VSX and Extended FP registers. */
4025 num_pseudoregs += 96;
4026
4027 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
4028
4029 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
4030 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
4031 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
4032 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
4033 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4034 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
4035 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4036 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4037 set_gdbarch_char_signed (gdbarch, 0);
4038
4039 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4040 if (wordsize == 8)
4041 /* PPC64 SYSV. */
4042 set_gdbarch_frame_red_zone_size (gdbarch, 288);
4043
4044 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
4045 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
4046 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
4047
4048 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
4049 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
4050
4051 if (wordsize == 4)
4052 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4053 else if (wordsize == 8)
4054 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
4055
4056 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
4057 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
4058 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
4059
4060 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4061 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
4062
4063 /* The value of symbols of type N_SO and N_FUN maybe null when
4064 it shouldn't be. */
4065 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
4066
4067 /* Handles single stepping of atomic sequences. */
4068 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
4069
4070 /* Not sure on this. FIXMEmgo */
4071 set_gdbarch_frame_args_skip (gdbarch, 8);
4072
4073 /* Helpers for function argument information. */
4074 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
4075
4076 /* Trampoline. */
4077 set_gdbarch_in_solib_return_trampoline
4078 (gdbarch, rs6000_in_solib_return_trampoline);
4079 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
4080
4081 /* Hook in the DWARF CFI frame unwinder. */
4082 dwarf2_append_unwinders (gdbarch);
4083 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
4084
4085 /* Frame handling. */
4086 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
4087
4088 /* Setup displaced stepping. */
4089 set_gdbarch_displaced_step_copy_insn (gdbarch,
4090 simple_displaced_step_copy_insn);
4091 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
4092 ppc_displaced_step_hw_singlestep);
4093 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
4094 set_gdbarch_displaced_step_free_closure (gdbarch,
4095 simple_displaced_step_free_closure);
4096 set_gdbarch_displaced_step_location (gdbarch,
4097 displaced_step_at_entry_point);
4098
4099 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
4100
4101 /* Hook in ABI-specific overrides, if they have been registered. */
4102 info.target_desc = tdesc;
4103 info.tdep_info = (void *) tdesc_data;
4104 gdbarch_init_osabi (info, gdbarch);
4105
4106 switch (info.osabi)
4107 {
4108 case GDB_OSABI_LINUX:
4109 case GDB_OSABI_NETBSD_AOUT:
4110 case GDB_OSABI_NETBSD_ELF:
4111 case GDB_OSABI_UNKNOWN:
4112 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4113 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4114 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4115 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4116 break;
4117 default:
4118 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
4119
4120 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4121 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4122 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4123 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4124 }
4125
4126 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
4127 set_tdesc_pseudo_register_reggroup_p (gdbarch,
4128 rs6000_pseudo_register_reggroup_p);
4129 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
4130
4131 /* Override the normal target description method to make the SPE upper
4132 halves anonymous. */
4133 set_gdbarch_register_name (gdbarch, rs6000_register_name);
4134
4135 /* Choose register numbers for all supported pseudo-registers. */
4136 tdep->ppc_ev0_regnum = -1;
4137 tdep->ppc_dl0_regnum = -1;
4138 tdep->ppc_vsr0_regnum = -1;
4139 tdep->ppc_efpr0_regnum = -1;
4140
4141 cur_reg = gdbarch_num_regs (gdbarch);
4142
4143 if (have_spe)
4144 {
4145 tdep->ppc_ev0_regnum = cur_reg;
4146 cur_reg += 32;
4147 }
4148 if (have_dfp)
4149 {
4150 tdep->ppc_dl0_regnum = cur_reg;
4151 cur_reg += 16;
4152 }
4153 if (have_vsx)
4154 {
4155 tdep->ppc_vsr0_regnum = cur_reg;
4156 cur_reg += 64;
4157 tdep->ppc_efpr0_regnum = cur_reg;
4158 cur_reg += 32;
4159 }
4160
