ppc: Detect when LR is saved through frame pointer
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a POWER7 VSX register. */
100 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
103
104 /* Determine if regnum is a POWER7 Extended FP register. */
105 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
108
109 /* Holds the current set of options to be passed to the disassembler. */
110 static char *powerpc_disassembler_options;
111
112 /* The list of available "set powerpc ..." and "show powerpc ..."
113 commands. */
114 static struct cmd_list_element *setpowerpccmdlist = NULL;
115 static struct cmd_list_element *showpowerpccmdlist = NULL;
116
117 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
118
119 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
120 static const char *const powerpc_vector_strings[] =
121 {
122 "auto",
123 "generic",
124 "altivec",
125 "spe",
126 NULL
127 };
128
129 /* A variable that can be configured by the user. */
130 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
131 static const char *powerpc_vector_abi_string = "auto";
132
133 /* To be used by skip_prologue. */
134
135 struct rs6000_framedata
136 {
137 int offset; /* total size of frame --- the distance
138 by which we decrement sp to allocate
139 the frame */
140 int saved_gpr; /* smallest # of saved gpr */
141 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
142 int saved_fpr; /* smallest # of saved fpr */
143 int saved_vr; /* smallest # of saved vr */
144 int saved_ev; /* smallest # of saved ev */
145 int alloca_reg; /* alloca register number (frame ptr) */
146 char frameless; /* true if frameless functions. */
147 char nosavedpc; /* true if pc not saved. */
148 char used_bl; /* true if link register clobbered */
149 int gpr_offset; /* offset of saved gprs from prev sp */
150 int fpr_offset; /* offset of saved fprs from prev sp */
151 int vr_offset; /* offset of saved vrs from prev sp */
152 int ev_offset; /* offset of saved evs from prev sp */
153 int lr_offset; /* offset of saved lr */
154 int lr_register; /* register of saved lr, if trustworthy */
155 int cr_offset; /* offset of saved cr */
156 int vrsave_offset; /* offset of saved vrsave register */
157 };
158
159
160 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
161 int
162 vsx_register_p (struct gdbarch *gdbarch, int regno)
163 {
164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
165 if (tdep->ppc_vsr0_regnum < 0)
166 return 0;
167 else
168 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
169 <= tdep->ppc_vsr0_upper_regnum + 31);
170 }
171
172 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
173 int
174 altivec_register_p (struct gdbarch *gdbarch, int regno)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
178 return 0;
179 else
180 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
181 }
182
183
184 /* Return true if REGNO is an SPE register, false otherwise. */
185 int
186 spe_register_p (struct gdbarch *gdbarch, int regno)
187 {
188 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
189
190 /* Is it a reference to EV0 -- EV31, and do we have those? */
191 if (IS_SPE_PSEUDOREG (tdep, regno))
192 return 1;
193
194 /* Is it a reference to one of the raw upper GPR halves? */
195 if (tdep->ppc_ev0_upper_regnum >= 0
196 && tdep->ppc_ev0_upper_regnum <= regno
197 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
198 return 1;
199
200 /* Is it a reference to the 64-bit accumulator, and do we have that? */
201 if (tdep->ppc_acc_regnum >= 0
202 && tdep->ppc_acc_regnum == regno)
203 return 1;
204
205 /* Is it a reference to the SPE floating-point status and control register,
206 and do we have that? */
207 if (tdep->ppc_spefscr_regnum >= 0
208 && tdep->ppc_spefscr_regnum == regno)
209 return 1;
210
211 return 0;
212 }
213
214
215 /* Return non-zero if the architecture described by GDBARCH has
216 floating-point registers (f0 --- f31 and fpscr). */
217 int
218 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
219 {
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221
222 return (tdep->ppc_fp0_regnum >= 0
223 && tdep->ppc_fpscr_regnum >= 0);
224 }
225
226 /* Return non-zero if the architecture described by GDBARCH has
227 VSX registers (vsr0 --- vsr63). */
228 static int
229 ppc_vsx_support_p (struct gdbarch *gdbarch)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232
233 return tdep->ppc_vsr0_regnum >= 0;
234 }
235
236 /* Return non-zero if the architecture described by GDBARCH has
237 Altivec registers (vr0 --- vr31, vrsave and vscr). */
238 int
239 ppc_altivec_support_p (struct gdbarch *gdbarch)
240 {
241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
242
243 return (tdep->ppc_vr0_regnum >= 0
244 && tdep->ppc_vrsave_regnum >= 0);
245 }
246
247 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
248 set it to SIM_REGNO.
249
250 This is a helper function for init_sim_regno_table, constructing
251 the table mapping GDB register numbers to sim register numbers; we
252 initialize every element in that table to -1 before we start
253 filling it in. */
254 static void
255 set_sim_regno (int *table, int gdb_regno, int sim_regno)
256 {
257 /* Make sure we don't try to assign any given GDB register a sim
258 register number more than once. */
259 gdb_assert (table[gdb_regno] == -1);
260 table[gdb_regno] = sim_regno;
261 }
262
263
264 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
265 numbers to simulator register numbers, based on the values placed
266 in the ARCH->tdep->ppc_foo_regnum members. */
267 static void
268 init_sim_regno_table (struct gdbarch *arch)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
271 int total_regs = gdbarch_num_regs (arch);
272 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
273 int i;
274 static const char *const segment_regs[] = {
275 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
276 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
277 };
278
279 /* Presume that all registers not explicitly mentioned below are
280 unavailable from the sim. */
281 for (i = 0; i < total_regs; i++)
282 sim_regno[i] = -1;
283
284 /* General-purpose registers. */
285 for (i = 0; i < ppc_num_gprs; i++)
286 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
287
288 /* Floating-point registers. */
289 if (tdep->ppc_fp0_regnum >= 0)
290 for (i = 0; i < ppc_num_fprs; i++)
291 set_sim_regno (sim_regno,
292 tdep->ppc_fp0_regnum + i,
293 sim_ppc_f0_regnum + i);
294 if (tdep->ppc_fpscr_regnum >= 0)
295 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
296
297 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
298 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
299 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
300
301 /* Segment registers. */
302 for (i = 0; i < ppc_num_srs; i++)
303 {
304 int gdb_regno;
305
306 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
307 if (gdb_regno >= 0)
308 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
309 }
310
311 /* Altivec registers. */
312 if (tdep->ppc_vr0_regnum >= 0)
313 {
314 for (i = 0; i < ppc_num_vrs; i++)
315 set_sim_regno (sim_regno,
316 tdep->ppc_vr0_regnum + i,
317 sim_ppc_vr0_regnum + i);
318
319 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
320 we can treat this more like the other cases. */
321 set_sim_regno (sim_regno,
322 tdep->ppc_vr0_regnum + ppc_num_vrs,
323 sim_ppc_vscr_regnum);
324 }
325 /* vsave is a special-purpose register, so the code below handles it. */
326
327 /* SPE APU (E500) registers. */
328 if (tdep->ppc_ev0_upper_regnum >= 0)
329 for (i = 0; i < ppc_num_gprs; i++)
330 set_sim_regno (sim_regno,
331 tdep->ppc_ev0_upper_regnum + i,
332 sim_ppc_rh0_regnum + i);
333 if (tdep->ppc_acc_regnum >= 0)
334 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
335 /* spefscr is a special-purpose register, so the code below handles it. */
336
337 #ifdef WITH_PPC_SIM
338 /* Now handle all special-purpose registers. Verify that they
339 haven't mistakenly been assigned numbers by any of the above
340 code. */
341 for (i = 0; i < sim_ppc_num_sprs; i++)
342 {
343 const char *spr_name = sim_spr_register_name (i);
344 int gdb_regno = -1;
345
346 if (spr_name != NULL)
347 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
348
349 if (gdb_regno != -1)
350 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
351 }
352 #endif
353
354 /* Drop the initialized array into place. */
355 tdep->sim_regno = sim_regno;
356 }
357
358
359 /* Given a GDB register number REG, return the corresponding SIM
360 register number. */
361 static int
362 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
363 {
364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
365 int sim_regno;
366
367 if (tdep->sim_regno == NULL)
368 init_sim_regno_table (gdbarch);
369
370 gdb_assert (0 <= reg
371 && reg <= gdbarch_num_regs (gdbarch)
372 + gdbarch_num_pseudo_regs (gdbarch));
373 sim_regno = tdep->sim_regno[reg];
374
375 if (sim_regno >= 0)
376 return sim_regno;
377 else
378 return LEGACY_SIM_REGNO_IGNORE;
379 }
380
381 \f
382
383 /* Register set support functions. */
384
385 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
386 Write the register to REGCACHE. */
387
388 void
389 ppc_supply_reg (struct regcache *regcache, int regnum,
390 const gdb_byte *regs, size_t offset, int regsize)
391 {
392 if (regnum != -1 && offset != -1)
393 {
394 if (regsize > 4)
395 {
396 struct gdbarch *gdbarch = regcache->arch ();
397 int gdb_regsize = register_size (gdbarch, regnum);
398 if (gdb_regsize < regsize
399 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
400 offset += regsize - gdb_regsize;
401 }
402 regcache_raw_supply (regcache, regnum, regs + offset);
403 }
404 }
405
406 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
407 in a field REGSIZE wide. Zero pad as necessary. */
408
409 void
410 ppc_collect_reg (const struct regcache *regcache, int regnum,
411 gdb_byte *regs, size_t offset, int regsize)
412 {
413 if (regnum != -1 && offset != -1)
414 {
415 if (regsize > 4)
416 {
417 struct gdbarch *gdbarch = regcache->arch ();
418 int gdb_regsize = register_size (gdbarch, regnum);
419 if (gdb_regsize < regsize)
420 {
421 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
422 {
423 memset (regs + offset, 0, regsize - gdb_regsize);
424 offset += regsize - gdb_regsize;
425 }
426 else
427 memset (regs + offset + regsize - gdb_regsize, 0,
428 regsize - gdb_regsize);
429 }
430 }
431 regcache_raw_collect (regcache, regnum, regs + offset);
432 }
433 }
434
435 static int
436 ppc_greg_offset (struct gdbarch *gdbarch,
437 struct gdbarch_tdep *tdep,
438 const struct ppc_reg_offsets *offsets,
439 int regnum,
440 int *regsize)
441 {
442 *regsize = offsets->gpr_size;
443 if (regnum >= tdep->ppc_gp0_regnum
444 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
445 return (offsets->r0_offset
446 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
447
448 if (regnum == gdbarch_pc_regnum (gdbarch))
449 return offsets->pc_offset;
450
451 if (regnum == tdep->ppc_ps_regnum)
452 return offsets->ps_offset;
453
454 if (regnum == tdep->ppc_lr_regnum)
455 return offsets->lr_offset;
456
457 if (regnum == tdep->ppc_ctr_regnum)
458 return offsets->ctr_offset;
459
460 *regsize = offsets->xr_size;
461 if (regnum == tdep->ppc_cr_regnum)
462 return offsets->cr_offset;
463
464 if (regnum == tdep->ppc_xer_regnum)
465 return offsets->xer_offset;
466
467 if (regnum == tdep->ppc_mq_regnum)
468 return offsets->mq_offset;
469
470 return -1;
471 }
472
473 static int
474 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
475 const struct ppc_reg_offsets *offsets,
476 int regnum)
477 {
478 if (regnum >= tdep->ppc_fp0_regnum
479 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
480 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
481
482 if (regnum == tdep->ppc_fpscr_regnum)
483 return offsets->fpscr_offset;
484
485 return -1;
486 }
487
488 static int
489 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
490 const struct ppc_reg_offsets *offsets,
491 int regnum)
492 {
493 if (regnum >= tdep->ppc_vr0_regnum
494 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
495 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
496
497 if (regnum == tdep->ppc_vrsave_regnum - 1)
498 return offsets->vscr_offset;
499
500 if (regnum == tdep->ppc_vrsave_regnum)
501 return offsets->vrsave_offset;
502
503 return -1;
504 }
505
506 /* Supply register REGNUM in the general-purpose register set REGSET
507 from the buffer specified by GREGS and LEN to register cache
508 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
509
510 void
511 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
512 int regnum, const void *gregs, size_t len)
513 {
514 struct gdbarch *gdbarch = regcache->arch ();
515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
516 const struct ppc_reg_offsets *offsets
517 = (const struct ppc_reg_offsets *) regset->regmap;
518 size_t offset;
519 int regsize;
520
521 if (regnum == -1)
522 {
523 int i;
524 int gpr_size = offsets->gpr_size;
525
526 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
527 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
528 i++, offset += gpr_size)
529 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
530 gpr_size);
531
532 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
533 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
534 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
535 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
536 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
537 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
538 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
539 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
540 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
541 (const gdb_byte *) gregs, offsets->cr_offset,
542 offsets->xr_size);
543 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
544 (const gdb_byte *) gregs, offsets->xer_offset,
545 offsets->xr_size);
546 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
547 (const gdb_byte *) gregs, offsets->mq_offset,
548 offsets->xr_size);
549 return;
550 }
551
552 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
553 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
554 }
555
556 /* Supply register REGNUM in the floating-point register set REGSET
557 from the buffer specified by FPREGS and LEN to register cache
558 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
559
560 void
561 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
562 int regnum, const void *fpregs, size_t len)
563 {
564 struct gdbarch *gdbarch = regcache->arch ();
565 struct gdbarch_tdep *tdep;
566 const struct ppc_reg_offsets *offsets;
567 size_t offset;
568
569 if (!ppc_floating_point_unit_p (gdbarch))
570 return;
571
572 tdep = gdbarch_tdep (gdbarch);
573 offsets = (const struct ppc_reg_offsets *) regset->regmap;
574 if (regnum == -1)
575 {
576 int i;
577
578 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
579 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
580 i++, offset += 8)
581 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
582
583 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
584 (const gdb_byte *) fpregs, offsets->fpscr_offset,
585 offsets->fpscr_size);
586 return;
587 }
588
589 offset = ppc_fpreg_offset (tdep, offsets, regnum);
590 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
591 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
592 }
593
594 /* Supply register REGNUM in the VSX register set REGSET
595 from the buffer specified by VSXREGS and LEN to register cache
596 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
597
598 void
599 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
600 int regnum, const void *vsxregs, size_t len)
601 {
602 struct gdbarch *gdbarch = regcache->arch ();
603 struct gdbarch_tdep *tdep;
604
605 if (!ppc_vsx_support_p (gdbarch))
606 return;
607
608 tdep = gdbarch_tdep (gdbarch);
609
610 if (regnum == -1)
611 {
612 int i;
613
614 for (i = tdep->ppc_vsr0_upper_regnum;
615 i < tdep->ppc_vsr0_upper_regnum + 32;
616 i++)
617 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
618
619 return;
620 }
621 else
622 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
623 }
624
625 /* Supply register REGNUM in the Altivec register set REGSET
626 from the buffer specified by VRREGS and LEN to register cache
627 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
628
629 void
630 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
631 int regnum, const void *vrregs, size_t len)
632 {
633 struct gdbarch *gdbarch = regcache->arch ();
634 struct gdbarch_tdep *tdep;
635 const struct ppc_reg_offsets *offsets;
636 size_t offset;
637
638 if (!ppc_altivec_support_p (gdbarch))
639 return;
640
641 tdep = gdbarch_tdep (gdbarch);
642 offsets = (const struct ppc_reg_offsets *) regset->regmap;
643 if (regnum == -1)
644 {
645 int i;
646
647 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
648 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
649 i++, offset += 16)
650 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
