gdb/rs6000: Read backchain as unsigned.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "libbfd.h" /* for bfd_default_set_arch_mach */
47 #include "coff/internal.h" /* for libcoff.h */
48 #include "libcoff.h" /* for xcoff_data */
49 #include "coff/xcoff.h"
50 #include "libxcoff.h"
51
52 #include "elf-bfd.h"
53 #include "elf/ppc.h"
54 #include "elf/ppc64.h"
55
56 #include "solib-svr4.h"
57 #include "ppc-tdep.h"
58 #include "ppc-ravenscar-thread.h"
59
60 #include "dis-asm.h"
61
62 #include "trad-frame.h"
63 #include "frame-unwind.h"
64 #include "frame-base.h"
65
66 #include "ax.h"
67 #include "ax-gdb.h"
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a POWER7 VSX register. */
100 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
103
104 /* Determine if regnum is a POWER7 Extended FP register. */
105 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
108
109 /* The list of available "set powerpc ..." and "show powerpc ..."
110 commands. */
111 static struct cmd_list_element *setpowerpccmdlist = NULL;
112 static struct cmd_list_element *showpowerpccmdlist = NULL;
113
114 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
115
116 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
117 static const char *const powerpc_vector_strings[] =
118 {
119 "auto",
120 "generic",
121 "altivec",
122 "spe",
123 NULL
124 };
125
126 /* A variable that can be configured by the user. */
127 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
128 static const char *powerpc_vector_abi_string = "auto";
129
130 /* To be used by skip_prologue. */
131
132 struct rs6000_framedata
133 {
134 int offset; /* total size of frame --- the distance
135 by which we decrement sp to allocate
136 the frame */
137 int saved_gpr; /* smallest # of saved gpr */
138 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
139 int saved_fpr; /* smallest # of saved fpr */
140 int saved_vr; /* smallest # of saved vr */
141 int saved_ev; /* smallest # of saved ev */
142 int alloca_reg; /* alloca register number (frame ptr) */
143 char frameless; /* true if frameless functions. */
144 char nosavedpc; /* true if pc not saved. */
145 char used_bl; /* true if link register clobbered */
146 int gpr_offset; /* offset of saved gprs from prev sp */
147 int fpr_offset; /* offset of saved fprs from prev sp */
148 int vr_offset; /* offset of saved vrs from prev sp */
149 int ev_offset; /* offset of saved evs from prev sp */
150 int lr_offset; /* offset of saved lr */
151 int lr_register; /* register of saved lr, if trustworthy */
152 int cr_offset; /* offset of saved cr */
153 int vrsave_offset; /* offset of saved vrsave register */
154 };
155
156
157 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
158 int
159 vsx_register_p (struct gdbarch *gdbarch, int regno)
160 {
161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
162 if (tdep->ppc_vsr0_regnum < 0)
163 return 0;
164 else
165 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
166 <= tdep->ppc_vsr0_upper_regnum + 31);
167 }
168
169 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
170 int
171 altivec_register_p (struct gdbarch *gdbarch, int regno)
172 {
173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
174 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
175 return 0;
176 else
177 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
178 }
179
180
181 /* Return true if REGNO is an SPE register, false otherwise. */
182 int
183 spe_register_p (struct gdbarch *gdbarch, int regno)
184 {
185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
186
187 /* Is it a reference to EV0 -- EV31, and do we have those? */
188 if (IS_SPE_PSEUDOREG (tdep, regno))
189 return 1;
190
191 /* Is it a reference to one of the raw upper GPR halves? */
192 if (tdep->ppc_ev0_upper_regnum >= 0
193 && tdep->ppc_ev0_upper_regnum <= regno
194 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
195 return 1;
196
197 /* Is it a reference to the 64-bit accumulator, and do we have that? */
198 if (tdep->ppc_acc_regnum >= 0
199 && tdep->ppc_acc_regnum == regno)
200 return 1;
201
202 /* Is it a reference to the SPE floating-point status and control register,
203 and do we have that? */
204 if (tdep->ppc_spefscr_regnum >= 0
205 && tdep->ppc_spefscr_regnum == regno)
206 return 1;
207
208 return 0;
209 }
210
211
212 /* Return non-zero if the architecture described by GDBARCH has
213 floating-point registers (f0 --- f31 and fpscr). */
214 int
215 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
216 {
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218
219 return (tdep->ppc_fp0_regnum >= 0
220 && tdep->ppc_fpscr_regnum >= 0);
221 }
222
223 /* Return non-zero if the architecture described by GDBARCH has
224 VSX registers (vsr0 --- vsr63). */
225 static int
226 ppc_vsx_support_p (struct gdbarch *gdbarch)
227 {
228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
229
230 return tdep->ppc_vsr0_regnum >= 0;
231 }
232
233 /* Return non-zero if the architecture described by GDBARCH has
234 Altivec registers (vr0 --- vr31, vrsave and vscr). */
235 int
236 ppc_altivec_support_p (struct gdbarch *gdbarch)
237 {
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239
240 return (tdep->ppc_vr0_regnum >= 0
241 && tdep->ppc_vrsave_regnum >= 0);
242 }
243
244 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
245 set it to SIM_REGNO.
246
247 This is a helper function for init_sim_regno_table, constructing
248 the table mapping GDB register numbers to sim register numbers; we
249 initialize every element in that table to -1 before we start
250 filling it in. */
251 static void
252 set_sim_regno (int *table, int gdb_regno, int sim_regno)
253 {
254 /* Make sure we don't try to assign any given GDB register a sim
255 register number more than once. */
256 gdb_assert (table[gdb_regno] == -1);
257 table[gdb_regno] = sim_regno;
258 }
259
260
261 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
262 numbers to simulator register numbers, based on the values placed
263 in the ARCH->tdep->ppc_foo_regnum members. */
264 static void
265 init_sim_regno_table (struct gdbarch *arch)
266 {
267 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
268 int total_regs = gdbarch_num_regs (arch);
269 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
270 int i;
271 static const char *const segment_regs[] = {
272 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
273 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
274 };
275
276 /* Presume that all registers not explicitly mentioned below are
277 unavailable from the sim. */
278 for (i = 0; i < total_regs; i++)
279 sim_regno[i] = -1;
280
281 /* General-purpose registers. */
282 for (i = 0; i < ppc_num_gprs; i++)
283 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
284
285 /* Floating-point registers. */
286 if (tdep->ppc_fp0_regnum >= 0)
287 for (i = 0; i < ppc_num_fprs; i++)
288 set_sim_regno (sim_regno,
289 tdep->ppc_fp0_regnum + i,
290 sim_ppc_f0_regnum + i);
291 if (tdep->ppc_fpscr_regnum >= 0)
292 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
293
294 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
295 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
296 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
297
298 /* Segment registers. */
299 for (i = 0; i < ppc_num_srs; i++)
300 {
301 int gdb_regno;
302
303 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
304 if (gdb_regno >= 0)
305 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
306 }
307
308 /* Altivec registers. */
309 if (tdep->ppc_vr0_regnum >= 0)
310 {
311 for (i = 0; i < ppc_num_vrs; i++)
312 set_sim_regno (sim_regno,
313 tdep->ppc_vr0_regnum + i,
314 sim_ppc_vr0_regnum + i);
315
316 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
317 we can treat this more like the other cases. */
318 set_sim_regno (sim_regno,
319 tdep->ppc_vr0_regnum + ppc_num_vrs,
320 sim_ppc_vscr_regnum);
321 }
322 /* vsave is a special-purpose register, so the code below handles it. */
323
324 /* SPE APU (E500) registers. */
325 if (tdep->ppc_ev0_upper_regnum >= 0)
326 for (i = 0; i < ppc_num_gprs; i++)
327 set_sim_regno (sim_regno,
328 tdep->ppc_ev0_upper_regnum + i,
329 sim_ppc_rh0_regnum + i);
330 if (tdep->ppc_acc_regnum >= 0)
331 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
332 /* spefscr is a special-purpose register, so the code below handles it. */
333
334 #ifdef WITH_PPC_SIM
335 /* Now handle all special-purpose registers. Verify that they
336 haven't mistakenly been assigned numbers by any of the above
337 code. */
338 for (i = 0; i < sim_ppc_num_sprs; i++)
339 {
340 const char *spr_name = sim_spr_register_name (i);
341 int gdb_regno = -1;
342
343 if (spr_name != NULL)
344 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
345
346 if (gdb_regno != -1)
347 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
348 }
349 #endif
350
351 /* Drop the initialized array into place. */
352 tdep->sim_regno = sim_regno;
353 }
354
355
356 /* Given a GDB register number REG, return the corresponding SIM
357 register number. */
358 static int
359 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
360 {
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362 int sim_regno;
363
364 if (tdep->sim_regno == NULL)
365 init_sim_regno_table (gdbarch);
366
367 gdb_assert (0 <= reg
368 && reg <= gdbarch_num_regs (gdbarch)
369 + gdbarch_num_pseudo_regs (gdbarch));
370 sim_regno = tdep->sim_regno[reg];
371
372 if (sim_regno >= 0)
373 return sim_regno;
374 else
375 return LEGACY_SIM_REGNO_IGNORE;
376 }
377
378 \f
379
380 /* Register set support functions. */
381
382 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
383 Write the register to REGCACHE. */
384
385 void
386 ppc_supply_reg (struct regcache *regcache, int regnum,
387 const gdb_byte *regs, size_t offset, int regsize)
388 {
389 if (regnum != -1 && offset != -1)
390 {
391 if (regsize > 4)
392 {
393 struct gdbarch *gdbarch = get_regcache_arch (regcache);
394 int gdb_regsize = register_size (gdbarch, regnum);
395 if (gdb_regsize < regsize
396 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
397 offset += regsize - gdb_regsize;
398 }
399 regcache_raw_supply (regcache, regnum, regs + offset);
400 }
401 }
402
403 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
404 in a field REGSIZE wide. Zero pad as necessary. */
405
406 void
407 ppc_collect_reg (const struct regcache *regcache, int regnum,
408 gdb_byte *regs, size_t offset, int regsize)
409 {
410 if (regnum != -1 && offset != -1)
411 {
412 if (regsize > 4)
413 {
414 struct gdbarch *gdbarch = get_regcache_arch (regcache);
415 int gdb_regsize = register_size (gdbarch, regnum);
416 if (gdb_regsize < regsize)
417 {
418 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
419 {
420 memset (regs + offset, 0, regsize - gdb_regsize);
421 offset += regsize - gdb_regsize;
422 }
423 else
424 memset (regs + offset + regsize - gdb_regsize, 0,
425 regsize - gdb_regsize);
426 }
427 }
428 regcache_raw_collect (regcache, regnum, regs + offset);
429 }
430 }
431
432 static int
433 ppc_greg_offset (struct gdbarch *gdbarch,
434 struct gdbarch_tdep *tdep,
435 const struct ppc_reg_offsets *offsets,
436 int regnum,
437 int *regsize)
438 {
439 *regsize = offsets->gpr_size;
440 if (regnum >= tdep->ppc_gp0_regnum
441 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
442 return (offsets->r0_offset
443 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
444
445 if (regnum == gdbarch_pc_regnum (gdbarch))
446 return offsets->pc_offset;
447
448 if (regnum == tdep->ppc_ps_regnum)
449 return offsets->ps_offset;
450
451 if (regnum == tdep->ppc_lr_regnum)
452 return offsets->lr_offset;
453
454 if (regnum == tdep->ppc_ctr_regnum)
455 return offsets->ctr_offset;
456
457 *regsize = offsets->xr_size;
458 if (regnum == tdep->ppc_cr_regnum)
459 return offsets->cr_offset;
460
461 if (regnum == tdep->ppc_xer_regnum)
462 return offsets->xer_offset;
463
464 if (regnum == tdep->ppc_mq_regnum)
465 return offsets->mq_offset;
466
467 return -1;
468 }
469
470 static int
471 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
472 const struct ppc_reg_offsets *offsets,
473 int regnum)
474 {
475 if (regnum >= tdep->ppc_fp0_regnum
476 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
477 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
478
479 if (regnum == tdep->ppc_fpscr_regnum)
480 return offsets->fpscr_offset;
481
482 return -1;
483 }
484
485 static int
486 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
487 const struct ppc_reg_offsets *offsets,
488 int regnum)
489 {
490 if (regnum >= tdep->ppc_vr0_regnum
491 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
492 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
493
494 if (regnum == tdep->ppc_vrsave_regnum - 1)
495 return offsets->vscr_offset;
496
497 if (regnum == tdep->ppc_vrsave_regnum)
498 return offsets->vrsave_offset;
499
500 return -1;
501 }
502
503 /* Supply register REGNUM in the general-purpose register set REGSET
504 from the buffer specified by GREGS and LEN to register cache
505 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
506
507 void
508 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
509 int regnum, const void *gregs, size_t len)
510 {
511 struct gdbarch *gdbarch = get_regcache_arch (regcache);
512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
513 const struct ppc_reg_offsets *offsets
514 = (const struct ppc_reg_offsets *) regset->regmap;
515 size_t offset;
516 int regsize;
517
518 if (regnum == -1)
519 {
520 int i;
521 int gpr_size = offsets->gpr_size;
522
523 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
524 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
525 i++, offset += gpr_size)
526 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
527 gpr_size);
528
529 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
530 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
531 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
532 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
533 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
534 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
535 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
536 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
537 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
538 (const gdb_byte *) gregs, offsets->cr_offset,
539 offsets->xr_size);
540 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
541 (const gdb_byte *) gregs, offsets->xer_offset,
542 offsets->xr_size);
543 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
544 (const gdb_byte *) gregs, offsets->mq_offset,
545 offsets->xr_size);
546 return;
547 }
548
549 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
550 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
551 }
552
553 /* Supply register REGNUM in the floating-point register set REGSET
554 from the buffer specified by FPREGS and LEN to register cache
555 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
556
557 void
558 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
559 int regnum, const void *fpregs, size_t len)
560 {
561 struct gdbarch *gdbarch = get_regcache_arch (regcache);
562 struct gdbarch_tdep *tdep;
563 const struct ppc_reg_offsets *offsets;
564 size_t offset;
565
566 if (!ppc_floating_point_unit_p (gdbarch))
567 return;
568
569 tdep = gdbarch_tdep (gdbarch);
570 offsets = (const struct ppc_reg_offsets *) regset->regmap;
571 if (regnum == -1)
572 {
573 int i;
574
575 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
576 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
577 i++, offset += 8)
578 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
579
580 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
581 (const gdb_byte *) fpregs, offsets->fpscr_offset,
582 offsets->fpscr_size);
583 return;
584 }
585
586 offset = ppc_fpreg_offset (tdep, offsets, regnum);
587 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
588 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
589 }
590
591 /* Supply register REGNUM in the VSX register set REGSET
592 from the buffer specified by VSXREGS and LEN to register cache
593 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
594
595 void
596 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
597 int regnum, const void *vsxregs, size_t len)
598 {
599 struct gdbarch *gdbarch = get_regcache_arch (regcache);
600 struct gdbarch_tdep *tdep;
601
602 if (!ppc_vsx_support_p (gdbarch))
603 return;
604
605 tdep = gdbarch_tdep (gdbarch);
606
607 if (regnum == -1)
608 {
609 int i;
610
611 for (i = tdep->ppc_vsr0_upper_regnum;
612 i < tdep->ppc_vsr0_upper_regnum + 32;
613 i++)
614 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
615
616 return;
617 }
618 else
619 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
620 }
621
622 /* Supply register REGNUM in the Altivec register set REGSET
623 from the buffer specified by VRREGS and LEN to register cache
624 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
625
626 void
627 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
628 int regnum, const void *vrregs, size_t len)
629 {
630 struct gdbarch *gdbarch = get_regcache_arch (regcache);
631 struct gdbarch_tdep *tdep;
632 const struct ppc_reg_offsets *offsets;
633 size_t offset;
634
635 if (!ppc_altivec_support_p (gdbarch))
636 return;
637
638 tdep = gdbarch_tdep (gdbarch);
639 offsets = (const struct ppc_reg_offsets *) regset->regmap;
640 if (regnum == -1)
641 {
642 int i;
643
644 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
645 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
646 i++, offset += 16)
647 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
648
649 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
650 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
651
652 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
653 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
654 return;
655 }
656
657 offset = ppc_vrreg_offset (tdep, offsets, regnum);
658 if (regnum != tdep->ppc_vrsave_regnum
659 && regnum != tdep->ppc_vrsave_regnum - 1)
660 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
661 else
662 ppc_supply_reg (regcache, regnum,
663 (const gdb_byte *) vrregs, offset, 4);
664 }
665
666 /* Collect register REGNUM in the general-purpose register set
667 REGSET from register cache REGCACHE into the buffer specified by
668 GREGS and LEN. If REGNUM is -1, do this for all registers in
669 REGSET. */
670
671 void
672 ppc_collect_gregset (const struct regset *regset,
673 const struct regcache *regcache,
674 int regnum, void *gregs, size_t len)
675 {
676 struct gdbarch *gdbarch = get_regcache_arch (regcache);
677 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
678 const struct ppc_reg_offsets *offsets
679 = (const struct ppc_reg_offsets *) regset->regmap;
680 size_t offset;
681 int regsize;
682
683 if (regnum == -1)
684 {
685 int i;
686 int gpr_size = offsets->gpr_size;
687
688 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
689 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
690 i++, offset += gpr_size)
691 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
692
693 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
694 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
695 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
696 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
697 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
698 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
699 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
700 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
701 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
702 (gdb_byte *) gregs, offsets->cr_offset,
703 offsets->xr_size);
704 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
705 (gdb_byte *) gregs, offsets->xer_offset,
706 offsets->xr_size);
707 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
708 (gdb_byte *) gregs, offsets->mq_offset,
709 offsets->xr_size);
710 return;
711 }
712
713 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
714 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
715 }
716
717 /* Collect register REGNUM in the floating-point register set
718 REGSET from register cache REGCACHE into the buffer specified by
719 FPREGS and LEN. If REGNUM is -1, do this for all registers in
720 REGSET. */
721
722 void
723 ppc_collect_fpregset (const struct regset *regset,
724 const struct regcache *regcache,
725 int regnum, void *fpregs, size_t len)
726 {
727 struct gdbarch *gdbarch = get_regcache_arch (regcache);
728 struct gdbarch_tdep *tdep;
729 const struct ppc_reg_offsets *offsets;
730 size_t offset;
731
732 if (!ppc_floating_point_unit_p (gdbarch))
733 return;
734
735 tdep = gdbarch_tdep (gdbarch);
736 offsets = (const struct ppc_reg_offsets *) regset->regmap;
737 if (regnum == -1)
738 {
739 int i;
740
741 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
742 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
743 i++, offset += 8)
744 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
745
746 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
747 (gdb_byte *) fpregs, offsets->fpscr_offset,
748 offsets->fpscr_size);
749 return;
750 }
751
752 offset = ppc_fpreg_offset (tdep, offsets, regnum);
753 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
754 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
755 }
756
757 /* Collect register REGNUM in the VSX register set
758 REGSET from register cache REGCACHE into the buffer specified by
759 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
760 REGSET. */
761
762 void
763 ppc_collect_vsxregset (const struct regset *regset,
764 const struct regcache *regcache,
765 int regnum, void *vsxregs, size_t len)
766 {
767 struct gdbarch *gdbarch = get_regcache_arch (regcache);
768 struct gdbarch_tdep *tdep;
769
770 if (!ppc_vsx_support_p (gdbarch))
771 return;
772
773 tdep = gdbarch_tdep (gdbarch);
774
775 if (regnum == -1)
776 {
777 int i;
778
779 for (i = tdep->ppc_vsr0_upper_regnum;
780 i < tdep->ppc_vsr0_upper_regnum + 32;
781 i++)
782 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
783
784 return;
785 }
786 else
787 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
788 }
789
790
791 /* Collect register REGNUM in the Altivec register set
792 REGSET from register cache REGCACHE into the buffer specified by
793 VRREGS and LEN. If REGNUM is -1, do this for all registers in
794 REGSET. */
795
796 void
797 ppc_collect_vrregset (const struct regset *regset,
798 const struct regcache *regcache,
799 int regnum, void *vrregs, size_t len)
800 {
801 struct gdbarch *gdbarch = get_regcache_arch (regcache);
802 struct gdbarch_tdep *tdep;
803 const struct ppc_reg_offsets *offsets;
804 size_t offset;
805
806 if (!ppc_altivec_support_p (gdbarch))
807 return;
808
809 tdep = gdbarch_tdep (gdbarch);
810 offsets = (const struct ppc_reg_offsets *) regset->regmap;
811 if (regnum == -1)
812 {
813 int i;
814
815 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
816 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
817 i++, offset += 16)
818 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
819
820 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
821 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
822
823 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
824 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
825 return;
826 }
827
828 offset = ppc_vrreg_offset (tdep, offsets, regnum);
829 if (regnum != tdep->ppc_vrsave_regnum
830 && regnum != tdep->ppc_vrsave_regnum - 1)
831 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
832 else
833 ppc_collect_reg (regcache, regnum,
834 (gdb_byte *) vrregs, offset, 4);
835 }
836 \f
837
838 static int
839 insn_changes_sp_or_jumps (unsigned long insn)
840 {
841 int opcode = (insn >> 26) & 0x03f;
842 int sd = (insn >> 21) & 0x01f;
843 int a = (insn >> 16) & 0x01f;
844 int subcode = (insn >> 1) & 0x3ff;
845
846 /* Changes the stack pointer. */
847
848 /* NOTE: There are many ways to change the value of a given register.
849 The ways below are those used when the register is R1, the SP,
850 in a funtion's epilogue. */
851
852 if (opcode == 31 && subcode == 444 && a == 1)
853 return 1; /* mr R1,Rn */
854 if (opcode == 14 && sd == 1)
855 return 1; /* addi R1,Rn,simm */
856 if (opcode == 58 && sd == 1)
857 return 1; /* ld R1,ds(Rn) */
858
859 /* Transfers control. */
860
861 if (opcode == 18)
862 return 1; /* b */
863 if (opcode == 16)
864 return 1; /* bc */
865 if (opcode == 19 && subcode == 16)
866 return 1; /* bclr */
867 if (opcode == 19 && subcode == 528)
868 return 1; /* bcctr */
869
870 return 0;
871 }
872
873 /* Return true if we are in the function's epilogue, i.e. after the
874 instruction that destroyed the function's stack frame.
875
876 1) scan forward from the point of execution:
877 a) If you find an instruction that modifies the stack pointer
878 or transfers control (except a return), execution is not in
879 an epilogue, return.
880 b) Stop scanning if you find a return instruction or reach the
881 end of the function or reach the hard limit for the size of
882 an epilogue.
883 2) scan backward from the point of execution:
884 a) If you find an instruction that modifies the stack pointer,
885 execution *is* in an epilogue, return.
