* valarith.c (value_binop): Take care of ANSI `value preserving'
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27
28 #include "xcoffsolib.h"
29
30 #include <a.out.h>
31
32 extern struct obstack frame_cache_obstack;
33
34 extern int errno;
35
36 /* Nonzero if we just simulated a single step break. */
37 int one_stepped;
38
39 /* Breakpoint shadows for the single step instructions will be kept here. */
40
41 static struct sstep_breaks {
42 /* Address, or 0 if this is not in use. */
43 CORE_ADDR address;
44 /* Shadow contents. */
45 char data[4];
46 } stepBreaks[2];
47
48 /* Static function prototypes */
49
50 static CORE_ADDR
51 find_toc_address PARAMS ((CORE_ADDR pc));
52
53 static CORE_ADDR
54 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
55
56 static void
57 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
58 struct aix_framedata *fdatap));
59
60 /*
61 * Calculate the destination of a branch/jump. Return -1 if not a branch.
62 */
63 static CORE_ADDR
64 branch_dest (opcode, instr, pc, safety)
65 int opcode;
66 int instr;
67 CORE_ADDR pc;
68 CORE_ADDR safety;
69 {
70 register long offset;
71 CORE_ADDR dest;
72 int immediate;
73 int absolute;
74 int ext_op;
75
76 absolute = (int) ((instr >> 1) & 1);
77
78 switch (opcode) {
79 case 18 :
80 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
81
82 case 16 :
83 if (opcode != 18) /* br conditional */
84 immediate = ((instr & ~3) << 16) >> 16;
85 if (absolute)
86 dest = immediate;
87 else
88 dest = pc + immediate;
89 break;
90
91 case 19 :
92 ext_op = (instr>>1) & 0x3ff;
93
94 if (ext_op == 16) /* br conditional register */
95 dest = read_register (LR_REGNUM) & ~3;
96
97 else if (ext_op == 528) /* br cond to count reg */
98 {
99 dest = read_register (CTR_REGNUM) & ~3;
100
101 /* If we are about to execute a system call, dest is something
102 like 0x22fc or 0x3b00. Upon completion the system call
103 will return to the address in the link register. */
104 if (dest < TEXT_SEGMENT_BASE)
105 dest = read_register (LR_REGNUM) & ~3;
106 }
107 else return -1;
108 break;
109
110 default: return -1;
111 }
112 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
113 }
114
115
116
117 /* AIX does not support PT_STEP. Simulate it. */
118
119 void
120 single_step (signal)
121 int signal;
122 {
123 #define INSNLEN(OPCODE) 4
124
125 static char breakp[] = BREAKPOINT;
126 int ii, insn;
127 CORE_ADDR loc;
128 CORE_ADDR breaks[2];
129 int opcode;
130
131 if (!one_stepped) {
132 loc = read_pc ();
133
134 read_memory (loc, (char *) &insn, 4);
135
136 breaks[0] = loc + INSNLEN(insn);
137 opcode = insn >> 26;
138 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
139
140 /* Don't put two breakpoints on the same address. */
141 if (breaks[1] == breaks[0])
142 breaks[1] = -1;
143
144 stepBreaks[1].address = 0;
145
146 for (ii=0; ii < 2; ++ii) {
147
148 /* ignore invalid breakpoint. */
149 if ( breaks[ii] == -1)
150 continue;
151
152 read_memory (breaks[ii], stepBreaks[ii].data, 4);
153
154 write_memory (breaks[ii], breakp, 4);
155 stepBreaks[ii].address = breaks[ii];
156 }
157
158 one_stepped = 1;
159 } else {
160
161 /* remove step breakpoints. */
162 for (ii=0; ii < 2; ++ii)
163 if (stepBreaks[ii].address != 0)
164 write_memory
165 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
166
167 one_stepped = 0;
168 }
169 errno = 0; /* FIXME, don't ignore errors! */
170 /* What errors? {read,write}_memory call error(). */
171 }
172
173
174 /* return pc value after skipping a function prologue. */
175
176 skip_prologue (pc)
177 CORE_ADDR pc;
178 {
179 char buf[4];
180 unsigned int tmp;
181 unsigned long op;
182
183 if (target_read_memory (pc, buf, 4))
184 return pc; /* Can't access it -- assume no prologue. */
185 op = extract_unsigned_integer (buf, 4);
186
187 /* Assume that subsequent fetches can fail with low probability. */
188
189 if (op == 0x7c0802a6) { /* mflr r0 */
190 pc += 4;
191 op = read_memory_integer (pc, 4);
192 }
193
194 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
195 pc += 4;
196 op = read_memory_integer (pc, 4);
197 }
198
199 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
200 pc += 4;
201 op = read_memory_integer (pc, 4);
202
203 /* At this point, make sure this is not a trampoline function
204 (a function that simply calls another functions, and nothing else).