651
652 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
653 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
654
655 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
656 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
657 return;
658 }
659
660 offset = ppc_vrreg_offset (tdep, offsets, regnum);
661 if (regnum != tdep->ppc_vrsave_regnum
662 && regnum != tdep->ppc_vrsave_regnum - 1)
663 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
664 else
665 ppc_supply_reg (regcache, regnum,
666 (const gdb_byte *) vrregs, offset, 4);
667 }
668
669 /* Collect register REGNUM in the general-purpose register set
670 REGSET from register cache REGCACHE into the buffer specified by
671 GREGS and LEN. If REGNUM is -1, do this for all registers in
672 REGSET. */
673
674 void
675 ppc_collect_gregset (const struct regset *regset,
676 const struct regcache *regcache,
677 int regnum, void *gregs, size_t len)
678 {
679 struct gdbarch *gdbarch = regcache->arch ();
680 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
681 const struct ppc_reg_offsets *offsets
682 = (const struct ppc_reg_offsets *) regset->regmap;
683 size_t offset;
684 int regsize;
685
686 if (regnum == -1)
687 {
688 int i;
689 int gpr_size = offsets->gpr_size;
690
691 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
692 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
693 i++, offset += gpr_size)
694 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
695
696 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
697 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
698 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
699 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
700 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
701 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
702 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
703 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
704 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
705 (gdb_byte *) gregs, offsets->cr_offset,
706 offsets->xr_size);
707 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
708 (gdb_byte *) gregs, offsets->xer_offset,
709 offsets->xr_size);
710 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
711 (gdb_byte *) gregs, offsets->mq_offset,
712 offsets->xr_size);
713 return;
714 }
715
716 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
717 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
718 }
719
720 /* Collect register REGNUM in the floating-point register set
721 REGSET from register cache REGCACHE into the buffer specified by
722 FPREGS and LEN. If REGNUM is -1, do this for all registers in
723 REGSET. */
724
725 void
726 ppc_collect_fpregset (const struct regset *regset,
727 const struct regcache *regcache,
728 int regnum, void *fpregs, size_t len)
729 {
730 struct gdbarch *gdbarch = regcache->arch ();
731 struct gdbarch_tdep *tdep;
732 const struct ppc_reg_offsets *offsets;
733 size_t offset;
734
735 if (!ppc_floating_point_unit_p (gdbarch))
736 return;
737
738 tdep = gdbarch_tdep (gdbarch);
739 offsets = (const struct ppc_reg_offsets *) regset->regmap;
740 if (regnum == -1)
741 {
742 int i;
743
744 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
745 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
746 i++, offset += 8)
747 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
748
749 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
750 (gdb_byte *) fpregs, offsets->fpscr_offset,
751 offsets->fpscr_size);
752 return;
753 }
754
755 offset = ppc_fpreg_offset (tdep, offsets, regnum);
756 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
757 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
758 }
759
760 /* Collect register REGNUM in the VSX register set
761 REGSET from register cache REGCACHE into the buffer specified by
762 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
763 REGSET. */
764
765 void
766 ppc_collect_vsxregset (const struct regset *regset,
767 const struct regcache *regcache,
768 int regnum, void *vsxregs, size_t len)
769 {
770 struct gdbarch *gdbarch = regcache->arch ();
771 struct gdbarch_tdep *tdep;
772
773 if (!ppc_vsx_support_p (gdbarch))
774 return;
775
776 tdep = gdbarch_tdep (gdbarch);
777
778 if (regnum == -1)
779 {
780 int i;
781
782 for (i = tdep->ppc_vsr0_upper_regnum;
783 i < tdep->ppc_vsr0_upper_regnum + 32;
784 i++)
785 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
786
787 return;
788 }
789 else
790 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
791 }
792
793
794 /* Collect register REGNUM in the Altivec register set
795 REGSET from register cache REGCACHE into the buffer specified by
796 VRREGS and LEN. If REGNUM is -1, do this for all registers in
797 REGSET. */
798
799 void
800 ppc_collect_vrregset (const struct regset *regset,
801 const struct regcache *regcache,
802 int regnum, void *vrregs, size_t len)
803 {
804 struct gdbarch *gdbarch = regcache->arch ();
805 struct gdbarch_tdep *tdep;
806 const struct ppc_reg_offsets *offsets;
807 size_t offset;
808
809 if (!ppc_altivec_support_p (gdbarch))
810 return;
811
812 tdep = gdbarch_tdep (gdbarch);
813 offsets = (const struct ppc_reg_offsets *) regset->regmap;
814 if (regnum == -1)
815 {
816 int i;
817
818 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
819 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
820 i++, offset += 16)
821 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
822
823 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
824 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
825
826 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
827 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
828 return;
829 }
830
831 offset = ppc_vrreg_offset (tdep, offsets, regnum);
832 if (regnum != tdep->ppc_vrsave_regnum
833 && regnum != tdep->ppc_vrsave_regnum - 1)
834 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
835 else
836 ppc_collect_reg (regcache, regnum,
837 (gdb_byte *) vrregs, offset, 4);
838 }
839 \f
840
841 static int
842 insn_changes_sp_or_jumps (unsigned long insn)
843 {
844 int opcode = (insn >> 26) & 0x03f;
845 int sd = (insn >> 21) & 0x01f;
846 int a = (insn >> 16) & 0x01f;
847 int subcode = (insn >> 1) & 0x3ff;
848
849 /* Changes the stack pointer. */
850
851 /* NOTE: There are many ways to change the value of a given register.
852 The ways below are those used when the register is R1, the SP,
853 in a funtion's epilogue. */
854
855 if (opcode == 31 && subcode == 444 && a == 1)
856 return 1; /* mr R1,Rn */
857 if (opcode == 14 && sd == 1)
858 return 1; /* addi R1,Rn,simm */
859 if (opcode == 58 && sd == 1)
860 return 1; /* ld R1,ds(Rn) */
861
862 /* Transfers control. */
863
864 if (opcode == 18)
865 return 1; /* b */
866 if (opcode == 16)
867 return 1; /* bc */
868 if (opcode == 19 && subcode == 16)
869 return 1; /* bclr */
870 if (opcode == 19 && subcode == 528)
871 return 1; /* bcctr */
872
873 return 0;
874 }
875
876 /* Return true if we are in the function's epilogue, i.e. after the
877 instruction that destroyed the function's stack frame.
878
879 1) scan forward from the point of execution:
880 a) If you find an instruction that modifies the stack pointer
881 or transfers control (except a return), execution is not in
882 an epilogue, return.
883 b) Stop scanning if you find a return instruction or reach the
884 end of the function or reach the hard limit for the size of
885 an epilogue.
886 2) scan backward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer,
888 execution *is* in an epilogue, return.
889 b) Stop scanning if you reach an instruction that transfers
890 control or the beginning of the function or reach the hard
891 limit for the size of an epilogue. */
892
893 static int
894 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
895 struct gdbarch *gdbarch, CORE_ADDR pc)
896 {
897 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
898 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
899 bfd_byte insn_buf[PPC_INSN_SIZE];
900 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
901 unsigned long insn;
902
903 /* Find the search limits based on function boundaries and hard limit. */
904
905 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
906 return 0;
907
908 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
909 if (epilogue_start < func_start) epilogue_start = func_start;
910
911 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
912 if (epilogue_end > func_end) epilogue_end = func_end;
913
914 /* Scan forward until next 'blr'. */
915
916 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
917 {
918 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
919 return 0;
920 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
921 if (insn == 0x4e800020)
922 break;
923 /* Assume a bctr is a tail call unless it points strictly within
924 this function. */
925 if (insn == 0x4e800420)
926 {
927 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
928 tdep->ppc_ctr_regnum);
929 if (ctr > func_start && ctr < func_end)
930 return 0;
931 else
932 break;
933 }
934 if (insn_changes_sp_or_jumps (insn))
935 return 0;
936 }
937
938 /* Scan backward until adjustment to stack pointer (R1). */
939
940 for (scan_pc = pc - PPC_INSN_SIZE;
941 scan_pc >= epilogue_start;
942 scan_pc -= PPC_INSN_SIZE)
943 {
944 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
945 return 0;
946 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
947 if (insn_changes_sp_or_jumps (insn))
948 return 1;
949 }
950
951 return 0;
952 }
953
954 /* Implement the stack_frame_destroyed_p gdbarch method. */
955
956 static int
957 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
958 {
959 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
960 gdbarch, pc);
961 }
962
963 /* Get the ith function argument for the current function. */
964 static CORE_ADDR
965 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
966 struct type *type)
967 {
968 return get_frame_register_unsigned (frame, 3 + argi);
969 }
970
971 /* Sequence of bytes for breakpoint instruction. */
972
973 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
974 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
975
976 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
977 rs6000_breakpoint;
978
979 /* Instruction masks for displaced stepping. */
980 #define BRANCH_MASK 0xfc000000
981 #define BP_MASK 0xFC0007FE
982 #define B_INSN 0x48000000
983 #define BC_INSN 0x40000000
984 #define BXL_INSN 0x4c000000
985 #define BP_INSN 0x7C000008
986
987 /* Instruction masks used during single-stepping of atomic
988 sequences. */
989 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
990 #define LWARX_INSTRUCTION 0x7c000028
991 #define LDARX_INSTRUCTION 0x7c0000A8
992 #define LBARX_INSTRUCTION 0x7c000068
993 #define LHARX_INSTRUCTION 0x7c0000e8
994 #define LQARX_INSTRUCTION 0x7c000228
995 #define STORE_CONDITIONAL_MASK 0xfc0007ff
996 #define STWCX_INSTRUCTION 0x7c00012d
997 #define STDCX_INSTRUCTION 0x7c0001ad
998 #define STBCX_INSTRUCTION 0x7c00056d
999 #define STHCX_INSTRUCTION 0x7c0005ad
1000 #define STQCX_INSTRUCTION 0x7c00016d
1001
1002 /* Check if insn is one of the Load And Reserve instructions used for atomic
1003 sequences. */
1004 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
1005 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
1006 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
1007 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
1008 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
1009 /* Check if insn is one of the Store Conditional instructions used for atomic
1010 sequences. */
1011 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
1012 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
1013 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
1014 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
1015 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
1016
1017 typedef buf_displaced_step_closure ppc_displaced_step_closure;
1018
1019 /* We can't displaced step atomic sequences. */
1020
1021 static struct displaced_step_closure *
1022 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
1023 CORE_ADDR from, CORE_ADDR to,
1024 struct regcache *regs)
1025 {
1026 size_t len = gdbarch_max_insn_length (gdbarch);
1027 std::unique_ptr<ppc_displaced_step_closure> closure
1028 (new ppc_displaced_step_closure (len));
1029 gdb_byte *buf = closure->buf.data ();
1030 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1031 int insn;
1032
1033 read_memory (from, buf, len);
1034
1035 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1036
1037 /* Assume all atomic sequences start with a Load and Reserve instruction. */
1038 if (IS_LOAD_AND_RESERVE_INSN (insn))
1039 {
1040 if (debug_displaced)
1041 {
1042 fprintf_unfiltered (gdb_stdlog,
1043 "displaced: can't displaced step "
1044 "atomic sequence at %s\n",
1045 paddress (gdbarch, from));
1046 }
1047
1048 return NULL;
1049 }
1050
1051 write_memory (to, buf, len);
1052
1053 if (debug_displaced)
1054 {
1055 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1056 paddress (gdbarch, from), paddress (gdbarch, to));
1057 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1058 }
1059
1060 return closure.release ();
1061 }
1062
1063 /* Fix up the state of registers and memory after having single-stepped
1064 a displaced instruction. */
1065 static void
1066 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1067 struct displaced_step_closure *closure_,
1068 CORE_ADDR from, CORE_ADDR to,
1069 struct regcache *regs)
1070 {
1071 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1072 /* Our closure is a copy of the instruction. */
1073 ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
1074 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
1075 PPC_INSN_SIZE, byte_order);
1076 ULONGEST opcode = 0;
1077 /* Offset for non PC-relative instructions. */
1078 LONGEST offset = PPC_INSN_SIZE;
1079
1080 opcode = insn & BRANCH_MASK;
1081
1082 if (debug_displaced)
1083 fprintf_unfiltered (gdb_stdlog,
1084 "displaced: (ppc) fixup (%s, %s)\n",
1085 paddress (gdbarch, from), paddress (gdbarch, to));
1086
1087
1088 /* Handle PC-relative branch instructions. */
1089 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1090 {
1091 ULONGEST current_pc;
1092
1093 /* Read the current PC value after the instruction has been executed
1094 in a displaced location. Calculate the offset to be applied to the
1095 original PC value before the displaced stepping. */
1096 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1097 &current_pc);
1098 offset = current_pc - to;
1099
1100 if (opcode != BXL_INSN)
1101 {
1102 /* Check for AA bit indicating whether this is an absolute
1103 addressing or PC-relative (1: absolute, 0: relative). */
1104 if (!(insn & 0x2))
1105 {
1106 /* PC-relative addressing is being used in the branch. */
1107 if (debug_displaced)
1108 fprintf_unfiltered
1109 (gdb_stdlog,
1110 "displaced: (ppc) branch instruction: %s\n"
1111 "displaced: (ppc) adjusted PC from %s to %s\n",
1112 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1113 paddress (gdbarch, from + offset));
1114
1115 regcache_cooked_write_unsigned (regs,
1116 gdbarch_pc_regnum (gdbarch),
1117 from + offset);
1118 }
1119 }
1120 else
1121 {
1122 /* If we're here, it means we have a branch to LR or CTR. If the
1123 branch was taken, the offset is probably greater than 4 (the next
1124 instruction), so it's safe to assume that an offset of 4 means we
1125 did not take the branch. */
1126 if (offset == PPC_INSN_SIZE)
1127 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1128 from + PPC_INSN_SIZE);
1129 }
1130
1131 /* Check for LK bit indicating whether we should set the link
1132 register to point to the next instruction
1133 (1: Set, 0: Don't set). */
1134 if (insn & 0x1)
1135 {
1136 /* Link register needs to be set to the next instruction's PC. */
1137 regcache_cooked_write_unsigned (regs,
1138 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1139 from + PPC_INSN_SIZE);
1140 if (debug_displaced)
1141 fprintf_unfiltered (gdb_stdlog,
1142 "displaced: (ppc) adjusted LR to %s\n",
1143 paddress (gdbarch, from + PPC_INSN_SIZE));
1144
1145 }
1146 }
1147 /* Check for breakpoints in the inferior. If we've found one, place the PC
1148 right at the breakpoint instruction. */
1149 else if ((insn & BP_MASK) == BP_INSN)
1150 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1151 else
1152 /* Handle any other instructions that do not fit in the categories above. */
1153 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1154 from + offset);
1155 }
1156
1157 /* Always use hardware single-stepping to execute the
1158 displaced instruction. */
1159 static int
1160 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1161 struct displaced_step_closure *closure)
1162 {
1163 return 1;
1164 }
1165
1166 /* Checks for an atomic sequence of instructions beginning with a
1167 Load And Reserve instruction and ending with a Store Conditional
1168 instruction. If such a sequence is found, attempt to step through it.