886 b) Stop scanning if you reach an instruction that transfers
887 control or the beginning of the function or reach the hard
888 limit for the size of an epilogue. */
889
890 static int
891 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
892 struct gdbarch *gdbarch, CORE_ADDR pc)
893 {
894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 bfd_byte insn_buf[PPC_INSN_SIZE];
897 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
898 unsigned long insn;
899
900 /* Find the search limits based on function boundaries and hard limit. */
901
902 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
903 return 0;
904
905 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
906 if (epilogue_start < func_start) epilogue_start = func_start;
907
908 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
909 if (epilogue_end > func_end) epilogue_end = func_end;
910
911 /* Scan forward until next 'blr'. */
912
913 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
914 {
915 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
916 return 0;
917 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
918 if (insn == 0x4e800020)
919 break;
920 /* Assume a bctr is a tail call unless it points strictly within
921 this function. */
922 if (insn == 0x4e800420)
923 {
924 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
925 tdep->ppc_ctr_regnum);
926 if (ctr > func_start && ctr < func_end)
927 return 0;
928 else
929 break;
930 }
931 if (insn_changes_sp_or_jumps (insn))
932 return 0;
933 }
934
935 /* Scan backward until adjustment to stack pointer (R1). */
936
937 for (scan_pc = pc - PPC_INSN_SIZE;
938 scan_pc >= epilogue_start;
939 scan_pc -= PPC_INSN_SIZE)
940 {
941 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
942 return 0;
943 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
944 if (insn_changes_sp_or_jumps (insn))
945 return 1;
946 }
947
948 return 0;
949 }
950
951 /* Implement the stack_frame_destroyed_p gdbarch method. */
952
953 static int
954 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
955 {
956 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
957 gdbarch, pc);
958 }
959
960 /* Get the ith function argument for the current function. */
961 static CORE_ADDR
962 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
963 struct type *type)
964 {
965 return get_frame_register_unsigned (frame, 3 + argi);
966 }
967
968 /* Sequence of bytes for breakpoint instruction. */
969
970 static const unsigned char *
971 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
972 int *bp_size)
973 {
974 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
975 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
976 *bp_size = 4;
977 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
978 return big_breakpoint;
979 else
980 return little_breakpoint;
981 }
982
983 /* Instruction masks for displaced stepping. */
984 #define BRANCH_MASK 0xfc000000
985 #define BP_MASK 0xFC0007FE
986 #define B_INSN 0x48000000
987 #define BC_INSN 0x40000000
988 #define BXL_INSN 0x4c000000
989 #define BP_INSN 0x7C000008
990
991 /* Instruction masks used during single-stepping of atomic
992 sequences. */
993 #define LWARX_MASK 0xfc0007fe
994 #define LWARX_INSTRUCTION 0x7c000028
995 #define LDARX_INSTRUCTION 0x7c0000A8
996 #define STWCX_MASK 0xfc0007ff
997 #define STWCX_INSTRUCTION 0x7c00012d
998 #define STDCX_INSTRUCTION 0x7c0001ad
999
1000 /* We can't displaced step atomic sequences. Otherwise this is just
1001 like simple_displaced_step_copy_insn. */
1002
1003 static struct displaced_step_closure *
1004 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
1005 CORE_ADDR from, CORE_ADDR to,
1006 struct regcache *regs)
1007 {
1008 size_t len = gdbarch_max_insn_length (gdbarch);
1009 gdb_byte *buf = (gdb_byte *) xmalloc (len);
1010 struct cleanup *old_chain = make_cleanup (xfree, buf);
1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1012 int insn;
1013
1014 read_memory (from, buf, len);
1015
1016 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1017
1018 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1019 if ((insn & LWARX_MASK) == LWARX_INSTRUCTION
1020 || (insn & LWARX_MASK) == LDARX_INSTRUCTION)
1021 {
1022 if (debug_displaced)
1023 {
1024 fprintf_unfiltered (gdb_stdlog,
1025 "displaced: can't displaced step "
1026 "atomic sequence at %s\n",
1027 paddress (gdbarch, from));
1028 }
1029 do_cleanups (old_chain);
1030 return NULL;
1031 }
1032
1033 write_memory (to, buf, len);
1034
1035 if (debug_displaced)
1036 {
1037 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1038 paddress (gdbarch, from), paddress (gdbarch, to));
1039 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1040 }
1041
1042 discard_cleanups (old_chain);
1043 return (struct displaced_step_closure *) buf;
1044 }
1045
1046 /* Fix up the state of registers and memory after having single-stepped
1047 a displaced instruction. */
1048 static void
1049 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1050 struct displaced_step_closure *closure,
1051 CORE_ADDR from, CORE_ADDR to,
1052 struct regcache *regs)
1053 {
1054 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1055 /* Our closure is a copy of the instruction. */
1056 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
1057 PPC_INSN_SIZE, byte_order);
1058 ULONGEST opcode = 0;
1059 /* Offset for non PC-relative instructions. */
1060 LONGEST offset = PPC_INSN_SIZE;
1061
1062 opcode = insn & BRANCH_MASK;
1063
1064 if (debug_displaced)
1065 fprintf_unfiltered (gdb_stdlog,
1066 "displaced: (ppc) fixup (%s, %s)\n",
1067 paddress (gdbarch, from), paddress (gdbarch, to));
1068
1069
1070 /* Handle PC-relative branch instructions. */
1071 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1072 {
1073 ULONGEST current_pc;
1074
1075 /* Read the current PC value after the instruction has been executed
1076 in a displaced location. Calculate the offset to be applied to the
1077 original PC value before the displaced stepping. */
1078 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1079 &current_pc);
1080 offset = current_pc - to;
1081
1082 if (opcode != BXL_INSN)
1083 {
1084 /* Check for AA bit indicating whether this is an absolute
1085 addressing or PC-relative (1: absolute, 0: relative). */
1086 if (!(insn & 0x2))
1087 {
1088 /* PC-relative addressing is being used in the branch. */
1089 if (debug_displaced)
1090 fprintf_unfiltered
1091 (gdb_stdlog,
1092 "displaced: (ppc) branch instruction: %s\n"
1093 "displaced: (ppc) adjusted PC from %s to %s\n",
1094 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1095 paddress (gdbarch, from + offset));
1096
1097 regcache_cooked_write_unsigned (regs,
1098 gdbarch_pc_regnum (gdbarch),
1099 from + offset);
1100 }
1101 }
1102 else
1103 {
1104 /* If we're here, it means we have a branch to LR or CTR. If the
1105 branch was taken, the offset is probably greater than 4 (the next
1106 instruction), so it's safe to assume that an offset of 4 means we
1107 did not take the branch. */
1108 if (offset == PPC_INSN_SIZE)
1109 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1110 from + PPC_INSN_SIZE);
1111 }
1112
1113 /* Check for LK bit indicating whether we should set the link
1114 register to point to the next instruction
1115 (1: Set, 0: Don't set). */
1116 if (insn & 0x1)
1117 {
1118 /* Link register needs to be set to the next instruction's PC. */
1119 regcache_cooked_write_unsigned (regs,
1120 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1121 from + PPC_INSN_SIZE);
1122 if (debug_displaced)
1123 fprintf_unfiltered (gdb_stdlog,
1124 "displaced: (ppc) adjusted LR to %s\n",
1125 paddress (gdbarch, from + PPC_INSN_SIZE));
1126
1127 }
1128 }
1129 /* Check for breakpoints in the inferior. If we've found one, place the PC
1130 right at the breakpoint instruction. */
1131 else if ((insn & BP_MASK) == BP_INSN)
1132 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1133 else
1134 /* Handle any other instructions that do not fit in the categories above. */
1135 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1136 from + offset);
1137 }
1138
1139 /* Always use hardware single-stepping to execute the
1140 displaced instruction. */
1141 static int
1142 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1143 struct displaced_step_closure *closure)
1144 {
1145 return 1;
1146 }
1147
1148 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1149 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1150 is found, attempt to step through it. A breakpoint is placed at the end of
1151 the sequence. */
1152
1153 int
1154 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1155 {
1156 struct gdbarch *gdbarch = get_frame_arch (frame);
1157 struct address_space *aspace = get_frame_address_space (frame);
1158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1159 CORE_ADDR pc = get_frame_pc (frame);
1160 CORE_ADDR breaks[2] = {-1, -1};
1161 CORE_ADDR loc = pc;
1162 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1163 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1164 int insn_count;
1165 int index;
1166 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1167 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1168 int opcode; /* Branch instruction's OPcode. */
1169 int bc_insn_count = 0; /* Conditional branch instruction count. */
1170
1171 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1172 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1173 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1174 return 0;
1175
1176 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1177 instructions. */
1178 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1179 {
1180 loc += PPC_INSN_SIZE;
1181 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1182
1183 /* Assume that there is at most one conditional branch in the atomic
1184 sequence. If a conditional branch is found, put a breakpoint in
1185 its destination address. */
1186 if ((insn & BRANCH_MASK) == BC_INSN)
1187 {
1188 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1189 int absolute = insn & 2;
1190
1191 if (bc_insn_count >= 1)
1192 return 0; /* More than one conditional branch found, fallback
1193 to the standard single-step code. */
1194
1195 if (absolute)
1196 breaks[1] = immediate;
1197 else
1198 breaks[1] = loc + immediate;
1199
1200 bc_insn_count++;
1201 last_breakpoint++;
1202 }
1203
1204 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1205 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1206 break;
1207 }
1208
1209 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1210 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1211 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1212 return 0;
1213
1214 closing_insn = loc;
1215 loc += PPC_INSN_SIZE;
1216 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1217
1218 /* Insert a breakpoint right after the end of the atomic sequence. */
1219 breaks[0] = loc;
1220
1221 /* Check for duplicated breakpoints. Check also for a breakpoint
1222 placed (branch instruction's destination) anywhere in sequence. */
1223 if (last_breakpoint
1224 && (breaks[1] == breaks[0]
1225 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1226 last_breakpoint = 0;
1227
1228 /* Effectively inserts the breakpoints. */
1229 for (index = 0; index <= last_breakpoint; index++)
1230 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1231
1232 return 1;
1233 }
1234
1235
1236 #define SIGNED_SHORT(x) \
1237 ((sizeof (short) == 2) \
1238 ? ((int)(short)(x)) \
1239 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1240
1241 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1242
1243 /* Limit the number of skipped non-prologue instructions, as the examining
1244 of the prologue is expensive. */
1245 static int max_skip_non_prologue_insns = 10;
1246
1247 /* Return nonzero if the given instruction OP can be part of the prologue
1248 of a function and saves a parameter on the stack. FRAMEP should be
1249 set if one of the previous instructions in the function has set the
1250 Frame Pointer. */
1251
1252 static int
1253 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1254 {
1255 /* Move parameters from argument registers to temporary register. */
1256 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1257 {
1258 /* Rx must be scratch register r0. */
1259 const int rx_regno = (op >> 16) & 31;
1260 /* Ry: Only r3 - r10 are used for parameter passing. */
1261 const int ry_regno = GET_SRC_REG (op);
1262
1263 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1264 {
1265 *r0_contains_arg = 1;
1266 return 1;
1267 }
1268 else
1269 return 0;
1270 }
1271
1272 /* Save a General Purpose Register on stack. */
1273
1274 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1275 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1276 {
1277 /* Rx: Only r3 - r10 are used for parameter passing. */
1278 const int rx_regno = GET_SRC_REG (op);
1279
1280 return (rx_regno >= 3 && rx_regno <= 10);
1281 }
1282
1283 /* Save a General Purpose Register on stack via the Frame Pointer. */
1284
1285 if (framep &&
1286 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1287 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1288 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1289 {
1290 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1291 However, the compiler sometimes uses r0 to hold an argument. */
1292 const int rx_regno = GET_SRC_REG (op);
1293
1294 return ((rx_regno >= 3 && rx_regno <= 10)
1295 || (rx_regno == 0 && *r0_contains_arg));
1296 }
1297
1298 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1299 {
1300 /* Only f2 - f8 are used for parameter passing. */
1301 const int src_regno = GET_SRC_REG (op);
1302
1303 return (src_regno >= 2 && src_regno <= 8);
1304 }
1305
1306 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1307 {
1308 /* Only f2 - f8 are used for parameter passing. */
1309 const int src_regno = GET_SRC_REG (op);
1310
1311 return (src_regno >= 2 && src_regno <= 8);
1312 }
1313
1314 /* Not an insn that saves a parameter on stack. */
1315 return 0;
1316 }
1317
1318 /* Assuming that INSN is a "bl" instruction located at PC, return
1319 nonzero if the destination of the branch is a "blrl" instruction.
1320
1321 This sequence is sometimes found in certain function prologues.
1322 It allows the function to load the LR register with a value that
1323 they can use to access PIC data using PC-relative offsets. */
1324
1325 static int
1326 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1327 {
1328 CORE_ADDR dest;
1329 int immediate;
1330 int absolute;
1331 int dest_insn;
1332
1333 absolute = (int) ((insn >> 1) & 1);
1334 immediate = ((insn & ~3) << 6) >> 6;
1335 if (absolute)
1336 dest = immediate;
1337 else
1338 dest = pc + immediate;
1339
1340 dest_insn = read_memory_integer (dest, 4, byte_order);
1341 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1342 return 1;
1343
1344 return 0;
1345 }
1346
1347 /* Masks for decoding a branch-and-link (bl) instruction.
1348
1349 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1350 The former is anded with the opcode in question; if the result of
1351 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1352 question is a ``bl'' instruction.
1353
1354 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1355 the branch displacement. */
1356
1357 #define BL_MASK 0xfc000001
1358 #define BL_INSTRUCTION 0x48000001
1359 #define BL_DISPLACEMENT_MASK 0x03fffffc
1360
1361 static unsigned long
1362 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1363 {
1364 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1365 gdb_byte buf[4];
1366 unsigned long op;
1367
1368 /* Fetch the instruction and convert it to an integer. */
1369 if (target_read_memory (pc, buf, 4))
1370 return 0;
1371 op = extract_unsigned_integer (buf, 4, byte_order);
1372
1373 return op;
1374 }
1375
1376 /* GCC generates several well-known sequences of instructions at the begining
1377 of each function prologue when compiling with -fstack-check. If one of
1378 such sequences starts at START_PC, then return the address of the
1379 instruction immediately past this sequence. Otherwise, return START_PC. */
1380
1381 static CORE_ADDR
1382 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1383 {
1384 CORE_ADDR pc = start_pc;
1385 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1386
1387 /* First possible sequence: A small number of probes.
1388 stw 0, -<some immediate>(1)
1389 [repeat this instruction any (small) number of times]. */
1390
1391 if ((op & 0xffff0000) == 0x90010000)
1392 {
1393 while ((op & 0xffff0000) == 0x90010000)
1394 {
1395 pc = pc + 4;
1396 op = rs6000_fetch_instruction (gdbarch, pc);
1397 }
1398 return pc;
1399 }
1400
1401 /* Second sequence: A probing loop.
1402 addi 12,1,-<some immediate>
1403 lis 0,-<some immediate>
1404 [possibly ori 0,0,<some immediate>]
1405 add 0,12,0
1406 cmpw 0,12,0
1407 beq 0,<disp>
1408 addi 12,12,-<some immediate>
1409 stw 0,0(12)
1410 b <disp>
1411 [possibly one last probe: stw 0,<some immediate>(12)]. */
1412
1413 while (1)
1414 {
1415 /* addi 12,1,-<some immediate> */
1416 if ((op & 0xffff0000) != 0x39810000)
1417 break;
1418
1419 /* lis 0,-<some immediate> */
1420 pc = pc + 4;
1421 op = rs6000_fetch_instruction (gdbarch, pc);
1422 if ((op & 0xffff0000) != 0x3c000000)
1423 break;
1424
1425 pc = pc + 4;
1426 op = rs6000_fetch_instruction (gdbarch, pc);
1427 /* [possibly ori 0,0,<some immediate>] */
1428 if ((op & 0xffff0000) == 0x60000000)
1429 {
1430 pc = pc + 4;
1431 op = rs6000_fetch_instruction (gdbarch, pc);
1432 }
1433 /* add 0,12,0 */
1434 if (op != 0x7c0c0214)
1435 break;
1436
1437 /* cmpw 0,12,0 */
1438 pc = pc + 4;
1439 op = rs6000_fetch_instruction (gdbarch, pc);
1440 if (op != 0x7c0c0000)
1441 break;
1442
1443 /* beq 0,<disp> */
1444 pc = pc + 4;
1445 op = rs6000_fetch_instruction (gdbarch, pc);
1446 if ((op & 0xff9f0001) != 0x41820000)
1447 break;
1448
1449 /* addi 12,12,-<some immediate> */
1450 pc = pc + 4;
1451 op = rs6000_fetch_instruction (gdbarch, pc);
1452 if ((op & 0xffff0000) != 0x398c0000)
1453 break;
1454
1455 /* stw 0,0(12) */
1456 pc = pc + 4;
1457 op = rs6000_fetch_instruction (gdbarch, pc);
1458 if (op != 0x900c0000)
1459 break;
1460
1461 /* b <disp> */
1462 pc = pc + 4;
1463 op = rs6000_fetch_instruction (gdbarch, pc);
1464 if ((op & 0xfc000001) != 0x48000000)
1465 break;
1466
1467 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1468 pc = pc + 4;
1469 op = rs6000_fetch_instruction (gdbarch, pc);
1470 if ((op & 0xffff0000) == 0x900c0000)
1471 {
1472 pc = pc + 4;
1473 op = rs6000_fetch_instruction (gdbarch, pc);
1474 }
1475
1476 /* We found a valid stack-check sequence, return the new PC. */
1477 return pc;
1478 }
1479
1480 /* Third sequence: No probe; instead, a comparizon between the stack size
1481 limit (saved in a run-time global variable) and the current stack
1482 pointer:
1483
1484 addi 0,1,-<some immediate>
1485 lis 12,__gnat_stack_limit@ha
1486 lwz 12,__gnat_stack_limit@l(12)
1487 twllt 0,12
1488
1489 or, with a small variant in the case of a bigger stack frame:
1490 addis 0,1,<some immediate>
1491 addic 0,0,-<some immediate>
1492 lis 12,__gnat_stack_limit@ha
1493 lwz 12,__gnat_stack_limit@l(12)
1494 twllt 0,12
1495 */
1496 while (1)
1497 {
1498 /* addi 0,1,-<some immediate> */
1499 if ((op & 0xffff0000) != 0x38010000)
1500 {
1501 /* small stack frame variant not recognized; try the
1502 big stack frame variant: */
1503
1504 /* addis 0,1,<some immediate> */
1505 if ((op & 0xffff0000) != 0x3c010000)
1506 break;
1507
1508 /* addic 0,0,-<some immediate> */
1509 pc = pc + 4;
1510 op = rs6000_fetch_instruction (gdbarch, pc);
1511 if ((op & 0xffff0000) != 0x30000000)
1512 break;
1513 }
1514
1515 /* lis 12,<some immediate> */
1516 pc = pc + 4;
1517 op = rs6000_fetch_instruction (gdbarch, pc);
1518 if ((op & 0xffff0000) != 0x3d800000)
1519 break;
1520
1521 /* lwz 12,<some immediate>(12) */
1522 pc = pc + 4;
1523 op = rs6000_fetch_instruction (gdbarch, pc);
1524 if ((op & 0xffff0000) != 0x818c0000)
1525 break;
1526
1527 /* twllt 0,12 */
1528 pc = pc + 4;
1529 op = rs6000_fetch_instruction (gdbarch, pc);
1530 if ((op & 0xfffffffe) != 0x7c406008)
1531 break;
1532
1533 /* We found a valid stack-check sequence, return the new PC. */
1534 return pc;
1535 }
1536
1537 /* No stack check code in our prologue, return the start_pc. */
1538 return start_pc;
1539 }
1540
1541 /* return pc value after skipping a function prologue and also return
1542 information about a function frame.
1543
1544 in struct rs6000_framedata fdata:
1545 - frameless is TRUE, if function does not have a frame.
1546 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1547 - offset is the initial size of this stack frame --- the amount by
1548 which we decrement the sp to allocate the frame.
1549 - saved_gpr is the number of the first saved gpr.
1550 - saved_fpr is the number of the first saved fpr.
1551 - saved_vr is the number of the first saved vr.
1552 - saved_ev is the number of the first saved ev.
1553 - alloca_reg is the number of the register used for alloca() handling.
1554 Otherwise -1.
1555 - gpr_offset is the offset of the first saved gpr from the previous frame.
1556 - fpr_offset is the offset of the first saved fpr from the previous frame.
1557 - vr_offset is the offset of the first saved vr from the previous frame.
1558 - ev_offset is the offset of the first saved ev from the previous frame.
1559 - lr_offset is the offset of the saved lr
1560 - cr_offset is the offset of the saved cr
1561 - vrsave_offset is the offset of the saved vrsave register. */
1562
1563 static CORE_ADDR
1564 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1565 struct rs6000_framedata *fdata)
1566 {
1567 CORE_ADDR orig_pc = pc;
1568 CORE_ADDR last_prologue_pc = pc;
1569 CORE_ADDR li_found_pc = 0;
1570 gdb_byte buf[4];
1571 unsigned long op;
1572 long offset = 0;
1573 long vr_saved_offset = 0;
1574 int lr_reg = -1;
1575 int cr_reg = -1;
1576 int vr_reg = -1;
1577 int ev_reg = -1;
1578 long ev_offset = 0;
1579 int vrsave_reg = -1;
1580 int reg;
1581 int framep = 0;
1582 int minimal_toc_loaded = 0;
1583 int prev_insn_was_prologue_insn = 1;
1584 int num_skip_non_prologue_insns = 0;
1585 int r0_contains_arg = 0;
1586 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1587 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1589
1590 memset (fdata, 0, sizeof (struct rs6000_framedata));
1591 fdata->saved_gpr = -1;
1592 fdata->saved_fpr = -1;
1593 fdata->saved_vr = -1;
1594 fdata->saved_ev = -1;
1595 fdata->alloca_reg = -1;
1596 fdata->frameless = 1;
1597 fdata->nosavedpc = 1;
1598 fdata->lr_register = -1;
1599
1600 pc = rs6000_skip_stack_check (gdbarch, pc);
1601 if (pc >= lim_pc)
1602 pc = lim_pc;
1603
1604 for (;; pc += 4)
1605 {
1606 /* Sometimes it isn't clear if an instruction is a prologue
1607 instruction or not. When we encounter one of these ambiguous
1608 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1609 Otherwise, we'll assume that it really is a prologue instruction. */
1610 if (prev_insn_was_prologue_insn)
1611 last_prologue_pc = pc;
1612
1613 /* Stop scanning if we've hit the limit. */
1614 if (pc >= lim_pc)
1615 break;
1616
1617 prev_insn_was_prologue_insn = 1;
1618
1619 /* Fetch the instruction and convert it to an integer. */
1620 if (target_read_memory (pc, buf, 4))
1621 break;
1622 op = extract_unsigned_integer (buf, 4, byte_order);
1623
1624 if ((op & 0xfc1fffff) == 0x7c0802a6)
1625 { /* mflr Rx */
1626 /* Since shared library / PIC code, which needs to get its
1627 address at runtime, can appear to save more than one link
1628 register vis:
1629
1630 *INDENT-OFF*
1631 stwu r1,-304(r1)
1632 mflr r3
1633 bl 0xff570d0 (blrl)
1634 stw r30,296(r1)
1635 mflr r30
1636 stw r31,300(r1)
1637 stw r3,308(r1);
1638 ...
1639 *INDENT-ON*
1640
1641 remember just the first one, but skip over additional
1642 ones. */
1643 if (lr_reg == -1)
1644 lr_reg = (op & 0x03e00000) >> 21;
1645 if (lr_reg == 0)
1646 r0_contains_arg = 0;
1647 continue;
1648 }
1649 else if ((op & 0xfc1fffff) == 0x7c000026)
1650 { /* mfcr Rx */
1651 cr_reg = (op & 0x03e00000);
1652 if (cr_reg == 0)
1653 r0_contains_arg = 0;
1654 continue;
1655
1656 }
1657 else if ((op & 0xfc1f0000) == 0xd8010000)
1658 { /* stfd Rx,NUM(r1) */
1659 reg = GET_SRC_REG (op);
1660 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1661 {
1662 fdata->saved_fpr = reg;
1663 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1664 }
1665 continue;
1666
1667 }
1668 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1669 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1670 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1671 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1672 {
1673
1674 reg = GET_SRC_REG (op);
1675 if ((op & 0xfc1f0000) == 0xbc010000)
1676 fdata->gpr_mask |= ~((1U << reg) - 1);
1677 else
1678 fdata->gpr_mask |= 1U << reg;
1679 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1680 {
1681 fdata->saved_gpr = reg;
1682 if ((op & 0xfc1f0003) == 0xf8010000)
1683 op &= ~3UL;
1684 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1685 }
1686 continue;
1687
1688 }
1689 else if ((op & 0xffff0000) == 0x3c4c0000
1690 || (op & 0xffff0000) == 0x3c400000
1691 || (op & 0xffff0000) == 0x38420000)
1692 {
1693 /* . 0: addis 2,12,.TOC.-0b@ha
1694 . addi 2,2,.TOC.-0b@l
1695 or
1696 . lis 2,.TOC.@ha
1697 . addi 2,2,.TOC.@l
1698 used by ELFv2 global entry points to set up r2. */
1699 continue;
1700 }
1701 else if (op == 0x60000000)
1702 {
1703 /* nop */
1704 /* Allow nops in the prologue, but do not consider them to
1705 be part of the prologue unless followed by other prologue
1706 instructions. */
1707 prev_insn_was_prologue_insn = 0;
1708 continue;
1709
1710 }
1711 else if ((op & 0xffff0000) == 0x3c000000)
1712 { /* addis 0,0,NUM, used for >= 32k frames */
1713 fdata->offset = (op & 0x0000ffff) << 16;
1714 fdata->frameless = 0;
1715 r0_contains_arg = 0;
1716 continue;
1717
1718 }
1719 else if ((op & 0xffff0000) == 0x60000000)
1720 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1721 fdata->offset |= (op & 0x0000ffff);
1722 fdata->frameless = 0;
1723 r0_contains_arg = 0;
1724 continue;
1725
1726 }
1727 else if (lr_reg >= 0 &&
1728 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1729 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1730 /* stw Rx, NUM(r1) */
1731 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1732 /* stwu Rx, NUM(r1) */
1733 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1734 { /* where Rx == lr */
1735 fdata->lr_offset = offset;
1736 fdata->nosavedpc = 0;
1737 /* Invalidate lr_reg, but don't set it to -1.