205 If the next is not a nop, this branch was part of the function
206 prologue. */
207
208 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
209 op == 0x0)
210 return pc - 4; /* don't skip over this branch */
211 }
212
213 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
214 pc += 4; /* store floating register double */
215 op = read_memory_integer (pc, 4);
216 }
217
218 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
219 pc += 4;
220 op = read_memory_integer (pc, 4);
221 }
222
223 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
224 (tmp == 0x9421) || /* stu r1, NUM(r1) */
225 (tmp == 0x93e1)) /* st r31,NUM(r1) */
226 {
227 pc += 4;
228 op = read_memory_integer (pc, 4);
229 }
230
231 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
232 pc += 4; /* l r30, ... */
233 op = read_memory_integer (pc, 4);
234 }
235
236 /* store parameters into stack */
237 while(
238 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
239 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
240 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
241 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
242 {
243 pc += 4; /* store fpr double */
244 op = read_memory_integer (pc, 4);
245 }
246
247 if (op == 0x603f0000 /* oril r31, r1, 0x0 */
248 || op == 0x7c3f0b78) { /* mr r31, r1 */
249 pc += 4; /* this happens if r31 is used as */
250 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
251
252 tmp = 0;
253 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
254 pc += 4; /* st r4, NUM(r31), ... */
255 op = read_memory_integer (pc, 4);
256 tmp += 0x20;
257 }
258 }
259 #if 0
260 /* I have problems with skipping over __main() that I need to address
261 * sometime. Previously, I used to use misc_function_vector which
262 * didn't work as well as I wanted to be. -MGO */
263
264 /* If the first thing after skipping a prolog is a branch to a function,
265 this might be a call to an initializer in main(), introduced by gcc2.
266 We'd like to skip over it as well. Fortunately, xlc does some extra
267 work before calling a function right after a prologue, thus we can
268 single out such gcc2 behaviour. */
269
270
271 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
272 op = read_memory_integer (pc+4, 4);
273
274 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
275
276 /* check and see if we are in main. If so, skip over this initializer
277 function as well. */
278
279 tmp = find_pc_misc_function (pc);
280 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
281 return pc + 8;
282 }
283 }
284 #endif /* 0 */
285
286 return pc;
287 }
288
289
290 /*************************************************************************
291 Support for creating pushind a dummy frame into the stack, and popping
292 frames, etc.
293 *************************************************************************/
294
295 /* The total size of dummy frame is 436, which is;
296
297 32 gpr's - 128 bytes
298 32 fpr's - 256 "
299 7 the rest - 28 "
300 and 24 extra bytes for the callee's link area. The last 24 bytes
301 for the link area might not be necessary, since it will be taken
302 care of by push_arguments(). */
303
304 #define DUMMY_FRAME_SIZE 436
305
306 #define DUMMY_FRAME_ADDR_SIZE 10
307
308 /* Make sure you initialize these in somewhere, in case gdb gives up what it
309 was debugging and starts debugging something else. FIXMEibm */
310
311 static int dummy_frame_count = 0;
312 static int dummy_frame_size = 0;
313 static CORE_ADDR *dummy_frame_addr = 0;
314
315 extern int stop_stack_dummy;
316
317 /* push a dummy frame into stack, save all register. Currently we are saving
318 only gpr's and fpr's, which is not good enough! FIXMEmgo */
319
320 void
321 push_dummy_frame ()
322 {
323 /* stack pointer. */
324 CORE_ADDR sp;
325
326 /* link register. */
327 CORE_ADDR pc;
328 /* Same thing, target byte order. */
329 char pc_targ[4];
330
331 int ii;
332
333 target_fetch_registers (-1);
334
335 if (dummy_frame_count >= dummy_frame_size) {
336 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
337 if (dummy_frame_addr)
338 dummy_frame_addr = (CORE_ADDR*) xrealloc
339 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
340 else
341 dummy_frame_addr = (CORE_ADDR*)
342 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
343 }
344
345 sp = read_register(SP_REGNUM);
346 pc = read_register(PC_REGNUM);
347 memcpy (pc_targ, (char *) &pc, 4);
348
349 dummy_frame_addr [dummy_frame_count++] = sp;
350
351 /* Be careful! If the stack pointer is not decremented first, then kernel
352 thinks he is free to use the space underneath it. And kernel actually
353 uses that area for IPC purposes when executing ptrace(2) calls. So
354 before writing register values into the new frame, decrement and update
355 %sp first in order to secure your frame. */
356
357 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
358
359 /* gdb relies on the state of current_frame. We'd better update it,
360 otherwise things like do_registers_info() wouldn't work properly! */
361
362 flush_cached_frames ();
363
364 /* save program counter in link register's space. */
365 write_memory (sp+8, pc_targ, 4);
366
367 /* save all floating point and general purpose registers here. */
368
369 /* fpr's, f0..f31 */
370 for (ii = 0; ii < 32; ++ii)
371 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
372
373 /* gpr's r0..r31 */
374 for (ii=1; ii <=32; ++ii)
375 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
376
377 /* so far, 32*2 + 32 words = 384 bytes have been written.