1169 A breakpoint is placed at the end of the sequence. */
1170 std::vector<CORE_ADDR>
1171 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1172 {
1173 struct gdbarch *gdbarch = regcache->arch ();
1174 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1175 CORE_ADDR pc = regcache_read_pc (regcache);
1176 CORE_ADDR breaks[2] = {-1, -1};
1177 CORE_ADDR loc = pc;
1178 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1179 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1180 int insn_count;
1181 int index;
1182 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1183 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1184 int bc_insn_count = 0; /* Conditional branch instruction count. */
1185
1186 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1187 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1188 return {};
1189
1190 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1191 instructions. */
1192 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1193 {
1194 loc += PPC_INSN_SIZE;
1195 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1196
1197 /* Assume that there is at most one conditional branch in the atomic
1198 sequence. If a conditional branch is found, put a breakpoint in
1199 its destination address. */
1200 if ((insn & BRANCH_MASK) == BC_INSN)
1201 {
1202 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1203 int absolute = insn & 2;
1204
1205 if (bc_insn_count >= 1)
1206 return {}; /* More than one conditional branch found, fallback
1207 to the standard single-step code. */
1208
1209 if (absolute)
1210 breaks[1] = immediate;
1211 else
1212 breaks[1] = loc + immediate;
1213
1214 bc_insn_count++;
1215 last_breakpoint++;
1216 }
1217
1218 if (IS_STORE_CONDITIONAL_INSN (insn))
1219 break;
1220 }
1221
1222 /* Assume that the atomic sequence ends with a Store Conditional
1223 instruction. */
1224 if (!IS_STORE_CONDITIONAL_INSN (insn))
1225 return {};
1226
1227 closing_insn = loc;
1228 loc += PPC_INSN_SIZE;
1229
1230 /* Insert a breakpoint right after the end of the atomic sequence. */
1231 breaks[0] = loc;
1232
1233 /* Check for duplicated breakpoints. Check also for a breakpoint
1234 placed (branch instruction's destination) anywhere in sequence. */
1235 if (last_breakpoint
1236 && (breaks[1] == breaks[0]
1237 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1238 last_breakpoint = 0;
1239
1240 std::vector<CORE_ADDR> next_pcs;
1241
1242 for (index = 0; index <= last_breakpoint; index++)
1243 next_pcs.push_back (breaks[index]);
1244
1245 return next_pcs;
1246 }
1247
1248
1249 #define SIGNED_SHORT(x) \
1250 ((sizeof (short) == 2) \
1251 ? ((int)(short)(x)) \
1252 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1253
1254 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1255
1256 /* Limit the number of skipped non-prologue instructions, as the examining
1257 of the prologue is expensive. */
1258 static int max_skip_non_prologue_insns = 10;
1259
1260 /* Return nonzero if the given instruction OP can be part of the prologue
1261 of a function and saves a parameter on the stack. FRAMEP should be
1262 set if one of the previous instructions in the function has set the
1263 Frame Pointer. */
1264
1265 static int
1266 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1267 {
1268 /* Move parameters from argument registers to temporary register. */
1269 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1270 {
1271 /* Rx must be scratch register r0. */
1272 const int rx_regno = (op >> 16) & 31;
1273 /* Ry: Only r3 - r10 are used for parameter passing. */
1274 const int ry_regno = GET_SRC_REG (op);
1275
1276 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1277 {
1278 *r0_contains_arg = 1;
1279 return 1;
1280 }
1281 else
1282 return 0;
1283 }
1284
1285 /* Save a General Purpose Register on stack. */
1286
1287 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1288 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1289 {
1290 /* Rx: Only r3 - r10 are used for parameter passing. */
1291 const int rx_regno = GET_SRC_REG (op);
1292
1293 return (rx_regno >= 3 && rx_regno <= 10);
1294 }
1295
1296 /* Save a General Purpose Register on stack via the Frame Pointer. */
1297
1298 if (framep &&
1299 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1300 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1301 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1302 {
1303 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1304 However, the compiler sometimes uses r0 to hold an argument. */
1305 const int rx_regno = GET_SRC_REG (op);
1306
1307 return ((rx_regno >= 3 && rx_regno <= 10)
1308 || (rx_regno == 0 && *r0_contains_arg));
1309 }
1310
1311 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1312 {
1313 /* Only f2 - f8 are used for parameter passing. */
1314 const int src_regno = GET_SRC_REG (op);
1315
1316 return (src_regno >= 2 && src_regno <= 8);
1317 }
1318
1319 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1320 {
1321 /* Only f2 - f8 are used for parameter passing. */
1322 const int src_regno = GET_SRC_REG (op);
1323
1324 return (src_regno >= 2 && src_regno <= 8);
1325 }
1326
1327 /* Not an insn that saves a parameter on stack. */
1328 return 0;
1329 }
1330
1331 /* Assuming that INSN is a "bl" instruction located at PC, return
1332 nonzero if the destination of the branch is a "blrl" instruction.
1333
1334 This sequence is sometimes found in certain function prologues.
1335 It allows the function to load the LR register with a value that
1336 they can use to access PIC data using PC-relative offsets. */
1337
1338 static int
1339 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1340 {
1341 CORE_ADDR dest;
1342 int immediate;
1343 int absolute;
1344 int dest_insn;
1345
1346 absolute = (int) ((insn >> 1) & 1);
1347 immediate = ((insn & ~3) << 6) >> 6;
1348 if (absolute)
1349 dest = immediate;
1350 else
1351 dest = pc + immediate;
1352
1353 dest_insn = read_memory_integer (dest, 4, byte_order);
1354 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1355 return 1;
1356
1357 return 0;
1358 }
1359
1360 /* Return true if OP is a stw or std instruction with
1361 register operands RS and RA and any immediate offset.
1362
1363 If WITH_UPDATE is true, also return true if OP is
1364 a stwu or stdu instruction with the same operands.
1365
1366 Return false otherwise.
1367 */
1368 static bool
1369 store_insn_p (unsigned long op, unsigned long rs,
1370 unsigned long ra, bool with_update)
1371 {
1372 rs = rs << 21;
1373 ra = ra << 16;
1374
1375 if (/* std RS, SIMM(RA) */
1376 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1377 /* stw RS, SIMM(RA) */
1378 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1379 return true;
1380
1381 if (with_update)
1382 {
1383 if (/* stdu RS, SIMM(RA) */
1384 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1385 /* stwu RS, SIMM(RA) */
1386 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1387 return true;
1388 }
1389
1390 return false;
1391 }
1392
1393 /* Masks for decoding a branch-and-link (bl) instruction.
1394
1395 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1396 The former is anded with the opcode in question; if the result of
1397 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1398 question is a ``bl'' instruction.
1399
1400 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1401 the branch displacement. */
1402
1403 #define BL_MASK 0xfc000001
1404 #define BL_INSTRUCTION 0x48000001
1405 #define BL_DISPLACEMENT_MASK 0x03fffffc
1406
1407 static unsigned long
1408 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1409 {
1410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1411 gdb_byte buf[4];
1412 unsigned long op;
1413
1414 /* Fetch the instruction and convert it to an integer. */
1415 if (target_read_memory (pc, buf, 4))
1416 return 0;
1417 op = extract_unsigned_integer (buf, 4, byte_order);
1418
1419 return op;
1420 }
1421
1422 /* GCC generates several well-known sequences of instructions at the begining
1423 of each function prologue when compiling with -fstack-check. If one of
1424 such sequences starts at START_PC, then return the address of the
1425 instruction immediately past this sequence. Otherwise, return START_PC. */
1426
1427 static CORE_ADDR
1428 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1429 {
1430 CORE_ADDR pc = start_pc;
1431 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1432
1433 /* First possible sequence: A small number of probes.
1434 stw 0, -<some immediate>(1)
1435 [repeat this instruction any (small) number of times]. */
1436
1437 if ((op & 0xffff0000) == 0x90010000)
1438 {
1439 while ((op & 0xffff0000) == 0x90010000)
1440 {
1441 pc = pc + 4;
1442 op = rs6000_fetch_instruction (gdbarch, pc);
1443 }
1444 return pc;
1445 }
1446
1447 /* Second sequence: A probing loop.
1448 addi 12,1,-<some immediate>
1449 lis 0,-<some immediate>
1450 [possibly ori 0,0,<some immediate>]
1451 add 0,12,0
1452 cmpw 0,12,0
1453 beq 0,<disp>
1454 addi 12,12,-<some immediate>
1455 stw 0,0(12)
1456 b <disp>
1457 [possibly one last probe: stw 0,<some immediate>(12)]. */
1458
1459 while (1)
1460 {
1461 /* addi 12,1,-<some immediate> */
1462 if ((op & 0xffff0000) != 0x39810000)
1463 break;
1464
1465 /* lis 0,-<some immediate> */
1466 pc = pc + 4;
1467 op = rs6000_fetch_instruction (gdbarch, pc);
1468 if ((op & 0xffff0000) != 0x3c000000)
1469 break;
1470
1471 pc = pc + 4;
1472 op = rs6000_fetch_instruction (gdbarch, pc);
1473 /* [possibly ori 0,0,<some immediate>] */
1474 if ((op & 0xffff0000) == 0x60000000)
1475 {
1476 pc = pc + 4;
1477 op = rs6000_fetch_instruction (gdbarch, pc);
1478 }
1479 /* add 0,12,0 */
1480 if (op != 0x7c0c0214)
1481 break;
1482
1483 /* cmpw 0,12,0 */
1484 pc = pc + 4;
1485 op = rs6000_fetch_instruction (gdbarch, pc);
1486 if (op != 0x7c0c0000)
1487 break;
1488
1489 /* beq 0,<disp> */
1490 pc = pc + 4;
1491 op = rs6000_fetch_instruction (gdbarch, pc);
1492 if ((op & 0xff9f0001) != 0x41820000)
1493 break;
1494
1495 /* addi 12,12,-<some immediate> */
1496 pc = pc + 4;
1497 op = rs6000_fetch_instruction (gdbarch, pc);
1498 if ((op & 0xffff0000) != 0x398c0000)
1499 break;
1500
1501 /* stw 0,0(12) */
1502 pc = pc + 4;
1503 op = rs6000_fetch_instruction (gdbarch, pc);
1504 if (op != 0x900c0000)
1505 break;
1506
1507 /* b <disp> */
1508 pc = pc + 4;
1509 op = rs6000_fetch_instruction (gdbarch, pc);
1510 if ((op & 0xfc000001) != 0x48000000)
1511 break;
1512
1513 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1514 pc = pc + 4;
1515 op = rs6000_fetch_instruction (gdbarch, pc);
1516 if ((op & 0xffff0000) == 0x900c0000)
1517 {
1518 pc = pc + 4;
1519 op = rs6000_fetch_instruction (gdbarch, pc);
1520 }
1521
1522 /* We found a valid stack-check sequence, return the new PC. */
1523 return pc;
1524 }
1525
1526 /* Third sequence: No probe; instead, a comparizon between the stack size
1527 limit (saved in a run-time global variable) and the current stack
1528 pointer:
1529
1530 addi 0,1,-<some immediate>
1531 lis 12,__gnat_stack_limit@ha
1532 lwz 12,__gnat_stack_limit@l(12)
1533 twllt 0,12
1534
1535 or, with a small variant in the case of a bigger stack frame:
1536 addis 0,1,<some immediate>
1537 addic 0,0,-<some immediate>
1538 lis 12,__gnat_stack_limit@ha
1539 lwz 12,__gnat_stack_limit@l(12)
1540 twllt 0,12
1541 */
1542 while (1)
1543 {
1544 /* addi 0,1,-<some immediate> */
1545 if ((op & 0xffff0000) != 0x38010000)
1546 {
1547 /* small stack frame variant not recognized; try the
1548 big stack frame variant: */
1549
1550 /* addis 0,1,<some immediate> */
1551 if ((op & 0xffff0000) != 0x3c010000)
1552 break;
1553
1554 /* addic 0,0,-<some immediate> */
1555 pc = pc + 4;
1556 op = rs6000_fetch_instruction (gdbarch, pc);
1557 if ((op & 0xffff0000) != 0x30000000)
1558 break;
1559 }
1560
1561 /* lis 12,<some immediate> */
1562 pc = pc + 4;
1563 op = rs6000_fetch_instruction (gdbarch, pc);
1564 if ((op & 0xffff0000) != 0x3d800000)
1565 break;
1566
1567 /* lwz 12,<some immediate>(12) */
1568 pc = pc + 4;
1569 op = rs6000_fetch_instruction (gdbarch, pc);
1570 if ((op & 0xffff0000) != 0x818c0000)
1571 break;
1572
1573 /* twllt 0,12 */
1574 pc = pc + 4;
1575 op = rs6000_fetch_instruction (gdbarch, pc);
1576 if ((op & 0xfffffffe) != 0x7c406008)
1577 break;
1578
1579 /* We found a valid stack-check sequence, return the new PC. */
1580 return pc;
1581 }
1582
1583 /* No stack check code in our prologue, return the start_pc. */
1584 return start_pc;
1585 }
1586
1587 /* return pc value after skipping a function prologue and also return
1588 information about a function frame.