1738 That would mean that it had never been set. */
1739 lr_reg = -2;
1740 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1741 (op & 0xfc000000) == 0x90000000) /* stw */
1742 {
1743 /* Does not update r1, so add displacement to lr_offset. */
1744 fdata->lr_offset += SIGNED_SHORT (op);
1745 }
1746 continue;
1747
1748 }
1749 else if (cr_reg >= 0 &&
1750 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1751 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1752 /* stw Rx, NUM(r1) */
1753 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1754 /* stwu Rx, NUM(r1) */
1755 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1756 { /* where Rx == cr */
1757 fdata->cr_offset = offset;
1758 /* Invalidate cr_reg, but don't set it to -1.
1759 That would mean that it had never been set. */
1760 cr_reg = -2;
1761 if ((op & 0xfc000003) == 0xf8000000 ||
1762 (op & 0xfc000000) == 0x90000000)
1763 {
1764 /* Does not update r1, so add displacement to cr_offset. */
1765 fdata->cr_offset += SIGNED_SHORT (op);
1766 }
1767 continue;
1768
1769 }
1770 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1771 {
1772 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1773 prediction bits. If the LR has already been saved, we can
1774 skip it. */
1775 continue;
1776 }
1777 else if (op == 0x48000005)
1778 { /* bl .+4 used in
1779 -mrelocatable */
1780 fdata->used_bl = 1;
1781 continue;
1782
1783 }
1784 else if (op == 0x48000004)
1785 { /* b .+4 (xlc) */
1786 break;
1787
1788 }
1789 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1790 in V.4 -mminimal-toc */
1791 (op & 0xffff0000) == 0x3bde0000)
1792 { /* addi 30,30,foo@l */
1793 continue;
1794
1795 }
1796 else if ((op & 0xfc000001) == 0x48000001)
1797 { /* bl foo,
1798 to save fprs??? */
1799
1800 fdata->frameless = 0;
1801
1802 /* If the return address has already been saved, we can skip
1803 calls to blrl (for PIC). */
1804 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1805 {
1806 fdata->used_bl = 1;
1807 continue;
1808 }
1809
1810 /* Don't skip over the subroutine call if it is not within
1811 the first three instructions of the prologue and either
1812 we have no line table information or the line info tells
1813 us that the subroutine call is not part of the line
1814 associated with the prologue. */
1815 if ((pc - orig_pc) > 8)
1816 {
1817 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1818 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1819
1820 if ((prologue_sal.line == 0)
1821 || (prologue_sal.line != this_sal.line))
1822 break;
1823 }
1824
1825 op = read_memory_integer (pc + 4, 4, byte_order);
1826
1827 /* At this point, make sure this is not a trampoline
1828 function (a function that simply calls another functions,
1829 and nothing else). If the next is not a nop, this branch
1830 was part of the function prologue. */
1831
1832 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1833 break; /* Don't skip over
1834 this branch. */
1835
1836 fdata->used_bl = 1;
1837 continue;
1838 }
1839 /* update stack pointer */
1840 else if ((op & 0xfc1f0000) == 0x94010000)
1841 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1842 fdata->frameless = 0;
1843 fdata->offset = SIGNED_SHORT (op);
1844 offset = fdata->offset;
1845 continue;
1846 }
1847 else if ((op & 0xfc1f016a) == 0x7c01016e)
1848 { /* stwux rX,r1,rY */
1849 /* No way to figure out what r1 is going to be. */
1850 fdata->frameless = 0;
1851 offset = fdata->offset;
1852 continue;
1853 }
1854 else if ((op & 0xfc1f0003) == 0xf8010001)
1855 { /* stdu rX,NUM(r1) */
1856 fdata->frameless = 0;
1857 fdata->offset = SIGNED_SHORT (op & ~3UL);
1858 offset = fdata->offset;
1859 continue;
1860 }
1861 else if ((op & 0xfc1f016a) == 0x7c01016a)
1862 { /* stdux rX,r1,rY */
1863 /* No way to figure out what r1 is going to be. */
1864 fdata->frameless = 0;
1865 offset = fdata->offset;
1866 continue;
1867 }
1868 else if ((op & 0xffff0000) == 0x38210000)
1869 { /* addi r1,r1,SIMM */
1870 fdata->frameless = 0;
1871 fdata->offset += SIGNED_SHORT (op);
1872 offset = fdata->offset;
1873 continue;
1874 }
1875 /* Load up minimal toc pointer. Do not treat an epilogue restore
1876 of r31 as a minimal TOC load. */
1877 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1878 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1879 && !framep
1880 && !minimal_toc_loaded)
1881 {
1882 minimal_toc_loaded = 1;
1883 continue;
1884
1885 /* move parameters from argument registers to local variable
1886 registers */
1887 }
1888 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1889 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1890 (((op >> 21) & 31) <= 10) &&
1891 ((long) ((op >> 16) & 31)
1892 >= fdata->saved_gpr)) /* Rx: local var reg */
1893 {
1894 continue;
1895
1896 /* store parameters in stack */
1897 }
1898 /* Move parameters from argument registers to temporary register. */
1899 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1900 {
1901 continue;
1902
1903 /* Set up frame pointer */
1904 }
1905 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1906 {
1907 fdata->frameless = 0;
1908 framep = 1;
1909 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1910 continue;
1911
1912 /* Another way to set up the frame pointer. */
1913 }
1914 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1915 || op == 0x7c3f0b78)
1916 { /* mr r31, r1 */
1917 fdata->frameless = 0;
1918 framep = 1;
1919 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1920 continue;
1921
1922 /* Another way to set up the frame pointer. */
1923 }
1924 else if ((op & 0xfc1fffff) == 0x38010000)
1925 { /* addi rX, r1, 0x0 */
1926 fdata->frameless = 0;
1927 framep = 1;
1928 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1929 + ((op & ~0x38010000) >> 21));
1930 continue;
1931 }
1932 /* AltiVec related instructions. */
1933 /* Store the vrsave register (spr 256) in another register for
1934 later manipulation, or load a register into the vrsave
1935 register. 2 instructions are used: mfvrsave and
1936 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1937 and mtspr SPR256, Rn. */
1938 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1939 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1940 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1941 {
1942 vrsave_reg = GET_SRC_REG (op);
1943 continue;
1944 }
1945 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1946 {
1947 continue;
1948 }
1949 /* Store the register where vrsave was saved to onto the stack:
1950 rS is the register where vrsave was stored in a previous
1951 instruction. */
1952 /* 100100 sssss 00001 dddddddd dddddddd */
1953 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1954 {
1955 if (vrsave_reg == GET_SRC_REG (op))
1956 {
1957 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1958 vrsave_reg = -1;
1959 }
1960 continue;
1961 }
1962 /* Compute the new value of vrsave, by modifying the register
1963 where vrsave was saved to. */
1964 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1965 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1966 {
1967 continue;
1968 }
1969 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1970 in a pair of insns to save the vector registers on the
1971 stack. */
1972 /* 001110 00000 00000 iiii iiii iiii iiii */
1973 /* 001110 01110 00000 iiii iiii iiii iiii */
1974 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1975 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1976 {
1977 if ((op & 0xffff0000) == 0x38000000)
1978 r0_contains_arg = 0;
1979 li_found_pc = pc;
1980 vr_saved_offset = SIGNED_SHORT (op);
1981
1982 /* This insn by itself is not part of the prologue, unless
1983 if part of the pair of insns mentioned above. So do not
1984 record this insn as part of the prologue yet. */
1985 prev_insn_was_prologue_insn = 0;
1986 }
1987 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1988 /* 011111 sssss 11111 00000 00111001110 */
1989 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1990 {
1991 if (pc == (li_found_pc + 4))
1992 {
1993 vr_reg = GET_SRC_REG (op);
1994 /* If this is the first vector reg to be saved, or if
1995 it has a lower number than others previously seen,
1996 reupdate the frame info. */
1997 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1998 {
1999 fdata->saved_vr = vr_reg;
2000 fdata->vr_offset = vr_saved_offset + offset;
2001 }
2002 vr_saved_offset = -1;
2003 vr_reg = -1;
2004 li_found_pc = 0;
2005 }
2006 }
2007 /* End AltiVec related instructions. */
2008
2009 /* Start BookE related instructions. */
2010 /* Store gen register S at (r31+uimm).
2011 Any register less than r13 is volatile, so we don't care. */
2012 /* 000100 sssss 11111 iiiii 01100100001 */
2013 else if (arch_info->mach == bfd_mach_ppc_e500
2014 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2015 {
2016 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2017 {
2018 unsigned int imm;
2019 ev_reg = GET_SRC_REG (op);
2020 imm = (op >> 11) & 0x1f;
2021 ev_offset = imm * 8;
2022 /* If this is the first vector reg to be saved, or if
2023 it has a lower number than others previously seen,
2024 reupdate the frame info. */
2025 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2026 {
2027 fdata->saved_ev = ev_reg;
2028 fdata->ev_offset = ev_offset + offset;
2029 }
2030 }
2031 continue;
2032 }
2033 /* Store gen register rS at (r1+rB). */
2034 /* 000100 sssss 00001 bbbbb 01100100000 */
2035 else if (arch_info->mach == bfd_mach_ppc_e500
2036 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2037 {
2038 if (pc == (li_found_pc + 4))
2039 {
2040 ev_reg = GET_SRC_REG (op);
2041 /* If this is the first vector reg to be saved, or if
2042 it has a lower number than others previously seen,
2043 reupdate the frame info. */
2044 /* We know the contents of rB from the previous instruction. */
2045 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2046 {
2047 fdata->saved_ev = ev_reg;
2048 fdata->ev_offset = vr_saved_offset + offset;
2049 }
2050 vr_saved_offset = -1;
2051 ev_reg = -1;
2052 li_found_pc = 0;
2053 }
2054 continue;
2055 }
2056 /* Store gen register r31 at (rA+uimm). */
2057 /* 000100 11111 aaaaa iiiii 01100100001 */
2058 else if (arch_info->mach == bfd_mach_ppc_e500
2059 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2060 {
2061 /* Wwe know that the source register is 31 already, but
2062 it can't hurt to compute it. */
2063 ev_reg = GET_SRC_REG (op);
2064 ev_offset = ((op >> 11) & 0x1f) * 8;
2065 /* If this is the first vector reg to be saved, or if
2066 it has a lower number than others previously seen,
2067 reupdate the frame info. */
2068 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2069 {
2070 fdata->saved_ev = ev_reg;
2071 fdata->ev_offset = ev_offset + offset;
2072 }
2073
2074 continue;
2075 }
2076 /* Store gen register S at (r31+r0).
2077 Store param on stack when offset from SP bigger than 4 bytes. */
2078 /* 000100 sssss 11111 00000 01100100000 */
2079 else if (arch_info->mach == bfd_mach_ppc_e500
2080 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2081 {
2082 if (pc == (li_found_pc + 4))
2083 {
2084 if ((op & 0x03e00000) >= 0x01a00000)
2085 {
2086 ev_reg = GET_SRC_REG (op);
2087 /* If this is the first vector reg to be saved, or if
2088 it has a lower number than others previously seen,
2089 reupdate the frame info. */
2090 /* We know the contents of r0 from the previous
2091 instruction. */
2092 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2093 {
2094 fdata->saved_ev = ev_reg;
2095 fdata->ev_offset = vr_saved_offset + offset;
2096 }
2097 ev_reg = -1;
2098 }
2099 vr_saved_offset = -1;
2100 li_found_pc = 0;
2101 continue;
2102 }
2103 }
2104 /* End BookE related instructions. */
2105
2106 else
2107 {
2108 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2109
2110 /* Not a recognized prologue instruction.
2111 Handle optimizer code motions into the prologue by continuing
2112 the search if we have no valid frame yet or if the return
2113 address is not yet saved in the frame. Also skip instructions
2114 if some of the GPRs expected to be saved are not yet saved. */
2115 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2116 && (fdata->gpr_mask & all_mask) == all_mask)
2117 break;
2118
2119 if (op == 0x4e800020 /* blr */
2120 || op == 0x4e800420) /* bctr */
2121 /* Do not scan past epilogue in frameless functions or
2122 trampolines. */
2123 break;
2124 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2125 /* Never skip branches. */
2126 break;
2127
2128 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2129 /* Do not scan too many insns, scanning insns is expensive with
2130 remote targets. */
2131 break;
2132
2133 /* Continue scanning. */
2134 prev_insn_was_prologue_insn = 0;
2135 continue;
2136 }
2137 }
2138
2139 #if 0
2140 /* I have problems with skipping over __main() that I need to address
2141 * sometime. Previously, I used to use misc_function_vector which
2142 * didn't work as well as I wanted to be. -MGO */
2143
2144 /* If the first thing after skipping a prolog is a branch to a function,
2145 this might be a call to an initializer in main(), introduced by gcc2.
2146 We'd like to skip over it as well. Fortunately, xlc does some extra
2147 work before calling a function right after a prologue, thus we can
2148 single out such gcc2 behaviour. */
2149
2150
2151 if ((op & 0xfc000001) == 0x48000001)
2152 { /* bl foo, an initializer function? */
2153 op = read_memory_integer (pc + 4, 4, byte_order);
2154
2155 if (op == 0x4def7b82)
2156 { /* cror 0xf, 0xf, 0xf (nop) */
2157
2158 /* Check and see if we are in main. If so, skip over this
2159 initializer function as well. */
2160
2161 tmp = find_pc_misc_function (pc);
2162 if (tmp >= 0
2163 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2164 return pc + 8;
2165 }
2166 }
2167 #endif /* 0 */
2168
2169 if (pc == lim_pc && lr_reg >= 0)
2170 fdata->lr_register = lr_reg;
2171
2172 fdata->offset = -fdata->offset;
2173 return last_prologue_pc;
2174 }
2175
2176 static CORE_ADDR
2177 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2178 {
2179 struct rs6000_framedata frame;
2180 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2181
2182 /* See if we can determine the end of the prologue via the symbol table.
2183 If so, then return either PC, or the PC after the prologue, whichever
2184 is greater. */
2185 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2186 {
2187 CORE_ADDR post_prologue_pc
2188 = skip_prologue_using_sal (gdbarch, func_addr);
2189 if (post_prologue_pc != 0)
2190 return max (pc, post_prologue_pc);
2191 }
2192
2193 /* Can't determine prologue from the symbol table, need to examine
2194 instructions. */
2195
2196 /* Find an upper limit on the function prologue using the debug
2197 information. If the debug information could not be used to provide
2198 that bound, then use an arbitrary large number as the upper bound. */
2199 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2200 if (limit_pc == 0)
2201 limit_pc = pc + 100; /* Magic. */
2202
2203 /* Do not allow limit_pc to be past the function end, if we know
2204 where that end is... */
2205 if (func_end_addr && limit_pc > func_end_addr)
2206 limit_pc = func_end_addr;
2207
2208 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2209 return pc;
2210 }
2211
2212 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2213 in the prologue of main().
2214
2215 The function below examines the code pointed at by PC and checks to
2216 see if it corresponds to a call to __eabi. If so, it returns the
2217 address of the instruction following that call. Otherwise, it simply
2218 returns PC. */
2219
2220 static CORE_ADDR
2221 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2222 {
2223 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2224 gdb_byte buf[4];
2225 unsigned long op;
2226
2227 if (target_read_memory (pc, buf, 4))
2228 return pc;
2229 op = extract_unsigned_integer (buf, 4, byte_order);
2230
2231 if ((op & BL_MASK) == BL_INSTRUCTION)
2232 {
2233 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2234 CORE_ADDR call_dest = pc + 4 + displ;
2235 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2236
2237 /* We check for ___eabi (three leading underscores) in addition
2238 to __eabi in case the GCC option "-fleading-underscore" was
2239 used to compile the program. */
2240 if (s.minsym != NULL
2241 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2242 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2243 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2244 pc += 4;
2245 }
2246 return pc;
2247 }
2248
2249 /* All the ABI's require 16 byte alignment. */
2250 static CORE_ADDR
2251 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2252 {
2253 return (addr & -16);
2254 }
2255
2256 /* Return whether handle_inferior_event() should proceed through code
2257 starting at PC in function NAME when stepping.
2258
2259 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2260 handle memory references that are too distant to fit in instructions
2261 generated by the compiler. For example, if 'foo' in the following
2262 instruction:
2263
2264 lwz r9,foo(r2)
2265
2266 is greater than 32767, the linker might replace the lwz with a branch to
2267 somewhere in @FIX1 that does the load in 2 instructions and then branches
2268 back to where execution should continue.
2269
2270 GDB should silently step over @FIX code, just like AIX dbx does.
2271 Unfortunately, the linker uses the "b" instruction for the
2272 branches, meaning that the link register doesn't get set.
2273 Therefore, GDB's usual step_over_function () mechanism won't work.
2274
2275 Instead, use the gdbarch_skip_trampoline_code and
2276 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2277 @FIX code. */
2278
2279 static int
2280 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2281 CORE_ADDR pc, const char *name)
2282 {
2283 return name && startswith (name, "@FIX");
2284 }
2285
2286 /* Skip code that the user doesn't want to see when stepping:
2287
2288 1. Indirect function calls use a piece of trampoline code to do context
2289 switching, i.e. to set the new TOC table. Skip such code if we are on
2290 its first instruction (as when we have single-stepped to here).
2291
2292 2. Skip shared library trampoline code (which is different from
2293 indirect function call trampolines).
2294
2295 3. Skip bigtoc fixup code.
2296
2297 Result is desired PC to step until, or NULL if we are not in
2298 code that should be skipped. */
2299
2300 static CORE_ADDR
2301 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2302 {
2303 struct gdbarch *gdbarch = get_frame_arch (frame);
2304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2306 unsigned int ii, op;
2307 int rel;
2308 CORE_ADDR solib_target_pc;
2309 struct bound_minimal_symbol msymbol;
2310
2311 static unsigned trampoline_code[] =
2312 {
2313 0x800b0000, /* l r0,0x0(r11) */
2314 0x90410014, /* st r2,0x14(r1) */
2315 0x7c0903a6, /* mtctr r0 */
2316 0x804b0004, /* l r2,0x4(r11) */
2317 0x816b0008, /* l r11,0x8(r11) */
2318 0x4e800420, /* bctr */
2319 0x4e800020, /* br */
2320 0
2321 };
2322
2323 /* Check for bigtoc fixup code. */
2324 msymbol = lookup_minimal_symbol_by_pc (pc);
2325 if (msymbol.minsym
2326 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2327 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2328 {
2329 /* Double-check that the third instruction from PC is relative "b". */
2330 op = read_memory_integer (pc + 8, 4, byte_order);
2331 if ((op & 0xfc000003) == 0x48000000)
2332 {
2333 /* Extract bits 6-29 as a signed 24-bit relative word address and
2334 add it to the containing PC. */
2335 rel = ((int)(op << 6) >> 6);
2336 return pc + 8 + rel;
2337 }
2338 }
2339
2340 /* If pc is in a shared library trampoline, return its target. */
2341 solib_target_pc = find_solib_trampoline_target (frame, pc);
2342 if (solib_target_pc)
2343 return solib_target_pc;
2344
2345 for (ii = 0; trampoline_code[ii]; ++ii)
2346 {
2347 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2348 if (op != trampoline_code[ii])
2349 return 0;
2350 }
2351 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2352 addr. */
2353 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2354 return pc;
2355 }
2356
2357 /* ISA-specific vector types. */
2358
2359 static struct type *
2360 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2361 {
2362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2363
2364 if (!tdep->ppc_builtin_type_vec64)
2365 {
2366 const struct builtin_type *bt = builtin_type (gdbarch);
2367
2368 /* The type we're building is this: */
2369 #if 0
2370 union __gdb_builtin_type_vec64
2371 {
2372 int64_t uint64;
2373 float v2_float[2];
2374 int32_t v2_int32[2];
2375 int16_t v4_int16[4];
2376 int8_t v8_int8[8];
2377 };
2378 #endif
2379
2380 struct type *t;
2381
2382 t = arch_composite_type (gdbarch,
2383 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2384 append_composite_type_field (t, "uint64", bt->builtin_int64);
2385 append_composite_type_field (t, "v2_float",
2386 init_vector_type (bt->builtin_float, 2));
2387 append_composite_type_field (t, "v2_int32",
2388 init_vector_type (bt->builtin_int32, 2));
2389 append_composite_type_field (t, "v4_int16",
2390 init_vector_type (bt->builtin_int16, 4));
2391 append_composite_type_field (t, "v8_int8",
2392 init_vector_type (bt->builtin_int8, 8));
2393
2394 TYPE_VECTOR (t) = 1;
2395 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2396 tdep->ppc_builtin_type_vec64 = t;
2397 }
2398
2399 return tdep->ppc_builtin_type_vec64;
2400 }
2401
2402 /* Vector 128 type. */
2403
2404 static struct type *
2405 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2406 {
2407 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2408
2409 if (!tdep->ppc_builtin_type_vec128)
2410 {
2411 const struct builtin_type *bt = builtin_type (gdbarch);
2412
2413 /* The type we're building is this
2414
2415 type = union __ppc_builtin_type_vec128 {
2416 uint128_t uint128;
2417 double v2_double[2];
2418 float v4_float[4];
2419 int32_t v4_int32[4];
2420 int16_t v8_int16[8];
2421 int8_t v16_int8[16];
2422 }
2423 */
2424
2425 struct type *t;
2426
2427 t = arch_composite_type (gdbarch,
2428 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2429 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2430 append_composite_type_field (t, "v2_double",
2431 init_vector_type (bt->builtin_double, 2));
2432 append_composite_type_field (t, "v4_float",
2433 init_vector_type (bt->builtin_float, 4));
2434 append_composite_type_field (t, "v4_int32",
2435 init_vector_type (bt->builtin_int32, 4));
2436 append_composite_type_field (t, "v8_int16",
2437 init_vector_type (bt->builtin_int16, 8));
2438 append_composite_type_field (t, "v16_int8",
2439 init_vector_type (bt->builtin_int8, 16));
2440
2441 TYPE_VECTOR (t) = 1;
2442 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2443 tdep->ppc_builtin_type_vec128 = t;
2444 }
2445
2446 return tdep->ppc_builtin_type_vec128;
2447 }
2448
2449 /* Return the name of register number REGNO, or the empty string if it
2450 is an anonymous register. */
2451
2452 static const char *
2453 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2454 {
2455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2456
2457 /* The upper half "registers" have names in the XML description,
2458 but we present only the low GPRs and the full 64-bit registers
2459 to the user. */
2460 if (tdep->ppc_ev0_upper_regnum >= 0
2461 && tdep->ppc_ev0_upper_regnum <= regno
2462 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2463 return "";
2464
2465 /* Hide the upper halves of the vs0~vs31 registers. */
2466 if (tdep->ppc_vsr0_regnum >= 0
2467 && tdep->ppc_vsr0_upper_regnum <= regno
2468 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2469 return "";
2470
2471 /* Check if the SPE pseudo registers are available. */
2472 if (IS_SPE_PSEUDOREG (tdep, regno))
2473 {
2474 static const char *const spe_regnames[] = {
2475 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2476 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2477 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2478 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2479 };
2480 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2481 }
2482
2483 /* Check if the decimal128 pseudo-registers are available. */
2484 if (IS_DFP_PSEUDOREG (tdep, regno))
2485 {
2486 static const char *const dfp128_regnames[] = {
2487 "dl0", "dl1", "dl2", "dl3",
2488 "dl4", "dl5", "dl6", "dl7",
2489 "dl8", "dl9", "dl10", "dl11",
2490 "dl12", "dl13", "dl14", "dl15"
2491 };
2492 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2493 }
2494
2495 /* Check if this is a VSX pseudo-register. */
2496 if (IS_VSX_PSEUDOREG (tdep, regno))
2497 {
2498 static const char *const vsx_regnames[] = {
2499 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2500 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2501 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2502 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2503 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2504 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2505 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2506 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2507 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2508 };
2509 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2510 }
2511
2512 /* Check if the this is a Extended FP pseudo-register. */
2513 if (IS_EFP_PSEUDOREG (tdep, regno))
2514 {
2515 static const char *const efpr_regnames[] = {
2516 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2517 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2518 "f46", "f47", "f48", "f49", "f50", "f51",
2519 "f52", "f53", "f54", "f55", "f56", "f57",
2520 "f58", "f59", "f60", "f61", "f62", "f63"
2521 };
2522 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2523 }
2524
2525 return tdesc_register_name (gdbarch, regno);
2526 }
2527
2528 /* Return the GDB type object for the "standard" data type of data in
2529 register N. */
2530
2531 static struct type *
2532 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2533 {
2534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2535
2536 /* These are the only pseudo-registers we support. */
2537 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2538 || IS_DFP_PSEUDOREG (tdep, regnum)
2539 || IS_VSX_PSEUDOREG (tdep, regnum)
2540 || IS_EFP_PSEUDOREG (tdep, regnum));
2541
2542 /* These are the e500 pseudo-registers. */
2543 if (IS_SPE_PSEUDOREG (tdep, regnum))
2544 return rs6000_builtin_type_vec64 (gdbarch);
2545 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2546 /* PPC decimal128 pseudo-registers. */
2547 return builtin_type (gdbarch)->builtin_declong;
2548 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2549 /* POWER7 VSX pseudo-registers. */
2550 return rs6000_builtin_type_vec128 (gdbarch);
2551 else
2552 /* POWER7 Extended FP pseudo-registers. */
2553 return builtin_type (gdbarch)->builtin_double;
2554 }
2555
2556 /* Is REGNUM a member of REGGROUP? */
2557 static int
2558 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2559 struct reggroup *group)
2560 {
2561 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2562
2563 /* These are the only pseudo-registers we support. */
2564 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2565 || IS_DFP_PSEUDOREG (tdep, regnum)
2566 || IS_VSX_PSEUDOREG (tdep, regnum)
2567 || IS_EFP_PSEUDOREG (tdep, regnum));
2568
2569 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2570 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2571 return group == all_reggroup || group == vector_reggroup;
2572 else
2573 /* PPC decimal128 or Extended FP pseudo-registers. */
2574 return group == all_reggroup || group == float_reggroup;
2575 }
2576
2577 /* The register format for RS/6000 floating point registers is always
2578 double, we need a conversion if the memory format is float. */
2579
2580 static int
2581 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2582 struct type *type)
2583 {
2584 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2585
2586 return (tdep->ppc_fp0_regnum >= 0
2587 && regnum >= tdep->ppc_fp0_regnum
2588 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2589 && TYPE_CODE (type) == TYPE_CODE_FLT
2590 && TYPE_LENGTH (type)
2591 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2592 }
2593
2594 static int
2595 rs6000_register_to_value (struct frame_info *frame,
2596 int regnum,
2597 struct type *type,
2598 gdb_byte *to,
2599 int *optimizedp, int *unavailablep)
2600 {
2601 struct gdbarch *gdbarch = get_frame_arch (frame);
2602 gdb_byte from[MAX_REGISTER_SIZE];
2603
2604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2605
2606 if (!get_frame_register_bytes (frame, regnum, 0,
2607 register_size (gdbarch, regnum),
2608 from, optimizedp, unavailablep))
2609 return 0;
2610
2611 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2612 to, type);
2613 *optimizedp = *unavailablep = 0;
2614 return 1;
2615 }
2616
2617 static void
2618 rs6000_value_to_register (struct frame_info *frame,
2619 int regnum,
2620 struct type *type,
2621 const gdb_byte *from)
2622 {
2623 struct gdbarch *gdbarch = get_frame_arch (frame);
2624 gdb_byte to[MAX_REGISTER_SIZE];
2625
2626 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2627
2628 convert_typed_floating (from, type,
2629 to, builtin_type (gdbarch)->builtin_double);
2630 put_frame_register (frame, regnum, to);
2631 }
2632
2633 /* The type of a function that moves the value of REG between CACHE
2634 or BUF --- in either direction. */
2635 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2636 int, void *);
2637
2638 /* Move SPE vector register values between a 64-bit buffer and the two
2639 32-bit raw register halves in a regcache. This function handles
2640 both splitting a 64-bit value into two 32-bit halves, and joining
2641 two halves into a whole 64-bit value, depending on the function
2642 passed as the MOVE argument.
