* target.c (update_current_target): Do not inherit to_open
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "objfiles.h"
30 #include "arch-utils.h"
31 #include "regcache.h"
32 #include "regset.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "parser-defs.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "sim-regno.h"
39 #include "gdb/sim-ppc.h"
40 #include "reggroups.h"
41 #include "dwarf2-frame.h"
42 #include "target-descriptions.h"
43 #include "user-regs.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53
54 #include "solib-svr4.h"
55 #include "ppc-tdep.h"
56
57 #include "gdb_assert.h"
58 #include "dis-asm.h"
59
60 #include "trad-frame.h"
61 #include "frame-unwind.h"
62 #include "frame-base.h"
63
64 #include "features/rs6000/powerpc-32.c"
65 #include "features/rs6000/powerpc-altivec32.c"
66 #include "features/rs6000/powerpc-vsx32.c"
67 #include "features/rs6000/powerpc-403.c"
68 #include "features/rs6000/powerpc-403gc.c"
69 #include "features/rs6000/powerpc-505.c"
70 #include "features/rs6000/powerpc-601.c"
71 #include "features/rs6000/powerpc-602.c"
72 #include "features/rs6000/powerpc-603.c"
73 #include "features/rs6000/powerpc-604.c"
74 #include "features/rs6000/powerpc-64.c"
75 #include "features/rs6000/powerpc-altivec64.c"
76 #include "features/rs6000/powerpc-vsx64.c"
77 #include "features/rs6000/powerpc-7400.c"
78 #include "features/rs6000/powerpc-750.c"
79 #include "features/rs6000/powerpc-860.c"
80 #include "features/rs6000/powerpc-e500.c"
81 #include "features/rs6000/rs6000.c"
82
83 /* Determine if regnum is an SPE pseudo-register. */
84 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
85 && (regnum) >= (tdep)->ppc_ev0_regnum \
86 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
87
88 /* Determine if regnum is a decimal float pseudo-register. */
89 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
90 && (regnum) >= (tdep)->ppc_dl0_regnum \
91 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
92
93 /* Determine if regnum is a POWER7 VSX register. */
94 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
95 && (regnum) >= (tdep)->ppc_vsr0_regnum \
96 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
97
98 /* Determine if regnum is a POWER7 Extended FP register. */
99 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
100 && (regnum) >= (tdep)->ppc_efpr0_regnum \
101 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs)
102
103 /* The list of available "set powerpc ..." and "show powerpc ..."
104 commands. */
105 static struct cmd_list_element *setpowerpccmdlist = NULL;
106 static struct cmd_list_element *showpowerpccmdlist = NULL;
107
108 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
109
110 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
111 static const char *powerpc_vector_strings[] =
112 {
113 "auto",
114 "generic",
115 "altivec",
116 "spe",
117 NULL
118 };
119
120 /* A variable that can be configured by the user. */
121 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
122 static const char *powerpc_vector_abi_string = "auto";
123
124 /* To be used by skip_prologue. */
125
126 struct rs6000_framedata
127 {
128 int offset; /* total size of frame --- the distance
129 by which we decrement sp to allocate
130 the frame */
131 int saved_gpr; /* smallest # of saved gpr */
132 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
133 int saved_fpr; /* smallest # of saved fpr */
134 int saved_vr; /* smallest # of saved vr */
135 int saved_ev; /* smallest # of saved ev */
136 int alloca_reg; /* alloca register number (frame ptr) */
137 char frameless; /* true if frameless functions. */
138 char nosavedpc; /* true if pc not saved. */
139 char used_bl; /* true if link register clobbered */
140 int gpr_offset; /* offset of saved gprs from prev sp */
141 int fpr_offset; /* offset of saved fprs from prev sp */
142 int vr_offset; /* offset of saved vrs from prev sp */
143 int ev_offset; /* offset of saved evs from prev sp */
144 int lr_offset; /* offset of saved lr */
145 int lr_register; /* register of saved lr, if trustworthy */
146 int cr_offset; /* offset of saved cr */
147 int vrsave_offset; /* offset of saved vrsave register */
148 };
149
150
151 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
152 int
153 vsx_register_p (struct gdbarch *gdbarch, int regno)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 if (tdep->ppc_vsr0_regnum < 0)
157 return 0;
158 else
159 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
160 <= tdep->ppc_vsr0_upper_regnum + 31);
161 }
162
163 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
164 int
165 altivec_register_p (struct gdbarch *gdbarch, int regno)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
169 return 0;
170 else
171 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
172 }
173
174
175 /* Return true if REGNO is an SPE register, false otherwise. */
176 int
177 spe_register_p (struct gdbarch *gdbarch, int regno)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180
181 /* Is it a reference to EV0 -- EV31, and do we have those? */
182 if (IS_SPE_PSEUDOREG (tdep, regno))
183 return 1;
184
185 /* Is it a reference to one of the raw upper GPR halves? */
186 if (tdep->ppc_ev0_upper_regnum >= 0
187 && tdep->ppc_ev0_upper_regnum <= regno
188 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
189 return 1;
190
191 /* Is it a reference to the 64-bit accumulator, and do we have that? */
192 if (tdep->ppc_acc_regnum >= 0
193 && tdep->ppc_acc_regnum == regno)
194 return 1;
195
196 /* Is it a reference to the SPE floating-point status and control register,
197 and do we have that? */
198 if (tdep->ppc_spefscr_regnum >= 0
199 && tdep->ppc_spefscr_regnum == regno)
200 return 1;
201
202 return 0;
203 }
204
205
206 /* Return non-zero if the architecture described by GDBARCH has
207 floating-point registers (f0 --- f31 and fpscr). */
208 int
209 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
210 {
211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
212
213 return (tdep->ppc_fp0_regnum >= 0
214 && tdep->ppc_fpscr_regnum >= 0);
215 }
216
217 /* Return non-zero if the architecture described by GDBARCH has
218 VSX registers (vsr0 --- vsr63). */
219 int
220 ppc_vsx_support_p (struct gdbarch *gdbarch)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 return tdep->ppc_vsr0_regnum >= 0;
225 }
226
227 /* Return non-zero if the architecture described by GDBARCH has
228 Altivec registers (vr0 --- vr31, vrsave and vscr). */
229 int
230 ppc_altivec_support_p (struct gdbarch *gdbarch)
231 {
232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
233
234 return (tdep->ppc_vr0_regnum >= 0
235 && tdep->ppc_vrsave_regnum >= 0);
236 }
237
238 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
239 set it to SIM_REGNO.
240
241 This is a helper function for init_sim_regno_table, constructing
242 the table mapping GDB register numbers to sim register numbers; we
243 initialize every element in that table to -1 before we start
244 filling it in. */
245 static void
246 set_sim_regno (int *table, int gdb_regno, int sim_regno)
247 {
248 /* Make sure we don't try to assign any given GDB register a sim
249 register number more than once. */
250 gdb_assert (table[gdb_regno] == -1);
251 table[gdb_regno] = sim_regno;
252 }
253
254
255 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
256 numbers to simulator register numbers, based on the values placed
257 in the ARCH->tdep->ppc_foo_regnum members. */
258 static void
259 init_sim_regno_table (struct gdbarch *arch)
260 {
261 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
262 int total_regs = gdbarch_num_regs (arch);
263 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
264 int i;
265 static const char *const segment_regs[] = {
266 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
267 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
268 };
269
270 /* Presume that all registers not explicitly mentioned below are
271 unavailable from the sim. */
272 for (i = 0; i < total_regs; i++)
273 sim_regno[i] = -1;
274
275 /* General-purpose registers. */
276 for (i = 0; i < ppc_num_gprs; i++)
277 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
278
279 /* Floating-point registers. */
280 if (tdep->ppc_fp0_regnum >= 0)
281 for (i = 0; i < ppc_num_fprs; i++)
282 set_sim_regno (sim_regno,
283 tdep->ppc_fp0_regnum + i,
284 sim_ppc_f0_regnum + i);
285 if (tdep->ppc_fpscr_regnum >= 0)
286 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
287
288 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
289 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
290 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
291
292 /* Segment registers. */
293 for (i = 0; i < ppc_num_srs; i++)
294 {
295 int gdb_regno;
296
297 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
298 if (gdb_regno >= 0)
299 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
300 }
301
302 /* Altivec registers. */
303 if (tdep->ppc_vr0_regnum >= 0)
304 {
305 for (i = 0; i < ppc_num_vrs; i++)
306 set_sim_regno (sim_regno,
307 tdep->ppc_vr0_regnum + i,
308 sim_ppc_vr0_regnum + i);
309
310 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
311 we can treat this more like the other cases. */
312 set_sim_regno (sim_regno,
313 tdep->ppc_vr0_regnum + ppc_num_vrs,
314 sim_ppc_vscr_regnum);
315 }
316 /* vsave is a special-purpose register, so the code below handles it. */
317
318 /* SPE APU (E500) registers. */
319 if (tdep->ppc_ev0_upper_regnum >= 0)
320 for (i = 0; i < ppc_num_gprs; i++)
321 set_sim_regno (sim_regno,
322 tdep->ppc_ev0_upper_regnum + i,
323 sim_ppc_rh0_regnum + i);
324 if (tdep->ppc_acc_regnum >= 0)
325 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
326 /* spefscr is a special-purpose register, so the code below handles it. */
327
328 #ifdef WITH_SIM
329 /* Now handle all special-purpose registers. Verify that they
330 haven't mistakenly been assigned numbers by any of the above
331 code. */
332 for (i = 0; i < sim_ppc_num_sprs; i++)
333 {
334 const char *spr_name = sim_spr_register_name (i);
335 int gdb_regno = -1;
336
337 if (spr_name != NULL)
338 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
339
340 if (gdb_regno != -1)
341 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
342 }
343 #endif
344
345 /* Drop the initialized array into place. */
346 tdep->sim_regno = sim_regno;
347 }
348
349
350 /* Given a GDB register number REG, return the corresponding SIM
351 register number. */
352 static int
353 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356 int sim_regno;
357
358 if (tdep->sim_regno == NULL)
359 init_sim_regno_table (gdbarch);
360
361 gdb_assert (0 <= reg
362 && reg <= gdbarch_num_regs (gdbarch)
363 + gdbarch_num_pseudo_regs (gdbarch));
364 sim_regno = tdep->sim_regno[reg];
365
366 if (sim_regno >= 0)
367 return sim_regno;
368 else
369 return LEGACY_SIM_REGNO_IGNORE;
370 }
371
372 \f
373
374 /* Register set support functions. */
375
376 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
377 Write the register to REGCACHE. */
378
379 void
380 ppc_supply_reg (struct regcache *regcache, int regnum,
381 const gdb_byte *regs, size_t offset, int regsize)
382 {
383 if (regnum != -1 && offset != -1)
384 {
385 if (regsize > 4)
386 {
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 int gdb_regsize = register_size (gdbarch, regnum);
389 if (gdb_regsize < regsize
390 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
391 offset += regsize - gdb_regsize;
392 }
393 regcache_raw_supply (regcache, regnum, regs + offset);
394 }
395 }
396
397 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
398 in a field REGSIZE wide. Zero pad as necessary. */
399
400 void
401 ppc_collect_reg (const struct regcache *regcache, int regnum,
402 gdb_byte *regs, size_t offset, int regsize)
403 {
404 if (regnum != -1 && offset != -1)
405 {
406 if (regsize > 4)
407 {
408 struct gdbarch *gdbarch = get_regcache_arch (regcache);
409 int gdb_regsize = register_size (gdbarch, regnum);
410 if (gdb_regsize < regsize)
411 {
412 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
413 {
414 memset (regs + offset, 0, regsize - gdb_regsize);
415 offset += regsize - gdb_regsize;
416 }
417 else
418 memset (regs + offset + regsize - gdb_regsize, 0,
419 regsize - gdb_regsize);
420 }
421 }
422 regcache_raw_collect (regcache, regnum, regs + offset);
423 }
424 }
425
426 static int
427 ppc_greg_offset (struct gdbarch *gdbarch,
428 struct gdbarch_tdep *tdep,
429 const struct ppc_reg_offsets *offsets,
430 int regnum,
431 int *regsize)
432 {
433 *regsize = offsets->gpr_size;
434 if (regnum >= tdep->ppc_gp0_regnum
435 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
436 return (offsets->r0_offset
437 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
438
439 if (regnum == gdbarch_pc_regnum (gdbarch))
440 return offsets->pc_offset;
441
442 if (regnum == tdep->ppc_ps_regnum)
443 return offsets->ps_offset;
444
445 if (regnum == tdep->ppc_lr_regnum)
446 return offsets->lr_offset;
447
448 if (regnum == tdep->ppc_ctr_regnum)
449 return offsets->ctr_offset;
450
451 *regsize = offsets->xr_size;
452 if (regnum == tdep->ppc_cr_regnum)
453 return offsets->cr_offset;
454
455 if (regnum == tdep->ppc_xer_regnum)
456 return offsets->xer_offset;
457
458 if (regnum == tdep->ppc_mq_regnum)
459 return offsets->mq_offset;
460
461 return -1;
462 }
463
464 static int
465 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
466 const struct ppc_reg_offsets *offsets,
467 int regnum)
468 {
469 if (regnum >= tdep->ppc_fp0_regnum
470 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
471 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
472
473 if (regnum == tdep->ppc_fpscr_regnum)
474 return offsets->fpscr_offset;
475
476 return -1;
477 }
478
479 static int
480 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
481 const struct ppc_reg_offsets *offsets,
482 int regnum)
483 {
484 if (regnum >= tdep->ppc_vr0_regnum
485 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
486 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
487
488 if (regnum == tdep->ppc_vrsave_regnum - 1)
489 return offsets->vscr_offset;
490
491 if (regnum == tdep->ppc_vrsave_regnum)
492 return offsets->vrsave_offset;
493
494 return -1;
495 }
496
497 /* Supply register REGNUM in the general-purpose register set REGSET
498 from the buffer specified by GREGS and LEN to register cache
499 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
500
501 void
502 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
503 int regnum, const void *gregs, size_t len)
504 {
505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
507 const struct ppc_reg_offsets *offsets = regset->descr;
508 size_t offset;
509 int regsize;
510
511 if (regnum == -1)
512 {
513 int i;
514 int gpr_size = offsets->gpr_size;
515
516 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
517 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
518 i++, offset += gpr_size)
519 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
520