1589
1590 in struct rs6000_framedata fdata:
1591 - frameless is TRUE, if function does not have a frame.
1592 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1593 - offset is the initial size of this stack frame --- the amount by
1594 which we decrement the sp to allocate the frame.
1595 - saved_gpr is the number of the first saved gpr.
1596 - saved_fpr is the number of the first saved fpr.
1597 - saved_vr is the number of the first saved vr.
1598 - saved_ev is the number of the first saved ev.
1599 - alloca_reg is the number of the register used for alloca() handling.
1600 Otherwise -1.
1601 - gpr_offset is the offset of the first saved gpr from the previous frame.
1602 - fpr_offset is the offset of the first saved fpr from the previous frame.
1603 - vr_offset is the offset of the first saved vr from the previous frame.
1604 - ev_offset is the offset of the first saved ev from the previous frame.
1605 - lr_offset is the offset of the saved lr
1606 - cr_offset is the offset of the saved cr
1607 - vrsave_offset is the offset of the saved vrsave register. */
1608
1609 static CORE_ADDR
1610 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1611 struct rs6000_framedata *fdata)
1612 {
1613 CORE_ADDR orig_pc = pc;
1614 CORE_ADDR last_prologue_pc = pc;
1615 CORE_ADDR li_found_pc = 0;
1616 gdb_byte buf[4];
1617 unsigned long op;
1618 long offset = 0;
1619 long alloca_reg_offset = 0;
1620 long vr_saved_offset = 0;
1621 int lr_reg = -1;
1622 int cr_reg = -1;
1623 int vr_reg = -1;
1624 int ev_reg = -1;
1625 long ev_offset = 0;
1626 int vrsave_reg = -1;
1627 int reg;
1628 int framep = 0;
1629 int minimal_toc_loaded = 0;
1630 int prev_insn_was_prologue_insn = 1;
1631 int num_skip_non_prologue_insns = 0;
1632 int r0_contains_arg = 0;
1633 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1634 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1635 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1636
1637 memset (fdata, 0, sizeof (struct rs6000_framedata));
1638 fdata->saved_gpr = -1;
1639 fdata->saved_fpr = -1;
1640 fdata->saved_vr = -1;
1641 fdata->saved_ev = -1;
1642 fdata->alloca_reg = -1;
1643 fdata->frameless = 1;
1644 fdata->nosavedpc = 1;
1645 fdata->lr_register = -1;
1646
1647 pc = rs6000_skip_stack_check (gdbarch, pc);
1648 if (pc >= lim_pc)
1649 pc = lim_pc;
1650
1651 for (;; pc += 4)
1652 {
1653 /* Sometimes it isn't clear if an instruction is a prologue
1654 instruction or not. When we encounter one of these ambiguous
1655 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1656 Otherwise, we'll assume that it really is a prologue instruction. */
1657 if (prev_insn_was_prologue_insn)
1658 last_prologue_pc = pc;
1659
1660 /* Stop scanning if we've hit the limit. */
1661 if (pc >= lim_pc)
1662 break;
1663
1664 prev_insn_was_prologue_insn = 1;
1665
1666 /* Fetch the instruction and convert it to an integer. */
1667 if (target_read_memory (pc, buf, 4))
1668 break;
1669 op = extract_unsigned_integer (buf, 4, byte_order);
1670
1671 if ((op & 0xfc1fffff) == 0x7c0802a6)
1672 { /* mflr Rx */
1673 /* Since shared library / PIC code, which needs to get its
1674 address at runtime, can appear to save more than one link
1675 register vis:
1676
1677 *INDENT-OFF*
1678 stwu r1,-304(r1)
1679 mflr r3
1680 bl 0xff570d0 (blrl)
1681 stw r30,296(r1)
1682 mflr r30
1683 stw r31,300(r1)
1684 stw r3,308(r1);
1685 ...
1686 *INDENT-ON*
1687
1688 remember just the first one, but skip over additional
1689 ones. */
1690 if (lr_reg == -1)
1691 lr_reg = (op & 0x03e00000) >> 21;
1692 if (lr_reg == 0)
1693 r0_contains_arg = 0;
1694 continue;
1695 }
1696 else if ((op & 0xfc1fffff) == 0x7c000026)
1697 { /* mfcr Rx */
1698 cr_reg = (op & 0x03e00000) >> 21;
1699 if (cr_reg == 0)
1700 r0_contains_arg = 0;
1701 continue;
1702
1703 }
1704 else if ((op & 0xfc1f0000) == 0xd8010000)
1705 { /* stfd Rx,NUM(r1) */
1706 reg = GET_SRC_REG (op);
1707 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1708 {
1709 fdata->saved_fpr = reg;
1710 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1711 }
1712 continue;
1713
1714 }
1715 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1716 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1717 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1718 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1719 {
1720
1721 reg = GET_SRC_REG (op);
1722 if ((op & 0xfc1f0000) == 0xbc010000)
1723 fdata->gpr_mask |= ~((1U << reg) - 1);
1724 else
1725 fdata->gpr_mask |= 1U << reg;
1726 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1727 {
1728 fdata->saved_gpr = reg;
1729 if ((op & 0xfc1f0003) == 0xf8010000)
1730 op &= ~3UL;
1731 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1732 }
1733 continue;
1734
1735 }
1736 else if ((op & 0xffff0000) == 0x3c4c0000
1737 || (op & 0xffff0000) == 0x3c400000
1738 || (op & 0xffff0000) == 0x38420000)
1739 {
1740 /* . 0: addis 2,12,.TOC.-0b@ha
1741 . addi 2,2,.TOC.-0b@l
1742 or
1743 . lis 2,.TOC.@ha
1744 . addi 2,2,.TOC.@l
1745 used by ELFv2 global entry points to set up r2. */
1746 continue;
1747 }
1748 else if (op == 0x60000000)
1749 {
1750 /* nop */
1751 /* Allow nops in the prologue, but do not consider them to
1752 be part of the prologue unless followed by other prologue
1753 instructions. */
1754 prev_insn_was_prologue_insn = 0;
1755 continue;
1756
1757 }
1758 else if ((op & 0xffff0000) == 0x3c000000)
1759 { /* addis 0,0,NUM, used for >= 32k frames */
1760 fdata->offset = (op & 0x0000ffff) << 16;
1761 fdata->frameless = 0;
1762 r0_contains_arg = 0;
1763 continue;
1764
1765 }
1766 else if ((op & 0xffff0000) == 0x60000000)
1767 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1768 fdata->offset |= (op & 0x0000ffff);
1769 fdata->frameless = 0;
1770 r0_contains_arg = 0;
1771 continue;
1772
1773 }
1774 else if (lr_reg >= 0 &&
1775 ((store_insn_p (op, lr_reg, 1, true)) ||
1776 (framep &&
1777 (store_insn_p (op, lr_reg,
1778 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1779 false)))))
1780 {
1781 if (store_insn_p (op, lr_reg, 1, true))
1782 fdata->lr_offset = offset;
1783 else /* LR save through frame pointer. */
1784 fdata->lr_offset = alloca_reg_offset;
1785
1786 fdata->nosavedpc = 0;
1787 /* Invalidate lr_reg, but don't set it to -1.
1788 That would mean that it had never been set. */
1789 lr_reg = -2;
1790 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1791 (op & 0xfc000000) == 0x90000000) /* stw */
1792 {
1793 /* Does not update r1, so add displacement to lr_offset. */
1794 fdata->lr_offset += SIGNED_SHORT (op);
1795 }
1796 continue;
1797
1798 }
1799 else if (cr_reg >= 0 &&
1800 (store_insn_p (op, cr_reg, 1, true)))
1801 {
1802 fdata->cr_offset = offset;
1803 /* Invalidate cr_reg, but don't set it to -1.
1804 That would mean that it had never been set. */
1805 cr_reg = -2;
1806 if ((op & 0xfc000003) == 0xf8000000 ||
1807 (op & 0xfc000000) == 0x90000000)
1808 {
1809 /* Does not update r1, so add displacement to cr_offset. */
1810 fdata->cr_offset += SIGNED_SHORT (op);
1811 }
1812 continue;
1813
1814 }
1815 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1816 {
1817 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1818 prediction bits. If the LR has already been saved, we can
1819 skip it. */
1820 continue;
1821 }
1822 else if (op == 0x48000005)
1823 { /* bl .+4 used in
1824 -mrelocatable */
1825 fdata->used_bl = 1;
1826 continue;
1827
1828 }
1829 else if (op == 0x48000004)
1830 { /* b .+4 (xlc) */
1831 break;
1832
1833 }
1834 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1835 in V.4 -mminimal-toc */
1836 (op & 0xffff0000) == 0x3bde0000)
1837 { /* addi 30,30,foo@l */
1838 continue;
1839
1840 }
1841 else if ((op & 0xfc000001) == 0x48000001)
1842 { /* bl foo,
1843 to save fprs??? */
1844
1845 fdata->frameless = 0;
1846
1847 /* If the return address has already been saved, we can skip
1848 calls to blrl (for PIC). */
1849 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1850 {
1851 fdata->used_bl = 1;
1852 continue;
1853 }
1854
1855 /* Don't skip over the subroutine call if it is not within
1856 the first three instructions of the prologue and either
1857 we have no line table information or the line info tells
1858 us that the subroutine call is not part of the line
1859 associated with the prologue. */
1860 if ((pc - orig_pc) > 8)
1861 {
1862 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1863 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1864
1865 if ((prologue_sal.line == 0)
1866 || (prologue_sal.line != this_sal.line))
1867 break;
1868 }
1869
1870 op = read_memory_integer (pc + 4, 4, byte_order);
1871
1872 /* At this point, make sure this is not a trampoline
1873 function (a function that simply calls another functions,
1874 and nothing else). If the next is not a nop, this branch
1875 was part of the function prologue. */
1876
1877 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1878 break; /* Don't skip over
1879 this branch. */
1880
1881 fdata->used_bl = 1;
1882 continue;
1883 }
1884 /* update stack pointer */
1885 else if ((op & 0xfc1f0000) == 0x94010000)
1886 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1887 fdata->frameless = 0;
1888 fdata->offset = SIGNED_SHORT (op);
1889 offset = fdata->offset;
1890 continue;
1891 }
1892 else if ((op & 0xfc1f016e) == 0x7c01016e)
1893 { /* stwux rX,r1,rY */
1894 /* No way to figure out what r1 is going to be. */
1895 fdata->frameless = 0;
1896 offset = fdata->offset;
1897 continue;
1898 }
1899 else if ((op & 0xfc1f0003) == 0xf8010001)
1900 { /* stdu rX,NUM(r1) */
1901 fdata->frameless = 0;
1902 fdata->offset = SIGNED_SHORT (op & ~3UL);
1903 offset = fdata->offset;
1904 continue;
1905 }
1906 else if ((op & 0xfc1f016a) == 0x7c01016a)
1907 { /* stdux rX,r1,rY */
1908 /* No way to figure out what r1 is going to be. */
1909 fdata->frameless = 0;
1910 offset = fdata->offset;
1911 continue;
1912 }
1913 else if ((op & 0xffff0000) == 0x38210000)
1914 { /* addi r1,r1,SIMM */
1915 fdata->frameless = 0;
1916 fdata->offset += SIGNED_SHORT (op);
1917 offset = fdata->offset;
1918 continue;
1919 }
1920 /* Load up minimal toc pointer. Do not treat an epilogue restore
1921 of r31 as a minimal TOC load. */
1922 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1923 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1924 && !framep
1925 && !minimal_toc_loaded)
1926 {
1927 minimal_toc_loaded = 1;
1928 continue;
1929
1930 /* move parameters from argument registers to local variable
1931 registers */
1932 }
1933 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1934 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1935 (((op >> 21) & 31) <= 10) &&
1936 ((long) ((op >> 16) & 31)
1937 >= fdata->saved_gpr)) /* Rx: local var reg */
1938 {
1939 continue;
1940
1941 /* store parameters in stack */
1942 }
1943 /* Move parameters from argument registers to temporary register. */
1944 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1945 {
1946 continue;
1947
1948 /* Set up frame pointer */
1949 }
1950 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1951 {
1952 fdata->frameless = 0;
1953 framep = 1;
1954 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1955 alloca_reg_offset = offset;
1956 continue;
1957
1958 /* Another way to set up the frame pointer. */
1959 }
1960 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1961 || op == 0x7c3f0b78)
1962 { /* mr r31, r1 */
1963 fdata->frameless = 0;
1964 framep = 1;
1965 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1966 alloca_reg_offset = offset;
1967 continue;
1968
1969 /* Another way to set up the frame pointer. */
1970 }
1971 else if ((op & 0xfc1fffff) == 0x38010000)
1972 { /* addi rX, r1, 0x0 */
1973 fdata->frameless = 0;
1974 framep = 1;
1975 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1976 + ((op & ~0x38010000) >> 21));
1977 alloca_reg_offset = offset;
1978 continue;
1979 }
1980 /* AltiVec related instructions. */
1981 /* Store the vrsave register (spr 256) in another register for
1982 later manipulation, or load a register into the vrsave
1983 register. 2 instructions are used: mfvrsave and
1984 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1985 and mtspr SPR256, Rn. */
1986 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1987 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1988 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1989 {
1990 vrsave_reg = GET_SRC_REG (op);
1991 continue;
1992 }
1993 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1994 {
1995 continue;
1996 }
1997 /* Store the register where vrsave was saved to onto the stack:
1998 rS is the register where vrsave was stored in a previous
1999 instruction. */
2000 /* 100100 sssss 00001 dddddddd dddddddd */
2001 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
2002 {
2003 if (vrsave_reg == GET_SRC_REG (op))
2004 {
2005 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
2006 vrsave_reg = -1;
2007 }
2008 continue;
2009 }
2010 /* Compute the new value of vrsave, by modifying the register
2011 where vrsave was saved to. */
2012 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
2013 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
2014 {
2015 continue;
2016 }
2017 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
2018 in a pair of insns to save the vector registers on the
2019 stack. */
2020 /* 001110 00000 00000 iiii iiii iiii iiii */
2021 /* 001110 01110 00000 iiii iiii iiii iiii */
2022 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
2023 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
2024 {
2025 if ((op & 0xffff0000) == 0x38000000)
2026 r0_contains_arg = 0;
2027 li_found_pc = pc;
2028 vr_saved_offset = SIGNED_SHORT (op);
2029
2030 /* This insn by itself is not part of the prologue, unless
2031 if part of the pair of insns mentioned above. So do not
2032 record this insn as part of the prologue yet. */
2033 prev_insn_was_prologue_insn = 0;
2034 }
2035 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
2036 /* 011111 sssss 11111 00000 00111001110 */
2037 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
2038 {
2039 if (pc == (li_found_pc + 4))
2040 {
2041 vr_reg = GET_SRC_REG (op);
2042 /* If this is the first vector reg to be saved, or if
2043 it has a lower number than others previously seen,
2044 reupdate the frame info. */
2045 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
2046 {
2047 fdata->saved_vr = vr_reg;
2048 fdata->vr_offset = vr_saved_offset + offset;
2049 }
2050 vr_saved_offset = -1;
2051 vr_reg = -1;
2052 li_found_pc = 0;
2053 }
2054 }
2055 /* End AltiVec related instructions. */
2056
2057 /* Start BookE related instructions. */
2058 /* Store gen register S at (r31+uimm).