2643
2644 EV_REG must be the number of an SPE evN vector register --- a
2645 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2646 64-bit buffer.
2647
2648 Call MOVE once for each 32-bit half of that register, passing
2649 REGCACHE, the number of the raw register corresponding to that
2650 half, and the address of the appropriate half of BUFFER.
2651
2652 For example, passing 'regcache_raw_read' as the MOVE function will
2653 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2654 'regcache_raw_supply' will supply the contents of BUFFER to the
2655 appropriate pair of raw registers in REGCACHE.
2656
2657 You may need to cast away some 'const' qualifiers when passing
2658 MOVE, since this function can't tell at compile-time which of
2659 REGCACHE or BUFFER is acting as the source of the data. If C had
2660 co-variant type qualifiers, ... */
2661
2662 static enum register_status
2663 e500_move_ev_register (move_ev_register_func move,
2664 struct regcache *regcache, int ev_reg, void *buffer)
2665 {
2666 struct gdbarch *arch = get_regcache_arch (regcache);
2667 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2668 int reg_index;
2669 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2670 enum register_status status;
2671
2672 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2673
2674 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2675
2676 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2677 {
2678 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2679 byte_buffer);
2680 if (status == REG_VALID)
2681 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2682 byte_buffer + 4);
2683 }
2684 else
2685 {
2686 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2687 if (status == REG_VALID)
2688 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2689 byte_buffer + 4);
2690 }
2691
2692 return status;
2693 }
2694
2695 static enum register_status
2696 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2697 {
2698 return regcache_raw_read (regcache, regnum, (gdb_byte *) buffer);
2699 }
2700
2701 static enum register_status
2702 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2703 {
2704 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
2705
2706 return REG_VALID;
2707 }
2708
2709 static enum register_status
2710 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2711 int reg_nr, gdb_byte *buffer)
2712 {
2713 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2714 }
2715
2716 static void
2717 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2718 int reg_nr, const gdb_byte *buffer)
2719 {
2720 e500_move_ev_register (do_regcache_raw_write, regcache,
2721 reg_nr, (void *) buffer);
2722 }
2723
2724 /* Read method for DFP pseudo-registers. */
2725 static enum register_status
2726 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2727 int reg_nr, gdb_byte *buffer)
2728 {
2729 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2730 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2731 enum register_status status;
2732
2733 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2734 {
2735 /* Read two FP registers to form a whole dl register. */
2736 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2737 2 * reg_index, buffer);
2738 if (status == REG_VALID)
2739 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2740 2 * reg_index + 1, buffer + 8);
2741 }
2742 else
2743 {
2744 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2745 2 * reg_index + 1, buffer);
2746 if (status == REG_VALID)
2747 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2748 2 * reg_index, buffer + 8);
2749 }
2750
2751 return status;
2752 }
2753
2754 /* Write method for DFP pseudo-registers. */
2755 static void
2756 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2757 int reg_nr, const gdb_byte *buffer)
2758 {
2759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2760 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2761
2762 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2763 {
2764 /* Write each half of the dl register into a separate
2765 FP register. */
2766 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2767 2 * reg_index, buffer);
2768 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2769 2 * reg_index + 1, buffer + 8);
2770 }
2771 else
2772 {
2773 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2774 2 * reg_index + 1, buffer);
2775 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2776 2 * reg_index, buffer + 8);
2777 }
2778 }
2779
2780 /* Read method for POWER7 VSX pseudo-registers. */
2781 static enum register_status
2782 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2783 int reg_nr, gdb_byte *buffer)
2784 {
2785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2786 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2787 enum register_status status;
2788
2789 /* Read the portion that overlaps the VMX registers. */
2790 if (reg_index > 31)
2791 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2792 reg_index - 32, buffer);
2793 else
2794 /* Read the portion that overlaps the FPR registers. */
2795 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2796 {
2797 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2798 reg_index, buffer);
2799 if (status == REG_VALID)
2800 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2801 reg_index, buffer + 8);
2802 }
2803 else
2804 {
2805 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2806 reg_index, buffer + 8);
2807 if (status == REG_VALID)
2808 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2809 reg_index, buffer);
2810 }
2811
2812 return status;
2813 }
2814
2815 /* Write method for POWER7 VSX pseudo-registers. */
2816 static void
2817 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2818 int reg_nr, const gdb_byte *buffer)
2819 {
2820 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2821 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2822
2823 /* Write the portion that overlaps the VMX registers. */
2824 if (reg_index > 31)
2825 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2826 reg_index - 32, buffer);
2827 else
2828 /* Write the portion that overlaps the FPR registers. */
2829 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2830 {
2831 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2832 reg_index, buffer);
2833 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2834 reg_index, buffer + 8);
2835 }
2836 else
2837 {
2838 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2839 reg_index, buffer + 8);
2840 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2841 reg_index, buffer);
2842 }
2843 }
2844
2845 /* Read method for POWER7 Extended FP pseudo-registers. */
2846 static enum register_status
2847 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2848 int reg_nr, gdb_byte *buffer)
2849 {
2850 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2851 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2852 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2853
2854 /* Read the portion that overlaps the VMX register. */
2855 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2856 offset, register_size (gdbarch, reg_nr),
2857 buffer);
2858 }
2859
2860 /* Write method for POWER7 Extended FP pseudo-registers. */
2861 static void
2862 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2863 int reg_nr, const gdb_byte *buffer)
2864 {
2865 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2866 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2867 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2868
2869 /* Write the portion that overlaps the VMX register. */
2870 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2871 offset, register_size (gdbarch, reg_nr),
2872 buffer);
2873 }
2874
2875 static enum register_status
2876 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2877 struct regcache *regcache,
2878 int reg_nr, gdb_byte *buffer)
2879 {
2880 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2882
2883 gdb_assert (regcache_arch == gdbarch);
2884
2885 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2886 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2887 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2888 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2889 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2890 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2891 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2892 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2893 else
2894 internal_error (__FILE__, __LINE__,
2895 _("rs6000_pseudo_register_read: "
2896 "called on unexpected register '%s' (%d)"),
2897 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2898 }
2899
2900 static void
2901 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2902 struct regcache *regcache,
2903 int reg_nr, const gdb_byte *buffer)
2904 {
2905 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2906 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2907
2908 gdb_assert (regcache_arch == gdbarch);
2909
2910 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2911 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2912 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2913 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2914 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2915 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2916 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2917 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2918 else
2919 internal_error (__FILE__, __LINE__,
2920 _("rs6000_pseudo_register_write: "
2921 "called on unexpected register '%s' (%d)"),
2922 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2923 }
2924
2925 static int
2926 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2927 struct agent_expr *ax, int reg_nr)
2928 {
2929 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2930 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2931 {
2932 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2933 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2934 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2935 }
2936 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2937 {
2938 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2939 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2940 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2941 }
2942 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2943 {
2944 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2945 if (reg_index > 31)
2946 {
2947 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2948 }
2949 else
2950 {
2951 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2952 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2953 }
2954 }
2955 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2956 {
2957 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2958 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2959 }
2960 else
2961 internal_error (__FILE__, __LINE__,
2962 _("rs6000_pseudo_register_collect: "
2963 "called on unexpected register '%s' (%d)"),
2964 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2965 return 0;
2966 }
2967
2968
2969 static void
2970 rs6000_gen_return_address (struct gdbarch *gdbarch,
2971 struct agent_expr *ax, struct axs_value *value,
2972 CORE_ADDR scope)
2973 {
2974 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2975 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
2976 value->kind = axs_lvalue_register;
2977 value->u.reg = tdep->ppc_lr_regnum;
2978 }
2979
2980
2981 /* Convert a DBX STABS register number to a GDB register number. */
2982 static int
2983 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2984 {
2985 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2986
2987 if (0 <= num && num <= 31)
2988 return tdep->ppc_gp0_regnum + num;
2989 else if (32 <= num && num <= 63)
2990 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2991 specifies registers the architecture doesn't have? Our
2992 callers don't check the value we return. */
2993 return tdep->ppc_fp0_regnum + (num - 32);
2994 else if (77 <= num && num <= 108)
2995 return tdep->ppc_vr0_regnum + (num - 77);
2996 else if (1200 <= num && num < 1200 + 32)
2997 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2998 else
2999 switch (num)
3000 {
3001 case 64:
3002 return tdep->ppc_mq_regnum;
3003 case 65:
3004 return tdep->ppc_lr_regnum;
3005 case 66:
3006 return tdep->ppc_ctr_regnum;
3007 case 76:
3008 return tdep->ppc_xer_regnum;
3009 case 109:
3010 return tdep->ppc_vrsave_regnum;
3011 case 110:
3012 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3013 case 111:
3014 return tdep->ppc_acc_regnum;
3015 case 112:
3016 return tdep->ppc_spefscr_regnum;
3017 default:
3018 return num;
3019 }
3020 }
3021
3022
3023 /* Convert a Dwarf 2 register number to a GDB register number. */
3024 static int
3025 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3026 {
3027 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3028
3029 if (0 <= num && num <= 31)
3030 return tdep->ppc_gp0_regnum + num;
3031 else if (32 <= num && num <= 63)
3032 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3033 specifies registers the architecture doesn't have? Our
3034 callers don't check the value we return. */
3035 return tdep->ppc_fp0_regnum + (num - 32);
3036 else if (1124 <= num && num < 1124 + 32)
3037 return tdep->ppc_vr0_regnum + (num - 1124);
3038 else if (1200 <= num && num < 1200 + 32)
3039 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3040 else
3041 switch (num)
3042 {
3043 case 64:
3044 return tdep->ppc_cr_regnum;
3045 case 67:
3046 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3047 case 99:
3048 return tdep->ppc_acc_regnum;
3049 case 100:
3050 return tdep->ppc_mq_regnum;
3051 case 101:
3052 return tdep->ppc_xer_regnum;
3053 case 108:
3054 return tdep->ppc_lr_regnum;
3055 case 109:
3056 return tdep->ppc_ctr_regnum;
3057 case 356:
3058 return tdep->ppc_vrsave_regnum;
3059 case 612:
3060 return tdep->ppc_spefscr_regnum;
3061 default:
3062 return num;
3063 }
3064 }
3065
3066 /* Translate a .eh_frame register to DWARF register, or adjust a
3067 .debug_frame register. */
3068
3069 static int
3070 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3071 {
3072 /* GCC releases before 3.4 use GCC internal register numbering in
3073 .debug_frame (and .debug_info, et cetera). The numbering is
3074 different from the standard SysV numbering for everything except
3075 for GPRs and FPRs. We can not detect this problem in most cases
3076 - to get accurate debug info for variables living in lr, ctr, v0,
3077 et cetera, use a newer version of GCC. But we must detect
3078 one important case - lr is in column 65 in .debug_frame output,
3079 instead of 108.
3080
3081 GCC 3.4, and the "hammer" branch, have a related problem. They
3082 record lr register saves in .debug_frame as 108, but still record
3083 the return column as 65. We fix that up too.
3084
3085 We can do this because 65 is assigned to fpsr, and GCC never
3086 generates debug info referring to it. To add support for
3087 handwritten debug info that restores fpsr, we would need to add a
3088 producer version check to this. */
3089 if (!eh_frame_p)
3090 {
3091 if (num == 65)
3092 return 108;
3093 else
3094 return num;
3095 }
3096
3097 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3098 internal register numbering; translate that to the standard DWARF2
3099 register numbering. */
3100 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3101 return num;
3102 else if (68 <= num && num <= 75) /* cr0-cr8 */
3103 return num - 68 + 86;
3104 else if (77 <= num && num <= 108) /* vr0-vr31 */
3105 return num - 77 + 1124;
3106 else
3107 switch (num)
3108 {
3109 case 64: /* mq */
3110 return 100;
3111 case 65: /* lr */
3112 return 108;
3113 case 66: /* ctr */
3114 return 109;
3115 case 76: /* xer */
3116 return 101;
3117 case 109: /* vrsave */
3118 return 356;
3119 case 110: /* vscr */
3120 return 67;
3121 case 111: /* spe_acc */
3122 return 99;
3123 case 112: /* spefscr */
3124 return 612;
3125 default:
3126 return num;
3127 }
3128 }
3129 \f
3130
3131 /* Handling the various POWER/PowerPC variants. */
3132
3133 /* Information about a particular processor variant. */
3134
3135 struct variant
3136 {
3137 /* Name of this variant. */
3138 char *name;
3139
3140 /* English description of the variant. */
3141 char *description;
3142
3143 /* bfd_arch_info.arch corresponding to variant. */
3144 enum bfd_architecture arch;
3145
3146 /* bfd_arch_info.mach corresponding to variant. */
3147 unsigned long mach;
3148
3149 /* Target description for this variant. */
3150 struct target_desc **tdesc;
3151 };
3152
3153 static struct variant variants[] =
3154 {
3155 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3156 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3157 {"power", "POWER user-level", bfd_arch_rs6000,
3158 bfd_mach_rs6k, &tdesc_rs6000},
3159 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3160 bfd_mach_ppc_403, &tdesc_powerpc_403},
3161 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3162 bfd_mach_ppc_405, &tdesc_powerpc_405},
3163 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3164 bfd_mach_ppc_601, &tdesc_powerpc_601},
3165 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3166 bfd_mach_ppc_602, &tdesc_powerpc_602},
3167 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3168 bfd_mach_ppc_603, &tdesc_powerpc_603},
3169 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3170 604, &tdesc_powerpc_604},
3171 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3172 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3173 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3174 bfd_mach_ppc_505, &tdesc_powerpc_505},
3175 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3176 bfd_mach_ppc_860, &tdesc_powerpc_860},
3177 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3178 bfd_mach_ppc_750, &tdesc_powerpc_750},
3179 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3180 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3181 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3182 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3183
3184 /* 64-bit */
3185 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3186 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3187 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3188 bfd_mach_ppc_620, &tdesc_powerpc_64},
3189 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3190 bfd_mach_ppc_630, &tdesc_powerpc_64},
3191 {"a35", "PowerPC A35", bfd_arch_powerpc,
3192 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3193 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3194 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3195 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3196 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3197
3198 /* FIXME: I haven't checked the register sets of the following. */
3199 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3200 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3201 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3202 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3203 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3204 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3205
3206 {0, 0, (enum bfd_architecture) 0, 0, 0}
3207 };
3208
3209 /* Return the variant corresponding to architecture ARCH and machine number
3210 MACH. If no such variant exists, return null. */
3211
3212 static const struct variant *
3213 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3214 {
3215 const struct variant *v;
3216
3217 for (v = variants; v->name; v++)
3218 if (arch == v->arch && mach == v->mach)
3219 return v;
3220
3221 return NULL;
3222 }
3223
3224 static int
3225 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3226 {
3227 if (info->endian == BFD_ENDIAN_BIG)
3228 return print_insn_big_powerpc (memaddr, info);
3229 else
3230 return print_insn_little_powerpc (memaddr, info);
3231 }
3232 \f
3233 static CORE_ADDR
3234 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3235 {
3236 return frame_unwind_register_unsigned (next_frame,
3237 gdbarch_pc_regnum (gdbarch));
3238 }
3239
3240 static struct frame_id
3241 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3242 {
3243 return frame_id_build (get_frame_register_unsigned
3244 (this_frame, gdbarch_sp_regnum (gdbarch)),
3245 get_frame_pc (this_frame));
3246 }
3247
3248 struct rs6000_frame_cache
3249 {
3250 CORE_ADDR base;
3251 CORE_ADDR initial_sp;
3252 struct trad_frame_saved_reg *saved_regs;
3253
3254 /* Set BASE_P to true if this frame cache is properly initialized.
3255 Otherwise set to false because some registers or memory cannot
3256 collected. */
3257 int base_p;
3258 /* Cache PC for building unavailable frame. */
3259 CORE_ADDR pc;
3260 };
3261
3262 static struct rs6000_frame_cache *
3263 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3264 {
3265 struct rs6000_frame_cache *cache;
3266 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3267 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3268 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3269 struct rs6000_framedata fdata;
3270 int wordsize = tdep->wordsize;
3271 CORE_ADDR func = 0, pc = 0;
3272
3273 if ((*this_cache) != NULL)
3274 return (struct rs6000_frame_cache *) (*this_cache);
3275 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3276 (*this_cache) = cache;
3277 cache->pc = 0;
3278 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3279
3280 TRY
3281 {
3282 func = get_frame_func (this_frame);
3283 cache->pc = func;
3284 pc = get_frame_pc (this_frame);
3285 skip_prologue (gdbarch, func, pc, &fdata);
3286
3287 /* Figure out the parent's stack pointer. */
3288
3289 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3290 address of the current frame. Things might be easier if the
3291 ->frame pointed to the outer-most address of the frame. In
3292 the mean time, the address of the prev frame is used as the
3293 base address of this frame. */
3294 cache->base = get_frame_register_unsigned
3295 (this_frame, gdbarch_sp_regnum (gdbarch));
3296 }
3297 CATCH (ex, RETURN_MASK_ERROR)
3298 {
3299 if (ex.error != NOT_AVAILABLE_ERROR)
3300 throw_exception (ex);
3301 return (struct rs6000_frame_cache *) (*this_cache);
3302 }
3303 END_CATCH
3304
3305 /* If the function appears to be frameless, check a couple of likely
3306 indicators that we have simply failed to find the frame setup.
3307 Two common cases of this are missing symbols (i.e.
3308 get_frame_func returns the wrong address or 0), and assembly
3309 stubs which have a fast exit path but set up a frame on the slow
3310 path.
3311
3312 If the LR appears to return to this function, then presume that
3313 we have an ABI compliant frame that we failed to find. */
3314 if (fdata.frameless && fdata.lr_offset == 0)
3315 {
3316 CORE_ADDR saved_lr;
3317 int make_frame = 0;
3318
3319 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3320 if (func == 0 && saved_lr == pc)
3321 make_frame = 1;
3322 else if (func != 0)
3323 {
3324 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3325 if (func == saved_func)
3326 make_frame = 1;
3327 }
3328
3329 if (make_frame)
3330 {
3331 fdata.frameless = 0;
3332 fdata.lr_offset = tdep->lr_frame_offset;
3333 }
3334 }
3335
3336 if (!fdata.frameless)
3337 {
3338 /* Frameless really means stackless. */
3339 ULONGEST backchain;
3340
3341 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3342 byte_order, &backchain))
3343 cache->base = (CORE_ADDR) backchain;
3344 }
3345
3346 trad_frame_set_value (cache->saved_regs,
3347 gdbarch_sp_regnum (gdbarch), cache->base);
3348
3349 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3350 All fpr's from saved_fpr to fp31 are saved. */
3351
3352 if (fdata.saved_fpr >= 0)
3353 {
3354 int i;
3355 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3356
3357 /* If skip_prologue says floating-point registers were saved,
3358 but the current architecture has no floating-point registers,
3359 then that's strange. But we have no indices to even record
3360 the addresses under, so we just ignore it. */
3361 if (ppc_floating_point_unit_p (gdbarch))
3362 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3363 {
3364 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3365 fpr_addr += 8;
3366 }
3367 }
3368
3369 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3370 All gpr's from saved_gpr to gpr31 are saved (except during the
3371 prologue). */
3372
3373 if (fdata.saved_gpr >= 0)
3374 {
3375 int i;
3376 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3377 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3378 {
3379 if (fdata.gpr_mask & (1U << i))
3380 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3381 gpr_addr += wordsize;
3382 }
3383 }
3384
3385 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3386 All vr's from saved_vr to vr31 are saved. */
3387 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3388 {
3389 if (fdata.saved_vr >= 0)
3390 {
3391 int i;
3392 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3393 for (i = fdata.saved_vr; i < 32; i++)
3394 {
3395 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3396 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3397 }
3398 }
3399 }
3400
3401 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3402 All vr's from saved_ev to ev31 are saved. ????? */
3403 if (tdep->ppc_ev0_regnum != -1)
3404 {
3405 if (fdata.saved_ev >= 0)
3406 {
3407 int i;
3408 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3409 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3410
3411 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3412 {
3413 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3414 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3415 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3416 }
3417 }
3418 }
3419
3420 /* If != 0, fdata.cr_offset is the offset from the frame that
3421 holds the CR. */
3422 if (fdata.cr_offset != 0)
3423 cache->saved_regs[tdep->ppc_cr_regnum].addr
3424 = cache->base + fdata.cr_offset;
3425
3426 /* If != 0, fdata.lr_offset is the offset from the frame that
3427 holds the LR. */
3428 if (fdata.lr_offset != 0)
3429 cache->saved_regs[tdep->ppc_lr_regnum].addr
3430 = cache->base + fdata.lr_offset;
3431 else if (fdata.lr_register != -1)
3432 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3433 /* The PC is found in the link register. */
3434 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3435 cache->saved_regs[tdep->ppc_lr_regnum];
3436
3437 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3438 holds the VRSAVE. */
3439 if (fdata.vrsave_offset != 0)
3440 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3441 = cache->base + fdata.vrsave_offset;
3442
3443 if (fdata.alloca_reg < 0)
3444 /* If no alloca register used, then fi->frame is the value of the
3445 %sp for this frame, and it is good enough. */
3446 cache->initial_sp
3447 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3448 else
3449 cache->initial_sp
3450 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3451
3452 cache->base_p = 1;
3453 return cache;
3454 }
3455
3456 static void
3457 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3458 struct frame_id *this_id)
3459 {
3460 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3461 this_cache);
3462
3463 if (!info->base_p)
3464 {
3465 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3466 return;
3467 }
3468
3469 /* This marks the outermost frame. */
3470 if (info->base == 0)
3471 return;
3472
3473 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3474 }
3475
3476 static struct value *
3477 rs6000_frame_prev_register (struct frame_info *this_frame,
3478 void **this_cache, int regnum)
3479 {
3480 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3481 this_cache);
3482 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3483 }
3484
3485 static const struct frame_unwind rs6000_frame_unwind =
3486 {
3487 NORMAL_FRAME,
3488 default_frame_unwind_stop_reason,
3489 rs6000_frame_this_id,
3490 rs6000_frame_prev_register,
3491 NULL,
3492 default_frame_sniffer
3493 };
3494
3495 /* Allocate and initialize a frame cache for an epilogue frame.