521 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
522 gregs, offsets->pc_offset, gpr_size);
523 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
524 gregs, offsets->ps_offset, gpr_size);
525 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
526 gregs, offsets->lr_offset, gpr_size);
527 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
528 gregs, offsets->ctr_offset, gpr_size);
529 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
530 gregs, offsets->cr_offset, offsets->xr_size);
531 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
532 gregs, offsets->xer_offset, offsets->xr_size);
533 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
534 gregs, offsets->mq_offset, offsets->xr_size);
535 return;
536 }
537
538 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
539 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
540 }
541
542 /* Supply register REGNUM in the floating-point register set REGSET
543 from the buffer specified by FPREGS and LEN to register cache
544 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
545
546 void
547 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
548 int regnum, const void *fpregs, size_t len)
549 {
550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
551 struct gdbarch_tdep *tdep;
552 const struct ppc_reg_offsets *offsets;
553 size_t offset;
554
555 if (!ppc_floating_point_unit_p (gdbarch))
556 return;
557
558 tdep = gdbarch_tdep (gdbarch);
559 offsets = regset->descr;
560 if (regnum == -1)
561 {
562 int i;
563
564 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
565 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
566 i++, offset += 8)
567 ppc_supply_reg (regcache, i, fpregs, offset, 8);
568
569 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
570 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
571 return;
572 }
573
574 offset = ppc_fpreg_offset (tdep, offsets, regnum);
575 ppc_supply_reg (regcache, regnum, fpregs, offset,
576 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
577 }
578
579 /* Supply register REGNUM in the VSX register set REGSET
580 from the buffer specified by VSXREGS and LEN to register cache
581 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
582
583 void
584 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
585 int regnum, const void *vsxregs, size_t len)
586 {
587 struct gdbarch *gdbarch = get_regcache_arch (regcache);
588 struct gdbarch_tdep *tdep;
589
590 if (!ppc_vsx_support_p (gdbarch))
591 return;
592
593 tdep = gdbarch_tdep (gdbarch);
594
595 if (regnum == -1)
596 {
597 int i;
598
599 for (i = tdep->ppc_vsr0_upper_regnum;
600 i < tdep->ppc_vsr0_upper_regnum + 32;
601 i++)
602 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
603
604 return;
605 }
606 else
607 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
608 }
609
610 /* Supply register REGNUM in the Altivec register set REGSET
611 from the buffer specified by VRREGS and LEN to register cache
612 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
613
614 void
615 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
616 int regnum, const void *vrregs, size_t len)
617 {
618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
619 struct gdbarch_tdep *tdep;
620 const struct ppc_reg_offsets *offsets;
621 size_t offset;
622
623 if (!ppc_altivec_support_p (gdbarch))
624 return;
625
626 tdep = gdbarch_tdep (gdbarch);
627 offsets = regset->descr;
628 if (regnum == -1)
629 {
630 int i;
631
632 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
633 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
634 i++, offset += 16)
635 ppc_supply_reg (regcache, i, vrregs, offset, 16);
636
637 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
638 vrregs, offsets->vscr_offset, 4);
639
640 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
641 vrregs, offsets->vrsave_offset, 4);
642 return;
643 }
644
645 offset = ppc_vrreg_offset (tdep, offsets, regnum);
646 if (regnum != tdep->ppc_vrsave_regnum
647 && regnum != tdep->ppc_vrsave_regnum - 1)
648 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
649 else
650 ppc_supply_reg (regcache, regnum,
651 vrregs, offset, 4);
652 }
653
654 /* Collect register REGNUM in the general-purpose register set
655 REGSET from register cache REGCACHE into the buffer specified by
656 GREGS and LEN. If REGNUM is -1, do this for all registers in
657 REGSET. */
658
659 void
660 ppc_collect_gregset (const struct regset *regset,
661 const struct regcache *regcache,
662 int regnum, void *gregs, size_t len)
663 {
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
666 const struct ppc_reg_offsets *offsets = regset->descr;
667 size_t offset;
668 int regsize;
669
670 if (regnum == -1)
671 {
672 int i;
673 int gpr_size = offsets->gpr_size;
674
675 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
676 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
677 i++, offset += gpr_size)
678 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
679
680 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
681 gregs, offsets->pc_offset, gpr_size);
682 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
683 gregs, offsets->ps_offset, gpr_size);
684 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
685 gregs, offsets->lr_offset, gpr_size);
686 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
687 gregs, offsets->ctr_offset, gpr_size);
688 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
689 gregs, offsets->cr_offset, offsets->xr_size);
690 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
691 gregs, offsets->xer_offset, offsets->xr_size);
692 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
693 gregs, offsets->mq_offset, offsets->xr_size);
694 return;
695 }
696
697 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
698 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
699 }
700
701 /* Collect register REGNUM in the floating-point register set
702 REGSET from register cache REGCACHE into the buffer specified by
703 FPREGS and LEN. If REGNUM is -1, do this for all registers in
704 REGSET. */
705
706 void
707 ppc_collect_fpregset (const struct regset *regset,
708 const struct regcache *regcache,
709 int regnum, void *fpregs, size_t len)
710 {
711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
712 struct gdbarch_tdep *tdep;
713 const struct ppc_reg_offsets *offsets;
714 size_t offset;
715
716 if (!ppc_floating_point_unit_p (gdbarch))
717 return;
718
719 tdep = gdbarch_tdep (gdbarch);
720 offsets = regset->descr;
721 if (regnum == -1)
722 {
723 int i;
724
725 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
726 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
727 i++, offset += 8)
728 ppc_collect_reg (regcache, i, fpregs, offset, 8);
729
730 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
731 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
732 return;
733 }
734
735 offset = ppc_fpreg_offset (tdep, offsets, regnum);
736 ppc_collect_reg (regcache, regnum, fpregs, offset,
737 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
738 }
739
740 /* Collect register REGNUM in the VSX register set
741 REGSET from register cache REGCACHE into the buffer specified by
742 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
743 REGSET. */
744
745 void
746 ppc_collect_vsxregset (const struct regset *regset,
747 const struct regcache *regcache,
748 int regnum, void *vsxregs, size_t len)
749 {
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep;
752
753 if (!ppc_vsx_support_p (gdbarch))
754 return;
755
756 tdep = gdbarch_tdep (gdbarch);
757
758 if (regnum == -1)
759 {
760 int i;
761
762 for (i = tdep->ppc_vsr0_upper_regnum;
763 i < tdep->ppc_vsr0_upper_regnum + 32;
764 i++)
765 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
766
767 return;
768 }
769 else
770 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
771 }
772
773
774 /* Collect register REGNUM in the Altivec register set
775 REGSET from register cache REGCACHE into the buffer specified by
776 VRREGS and LEN. If REGNUM is -1, do this for all registers in
777 REGSET. */
778
779 void
780 ppc_collect_vrregset (const struct regset *regset,
781 const struct regcache *regcache,
782 int regnum, void *vrregs, size_t len)
783 {
784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
785 struct gdbarch_tdep *tdep;
786 const struct ppc_reg_offsets *offsets;
787 size_t offset;
788
789 if (!ppc_altivec_support_p (gdbarch))
790 return;
791
792 tdep = gdbarch_tdep (gdbarch);
793 offsets = regset->descr;
794 if (regnum == -1)
795 {
796 int i;
797
798 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
799 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
800 i++, offset += 16)
801 ppc_collect_reg (regcache, i, vrregs, offset, 16);
802
803 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
804 vrregs, offsets->vscr_offset, 4);
805
806 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
807 vrregs, offsets->vrsave_offset, 4);
808 return;
809 }
810
811 offset = ppc_vrreg_offset (tdep, offsets, regnum);
812 if (regnum != tdep->ppc_vrsave_regnum
813 && regnum != tdep->ppc_vrsave_regnum - 1)
814 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
815 else
816 ppc_collect_reg (regcache, regnum,
817 vrregs, offset, 4);
818 }
819 \f
820
821 static int
822 insn_changes_sp_or_jumps (unsigned long insn)
823 {
824 int opcode = (insn >> 26) & 0x03f;
825 int sd = (insn >> 21) & 0x01f;
826 int a = (insn >> 16) & 0x01f;
827 int subcode = (insn >> 1) & 0x3ff;
828
829 /* Changes the stack pointer. */
830
831 /* NOTE: There are many ways to change the value of a given register.
832 The ways below are those used when the register is R1, the SP,
833 in a funtion's epilogue. */
834
835 if (opcode == 31 && subcode == 444 && a == 1)
836 return 1; /* mr R1,Rn */
837 if (opcode == 14 && sd == 1)
838 return 1; /* addi R1,Rn,simm */
839 if (opcode == 58 && sd == 1)
840 return 1; /* ld R1,ds(Rn) */
841
842 /* Transfers control. */
843
844 if (opcode == 18)
845 return 1; /* b */
846 if (opcode == 16)
847 return 1; /* bc */
848 if (opcode == 19 && subcode == 16)
849 return 1; /* bclr */
850 if (opcode == 19 && subcode == 528)
851 return 1; /* bcctr */
852
853 return 0;
854 }
855
856 /* Return true if we are in the function's epilogue, i.e. after the
857 instruction that destroyed the function's stack frame.
858
859 1) scan forward from the point of execution:
860 a) If you find an instruction that modifies the stack pointer
861 or transfers control (except a return), execution is not in
862 an epilogue, return.
863 b) Stop scanning if you find a return instruction or reach the
864 end of the function or reach the hard limit for the size of
865 an epilogue.
866 2) scan backward from the point of execution:
867 a) If you find an instruction that modifies the stack pointer,
868 execution *is* in an epilogue, return.
869 b) Stop scanning if you reach an instruction that transfers
870 control or the beginning of the function or reach the hard
871 limit for the size of an epilogue. */
872
873 static int
874 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
875 {
876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
877 bfd_byte insn_buf[PPC_INSN_SIZE];
878 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
879 unsigned long insn;
880 struct frame_info *curfrm;
881
882 /* Find the search limits based on function boundaries and hard limit. */
883
884 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
885 return 0;
886
887 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
888 if (epilogue_start < func_start) epilogue_start = func_start;
889
890 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
891 if (epilogue_end > func_end) epilogue_end = func_end;
892
893 curfrm = get_current_frame ();
894
895 /* Scan forward until next 'blr'. */
896
897 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
898 {
899 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
900 return 0;
901 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
902 if (insn == 0x4e800020)
903 break;
904 /* Assume a bctr is a tail call unless it points strictly within
905 this function. */
906 if (insn == 0x4e800420)
907 {
908 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
909 tdep->ppc_ctr_regnum);
910 if (ctr > func_start && ctr < func_end)
911 return 0;
912 else
913 break;
914 }
915 if (insn_changes_sp_or_jumps (insn))
916 return 0;
917 }
918
919 /* Scan backward until adjustment to stack pointer (R1). */
920
921 for (scan_pc = pc - PPC_INSN_SIZE;
922 scan_pc >= epilogue_start;
923 scan_pc -= PPC_INSN_SIZE)
924 {
925 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
926 return 0;
927 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
928 if (insn_changes_sp_or_jumps (insn))
929 return 1;
930 }
931
932 return 0;
933 }
934
935 /* Get the ith function argument for the current function. */
936 static CORE_ADDR
937 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
938 struct type *type)
939 {
940 return get_frame_register_unsigned (frame, 3 + argi);
941 }
942
943 /* Sequence of bytes for breakpoint instruction. */
944
945 const static unsigned char *
946 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
947 int *bp_size)
948 {
949 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
950 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
951 *bp_size = 4;
952 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
953 return big_breakpoint;
954 else
955 return little_breakpoint;
956 }
957
958 /* Instruction masks for displaced stepping. */
959 #define BRANCH_MASK 0xfc000000
960 #define BP_MASK 0xFC0007FE
961 #define B_INSN 0x48000000
962 #define BC_INSN 0x40000000
963 #define BXL_INSN 0x4c000000
964 #define BP_INSN 0x7C000008
965
966 /* Fix up the state of registers and memory after having single-stepped
967 a displaced instruction. */
968 void
969 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
970 struct displaced_step_closure *closure,
971 CORE_ADDR from, CORE_ADDR to,
972 struct regcache *regs)
973 {
974 /* Since we use simple_displaced_step_copy_insn, our closure is a
975 copy of the instruction. */
976 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
977 PPC_INSN_SIZE);
978 ULONGEST opcode = 0;
979 /* Offset for non PC-relative instructions. */
980 LONGEST offset = PPC_INSN_SIZE;
981
982 opcode = insn & BRANCH_MASK;
983
984 if (debug_displaced)
985 fprintf_unfiltered (gdb_stdlog,
986 "displaced: (ppc) fixup (0x%s, 0x%s)\n",
987 paddr_nz (from), paddr_nz (to));
988
989
990 /* Handle PC-relative branch instructions. */
991 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
992 {
993 ULONGEST current_pc;
994
995 /* Read the current PC value after the instruction has been executed
996 in a displaced location. Calculate the offset to be applied to the
997 original PC value before the displaced stepping. */
998 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
999 &current_pc);
1000 offset = current_pc - to;
1001
1002 if (opcode != BXL_INSN)
1003 {
1004 /* Check for AA bit indicating whether this is an absolute