2059 Any register less than r13 is volatile, so we don't care. */
2060 /* 000100 sssss 11111 iiiii 01100100001 */
2061 else if (arch_info->mach == bfd_mach_ppc_e500
2062 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2063 {
2064 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2065 {
2066 unsigned int imm;
2067 ev_reg = GET_SRC_REG (op);
2068 imm = (op >> 11) & 0x1f;
2069 ev_offset = imm * 8;
2070 /* If this is the first vector reg to be saved, or if
2071 it has a lower number than others previously seen,
2072 reupdate the frame info. */
2073 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2074 {
2075 fdata->saved_ev = ev_reg;
2076 fdata->ev_offset = ev_offset + offset;
2077 }
2078 }
2079 continue;
2080 }
2081 /* Store gen register rS at (r1+rB). */
2082 /* 000100 sssss 00001 bbbbb 01100100000 */
2083 else if (arch_info->mach == bfd_mach_ppc_e500
2084 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2085 {
2086 if (pc == (li_found_pc + 4))
2087 {
2088 ev_reg = GET_SRC_REG (op);
2089 /* If this is the first vector reg to be saved, or if
2090 it has a lower number than others previously seen,
2091 reupdate the frame info. */
2092 /* We know the contents of rB from the previous instruction. */
2093 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2094 {
2095 fdata->saved_ev = ev_reg;
2096 fdata->ev_offset = vr_saved_offset + offset;
2097 }
2098 vr_saved_offset = -1;
2099 ev_reg = -1;
2100 li_found_pc = 0;
2101 }
2102 continue;
2103 }
2104 /* Store gen register r31 at (rA+uimm). */
2105 /* 000100 11111 aaaaa iiiii 01100100001 */
2106 else if (arch_info->mach == bfd_mach_ppc_e500
2107 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2108 {
2109 /* Wwe know that the source register is 31 already, but
2110 it can't hurt to compute it. */
2111 ev_reg = GET_SRC_REG (op);
2112 ev_offset = ((op >> 11) & 0x1f) * 8;
2113 /* If this is the first vector reg to be saved, or if
2114 it has a lower number than others previously seen,
2115 reupdate the frame info. */
2116 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2117 {
2118 fdata->saved_ev = ev_reg;
2119 fdata->ev_offset = ev_offset + offset;
2120 }
2121
2122 continue;
2123 }
2124 /* Store gen register S at (r31+r0).
2125 Store param on stack when offset from SP bigger than 4 bytes. */
2126 /* 000100 sssss 11111 00000 01100100000 */
2127 else if (arch_info->mach == bfd_mach_ppc_e500
2128 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2129 {
2130 if (pc == (li_found_pc + 4))
2131 {
2132 if ((op & 0x03e00000) >= 0x01a00000)
2133 {
2134 ev_reg = GET_SRC_REG (op);
2135 /* If this is the first vector reg to be saved, or if
2136 it has a lower number than others previously seen,
2137 reupdate the frame info. */
2138 /* We know the contents of r0 from the previous
2139 instruction. */
2140 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2141 {
2142 fdata->saved_ev = ev_reg;
2143 fdata->ev_offset = vr_saved_offset + offset;
2144 }
2145 ev_reg = -1;
2146 }
2147 vr_saved_offset = -1;
2148 li_found_pc = 0;
2149 continue;
2150 }
2151 }
2152 /* End BookE related instructions. */
2153
2154 else
2155 {
2156 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2157
2158 /* Not a recognized prologue instruction.
2159 Handle optimizer code motions into the prologue by continuing
2160 the search if we have no valid frame yet or if the return
2161 address is not yet saved in the frame. Also skip instructions
2162 if some of the GPRs expected to be saved are not yet saved. */
2163 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2164 && (fdata->gpr_mask & all_mask) == all_mask)
2165 break;
2166
2167 if (op == 0x4e800020 /* blr */
2168 || op == 0x4e800420) /* bctr */
2169 /* Do not scan past epilogue in frameless functions or
2170 trampolines. */
2171 break;
2172 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2173 /* Never skip branches. */
2174 break;
2175
2176 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2177 /* Do not scan too many insns, scanning insns is expensive with
2178 remote targets. */
2179 break;
2180
2181 /* Continue scanning. */
2182 prev_insn_was_prologue_insn = 0;
2183 continue;
2184 }
2185 }
2186
2187 #if 0
2188 /* I have problems with skipping over __main() that I need to address
2189 * sometime. Previously, I used to use misc_function_vector which
2190 * didn't work as well as I wanted to be. -MGO */
2191
2192 /* If the first thing after skipping a prolog is a branch to a function,
2193 this might be a call to an initializer in main(), introduced by gcc2.
2194 We'd like to skip over it as well. Fortunately, xlc does some extra
2195 work before calling a function right after a prologue, thus we can
2196 single out such gcc2 behaviour. */
2197
2198
2199 if ((op & 0xfc000001) == 0x48000001)
2200 { /* bl foo, an initializer function? */
2201 op = read_memory_integer (pc + 4, 4, byte_order);
2202
2203 if (op == 0x4def7b82)
2204 { /* cror 0xf, 0xf, 0xf (nop) */
2205
2206 /* Check and see if we are in main. If so, skip over this
2207 initializer function as well. */
2208
2209 tmp = find_pc_misc_function (pc);
2210 if (tmp >= 0
2211 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2212 return pc + 8;
2213 }
2214 }
2215 #endif /* 0 */
2216
2217 if (pc == lim_pc && lr_reg >= 0)
2218 fdata->lr_register = lr_reg;
2219
2220 fdata->offset = -fdata->offset;
2221 return last_prologue_pc;
2222 }
2223
2224 static CORE_ADDR
2225 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2226 {
2227 struct rs6000_framedata frame;
2228 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2229
2230 /* See if we can determine the end of the prologue via the symbol table.
2231 If so, then return either PC, or the PC after the prologue, whichever
2232 is greater. */
2233 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2234 {
2235 CORE_ADDR post_prologue_pc
2236 = skip_prologue_using_sal (gdbarch, func_addr);
2237 if (post_prologue_pc != 0)
2238 return std::max (pc, post_prologue_pc);
2239 }
2240
2241 /* Can't determine prologue from the symbol table, need to examine
2242 instructions. */
2243
2244 /* Find an upper limit on the function prologue using the debug
2245 information. If the debug information could not be used to provide
2246 that bound, then use an arbitrary large number as the upper bound. */
2247 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2248 if (limit_pc == 0)
2249 limit_pc = pc + 100; /* Magic. */
2250
2251 /* Do not allow limit_pc to be past the function end, if we know
2252 where that end is... */
2253 if (func_end_addr && limit_pc > func_end_addr)
2254 limit_pc = func_end_addr;
2255
2256 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2257 return pc;
2258 }
2259
2260 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2261 in the prologue of main().
2262
2263 The function below examines the code pointed at by PC and checks to
2264 see if it corresponds to a call to __eabi. If so, it returns the
2265 address of the instruction following that call. Otherwise, it simply
2266 returns PC. */
2267
2268 static CORE_ADDR
2269 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2270 {
2271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2272 gdb_byte buf[4];
2273 unsigned long op;
2274
2275 if (target_read_memory (pc, buf, 4))
2276 return pc;
2277 op = extract_unsigned_integer (buf, 4, byte_order);
2278
2279 if ((op & BL_MASK) == BL_INSTRUCTION)
2280 {
2281 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2282 CORE_ADDR call_dest = pc + 4 + displ;
2283 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2284
2285 /* We check for ___eabi (three leading underscores) in addition
2286 to __eabi in case the GCC option "-fleading-underscore" was
2287 used to compile the program. */
2288 if (s.minsym != NULL
2289 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2290 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2291 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2292 pc += 4;
2293 }
2294 return pc;
2295 }
2296
2297 /* All the ABI's require 16 byte alignment. */
2298 static CORE_ADDR
2299 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2300 {
2301 return (addr & -16);
2302 }
2303
2304 /* Return whether handle_inferior_event() should proceed through code
2305 starting at PC in function NAME when stepping.
2306
2307 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2308 handle memory references that are too distant to fit in instructions
2309 generated by the compiler. For example, if 'foo' in the following
2310 instruction:
2311
2312 lwz r9,foo(r2)
2313
2314 is greater than 32767, the linker might replace the lwz with a branch to
2315 somewhere in @FIX1 that does the load in 2 instructions and then branches
2316 back to where execution should continue.
2317
2318 GDB should silently step over @FIX code, just like AIX dbx does.
2319 Unfortunately, the linker uses the "b" instruction for the
2320 branches, meaning that the link register doesn't get set.
2321 Therefore, GDB's usual step_over_function () mechanism won't work.
2322
2323 Instead, use the gdbarch_skip_trampoline_code and
2324 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2325 @FIX code. */
2326
2327 static int
2328 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2329 CORE_ADDR pc, const char *name)
2330 {
2331 return name && startswith (name, "@FIX");
2332 }
2333
2334 /* Skip code that the user doesn't want to see when stepping:
2335
2336 1. Indirect function calls use a piece of trampoline code to do context
2337 switching, i.e. to set the new TOC table. Skip such code if we are on
2338 its first instruction (as when we have single-stepped to here).
2339
2340 2. Skip shared library trampoline code (which is different from
2341 indirect function call trampolines).
2342
2343 3. Skip bigtoc fixup code.