378 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
379
380 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
381 write_memory (sp-384-(ii*4),
382 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
383 }
384
385 /* Save sp or so called back chain right here. */
386 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
387 sp -= DUMMY_FRAME_SIZE;
388
389 /* And finally, this is the back chain. */
390 write_memory (sp+8, pc_targ, 4);
391 }
392
393
394 /* Pop a dummy frame.
395
396 In rs6000 when we push a dummy frame, we save all of the registers. This
397 is usually done before user calls a function explicitly.
398
399 After a dummy frame is pushed, some instructions are copied into stack,
400 and stack pointer is decremented even more. Since we don't have a frame
401 pointer to get back to the parent frame of the dummy, we start having
402 trouble poping it. Therefore, we keep a dummy frame stack, keeping
403 addresses of dummy frames as such. When poping happens and when we
404 detect that was a dummy frame, we pop it back to its parent by using
405 dummy frame stack (`dummy_frame_addr' array).
406
407 FIXME: This whole concept is broken. You should be able to detect
408 a dummy stack frame *on the user's stack itself*. When you do,
409 then you know the format of that stack frame -- including its
410 saved SP register! There should *not* be a separate stack in the
411 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
412 */
413
414 pop_dummy_frame ()
415 {
416 CORE_ADDR sp, pc;
417 int ii;
418 sp = dummy_frame_addr [--dummy_frame_count];
419
420 /* restore all fpr's. */
421 for (ii = 1; ii <= 32; ++ii)
422 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
423
424 /* restore all gpr's */
425 for (ii=1; ii <= 32; ++ii) {
426 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
427 }
428
429 /* restore the rest of the registers. */
430 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
431 read_memory (sp-384-(ii*4),
432 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
433
434 read_memory (sp-(DUMMY_FRAME_SIZE-8),
435 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
436
437 /* when a dummy frame was being pushed, we had to decrement %sp first, in
438 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
439 one we should restore. Change it with the one we need. */
440
441 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
442
443 /* Now we can restore all registers. */
444
445 target_store_registers (-1);
446 pc = read_pc ();
447 flush_cached_frames ();
448 }
449
450
451 /* pop the innermost frame, go back to the caller. */
452
453 void
454 pop_frame ()
455 {
456 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
457 struct aix_framedata fdata;
458 FRAME fr = get_current_frame ();
459 int addr, ii;
460
461 pc = read_pc ();
462 sp = FRAME_FP (fr);
463
464 if (stop_stack_dummy && dummy_frame_count) {
465 pop_dummy_frame ();
466 return;
467 }
468
469 /* Make sure that all registers are valid. */
470 read_register_bytes (0, NULL, REGISTER_BYTES);
471
472 /* figure out previous %pc value. If the function is frameless, it is
473 still in the link register, otherwise walk the frames and retrieve the
474 saved %pc value in the previous frame. */
475
476 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
477 function_frame_info (addr, &fdata);
478
479 if (fdata.frameless)
480 prev_sp = sp;
481 else
482 prev_sp = read_memory_integer (sp, 4);
483 if (fdata.nosavedpc)
484 lr = read_register (LR_REGNUM);
485 else
486 lr = read_memory_integer (prev_sp+8, 4);
487
488 /* reset %pc value. */
489 write_register (PC_REGNUM, lr);
490
491 /* reset register values if any was saved earlier. */
492 addr = prev_sp - fdata.offset;
493
494 if (fdata.saved_gpr != -1)
495 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
496 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
497 addr += 4;
498 }
499
500 if (fdata.saved_fpr != -1)
501 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
502 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
503 addr += 8;
504 }
505
506 write_register (SP_REGNUM, prev_sp);
507 target_store_registers (-1);
508 flush_cached_frames ();
509 }
510
511 /* fixup the call sequence of a dummy function, with the real function address.