3496 SP is restored and prev-PC is stored in LR. */
3497
3498 static struct rs6000_frame_cache *
3499 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3500 {
3501 struct rs6000_frame_cache *cache;
3502 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3504
3505 if (*this_cache)
3506 return (struct rs6000_frame_cache *) *this_cache;
3507
3508 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3509 (*this_cache) = cache;
3510 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3511
3512 TRY
3513 {
3514 /* At this point the stack looks as if we just entered the
3515 function, and the return address is stored in LR. */
3516 CORE_ADDR sp, lr;
3517
3518 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3519 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3520
3521 cache->base = sp;
3522 cache->initial_sp = sp;
3523
3524 trad_frame_set_value (cache->saved_regs,
3525 gdbarch_pc_regnum (gdbarch), lr);
3526 }
3527 CATCH (ex, RETURN_MASK_ERROR)
3528 {
3529 if (ex.error != NOT_AVAILABLE_ERROR)
3530 throw_exception (ex);
3531 }
3532 END_CATCH
3533
3534 return cache;
3535 }
3536
3537 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3538 Return the frame ID of an epilogue frame. */
3539
3540 static void
3541 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3542 void **this_cache, struct frame_id *this_id)
3543 {
3544 CORE_ADDR pc;
3545 struct rs6000_frame_cache *info =
3546 rs6000_epilogue_frame_cache (this_frame, this_cache);
3547
3548 pc = get_frame_func (this_frame);
3549 if (info->base == 0)
3550 (*this_id) = frame_id_build_unavailable_stack (pc);
3551 else
3552 (*this_id) = frame_id_build (info->base, pc);
3553 }
3554
3555 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3556 Return the register value of REGNUM in previous frame. */
3557
3558 static struct value *
3559 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3560 void **this_cache, int regnum)
3561 {
3562 struct rs6000_frame_cache *info =
3563 rs6000_epilogue_frame_cache (this_frame, this_cache);
3564 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3565 }
3566
3567 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3568 Check whether this an epilogue frame. */
3569
3570 static int
3571 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3572 struct frame_info *this_frame,
3573 void **this_prologue_cache)
3574 {
3575 if (frame_relative_level (this_frame) == 0)
3576 return rs6000_in_function_epilogue_frame_p (this_frame,
3577 get_frame_arch (this_frame),
3578 get_frame_pc (this_frame));
3579 else
3580 return 0;
3581 }
3582
3583 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3584 a function without debug information. */
3585
3586 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3587 {
3588 NORMAL_FRAME,
3589 default_frame_unwind_stop_reason,
3590 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3591 NULL,
3592 rs6000_epilogue_frame_sniffer
3593 };
3594 \f
3595
3596 static CORE_ADDR
3597 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3598 {
3599 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3600 this_cache);
3601 return info->initial_sp;
3602 }
3603
3604 static const struct frame_base rs6000_frame_base = {
3605 &rs6000_frame_unwind,
3606 rs6000_frame_base_address,
3607 rs6000_frame_base_address,
3608 rs6000_frame_base_address
3609 };
3610
3611 static const struct frame_base *
3612 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3613 {
3614 return &rs6000_frame_base;
3615 }
3616
3617 /* DWARF-2 frame support. Used to handle the detection of
3618 clobbered registers during function calls. */
3619
3620 static void
3621 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3622 struct dwarf2_frame_state_reg *reg,
3623 struct frame_info *this_frame)
3624 {
3625 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3626
3627 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3628 non-volatile registers. We will use the same code for both. */
3629
3630 /* Call-saved GP registers. */
3631 if ((regnum >= tdep->ppc_gp0_regnum + 14
3632 && regnum <= tdep->ppc_gp0_regnum + 31)
3633 || (regnum == tdep->ppc_gp0_regnum + 1))
3634 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3635
3636 /* Call-clobbered GP registers. */
3637 if ((regnum >= tdep->ppc_gp0_regnum + 3
3638 && regnum <= tdep->ppc_gp0_regnum + 12)
3639 || (regnum == tdep->ppc_gp0_regnum))
3640 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3641
3642 /* Deal with FP registers, if supported. */
3643 if (tdep->ppc_fp0_regnum >= 0)
3644 {
3645 /* Call-saved FP registers. */
3646 if ((regnum >= tdep->ppc_fp0_regnum + 14
3647 && regnum <= tdep->ppc_fp0_regnum + 31))
3648 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3649
3650 /* Call-clobbered FP registers. */
3651 if ((regnum >= tdep->ppc_fp0_regnum
3652 && regnum <= tdep->ppc_fp0_regnum + 13))
3653 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3654 }
3655
3656 /* Deal with ALTIVEC registers, if supported. */
3657 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3658 {
3659 /* Call-saved Altivec registers. */
3660 if ((regnum >= tdep->ppc_vr0_regnum + 20
3661 && regnum <= tdep->ppc_vr0_regnum + 31)
3662 || regnum == tdep->ppc_vrsave_regnum)
3663 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3664
3665 /* Call-clobbered Altivec registers. */
3666 if ((regnum >= tdep->ppc_vr0_regnum
3667 && regnum <= tdep->ppc_vr0_regnum + 19))
3668 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3669 }
3670
3671 /* Handle PC register and Stack Pointer correctly. */
3672 if (regnum == gdbarch_pc_regnum (gdbarch))
3673 reg->how = DWARF2_FRAME_REG_RA;
3674 else if (regnum == gdbarch_sp_regnum (gdbarch))
3675 reg->how = DWARF2_FRAME_REG_CFA;
3676 }
3677
3678
3679 /* Return true if a .gnu_attributes section exists in BFD and it
3680 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3681 section exists in BFD and it indicates that SPE extensions are in
3682 use. Check the .gnu.attributes section first, as the binary might be
3683 compiled for SPE, but not actually using SPE instructions. */
3684
3685 static int
3686 bfd_uses_spe_extensions (bfd *abfd)
3687 {
3688 asection *sect;
3689 gdb_byte *contents = NULL;
3690 bfd_size_type size;
3691 gdb_byte *ptr;
3692 int success = 0;
3693 int vector_abi;
3694
3695 if (!abfd)
3696 return 0;
3697
3698 #ifdef HAVE_ELF
3699 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3700 could be using the SPE vector abi without actually using any spe
3701 bits whatsoever. But it's close enough for now. */
3702 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3703 Tag_GNU_Power_ABI_Vector);
3704 if (vector_abi == 3)
3705 return 1;
3706 #endif
3707
3708 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3709 if (!sect)
3710 return 0;
3711
3712 size = bfd_get_section_size (sect);
3713 contents = (gdb_byte *) xmalloc (size);
3714 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3715 {
3716 xfree (contents);
3717 return 0;
3718 }
3719
3720 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3721
3722 struct {
3723 uint32 name_len;
3724 uint32 data_len;
3725 uint32 type;
3726 char name[name_len rounded up to 4-byte alignment];
3727 char data[data_len];
3728 };
3729
3730 Technically, there's only supposed to be one such structure in a
3731 given apuinfo section, but the linker is not always vigilant about
3732 merging apuinfo sections from input files. Just go ahead and parse
3733 them all, exiting early when we discover the binary uses SPE
3734 insns.
3735
3736 It's not specified in what endianness the information in this
3737 section is stored. Assume that it's the endianness of the BFD. */
3738 ptr = contents;
3739 while (1)
3740 {
3741 unsigned int name_len;
3742 unsigned int data_len;
3743 unsigned int type;
3744
3745 /* If we can't read the first three fields, we're done. */
3746 if (size < 12)
3747 break;
3748
3749 name_len = bfd_get_32 (abfd, ptr);
3750 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3751 data_len = bfd_get_32 (abfd, ptr + 4);
3752 type = bfd_get_32 (abfd, ptr + 8);
3753 ptr += 12;
3754
3755 /* The name must be "APUinfo\0". */
3756 if (name_len != 8
3757 && strcmp ((const char *) ptr, "APUinfo") != 0)
3758 break;
3759 ptr += name_len;
3760
3761 /* The type must be 2. */
3762 if (type != 2)
3763 break;
3764
3765 /* The data is stored as a series of uint32. The upper half of
3766 each uint32 indicates the particular APU used and the lower
3767 half indicates the revision of that APU. We just care about
3768 the upper half. */
3769
3770 /* Not 4-byte quantities. */
3771 if (data_len & 3U)
3772 break;
3773
3774 while (data_len)
3775 {
3776 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3777 unsigned int apu = apuinfo >> 16;
3778 ptr += 4;
3779 data_len -= 4;
3780
3781 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3782 either. */
3783 if (apu == 0x100 || apu == 0x101)
3784 {
3785 success = 1;
3786 data_len = 0;
3787 }
3788 }
3789
3790 if (success)
3791 break;
3792 }
3793
3794 xfree (contents);
3795 return success;
3796 }
3797
3798 /* These are macros for parsing instruction fields (I.1.6.28) */
3799
3800 #define PPC_FIELD(value, from, len) \
3801 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3802 #define PPC_SEXT(v, bs) \
3803 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3804 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3805 - ((CORE_ADDR) 1 << ((bs) - 1)))
3806 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3807 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3808 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3809 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3810 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3811 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3812 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3813 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3814 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3815 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3816 | (PPC_FIELD (insn, 16, 5) << 5))
3817 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3818 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3819 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3820 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3821 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3822 #define PPC_OE(insn) PPC_BIT (insn, 21)
3823 #define PPC_RC(insn) PPC_BIT (insn, 31)
3824 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3825 #define PPC_LK(insn) PPC_BIT (insn, 31)
3826 #define PPC_TX(insn) PPC_BIT (insn, 31)
3827 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3828
3829 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3830 #define PPC_XER_NB(xer) (xer & 0x7f)
3831
3832 /* Record Vector-Scalar Registers.
3833 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3834 Otherwise, it's just a VR register. Record them accordingly. */
3835
3836 static int
3837 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3838 {
3839 if (vsr < 0 || vsr >= 64)
3840 return -1;
3841
3842 if (vsr >= 32)
3843 {
3844 if (tdep->ppc_vr0_regnum >= 0)
3845 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3846 }
3847 else
3848 {
3849 if (tdep->ppc_fp0_regnum >= 0)
3850 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3851 if (tdep->ppc_vsr0_upper_regnum >= 0)
3852 record_full_arch_list_add_reg (regcache,
3853 tdep->ppc_vsr0_upper_regnum + vsr);
3854 }
3855
3856 return 0;
3857 }
3858
3859 /* Parse and record instructions primary opcode-4 at ADDR.
3860 Return 0 if successful. */
3861
3862 static int
3863 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3864 CORE_ADDR addr, uint32_t insn)
3865 {
3866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3867 int ext = PPC_FIELD (insn, 21, 11);
3868
3869 switch (ext & 0x3f)
3870 {
3871 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3872 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3873 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3874 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3875 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3876 /* FALL-THROUGH */
3877 case 42: /* Vector Select */
3878 case 43: /* Vector Permute */
3879 case 44: /* Vector Shift Left Double by Octet Immediate */
3880 case 45: /* Vector Permute and Exclusive-OR */
3881 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3882 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3883 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3884 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3885 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3886 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3887 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3888 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3889 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3890 case 46: /* Vector Multiply-Add Single-Precision */
3891 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3892 record_full_arch_list_add_reg (regcache,
3893 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3894 return 0;
3895 }
3896
3897 switch ((ext & 0x1ff))
3898 {
3899 /* 5.16 Decimal Integer Arithmetic Instructions */
3900 case 1: /* Decimal Add Modulo */
3901 case 65: /* Decimal Subtract Modulo */
3902
3903 /* Bit-21 should be set. */
3904 if (!PPC_BIT (insn, 21))
3905 break;
3906
3907 record_full_arch_list_add_reg (regcache,
3908 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3909 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3910 return 0;
3911 }
3912
3913 /* Bit-21 is used for RC */
3914 switch (ext & 0x3ff)
3915 {
3916 case 6: /* Vector Compare Equal To Unsigned Byte */
3917 case 70: /* Vector Compare Equal To Unsigned Halfword */
3918 case 134: /* Vector Compare Equal To Unsigned Word */
3919 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3920 case 774: /* Vector Compare Greater Than Signed Byte */
3921 case 838: /* Vector Compare Greater Than Signed Halfword */
3922 case 902: /* Vector Compare Greater Than Signed Word */
3923 case 967: /* Vector Compare Greater Than Signed Doubleword */
3924 case 518: /* Vector Compare Greater Than Unsigned Byte */
3925 case 646: /* Vector Compare Greater Than Unsigned Word */
3926 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3927 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3928 case 966: /* Vector Compare Bounds Single-Precision */
3929 case 198: /* Vector Compare Equal To Single-Precision */
3930 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3931 case 710: /* Vector Compare Greater Than Single-Precision */
3932 if (PPC_Rc (insn))
3933 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3934 record_full_arch_list_add_reg (regcache,
3935 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3936 return 0;
3937 }
3938
3939 switch (ext)
3940 {
3941 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
3942 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
3943 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
3944 case 334: /* Vector Pack Signed Word Unsigned Saturate */
3945 case 398: /* Vector Pack Signed Halfword Signed Saturate */
3946 case 462: /* Vector Pack Signed Word Signed Saturate */
3947 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
3948 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
3949 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
3950 case 512: /* Vector Add Unsigned Byte Saturate */
3951 case 576: /* Vector Add Unsigned Halfword Saturate */
3952 case 640: /* Vector Add Unsigned Word Saturate */
3953 case 768: /* Vector Add Signed Byte Saturate */
3954 case 832: /* Vector Add Signed Halfword Saturate */
3955 case 896: /* Vector Add Signed Word Saturate */
3956 case 1536: /* Vector Subtract Unsigned Byte Saturate */
3957 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
3958 case 1664: /* Vector Subtract Unsigned Word Saturate */
3959 case 1792: /* Vector Subtract Signed Byte Saturate */
3960 case 1856: /* Vector Subtract Signed Halfword Saturate */
3961 case 1920: /* Vector Subtract Signed Word Saturate */
3962
3963 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
3964 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
3965 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
3966 case 1672: /* Vector Sum across Half Signed Word Saturate */
3967 case 1928: /* Vector Sum across Signed Word Saturate */
3968 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
3969 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
3970 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3971 /* FALL-THROUGH */
3972 case 12: /* Vector Merge High Byte */
3973 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
3974 case 76: /* Vector Merge High Halfword */
3975 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
3976 case 140: /* Vector Merge High Word */
3977 case 268: /* Vector Merge Low Byte */
3978 case 332: /* Vector Merge Low Halfword */
3979 case 396: /* Vector Merge Low Word */
3980 case 526: /* Vector Unpack High Signed Byte */
3981 case 590: /* Vector Unpack High Signed Halfword */
3982 case 654: /* Vector Unpack Low Signed Byte */
3983 case 718: /* Vector Unpack Low Signed Halfword */
3984 case 782: /* Vector Pack Pixel */
3985 case 846: /* Vector Unpack High Pixel */
3986 case 974: /* Vector Unpack Low Pixel */
3987 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
3988 case 1614: /* Vector Unpack High Signed Word */
3989 case 1676: /* Vector Merge Odd Word */
3990 case 1742: /* Vector Unpack Low Signed Word */
3991 case 1932: /* Vector Merge Even Word */
3992 case 524: /* Vector Splat Byte */
3993 case 588: /* Vector Splat Halfword */
3994 case 652: /* Vector Splat Word */
3995 case 780: /* Vector Splat Immediate Signed Byte */
3996 case 844: /* Vector Splat Immediate Signed Halfword */
3997 case 908: /* Vector Splat Immediate Signed Word */
3998 case 452: /* Vector Shift Left */
3999 case 708: /* Vector Shift Right */
4000 case 1036: /* Vector Shift Left by Octet */
4001 case 1100: /* Vector Shift Right by Octet */
4002 case 0: /* Vector Add Unsigned Byte Modulo */
4003 case 64: /* Vector Add Unsigned Halfword Modulo */
4004 case 128: /* Vector Add Unsigned Word Modulo */
4005 case 192: /* Vector Add Unsigned Doubleword Modulo */
4006 case 256: /* Vector Add Unsigned Quadword Modulo */
4007 case 320: /* Vector Add & write Carry Unsigned Quadword */
4008 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4009 case 8: /* Vector Multiply Odd Unsigned Byte */
4010 case 72: /* Vector Multiply Odd Unsigned Halfword */
4011 case 136: /* Vector Multiply Odd Unsigned Word */
4012 case 264: /* Vector Multiply Odd Signed Byte */
4013 case 328: /* Vector Multiply Odd Signed Halfword */
4014 case 392: /* Vector Multiply Odd Signed Word */
4015 case 520: /* Vector Multiply Even Unsigned Byte */
4016 case 584: /* Vector Multiply Even Unsigned Halfword */
4017 case 648: /* Vector Multiply Even Unsigned Word */
4018 case 776: /* Vector Multiply Even Signed Byte */
4019 case 840: /* Vector Multiply Even Signed Halfword */
4020 case 904: /* Vector Multiply Even Signed Word */
4021 case 137: /* Vector Multiply Unsigned Word Modulo */
4022 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4023 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4024 case 1152: /* Vector Subtract Unsigned Word Modulo */
4025 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4026 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4027 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4028 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4029 case 1282: /* Vector Average Signed Byte */
4030 case 1346: /* Vector Average Signed Halfword */
4031 case 1410: /* Vector Average Signed Word */
4032 case 1026: /* Vector Average Unsigned Byte */
4033 case 1090: /* Vector Average Unsigned Halfword */
4034 case 1154: /* Vector Average Unsigned Word */
4035 case 258: /* Vector Maximum Signed Byte */
4036 case 322: /* Vector Maximum Signed Halfword */
4037 case 386: /* Vector Maximum Signed Word */
4038 case 450: /* Vector Maximum Signed Doubleword */
4039 case 2: /* Vector Maximum Unsigned Byte */
4040 case 66: /* Vector Maximum Unsigned Halfword */
4041 case 130: /* Vector Maximum Unsigned Word */
4042 case 194: /* Vector Maximum Unsigned Doubleword */
4043 case 770: /* Vector Minimum Signed Byte */
4044 case 834: /* Vector Minimum Signed Halfword */
4045 case 898: /* Vector Minimum Signed Word */
4046 case 962: /* Vector Minimum Signed Doubleword */
4047 case 514: /* Vector Minimum Unsigned Byte */
4048 case 578: /* Vector Minimum Unsigned Halfword */
4049 case 642: /* Vector Minimum Unsigned Word */
4050 case 706: /* Vector Minimum Unsigned Doubleword */
4051 case 1028: /* Vector Logical AND */
4052 case 1668: /* Vector Logical Equivalent */
4053 case 1092: /* Vector Logical AND with Complement */
4054 case 1412: /* Vector Logical NAND */
4055 case 1348: /* Vector Logical OR with Complement */
4056 case 1156: /* Vector Logical OR */
4057 case 1284: /* Vector Logical NOR */
4058 case 1220: /* Vector Logical XOR */
4059 case 4: /* Vector Rotate Left Byte */
4060 case 132: /* Vector Rotate Left Word VX-form */
4061 case 68: /* Vector Rotate Left Halfword */
4062 case 196: /* Vector Rotate Left Doubleword */
4063 case 260: /* Vector Shift Left Byte */
4064 case 388: /* Vector Shift Left Word */
4065 case 324: /* Vector Shift Left Halfword */
4066 case 1476: /* Vector Shift Left Doubleword */
4067 case 516: /* Vector Shift Right Byte */
4068 case 644: /* Vector Shift Right Word */
4069 case 580: /* Vector Shift Right Halfword */
4070 case 1732: /* Vector Shift Right Doubleword */
4071 case 772: /* Vector Shift Right Algebraic Byte */
4072 case 900: /* Vector Shift Right Algebraic Word */
4073 case 836: /* Vector Shift Right Algebraic Halfword */
4074 case 964: /* Vector Shift Right Algebraic Doubleword */
4075 case 10: /* Vector Add Single-Precision */
4076 case 74: /* Vector Subtract Single-Precision */
4077 case 1034: /* Vector Maximum Single-Precision */
4078 case 1098: /* Vector Minimum Single-Precision */
4079 case 842: /* Vector Convert From Signed Fixed-Point Word */
4080 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4081 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4082 case 522: /* Vector Round to Single-Precision Integer Nearest */
4083 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4084 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4085 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4086 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4087 case 266: /* Vector Reciprocal Estimate Single-Precision */
4088 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4089 case 1288: /* Vector AES Cipher */
4090 case 1289: /* Vector AES Cipher Last */
4091 case 1352: /* Vector AES Inverse Cipher */
4092 case 1353: /* Vector AES Inverse Cipher Last */
4093 case 1480: /* Vector AES SubBytes */
4094 case 1730: /* Vector SHA-512 Sigma Doubleword */
4095 case 1666: /* Vector SHA-256 Sigma Word */
4096 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4097 case 1160: /* Vector Polynomial Multiply-Sum Word */
4098 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4099 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4100 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4101 case 1794: /* Vector Count Leading Zeros Byte */
4102 case 1858: /* Vector Count Leading Zeros Halfword */
4103 case 1922: /* Vector Count Leading Zeros Word */
4104 case 1986: /* Vector Count Leading Zeros Doubleword */
4105 case 1795: /* Vector Population Count Byte */
4106 case 1859: /* Vector Population Count Halfword */
4107 case 1923: /* Vector Population Count Word */
4108 case 1987: /* Vector Population Count Doubleword */
4109 case 1356: /* Vector Bit Permute Quadword */
4110 record_full_arch_list_add_reg (regcache,
4111 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4112 return 0;
4113
4114 case 1604: /* Move To Vector Status and Control Register */
4115 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4116 return 0;
4117 case 1540: /* Move From Vector Status and Control Register */
4118 record_full_arch_list_add_reg (regcache,
4119 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4120 return 0;
4121 }
4122
4123 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4124 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4125 return -1;
4126 }
4127
4128 /* Parse and record instructions of primary opcode-19 at ADDR.
4129 Return 0 if successful. */
4130
4131 static int
4132 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4133 CORE_ADDR addr, uint32_t insn)
4134 {
4135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4136 int ext = PPC_EXTOP (insn);
4137
4138 switch (ext)
4139 {
4140 case 0: /* Move Condition Register Field */
4141 case 33: /* Condition Register NOR */
4142 case 129: /* Condition Register AND with Complement */
4143 case 193: /* Condition Register XOR */
4144 case 225: /* Condition Register NAND */
4145 case 257: /* Condition Register AND */
4146 case 289: /* Condition Register Equivalent */
4147 case 417: /* Condition Register OR with Complement */
4148 case 449: /* Condition Register OR */
4149 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4150 return 0;
4151
4152 case 16: /* Branch Conditional */
4153 case 560: /* Branch Conditional to Branch Target Address Register */
4154 if ((PPC_BO (insn) & 0x4) == 0)
4155 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4156 /* FALL-THROUGH */
4157 case 528: /* Branch Conditional to Count Register */
4158 if (PPC_LK (insn))
4159 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4160 return 0;
4161
4162 case 150: /* Instruction Synchronize */
4163 /* Do nothing. */
4164 return 0;
4165 }
4166
4167 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4168 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4169 return -1;
4170 }
4171
4172 /* Parse and record instructions of primary opcode-31 at ADDR.
4173 Return 0 if successful. */
4174
4175 static int
4176 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4177 CORE_ADDR addr, uint32_t insn)
4178 {
4179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4180 int ext = PPC_EXTOP (insn);
4181 int tmp, nr, nb, i;
4182 CORE_ADDR at_dcsz, ea = 0;
4183 ULONGEST rb, ra, xer;
4184 int size = 0;
4185
4186 /* These instructions have OE bit. */
4187 switch (ext & 0x1ff)
4188 {
4189 /* These write RT and XER. Update CR if RC is set. */
4190 case 8: /* Subtract from carrying */
4191 case 10: /* Add carrying */
4192 case 136: /* Subtract from extended */
4193 case 138: /* Add extended */
4194 case 200: /* Subtract from zero extended */
4195 case 202: /* Add to zero extended */
4196 case 232: /* Subtract from minus one extended */
4197 case 234: /* Add to minus one extended */
4198 /* CA is always altered, but SO/OV are only altered when OE=1.