2344
2345 Result is desired PC to step until, or NULL if we are not in
2346 code that should be skipped. */
2347
2348 static CORE_ADDR
2349 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2350 {
2351 struct gdbarch *gdbarch = get_frame_arch (frame);
2352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2353 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2354 unsigned int ii, op;
2355 int rel;
2356 CORE_ADDR solib_target_pc;
2357 struct bound_minimal_symbol msymbol;
2358
2359 static unsigned trampoline_code[] =
2360 {
2361 0x800b0000, /* l r0,0x0(r11) */
2362 0x90410014, /* st r2,0x14(r1) */
2363 0x7c0903a6, /* mtctr r0 */
2364 0x804b0004, /* l r2,0x4(r11) */
2365 0x816b0008, /* l r11,0x8(r11) */
2366 0x4e800420, /* bctr */
2367 0x4e800020, /* br */
2368 0
2369 };
2370
2371 /* Check for bigtoc fixup code. */
2372 msymbol = lookup_minimal_symbol_by_pc (pc);
2373 if (msymbol.minsym
2374 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2375 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2376 {
2377 /* Double-check that the third instruction from PC is relative "b". */
2378 op = read_memory_integer (pc + 8, 4, byte_order);
2379 if ((op & 0xfc000003) == 0x48000000)
2380 {
2381 /* Extract bits 6-29 as a signed 24-bit relative word address and
2382 add it to the containing PC. */
2383 rel = ((int)(op << 6) >> 6);
2384 return pc + 8 + rel;
2385 }
2386 }
2387
2388 /* If pc is in a shared library trampoline, return its target. */
2389 solib_target_pc = find_solib_trampoline_target (frame, pc);
2390 if (solib_target_pc)
2391 return solib_target_pc;
2392
2393 for (ii = 0; trampoline_code[ii]; ++ii)
2394 {
2395 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2396 if (op != trampoline_code[ii])
2397 return 0;
2398 }
2399 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2400 addr. */
2401 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2402 return pc;
2403 }
2404
2405 /* ISA-specific vector types. */
2406
2407 static struct type *
2408 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2409 {
2410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2411
2412 if (!tdep->ppc_builtin_type_vec64)
2413 {
2414 const struct builtin_type *bt = builtin_type (gdbarch);
2415
2416 /* The type we're building is this: */
2417 #if 0
2418 union __gdb_builtin_type_vec64
2419 {
2420 int64_t uint64;
2421 float v2_float[2];
2422 int32_t v2_int32[2];
2423 int16_t v4_int16[4];
2424 int8_t v8_int8[8];
2425 };
2426 #endif
2427
2428 struct type *t;
2429
2430 t = arch_composite_type (gdbarch,
2431 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2432 append_composite_type_field (t, "uint64", bt->builtin_int64);
2433 append_composite_type_field (t, "v2_float",
2434 init_vector_type (bt->builtin_float, 2));
2435 append_composite_type_field (t, "v2_int32",
2436 init_vector_type (bt->builtin_int32, 2));
2437 append_composite_type_field (t, "v4_int16",
2438 init_vector_type (bt->builtin_int16, 4));
2439 append_composite_type_field (t, "v8_int8",
2440 init_vector_type (bt->builtin_int8, 8));
2441
2442 TYPE_VECTOR (t) = 1;
2443 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2444 tdep->ppc_builtin_type_vec64 = t;
2445 }
2446
2447 return tdep->ppc_builtin_type_vec64;
2448 }
2449
2450 /* Vector 128 type. */
2451
2452 static struct type *
2453 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2454 {
2455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2456
2457 if (!tdep->ppc_builtin_type_vec128)
2458 {
2459 const struct builtin_type *bt = builtin_type (gdbarch);
2460
2461 /* The type we're building is this
2462
2463 type = union __ppc_builtin_type_vec128 {
2464 uint128_t uint128;
2465 double v2_double[2];
2466 float v4_float[4];
2467 int32_t v4_int32[4];
2468 int16_t v8_int16[8];
2469 int8_t v16_int8[16];
2470 }
2471 */
2472
2473 struct type *t;
2474
2475 t = arch_composite_type (gdbarch,
2476 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2477 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2478 append_composite_type_field (t, "v2_double",
2479 init_vector_type (bt->builtin_double, 2));
2480 append_composite_type_field (t, "v4_float",
2481 init_vector_type (bt->builtin_float, 4));
2482 append_composite_type_field (t, "v4_int32",
2483 init_vector_type (bt->builtin_int32, 4));
2484 append_composite_type_field (t, "v8_int16",
2485 init_vector_type (bt->builtin_int16, 8));
2486 append_composite_type_field (t, "v16_int8",
2487 init_vector_type (bt->builtin_int8, 16));
2488
2489 TYPE_VECTOR (t) = 1;
2490 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2491 tdep->ppc_builtin_type_vec128 = t;
2492 }
2493
2494 return tdep->ppc_builtin_type_vec128;
2495 }
2496
2497 /* Return the name of register number REGNO, or the empty string if it
2498 is an anonymous register. */
2499
2500 static const char *
2501 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2502 {
2503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2504
2505 /* The upper half "registers" have names in the XML description,
2506 but we present only the low GPRs and the full 64-bit registers
2507 to the user. */
2508 if (tdep->ppc_ev0_upper_regnum >= 0
2509 && tdep->ppc_ev0_upper_regnum <= regno
2510 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2511 return "";
2512
2513 /* Hide the upper halves of the vs0~vs31 registers. */
2514 if (tdep->ppc_vsr0_regnum >= 0
2515 && tdep->ppc_vsr0_upper_regnum <= regno
2516 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2517 return "";
2518
2519 /* Check if the SPE pseudo registers are available. */
2520 if (IS_SPE_PSEUDOREG (tdep, regno))
2521 {
2522 static const char *const spe_regnames[] = {
2523 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2524 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2525 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2526 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2527 };
2528 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2529 }
2530
2531 /* Check if the decimal128 pseudo-registers are available. */
2532 if (IS_DFP_PSEUDOREG (tdep, regno))
2533 {
2534 static const char *const dfp128_regnames[] = {
2535 "dl0", "dl1", "dl2", "dl3",
2536 "dl4", "dl5", "dl6", "dl7",
2537 "dl8", "dl9", "dl10", "dl11",
2538 "dl12", "dl13", "dl14", "dl15"
2539 };
2540 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2541 }
2542
2543 /* Check if this is a VSX pseudo-register. */
2544 if (IS_VSX_PSEUDOREG (tdep, regno))
2545 {
2546 static const char *const vsx_regnames[] = {
2547 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2548 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2549 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2550 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2551 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2552 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2553 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2554 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2555 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2556 };
2557 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2558 }
2559
2560 /* Check if the this is a Extended FP pseudo-register. */
2561 if (IS_EFP_PSEUDOREG (tdep, regno))
2562 {
2563 static const char *const efpr_regnames[] = {
2564 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2565 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2566 "f46", "f47", "f48", "f49", "f50", "f51",
2567 "f52", "f53", "f54", "f55", "f56", "f57",
2568 "f58", "f59", "f60", "f61", "f62", "f63"
2569 };
2570 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2571 }
2572
2573 return tdesc_register_name (gdbarch, regno);
2574 }
2575
2576 /* Return the GDB type object for the "standard" data type of data in
2577 register N. */
2578
2579 static struct type *
2580 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2581 {
2582 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2583
2584 /* These are the only pseudo-registers we support. */
2585 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2586 || IS_DFP_PSEUDOREG (tdep, regnum)
2587 || IS_VSX_PSEUDOREG (tdep, regnum)
2588 || IS_EFP_PSEUDOREG (tdep, regnum));
2589
2590 /* These are the e500 pseudo-registers. */
2591 if (IS_SPE_PSEUDOREG (tdep, regnum))
2592 return rs6000_builtin_type_vec64 (gdbarch);
2593 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2594 /* PPC decimal128 pseudo-registers. */
2595 return builtin_type (gdbarch)->builtin_declong;
2596 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2597 /* POWER7 VSX pseudo-registers. */
2598 return rs6000_builtin_type_vec128 (gdbarch);
2599 else
2600 /* POWER7 Extended FP pseudo-registers. */
2601 return builtin_type (gdbarch)->builtin_double;
2602 }
2603
2604 /* Is REGNUM a member of REGGROUP? */
2605 static int
2606 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2607 struct reggroup *group)
2608 {
2609 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2610
2611 /* These are the only pseudo-registers we support. */
2612 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2613 || IS_DFP_PSEUDOREG (tdep, regnum)
2614 || IS_VSX_PSEUDOREG (tdep, regnum)
2615 || IS_EFP_PSEUDOREG (tdep, regnum));
2616
2617 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2618 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2619 return group == all_reggroup || group == vector_reggroup;
2620 else
2621 /* PPC decimal128 or Extended FP pseudo-registers. */
2622 return group == all_reggroup || group == float_reggroup;
2623 }
2624
2625 /* The register format for RS/6000 floating point registers is always
2626 double, we need a conversion if the memory format is float. */
2627
2628 static int
2629 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2630 struct type *type)
2631 {
2632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2633
2634 return (tdep->ppc_fp0_regnum >= 0
2635 && regnum >= tdep->ppc_fp0_regnum
2636 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2637 && TYPE_CODE (type) == TYPE_CODE_FLT
2638 && TYPE_LENGTH (type)
2639 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2640 }
2641
2642 static int
2643 rs6000_register_to_value (struct frame_info *frame,
2644 int regnum,
2645 struct type *type,
2646 gdb_byte *to,
2647 int *optimizedp, int *unavailablep)
2648 {
2649 struct gdbarch *gdbarch = get_frame_arch (frame);
2650 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2651
2652 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2653
2654 if (!get_frame_register_bytes (frame, regnum, 0,
2655 register_size (gdbarch, regnum),
2656 from, optimizedp, unavailablep))
2657 return 0;
2658
2659 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2660 to, type);
2661 *optimizedp = *unavailablep = 0;
2662 return 1;
2663 }
2664
2665 static void
2666 rs6000_value_to_register (struct frame_info *frame,
2667 int regnum,
2668 struct type *type,
2669 const gdb_byte *from)
2670 {
2671 struct gdbarch *gdbarch = get_frame_arch (frame);
2672 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2673
2674 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2675
2676 target_float_convert (from, type,
2677 to, builtin_type (gdbarch)->builtin_double);
2678 put_frame_register (frame, regnum, to);
2679 }
2680
2681 /* The type of a function that moves the value of REG between CACHE
2682 or BUF --- in either direction. */
2683 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2684 int, void *);
2685
2686 /* Move SPE vector register values between a 64-bit buffer and the two
2687 32-bit raw register halves in a regcache. This function handles
2688 both splitting a 64-bit value into two 32-bit halves, and joining
2689 two halves into a whole 64-bit value, depending on the function
2690 passed as the MOVE argument.
2691
2692 EV_REG must be the number of an SPE evN vector register --- a
2693 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2694 64-bit buffer.
2695
2696 Call MOVE once for each 32-bit half of that register, passing
2697 REGCACHE, the number of the raw register corresponding to that
2698 half, and the address of the appropriate half of BUFFER.
2699
2700 For example, passing 'regcache_raw_read' as the MOVE function will
2701 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2702 'regcache_raw_supply' will supply the contents of BUFFER to the
2703 appropriate pair of raw registers in REGCACHE.