512 its argumets will be passed by gdb. */
513
514 void
515 fix_call_dummy(dummyname, pc, fun, nargs, type)
516 char *dummyname;
517 CORE_ADDR pc;
518 CORE_ADDR fun;
519 int nargs; /* not used */
520 int type; /* not used */
521 {
522 #define TOC_ADDR_OFFSET 20
523 #define TARGET_ADDR_OFFSET 28
524
525 int ii;
526 CORE_ADDR target_addr;
527 CORE_ADDR tocvalue;
528
529 target_addr = fun;
530 tocvalue = find_toc_address (target_addr);
531
532 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
533 ii = (ii & 0xffff0000) | (tocvalue >> 16);
534 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
535
536 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
537 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
538 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
539
540 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
541 ii = (ii & 0xffff0000) | (target_addr >> 16);
542 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
543
544 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
545 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
546 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
547 }
548
549
550 /* return information about a function frame.
551 in struct aix_frameinfo fdata:
552 - frameless is TRUE, if function does not have a frame.
553 - nosavedpc is TRUE, if function does not save %pc value in its frame.
554 - offset is the number of bytes used in the frame to save registers.
555 - saved_gpr is the number of the first saved gpr.
556 - saved_fpr is the number of the first saved fpr.
557 - alloca_reg is the number of the register used for alloca() handling.
558 Otherwise -1.
559 */
560 void
561 function_frame_info (pc, fdata)
562 CORE_ADDR pc;
563 struct aix_framedata *fdata;
564 {
565 unsigned int tmp;
566 register unsigned int op;
567
568 fdata->offset = 0;
569 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
570 fdata->frameless = 1;
571
572 op = read_memory_integer (pc, 4);
573 if (op == 0x7c0802a6) { /* mflr r0 */
574 pc += 4;
575 op = read_memory_integer (pc, 4);
576 fdata->nosavedpc = 0;
577 fdata->frameless = 0;
578 }
579 else /* else, pc is not saved */
580 fdata->nosavedpc = 1;
581
582 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
583 pc += 4;
584 op = read_memory_integer (pc, 4);
585 fdata->frameless = 0;
586 }
587
588 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
589 pc += 4;
590 op = read_memory_integer (pc, 4);
591 /* At this point, make sure this is not a trampoline function
592 (a function that simply calls another functions, and nothing else).