1005 addressing or PC-relative (1: absolute, 0: relative). */
1006 if (!(insn & 0x2))
1007 {
1008 /* PC-relative addressing is being used in the branch. */
1009 if (debug_displaced)
1010 fprintf_unfiltered
1011 (gdb_stdlog,
1012 "displaced: (ppc) branch instruction: 0x%s\n"
1013 "displaced: (ppc) adjusted PC from 0x%s to 0x%s\n",
1014 paddr_nz (insn), paddr_nz (current_pc),
1015 paddr_nz (from + offset));
1016
1017 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1018 from + offset);
1019 }
1020 }
1021 else
1022 {
1023 /* If we're here, it means we have a branch to LR or CTR. If the
1024 branch was taken, the offset is probably greater than 4 (the next
1025 instruction), so it's safe to assume that an offset of 4 means we
1026 did not take the branch. */
1027 if (offset == PPC_INSN_SIZE)
1028 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1029 from + PPC_INSN_SIZE);
1030 }
1031
1032 /* Check for LK bit indicating whether we should set the link
1033 register to point to the next instruction
1034 (1: Set, 0: Don't set). */
1035 if (insn & 0x1)
1036 {
1037 /* Link register needs to be set to the next instruction's PC. */
1038 regcache_cooked_write_unsigned (regs,
1039 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1040 from + PPC_INSN_SIZE);
1041 if (debug_displaced)
1042 fprintf_unfiltered (gdb_stdlog,
1043 "displaced: (ppc) adjusted LR to 0x%s\n",
1044 paddr_nz (from + PPC_INSN_SIZE));
1045
1046 }
1047 }
1048 /* Check for breakpoints in the inferior. If we've found one, place the PC
1049 right at the breakpoint instruction. */
1050 else if ((insn & BP_MASK) == BP_INSN)
1051 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1052 else
1053 /* Handle any other instructions that do not fit in the categories above. */
1054 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1055 from + offset);
1056 }
1057
1058 /* Instruction masks used during single-stepping of atomic sequences. */
1059 #define LWARX_MASK 0xfc0007fe
1060 #define LWARX_INSTRUCTION 0x7c000028
1061 #define LDARX_INSTRUCTION 0x7c0000A8
1062 #define STWCX_MASK 0xfc0007ff
1063 #define STWCX_INSTRUCTION 0x7c00012d
1064 #define STDCX_INSTRUCTION 0x7c0001ad
1065
1066 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1067 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1068 is found, attempt to step through it. A breakpoint is placed at the end of
1069 the sequence. */
1070
1071 int
1072 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1073 {
1074 CORE_ADDR pc = get_frame_pc (frame);
1075 CORE_ADDR breaks[2] = {-1, -1};
1076 CORE_ADDR loc = pc;
1077 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1078 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
1079 int insn_count;
1080 int index;
1081 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1082 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1083 int opcode; /* Branch instruction's OPcode. */
1084 int bc_insn_count = 0; /* Conditional branch instruction count. */
1085
1086 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1087 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1088 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1089 return 0;
1090
1091 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1092 instructions. */
1093 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1094 {
1095 loc += PPC_INSN_SIZE;
1096 insn = read_memory_integer (loc, PPC_INSN_SIZE);
1097
1098 /* Assume that there is at most one conditional branch in the atomic
1099 sequence. If a conditional branch is found, put a breakpoint in
1100 its destination address. */
1101 if ((insn & BRANCH_MASK) == BC_INSN)
1102 {
1103 int immediate = ((insn & ~3) << 16) >> 16;
1104 int absolute = ((insn >> 1) & 1);
1105
1106 if (bc_insn_count >= 1)
1107 return 0; /* More than one conditional branch found, fallback
1108 to the standard single-step code. */
1109
1110 if (absolute)
1111 breaks[1] = immediate;
1112 else
1113 breaks[1] = pc + immediate;
1114
1115 bc_insn_count++;
1116 last_breakpoint++;
1117 }
1118
1119 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1120 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1121 break;
1122 }
1123
1124 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1125 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1126 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1127 return 0;
1128
1129 closing_insn = loc;
1130 loc += PPC_INSN_SIZE;
1131 insn = read_memory_integer (loc, PPC_INSN_SIZE);
1132
1133 /* Insert a breakpoint right after the end of the atomic sequence. */
1134 breaks[0] = loc;
1135
1136 /* Check for duplicated breakpoints. Check also for a breakpoint
1137 placed (branch instruction's destination) at the stwcx/stdcx
1138 instruction, this resets the reservation and take us back to the
1139 lwarx/ldarx instruction at the beginning of the atomic sequence. */
1140 if (last_breakpoint && ((breaks[1] == breaks[0])
1141 || (breaks[1] == closing_insn)))
1142 last_breakpoint = 0;
1143
1144 /* Effectively inserts the breakpoints. */
1145 for (index = 0; index <= last_breakpoint; index++)
1146 insert_single_step_breakpoint (breaks[index]);
1147
1148 return 1;
1149 }
1150
1151
1152 #define SIGNED_SHORT(x) \
1153 ((sizeof (short) == 2) \
1154 ? ((int)(short)(x)) \
1155 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1156
1157 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1158
1159 /* Limit the number of skipped non-prologue instructions, as the examining
1160 of the prologue is expensive. */
1161 static int max_skip_non_prologue_insns = 10;
1162
1163 /* Return nonzero if the given instruction OP can be part of the prologue
1164 of a function and saves a parameter on the stack. FRAMEP should be
1165 set if one of the previous instructions in the function has set the
1166 Frame Pointer. */
1167
1168 static int
1169 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1170 {
1171 /* Move parameters from argument registers to temporary register. */
1172 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1173 {
1174 /* Rx must be scratch register r0. */
1175 const int rx_regno = (op >> 16) & 31;
1176 /* Ry: Only r3 - r10 are used for parameter passing. */
1177 const int ry_regno = GET_SRC_REG (op);
1178
1179 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1180 {
1181 *r0_contains_arg = 1;
1182 return 1;
1183 }
1184 else
1185 return 0;
1186 }
1187
1188 /* Save a General Purpose Register on stack. */
1189
1190 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1191 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1192 {
1193 /* Rx: Only r3 - r10 are used for parameter passing. */
1194 const int rx_regno = GET_SRC_REG (op);
1195
1196 return (rx_regno >= 3 && rx_regno <= 10);
1197 }
1198
1199 /* Save a General Purpose Register on stack via the Frame Pointer. */
1200
1201 if (framep &&
1202 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1203 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1204 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1205 {
1206 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1207 However, the compiler sometimes uses r0 to hold an argument. */
1208 const int rx_regno = GET_SRC_REG (op);
1209
1210 return ((rx_regno >= 3 && rx_regno <= 10)
1211 || (rx_regno == 0 && *r0_contains_arg));
1212 }
1213
1214 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1215 {
1216 /* Only f2 - f8 are used for parameter passing. */
1217 const int src_regno = GET_SRC_REG (op);
1218
1219 return (src_regno >= 2 && src_regno <= 8);
1220 }
1221
1222 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1223 {
1224 /* Only f2 - f8 are used for parameter passing. */
1225 const int src_regno = GET_SRC_REG (op);
1226
1227 return (src_regno >= 2 && src_regno <= 8);
1228 }
1229
1230 /* Not an insn that saves a parameter on stack. */
1231 return 0;
1232 }
1233
1234 /* Assuming that INSN is a "bl" instruction located at PC, return
1235 nonzero if the destination of the branch is a "blrl" instruction.
1236
1237 This sequence is sometimes found in certain function prologues.
1238 It allows the function to load the LR register with a value that
1239 they can use to access PIC data using PC-relative offsets. */
1240
1241 static int
1242 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
1243 {
1244 CORE_ADDR dest;
1245 int immediate;
1246 int absolute;
1247 int dest_insn;
1248
1249 absolute = (int) ((insn >> 1) & 1);
1250 immediate = ((insn & ~3) << 6) >> 6;
1251 if (absolute)
1252 dest = immediate;
1253 else
1254 dest = pc + immediate;
1255
1256 dest_insn = read_memory_integer (dest, 4);
1257 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1258 return 1;
1259
1260 return 0;
1261 }
1262
1263 /* Masks for decoding a branch-and-link (bl) instruction.
1264
1265 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1266 The former is anded with the opcode in question; if the result of
1267 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1268 question is a ``bl'' instruction.
1269
1270 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1271 the branch displacement. */
1272
1273 #define BL_MASK 0xfc000001
1274 #define BL_INSTRUCTION 0x48000001
1275 #define BL_DISPLACEMENT_MASK 0x03fffffc
1276
1277 /* return pc value after skipping a function prologue and also return
1278 information about a function frame.
1279
1280 in struct rs6000_framedata fdata:
1281 - frameless is TRUE, if function does not have a frame.
1282 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1283 - offset is the initial size of this stack frame --- the amount by
1284 which we decrement the sp to allocate the frame.
1285 - saved_gpr is the number of the first saved gpr.
1286 - saved_fpr is the number of the first saved fpr.
1287 - saved_vr is the number of the first saved vr.
1288 - saved_ev is the number of the first saved ev.
1289 - alloca_reg is the number of the register used for alloca() handling.
1290 Otherwise -1.
1291 - gpr_offset is the offset of the first saved gpr from the previous frame.
1292 - fpr_offset is the offset of the first saved fpr from the previous frame.
1293 - vr_offset is the offset of the first saved vr from the previous frame.
1294 - ev_offset is the offset of the first saved ev from the previous frame.
1295 - lr_offset is the offset of the saved lr
1296 - cr_offset is the offset of the saved cr
1297 - vrsave_offset is the offset of the saved vrsave register
1298 */
1299
1300 static CORE_ADDR
1301 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1302 struct rs6000_framedata *fdata)
1303 {
1304 CORE_ADDR orig_pc = pc;
1305 CORE_ADDR last_prologue_pc = pc;
1306 CORE_ADDR li_found_pc = 0;
1307 gdb_byte buf[4];
1308 unsigned long op;
1309 long offset = 0;
1310 long vr_saved_offset = 0;
1311 int lr_reg = -1;
1312 int cr_reg = -1;
1313 int vr_reg = -1;
1314 int ev_reg = -1;
1315 long ev_offset = 0;
1316 int vrsave_reg = -1;
1317 int reg;
1318 int framep = 0;
1319 int minimal_toc_loaded = 0;
1320 int prev_insn_was_prologue_insn = 1;
1321 int num_skip_non_prologue_insns = 0;
1322 int r0_contains_arg = 0;
1323 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1324 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1325
1326 memset (fdata, 0, sizeof (struct rs6000_framedata));
1327 fdata->saved_gpr = -1;
1328 fdata->saved_fpr = -1;
1329 fdata->saved_vr = -1;
1330 fdata->saved_ev = -1;
1331 fdata->alloca_reg = -1;
1332 fdata->frameless = 1;
1333 fdata->nosavedpc = 1;
1334 fdata->lr_register = -1;
1335
1336 for (;; pc += 4)
1337 {
1338 /* Sometimes it isn't clear if an instruction is a prologue
1339 instruction or not. When we encounter one of these ambiguous
1340 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1341 Otherwise, we'll assume that it really is a prologue instruction. */
1342 if (prev_insn_was_prologue_insn)
1343 last_prologue_pc = pc;
1344
1345 /* Stop scanning if we've hit the limit. */
1346 if (pc >= lim_pc)
1347 break;
1348
1349 prev_insn_was_prologue_insn = 1;
1350
1351 /* Fetch the instruction and convert it to an integer. */
1352 if (target_read_memory (pc, buf, 4))
1353 break;
1354 op = extract_unsigned_integer (buf, 4);
1355
1356 if ((op & 0xfc1fffff) == 0x7c0802a6)
1357 { /* mflr Rx */
1358 /* Since shared library / PIC code, which needs to get its
1359 address at runtime, can appear to save more than one link
1360 register vis:
1361
1362 *INDENT-OFF*
1363 stwu r1,-304(r1)
1364 mflr r3
1365 bl 0xff570d0 (blrl)
1366 stw r30,296(r1)
1367 mflr r30
1368 stw r31,300(r1)
1369 stw r3,308(r1);
1370 ...
1371 *INDENT-ON*
1372
1373 remember just the first one, but skip over additional
1374 ones. */
1375 if (lr_reg == -1)
1376 lr_reg = (op & 0x03e00000) >> 21;
1377 if (lr_reg == 0)
1378 r0_contains_arg = 0;
1379 continue;
1380 }
1381 else if ((op & 0xfc1fffff) == 0x7c000026)
1382 { /* mfcr Rx */
1383 cr_reg = (op & 0x03e00000);
1384 if (cr_reg == 0)
1385 r0_contains_arg = 0;
1386 continue;
1387
1388 }
1389 else if ((op & 0xfc1f0000) == 0xd8010000)
1390 { /* stfd Rx,NUM(r1) */
1391 reg = GET_SRC_REG (op);
1392 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1393 {
1394 fdata->saved_fpr = reg;
1395 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1396 }
1397 continue;
1398
1399 }
1400 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1401 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1402 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1403 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1404 {
1405
1406 reg = GET_SRC_REG (op);
1407 if ((op & 0xfc1f0000) == 0xbc010000)
1408 fdata->gpr_mask |= ~((1U << reg) - 1);
1409 else
1410 fdata->gpr_mask |= 1U << reg;
1411 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1412 {
1413 fdata->saved_gpr = reg;
1414 if ((op & 0xfc1f0003) == 0xf8010000)
1415 op &= ~3UL;
1416 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1417 }
1418 continue;
1419
1420 }
1421 else if ((op & 0xffff0000) == 0x60000000)
1422 {
1423 /* nop */
1424 /* Allow nops in the prologue, but do not consider them to
1425 be part of the prologue unless followed by other prologue
1426 instructions. */
1427 prev_insn_was_prologue_insn = 0;
1428 continue;
1429
1430 }
1431 else if ((op & 0xffff0000) == 0x3c000000)
1432 { /* addis 0,0,NUM, used
1433 for >= 32k frames */
1434 fdata->offset = (op & 0x0000ffff) << 16;
1435 fdata->frameless = 0;
1436 r0_contains_arg = 0;
1437 continue;
1438
1439 }
1440 else if ((op & 0xffff0000) == 0x60000000)
1441 { /* ori 0,0,NUM, 2nd ha
1442 lf of >= 32k frames */
1443 fdata->offset |= (op & 0x0000ffff);
1444 fdata->frameless = 0;
1445 r0_contains_arg = 0;
1446 continue;
1447
1448 }
1449 else if (lr_reg >= 0 &&
1450 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1451 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1452 /* stw Rx, NUM(r1) */
1453 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1454 /* stwu Rx, NUM(r1) */
1455 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1456 { /* where Rx == lr */
1457 fdata->lr_offset = offset;
1458 fdata->nosavedpc = 0;
1459 /* Invalidate lr_reg, but don't set it to -1.