2704
2705 You may need to cast away some 'const' qualifiers when passing
2706 MOVE, since this function can't tell at compile-time which of
2707 REGCACHE or BUFFER is acting as the source of the data. If C had
2708 co-variant type qualifiers, ... */
2709
2710 static enum register_status
2711 e500_move_ev_register (move_ev_register_func move,
2712 struct regcache *regcache, int ev_reg, void *buffer)
2713 {
2714 struct gdbarch *arch = regcache->arch ();
2715 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2716 int reg_index;
2717 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2718 enum register_status status;
2719
2720 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2721
2722 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2723
2724 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2725 {
2726 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2727 byte_buffer);
2728 if (status == REG_VALID)
2729 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2730 byte_buffer + 4);
2731 }
2732 else
2733 {
2734 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2735 if (status == REG_VALID)
2736 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2737 byte_buffer + 4);
2738 }
2739
2740 return status;
2741 }
2742
2743 static enum register_status
2744 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2745 {
2746 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
2747
2748 return REG_VALID;
2749 }
2750
2751 static enum register_status
2752 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2753 int ev_reg, gdb_byte *buffer)
2754 {
2755 struct gdbarch *arch = regcache->arch ();
2756 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2757 int reg_index;
2758 enum register_status status;
2759
2760 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2761
2762 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2763
2764 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2765 {
2766 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2767 buffer);
2768 if (status == REG_VALID)
2769 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2770 buffer + 4);
2771 }
2772 else
2773 {
2774 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2775 if (status == REG_VALID)
2776 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2777 buffer + 4);
2778 }
2779
2780 return status;
2781
2782 }
2783
2784 static void
2785 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2786 int reg_nr, const gdb_byte *buffer)
2787 {
2788 e500_move_ev_register (do_regcache_raw_write, regcache,
2789 reg_nr, (void *) buffer);
2790 }
2791
2792 /* Read method for DFP pseudo-registers. */
2793 static enum register_status
2794 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2795 int reg_nr, gdb_byte *buffer)
2796 {
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2798 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2799 enum register_status status;
2800
2801 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2802 {
2803 /* Read two FP registers to form a whole dl register. */
2804 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2805 2 * reg_index, buffer);
2806 if (status == REG_VALID)
2807 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2808 2 * reg_index + 1, buffer + 8);
2809 }
2810 else
2811 {
2812 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2813 2 * reg_index + 1, buffer);
2814 if (status == REG_VALID)
2815 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2816 2 * reg_index, buffer + 8);
2817 }
2818
2819 return status;
2820 }
2821
2822 /* Write method for DFP pseudo-registers. */
2823 static void
2824 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2825 int reg_nr, const gdb_byte *buffer)
2826 {
2827 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2828 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2829
2830 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2831 {
2832 /* Write each half of the dl register into a separate
2833 FP register. */
2834 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2835 2 * reg_index, buffer);
2836 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2837 2 * reg_index + 1, buffer + 8);
2838 }
2839 else
2840 {
2841 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2842 2 * reg_index + 1, buffer);
2843 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2844 2 * reg_index, buffer + 8);
2845 }
2846 }
2847
2848 /* Read method for POWER7 VSX pseudo-registers. */
2849 static enum register_status
2850 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2851 int reg_nr, gdb_byte *buffer)
2852 {
2853 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2854 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2855 enum register_status status;
2856
2857 /* Read the portion that overlaps the VMX registers. */
2858 if (reg_index > 31)
2859 status = regcache->raw_read (tdep->ppc_vr0_regnum +
2860 reg_index - 32, buffer);
2861 else
2862 /* Read the portion that overlaps the FPR registers. */
2863 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2864 {
2865 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2866 reg_index, buffer);
2867 if (status == REG_VALID)
2868 status = regcache->raw_read (tdep->ppc_vsr0_upper_regnum +
2869 reg_index, buffer + 8);
2870 }
2871 else
2872 {
2873 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2874 reg_index, buffer + 8);
2875 if (status == REG_VALID)
2876 status = regcache->raw_read (tdep->ppc_vsr0_upper_regnum +
2877 reg_index, buffer);
2878 }
2879
2880 return status;
2881 }
2882
2883 /* Write method for POWER7 VSX pseudo-registers. */
2884 static void
2885 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2886 int reg_nr, const gdb_byte *buffer)
2887 {
2888 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2889 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2890
2891 /* Write the portion that overlaps the VMX registers. */
2892 if (reg_index > 31)
2893 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2894 reg_index - 32, buffer);
2895 else
2896 /* Write the portion that overlaps the FPR registers. */
2897 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2898 {
2899 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2900 reg_index, buffer);
2901 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2902 reg_index, buffer + 8);
2903 }
2904 else
2905 {
2906 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2907 reg_index, buffer + 8);
2908 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2909 reg_index, buffer);
2910 }
2911 }
2912
2913 /* Read method for POWER7 Extended FP pseudo-registers. */
2914 static enum register_status
2915 efpr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2916 int reg_nr, gdb_byte *buffer)
2917 {
2918 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2919 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2920 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2921
2922 /* Read the portion that overlaps the VMX register. */
2923 return regcache->raw_read_part (tdep->ppc_vr0_regnum + reg_index,
2924 offset, register_size (gdbarch, reg_nr),
2925 buffer);
2926 }
2927
2928 /* Write method for POWER7 Extended FP pseudo-registers. */
2929 static void
2930 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2931 int reg_nr, const gdb_byte *buffer)
2932 {
2933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2934 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2935 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2936
2937 /* Write the portion that overlaps the VMX register. */
2938 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2939 offset, register_size (gdbarch, reg_nr),
2940 buffer);
2941 }
2942
2943 static enum register_status
2944 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2945 readable_regcache *regcache,
2946 int reg_nr, gdb_byte *buffer)
2947 {
2948 struct gdbarch *regcache_arch = regcache->arch ();
2949 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2950
2951 gdb_assert (regcache_arch == gdbarch);
2952
2953 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2954 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2955 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2956 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2957 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2958 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2959 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2960 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2961 else
2962 internal_error (__FILE__, __LINE__,
2963 _("rs6000_pseudo_register_read: "
2964 "called on unexpected register '%s' (%d)"),
2965 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2966 }
2967
2968 static void
2969 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2970 struct regcache *regcache,
2971 int reg_nr, const gdb_byte *buffer)
2972 {
2973 struct gdbarch *regcache_arch = regcache->arch ();
2974 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2975
2976 gdb_assert (regcache_arch == gdbarch);
2977
2978 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2979 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2980 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2981 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2982 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2983 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2984 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2985 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2986 else
2987 internal_error (__FILE__, __LINE__,
2988 _("rs6000_pseudo_register_write: "
2989 "called on unexpected register '%s' (%d)"),
2990 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2991 }
2992
2993 static int
2994 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2995 struct agent_expr *ax, int reg_nr)
2996 {
2997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2998 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2999 {
3000 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3001 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3002 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3003 }
3004 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3005 {
3006 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
3007 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
3008 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
3009 }
3010 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3011 {
3012 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3013 if (reg_index > 31)
3014 {
3015 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
3016 }
3017 else
3018 {
3019 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
3020 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
3021 }
3022 }
3023 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3024 {
3025 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3026 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
3027 }
3028 else
3029 internal_error (__FILE__, __LINE__,
3030 _("rs6000_pseudo_register_collect: "
3031 "called on unexpected register '%s' (%d)"),
3032 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3033 return 0;
3034 }
3035
3036
3037 static void
3038 rs6000_gen_return_address (struct gdbarch *gdbarch,
3039 struct agent_expr *ax, struct axs_value *value,
3040 CORE_ADDR scope)
3041 {
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3044 value->kind = axs_lvalue_register;
3045 value->u.reg = tdep->ppc_lr_regnum;
3046 }
3047
3048
3049 /* Convert a DBX STABS register number to a GDB register number. */
3050 static int
3051 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3052 {
3053 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3054
3055 if (0 <= num && num <= 31)
3056 return tdep->ppc_gp0_regnum + num;
3057 else if (32 <= num && num <= 63)
3058 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3059 specifies registers the architecture doesn't have? Our
3060 callers don't check the value we return. */
3061 return tdep->ppc_fp0_regnum + (num - 32);
3062 else if (77 <= num && num <= 108)
3063 return tdep->ppc_vr0_regnum + (num - 77);
3064 else if (1200 <= num && num < 1200 + 32)
3065 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3066 else
3067 switch (num)
3068 {
3069 case 64:
3070 return tdep->ppc_mq_regnum;
3071 case 65:
3072 return tdep->ppc_lr_regnum;
3073 case 66:
3074 return tdep->ppc_ctr_regnum;
3075 case 76:
3076 return tdep->ppc_xer_regnum;
3077 case 109:
3078 return tdep->ppc_vrsave_regnum;
3079 case 110:
3080 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3081 case 111:
3082 return tdep->ppc_acc_regnum;
3083 case 112:
3084 return tdep->ppc_spefscr_regnum;
3085 default:
3086 return num;
3087 }
3088 }
3089
3090
3091 /* Convert a Dwarf 2 register number to a GDB register number. */
3092 static int
3093 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3094 {
3095 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3096
3097 if (0 <= num && num <= 31)
3098 return tdep->ppc_gp0_regnum + num;
3099 else if (32 <= num && num <= 63)
3100 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3101 specifies registers the architecture doesn't have? Our
3102 callers don't check the value we return. */
3103 return tdep->ppc_fp0_regnum + (num - 32);
3104 else if (1124 <= num && num < 1124 + 32)
3105 return tdep->ppc_vr0_regnum + (num - 1124);
3106 else if (1200 <= num && num < 1200 + 32)
3107 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3108 else
3109 switch (num)
3110 {
3111 case 64:
3112 return tdep->ppc_cr_regnum;
3113 case 67:
3114 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3115 case 99:
3116 return tdep->ppc_acc_regnum;
3117 case 100:
3118 return tdep->ppc_mq_regnum;
3119 case 101:
3120 return tdep->ppc_xer_regnum;
3121 case 108:
3122 return tdep->ppc_lr_regnum;
3123 case 109:
3124 return tdep->ppc_ctr_regnum;
3125 case 356:
3126 return tdep->ppc_vrsave_regnum;
3127 case 612:
3128 return tdep->ppc_spefscr_regnum;
3129 default:
3130 return num;
3131 }
3132 }
3133
3134 /* Translate a .eh_frame register to DWARF register, or adjust a
3135 .debug_frame register. */
3136
3137 static int
3138 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3139 {
3140 /* GCC releases before 3.4 use GCC internal register numbering in
3141 .debug_frame (and .debug_info, et cetera). The numbering is
3142 different from the standard SysV numbering for everything except
3143 for GPRs and FPRs. We can not detect this problem in most cases
3144 - to get accurate debug info for variables living in lr, ctr, v0,
3145 et cetera, use a newer version of GCC. But we must detect
3146 one important case - lr is in column 65 in .debug_frame output,
3147 instead of 108.
3148
3149 GCC 3.4, and the "hammer" branch, have a related problem. They
3150 record lr register saves in .debug_frame as 108, but still record
3151 the return column as 65. We fix that up too.
3152
3153 We can do this because 65 is assigned to fpsr, and GCC never
3154 generates debug info referring to it. To add support for
3155 handwritten debug info that restores fpsr, we would need to add a
3156 producer version check to this. */
3157 if (!eh_frame_p)
3158 {
3159 if (num == 65)
3160 return 108;
3161 else
3162 return num;
3163 }
3164
3165 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3166 internal register numbering; translate that to the standard DWARF2
3167 register numbering. */
3168 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3169 return num;
3170 else if (68 <= num && num <= 75) /* cr0-cr8 */
3171 return num - 68 + 86;
3172 else if (77 <= num && num <= 108) /* vr0-vr31 */
3173 return num - 77 + 1124;
3174 else
3175 switch (num)
3176 {
3177 case 64: /* mq */
3178 return 100;
3179 case 65: /* lr */
3180 return 108;
3181 case 66: /* ctr */
3182 return 109;
3183 case 76: /* xer */
3184 return 101;
3185 case 109: /* vrsave */
3186 return 356;
3187 case 110: /* vscr */
3188 return 67;
3189 case 111: /* spe_acc */
3190 return 99;
3191 case 112: /* spefscr */
3192 return 612;
3193 default:
3194 return num;
3195 }
3196 }
3197 \f
3198
3199 /* Handling the various POWER/PowerPC variants. */
3200
3201 /* Information about a particular processor variant. */
3202
3203 struct variant
3204 {
3205 /* Name of this variant. */
3206 const char *name;
3207
3208 /* English description of the variant. */
3209 const char *description;
3210
3211 /* bfd_arch_info.arch corresponding to variant. */
3212 enum bfd_architecture arch;
3213
3214 /* bfd_arch_info.mach corresponding to variant. */
3215 unsigned long mach;
3216
3217 /* Target description for this variant. */
3218 struct target_desc **tdesc;
3219 };
3220
3221 static struct variant variants[] =
3222 {
3223 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3224 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3225 {"power", "POWER user-level", bfd_arch_rs6000,
3226 bfd_mach_rs6k, &tdesc_rs6000},
3227 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3228 bfd_mach_ppc_403, &tdesc_powerpc_403},
3229 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3230 bfd_mach_ppc_405, &tdesc_powerpc_405},
3231 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3232 bfd_mach_ppc_601, &tdesc_powerpc_601},
3233 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3234 bfd_mach_ppc_602, &tdesc_powerpc_602},
3235 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3236 bfd_mach_ppc_603, &tdesc_powerpc_603},
3237 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3238 604, &tdesc_powerpc_604},
3239 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3240 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3241 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3242 bfd_mach_ppc_505, &tdesc_powerpc_505},
3243 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3244 bfd_mach_ppc_860, &tdesc_powerpc_860},
3245 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3246 bfd_mach_ppc_750, &tdesc_powerpc_750},
3247 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3248 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3249 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3250 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3251
3252 /* 64-bit */
3253 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3254 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3255 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3256 bfd_mach_ppc_620, &tdesc_powerpc_64},
3257 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3258 bfd_mach_ppc_630, &tdesc_powerpc_64},
3259 {"a35", "PowerPC A35", bfd_arch_powerpc,
3260 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3261 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3262 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3263 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3264 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3265
3266 /* FIXME: I haven't checked the register sets of the following. */
3267 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3268 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3269 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3270 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3271 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3272 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3273
3274 {0, 0, (enum bfd_architecture) 0, 0, 0}
3275 };
3276
3277 /* Return the variant corresponding to architecture ARCH and machine number
3278 MACH. If no such variant exists, return null. */
3279
3280 static const struct variant *
3281 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3282 {
3283 const struct variant *v;
3284
3285 for (v = variants; v->name; v++)
3286 if (arch == v->arch && mach == v->mach)
3287 return v;
3288
3289 return NULL;
3290 }
3291
3292 \f
3293 static CORE_ADDR
3294 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3295 {
3296 return frame_unwind_register_unsigned (next_frame,
3297 gdbarch_pc_regnum (gdbarch));
3298 }
3299
3300 static struct frame_id
3301 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3302 {
3303 return frame_id_build (get_frame_register_unsigned
3304 (this_frame, gdbarch_sp_regnum (gdbarch)),
3305 get_frame_pc (this_frame));
3306 }
3307
3308 struct rs6000_frame_cache
3309 {
3310 CORE_ADDR base;
3311 CORE_ADDR initial_sp;
3312 struct trad_frame_saved_reg *saved_regs;
3313
3314 /* Set BASE_P to true if this frame cache is properly initialized.
3315 Otherwise set to false because some registers or memory cannot
3316 collected. */
3317 int base_p;
3318 /* Cache PC for building unavailable frame. */
3319 CORE_ADDR pc;
3320 };
3321
3322 static struct rs6000_frame_cache *
3323 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3324 {
3325 struct rs6000_frame_cache *cache;
3326 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3329 struct rs6000_framedata fdata;
3330 int wordsize = tdep->wordsize;
3331 CORE_ADDR func = 0, pc = 0;
3332
3333 if ((*this_cache) != NULL)
3334 return (struct rs6000_frame_cache *) (*this_cache);
3335 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3336 (*this_cache) = cache;
3337 cache->pc = 0;
3338 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3339
3340 TRY
3341 {
3342 func = get_frame_func (this_frame);
3343 cache->pc = func;
3344 pc = get_frame_pc (this_frame);
3345 skip_prologue (gdbarch, func, pc, &fdata);
3346
3347 /* Figure out the parent's stack pointer. */
3348
3349 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3350 address of the current frame. Things might be easier if the
3351 ->frame pointed to the outer-most address of the frame. In
3352 the mean time, the address of the prev frame is used as the
3353 base address of this frame. */
3354 cache->base = get_frame_register_unsigned
3355 (this_frame, gdbarch_sp_regnum (gdbarch));
3356 }
3357 CATCH (ex, RETURN_MASK_ERROR)
3358 {
3359 if (ex.error != NOT_AVAILABLE_ERROR)
3360 throw_exception (ex);
3361 return (struct rs6000_frame_cache *) (*this_cache);
3362 }
3363 END_CATCH
3364
3365 /* If the function appears to be frameless, check a couple of likely
3366 indicators that we have simply failed to find the frame setup.
3367 Two common cases of this are missing symbols (i.e.
3368 get_frame_func returns the wrong address or 0), and assembly
3369 stubs which have a fast exit path but set up a frame on the slow
3370 path.