4161 gdb_assert (gdbarch_num_regs (gdbarch)
4162 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
4163
4164 return gdbarch;
4165 }
4166
4167 static void
4168 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4169 {
4170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4171
4172 if (tdep == NULL)
4173 return;
4174
4175 /* FIXME: Dump gdbarch_tdep. */
4176 }
4177
4178 /* PowerPC-specific commands. */
4179
4180 static void
4181 set_powerpc_command (char *args, int from_tty)
4182 {
4183 printf_unfiltered (_("\
4184 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
4185 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
4186 }
4187
4188 static void
4189 show_powerpc_command (char *args, int from_tty)
4190 {
4191 cmd_show_list (showpowerpccmdlist, from_tty, "");
4192 }
4193
4194 static void
4195 powerpc_set_soft_float (char *args, int from_tty,
4196 struct cmd_list_element *c)
4197 {
4198 struct gdbarch_info info;
4199
4200 /* Update the architecture. */
4201 gdbarch_info_init (&info);
4202 if (!gdbarch_update_p (info))
4203 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4204 }
4205
4206 static void
4207 powerpc_set_vector_abi (char *args, int from_tty,
4208 struct cmd_list_element *c)
4209 {
4210 struct gdbarch_info info;
4211 enum powerpc_vector_abi vector_abi;
4212
4213 for (vector_abi = POWERPC_VEC_AUTO;
4214 vector_abi != POWERPC_VEC_LAST;
4215 vector_abi++)
4216 if (strcmp (powerpc_vector_abi_string,
4217 powerpc_vector_strings[vector_abi]) == 0)
4218 {
4219 powerpc_vector_abi_global = vector_abi;
4220 break;
4221 }
4222
4223 if (vector_abi == POWERPC_VEC_LAST)
4224 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
4225 powerpc_vector_abi_string);
4226
4227 /* Update the architecture. */
4228 gdbarch_info_init (&info);
4229 if (!gdbarch_update_p (info))
4230 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4231 }
4232
4233 /* Show the current setting of the exact watchpoints flag. */
4234
4235 static void
4236 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
4237 struct cmd_list_element *c,
4238 const char *value)
4239 {
4240 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
4241 }
4242
4243 /* Initialization code. */
4244
4245 /* -Wmissing-prototypes */
4246 extern initialize_file_ftype _initialize_rs6000_tdep;
4247
4248 void
4249 _initialize_rs6000_tdep (void)
4250 {
4251 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
4252 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
4253
4254 /* Initialize the standard target descriptions. */
4255 initialize_tdesc_powerpc_32 ();
4256 initialize_tdesc_powerpc_altivec32 ();
4257 initialize_tdesc_powerpc_vsx32 ();
4258 initialize_tdesc_powerpc_403 ();
4259 initialize_tdesc_powerpc_403gc ();
4260 initialize_tdesc_powerpc_405 ();
4261 initialize_tdesc_powerpc_505 ();
4262 initialize_tdesc_powerpc_601 ();
4263 initialize_tdesc_powerpc_602 ();
4264 initialize_tdesc_powerpc_603 ();
4265 initialize_tdesc_powerpc_604 ();
4266 initialize_tdesc_powerpc_64 ();
4267 initialize_tdesc_powerpc_altivec64 ();
4268 initialize_tdesc_powerpc_vsx64 ();
4269 initialize_tdesc_powerpc_7400 ();
4270 initialize_tdesc_powerpc_750 ();
4271 initialize_tdesc_powerpc_860 ();
4272 initialize_tdesc_powerpc_e500 ();
4273 initialize_tdesc_rs6000 ();
4274
4275 /* Add root prefix command for all "set powerpc"/"show powerpc"
4276 commands. */
4277 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
4278 _("Various PowerPC-specific commands."),
4279 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
4280
4281 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
4282 _("Various PowerPC-specific commands."),
4283 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
4284
4285 /* Add a command to allow the user to force the ABI. */
4286 add_setshow_auto_boolean_cmd ("soft-float", class_support,
4287 &powerpc_soft_float_global,
4288 _("Set whether to use a soft-float ABI."),
4289 _("Show whether to use a soft-float ABI."),
4290 NULL,
4291 powerpc_set_soft_float, NULL,
4292 &setpowerpccmdlist, &showpowerpccmdlist);
4293
4294 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
4295 &powerpc_vector_abi_string,
4296 _("Set the vector ABI."),
4297 _("Show the vector ABI."),
4298 NULL, powerpc_set_vector_abi, NULL,
4299 &setpowerpccmdlist, &showpowerpccmdlist);
4300
4301 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
4302 &target_exact_watchpoints,
4303 _("\
4304 Set whether to use just one debug register for watchpoints on scalars."),
4305 _("\
4306 Show whether to use just one debug register for watchpoints on scalars."),
4307 _("\
4308 If true, GDB will use only one debug register when watching a variable of\n\
4309 scalar type, thus assuming that the variable is accessed through the address\n\
4310 of its first byte."),
4311 NULL, show_powerpc_exact_watchpoints,
4312 &setpowerpccmdlist, &showpowerpccmdlist);
4313 }
This page took 0.116099 seconds and 5 git commands to generate.