1460 That would mean that it had never been set. */
1461 lr_reg = -2;
1462 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1463 (op & 0xfc000000) == 0x90000000) /* stw */
1464 {
1465 /* Does not update r1, so add displacement to lr_offset. */
1466 fdata->lr_offset += SIGNED_SHORT (op);
1467 }
1468 continue;
1469
1470 }
1471 else if (cr_reg >= 0 &&
1472 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1473 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1474 /* stw Rx, NUM(r1) */
1475 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1476 /* stwu Rx, NUM(r1) */
1477 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1478 { /* where Rx == cr */
1479 fdata->cr_offset = offset;
1480 /* Invalidate cr_reg, but don't set it to -1.
1481 That would mean that it had never been set. */
1482 cr_reg = -2;
1483 if ((op & 0xfc000003) == 0xf8000000 ||
1484 (op & 0xfc000000) == 0x90000000)
1485 {
1486 /* Does not update r1, so add displacement to cr_offset. */
1487 fdata->cr_offset += SIGNED_SHORT (op);
1488 }
1489 continue;
1490
1491 }
1492 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1493 {
1494 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1495 prediction bits. If the LR has already been saved, we can
1496 skip it. */
1497 continue;
1498 }
1499 else if (op == 0x48000005)
1500 { /* bl .+4 used in
1501 -mrelocatable */
1502 fdata->used_bl = 1;
1503 continue;
1504
1505 }
1506 else if (op == 0x48000004)
1507 { /* b .+4 (xlc) */
1508 break;
1509
1510 }
1511 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1512 in V.4 -mminimal-toc */
1513 (op & 0xffff0000) == 0x3bde0000)
1514 { /* addi 30,30,foo@l */
1515 continue;
1516
1517 }
1518 else if ((op & 0xfc000001) == 0x48000001)
1519 { /* bl foo,
1520 to save fprs??? */
1521
1522 fdata->frameless = 0;
1523
1524 /* If the return address has already been saved, we can skip
1525 calls to blrl (for PIC). */
1526 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1527 {
1528 fdata->used_bl = 1;
1529 continue;
1530 }
1531
1532 /* Don't skip over the subroutine call if it is not within
1533 the first three instructions of the prologue and either
1534 we have no line table information or the line info tells
1535 us that the subroutine call is not part of the line
1536 associated with the prologue. */
1537 if ((pc - orig_pc) > 8)
1538 {
1539 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1540 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1541
1542 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1543 break;
1544 }
1545
1546 op = read_memory_integer (pc + 4, 4);
1547
1548 /* At this point, make sure this is not a trampoline
1549 function (a function that simply calls another functions,
1550 and nothing else). If the next is not a nop, this branch
1551 was part of the function prologue. */
1552
1553 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1554 break; /* don't skip over
1555 this branch */
1556
1557 fdata->used_bl = 1;
1558 continue;
1559 }
1560 /* update stack pointer */
1561 else if ((op & 0xfc1f0000) == 0x94010000)
1562 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1563 fdata->frameless = 0;
1564 fdata->offset = SIGNED_SHORT (op);
1565 offset = fdata->offset;
1566 continue;
1567 }
1568 else if ((op & 0xfc1f016a) == 0x7c01016e)
1569 { /* stwux rX,r1,rY */
1570 /* no way to figure out what r1 is going to be */
1571 fdata->frameless = 0;
1572 offset = fdata->offset;
1573 continue;
1574 }
1575 else if ((op & 0xfc1f0003) == 0xf8010001)
1576 { /* stdu rX,NUM(r1) */
1577 fdata->frameless = 0;
1578 fdata->offset = SIGNED_SHORT (op & ~3UL);
1579 offset = fdata->offset;
1580 continue;
1581 }
1582 else if ((op & 0xfc1f016a) == 0x7c01016a)
1583 { /* stdux rX,r1,rY */
1584 /* no way to figure out what r1 is going to be */
1585 fdata->frameless = 0;
1586 offset = fdata->offset;
1587 continue;
1588 }
1589 else if ((op & 0xffff0000) == 0x38210000)
1590 { /* addi r1,r1,SIMM */
1591 fdata->frameless = 0;
1592 fdata->offset += SIGNED_SHORT (op);
1593 offset = fdata->offset;
1594 continue;
1595 }
1596 /* Load up minimal toc pointer. Do not treat an epilogue restore
1597 of r31 as a minimal TOC load. */
1598 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1599 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1600 && !framep
1601 && !minimal_toc_loaded)
1602 {
1603 minimal_toc_loaded = 1;
1604 continue;
1605
1606 /* move parameters from argument registers to local variable
1607 registers */
1608 }
1609 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1610 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1611 (((op >> 21) & 31) <= 10) &&
1612 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1613 {
1614 continue;
1615
1616 /* store parameters in stack */
1617 }
1618 /* Move parameters from argument registers to temporary register. */
1619 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1620 {
1621 continue;
1622
1623 /* Set up frame pointer */
1624 }
1625 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1626 || op == 0x7c3f0b78)
1627 { /* mr r31, r1 */
1628 fdata->frameless = 0;
1629 framep = 1;
1630 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1631 continue;
1632
1633 /* Another way to set up the frame pointer. */
1634 }
1635 else if ((op & 0xfc1fffff) == 0x38010000)
1636 { /* addi rX, r1, 0x0 */
1637 fdata->frameless = 0;
1638 framep = 1;
1639 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1640 + ((op & ~0x38010000) >> 21));
1641 continue;
1642 }
1643 /* AltiVec related instructions. */
1644 /* Store the vrsave register (spr 256) in another register for
1645 later manipulation, or load a register into the vrsave
1646 register. 2 instructions are used: mfvrsave and
1647 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1648 and mtspr SPR256, Rn. */
1649 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1650 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1651 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1652 {
1653 vrsave_reg = GET_SRC_REG (op);
1654 continue;
1655 }
1656 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1657 {
1658 continue;
1659 }
1660 /* Store the register where vrsave was saved to onto the stack:
1661 rS is the register where vrsave was stored in a previous
1662 instruction. */
1663 /* 100100 sssss 00001 dddddddd dddddddd */
1664 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1665 {
1666 if (vrsave_reg == GET_SRC_REG (op))
1667 {
1668 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1669 vrsave_reg = -1;
1670 }
1671 continue;
1672 }
1673 /* Compute the new value of vrsave, by modifying the register
1674 where vrsave was saved to. */
1675 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1676 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1677 {
1678 continue;
1679 }
1680 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1681 in a pair of insns to save the vector registers on the
1682 stack. */
1683 /* 001110 00000 00000 iiii iiii iiii iiii */
1684 /* 001110 01110 00000 iiii iiii iiii iiii */
1685 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1686 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1687 {
1688 if ((op & 0xffff0000) == 0x38000000)
1689 r0_contains_arg = 0;
1690 li_found_pc = pc;
1691 vr_saved_offset = SIGNED_SHORT (op);
1692
1693 /* This insn by itself is not part of the prologue, unless
1694 if part of the pair of insns mentioned above. So do not
1695 record this insn as part of the prologue yet. */
1696 prev_insn_was_prologue_insn = 0;
1697 }
1698 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1699 /* 011111 sssss 11111 00000 00111001110 */
1700 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1701 {
1702 if (pc == (li_found_pc + 4))
1703 {
1704 vr_reg = GET_SRC_REG (op);
1705 /* If this is the first vector reg to be saved, or if
1706 it has a lower number than others previously seen,
1707 reupdate the frame info. */
1708 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1709 {
1710 fdata->saved_vr = vr_reg;
1711 fdata->vr_offset = vr_saved_offset + offset;
1712 }
1713 vr_saved_offset = -1;
1714 vr_reg = -1;
1715 li_found_pc = 0;
1716 }
1717 }
1718 /* End AltiVec related instructions. */
1719
1720 /* Start BookE related instructions. */
1721 /* Store gen register S at (r31+uimm).
1722 Any register less than r13 is volatile, so we don't care. */
1723 /* 000100 sssss 11111 iiiii 01100100001 */
1724 else if (arch_info->mach == bfd_mach_ppc_e500
1725 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1726 {
1727 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1728 {
1729 unsigned int imm;
1730 ev_reg = GET_SRC_REG (op);
1731 imm = (op >> 11) & 0x1f;
1732 ev_offset = imm * 8;
1733 /* If this is the first vector reg to be saved, or if
1734 it has a lower number than others previously seen,
1735 reupdate the frame info. */
1736 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1737 {
1738 fdata->saved_ev = ev_reg;
1739 fdata->ev_offset = ev_offset + offset;
1740 }
1741 }
1742 continue;
1743 }
1744 /* Store gen register rS at (r1+rB). */
1745 /* 000100 sssss 00001 bbbbb 01100100000 */
1746 else if (arch_info->mach == bfd_mach_ppc_e500
1747 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1748 {
1749 if (pc == (li_found_pc + 4))
1750 {
1751 ev_reg = GET_SRC_REG (op);
1752 /* If this is the first vector reg to be saved, or if
1753 it has a lower number than others previously seen,
1754 reupdate the frame info. */
1755 /* We know the contents of rB from the previous instruction. */
1756 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1757 {
1758 fdata->saved_ev = ev_reg;
1759 fdata->ev_offset = vr_saved_offset + offset;
1760 }
1761 vr_saved_offset = -1;
1762 ev_reg = -1;
1763 li_found_pc = 0;
1764 }
1765 continue;
1766 }
1767 /* Store gen register r31 at (rA+uimm). */
1768 /* 000100 11111 aaaaa iiiii 01100100001 */
1769 else if (arch_info->mach == bfd_mach_ppc_e500
1770 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1771 {
1772 /* Wwe know that the source register is 31 already, but
1773 it can't hurt to compute it. */
1774 ev_reg = GET_SRC_REG (op);
1775 ev_offset = ((op >> 11) & 0x1f) * 8;
1776 /* If this is the first vector reg to be saved, or if
1777 it has a lower number than others previously seen,
1778 reupdate the frame info. */
1779 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1780 {
1781 fdata->saved_ev = ev_reg;
1782 fdata->ev_offset = ev_offset + offset;
1783 }
1784
1785 continue;
1786 }
1787 /* Store gen register S at (r31+r0).
1788 Store param on stack when offset from SP bigger than 4 bytes. */
1789 /* 000100 sssss 11111 00000 01100100000 */
1790 else if (arch_info->mach == bfd_mach_ppc_e500
1791 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1792 {
1793 if (pc == (li_found_pc + 4))
1794 {
1795 if ((op & 0x03e00000) >= 0x01a00000)
1796 {
1797 ev_reg = GET_SRC_REG (op);
1798 /* If this is the first vector reg to be saved, or if
1799 it has a lower number than others previously seen,
1800 reupdate the frame info. */
1801 /* We know the contents of r0 from the previous
1802 instruction. */
1803 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1804 {
1805 fdata->saved_ev = ev_reg;
1806 fdata->ev_offset = vr_saved_offset + offset;
1807 }
1808 ev_reg = -1;
1809 }
1810 vr_saved_offset = -1;
1811 li_found_pc = 0;
1812 continue;
1813 }
1814 }
1815 /* End BookE related instructions. */
1816
1817 else
1818 {
1819 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
1820
1821 /* Not a recognized prologue instruction.
1822 Handle optimizer code motions into the prologue by continuing
1823 the search if we have no valid frame yet or if the return
1824 address is not yet saved in the frame. Also skip instructions
1825 if some of the GPRs expected to be saved are not yet saved. */
1826 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1827 && (fdata->gpr_mask & all_mask) == all_mask)
1828 break;
1829
1830 if (op == 0x4e800020 /* blr */
1831 || op == 0x4e800420) /* bctr */
1832 /* Do not scan past epilogue in frameless functions or
1833 trampolines. */
1834 break;
1835 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1836 /* Never skip branches. */
1837 break;
1838
1839 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1840 /* Do not scan too many insns, scanning insns is expensive with
1841 remote targets. */
1842 break;
1843
1844 /* Continue scanning. */
1845 prev_insn_was_prologue_insn = 0;
1846 continue;
1847 }
1848 }
1849
1850 #if 0
1851 /* I have problems with skipping over __main() that I need to address
1852 * sometime. Previously, I used to use misc_function_vector which
1853 * didn't work as well as I wanted to be. -MGO */
1854
1855 /* If the first thing after skipping a prolog is a branch to a function,
1856 this might be a call to an initializer in main(), introduced by gcc2.
1857 We'd like to skip over it as well. Fortunately, xlc does some extra
1858 work before calling a function right after a prologue, thus we can
1859 single out such gcc2 behaviour. */
1860
1861
1862 if ((op & 0xfc000001) == 0x48000001)
1863 { /* bl foo, an initializer function? */
1864 op = read_memory_integer (pc + 4, 4);
1865
1866 if (op == 0x4def7b82)
1867 { /* cror 0xf, 0xf, 0xf (nop) */
1868
1869 /* Check and see if we are in main. If so, skip over this
1870 initializer function as well. */
1871
1872 tmp = find_pc_misc_function (pc);
1873 if (tmp >= 0
1874 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1875 return pc + 8;
1876 }
1877 }
1878 #endif /* 0 */
1879
1880 if (pc == lim_pc && lr_reg >= 0)
1881 fdata->lr_register = lr_reg;
1882
1883 fdata->offset = -fdata->offset;
1884 return last_prologue_pc;
1885 }
1886
1887 static CORE_ADDR
1888 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1889 {
1890 struct rs6000_framedata frame;
1891 CORE_ADDR limit_pc, func_addr;
1892
1893 /* See if we can determine the end of the prologue via the symbol table.
1894 If so, then return either PC, or the PC after the prologue, whichever
1895 is greater. */
1896 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1897 {
1898 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
1899 if (post_prologue_pc != 0)
1900 return max (pc, post_prologue_pc);
1901 }
1902
1903 /* Can't determine prologue from the symbol table, need to examine
1904 instructions. */
1905
1906 /* Find an upper limit on the function prologue using the debug
1907 information. If the debug information could not be used to provide
1908 that bound, then use an arbitrary large number as the upper bound. */
1909 limit_pc = skip_prologue_using_sal (pc);
1910 if (limit_pc == 0)
1911 limit_pc = pc + 100; /* Magic. */
1912
1913 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
1914 return pc;
1915 }
1916
1917 /* When compiling for EABI, some versions of GCC emit a call to __eabi
1918 in the prologue of main().