593 If the next is not a nop, this branch was part of the function
594 prologue. */
595
596 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
597 op == 0x0)
598 return; /* prologue is over */
599 fdata->frameless = 0;
600 }
601
602 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
603 pc += 4; /* store floating register double */
604 op = read_memory_integer (pc, 4);
605 fdata->frameless = 0;
606 }
607
608 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
609 int tmp2;
610 fdata->saved_gpr = (op >> 21) & 0x1f;
611 tmp2 = op & 0xffff;
612 if (tmp2 > 0x7fff)
613 tmp2 = (~0 &~ 0xffff) | tmp2;
614
615 if (tmp2 < 0) {
616 tmp2 = tmp2 * -1;
617 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
618 if ( fdata->saved_fpr > 0)
619 fdata->saved_fpr = 32 - fdata->saved_fpr;
620 else
621 fdata->saved_fpr = -1;
622 }
623 fdata->offset = tmp2;
624 pc += 4;
625 op = read_memory_integer (pc, 4);
626 fdata->frameless = 0;
627 }
628
629 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
630 (tmp == 0x9421) || /* stu r1, NUM(r1) */
631 (tmp == 0x93e1)) /* st r31, NUM(r1) */
632 {
633 int tmp2;
634
635 /* gcc takes a short cut and uses this instruction to save r31 only. */
636
637 if (tmp == 0x93e1) {
638 if (fdata->offset)
639 /* fatal ("Unrecognized prolog."); */
640 printf_unfiltered ("Unrecognized prolog!\n");
641
642 fdata->saved_gpr = 31;
643 tmp2 = op & 0xffff;
644 if (tmp2 > 0x7fff) {
645 tmp2 = - ((~0 &~ 0xffff) | tmp2);
646 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
647 if ( fdata->saved_fpr > 0)
648 fdata->saved_fpr = 32 - fdata->saved_fpr;
649 else
650 fdata->saved_fpr = -1;
651 }
652 fdata->offset = tmp2;
653 }
654 pc += 4;
655 op = read_memory_integer (pc, 4);
656 fdata->frameless = 0;
657 }
658
659 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
660 pc += 4; /* l r30, ... */
661 op = read_memory_integer (pc, 4);
662 fdata->frameless = 0;
663 }
664
665 /* store parameters into stack */
666 while(
667 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
668 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
669 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
670 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
671 {
672 pc += 4; /* store fpr double */
673 op = read_memory_integer (pc, 4);
674 fdata->frameless = 0;
675 }
676
677 if (op == 0x603f0000 /* oril r31, r1, 0x0 */
678 || op == 0x7c3f0b78) /* mr r31, r1 */
679 {
680 fdata->alloca_reg = 31;
681 fdata->frameless = 0;
682 }
683 }
684
685
686 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
687 eight words of the argument list (that might be less than eight parameters if
688 some parameters occupy more than one word) are passed in r3..r11 registers.
689 float and double parameters are passed in fpr's, in addition to that. Rest of
690 the parameters if any are passed in user stack. There might be cases in which
691 half of the parameter is copied into registers, the other half is pushed into
692 stack.
693
694 If the function is returning a structure, then the return address is passed
695 in r3, then the first 7 words of the parametes can be passed in registers,
696 starting from r4. */
697
698 CORE_ADDR
699 push_arguments (nargs, args, sp, struct_return, struct_addr)
700 int nargs;
701 value_ptr *args;
702 CORE_ADDR sp;
703 int struct_return;
704 CORE_ADDR struct_addr;
705 {
706 int ii, len;
707 int argno; /* current argument number */
708 int argbytes; /* current argument byte */
709 char tmp_buffer [50];
710 value_ptr arg;
711 int f_argno = 0; /* current floating point argno */
712
713 CORE_ADDR saved_sp, pc;
714
715 if ( dummy_frame_count <= 0)
716 printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
717
718 /* The first eight words of ther arguments are passed in registers. Copy
719 them appropriately.
720
721 If the function is returning a `struct', then the first word (which
722 will be passed in r3) is used for struct return address. In that
723 case we should advance one word and start from r4 register to copy
724 parameters. */
725
726 ii = struct_return ? 1 : 0;
727
728 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
729
730 arg = value_arg_coerce (args[argno]);
731 len = TYPE_LENGTH (VALUE_TYPE (arg));
732
733 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
734
735 /* floating point arguments are passed in fpr's, as well as gpr's.