4199 In any case, XER is always altered. */
4200 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4201 if (PPC_RC (insn))
4202 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4203 record_full_arch_list_add_reg (regcache,
4204 tdep->ppc_gp0_regnum + PPC_RT (insn));
4205 return 0;
4206
4207 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4208 case 40: /* Subtract from */
4209 case 104: /* Negate */
4210 case 233: /* Multiply low doubleword */
4211 case 235: /* Multiply low word */
4212 case 266: /* Add */
4213 case 393: /* Divide Doubleword Extended Unsigned */
4214 case 395: /* Divide Word Extended Unsigned */
4215 case 425: /* Divide Doubleword Extended */
4216 case 427: /* Divide Word Extended */
4217 case 457: /* Divide Doubleword Unsigned */
4218 case 459: /* Divide Word Unsigned */
4219 case 489: /* Divide Doubleword */
4220 case 491: /* Divide Word */
4221 if (PPC_OE (insn))
4222 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4223 /* FALL-THROUGH */
4224 case 9: /* Multiply High Doubleword Unsigned */
4225 case 11: /* Multiply High Word Unsigned */
4226 case 73: /* Multiply High Doubleword */
4227 case 75: /* Multiply High Word */
4228 if (PPC_RC (insn))
4229 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4230 record_full_arch_list_add_reg (regcache,
4231 tdep->ppc_gp0_regnum + PPC_RT (insn));
4232 return 0;
4233 }
4234
4235 if ((ext & 0x1f) == 15)
4236 {
4237 /* Integer Select. bit[16:20] is used for BC. */
4238 record_full_arch_list_add_reg (regcache,
4239 tdep->ppc_gp0_regnum + PPC_RT (insn));
4240 return 0;
4241 }
4242
4243 switch (ext)
4244 {
4245 case 78: /* Determine Leftmost Zero Byte */
4246 if (PPC_RC (insn))
4247 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4248 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4249 record_full_arch_list_add_reg (regcache,
4250 tdep->ppc_gp0_regnum + PPC_RT (insn));
4251 return 0;
4252
4253 /* These only write RT. */
4254 case 19: /* Move from condition register */
4255 /* Move From One Condition Register Field */
4256 case 74: /* Add and Generate Sixes */
4257 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4258 case 302: /* Move From Branch History Rolling Buffer */
4259 case 339: /* Move From Special Purpose Register */
4260 case 371: /* Move From Time Base [Phased-Out] */
4261 record_full_arch_list_add_reg (regcache,
4262 tdep->ppc_gp0_regnum + PPC_RT (insn));
4263 return 0;
4264
4265 /* These only write to RA. */
4266 case 51: /* Move From VSR Doubleword */
4267 case 115: /* Move From VSR Word and Zero */
4268 case 122: /* Population count bytes */
4269 case 378: /* Population count words */
4270 case 506: /* Population count doublewords */
4271 case 154: /* Parity Word */
4272 case 186: /* Parity Doubleword */
4273 case 252: /* Bit Permute Doubleword */
4274 case 282: /* Convert Declets To Binary Coded Decimal */
4275 case 314: /* Convert Binary Coded Decimal To Declets */
4276 case 508: /* Compare bytes */
4277 record_full_arch_list_add_reg (regcache,
4278 tdep->ppc_gp0_regnum + PPC_RA (insn));
4279 return 0;
4280
4281 /* These write CR and optional RA. */
4282 case 792: /* Shift Right Algebraic Word */
4283 case 794: /* Shift Right Algebraic Doubleword */
4284 case 824: /* Shift Right Algebraic Word Immediate */
4285 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4286 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4287 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4288 record_full_arch_list_add_reg (regcache,
4289 tdep->ppc_gp0_regnum + PPC_RA (insn));
4290 /* FALL-THROUGH */
4291 case 0: /* Compare */
4292 case 32: /* Compare logical */
4293 case 144: /* Move To Condition Register Fields */
4294 /* Move To One Condition Register Field */
4295 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4296 return 0;
4297
4298 /* These write to RT. Update RA if 'update indexed.' */
4299 case 53: /* Load Doubleword with Update Indexed */
4300 case 119: /* Load Byte and Zero with Update Indexed */
4301 case 311: /* Load Halfword and Zero with Update Indexed */
4302 case 55: /* Load Word and Zero with Update Indexed */
4303 case 375: /* Load Halfword Algebraic with Update Indexed */
4304 case 373: /* Load Word Algebraic with Update Indexed */
4305 record_full_arch_list_add_reg (regcache,
4306 tdep->ppc_gp0_regnum + PPC_RA (insn));
4307 /* FALL-THROUGH */
4308 case 21: /* Load Doubleword Indexed */
4309 case 52: /* Load Byte And Reserve Indexed */
4310 case 116: /* Load Halfword And Reserve Indexed */
4311 case 20: /* Load Word And Reserve Indexed */
4312 case 84: /* Load Doubleword And Reserve Indexed */
4313 case 87: /* Load Byte and Zero Indexed */
4314 case 279: /* Load Halfword and Zero Indexed */
4315 case 23: /* Load Word and Zero Indexed */
4316 case 343: /* Load Halfword Algebraic Indexed */
4317 case 341: /* Load Word Algebraic Indexed */
4318 case 790: /* Load Halfword Byte-Reverse Indexed */
4319 case 534: /* Load Word Byte-Reverse Indexed */
4320 case 532: /* Load Doubleword Byte-Reverse Indexed */
4321 record_full_arch_list_add_reg (regcache,
4322 tdep->ppc_gp0_regnum + PPC_RT (insn));
4323 return 0;
4324
4325 case 597: /* Load String Word Immediate */
4326 case 533: /* Load String Word Indexed */
4327 if (ext == 597)
4328 {
4329 nr = PPC_NB (insn);
4330 if (nr == 0)
4331 nr = 32;
4332 }
4333 else
4334 {
4335 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4336 nr = PPC_XER_NB (xer);
4337 }
4338
4339 nr = (nr + 3) >> 2;
4340
4341 /* If n=0, the contents of register RT are undefined. */
4342 if (nr == 0)
4343 nr = 1;
4344
4345 for (i = 0; i < nr; i++)
4346 record_full_arch_list_add_reg (regcache,
4347 tdep->ppc_gp0_regnum
4348 + ((PPC_RT (insn) + i) & 0x1f));
4349 return 0;
4350
4351 case 276: /* Load Quadword And Reserve Indexed */
4352 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4353 record_full_arch_list_add_reg (regcache, tmp);
4354 record_full_arch_list_add_reg (regcache, tmp + 1);
4355 return 0;
4356
4357 /* These write VRT. */
4358 case 6: /* Load Vector for Shift Left Indexed */
4359 case 38: /* Load Vector for Shift Right Indexed */
4360 case 7: /* Load Vector Element Byte Indexed */
4361 case 39: /* Load Vector Element Halfword Indexed */
4362 case 71: /* Load Vector Element Word Indexed */
4363 case 103: /* Load Vector Indexed */
4364 case 359: /* Load Vector Indexed LRU */
4365 record_full_arch_list_add_reg (regcache,
4366 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4367 return 0;
4368
4369 /* These write FRT. Update RA if 'update indexed.' */
4370 case 567: /* Load Floating-Point Single with Update Indexed */
4371 case 631: /* Load Floating-Point Double with Update Indexed */
4372 record_full_arch_list_add_reg (regcache,
4373 tdep->ppc_gp0_regnum + PPC_RA (insn));
4374 /* FALL-THROUGH */
4375 case 535: /* Load Floating-Point Single Indexed */
4376 case 599: /* Load Floating-Point Double Indexed */
4377 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4378 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4379 record_full_arch_list_add_reg (regcache,
4380 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4381 return 0;
4382
4383 case 791: /* Load Floating-Point Double Pair Indexed */
4384 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4385 record_full_arch_list_add_reg (regcache, tmp);
4386 record_full_arch_list_add_reg (regcache, tmp + 1);
4387 return 0;
4388
4389 case 179: /* Move To VSR Doubleword */
4390 case 211: /* Move To VSR Word Algebraic */
4391 case 243: /* Move To VSR Word and Zero */
4392 case 588: /* Load VSX Scalar Doubleword Indexed */
4393 case 524: /* Load VSX Scalar Single-Precision Indexed */
4394 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4395 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4396 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4397 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4398 case 780: /* Load VSX Vector Word*4 Indexed */
4399 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4400 return 0;
4401
4402 /* These write RA. Update CR if RC is set. */
4403 case 24: /* Shift Left Word */
4404 case 26: /* Count Leading Zeros Word */
4405 case 27: /* Shift Left Doubleword */
4406 case 28: /* AND */
4407 case 58: /* Count Leading Zeros Doubleword */
4408 case 60: /* AND with Complement */
4409 case 124: /* NOR */
4410 case 284: /* Equivalent */
4411 case 316: /* XOR */
4412 case 476: /* NAND */
4413 case 412: /* OR with Complement */
4414 case 444: /* OR */
4415 case 536: /* Shift Right Word */
4416 case 539: /* Shift Right Doubleword */
4417 case 922: /* Extend Sign Halfword */
4418 case 954: /* Extend Sign Byte */
4419 case 986: /* Extend Sign Word */
4420 if (PPC_RC (insn))
4421 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4422 record_full_arch_list_add_reg (regcache,
4423 tdep->ppc_gp0_regnum + PPC_RA (insn));
4424 return 0;
4425
4426 /* Store memory. */
4427 case 181: /* Store Doubleword with Update Indexed */
4428 case 183: /* Store Word with Update Indexed */
4429 case 247: /* Store Byte with Update Indexed */
4430 case 439: /* Store Half Word with Update Indexed */
4431 case 695: /* Store Floating-Point Single with Update Indexed */
4432 case 759: /* Store Floating-Point Double with Update Indexed */
4433 record_full_arch_list_add_reg (regcache,
4434 tdep->ppc_gp0_regnum + PPC_RA (insn));
4435 /* FALL-THROUGH */
4436 case 135: /* Store Vector Element Byte Indexed */
4437 case 167: /* Store Vector Element Halfword Indexed */
4438 case 199: /* Store Vector Element Word Indexed */
4439 case 231: /* Store Vector Indexed */
4440 case 487: /* Store Vector Indexed LRU */
4441 case 716: /* Store VSX Scalar Doubleword Indexed */
4442 case 140: /* Store VSX Scalar as Integer Word Indexed */
4443 case 652: /* Store VSX Scalar Single-Precision Indexed */
4444 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4445 case 908: /* Store VSX Vector Word*4 Indexed */
4446 case 149: /* Store Doubleword Indexed */
4447 case 151: /* Store Word Indexed */
4448 case 215: /* Store Byte Indexed */
4449 case 407: /* Store Half Word Indexed */
4450 case 694: /* Store Byte Conditional Indexed */
4451 case 726: /* Store Halfword Conditional Indexed */
4452 case 150: /* Store Word Conditional Indexed */
4453 case 214: /* Store Doubleword Conditional Indexed */
4454 case 182: /* Store Quadword Conditional Indexed */
4455 case 662: /* Store Word Byte-Reverse Indexed */
4456 case 918: /* Store Halfword Byte-Reverse Indexed */
4457 case 660: /* Store Doubleword Byte-Reverse Indexed */
4458 case 663: /* Store Floating-Point Single Indexed */
4459 case 727: /* Store Floating-Point Double Indexed */
4460 case 919: /* Store Floating-Point Double Pair Indexed */
4461 case 983: /* Store Floating-Point as Integer Word Indexed */
4462 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4463 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4464
4465 ra = 0;
4466 if (PPC_RA (insn) != 0)
4467 regcache_raw_read_unsigned (regcache,
4468 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4469 regcache_raw_read_unsigned (regcache,
4470 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4471 ea = ra + rb;
4472
4473 switch (ext)
4474 {
4475 case 183: /* Store Word with Update Indexed */
4476 case 199: /* Store Vector Element Word Indexed */
4477 case 140: /* Store VSX Scalar as Integer Word Indexed */
4478 case 652: /* Store VSX Scalar Single-Precision Indexed */
4479 case 151: /* Store Word Indexed */
4480 case 150: /* Store Word Conditional Indexed */
4481 case 662: /* Store Word Byte-Reverse Indexed */
4482 case 663: /* Store Floating-Point Single Indexed */
4483 case 695: /* Store Floating-Point Single with Update Indexed */
4484 case 983: /* Store Floating-Point as Integer Word Indexed */
4485 size = 4;
4486 break;
4487 case 247: /* Store Byte with Update Indexed */
4488 case 135: /* Store Vector Element Byte Indexed */
4489 case 215: /* Store Byte Indexed */
4490 case 694: /* Store Byte Conditional Indexed */
4491 size = 1;
4492 break;
4493 case 439: /* Store Halfword with Update Indexed */
4494 case 167: /* Store Vector Element Halfword Indexed */
4495 case 407: /* Store Halfword Indexed */
4496 case 726: /* Store Halfword Conditional Indexed */
4497 case 918: /* Store Halfword Byte-Reverse Indexed */
4498 size = 2;
4499 break;
4500 case 181: /* Store Doubleword with Update Indexed */
4501 case 716: /* Store VSX Scalar Doubleword Indexed */
4502 case 149: /* Store Doubleword Indexed */
4503 case 214: /* Store Doubleword Conditional Indexed */
4504 case 660: /* Store Doubleword Byte-Reverse Indexed */
4505 case 727: /* Store Floating-Point Double Indexed */
4506 case 759: /* Store Floating-Point Double with Update Indexed */
4507 size = 8;
4508 break;
4509 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4510 case 908: /* Store VSX Vector Word*4 Indexed */
4511 case 182: /* Store Quadword Conditional Indexed */
4512 case 231: /* Store Vector Indexed */
4513 case 487: /* Store Vector Indexed LRU */
4514 case 919: /* Store Floating-Point Double Pair Indexed */
4515 size = 16;
4516 break;
4517 default:
4518 gdb_assert (0);
4519 }
4520
4521 /* Align address for Store Vector instructions. */
4522 switch (ext)
4523 {
4524 case 167: /* Store Vector Element Halfword Indexed */
4525 addr = addr & ~0x1ULL;
4526 break;
4527
4528 case 199: /* Store Vector Element Word Indexed */
4529 addr = addr & ~0x3ULL;
4530 break;
4531
4532 case 231: /* Store Vector Indexed */
4533 case 487: /* Store Vector Indexed LRU */
4534 addr = addr & ~0xfULL;
4535 break;
4536 }
4537
4538 record_full_arch_list_add_mem (addr, size);
4539 return 0;
4540
4541 case 725: /* Store String Word Immediate */
4542 ra = 0;
4543 if (PPC_RA (insn) != 0)
4544 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &ra);
4545 ea += ra;
4546
4547 nb = PPC_NB (insn);
4548 if (nb == 0)
4549 nb = 32;
4550
4551 record_full_arch_list_add_mem (ea, nb);
4552
4553 return 0;
4554
4555 case 661: /* Store String Word Indexed */
4556 ra = 0;
4557 if (PPC_RA (insn) != 0)
4558 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &ra);
4559 ea += ra;
4560
4561 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4562 nb = PPC_XER_NB (xer);
4563
4564 if (nb != 0)
4565 {
4566 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &rb);
4567 ea += rb;
4568 record_full_arch_list_add_mem (ea, nb);
4569 }
4570
4571 return 0;
4572
4573 case 467: /* Move To Special Purpose Register */
4574 switch (PPC_SPR (insn))
4575 {
4576 case 1: /* XER */
4577 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4578 return 0;
4579 case 8: /* LR */
4580 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4581 return 0;
4582 case 9: /* CTR */
4583 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4584 return 0;
4585 case 256: /* VRSAVE */
4586 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4587 return 0;
4588 }
4589
4590 goto UNKNOWN_OP;
4591
4592 case 147: /* Move To Split Little Endian */
4593 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4594 return 0;
4595
4596 case 512: /* Move to Condition Register from XER */
4597 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4598 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4599 return 0;
4600
4601 case 4: /* Trap Word */
4602 case 68: /* Trap Doubleword */
4603 case 430: /* Clear BHRB */
4604 case 598: /* Synchronize */
4605 case 62: /* Wait for Interrupt */
4606 case 22: /* Instruction Cache Block Touch */
4607 case 854: /* Enforce In-order Execution of I/O */
4608 case 246: /* Data Cache Block Touch for Store */
4609 case 54: /* Data Cache Block Store */
4610 case 86: /* Data Cache Block Flush */
4611 case 278: /* Data Cache Block Touch */
4612 case 758: /* Data Cache Block Allocate */
4613 case 982: /* Instruction Cache Block Invalidate */
4614 return 0;
4615
4616 case 654: /* Transaction Begin */
4617 case 686: /* Transaction End */
4618 case 718: /* Transaction Check */
4619 case 750: /* Transaction Suspend or Resume */
4620 case 782: /* Transaction Abort Word Conditional */
4621 case 814: /* Transaction Abort Doubleword Conditional */
4622 case 846: /* Transaction Abort Word Conditional Immediate */
4623 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4624 case 910: /* Transaction Abort */
4625 fprintf_unfiltered (gdb_stdlog, "Cannot record Transaction instructions. "
4626 "%08x at %s, 31-%d.\n",
4627 insn, paddress (gdbarch, addr), ext);
4628 return -1;
4629
4630 case 1014: /* Data Cache Block set to Zero */
4631 if (target_auxv_search (&current_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4632 || at_dcsz == 0)
4633 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4634
4635 if (PPC_RA (insn) != 0)
4636 regcache_raw_read_unsigned (regcache,
4637 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4638 regcache_raw_read_unsigned (regcache,
4639 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4640 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4641 record_full_arch_list_add_mem (ea, at_dcsz);
4642 return 0;
4643 }
4644
4645 UNKNOWN_OP:
4646 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4647 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
4648 return -1;
4649 }
4650
4651 /* Parse and record instructions of primary opcode-59 at ADDR.
4652 Return 0 if successful. */
4653
4654 static int
4655 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4656 CORE_ADDR addr, uint32_t insn)
4657 {
4658 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4659 int ext = PPC_EXTOP (insn);
4660
4661 switch (ext & 0x1f)
4662 {
4663 case 18: /* Floating Divide */
4664 case 20: /* Floating Subtract */
4665 case 21: /* Floating Add */
4666 case 22: /* Floating Square Root */
4667 case 24: /* Floating Reciprocal Estimate */
4668 case 25: /* Floating Multiply */
4669 case 26: /* Floating Reciprocal Square Root Estimate */
4670 case 28: /* Floating Multiply-Subtract */
4671 case 29: /* Floating Multiply-Add */
4672 case 30: /* Floating Negative Multiply-Subtract */
4673 case 31: /* Floating Negative Multiply-Add */
4674 record_full_arch_list_add_reg (regcache,
4675 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4676 if (PPC_RC (insn))
4677 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4678 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4679
4680 return 0;
4681 }
4682
4683 switch (ext)
4684 {
4685 case 2: /* DFP Add */
4686 case 3: /* DFP Quantize */
4687 case 34: /* DFP Multiply */
4688 case 35: /* DFP Reround */
4689 case 67: /* DFP Quantize Immediate */
4690 case 99: /* DFP Round To FP Integer With Inexact */
4691 case 227: /* DFP Round To FP Integer Without Inexact */
4692 case 258: /* DFP Convert To DFP Long! */
4693 case 290: /* DFP Convert To Fixed */
4694 case 514: /* DFP Subtract */
4695 case 546: /* DFP Divide */
4696 case 770: /* DFP Round To DFP Short! */
4697 case 802: /* DFP Convert From Fixed */
4698 case 834: /* DFP Encode BCD To DPD */
4699 if (PPC_RC (insn))
4700 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4701 record_full_arch_list_add_reg (regcache,
4702 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4703 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4704 return 0;
4705
4706 case 130: /* DFP Compare Ordered */
4707 case 162: /* DFP Test Exponent */
4708 case 194: /* DFP Test Data Class */
4709 case 226: /* DFP Test Data Group */
4710 case 642: /* DFP Compare Unordered */
4711 case 674: /* DFP Test Significance */
4712 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4713 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4714 return 0;
4715
4716 case 66: /* DFP Shift Significand Left Immediate */
4717 case 98: /* DFP Shift Significand Right Immediate */
4718 case 322: /* DFP Decode DPD To BCD */
4719 case 354: /* DFP Extract Biased Exponent */
4720 case 866: /* DFP Insert Biased Exponent */
4721 record_full_arch_list_add_reg (regcache,
4722 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4723 if (PPC_RC (insn))
4724 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4725 return 0;
4726
4727 case 846: /* Floating Convert From Integer Doubleword Single */
4728 case 974: /* Floating Convert From Integer Doubleword Unsigned
4729 Single */
4730 record_full_arch_list_add_reg (regcache,
4731 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4732 if (PPC_RC (insn))
4733 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4734 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4735
4736 return 0;
4737 }
4738
4739 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4740 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
4741 return -1;
4742 }
4743
4744 /* Parse and record instructions of primary opcode-60 at ADDR.