1919
1920 The function below examines the code pointed at by PC and checks to
1921 see if it corresponds to a call to __eabi. If so, it returns the
1922 address of the instruction following that call. Otherwise, it simply
1923 returns PC. */
1924
1925 CORE_ADDR
1926 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1927 {
1928 gdb_byte buf[4];
1929 unsigned long op;
1930
1931 if (target_read_memory (pc, buf, 4))
1932 return pc;
1933 op = extract_unsigned_integer (buf, 4);
1934
1935 if ((op & BL_MASK) == BL_INSTRUCTION)
1936 {
1937 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
1938 CORE_ADDR call_dest = pc + 4 + displ;
1939 struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
1940
1941 /* We check for ___eabi (three leading underscores) in addition
1942 to __eabi in case the GCC option "-fleading-underscore" was
1943 used to compile the program. */
1944 if (s != NULL
1945 && SYMBOL_LINKAGE_NAME (s) != NULL
1946 && (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
1947 || strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
1948 pc += 4;
1949 }
1950 return pc;
1951 }
1952
1953 /* All the ABI's require 16 byte alignment. */
1954 static CORE_ADDR
1955 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1956 {
1957 return (addr & -16);
1958 }
1959
1960 /* Return whether handle_inferior_event() should proceed through code
1961 starting at PC in function NAME when stepping.
1962
1963 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1964 handle memory references that are too distant to fit in instructions
1965 generated by the compiler. For example, if 'foo' in the following
1966 instruction:
1967
1968 lwz r9,foo(r2)
1969
1970 is greater than 32767, the linker might replace the lwz with a branch to
1971 somewhere in @FIX1 that does the load in 2 instructions and then branches
1972 back to where execution should continue.
1973
1974 GDB should silently step over @FIX code, just like AIX dbx does.
1975 Unfortunately, the linker uses the "b" instruction for the
1976 branches, meaning that the link register doesn't get set.
1977 Therefore, GDB's usual step_over_function () mechanism won't work.
1978
1979 Instead, use the gdbarch_skip_trampoline_code and
1980 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
1981 @FIX code. */
1982
1983 int
1984 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1985 {
1986 return name && !strncmp (name, "@FIX", 4);
1987 }
1988
1989 /* Skip code that the user doesn't want to see when stepping:
1990
1991 1. Indirect function calls use a piece of trampoline code to do context
1992 switching, i.e. to set the new TOC table. Skip such code if we are on
1993 its first instruction (as when we have single-stepped to here).
1994
1995 2. Skip shared library trampoline code (which is different from
1996 indirect function call trampolines).
1997
1998 3. Skip bigtoc fixup code.
1999
2000 Result is desired PC to step until, or NULL if we are not in
2001 code that should be skipped. */
2002
2003 CORE_ADDR
2004 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2005 {
2006 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
2007 unsigned int ii, op;
2008 int rel;
2009 CORE_ADDR solib_target_pc;
2010 struct minimal_symbol *msymbol;
2011
2012 static unsigned trampoline_code[] =
2013 {
2014 0x800b0000, /* l r0,0x0(r11) */
2015 0x90410014, /* st r2,0x14(r1) */
2016 0x7c0903a6, /* mtctr r0 */
2017 0x804b0004, /* l r2,0x4(r11) */
2018 0x816b0008, /* l r11,0x8(r11) */
2019 0x4e800420, /* bctr */
2020 0x4e800020, /* br */
2021 0
2022 };
2023
2024 /* Check for bigtoc fixup code. */
2025 msymbol = lookup_minimal_symbol_by_pc (pc);
2026 if (msymbol
2027 && rs6000_in_solib_return_trampoline (pc, SYMBOL_LINKAGE_NAME (msymbol)))
2028 {
2029 /* Double-check that the third instruction from PC is relative "b". */
2030 op = read_memory_integer (pc + 8, 4);
2031 if ((op & 0xfc000003) == 0x48000000)
2032 {
2033 /* Extract bits 6-29 as a signed 24-bit relative word address and
2034 add it to the containing PC. */
2035 rel = ((int)(op << 6) >> 6);
2036 return pc + 8 + rel;
2037 }
2038 }
2039
2040 /* If pc is in a shared library trampoline, return its target. */
2041 solib_target_pc = find_solib_trampoline_target (frame, pc);
2042 if (solib_target_pc)
2043 return solib_target_pc;
2044
2045 for (ii = 0; trampoline_code[ii]; ++ii)
2046 {
2047 op = read_memory_integer (pc + (ii * 4), 4);
2048 if (op != trampoline_code[ii])
2049 return 0;
2050 }
2051 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
2052 pc = read_memory_unsigned_integer (ii, tdep->wordsize); /* (r11) value */
2053 return pc;
2054 }
2055
2056 /* ISA-specific vector types. */
2057
2058 static struct type *
2059 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2060 {
2061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2062
2063 if (!tdep->ppc_builtin_type_vec64)
2064 {
2065 /* The type we're building is this: */
2066 #if 0
2067 union __gdb_builtin_type_vec64
2068 {
2069 int64_t uint64;
2070 float v2_float[2];
2071 int32_t v2_int32[2];
2072 int16_t v4_int16[4];
2073 int8_t v8_int8[8];
2074 };
2075 #endif
2076
2077 struct type *t;
2078
2079 t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2080 append_composite_type_field (t, "uint64", builtin_type_int64);
2081 append_composite_type_field (t, "v2_float",
2082 init_vector_type (builtin_type_float, 2));
2083 append_composite_type_field (t, "v2_int32",
2084 init_vector_type (builtin_type_int32, 2));
2085 append_composite_type_field (t, "v4_int16",
2086 init_vector_type (builtin_type_int16, 4));
2087 append_composite_type_field (t, "v8_int8",
2088 init_vector_type (builtin_type_int8, 8));
2089
2090 TYPE_VECTOR (t) = 1;
2091 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2092 tdep->ppc_builtin_type_vec64 = t;
2093 }
2094
2095 return tdep->ppc_builtin_type_vec64;
2096 }
2097
2098 /* Vector 128 type. */
2099
2100 static struct type *
2101 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2102 {
2103 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2104
2105 if (!tdep->ppc_builtin_type_vec128)
2106 {
2107 /* The type we're building is this
2108
2109 type = union __ppc_builtin_type_vec128 {
2110 uint128_t uint128;
2111 float v4_float[4];
2112 int32_t v4_int32[4];
2113 int16_t v8_int16[8];
2114 int8_t v16_int8[16];
2115 }
2116 */
2117
2118 struct type *t;
2119
2120 t = init_composite_type ("__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2121 append_composite_type_field (t, "uint128", builtin_type_uint128);
2122 append_composite_type_field (t, "v4_float",
2123 init_vector_type (builtin_type (gdbarch)->builtin_float, 4));
2124 append_composite_type_field (t, "v4_int32",
2125 init_vector_type (builtin_type_int32, 4));
2126 append_composite_type_field (t, "v8_int16",
2127 init_vector_type (builtin_type_int16, 8));
2128 append_composite_type_field (t, "v16_int8",
2129 init_vector_type (builtin_type_int8, 16));
2130
2131 TYPE_VECTOR (t) = 1;
2132 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2133 tdep->ppc_builtin_type_vec128 = t;
2134 }
2135
2136 return tdep->ppc_builtin_type_vec128;
2137 }
2138
2139 /* Return the name of register number REGNO, or the empty string if it
2140 is an anonymous register. */
2141
2142 static const char *
2143 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2144 {
2145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2146
2147 /* The upper half "registers" have names in the XML description,
2148 but we present only the low GPRs and the full 64-bit registers
2149 to the user. */
2150 if (tdep->ppc_ev0_upper_regnum >= 0
2151 && tdep->ppc_ev0_upper_regnum <= regno
2152 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2153 return "";
2154
2155 /* Hide the upper halves of the vs0~vs31 registers. */
2156 if (tdep->ppc_vsr0_regnum >= 0
2157 && tdep->ppc_vsr0_upper_regnum <= regno
2158 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2159 return "";
2160
2161 /* Check if the SPE pseudo registers are available. */
2162 if (IS_SPE_PSEUDOREG (tdep, regno))
2163 {
2164 static const char *const spe_regnames[] = {
2165 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2166 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2167 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2168 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2169 };
2170 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2171 }
2172
2173 /* Check if the decimal128 pseudo-registers are available. */
2174 if (IS_DFP_PSEUDOREG (tdep, regno))
2175 {
2176 static const char *const dfp128_regnames[] = {
2177 "dl0", "dl1", "dl2", "dl3",
2178 "dl4", "dl5", "dl6", "dl7",
2179 "dl8", "dl9", "dl10", "dl11",
2180 "dl12", "dl13", "dl14", "dl15"
2181 };
2182 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2183 }
2184
2185 /* Check if this is a VSX pseudo-register. */
2186 if (IS_VSX_PSEUDOREG (tdep, regno))
2187 {
2188 static const char *const vsx_regnames[] = {
2189 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2190 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2191 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2192 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2193 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2194 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2195 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2196 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2197 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2198 };
2199 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2200 }
2201
2202 /* Check if the this is a Extended FP pseudo-register. */
2203 if (IS_EFP_PSEUDOREG (tdep, regno))
2204 {
2205 static const char *const efpr_regnames[] = {
2206 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2207 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2208 "f46", "f47", "f48", "f49", "f50", "f51",
2209 "f52", "f53", "f54", "f55", "f56", "f57",
2210 "f58", "f59", "f60", "f61", "f62", "f63"
2211 };
2212 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2213 }
2214
2215 return tdesc_register_name (gdbarch, regno);
2216 }
2217
2218 /* Return the GDB type object for the "standard" data type of data in
2219 register N. */
2220
2221 static struct type *
2222 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2223 {
2224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2225
2226 /* These are the only pseudo-registers we support. */
2227 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2228 || IS_DFP_PSEUDOREG (tdep, regnum)
2229 || IS_VSX_PSEUDOREG (tdep, regnum)
2230 || IS_EFP_PSEUDOREG (tdep, regnum));
2231
2232 /* These are the e500 pseudo-registers. */
2233 if (IS_SPE_PSEUDOREG (tdep, regnum))
2234 return rs6000_builtin_type_vec64 (gdbarch);
2235 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2236 /* PPC decimal128 pseudo-registers. */
2237 return builtin_type (gdbarch)->builtin_declong;
2238 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2239 /* POWER7 VSX pseudo-registers. */
2240 return rs6000_builtin_type_vec128 (gdbarch);
2241 else
2242 /* POWER7 Extended FP pseudo-registers. */
2243 return builtin_type (gdbarch)->builtin_double;
2244 }
2245
2246 /* Is REGNUM a member of REGGROUP? */
2247 static int
2248 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2249 struct reggroup *group)
2250 {
2251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2252
2253 /* These are the only pseudo-registers we support. */
2254 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2255 || IS_DFP_PSEUDOREG (tdep, regnum)
2256 || IS_VSX_PSEUDOREG (tdep, regnum)
2257 || IS_EFP_PSEUDOREG (tdep, regnum));
2258
2259 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2260 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2261 return group == all_reggroup || group == vector_reggroup;
2262 else
2263 /* PPC decimal128 or Extended FP pseudo-registers. */
2264 return group == all_reggroup || group == float_reggroup;
2265 }
2266
2267 /* The register format for RS/6000 floating point registers is always
2268 double, we need a conversion if the memory format is float. */
2269
2270 static int
2271 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2272 struct type *type)
2273 {
2274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2275
2276 return (tdep->ppc_fp0_regnum >= 0
2277 && regnum >= tdep->ppc_fp0_regnum
2278 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2279 && TYPE_CODE (type) == TYPE_CODE_FLT
2280 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2281 }
2282
2283 static void
2284 rs6000_register_to_value (struct frame_info *frame,
2285 int regnum,
2286 struct type *type,
2287 gdb_byte *to)
2288 {
2289 gdb_byte from[MAX_REGISTER_SIZE];
2290
2291 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2292
2293 get_frame_register (frame, regnum, from);
2294 convert_typed_floating (from, builtin_type_double, to, type);
2295 }
2296
2297 static void
2298 rs6000_value_to_register (struct frame_info *frame,
2299 int regnum,
2300 struct type *type,
2301 const gdb_byte *from)
2302 {
2303 gdb_byte to[MAX_REGISTER_SIZE];
2304
2305 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2306
2307 convert_typed_floating (from, type, to, builtin_type_double);
2308 put_frame_register (frame, regnum, to);
2309 }
2310
2311 /* Move SPE vector register values between a 64-bit buffer and the two
2312 32-bit raw register halves in a regcache. This function handles
2313 both splitting a 64-bit value into two 32-bit halves, and joining
2314 two halves into a whole 64-bit value, depending on the function
2315 passed as the MOVE argument.
2316
2317 EV_REG must be the number of an SPE evN vector register --- a
2318 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2319 64-bit buffer.
2320
2321 Call MOVE once for each 32-bit half of that register, passing
2322 REGCACHE, the number of the raw register corresponding to that
2323 half, and the address of the appropriate half of BUFFER.
2324
2325 For example, passing 'regcache_raw_read' as the MOVE function will
2326 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2327 'regcache_raw_supply' will supply the contents of BUFFER to the
2328 appropriate pair of raw registers in REGCACHE.