736 There are 13 fpr's reserved for passing parameters. At this point
737 there is no way we would run out of them. */
738
739 if (len > 8)
740 printf_unfiltered (
741 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
742
743 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
744 len);
745 ++f_argno;
746 }
747
748 if (len > 4) {
749
750 /* Argument takes more than one register. */
751 while (argbytes < len) {
752
753 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
754 memcpy (&registers[REGISTER_BYTE(ii+3)],
755 ((char*)VALUE_CONTENTS (arg))+argbytes,
756 (len - argbytes) > 4 ? 4 : len - argbytes);
757 ++ii, argbytes += 4;
758
759 if (ii >= 8)
760 goto ran_out_of_registers_for_arguments;
761 }
762 argbytes = 0;
763 --ii;
764 }
765 else { /* Argument can fit in one register. No problem. */
766 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
767 memcpy (&registers[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
768 }
769 ++argno;
770 }
771
772 ran_out_of_registers_for_arguments:
773
774 /* location for 8 parameters are always reserved. */
775 sp -= 4 * 8;
776
777 /* another six words for back chain, TOC register, link register, etc. */
778 sp -= 24;
779
780 /* if there are more arguments, allocate space for them in
781 the stack, then push them starting from the ninth one. */
782
783 if ((argno < nargs) || argbytes) {
784 int space = 0, jj;
785 value_ptr val;
786
787 if (argbytes) {
788 space += ((len - argbytes + 3) & -4);
789 jj = argno + 1;
790 }
791 else
792 jj = argno;
793
794 for (; jj < nargs; ++jj) {
795 val = value_arg_coerce (args[jj]);
796 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
797 }
798
799 /* add location required for the rest of the parameters */
800 space = (space + 7) & -8;
801 sp -= space;
802
803 /* This is another instance we need to be concerned about securing our
804 stack space. If we write anything underneath %sp (r1), we might conflict
805 with the kernel who thinks he is free to use this area. So, update %sp
806 first before doing anything else. */
807
808 write_register (SP_REGNUM, sp);
809
810 /* if the last argument copied into the registers didn't fit there
811 completely, push the rest of it into stack. */
812
813 if (argbytes) {
814 write_memory (
815 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
816 ++argno;
817 ii += ((len - argbytes + 3) & -4) / 4;
818 }
819
820 /* push the rest of the arguments into stack. */
821 for (; argno < nargs; ++argno) {
822
823 arg = value_arg_coerce (args[argno]);
824 len = TYPE_LENGTH (VALUE_TYPE (arg));
825
826
827 /* float types should be passed in fpr's, as well as in the stack. */
828 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
829
830 if (len > 8)
831 printf_unfiltered (
832 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
833
834 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
835 len);
836 ++f_argno;
837 }
838
839 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
840 ii += ((len + 3) & -4) / 4;
841 }
842 }
843 else
844 /* Secure stack areas first, before doing anything else. */
845 write_register (SP_REGNUM, sp);
846
847 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
848 read_memory (saved_sp, tmp_buffer, 24);
849 write_memory (sp, tmp_buffer, 24);
850
851 write_memory (sp, &saved_sp, 4); /* set back chain properly */
852
853 target_store_registers (-1);
854 return sp;
855 }
856
857 /* a given return value in `regbuf' with a type `valtype', extract and copy its
858 value into `valbuf' */
859
860 void
861 extract_return_value (valtype, regbuf, valbuf)
862 struct type *valtype;
863 char regbuf[REGISTER_BYTES];
864 char *valbuf;
865 {
866
867 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
868
869 double dd; float ff;
870 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
871 We need to truncate the return value into float size (4 byte) if
872 necessary. */
873
874 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
875 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
876 TYPE_LENGTH (valtype));
877 else { /* float */
878 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
879 ff = (float)dd;
880 memcpy (valbuf, &ff, sizeof(float));
881 }
882 }
883 else
884 /* return value is copied starting from r3. */
885 memcpy (valbuf, &regbuf[REGISTER_BYTE (3)], TYPE_LENGTH (valtype));
886 }
887
888
889 /* keep structure return address in this variable.
890 FIXME: This is a horrid kludge which should not be allowed to continue
891 living. This only allows a single nested call to a structure-returning
892 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
893
894 CORE_ADDR rs6000_struct_return_address;
895
896
897 /* Indirect function calls use a piece of trampoline code to do context
898 switching, i.e. to set the new TOC table. Skip such code if we are on
899 its first instruction (as when we have single-stepped to here).
900 Also skip shared library trampoline code (which is different from
901 indirect function call trampolines).
902 Result is desired PC to step until, or NULL if we are not in
903 trampoline code. */
904
905 CORE_ADDR
906 skip_trampoline_code (pc)
907 CORE_ADDR pc;
908 {
909 register unsigned int ii, op;
910 CORE_ADDR solib_target_pc;
911
912 static unsigned trampoline_code[] = {
913 0x800b0000, /* l r0,0x0(r11) */
914 0x90410014, /* st r2,0x14(r1) */
915 0x7c0903a6, /* mtctr r0 */
916 0x804b0004, /* l r2,0x4(r11) */
917 0x816b0008, /* l r11,0x8(r11) */
918 0x4e800420, /* bctr */
919 0x4e800020, /* br */
920 0
921 };
922
923 /* If pc is in a shared library trampoline, return its target. */
924 solib_target_pc = find_solib_trampoline_target (pc);
925 if (solib_target_pc)
926 return solib_target_pc;
927
928 for (ii=0; trampoline_code[ii]; ++ii) {
929 op = read_memory_integer (pc + (ii*4), 4);
930 if (op != trampoline_code [ii])
931 return 0;
932 }
933 ii = read_register (11); /* r11 holds destination addr */
934 pc = read_memory_integer (ii, 4); /* (r11) value */
935 return pc;
936 }
937
938
939 /* Determines whether the function FI has a frame on the stack or not.