4745 Return 0 if successful. */
4746
4747 static int
4748 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4749 CORE_ADDR addr, uint32_t insn)
4750 {
4751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4752 int ext = PPC_EXTOP (insn);
4753
4754 switch (ext >> 2)
4755 {
4756 case 0: /* VSX Scalar Add Single-Precision */
4757 case 32: /* VSX Scalar Add Double-Precision */
4758 case 24: /* VSX Scalar Divide Single-Precision */
4759 case 56: /* VSX Scalar Divide Double-Precision */
4760 case 176: /* VSX Scalar Copy Sign Double-Precision */
4761 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4762 case 41: /* ditto */
4763 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4764 case 9: /* ditto */
4765 case 160: /* VSX Scalar Maximum Double-Precision */
4766 case 168: /* VSX Scalar Minimum Double-Precision */
4767 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4768 case 57: /* ditto */
4769 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4770 case 25: /* ditto */
4771 case 48: /* VSX Scalar Multiply Double-Precision */
4772 case 16: /* VSX Scalar Multiply Single-Precision */
4773 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4774 case 169: /* ditto */
4775 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4776 case 137: /* ditto */
4777 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4778 case 185: /* ditto */
4779 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4780 case 153: /* ditto */
4781 case 40: /* VSX Scalar Subtract Double-Precision */
4782 case 8: /* VSX Scalar Subtract Single-Precision */
4783 case 96: /* VSX Vector Add Double-Precision */
4784 case 64: /* VSX Vector Add Single-Precision */
4785 case 120: /* VSX Vector Divide Double-Precision */
4786 case 88: /* VSX Vector Divide Single-Precision */
4787 case 97: /* VSX Vector Multiply-Add Double-Precision */
4788 case 105: /* ditto */
4789 case 65: /* VSX Vector Multiply-Add Single-Precision */
4790 case 73: /* ditto */
4791 case 224: /* VSX Vector Maximum Double-Precision */
4792 case 192: /* VSX Vector Maximum Single-Precision */
4793 case 232: /* VSX Vector Minimum Double-Precision */
4794 case 200: /* VSX Vector Minimum Single-Precision */
4795 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4796 case 121: /* ditto */
4797 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4798 case 89: /* ditto */
4799 case 112: /* VSX Vector Multiply Double-Precision */
4800 case 80: /* VSX Vector Multiply Single-Precision */
4801 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
4802 case 233: /* ditto */
4803 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
4804 case 201: /* ditto */
4805 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
4806 case 249: /* ditto */
4807 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
4808 case 217: /* ditto */
4809 case 104: /* VSX Vector Subtract Double-Precision */
4810 case 72: /* VSX Vector Subtract Single-Precision */
4811 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4812 case 240: /* VSX Vector Copy Sign Double-Precision */
4813 case 208: /* VSX Vector Copy Sign Single-Precision */
4814 case 130: /* VSX Logical AND */
4815 case 138: /* VSX Logical AND with Complement */
4816 case 186: /* VSX Logical Equivalence */
4817 case 178: /* VSX Logical NAND */
4818 case 170: /* VSX Logical OR with Complement */
4819 case 162: /* VSX Logical NOR */
4820 case 146: /* VSX Logical OR */
4821 case 154: /* VSX Logical XOR */
4822 case 18: /* VSX Merge High Word */
4823 case 50: /* VSX Merge Low Word */
4824 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
4825 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
4826 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
4827 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
4828 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
4829 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
4830 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
4831 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
4832 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4833 return 0;
4834
4835 case 61: /* VSX Scalar Test for software Divide Double-Precision */
4836 case 125: /* VSX Vector Test for software Divide Double-Precision */
4837 case 93: /* VSX Vector Test for software Divide Single-Precision */
4838 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4839 return 0;
4840
4841 case 35: /* VSX Scalar Compare Unordered Double-Precision */
4842 case 43: /* VSX Scalar Compare Ordered Double-Precision */
4843 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4844 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4845 return 0;
4846 }
4847
4848 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
4849 {
4850 case 99: /* VSX Vector Compare Equal To Double-Precision */
4851 case 67: /* VSX Vector Compare Equal To Single-Precision */
4852 case 115: /* VSX Vector Compare Greater Than or
4853 Equal To Double-Precision */
4854 case 83: /* VSX Vector Compare Greater Than or
4855 Equal To Single-Precision */
4856 case 107: /* VSX Vector Compare Greater Than Double-Precision */
4857 case 75: /* VSX Vector Compare Greater Than Single-Precision */
4858 if (PPC_Rc (insn))
4859 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4860 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4861 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4862 return 0;
4863 }
4864
4865 switch (ext >> 1)
4866 {
4867 case 265: /* VSX Scalar round Double-Precision to
4868 Single-Precision and Convert to
4869 Single-Precision format */
4870 case 344: /* VSX Scalar truncate Double-Precision to
4871 Integer and Convert to Signed Integer
4872 Doubleword format with Saturate */
4873 case 88: /* VSX Scalar truncate Double-Precision to
4874 Integer and Convert to Signed Integer Word
4875 Format with Saturate */
4876 case 328: /* VSX Scalar truncate Double-Precision integer
4877 and Convert to Unsigned Integer Doubleword
4878 Format with Saturate */
4879 case 72: /* VSX Scalar truncate Double-Precision to
4880 Integer and Convert to Unsigned Integer Word
4881 Format with Saturate */
4882 case 329: /* VSX Scalar Convert Single-Precision to
4883 Double-Precision format */
4884 case 376: /* VSX Scalar Convert Signed Integer
4885 Doubleword to floating-point format and
4886 Round to Double-Precision format */
4887 case 312: /* VSX Scalar Convert Signed Integer
4888 Doubleword to floating-point format and
4889 round to Single-Precision */
4890 case 360: /* VSX Scalar Convert Unsigned Integer
4891 Doubleword to floating-point format and
4892 Round to Double-Precision format */
4893 case 296: /* VSX Scalar Convert Unsigned Integer
4894 Doubleword to floating-point format and
4895 Round to Single-Precision */
4896 case 73: /* VSX Scalar Round to Double-Precision Integer
4897 Using Round to Nearest Away */
4898 case 107: /* VSX Scalar Round to Double-Precision Integer
4899 Exact using Current rounding mode */
4900 case 121: /* VSX Scalar Round to Double-Precision Integer
4901 Using Round toward -Infinity */
4902 case 105: /* VSX Scalar Round to Double-Precision Integer
4903 Using Round toward +Infinity */
4904 case 89: /* VSX Scalar Round to Double-Precision Integer
4905 Using Round toward Zero */
4906 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
4907 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
4908 case 281: /* VSX Scalar Round to Single-Precision */
4909 case 74: /* VSX Scalar Reciprocal Square Root Estimate
4910 Double-Precision */
4911 case 10: /* VSX Scalar Reciprocal Square Root Estimate
4912 Single-Precision */
4913 case 75: /* VSX Scalar Square Root Double-Precision */
4914 case 11: /* VSX Scalar Square Root Single-Precision */
4915 case 393: /* VSX Vector round Double-Precision to
4916 Single-Precision and Convert to
4917 Single-Precision format */
4918 case 472: /* VSX Vector truncate Double-Precision to
4919 Integer and Convert to Signed Integer
4920 Doubleword format with Saturate */
4921 case 216: /* VSX Vector truncate Double-Precision to
4922 Integer and Convert to Signed Integer Word
4923 Format with Saturate */
4924 case 456: /* VSX Vector truncate Double-Precision to
4925 Integer and Convert to Unsigned Integer
4926 Doubleword format with Saturate */
4927 case 200: /* VSX Vector truncate Double-Precision to
4928 Integer and Convert to Unsigned Integer Word
4929 Format with Saturate */
4930 case 457: /* VSX Vector Convert Single-Precision to
4931 Double-Precision format */
4932 case 408: /* VSX Vector truncate Single-Precision to
4933 Integer and Convert to Signed Integer
4934 Doubleword format with Saturate */
4935 case 152: /* VSX Vector truncate Single-Precision to
4936 Integer and Convert to Signed Integer Word
4937 Format with Saturate */
4938 case 392: /* VSX Vector truncate Single-Precision to
4939 Integer and Convert to Unsigned Integer
4940 Doubleword format with Saturate */
4941 case 136: /* VSX Vector truncate Single-Precision to
4942 Integer and Convert to Unsigned Integer Word
4943 Format with Saturate */
4944 case 504: /* VSX Vector Convert and round Signed Integer
4945 Doubleword to Double-Precision format */
4946 case 440: /* VSX Vector Convert and round Signed Integer
4947 Doubleword to Single-Precision format */
4948 case 248: /* VSX Vector Convert Signed Integer Word to
4949 Double-Precision format */
4950 case 184: /* VSX Vector Convert and round Signed Integer
4951 Word to Single-Precision format */
4952 case 488: /* VSX Vector Convert and round Unsigned
4953 Integer Doubleword to Double-Precision format */
4954 case 424: /* VSX Vector Convert and round Unsigned
4955 Integer Doubleword to Single-Precision format */
4956 case 232: /* VSX Vector Convert and round Unsigned
4957 Integer Word to Double-Precision format */
4958 case 168: /* VSX Vector Convert and round Unsigned
4959 Integer Word to Single-Precision format */
4960 case 201: /* VSX Vector Round to Double-Precision
4961 Integer using round to Nearest Away */
4962 case 235: /* VSX Vector Round to Double-Precision
4963 Integer Exact using Current rounding mode */
4964 case 249: /* VSX Vector Round to Double-Precision
4965 Integer using round toward -Infinity */
4966 case 233: /* VSX Vector Round to Double-Precision
4967 Integer using round toward +Infinity */
4968 case 217: /* VSX Vector Round to Double-Precision
4969 Integer using round toward Zero */
4970 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
4971 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
4972 case 137: /* VSX Vector Round to Single-Precision Integer
4973 Using Round to Nearest Away */
4974 case 171: /* VSX Vector Round to Single-Precision Integer
4975 Exact Using Current rounding mode */
4976 case 185: /* VSX Vector Round to Single-Precision Integer
4977 Using Round toward -Infinity */
4978 case 169: /* VSX Vector Round to Single-Precision Integer
4979 Using Round toward +Infinity */
4980 case 153: /* VSX Vector Round to Single-Precision Integer
4981 Using round toward Zero */
4982 case 202: /* VSX Vector Reciprocal Square Root Estimate
4983 Double-Precision */
4984 case 138: /* VSX Vector Reciprocal Square Root Estimate
4985 Single-Precision */
4986 case 203: /* VSX Vector Square Root Double-Precision */
4987 case 139: /* VSX Vector Square Root Single-Precision */
4988 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4989 case 345: /* VSX Scalar Absolute Value Double-Precision */
4990 case 267: /* VSX Scalar Convert Scalar Single-Precision to
4991 Vector Single-Precision format Non-signalling */
4992 case 331: /* VSX Scalar Convert Single-Precision to
4993 Double-Precision format Non-signalling */
4994 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
4995 case 377: /* VSX Scalar Negate Double-Precision */
4996 case 473: /* VSX Vector Absolute Value Double-Precision */
4997 case 409: /* VSX Vector Absolute Value Single-Precision */
4998 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
4999 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5000 case 505: /* VSX Vector Negate Double-Precision */
5001 case 441: /* VSX Vector Negate Single-Precision */
5002 case 164: /* VSX Splat Word */
5003 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5004 return 0;
5005
5006 case 106: /* VSX Scalar Test for software Square Root
5007 Double-Precision */
5008 case 234: /* VSX Vector Test for software Square Root
5009 Double-Precision */
5010 case 170: /* VSX Vector Test for software Square Root
5011 Single-Precision */
5012 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5013 return 0;
5014 }
5015
5016 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5017 {
5018 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5019 return 0;
5020 }
5021
5022 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5023 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5024 return -1;
5025 }
5026
5027 /* Parse and record instructions of primary opcode-63 at ADDR.
5028 Return 0 if successful. */
5029
5030 static int
5031 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5032 CORE_ADDR addr, uint32_t insn)
5033 {
5034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5035 int ext = PPC_EXTOP (insn);
5036 int tmp;
5037
5038 switch (ext & 0x1f)
5039 {
5040 case 18: /* Floating Divide */
5041 case 20: /* Floating Subtract */
5042 case 21: /* Floating Add */
5043 case 22: /* Floating Square Root */
5044 case 24: /* Floating Reciprocal Estimate */
5045 case 25: /* Floating Multiply */
5046 case 26: /* Floating Reciprocal Square Root Estimate */
5047 case 28: /* Floating Multiply-Subtract */
5048 case 29: /* Floating Multiply-Add */
5049 case 30: /* Floating Negative Multiply-Subtract */
5050 case 31: /* Floating Negative Multiply-Add */
5051 record_full_arch_list_add_reg (regcache,
5052 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5053 if (PPC_RC (insn))
5054 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5055 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5056 return 0;
5057
5058 case 23: /* Floating Select */
5059 record_full_arch_list_add_reg (regcache,
5060 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5061 if (PPC_RC (insn))
5062 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5063 }
5064
5065 switch (ext)
5066 {
5067 case 2: /* DFP Add Quad */
5068 case 3: /* DFP Quantize Quad */
5069 case 34: /* DFP Multiply Quad */
5070 case 35: /* DFP Reround Quad */
5071 case 67: /* DFP Quantize Immediate Quad */
5072 case 99: /* DFP Round To FP Integer With Inexact Quad */
5073 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5074 case 258: /* DFP Convert To DFP Extended Quad */
5075 case 514: /* DFP Subtract Quad */
5076 case 546: /* DFP Divide Quad */
5077 case 770: /* DFP Round To DFP Long Quad */
5078 case 802: /* DFP Convert From Fixed Quad */
5079 case 834: /* DFP Encode BCD To DPD Quad */
5080 if (PPC_RC (insn))
5081 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5082 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5083 record_full_arch_list_add_reg (regcache, tmp);
5084 record_full_arch_list_add_reg (regcache, tmp + 1);
5085 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5086 return 0;
5087
5088 case 130: /* DFP Compare Ordered Quad */
5089 case 162: /* DFP Test Exponent Quad */
5090 case 194: /* DFP Test Data Class Quad */
5091 case 226: /* DFP Test Data Group Quad */
5092 case 642: /* DFP Compare Unordered Quad */
5093 case 674: /* DFP Test Significance Quad */
5094 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5095 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5096 return 0;
5097
5098 case 66: /* DFP Shift Significand Left Immediate Quad */
5099 case 98: /* DFP Shift Significand Right Immediate Quad */
5100 case 322: /* DFP Decode DPD To BCD Quad */
5101 case 866: /* DFP Insert Biased Exponent Quad */
5102 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5103 record_full_arch_list_add_reg (regcache, tmp);
5104 record_full_arch_list_add_reg (regcache, tmp + 1);
5105 if (PPC_RC (insn))
5106 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5107 return 0;
5108
5109 case 290: /* DFP Convert To Fixed Quad */
5110 record_full_arch_list_add_reg (regcache,
5111 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5112 if (PPC_RC (insn))
5113 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5114 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5115 break;
5116
5117 case 354: /* DFP Extract Biased Exponent Quad */
5118 record_full_arch_list_add_reg (regcache,
5119 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5120 if (PPC_RC (insn))
5121 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5122 return 0;
5123
5124 case 12: /* Floating Round to Single-Precision */
5125 case 14: /* Floating Convert To Integer Word */
5126 case 15: /* Floating Convert To Integer Word
5127 with round toward Zero */
5128 case 142: /* Floating Convert To Integer Word Unsigned */
5129 case 143: /* Floating Convert To Integer Word Unsigned
5130 with round toward Zero */
5131 case 392: /* Floating Round to Integer Nearest */
5132 case 424: /* Floating Round to Integer Toward Zero */
5133 case 456: /* Floating Round to Integer Plus */
5134 case 488: /* Floating Round to Integer Minus */
5135 case 814: /* Floating Convert To Integer Doubleword */
5136 case 815: /* Floating Convert To Integer Doubleword
5137 with round toward Zero */
5138 case 846: /* Floating Convert From Integer Doubleword */
5139 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5140 case 943: /* Floating Convert To Integer Doubleword Unsigned
5141 with round toward Zero */
5142 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5143 record_full_arch_list_add_reg (regcache,
5144 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5145 if (PPC_RC (insn))
5146 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5147 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5148 return 0;
5149
5150 case 583: /* Move From FPSCR */
5151 case 8: /* Floating Copy Sign */
5152 case 40: /* Floating Negate */
5153 case 72: /* Floating Move Register */
5154 case 136: /* Floating Negative Absolute Value */
5155 case 264: /* Floating Absolute Value */
5156 record_full_arch_list_add_reg (regcache,
5157 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5158 if (PPC_RC (insn))
5159 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5160 return 0;
5161
5162 case 838: /* Floating Merge Odd Word */
5163 case 966: /* Floating Merge Even Word */
5164 record_full_arch_list_add_reg (regcache,
5165 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5166 return 0;
5167
5168 case 38: /* Move To FPSCR Bit 1 */
5169 case 70: /* Move To FPSCR Bit 0 */
5170 case 134: /* Move To FPSCR Field Immediate */
5171 case 711: /* Move To FPSCR Fields */
5172 if (PPC_RC (insn))
5173 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5174 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5175 break;
5176
5177 case 0: /* Floating Compare Unordered */
5178 case 32: /* Floating Compare Ordered */
5179 case 64: /* Move to Condition Register from FPSCR */
5180 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5181 /* FALL-THROUGH */
5182 case 128: /* Floating Test for software Divide */
5183 case 160: /* Floating Test for software Square Root */
5184 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5185 return 0;
5186
5187 }
5188
5189 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5190 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5191 return -1;
5192 }
5193
5194 /* Parse the current instruction and record the values of the registers and
5195 memory that will be changed in current instruction to "record_arch_list".
5196 Return -1 if something wrong. */
5197
5198 int
5199 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5200 CORE_ADDR addr)
5201 {
5202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5204 uint32_t insn;
5205 int op6, tmp, i;
5206
5207 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5208 op6 = PPC_OP6 (insn);
5209
5210 switch (op6)
5211 {
5212 case 2: /* Trap Doubleword Immediate */
5213 case 3: /* Trap Word Immediate */
5214 /* Do nothing. */
5215 break;
5216
5217 case 4:
5218 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5219 return -1;
5220 break;
5221
5222 case 17: /* System call */
5223 if (PPC_LEV (insn) != 0)
5224 goto UNKNOWN_OP;
5225
5226 if (tdep->ppc_syscall_record != NULL)
5227 {
5228 if (tdep->ppc_syscall_record (regcache) != 0)
5229 return -1;
5230 }
5231 else
5232 {
5233 printf_unfiltered (_("no syscall record support\n"));
5234 return -1;
5235 }
5236 break;
5237
5238 case 7: /* Multiply Low Immediate */
5239 record_full_arch_list_add_reg (regcache,
5240 tdep->ppc_gp0_regnum + PPC_RT (insn));
5241 break;
5242
5243 case 8: /* Subtract From Immediate Carrying */
5244 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5245 record_full_arch_list_add_reg (regcache,
5246 tdep->ppc_gp0_regnum + PPC_RT (insn));
5247 break;
5248
5249 case 10: /* Compare Logical Immediate */
5250 case 11: /* Compare Immediate */
5251 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5252 break;
5253
5254 case 13: /* Add Immediate Carrying and Record */
5255 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5256 /* FALL-THROUGH */
5257 case 12: /* Add Immediate Carrying */
5258 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5259 /* FALL-THROUGH */
5260 case 14: /* Add Immediate */
5261 case 15: /* Add Immediate Shifted */
5262 record_full_arch_list_add_reg (regcache,
5263 tdep->ppc_gp0_regnum + PPC_RT (insn));
5264 break;
5265
5266 case 16: /* Branch Conditional */
5267 if ((PPC_BO (insn) & 0x4) == 0)
5268 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5269 /* FALL-THROUGH */
5270 case 18: /* Branch */
5271 if (PPC_LK (insn))
5272 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5273 break;
5274
5275 case 19:
5276 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5277 return -1;
5278 break;
5279
5280 case 20: /* Rotate Left Word Immediate then Mask Insert */
5281 case 21: /* Rotate Left Word Immediate then AND with Mask */
5282 case 23: /* Rotate Left Word then AND with Mask */
5283 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5284 /* Rotate Left Doubleword Immediate then Clear Right */
5285 /* Rotate Left Doubleword Immediate then Clear */
5286 /* Rotate Left Doubleword then Clear Left */
5287 /* Rotate Left Doubleword then Clear Right */
5288 /* Rotate Left Doubleword Immediate then Mask Insert */
5289 if (PPC_RC (insn))
5290 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5291 record_full_arch_list_add_reg (regcache,
5292 tdep->ppc_gp0_regnum + PPC_RA (insn));
5293 break;
5294
5295 case 28: /* AND Immediate */
5296 case 29: /* AND Immediate Shifted */
5297 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5298 /* FALL-THROUGH */
5299 case 24: /* OR Immediate */
5300 case 25: /* OR Immediate Shifted */
5301 case 26: /* XOR Immediate */
5302 case 27: /* XOR Immediate Shifted */
5303 record_full_arch_list_add_reg (regcache,
5304 tdep->ppc_gp0_regnum + PPC_RA (insn));
5305 break;
5306
5307 case 31:
5308 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5309 return -1;
5310 break;
5311
5312 case 33: /* Load Word and Zero with Update */
5313 case 35: /* Load Byte and Zero with Update */
5314 case 41: /* Load Halfword and Zero with Update */
5315 case 43: /* Load Halfword Algebraic with Update */
5316 record_full_arch_list_add_reg (regcache,
5317 tdep->ppc_gp0_regnum + PPC_RA (insn));
5318 /* FALL-THROUGH */
5319 case 32: /* Load Word and Zero */
5320 case 34: /* Load Byte and Zero */
5321 case 40: /* Load Halfword and Zero */
5322 case 42: /* Load Halfword Algebraic */
5323 record_full_arch_list_add_reg (regcache,
5324 tdep->ppc_gp0_regnum + PPC_RT (insn));
5325 break;
5326
5327 case 46: /* Load Multiple Word */
5328 for (i = PPC_RT (insn); i < 32; i++)
5329 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5330 break;
5331
5332 case 56: /* Load Quadword */
5333 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5334 record_full_arch_list_add_reg (regcache, tmp);
5335 record_full_arch_list_add_reg (regcache, tmp + 1);
5336 break;
5337
5338 case 49: /* Load Floating-Point Single with Update */
5339 case 51: /* Load Floating-Point Double with Update */
5340 record_full_arch_list_add_reg (regcache,
5341 tdep->ppc_gp0_regnum + PPC_RA (insn));
5342 /* FALL-THROUGH */
5343 case 48: /* Load Floating-Point Single */
5344 case 50: /* Load Floating-Point Double */
5345 record_full_arch_list_add_reg (regcache,
5346 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5347 break;
5348
5349 case 47: /* Store Multiple Word */
5350 {
5351 ULONGEST addr = 0;
5352
5353 if (PPC_RA (insn) != 0)
5354 regcache_raw_read_unsigned (regcache,
5355 tdep->ppc_gp0_regnum + PPC_RA (insn),
5356 &addr);
5357
5358 addr += PPC_D (insn);
5359 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5360 }
5361 break;
5362
5363 case 37: /* Store Word with Update */
5364 case 39: /* Store Byte with Update */
5365 case 45: /* Store Halfword with Update */
5366 case 53: /* Store Floating-Point Single with Update */
5367 case 55: /* Store Floating-Point Double with Update */
5368 record_full_arch_list_add_reg (regcache,
5369 tdep->ppc_gp0_regnum + PPC_RA (insn));
5370 /* FALL-THROUGH */
5371 case 36: /* Store Word */
5372 case 38: /* Store Byte */
5373 case 44: /* Store Halfword */
5374 case 52: /* Store Floating-Point Single */
5375 case 54: /* Store Floating-Point Double */
5376 {
5377 ULONGEST addr = 0;
5378 int size = -1;
5379
5380 if (PPC_RA (insn) != 0)
5381 regcache_raw_read_unsigned (regcache,
5382 tdep->ppc_gp0_regnum + PPC_RA (insn),
5383 &addr);
5384 addr += PPC_D (insn);
5385
5386 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5387 size = 4;
5388 else if (op6 == 54 || op6 == 55)
5389 size = 8;
5390 else if (op6 == 44 || op6 == 45)
5391 size = 2;
5392 else if (op6 == 38 || op6 == 39)
5393 size = 1;
5394 else
5395 gdb_assert (0);
5396
5397 record_full_arch_list_add_mem (addr, size);
5398 }
5399 break;
5400
5401 case 57: /* Load Floating-Point Double Pair */
5402 if (PPC_FIELD (insn, 30, 2) != 0)
5403 goto UNKNOWN_OP;
5404 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5405 record_full_arch_list_add_reg (regcache, tmp);
5406 record_full_arch_list_add_reg (regcache, tmp + 1);
5407 break;
5408
5409 case 58: /* Load Doubleword */
5410 /* Load Doubleword with Update */
5411 /* Load Word Algebraic */
5412 if (PPC_FIELD (insn, 30, 2) > 2)
5413 goto UNKNOWN_OP;
5414
5415 record_full_arch_list_add_reg (regcache,
5416 tdep->ppc_gp0_regnum + PPC_RT (insn));
5417 if (PPC_BIT (insn, 31))
5418 record_full_arch_list_add_reg (regcache,
5419 tdep->ppc_gp0_regnum + PPC_RA (insn));
5420 break;
5421
5422 case 59:
5423 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5424 return -1;
5425 break;
5426
5427 case 60:
5428 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5429 return -1;
5430 break;
5431
5432 case 61: /* Store Floating-Point Double Pair */
5433 case 62: /* Store Doubleword */
5434 /* Store Doubleword with Update */
5435 /* Store Quadword with Update */
5436 {
5437 ULONGEST addr = 0;
5438 int size;
5439 int sub2 = PPC_FIELD (insn, 30, 2);
5440
5441 if ((op6 == 61 && sub2 != 0) || (op6 == 62 && sub2 > 2))
5442 goto UNKNOWN_OP;
5443
5444 if (PPC_RA (insn) != 0)
5445 regcache_raw_read_unsigned (regcache,
5446 tdep->ppc_gp0_regnum + PPC_RA (insn),
5447 &addr);
5448
5449 size = ((op6 == 61) || sub2 == 2) ? 16 : 8;
5450
5451 addr += PPC_DS (insn) << 2;
5452 record_full_arch_list_add_mem (addr, size);
5453
5454 if (op6 == 62 && sub2 == 1)
5455 record_full_arch_list_add_reg (regcache,
5456 tdep->ppc_gp0_regnum +
5457 PPC_RA (insn));
5458
5459 break;
5460 }
5461
5462 case 63:
5463 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5464 return -1;
5465 break;
5466
5467 default:
5468 UNKNOWN_OP:
5469 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5470 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
5471 return -1;
5472 }
5473
5474 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5475 return -1;
5476 if (record_full_arch_list_add_end ())
5477 return -1;
5478 return 0;
5479 }
5480
5481 /* Initialize the current architecture based on INFO. If possible, re-use an
5482 architecture from ARCHES, which is a list of architectures already created
5483 during this debugging session.