2329
2330 You may need to cast away some 'const' qualifiers when passing
2331 MOVE, since this function can't tell at compile-time which of
2332 REGCACHE or BUFFER is acting as the source of the data. If C had
2333 co-variant type qualifiers, ... */
2334 static void
2335 e500_move_ev_register (void (*move) (struct regcache *regcache,
2336 int regnum, gdb_byte *buf),
2337 struct regcache *regcache, int ev_reg,
2338 gdb_byte *buffer)
2339 {
2340 struct gdbarch *arch = get_regcache_arch (regcache);
2341 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2342 int reg_index;
2343 gdb_byte *byte_buffer = buffer;
2344
2345 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2346
2347 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2348
2349 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2350 {
2351 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2352 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2353 }
2354 else
2355 {
2356 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2357 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2358 }
2359 }
2360
2361 static void
2362 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2363 int reg_nr, gdb_byte *buffer)
2364 {
2365 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2366 }
2367
2368 static void
2369 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2370 int reg_nr, const gdb_byte *buffer)
2371 {
2372 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2373 regcache_raw_write,
2374 regcache, reg_nr, (gdb_byte *) buffer);
2375 }
2376
2377 /* Read method for DFP pseudo-registers. */
2378 static void
2379 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2380 int reg_nr, gdb_byte *buffer)
2381 {
2382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2383 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2384
2385 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2386 {
2387 /* Read two FP registers to form a whole dl register. */
2388 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2389 2 * reg_index, buffer);
2390 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2391 2 * reg_index + 1, buffer + 8);
2392 }
2393 else
2394 {
2395 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2396 2 * reg_index + 1, buffer + 8);
2397 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2398 2 * reg_index, buffer);
2399 }
2400 }
2401
2402 /* Write method for DFP pseudo-registers. */
2403 static void
2404 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2405 int reg_nr, const gdb_byte *buffer)
2406 {
2407 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2408 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2409
2410 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2411 {
2412 /* Write each half of the dl register into a separate
2413 FP register. */
2414 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2415 2 * reg_index, buffer);
2416 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2417 2 * reg_index + 1, buffer + 8);
2418 }
2419 else
2420 {
2421 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2422 2 * reg_index + 1, buffer + 8);
2423 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2424 2 * reg_index, buffer);
2425 }
2426 }
2427
2428 /* Read method for POWER7 VSX pseudo-registers. */
2429 static void
2430 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2431 int reg_nr, gdb_byte *buffer)
2432 {
2433 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2434 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2435
2436 /* Read the portion that overlaps the VMX registers. */
2437 if (reg_index > 31)
2438 regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2439 reg_index - 32, buffer);
2440 else
2441 /* Read the portion that overlaps the FPR registers. */
2442 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2443 {
2444 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2445 reg_index, buffer);
2446 regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2447 reg_index, buffer + 8);
2448 }
2449 else
2450 {
2451 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2452 reg_index, buffer + 8);
2453 regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2454 reg_index, buffer);
2455 }
2456 }
2457
2458 /* Write method for POWER7 VSX pseudo-registers. */
2459 static void
2460 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2461 int reg_nr, const gdb_byte *buffer)
2462 {
2463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2464 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2465
2466 /* Write the portion that overlaps the VMX registers. */
2467 if (reg_index > 31)
2468 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2469 reg_index - 32, buffer);
2470 else
2471 /* Write the portion that overlaps the FPR registers. */
2472 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2473 {
2474 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2475 reg_index, buffer);
2476 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2477 reg_index, buffer + 8);
2478 }
2479 else
2480 {
2481 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2482 reg_index, buffer + 8);
2483 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2484 reg_index, buffer);
2485 }
2486 }
2487
2488 /* Read method for POWER7 Extended FP pseudo-registers. */
2489 static void
2490 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2491 int reg_nr, gdb_byte *buffer)
2492 {
2493 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2494 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2495
2496 /* Read the portion that overlaps the VMX registers. */
2497 regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2498 reg_index, buffer);
2499 }
2500
2501 /* Write method for POWER7 Extended FP pseudo-registers. */
2502 static void
2503 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2504 int reg_nr, const gdb_byte *buffer)
2505 {
2506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2507 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2508
2509 /* Write the portion that overlaps the VMX registers. */
2510 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2511 reg_index, buffer);
2512 }
2513
2514 static void
2515 rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2516 int reg_nr, gdb_byte *buffer)
2517 {
2518 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2519 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2520
2521 gdb_assert (regcache_arch == gdbarch);
2522
2523 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2524 e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2525 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2526 dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2527 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2528 vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2529 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2530 efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2531 else
2532 internal_error (__FILE__, __LINE__,
2533 _("rs6000_pseudo_register_read: "
2534 "called on unexpected register '%s' (%d)"),
2535 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2536 }
2537
2538 static void
2539 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2540 struct regcache *regcache,
2541 int reg_nr, const gdb_byte *buffer)
2542 {
2543 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2545
2546 gdb_assert (regcache_arch == gdbarch);
2547
2548 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2549 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2550 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2551 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2552 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2553 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2554 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2555 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2556 else
2557 internal_error (__FILE__, __LINE__,
2558 _("rs6000_pseudo_register_write: "
2559 "called on unexpected register '%s' (%d)"),
2560 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2561 }
2562
2563 /* Convert a DBX STABS register number to a GDB register number. */
2564 static int
2565 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2566 {
2567 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2568
2569 if (0 <= num && num <= 31)
2570 return tdep->ppc_gp0_regnum + num;
2571 else if (32 <= num && num <= 63)
2572 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2573 specifies registers the architecture doesn't have? Our
2574 callers don't check the value we return. */
2575 return tdep->ppc_fp0_regnum + (num - 32);
2576 else if (77 <= num && num <= 108)
2577 return tdep->ppc_vr0_regnum + (num - 77);
2578 else if (1200 <= num && num < 1200 + 32)
2579 return tdep->ppc_ev0_regnum + (num - 1200);
2580 else
2581 switch (num)
2582 {
2583 case 64:
2584 return tdep->ppc_mq_regnum;
2585 case 65:
2586 return tdep->ppc_lr_regnum;
2587 case 66:
2588 return tdep->ppc_ctr_regnum;
2589 case 76:
2590 return tdep->ppc_xer_regnum;
2591 case 109:
2592 return tdep->ppc_vrsave_regnum;
2593 case 110:
2594 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2595 case 111:
2596 return tdep->ppc_acc_regnum;
2597 case 112:
2598 return tdep->ppc_spefscr_regnum;
2599 default:
2600 return num;
2601 }
2602 }
2603
2604
2605 /* Convert a Dwarf 2 register number to a GDB register number. */
2606 static int
2607 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2608 {
2609 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2610
2611 if (0 <= num && num <= 31)
2612 return tdep->ppc_gp0_regnum + num;
2613 else if (32 <= num && num <= 63)
2614 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2615 specifies registers the architecture doesn't have? Our
2616 callers don't check the value we return. */
2617 return tdep->ppc_fp0_regnum + (num - 32);
2618 else if (1124 <= num && num < 1124 + 32)
2619 return tdep->ppc_vr0_regnum + (num - 1124);
2620 else if (1200 <= num && num < 1200 + 32)
2621 return tdep->ppc_ev0_regnum + (num - 1200);
2622 else
2623 switch (num)
2624 {
2625 case 64:
2626 return tdep->ppc_cr_regnum;
2627 case 67:
2628 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2629 case 99:
2630 return tdep->ppc_acc_regnum;
2631 case 100:
2632 return tdep->ppc_mq_regnum;
2633 case 101:
2634 return tdep->ppc_xer_regnum;
2635 case 108:
2636 return tdep->ppc_lr_regnum;
2637 case 109:
2638 return tdep->ppc_ctr_regnum;
2639 case 356:
2640 return tdep->ppc_vrsave_regnum;
2641 case 612:
2642 return tdep->ppc_spefscr_regnum;
2643 default:
2644 return num;
2645 }
2646 }
2647
2648 /* Translate a .eh_frame register to DWARF register, or adjust a
2649 .debug_frame register. */
2650
2651 static int
2652 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2653 {
2654 /* GCC releases before 3.4 use GCC internal register numbering in
2655 .debug_frame (and .debug_info, et cetera). The numbering is
2656 different from the standard SysV numbering for everything except
2657 for GPRs and FPRs. We can not detect this problem in most cases
2658 - to get accurate debug info for variables living in lr, ctr, v0,
2659 et cetera, use a newer version of GCC. But we must detect
2660 one important case - lr is in column 65 in .debug_frame output,
2661 instead of 108.
2662
2663 GCC 3.4, and the "hammer" branch, have a related problem. They
2664 record lr register saves in .debug_frame as 108, but still record
2665 the return column as 65. We fix that up too.
2666
2667 We can do this because 65 is assigned to fpsr, and GCC never
2668 generates debug info referring to it. To add support for
2669 handwritten debug info that restores fpsr, we would need to add a
2670 producer version check to this. */
2671 if (!eh_frame_p)
2672 {
2673 if (num == 65)
2674 return 108;
2675 else
2676 return num;
2677 }
2678
2679 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2680 internal register numbering; translate that to the standard DWARF2
2681 register numbering. */
2682 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2683 return num;
2684 else if (68 <= num && num <= 75) /* cr0-cr8 */
2685 return num - 68 + 86;
2686 else if (77 <= num && num <= 108) /* vr0-vr31 */
2687 return num - 77 + 1124;
2688 else
2689 switch (num)
2690 {
2691 case 64: /* mq */
2692 return 100;
2693 case 65: /* lr */
2694 return 108;
2695 case 66: /* ctr */
2696 return 109;
2697 case 76: /* xer */
2698 return 101;
2699 case 109: /* vrsave */
2700 return 356;
2701 case 110: /* vscr */
2702 return 67;
2703 case 111: /* spe_acc */
2704 return 99;
2705 case 112: /* spefscr */
2706 return 612;
2707 default:
2708 return num;
2709 }
2710 }
2711 \f
2712
2713 /* Handling the various POWER/PowerPC variants. */
2714
2715 /* Information about a particular processor variant. */
2716
2717 struct variant
2718 {
2719 /* Name of this variant. */
2720 char *name;
2721
2722 /* English description of the variant. */
2723 char *description;
2724
2725 /* bfd_arch_info.arch corresponding to variant. */
2726 enum bfd_architecture arch;
2727
2728 /* bfd_arch_info.mach corresponding to variant. */
2729 unsigned long mach;
2730
2731 /* Target description for this variant. */
2732 struct target_desc **tdesc;
2733 };
2734
2735 static struct variant variants[] =
2736 {
2737 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2738 bfd_mach_ppc, &tdesc_powerpc_altivec32},
2739 {"power", "POWER user-level", bfd_arch_rs6000,
2740 bfd_mach_rs6k, &tdesc_rs6000},
2741 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2742 bfd_mach_ppc_403, &tdesc_powerpc_403},
2743 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2744 bfd_mach_ppc_601, &tdesc_powerpc_601},
2745 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2746 bfd_mach_ppc_602, &tdesc_powerpc_602},
2747 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2748 bfd_mach_ppc_603, &tdesc_powerpc_603},
2749 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2750 604, &tdesc_powerpc_604},
2751 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2752 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
2753 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2754 bfd_mach_ppc_505, &tdesc_powerpc_505},
2755 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2756 bfd_mach_ppc_860, &tdesc_powerpc_860},
2757 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2758 bfd_mach_ppc_750, &tdesc_powerpc_750},
2759 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2760 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
2761 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2762 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
2763
2764 /* 64-bit */
2765 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2766 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
2767 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2768 bfd_mach_ppc_620, &tdesc_powerpc_64},
2769 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2770 bfd_mach_ppc_630, &tdesc_powerpc_64},
2771 {"a35", "PowerPC A35", bfd_arch_powerpc,
2772 bfd_mach_ppc_a35, &tdesc_powerpc_64},
2773 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2774 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
2775 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2776 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
2777
2778 /* FIXME: I haven't checked the register sets of the following. */
2779 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2780 bfd_mach_rs6k_rs1, &tdesc_rs6000},
2781 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2782 bfd_mach_rs6k_rsc, &tdesc_rs6000},
2783 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2784 bfd_mach_rs6k_rs2, &tdesc_rs6000},
2785
2786 {0, 0, 0, 0, 0}
2787 };
2788
2789 /* Return the variant corresponding to architecture ARCH and machine number
2790 MACH. If no such variant exists, return null. */
2791
2792 static const struct variant *
2793 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2794 {
2795 const struct variant *v;
2796
2797 for (v = variants; v->name; v++)
2798 if (arch == v->arch && mach == v->mach)
2799 return v;
2800
2801 return NULL;
2802 }
2803
2804 static int
2805 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2806 {
2807 if (!info->disassembler_options)
2808 info->disassembler_options = "any";
2809
2810 if (info->endian == BFD_ENDIAN_BIG)
2811 return print_insn_big_powerpc (memaddr, info);
2812 else
2813 return print_insn_little_powerpc (memaddr, info);
2814 }
2815 \f
2816 static CORE_ADDR
2817 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2818 {
2819 return frame_unwind_register_unsigned (next_frame,
2820 gdbarch_pc_regnum (gdbarch));
2821 }
2822
2823 static struct frame_id
2824 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2825 {
2826 return frame_id_build (get_frame_register_unsigned
2827 (this_frame, gdbarch_sp_regnum (gdbarch)),
2828 get_frame_pc (this_frame));
2829 }
2830
2831 struct rs6000_frame_cache
2832 {
2833 CORE_ADDR base;
2834 CORE_ADDR initial_sp;
2835 struct trad_frame_saved_reg *saved_regs;
2836 };
2837
2838 static struct rs6000_frame_cache *
2839 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
2840 {
2841 struct rs6000_frame_cache *cache;
2842 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2844 struct rs6000_framedata fdata;
2845 int wordsize = tdep->wordsize;
2846 CORE_ADDR func, pc;
2847
2848 if ((*this_cache) != NULL)
2849 return (*this_cache);
2850 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2851 (*this_cache) = cache;
2852 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2853
2854 func = get_frame_func (this_frame);
2855 pc = get_frame_pc (this_frame);
2856 skip_prologue (gdbarch, func, pc, &fdata);
2857
2858 /* Figure out the parent's stack pointer. */
2859
2860 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2861 address of the current frame. Things might be easier if the
2862 ->frame pointed to the outer-most address of the frame. In
2863 the mean time, the address of the prev frame is used as the
2864 base address of this frame. */
2865 cache->base = get_frame_register_unsigned
2866 (this_frame, gdbarch_sp_regnum (gdbarch));
2867
2868 /* If the function appears to be frameless, check a couple of likely
2869 indicators that we have simply failed to find the frame setup.
2870 Two common cases of this are missing symbols (i.e.
2871 get_frame_func returns the wrong address or 0), and assembly
2872 stubs which have a fast exit path but set up a frame on the slow
2873 path.