940 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
941 second argument of 0, and from the FRAME_SAVED_PC macro with a
942 second argument of 1. */
943
944 int
945 frameless_function_invocation (fi, pcsaved)
946 struct frame_info *fi;
947 int pcsaved;
948 {
949 CORE_ADDR func_start;
950 struct aix_framedata fdata;
951
952 if (fi->next != NULL)
953 /* Don't even think about framelessness except on the innermost frame. */
954 /* FIXME: Can also be frameless if fi->next->signal_handler_caller (if
955 a signal happens while executing in a frameless function). */
956 return 0;
957
958 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
959
960 /* If we failed to find the start of the function, it is a mistake
961 to inspect the instructions. */
962
963 if (!func_start)
964 return 0;
965
966 function_frame_info (func_start, &fdata);
967 return pcsaved ? fdata.nosavedpc : fdata.frameless;
968 }
969
970
971 /* If saved registers of frame FI are not known yet, read and cache them.
972 &FDATAP contains aix_framedata; TDATAP can be NULL,
973 in which case the framedata are read. */
974
975 static void
976 frame_get_cache_fsr (fi, fdatap)
977 struct frame_info *fi;
978 struct aix_framedata *fdatap;
979 {
980 int ii;
981 CORE_ADDR frame_addr;
982 struct aix_framedata work_fdata;
983
984 if (fi->cache_fsr)
985 return;
986
987 if (fdatap == NULL) {
988 fdatap = &work_fdata;
989 function_frame_info (get_pc_function_start (fi->pc), fdatap);
990 }
991
992 fi->cache_fsr = (struct frame_saved_regs *)
993 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
994 memset (fi->cache_fsr, '\0', sizeof (struct frame_saved_regs));
995
996 if (fi->prev && fi->prev->frame)
997 frame_addr = fi->prev->frame;
998 else
999 frame_addr = read_memory_integer (fi->frame, 4);
1000
1001 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1002 All fpr's from saved_fpr to fp31 are saved right underneath caller
1003 stack pointer, starting from fp31 first. */
1004
1005 if (fdatap->saved_fpr >= 0) {
1006 for (ii=31; ii >= fdatap->saved_fpr; --ii)
1007 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
1008 frame_addr -= (32 - fdatap->saved_fpr) * 8;
1009 }
1010
1011 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1012 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1013 starting from r31 first. */
1014
1015 if (fdatap->saved_gpr >= 0)
1016 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1017 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1018 }
1019
1020 /* Return the address of a frame. This is the inital %sp value when the frame
1021 was first allocated. For functions calling alloca(), it might be saved in
1022 an alloca register. */
1023
1024 CORE_ADDR
1025 frame_initial_stack_address (fi)
1026 struct frame_info *fi;
1027 {
1028 CORE_ADDR tmpaddr;
1029 struct aix_framedata fdata;
1030 struct frame_info *callee_fi;
1031
1032 /* if the initial stack pointer (frame address) of this frame is known,
1033 just return it. */
1034
1035 if (fi->initial_sp)
1036 return fi->initial_sp;
1037
1038 /* find out if this function is using an alloca register.. */
1039
1040 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1041
1042 /* if saved registers of this frame are not known yet, read and cache them. */
1043
1044 if (!fi->cache_fsr)
1045 frame_get_cache_fsr (fi, &fdata);
1046
1047 /* If no alloca register used, then fi->frame is the value of the %sp for
1048 this frame, and it is good enough. */
1049
1050 if (fdata.alloca_reg < 0) {
1051 fi->initial_sp = fi->frame;
1052 return fi->initial_sp;
1053 }
1054
1055 /* This function has an alloca register. If this is the top-most frame
1056 (with the lowest address), the value in alloca register is good. */
1057
1058 if (!fi->next)
1059 return fi->initial_sp = read_register (fdata.alloca_reg);
1060
1061 /* Otherwise, this is a caller frame. Callee has usually already saved
1062 registers, but there are exceptions (such as when the callee
1063 has no parameters). Find the address in which caller's alloca
1064 register is saved. */