5484
5485 Called e.g. at program startup, when reading a core file, and when reading
5486 a binary file. */
5487
5488 static struct gdbarch *
5489 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5490 {
5491 struct gdbarch *gdbarch;
5492 struct gdbarch_tdep *tdep;
5493 int wordsize, from_xcoff_exec, from_elf_exec;
5494 enum bfd_architecture arch;
5495 unsigned long mach;
5496 bfd abfd;
5497 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5498 int soft_float;
5499 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
5500 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
5501 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5502 have_vsx = 0;
5503 int tdesc_wordsize = -1;
5504 const struct target_desc *tdesc = info.target_desc;
5505 struct tdesc_arch_data *tdesc_data = NULL;
5506 int num_pseudoregs = 0;
5507 int cur_reg;
5508
5509 /* INFO may refer to a binary that is not of the PowerPC architecture,
5510 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5511 In this case, we must not attempt to infer properties of the (PowerPC
5512 side) of the target system from properties of that executable. Trust
5513 the target description instead. */
5514 if (info.abfd
5515 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5516 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5517 info.abfd = NULL;
5518
5519 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
5520 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5521
5522 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5523 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5524
5525 /* Check word size. If INFO is from a binary file, infer it from
5526 that, else choose a likely default. */
5527 if (from_xcoff_exec)
5528 {
5529 if (bfd_xcoff_is_xcoff64 (info.abfd))
5530 wordsize = 8;
5531 else
5532 wordsize = 4;
5533 }
5534 else if (from_elf_exec)
5535 {
5536 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5537 wordsize = 8;
5538 else
5539 wordsize = 4;
5540 }
5541 else if (tdesc_has_registers (tdesc))
5542 wordsize = -1;
5543 else
5544 {
5545 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
5546 wordsize = (info.bfd_arch_info->bits_per_word
5547 / info.bfd_arch_info->bits_per_byte);
5548 else
5549 wordsize = 4;
5550 }
5551
5552 /* Get the architecture and machine from the BFD. */
5553 arch = info.bfd_arch_info->arch;
5554 mach = info.bfd_arch_info->mach;
5555
5556 /* For e500 executables, the apuinfo section is of help here. Such
5557 section contains the identifier and revision number of each
5558 Application-specific Processing Unit that is present on the
5559 chip. The content of the section is determined by the assembler
5560 which looks at each instruction and determines which unit (and
5561 which version of it) can execute it. Grovel through the section
5562 looking for relevant e500 APUs. */
5563
5564 if (bfd_uses_spe_extensions (info.abfd))
5565 {
5566 arch = info.bfd_arch_info->arch;
5567 mach = bfd_mach_ppc_e500;
5568 bfd_default_set_arch_mach (&abfd, arch, mach);
5569 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5570 }
5571
5572 /* Find a default target description which describes our register
5573 layout, if we do not already have one. */
5574 if (! tdesc_has_registers (tdesc))
5575 {
5576 const struct variant *v;
5577
5578 /* Choose variant. */
5579 v = find_variant_by_arch (arch, mach);
5580 if (!v)
5581 return NULL;
5582
5583 tdesc = *v->tdesc;
5584 }
5585
5586 gdb_assert (tdesc_has_registers (tdesc));
5587
5588 /* Check any target description for validity. */
5589 if (tdesc_has_registers (tdesc))
5590 {
5591 static const char *const gprs[] = {
5592 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5593 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5594 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5595 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5596 };
5597 const struct tdesc_feature *feature;
5598 int i, valid_p;
5599 static const char *const msr_names[] = { "msr", "ps" };
5600 static const char *const cr_names[] = { "cr", "cnd" };
5601 static const char *const ctr_names[] = { "ctr", "cnt" };
5602
5603 feature = tdesc_find_feature (tdesc,
5604 "org.gnu.gdb.power.core");
5605 if (feature == NULL)
5606 return NULL;
5607
5608 tdesc_data = tdesc_data_alloc ();
5609
5610 valid_p = 1;
5611 for (i = 0; i < ppc_num_gprs; i++)
5612 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
5613 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
5614 "pc");
5615 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
5616 "lr");
5617 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
5618 "xer");
5619
5620 /* Allow alternate names for these registers, to accomodate GDB's
5621 historic naming. */
5622 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5623 PPC_MSR_REGNUM, msr_names);
5624 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5625 PPC_CR_REGNUM, cr_names);
5626 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5627 PPC_CTR_REGNUM, ctr_names);
5628
5629 if (!valid_p)
5630 {
5631 tdesc_data_cleanup (tdesc_data);
5632 return NULL;
5633 }
5634
5635 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
5636 "mq");
5637
5638 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
5639 if (wordsize == -1)
5640 wordsize = tdesc_wordsize;
5641
5642 feature = tdesc_find_feature (tdesc,
5643 "org.gnu.gdb.power.fpu");
5644 if (feature != NULL)
5645 {
5646 static const char *const fprs[] = {
5647 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5648 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5649 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5650 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
5651 };
5652 valid_p = 1;
5653 for (i = 0; i < ppc_num_fprs; i++)
5654 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5655 PPC_F0_REGNUM + i, fprs[i]);
5656 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5657 PPC_FPSCR_REGNUM, "fpscr");
5658
5659 if (!valid_p)
5660 {
5661 tdesc_data_cleanup (tdesc_data);
5662 return NULL;
5663 }
5664 have_fpu = 1;
5665 }
5666 else
5667 have_fpu = 0;
5668
5669 /* The DFP pseudo-registers will be available when there are floating
5670 point registers. */
5671 have_dfp = have_fpu;
5672
5673 feature = tdesc_find_feature (tdesc,
5674 "org.gnu.gdb.power.altivec");
5675 if (feature != NULL)
5676 {
5677 static const char *const vector_regs[] = {
5678 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
5679 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
5680 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
5681 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
5682 };
5683
5684 valid_p = 1;
5685 for (i = 0; i < ppc_num_gprs; i++)
5686 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5687 PPC_VR0_REGNUM + i,
5688 vector_regs[i]);
5689 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5690 PPC_VSCR_REGNUM, "vscr");
5691 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5692 PPC_VRSAVE_REGNUM, "vrsave");
5693
5694 if (have_spe || !valid_p)
5695 {
5696 tdesc_data_cleanup (tdesc_data);
5697 return NULL;
5698 }
5699 have_altivec = 1;
5700 }
5701 else
5702 have_altivec = 0;
5703
5704 /* Check for POWER7 VSX registers support. */
5705 feature = tdesc_find_feature (tdesc,
5706 "org.gnu.gdb.power.vsx");
5707
5708 if (feature != NULL)
5709 {
5710 static const char *const vsx_regs[] = {
5711 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
5712 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
5713 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
5714 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
5715 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
5716 "vs30h", "vs31h"
5717 };
5718
5719 valid_p = 1;
5720
5721 for (i = 0; i < ppc_num_vshrs; i++)
5722 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5723 PPC_VSR0_UPPER_REGNUM + i,
5724 vsx_regs[i]);
5725 if (!valid_p)
5726 {
5727 tdesc_data_cleanup (tdesc_data);
5728 return NULL;
5729 }
5730
5731 have_vsx = 1;
5732 }
5733 else
5734 have_vsx = 0;
5735
5736 /* On machines supporting the SPE APU, the general-purpose registers
5737 are 64 bits long. There are SIMD vector instructions to treat them
5738 as pairs of floats, but the rest of the instruction set treats them
5739 as 32-bit registers, and only operates on their lower halves.
5740
5741 In the GDB regcache, we treat their high and low halves as separate
5742 registers. The low halves we present as the general-purpose
5743 registers, and then we have pseudo-registers that stitch together
5744 the upper and lower halves and present them as pseudo-registers.
5745
5746 Thus, the target description is expected to supply the upper
5747 halves separately. */
5748
5749 feature = tdesc_find_feature (tdesc,
5750 "org.gnu.gdb.power.spe");
5751 if (feature != NULL)
5752 {
5753 static const char *const upper_spe[] = {
5754 "ev0h", "ev1h", "ev2h", "ev3h",
5755 "ev4h", "ev5h", "ev6h", "ev7h",
5756 "ev8h", "ev9h", "ev10h", "ev11h",
5757 "ev12h", "ev13h", "ev14h", "ev15h",
5758 "ev16h", "ev17h", "ev18h", "ev19h",
5759 "ev20h", "ev21h", "ev22h", "ev23h",
5760 "ev24h", "ev25h", "ev26h", "ev27h",
5761 "ev28h", "ev29h", "ev30h", "ev31h"
5762 };
5763
5764 valid_p = 1;
5765 for (i = 0; i < ppc_num_gprs; i++)
5766 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5767 PPC_SPE_UPPER_GP0_REGNUM + i,
5768 upper_spe[i]);
5769 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5770 PPC_SPE_ACC_REGNUM, "acc");
5771 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5772 PPC_SPE_FSCR_REGNUM, "spefscr");
5773
5774 if (have_mq || have_fpu || !valid_p)
5775 {
5776 tdesc_data_cleanup (tdesc_data);
5777 return NULL;
5778 }
5779 have_spe = 1;
5780 }
5781 else
5782 have_spe = 0;
5783 }
5784
5785 /* If we have a 64-bit binary on a 32-bit target, complain. Also
5786 complain for a 32-bit binary on a 64-bit target; we do not yet
5787 support that. For instance, the 32-bit ABI routines expect
5788 32-bit GPRs.
5789
5790 As long as there isn't an explicit target description, we'll
5791 choose one based on the BFD architecture and get a word size
5792 matching the binary (probably powerpc:common or
5793 powerpc:common64). So there is only trouble if a 64-bit target
5794 supplies a 64-bit description while debugging a 32-bit
5795 binary. */
5796 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
5797 {
5798 tdesc_data_cleanup (tdesc_data);
5799 return NULL;
5800 }
5801
5802 #ifdef HAVE_ELF
5803 if (from_elf_exec)
5804 {
5805 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
5806 {
5807 case 1:
5808 elf_abi = POWERPC_ELF_V1;
5809 break;
5810 case 2:
5811 elf_abi = POWERPC_ELF_V2;
5812 break;
5813 default:
5814 break;
5815 }
5816 }
5817
5818 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
5819 {
5820 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5821 Tag_GNU_Power_ABI_FP))
5822 {
5823 case 1:
5824 soft_float_flag = AUTO_BOOLEAN_FALSE;
5825 break;
5826 case 2:
5827 soft_float_flag = AUTO_BOOLEAN_TRUE;
5828 break;
5829 default:
5830 break;
5831 }
5832 }
5833
5834 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
5835 {
5836 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5837 Tag_GNU_Power_ABI_Vector))
5838 {
5839 case 1:
5840 vector_abi = POWERPC_VEC_GENERIC;
5841 break;
5842 case 2:
5843 vector_abi = POWERPC_VEC_ALTIVEC;
5844 break;
5845 case 3:
5846 vector_abi = POWERPC_VEC_SPE;
5847 break;
5848 default:
5849 break;
5850 }
5851 }
5852 #endif
5853
5854 /* At this point, the only supported ELF-based 64-bit little-endian
5855 operating system is GNU/Linux, and this uses the ELFv2 ABI by
5856 default. All other supported ELF-based operating systems use the
5857 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
5858 e.g. because we run a legacy binary, or have attached to a process
5859 and have not found any associated binary file, set the default
5860 according to this heuristic. */
5861 if (elf_abi == POWERPC_ELF_AUTO)
5862 {
5863 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
5864 elf_abi = POWERPC_ELF_V2;
5865 else
5866 elf_abi = POWERPC_ELF_V1;
5867 }
5868
5869 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
5870 soft_float = 1;
5871 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
5872 soft_float = 0;
5873 else
5874 soft_float = !have_fpu;
5875
5876 /* If we have a hard float binary or setting but no floating point
5877 registers, downgrade to soft float anyway. We're still somewhat
5878 useful in this scenario. */
5879 if (!soft_float && !have_fpu)
5880 soft_float = 1;
5881
5882 /* Similarly for vector registers. */
5883 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
5884 vector_abi = POWERPC_VEC_GENERIC;
5885
5886 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
5887 vector_abi = POWERPC_VEC_GENERIC;
5888
5889 if (vector_abi == POWERPC_VEC_AUTO)
5890 {
5891 if (have_altivec)
5892 vector_abi = POWERPC_VEC_ALTIVEC;
5893 else if (have_spe)
5894 vector_abi = POWERPC_VEC_SPE;
5895 else
5896 vector_abi = POWERPC_VEC_GENERIC;
5897 }
5898
5899 /* Do not limit the vector ABI based on available hardware, since we
5900 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
5901
5902 /* Find a candidate among extant architectures. */
5903 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5904 arches != NULL;
5905 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5906 {
5907 /* Word size in the various PowerPC bfd_arch_info structs isn't
5908 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
5909 separate word size check. */
5910 tdep = gdbarch_tdep (arches->gdbarch);
5911 if (tdep && tdep->elf_abi != elf_abi)
5912 continue;
5913 if (tdep && tdep->soft_float != soft_float)
5914 continue;
5915 if (tdep && tdep->vector_abi != vector_abi)
5916 continue;
5917 if (tdep && tdep->wordsize == wordsize)
5918 {
5919 if (tdesc_data != NULL)
5920 tdesc_data_cleanup (tdesc_data);
5921 return arches->gdbarch;
5922 }
5923 }
5924
5925 /* None found, create a new architecture from INFO, whose bfd_arch_info
5926 validity depends on the source:
5927 - executable useless
5928 - rs6000_host_arch() good
5929 - core file good
5930 - "set arch" trust blindly
5931 - GDB startup useless but harmless */
5932
5933 tdep = XCNEW (struct gdbarch_tdep);
5934 tdep->wordsize = wordsize;
5935 tdep->elf_abi = elf_abi;
5936 tdep->soft_float = soft_float;
5937 tdep->vector_abi = vector_abi;
5938
5939 gdbarch = gdbarch_alloc (&info, tdep);
5940
5941 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
5942 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
5943 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
5944 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
5945 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
5946 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
5947 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
5948 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
5949
5950 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
5951 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
5952 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
5953 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
5954 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
5955 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
5956 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
5957 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
5958
5959 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
5960 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
5961 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
5962 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
5963 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
5964
5965 /* The XML specification for PowerPC sensibly calls the MSR "msr".
5966 GDB traditionally called it "ps", though, so let GDB add an
5967 alias. */
5968 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
5969
5970 if (wordsize == 8)
5971 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
5972 else
5973 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
5974
5975 /* Set lr_frame_offset. */
5976 if (wordsize == 8)
5977 tdep->lr_frame_offset = 16;
5978 else
5979 tdep->lr_frame_offset = 4;
5980
5981 if (have_spe || have_dfp || have_vsx)
5982 {
5983 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
5984 set_gdbarch_pseudo_register_write (gdbarch,
5985 rs6000_pseudo_register_write);
5986 set_gdbarch_ax_pseudo_register_collect (gdbarch,
5987 rs6000_ax_pseudo_register_collect);
5988 }
5989
5990 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
5991
5992 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5993
5994 /* Select instruction printer. */
5995 if (arch == bfd_arch_rs6000)
5996 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
5997 else
5998 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
5999
6000 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6001
6002 if (have_spe)
6003 num_pseudoregs += 32;
6004 if (have_dfp)
6005 num_pseudoregs += 16;
6006 if (have_vsx)
6007 /* Include both VSX and Extended FP registers. */
6008 num_pseudoregs += 96;
6009
6010 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6011
6012 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6013 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6014 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6015 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6016 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6017 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6018 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6019 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6020 set_gdbarch_char_signed (gdbarch, 0);
6021
6022 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6023 if (wordsize == 8)
6024 /* PPC64 SYSV. */
6025 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6026
6027 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6028 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6029 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6030
6031 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6032 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6033
6034 if (wordsize == 4)
6035 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6036 else if (wordsize == 8)
6037 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6038
6039 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6040 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6041 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6042
6043 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6044 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
6045
6046 /* The value of symbols of type N_SO and N_FUN maybe null when
6047 it shouldn't be. */
6048 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6049
6050 /* Handles single stepping of atomic sequences. */
6051 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6052
6053 /* Not sure on this. FIXMEmgo */
6054 set_gdbarch_frame_args_skip (gdbarch, 8);
6055
6056 /* Helpers for function argument information. */
6057 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6058
6059 /* Trampoline. */
6060 set_gdbarch_in_solib_return_trampoline
6061 (gdbarch, rs6000_in_solib_return_trampoline);
6062 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6063
6064 /* Hook in the DWARF CFI frame unwinder. */
6065 dwarf2_append_unwinders (gdbarch);
6066 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6067
6068 /* Frame handling. */
6069 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6070
6071 /* Setup displaced stepping. */
6072 set_gdbarch_displaced_step_copy_insn (gdbarch,
6073 ppc_displaced_step_copy_insn);
6074 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6075 ppc_displaced_step_hw_singlestep);
6076 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6077 set_gdbarch_displaced_step_free_closure (gdbarch,
6078 simple_displaced_step_free_closure);
6079 set_gdbarch_displaced_step_location (gdbarch,
6080 displaced_step_at_entry_point);
6081
6082 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6083
6084 /* Hook in ABI-specific overrides, if they have been registered. */
6085 info.target_desc = tdesc;
6086 info.tdep_info = tdesc_data;
6087 gdbarch_init_osabi (info, gdbarch);
6088
6089 switch (info.osabi)
6090 {
6091 case GDB_OSABI_LINUX:
6092 case GDB_OSABI_NETBSD_AOUT:
6093 case GDB_OSABI_NETBSD_ELF:
6094 case GDB_OSABI_UNKNOWN:
6095 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6096 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6097 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6098 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6099 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6100 break;
6101 default:
6102 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
6103
6104 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6105 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6106 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6107 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6108 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6109 }
6110
6111 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6112 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6113 rs6000_pseudo_register_reggroup_p);
6114 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6115
6116 /* Override the normal target description method to make the SPE upper
6117 halves anonymous. */
6118 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6119
6120 /* Choose register numbers for all supported pseudo-registers. */
6121 tdep->ppc_ev0_regnum = -1;
6122 tdep->ppc_dl0_regnum = -1;
6123 tdep->ppc_vsr0_regnum = -1;
6124 tdep->ppc_efpr0_regnum = -1;
6125
6126 cur_reg = gdbarch_num_regs (gdbarch);
6127
6128 if (have_spe)
6129 {
6130 tdep->ppc_ev0_regnum = cur_reg;
6131 cur_reg += 32;
6132 }
6133 if (have_dfp)
6134 {
6135 tdep->ppc_dl0_regnum = cur_reg;
6136 cur_reg += 16;
6137 }
6138 if (have_vsx)
6139 {
6140 tdep->ppc_vsr0_regnum = cur_reg;
6141 cur_reg += 64;
6142 tdep->ppc_efpr0_regnum = cur_reg;
6143 cur_reg += 32;
6144 }
6145
6146 gdb_assert (gdbarch_num_regs (gdbarch)
6147 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
6148
6149 /* Register the ravenscar_arch_ops. */
6150 if (mach == bfd_mach_ppc_e500)
6151 register_e500_ravenscar_ops (gdbarch);
6152 else
6153 register_ppc_ravenscar_ops (gdbarch);
6154
6155 return gdbarch;
6156 }
6157
6158 static void
6159 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6160 {
6161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6162
6163 if (tdep == NULL)
6164 return;
6165
6166 /* FIXME: Dump gdbarch_tdep. */
6167 }
6168
6169 /* PowerPC-specific commands. */
6170
6171 static void
6172 set_powerpc_command (char *args, int from_tty)
6173 {
6174 printf_unfiltered (_("\
6175 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
6176 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6177 }
6178
6179 static void
6180 show_powerpc_command (char *args, int from_tty)
6181 {
6182 cmd_show_list (showpowerpccmdlist, from_tty, "");
6183 }
6184
6185 static void
6186 powerpc_set_soft_float (char *args, int from_tty,
6187 struct cmd_list_element *c)
6188 {
6189 struct gdbarch_info info;
6190
6191 /* Update the architecture. */
6192 gdbarch_info_init (&info);
6193 if (!gdbarch_update_p (info))
6194 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6195 }
6196
6197 static void
6198 powerpc_set_vector_abi (char *args, int from_tty,
6199 struct cmd_list_element *c)
6200 {
6201 struct gdbarch_info info;
6202 int vector_abi;
6203
6204 for (vector_abi = POWERPC_VEC_AUTO;
6205 vector_abi != POWERPC_VEC_LAST;
6206 vector_abi++)
6207 if (strcmp (powerpc_vector_abi_string,
6208 powerpc_vector_strings[vector_abi]) == 0)
6209 {
6210 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
6211 break;
6212 }
6213
6214 if (vector_abi == POWERPC_VEC_LAST)
6215 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6216 powerpc_vector_abi_string);
6217
6218 /* Update the architecture. */
6219 gdbarch_info_init (&info);
6220 if (!gdbarch_update_p (info))
6221 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6222 }
6223
6224 /* Show the current setting of the exact watchpoints flag. */
6225
6226 static void
6227 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6228 struct cmd_list_element *c,
6229 const char *value)
6230 {
6231 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6232 }
6233
6234 /* Read a PPC instruction from memory. */
6235
6236 static unsigned int
6237 read_insn (struct frame_info *frame, CORE_ADDR pc)
6238 {
6239 struct gdbarch *gdbarch = get_frame_arch (frame);
6240 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6241
6242 return read_memory_unsigned_integer (pc, 4, byte_order);
6243 }
6244
6245 /* Return non-zero if the instructions at PC match the series
6246 described in PATTERN, or zero otherwise. PATTERN is an array of
6247 'struct ppc_insn_pattern' objects, terminated by an entry whose
6248 mask is zero.
6249
6250 When the match is successful, fill INSN[i] with what PATTERN[i]
6251 matched. If PATTERN[i] is optional, and the instruction wasn't
6252 present, set INSN[i] to 0 (which is not a valid PPC instruction).
6253 INSN should have as many elements as PATTERN. Note that, if
6254 PATTERN contains optional instructions which aren't present in
6255 memory, then INSN will have holes, so INSN[i] isn't necessarily the
6256 i'th instruction in memory. */
6257
6258 int
6259 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6260 struct ppc_insn_pattern *pattern,
6261 unsigned int *insns)
6262 {
6263 int i;
6264 unsigned int insn;
6265
6266 for (i = 0, insn = 0; pattern[i].mask; i++)
6267 {
6268 if (insn == 0)
6269 insn = read_insn (frame, pc);
6270 insns[i] = 0;
6271 if ((insn & pattern[i].mask) == pattern[i].data)
6272 {
6273 insns[i] = insn;
6274 pc += 4;
6275 insn = 0;
6276 }
6277 else if (!pattern[i].optional)
6278 return 0;
6279 }
6280
6281 return 1;
6282 }
6283
6284 /* Return the 'd' field of the d-form instruction INSN, properly
6285 sign-extended. */
6286
6287 CORE_ADDR
6288 ppc_insn_d_field (unsigned int insn)
6289 {
6290 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6291 }
6292
6293 /* Return the 'ds' field of the ds-form instruction INSN, with the two
6294 zero bits concatenated at the right, and properly
6295 sign-extended. */
6296
6297 CORE_ADDR
6298 ppc_insn_ds_field (unsigned int insn)
6299 {
6300 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6301 }
6302
6303 /* Initialization code. */
6304
6305 /* -Wmissing-prototypes */
6306 extern initialize_file_ftype _initialize_rs6000_tdep;
6307
6308 void
6309 _initialize_rs6000_tdep (void)
6310 {
6311 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6312 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6313
6314 /* Initialize the standard target descriptions. */
6315 initialize_tdesc_powerpc_32 ();
6316 initialize_tdesc_powerpc_altivec32 ();
6317 initialize_tdesc_powerpc_vsx32 ();
6318 initialize_tdesc_powerpc_403 ();
6319 initialize_tdesc_powerpc_403gc ();
6320 initialize_tdesc_powerpc_405 ();
6321 initialize_tdesc_powerpc_505 ();
6322 initialize_tdesc_powerpc_601 ();
6323 initialize_tdesc_powerpc_602 ();
6324 initialize_tdesc_powerpc_603 ();
6325 initialize_tdesc_powerpc_604 ();
6326 initialize_tdesc_powerpc_64 ();
6327 initialize_tdesc_powerpc_altivec64 ();
6328 initialize_tdesc_powerpc_vsx64 ();
6329 initialize_tdesc_powerpc_7400 ();
6330 initialize_tdesc_powerpc_750 ();
6331 initialize_tdesc_powerpc_860 ();
6332 initialize_tdesc_powerpc_e500 ();
6333 initialize_tdesc_rs6000 ();
6334
6335 /* Add root prefix command for all "set powerpc"/"show powerpc"
6336 commands. */
6337 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6338 _("Various PowerPC-specific commands."),
6339 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6340
6341 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6342 _("Various PowerPC-specific commands."),
6343 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6344
6345 /* Add a command to allow the user to force the ABI. */
6346 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6347 &powerpc_soft_float_global,
6348 _("Set whether to use a soft-float ABI."),
6349 _("Show whether to use a soft-float ABI."),
6350 NULL,
6351 powerpc_set_soft_float, NULL,
6352 &setpowerpccmdlist, &showpowerpccmdlist);
6353
6354 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6355 &powerpc_vector_abi_string,
6356 _("Set the vector ABI."),
6357 _("Show the vector ABI."),
6358 NULL, powerpc_set_vector_abi, NULL,
6359 &setpowerpccmdlist, &showpowerpccmdlist);
6360
6361 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6362 &target_exact_watchpoints,
6363 _("\
6364 Set whether to use just one debug register for watchpoints on scalars."),
6365 _("\
6366 Show whether to use just one debug register for watchpoints on scalars."),
6367 _("\
6368 If true, GDB will use only one debug register when watching a variable of\n\
6369 scalar type, thus assuming that the variable is accessed through the address\n\
6370 of its first byte."),
6371 NULL, show_powerpc_exact_watchpoints,
6372 &setpowerpccmdlist, &showpowerpccmdlist);
6373 }
This page took 0.161867 seconds and 5 git commands to generate.