2874
2875 If the LR appears to return to this function, then presume that
2876 we have an ABI compliant frame that we failed to find. */
2877 if (fdata.frameless && fdata.lr_offset == 0)
2878 {
2879 CORE_ADDR saved_lr;
2880 int make_frame = 0;
2881
2882 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
2883 if (func == 0 && saved_lr == pc)
2884 make_frame = 1;
2885 else if (func != 0)
2886 {
2887 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2888 if (func == saved_func)
2889 make_frame = 1;
2890 }
2891
2892 if (make_frame)
2893 {
2894 fdata.frameless = 0;
2895 fdata.lr_offset = tdep->lr_frame_offset;
2896 }
2897 }
2898
2899 if (!fdata.frameless)
2900 /* Frameless really means stackless. */
2901 cache->base = read_memory_unsigned_integer (cache->base, wordsize);
2902
2903 trad_frame_set_value (cache->saved_regs,
2904 gdbarch_sp_regnum (gdbarch), cache->base);
2905
2906 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2907 All fpr's from saved_fpr to fp31 are saved. */
2908
2909 if (fdata.saved_fpr >= 0)
2910 {
2911 int i;
2912 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2913
2914 /* If skip_prologue says floating-point registers were saved,
2915 but the current architecture has no floating-point registers,
2916 then that's strange. But we have no indices to even record
2917 the addresses under, so we just ignore it. */
2918 if (ppc_floating_point_unit_p (gdbarch))
2919 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2920 {
2921 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2922 fpr_addr += 8;
2923 }
2924 }
2925
2926 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2927 All gpr's from saved_gpr to gpr31 are saved (except during the
2928 prologue). */
2929
2930 if (fdata.saved_gpr >= 0)
2931 {
2932 int i;
2933 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2934 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2935 {
2936 if (fdata.gpr_mask & (1U << i))
2937 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2938 gpr_addr += wordsize;
2939 }
2940 }
2941
2942 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2943 All vr's from saved_vr to vr31 are saved. */
2944 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2945 {
2946 if (fdata.saved_vr >= 0)
2947 {
2948 int i;
2949 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2950 for (i = fdata.saved_vr; i < 32; i++)
2951 {
2952 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2953 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2954 }
2955 }
2956 }
2957
2958 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2959 All vr's from saved_ev to ev31 are saved. ????? */
2960 if (tdep->ppc_ev0_regnum != -1)
2961 {
2962 if (fdata.saved_ev >= 0)
2963 {
2964 int i;
2965 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2966 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2967 {
2968 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2969 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2970 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2971 }
2972 }
2973 }
2974
2975 /* If != 0, fdata.cr_offset is the offset from the frame that
2976 holds the CR. */
2977 if (fdata.cr_offset != 0)
2978 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2979
2980 /* If != 0, fdata.lr_offset is the offset from the frame that
2981 holds the LR. */
2982 if (fdata.lr_offset != 0)
2983 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2984 else if (fdata.lr_register != -1)
2985 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
2986 /* The PC is found in the link register. */
2987 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
2988 cache->saved_regs[tdep->ppc_lr_regnum];
2989
2990 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2991 holds the VRSAVE. */
2992 if (fdata.vrsave_offset != 0)
2993 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2994
2995 if (fdata.alloca_reg < 0)
2996 /* If no alloca register used, then fi->frame is the value of the
2997 %sp for this frame, and it is good enough. */
2998 cache->initial_sp
2999 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3000 else
3001 cache->initial_sp
3002 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3003
3004 return cache;
3005 }
3006
3007 static void
3008 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3009 struct frame_id *this_id)
3010 {
3011 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3012 this_cache);
3013 /* This marks the outermost frame. */
3014 if (info->base == 0)
3015 return;
3016
3017 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3018 }
3019
3020 static struct value *
3021 rs6000_frame_prev_register (struct frame_info *this_frame,
3022 void **this_cache, int regnum)
3023 {
3024 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3025 this_cache);
3026 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3027 }
3028
3029 static const struct frame_unwind rs6000_frame_unwind =
3030 {
3031 NORMAL_FRAME,
3032 rs6000_frame_this_id,
3033 rs6000_frame_prev_register,
3034 NULL,
3035 default_frame_sniffer
3036 };
3037 \f
3038
3039 static CORE_ADDR
3040 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3041 {
3042 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3043 this_cache);
3044 return info->initial_sp;
3045 }
3046
3047 static const struct frame_base rs6000_frame_base = {
3048 &rs6000_frame_unwind,
3049 rs6000_frame_base_address,
3050 rs6000_frame_base_address,
3051 rs6000_frame_base_address
3052 };
3053
3054 static const struct frame_base *
3055 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3056 {
3057 return &rs6000_frame_base;
3058 }
3059
3060 /* DWARF-2 frame support. Used to handle the detection of
3061 clobbered registers during function calls. */
3062
3063 static void
3064 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3065 struct dwarf2_frame_state_reg *reg,
3066 struct frame_info *this_frame)
3067 {
3068 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3069
3070 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3071 non-volatile registers. We will use the same code for both. */
3072
3073 /* Call-saved GP registers. */
3074 if ((regnum >= tdep->ppc_gp0_regnum + 14
3075 && regnum <= tdep->ppc_gp0_regnum + 31)
3076 || (regnum == tdep->ppc_gp0_regnum + 1))
3077 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3078
3079 /* Call-clobbered GP registers. */
3080 if ((regnum >= tdep->ppc_gp0_regnum + 3
3081 && regnum <= tdep->ppc_gp0_regnum + 12)
3082 || (regnum == tdep->ppc_gp0_regnum))
3083 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3084
3085 /* Deal with FP registers, if supported. */
3086 if (tdep->ppc_fp0_regnum >= 0)
3087 {
3088 /* Call-saved FP registers. */
3089 if ((regnum >= tdep->ppc_fp0_regnum + 14
3090 && regnum <= tdep->ppc_fp0_regnum + 31))
3091 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3092
3093 /* Call-clobbered FP registers. */
3094 if ((regnum >= tdep->ppc_fp0_regnum
3095 && regnum <= tdep->ppc_fp0_regnum + 13))
3096 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3097 }
3098
3099 /* Deal with ALTIVEC registers, if supported. */
3100 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3101 {
3102 /* Call-saved Altivec registers. */
3103 if ((regnum >= tdep->ppc_vr0_regnum + 20
3104 && regnum <= tdep->ppc_vr0_regnum + 31)
3105 || regnum == tdep->ppc_vrsave_regnum)
3106 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3107
3108 /* Call-clobbered Altivec registers. */
3109 if ((regnum >= tdep->ppc_vr0_regnum
3110 && regnum <= tdep->ppc_vr0_regnum + 19))
3111 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3112 }
3113
3114 /* Handle PC register and Stack Pointer correctly. */
3115 if (regnum == gdbarch_pc_regnum (gdbarch))
3116 reg->how = DWARF2_FRAME_REG_RA;
3117 else if (regnum == gdbarch_sp_regnum (gdbarch))
3118 reg->how = DWARF2_FRAME_REG_CFA;
3119 }
3120
3121
3122 /* Initialize the current architecture based on INFO. If possible, re-use an
3123 architecture from ARCHES, which is a list of architectures already created
3124 during this debugging session.
3125
3126 Called e.g. at program startup, when reading a core file, and when reading
3127 a binary file. */
3128
3129 static struct gdbarch *
3130 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3131 {
3132 struct gdbarch *gdbarch;
3133 struct gdbarch_tdep *tdep;
3134 int wordsize, from_xcoff_exec, from_elf_exec;
3135 enum bfd_architecture arch;
3136 unsigned long mach;
3137 bfd abfd;
3138 asection *sect;
3139 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3140 int soft_float;
3141 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3142 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3143 have_vsx = 0;
3144 int tdesc_wordsize = -1;
3145 const struct target_desc *tdesc = info.target_desc;
3146 struct tdesc_arch_data *tdesc_data = NULL;
3147 int num_pseudoregs = 0;
3148 int cur_reg;
3149
3150 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3151 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3152
3153 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3154 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3155
3156 /* Check word size. If INFO is from a binary file, infer it from
3157 that, else choose a likely default. */
3158 if (from_xcoff_exec)
3159 {
3160 if (bfd_xcoff_is_xcoff64 (info.abfd))
3161 wordsize = 8;
3162 else
3163 wordsize = 4;
3164 }
3165 else if (from_elf_exec)
3166 {
3167 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3168 wordsize = 8;
3169 else
3170 wordsize = 4;
3171 }
3172 else if (tdesc_has_registers (tdesc))
3173 wordsize = -1;
3174 else
3175 {
3176 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3177 wordsize = info.bfd_arch_info->bits_per_word /
3178 info.bfd_arch_info->bits_per_byte;
3179 else
3180 wordsize = 4;
3181 }
3182
3183 /* Get the architecture and machine from the BFD. */
3184 arch = info.bfd_arch_info->arch;
3185 mach = info.bfd_arch_info->mach;
3186
3187 /* For e500 executables, the apuinfo section is of help here. Such
3188 section contains the identifier and revision number of each
3189 Application-specific Processing Unit that is present on the
3190 chip. The content of the section is determined by the assembler
3191 which looks at each instruction and determines which unit (and
3192 which version of it) can execute it. In our case we just look for
3193 the existance of the section. */
3194
3195 if (info.abfd)
3196 {
3197 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3198 if (sect)
3199 {
3200 arch = info.bfd_arch_info->arch;
3201 mach = bfd_mach_ppc_e500;
3202 bfd_default_set_arch_mach (&abfd, arch, mach);
3203 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3204 }
3205 }
3206
3207 /* Find a default target description which describes our register
3208 layout, if we do not already have one. */
3209 if (! tdesc_has_registers (tdesc))
3210 {
3211 const struct variant *v;
3212
3213 /* Choose variant. */
3214 v = find_variant_by_arch (arch, mach);
3215 if (!v)
3216 return NULL;
3217
3218 tdesc = *v->tdesc;
3219 }
3220
3221 gdb_assert (tdesc_has_registers (tdesc));
3222
3223 /* Check any target description for validity. */
3224 if (tdesc_has_registers (tdesc))
3225 {
3226 static const char *const gprs[] = {
3227 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3228 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3229 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3230 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3231 };
3232 static const char *const segment_regs[] = {
3233 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3234 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3235 };
3236 const struct tdesc_feature *feature;
3237 int i, valid_p;
3238 static const char *const msr_names[] = { "msr", "ps" };
3239 static const char *const cr_names[] = { "cr", "cnd" };
3240 static const char *const ctr_names[] = { "ctr", "cnt" };
3241
3242 feature = tdesc_find_feature (tdesc,
3243 "org.gnu.gdb.power.core");
3244 if (feature == NULL)
3245 return NULL;
3246
3247 tdesc_data = tdesc_data_alloc ();
3248
3249 valid_p = 1;
3250 for (i = 0; i < ppc_num_gprs; i++)
3251 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3252 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3253 "pc");
3254 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3255 "lr");
3256 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3257 "xer");
3258
3259 /* Allow alternate names for these registers, to accomodate GDB's
3260 historic naming. */
3261 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3262 PPC_MSR_REGNUM, msr_names);
3263 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3264 PPC_CR_REGNUM, cr_names);
3265 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3266 PPC_CTR_REGNUM, ctr_names);
3267
3268 if (!valid_p)
3269 {
3270 tdesc_data_cleanup (tdesc_data);
3271 return NULL;
3272 }
3273
3274 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3275 "mq");
3276
3277 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3278 if (wordsize == -1)
3279 wordsize = tdesc_wordsize;
3280
3281 feature = tdesc_find_feature (tdesc,
3282 "org.gnu.gdb.power.fpu");
3283 if (feature != NULL)
3284 {
3285 static const char *const fprs[] = {
3286 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3287 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3288 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3289 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3290 };
3291 valid_p = 1;
3292 for (i = 0; i < ppc_num_fprs; i++)
3293 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3294 PPC_F0_REGNUM + i, fprs[i]);
3295 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3296 PPC_FPSCR_REGNUM, "fpscr");
3297
3298 if (!valid_p)
3299 {
3300 tdesc_data_cleanup (tdesc_data);
3301 return NULL;
3302 }
3303 have_fpu = 1;
3304 }
3305 else
3306 have_fpu = 0;
3307
3308 /* The DFP pseudo-registers will be available when there are floating
3309 point registers. */
3310 have_dfp = have_fpu;
3311
3312 feature = tdesc_find_feature (tdesc,
3313 "org.gnu.gdb.power.altivec");
3314 if (feature != NULL)
3315 {
3316 static const char *const vector_regs[] = {
3317 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3318 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3319 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3320 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3321 };
3322
3323 valid_p = 1;
3324 for (i = 0; i < ppc_num_gprs; i++)
3325 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3326 PPC_VR0_REGNUM + i,
3327 vector_regs[i]);
3328 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3329 PPC_VSCR_REGNUM, "vscr");
3330 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3331 PPC_VRSAVE_REGNUM, "vrsave");
3332
3333 if (have_spe || !valid_p)
3334 {
3335 tdesc_data_cleanup (tdesc_data);
3336 return NULL;
3337 }
3338 have_altivec = 1;
3339 }
3340 else
3341 have_altivec = 0;
3342
3343 /* Check for POWER7 VSX registers support. */
3344 feature = tdesc_find_feature (tdesc,
3345 "org.gnu.gdb.power.vsx");
3346
3347 if (feature != NULL)
3348 {
3349 static const char *const vsx_regs[] = {
3350 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3351 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3352 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3353 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3354 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3355 "vs30h", "vs31h"
3356 };
3357
3358 valid_p = 1;
3359
3360 for (i = 0; i < ppc_num_vshrs; i++)
3361 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3362 PPC_VSR0_UPPER_REGNUM + i,
3363 vsx_regs[i]);
3364 if (!valid_p)
3365 {
3366 tdesc_data_cleanup (tdesc_data);
3367 return NULL;
3368 }
3369
3370 have_vsx = 1;
3371 }
3372 else
3373 have_vsx = 0;
3374
3375 /* On machines supporting the SPE APU, the general-purpose registers
3376 are 64 bits long. There are SIMD vector instructions to treat them
3377 as pairs of floats, but the rest of the instruction set treats them
3378 as 32-bit registers, and only operates on their lower halves.
3379
3380 In the GDB regcache, we treat their high and low halves as separate
3381 registers. The low halves we present as the general-purpose
3382 registers, and then we have pseudo-registers that stitch together
3383 the upper and lower halves and present them as pseudo-registers.