1065
1066 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1067
1068 if (!callee_fi->cache_fsr)
1069 frame_get_cache_fsr (callee_fi, NULL);
1070
1071 /* this is the address in which alloca register is saved. */
1072
1073 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1074 if (tmpaddr) {
1075 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1076 return fi->initial_sp;
1077 }
1078
1079 /* Go look into deeper levels of the frame chain to see if any one of
1080 the callees has saved alloca register. */
1081 }
1082
1083 /* If alloca register was not saved, by the callee (or any of its callees)
1084 then the value in the register is still good. */
1085
1086 return fi->initial_sp = read_register (fdata.alloca_reg);
1087 }
1088
1089 FRAME_ADDR
1090 rs6000_frame_chain (thisframe)
1091 struct frame_info *thisframe;
1092 {
1093 FRAME_ADDR fp;
1094 if (inside_entry_file ((thisframe)->pc))
1095 return 0;
1096 if (thisframe->signal_handler_caller)
1097 {
1098 /* This was determined by experimentation on AIX 3.2. Perhaps
1099 it corresponds to some offset in /usr/include/sys/user.h or
1100 something like that. Using some system include file would
1101 have the advantage of probably being more robust in the face
1102 of OS upgrades, but the disadvantage of being wrong for
1103 cross-debugging. */
1104
1105 #define SIG_FRAME_FP_OFFSET 284
1106 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1107 }
1108 else
1109 fp = read_memory_integer ((thisframe)->frame, 4);
1110
1111 return fp;
1112 }
1113 \f
1114 /* Keep an array of load segment information and their TOC table addresses.
1115 This info will be useful when calling a shared library function by hand. */
1116
1117 struct loadinfo {
1118 CORE_ADDR textorg, dataorg;
1119 unsigned long toc_offset;
1120 };
1121
1122 #define LOADINFOLEN 10
1123
1124 static struct loadinfo *loadinfo = NULL;
1125 static int loadinfolen = 0;
1126 static int loadinfotocindex = 0;
1127 static int loadinfotextindex = 0;
1128
1129
1130 void
1131 xcoff_init_loadinfo ()
1132 {
1133 loadinfotocindex = 0;
1134 loadinfotextindex = 0;
1135
1136 if (loadinfolen == 0) {
1137 loadinfo = (struct loadinfo *)
1138 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1139 loadinfolen = LOADINFOLEN;
1140 }
1141 }
1142
1143
1144 /* FIXME -- this is never called! */
1145 void
1146 free_loadinfo ()
1147 {
1148 if (loadinfo)
1149 free (loadinfo);
1150 loadinfo = NULL;
1151 loadinfolen = 0;
1152 loadinfotocindex = 0;
1153 loadinfotextindex = 0;
1154 }
1155
1156 /* this is called from xcoffread.c */
1157
1158 void
1159 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1160 {
1161 while (loadinfotocindex >= loadinfolen) {
1162 loadinfolen += LOADINFOLEN;
1163 loadinfo = (struct loadinfo *)
1164 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1165 }
1166 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1167 }
1168
1169 void
1170 add_text_to_loadinfo (textaddr, dataaddr)
1171 CORE_ADDR textaddr;
1172 CORE_ADDR dataaddr;
1173 {
1174 while (loadinfotextindex >= loadinfolen) {
1175 loadinfolen += LOADINFOLEN;
1176 loadinfo = (struct loadinfo *)
1177 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1178 }
1179 loadinfo [loadinfotextindex].textorg = textaddr;
1180 loadinfo [loadinfotextindex].dataorg = dataaddr;
1181 ++loadinfotextindex;
1182 }
1183
1184
1185 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1186 of a member of this array are correlated with the "toc_offset"
1187 element of the same member. But they are sequentially assigned in wildly
1188 different places, and probably there is no correlation. FIXME! */
1189
1190 static CORE_ADDR
1191 find_toc_address (pc)
1192 CORE_ADDR pc;
1193 {
1194 int ii, toc_entry, tocbase = 0;
1195
1196 for (ii=0; ii < loadinfotextindex; ++ii)
1197 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1198 toc_entry = ii;
1199 tocbase = loadinfo[ii].textorg;
1200 }
1201
1202 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1203 }
This page took 0.073781 seconds and 5 git commands to generate.