3384
3385 Thus, the target description is expected to supply the upper
3386 halves separately. */
3387
3388 feature = tdesc_find_feature (tdesc,
3389 "org.gnu.gdb.power.spe");
3390 if (feature != NULL)
3391 {
3392 static const char *const upper_spe[] = {
3393 "ev0h", "ev1h", "ev2h", "ev3h",
3394 "ev4h", "ev5h", "ev6h", "ev7h",
3395 "ev8h", "ev9h", "ev10h", "ev11h",
3396 "ev12h", "ev13h", "ev14h", "ev15h",
3397 "ev16h", "ev17h", "ev18h", "ev19h",
3398 "ev20h", "ev21h", "ev22h", "ev23h",
3399 "ev24h", "ev25h", "ev26h", "ev27h",
3400 "ev28h", "ev29h", "ev30h", "ev31h"
3401 };
3402
3403 valid_p = 1;
3404 for (i = 0; i < ppc_num_gprs; i++)
3405 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3406 PPC_SPE_UPPER_GP0_REGNUM + i,
3407 upper_spe[i]);
3408 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3409 PPC_SPE_ACC_REGNUM, "acc");
3410 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3411 PPC_SPE_FSCR_REGNUM, "spefscr");
3412
3413 if (have_mq || have_fpu || !valid_p)
3414 {
3415 tdesc_data_cleanup (tdesc_data);
3416 return NULL;
3417 }
3418 have_spe = 1;
3419 }
3420 else
3421 have_spe = 0;
3422 }
3423
3424 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3425 complain for a 32-bit binary on a 64-bit target; we do not yet
3426 support that. For instance, the 32-bit ABI routines expect
3427 32-bit GPRs.
3428
3429 As long as there isn't an explicit target description, we'll
3430 choose one based on the BFD architecture and get a word size
3431 matching the binary (probably powerpc:common or
3432 powerpc:common64). So there is only trouble if a 64-bit target
3433 supplies a 64-bit description while debugging a 32-bit
3434 binary. */
3435 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3436 {
3437 tdesc_data_cleanup (tdesc_data);
3438 return NULL;
3439 }
3440
3441 #ifdef HAVE_ELF
3442 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3443 {
3444 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3445 Tag_GNU_Power_ABI_FP))
3446 {
3447 case 1:
3448 soft_float_flag = AUTO_BOOLEAN_FALSE;
3449 break;
3450 case 2:
3451 soft_float_flag = AUTO_BOOLEAN_TRUE;
3452 break;
3453 default:
3454 break;
3455 }
3456 }
3457
3458 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3459 {
3460 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3461 Tag_GNU_Power_ABI_Vector))
3462 {
3463 case 1:
3464 vector_abi = POWERPC_VEC_GENERIC;
3465 break;
3466 case 2:
3467 vector_abi = POWERPC_VEC_ALTIVEC;
3468 break;
3469 case 3:
3470 vector_abi = POWERPC_VEC_SPE;
3471 break;
3472 default:
3473 break;
3474 }
3475 }
3476 #endif
3477
3478 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3479 soft_float = 1;
3480 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3481 soft_float = 0;
3482 else
3483 soft_float = !have_fpu;
3484
3485 /* If we have a hard float binary or setting but no floating point
3486 registers, downgrade to soft float anyway. We're still somewhat
3487 useful in this scenario. */
3488 if (!soft_float && !have_fpu)
3489 soft_float = 1;
3490
3491 /* Similarly for vector registers. */
3492 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3493 vector_abi = POWERPC_VEC_GENERIC;
3494
3495 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3496 vector_abi = POWERPC_VEC_GENERIC;
3497
3498 if (vector_abi == POWERPC_VEC_AUTO)
3499 {
3500 if (have_altivec)
3501 vector_abi = POWERPC_VEC_ALTIVEC;
3502 else if (have_spe)
3503 vector_abi = POWERPC_VEC_SPE;
3504 else
3505 vector_abi = POWERPC_VEC_GENERIC;
3506 }
3507
3508 /* Do not limit the vector ABI based on available hardware, since we
3509 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3510
3511 /* Find a candidate among extant architectures. */
3512 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3513 arches != NULL;
3514 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3515 {
3516 /* Word size in the various PowerPC bfd_arch_info structs isn't
3517 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3518 separate word size check. */
3519 tdep = gdbarch_tdep (arches->gdbarch);
3520 if (tdep && tdep->soft_float != soft_float)
3521 continue;
3522 if (tdep && tdep->vector_abi != vector_abi)
3523 continue;
3524 if (tdep && tdep->wordsize == wordsize)
3525 {
3526 if (tdesc_data != NULL)
3527 tdesc_data_cleanup (tdesc_data);
3528 return arches->gdbarch;
3529 }
3530 }
3531
3532 /* None found, create a new architecture from INFO, whose bfd_arch_info
3533 validity depends on the source:
3534 - executable useless
3535 - rs6000_host_arch() good
3536 - core file good
3537 - "set arch" trust blindly
3538 - GDB startup useless but harmless */
3539
3540 tdep = XCALLOC (1, struct gdbarch_tdep);
3541 tdep->wordsize = wordsize;
3542 tdep->soft_float = soft_float;
3543 tdep->vector_abi = vector_abi;
3544
3545 gdbarch = gdbarch_alloc (&info, tdep);
3546
3547 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3548 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3549 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3550 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3551 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3552 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3553 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3554 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3555
3556 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3557 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3558 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
3559 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3560 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3561 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3562 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3563 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3564
3565 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3566 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3567 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3568 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
3569 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3570
3571 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3572 GDB traditionally called it "ps", though, so let GDB add an
3573 alias. */
3574 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3575
3576 if (wordsize == 8)
3577 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3578 else
3579 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3580
3581 /* Set lr_frame_offset. */
3582 if (wordsize == 8)
3583 tdep->lr_frame_offset = 16;
3584 else
3585 tdep->lr_frame_offset = 4;
3586
3587 if (have_spe || have_dfp || have_vsx)
3588 {
3589 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
3590 set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
3591 }
3592
3593 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3594
3595 /* Select instruction printer. */
3596 if (arch == bfd_arch_rs6000)
3597 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3598 else
3599 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3600
3601 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
3602
3603 if (have_spe)
3604 num_pseudoregs += 32;
3605 if (have_dfp)
3606 num_pseudoregs += 16;
3607 if (have_vsx)
3608 /* Include both VSX and Extended FP registers. */
3609 num_pseudoregs += 96;
3610
3611 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
3612
3613 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3614 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3615 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3616 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3617 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3618 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3619 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3620 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3621 set_gdbarch_char_signed (gdbarch, 0);
3622
3623 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3624 if (wordsize == 8)
3625 /* PPC64 SYSV. */
3626 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3627
3628 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3629 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3630 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3631
3632 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3633 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3634
3635 if (wordsize == 4)
3636 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3637 else if (wordsize == 8)
3638 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3639
3640 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3641 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3642 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
3643
3644 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3645 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3646
3647 /* The value of symbols of type N_SO and N_FUN maybe null when
3648 it shouldn't be. */
3649 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
3650
3651 /* Handles single stepping of atomic sequences. */
3652 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
3653
3654 /* Not sure on this. FIXMEmgo */
3655 set_gdbarch_frame_args_skip (gdbarch, 8);
3656
3657 /* Helpers for function argument information. */
3658 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3659
3660 /* Trampoline. */
3661 set_gdbarch_in_solib_return_trampoline
3662 (gdbarch, rs6000_in_solib_return_trampoline);
3663 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3664
3665 /* Hook in the DWARF CFI frame unwinder. */
3666 dwarf2_append_unwinders (gdbarch);
3667 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3668
3669 /* Frame handling. */
3670 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
3671
3672 /* Hook in ABI-specific overrides, if they have been registered. */
3673 info.target_desc = tdesc;
3674 info.tdep_info = (void *) tdesc_data;
3675 gdbarch_init_osabi (info, gdbarch);
3676
3677 switch (info.osabi)
3678 {
3679 case GDB_OSABI_LINUX:
3680 case GDB_OSABI_NETBSD_AOUT:
3681 case GDB_OSABI_NETBSD_ELF:
3682 case GDB_OSABI_UNKNOWN:
3683 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3684 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
3685 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
3686 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3687 break;
3688 default:
3689 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3690
3691 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3692 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
3693 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
3694 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3695 }
3696
3697 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
3698 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3699 rs6000_pseudo_register_reggroup_p);
3700 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3701
3702 /* Override the normal target description method to make the SPE upper
3703 halves anonymous. */
3704 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3705
3706 /* Choose register numbers for all supported pseudo-registers. */
3707 tdep->ppc_ev0_regnum = -1;
3708 tdep->ppc_dl0_regnum = -1;
3709 tdep->ppc_vsr0_regnum = -1;
3710 tdep->ppc_efpr0_regnum = -1;
3711
3712 cur_reg = gdbarch_num_regs (gdbarch);
3713
3714 if (have_spe)
3715 {
3716 tdep->ppc_ev0_regnum = cur_reg;
3717 cur_reg += 32;
3718 }
3719 if (have_dfp)
3720 {
3721 tdep->ppc_dl0_regnum = cur_reg;
3722 cur_reg += 16;
3723 }
3724 if (have_vsx)
3725 {
3726 tdep->ppc_vsr0_regnum = cur_reg;
3727 cur_reg += 64;
3728 tdep->ppc_efpr0_regnum = cur_reg;
3729 cur_reg += 32;
3730 }
3731
3732 gdb_assert (gdbarch_num_regs (gdbarch)
3733 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
3734
3735 /* Setup displaced stepping. */
3736 set_gdbarch_displaced_step_copy_insn (gdbarch,
3737 simple_displaced_step_copy_insn);
3738 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
3739 set_gdbarch_displaced_step_free_closure (gdbarch,
3740 simple_displaced_step_free_closure);
3741 set_gdbarch_displaced_step_location (gdbarch,
3742 displaced_step_at_entry_point);
3743
3744 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
3745
3746 return gdbarch;
3747 }
3748
3749 static void
3750 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3751 {
3752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3753
3754 if (tdep == NULL)
3755 return;
3756
3757 /* FIXME: Dump gdbarch_tdep. */
3758 }
3759
3760 /* PowerPC-specific commands. */
3761
3762 static void
3763 set_powerpc_command (char *args, int from_tty)
3764 {
3765 printf_unfiltered (_("\
3766 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
3767 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
3768 }
3769
3770 static void
3771 show_powerpc_command (char *args, int from_tty)
3772 {
3773 cmd_show_list (showpowerpccmdlist, from_tty, "");
3774 }
3775
3776 static void
3777 powerpc_set_soft_float (char *args, int from_tty,
3778 struct cmd_list_element *c)
3779 {
3780 struct gdbarch_info info;
3781
3782 /* Update the architecture. */
3783 gdbarch_info_init (&info);
3784 if (!gdbarch_update_p (info))
3785 internal_error (__FILE__, __LINE__, "could not update architecture");
3786 }
3787
3788 static void
3789 powerpc_set_vector_abi (char *args, int from_tty,
3790 struct cmd_list_element *c)
3791 {
3792 struct gdbarch_info info;
3793 enum powerpc_vector_abi vector_abi;
3794
3795 for (vector_abi = POWERPC_VEC_AUTO;
3796 vector_abi != POWERPC_VEC_LAST;
3797 vector_abi++)
3798 if (strcmp (powerpc_vector_abi_string,
3799 powerpc_vector_strings[vector_abi]) == 0)
3800 {
3801 powerpc_vector_abi_global = vector_abi;
3802 break;
3803 }
3804
3805 if (vector_abi == POWERPC_VEC_LAST)
3806 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
3807 powerpc_vector_abi_string);
3808
3809 /* Update the architecture. */
3810 gdbarch_info_init (&info);
3811 if (!gdbarch_update_p (info))
3812 internal_error (__FILE__, __LINE__, "could not update architecture");
3813 }
3814
3815 /* Initialization code. */
3816
3817 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3818
3819 void
3820 _initialize_rs6000_tdep (void)
3821 {
3822 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3823 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3824
3825 /* Initialize the standard target descriptions. */
3826 initialize_tdesc_powerpc_32 ();
3827 initialize_tdesc_powerpc_altivec32 ();
3828 initialize_tdesc_powerpc_vsx32 ();
3829 initialize_tdesc_powerpc_403 ();
3830 initialize_tdesc_powerpc_403gc ();
3831 initialize_tdesc_powerpc_505 ();
3832 initialize_tdesc_powerpc_601 ();
3833 initialize_tdesc_powerpc_602 ();
3834 initialize_tdesc_powerpc_603 ();
3835 initialize_tdesc_powerpc_604 ();
3836 initialize_tdesc_powerpc_64 ();
3837 initialize_tdesc_powerpc_altivec64 ();
3838 initialize_tdesc_powerpc_vsx64 ();
3839 initialize_tdesc_powerpc_7400 ();
3840 initialize_tdesc_powerpc_750 ();
3841 initialize_tdesc_powerpc_860 ();
3842 initialize_tdesc_powerpc_e500 ();
3843 initialize_tdesc_rs6000 ();
3844
3845 /* Add root prefix command for all "set powerpc"/"show powerpc"
3846 commands. */
3847 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
3848 _("Various PowerPC-specific commands."),
3849 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
3850
3851 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
3852 _("Various PowerPC-specific commands."),
3853 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
3854
3855 /* Add a command to allow the user to force the ABI. */
3856 add_setshow_auto_boolean_cmd ("soft-float", class_support,
3857 &powerpc_soft_float_global,
3858 _("Set whether to use a soft-float ABI."),
3859 _("Show whether to use a soft-float ABI."),
3860 NULL,
3861 powerpc_set_soft_float, NULL,
3862 &setpowerpccmdlist, &showpowerpccmdlist);
3863
3864 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
3865 &powerpc_vector_abi_string,
3866 _("Set the vector ABI."),
3867 _("Show the vector ABI."),
3868 NULL, powerpc_set_vector_abi, NULL,
3869 &setpowerpccmdlist, &showpowerpccmdlist);
3870 }
This page took 0.118946 seconds and 5 git commands to generate.