3371
3372 If the LR appears to return to this function, then presume that
3373 we have an ABI compliant frame that we failed to find. */
3374 if (fdata.frameless && fdata.lr_offset == 0)
3375 {
3376 CORE_ADDR saved_lr;
3377 int make_frame = 0;
3378
3379 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3380 if (func == 0 && saved_lr == pc)
3381 make_frame = 1;
3382 else if (func != 0)
3383 {
3384 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3385 if (func == saved_func)
3386 make_frame = 1;
3387 }
3388
3389 if (make_frame)
3390 {
3391 fdata.frameless = 0;
3392 fdata.lr_offset = tdep->lr_frame_offset;
3393 }
3394 }
3395
3396 if (!fdata.frameless)
3397 {
3398 /* Frameless really means stackless. */
3399 ULONGEST backchain;
3400
3401 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3402 byte_order, &backchain))
3403 cache->base = (CORE_ADDR) backchain;
3404 }
3405
3406 trad_frame_set_value (cache->saved_regs,
3407 gdbarch_sp_regnum (gdbarch), cache->base);
3408
3409 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3410 All fpr's from saved_fpr to fp31 are saved. */
3411
3412 if (fdata.saved_fpr >= 0)
3413 {
3414 int i;
3415 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3416
3417 /* If skip_prologue says floating-point registers were saved,
3418 but the current architecture has no floating-point registers,
3419 then that's strange. But we have no indices to even record
3420 the addresses under, so we just ignore it. */
3421 if (ppc_floating_point_unit_p (gdbarch))
3422 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3423 {
3424 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3425 fpr_addr += 8;
3426 }
3427 }
3428
3429 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3430 All gpr's from saved_gpr to gpr31 are saved (except during the
3431 prologue). */
3432
3433 if (fdata.saved_gpr >= 0)
3434 {
3435 int i;
3436 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3437 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3438 {
3439 if (fdata.gpr_mask & (1U << i))
3440 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3441 gpr_addr += wordsize;
3442 }
3443 }
3444
3445 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3446 All vr's from saved_vr to vr31 are saved. */
3447 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3448 {
3449 if (fdata.saved_vr >= 0)
3450 {
3451 int i;
3452 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3453 for (i = fdata.saved_vr; i < 32; i++)
3454 {
3455 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3456 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3457 }
3458 }
3459 }
3460
3461 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3462 All vr's from saved_ev to ev31 are saved. ????? */
3463 if (tdep->ppc_ev0_regnum != -1)
3464 {
3465 if (fdata.saved_ev >= 0)
3466 {
3467 int i;
3468 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3469 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3470
3471 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3472 {
3473 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3474 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3475 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3476 }
3477 }
3478 }
3479
3480 /* If != 0, fdata.cr_offset is the offset from the frame that
3481 holds the CR. */
3482 if (fdata.cr_offset != 0)
3483 cache->saved_regs[tdep->ppc_cr_regnum].addr
3484 = cache->base + fdata.cr_offset;
3485
3486 /* If != 0, fdata.lr_offset is the offset from the frame that
3487 holds the LR. */
3488 if (fdata.lr_offset != 0)
3489 cache->saved_regs[tdep->ppc_lr_regnum].addr
3490 = cache->base + fdata.lr_offset;
3491 else if (fdata.lr_register != -1)
3492 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3493 /* The PC is found in the link register. */
3494 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3495 cache->saved_regs[tdep->ppc_lr_regnum];
3496
3497 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3498 holds the VRSAVE. */
3499 if (fdata.vrsave_offset != 0)
3500 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3501 = cache->base + fdata.vrsave_offset;
3502
3503 if (fdata.alloca_reg < 0)
3504 /* If no alloca register used, then fi->frame is the value of the
3505 %sp for this frame, and it is good enough. */
3506 cache->initial_sp
3507 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3508 else
3509 cache->initial_sp
3510 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3511
3512 cache->base_p = 1;
3513 return cache;
3514 }
3515
3516 static void
3517 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3518 struct frame_id *this_id)
3519 {
3520 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3521 this_cache);
3522
3523 if (!info->base_p)
3524 {
3525 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3526 return;
3527 }
3528
3529 /* This marks the outermost frame. */
3530 if (info->base == 0)
3531 return;
3532
3533 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3534 }
3535
3536 static struct value *
3537 rs6000_frame_prev_register (struct frame_info *this_frame,
3538 void **this_cache, int regnum)
3539 {
3540 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3541 this_cache);
3542 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3543 }
3544
3545 static const struct frame_unwind rs6000_frame_unwind =
3546 {
3547 NORMAL_FRAME,
3548 default_frame_unwind_stop_reason,
3549 rs6000_frame_this_id,
3550 rs6000_frame_prev_register,
3551 NULL,
3552 default_frame_sniffer
3553 };
3554
3555 /* Allocate and initialize a frame cache for an epilogue frame.
3556 SP is restored and prev-PC is stored in LR. */
3557
3558 static struct rs6000_frame_cache *
3559 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3560 {
3561 struct rs6000_frame_cache *cache;
3562 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3563 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3564
3565 if (*this_cache)
3566 return (struct rs6000_frame_cache *) *this_cache;
3567
3568 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3569 (*this_cache) = cache;
3570 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3571
3572 TRY
3573 {
3574 /* At this point the stack looks as if we just entered the
3575 function, and the return address is stored in LR. */
3576 CORE_ADDR sp, lr;
3577
3578 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3579 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3580
3581 cache->base = sp;
3582 cache->initial_sp = sp;
3583
3584 trad_frame_set_value (cache->saved_regs,
3585 gdbarch_pc_regnum (gdbarch), lr);
3586 }
3587 CATCH (ex, RETURN_MASK_ERROR)
3588 {
3589 if (ex.error != NOT_AVAILABLE_ERROR)
3590 throw_exception (ex);
3591 }
3592 END_CATCH
3593
3594 return cache;
3595 }
3596
3597 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3598 Return the frame ID of an epilogue frame. */
3599
3600 static void
3601 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3602 void **this_cache, struct frame_id *this_id)
3603 {
3604 CORE_ADDR pc;
3605 struct rs6000_frame_cache *info =
3606 rs6000_epilogue_frame_cache (this_frame, this_cache);
3607
3608 pc = get_frame_func (this_frame);
3609 if (info->base == 0)
3610 (*this_id) = frame_id_build_unavailable_stack (pc);
3611 else
3612 (*this_id) = frame_id_build (info->base, pc);
3613 }
3614
3615 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3616 Return the register value of REGNUM in previous frame. */
3617
3618 static struct value *
3619 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3620 void **this_cache, int regnum)
3621 {
3622 struct rs6000_frame_cache *info =
3623 rs6000_epilogue_frame_cache (this_frame, this_cache);
3624 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3625 }
3626
3627 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3628 Check whether this an epilogue frame. */
3629
3630 static int
3631 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3632 struct frame_info *this_frame,
3633 void **this_prologue_cache)
3634 {
3635 if (frame_relative_level (this_frame) == 0)
3636 return rs6000_in_function_epilogue_frame_p (this_frame,
3637 get_frame_arch (this_frame),
3638 get_frame_pc (this_frame));
3639 else
3640 return 0;
3641 }
3642
3643 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3644 a function without debug information. */
3645
3646 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3647 {
3648 NORMAL_FRAME,
3649 default_frame_unwind_stop_reason,
3650 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3651 NULL,
3652 rs6000_epilogue_frame_sniffer
3653 };
3654 \f
3655
3656 static CORE_ADDR
3657 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3658 {
3659 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3660 this_cache);
3661 return info->initial_sp;
3662 }
3663
3664 static const struct frame_base rs6000_frame_base = {
3665 &rs6000_frame_unwind,
3666 rs6000_frame_base_address,
3667 rs6000_frame_base_address,
3668 rs6000_frame_base_address
3669 };
3670
3671 static const struct frame_base *
3672 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3673 {
3674 return &rs6000_frame_base;
3675 }
3676
3677 /* DWARF-2 frame support. Used to handle the detection of
3678 clobbered registers during function calls. */
3679
3680 static void
3681 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3682 struct dwarf2_frame_state_reg *reg,
3683 struct frame_info *this_frame)
3684 {
3685 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3686
3687 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3688 non-volatile registers. We will use the same code for both. */
3689
3690 /* Call-saved GP registers. */
3691 if ((regnum >= tdep->ppc_gp0_regnum + 14
3692 && regnum <= tdep->ppc_gp0_regnum + 31)
3693 || (regnum == tdep->ppc_gp0_regnum + 1))
3694 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3695
3696 /* Call-clobbered GP registers. */
3697 if ((regnum >= tdep->ppc_gp0_regnum + 3
3698 && regnum <= tdep->ppc_gp0_regnum + 12)
3699 || (regnum == tdep->ppc_gp0_regnum))
3700 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3701
3702 /* Deal with FP registers, if supported. */
3703 if (tdep->ppc_fp0_regnum >= 0)
3704 {
3705 /* Call-saved FP registers. */
3706 if ((regnum >= tdep->ppc_fp0_regnum + 14
3707 && regnum <= tdep->ppc_fp0_regnum + 31))
3708 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3709
3710 /* Call-clobbered FP registers. */
3711 if ((regnum >= tdep->ppc_fp0_regnum
3712 && regnum <= tdep->ppc_fp0_regnum + 13))
3713 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3714 }
3715
3716 /* Deal with ALTIVEC registers, if supported. */
3717 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3718 {
3719 /* Call-saved Altivec registers. */
3720 if ((regnum >= tdep->ppc_vr0_regnum + 20
3721 && regnum <= tdep->ppc_vr0_regnum + 31)
3722 || regnum == tdep->ppc_vrsave_regnum)
3723 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3724
3725 /* Call-clobbered Altivec registers. */
3726 if ((regnum >= tdep->ppc_vr0_regnum
3727 && regnum <= tdep->ppc_vr0_regnum + 19))
3728 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3729 }
3730
3731 /* Handle PC register and Stack Pointer correctly. */
3732 if (regnum == gdbarch_pc_regnum (gdbarch))
3733 reg->how = DWARF2_FRAME_REG_RA;
3734 else if (regnum == gdbarch_sp_regnum (gdbarch))
3735 reg->how = DWARF2_FRAME_REG_CFA;
3736 }
3737
3738
3739 /* Return true if a .gnu_attributes section exists in BFD and it
3740 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3741 section exists in BFD and it indicates that SPE extensions are in
3742 use. Check the .gnu.attributes section first, as the binary might be
3743 compiled for SPE, but not actually using SPE instructions. */
3744
3745 static int
3746 bfd_uses_spe_extensions (bfd *abfd)
3747 {
3748 asection *sect;
3749 gdb_byte *contents = NULL;
3750 bfd_size_type size;
3751 gdb_byte *ptr;
3752 int success = 0;
3753 int vector_abi;
3754
3755 if (!abfd)
3756 return 0;
3757
3758 #ifdef HAVE_ELF
3759 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3760 could be using the SPE vector abi without actually using any spe
3761 bits whatsoever. But it's close enough for now. */
3762 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3763 Tag_GNU_Power_ABI_Vector);
3764 if (vector_abi == 3)
3765 return 1;
3766 #endif
3767
3768 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3769 if (!sect)
3770 return 0;
3771
3772 size = bfd_get_section_size (sect);
3773 contents = (gdb_byte *) xmalloc (size);
3774 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3775 {
3776 xfree (contents);
3777 return 0;
3778 }
3779
3780 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3781
3782 struct {
3783 uint32 name_len;
3784 uint32 data_len;
3785 uint32 type;
3786 char name[name_len rounded up to 4-byte alignment];
3787 char data[data_len];
3788 };
3789
3790 Technically, there's only supposed to be one such structure in a
3791 given apuinfo section, but the linker is not always vigilant about
3792 merging apuinfo sections from input files. Just go ahead and parse
3793 them all, exiting early when we discover the binary uses SPE
3794 insns.
3795
3796 It's not specified in what endianness the information in this
3797 section is stored. Assume that it's the endianness of the BFD. */
3798 ptr = contents;
3799 while (1)
3800 {
3801 unsigned int name_len;
3802 unsigned int data_len;
3803 unsigned int type;
3804
3805 /* If we can't read the first three fields, we're done. */
3806 if (size < 12)
3807 break;
3808
3809 name_len = bfd_get_32 (abfd, ptr);
3810 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3811 data_len = bfd_get_32 (abfd, ptr + 4);
3812 type = bfd_get_32 (abfd, ptr + 8);
3813 ptr += 12;
3814
3815 /* The name must be "APUinfo\0". */
3816 if (name_len != 8
3817 && strcmp ((const char *) ptr, "APUinfo") != 0)
3818 break;
3819 ptr += name_len;
3820
3821 /* The type must be 2. */
3822 if (type != 2)
3823 break;
3824
3825 /* The data is stored as a series of uint32. The upper half of
3826 each uint32 indicates the particular APU used and the lower
3827 half indicates the revision of that APU. We just care about
3828 the upper half. */
3829
3830 /* Not 4-byte quantities. */
3831 if (data_len & 3U)
3832 break;
3833
3834 while (data_len)
3835 {
3836 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3837 unsigned int apu = apuinfo >> 16;
3838 ptr += 4;
3839 data_len -= 4;
3840
3841 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3842 either. */
3843 if (apu == 0x100 || apu == 0x101)
3844 {
3845 success = 1;
3846 data_len = 0;
3847 }
3848 }
3849
3850 if (success)
3851 break;
3852 }
3853
3854 xfree (contents);
3855 return success;
3856 }
3857
3858 /* These are macros for parsing instruction fields (I.1.6.28) */
3859
3860 #define PPC_FIELD(value, from, len) \
3861 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3862 #define PPC_SEXT(v, bs) \
3863 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3864 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3865 - ((CORE_ADDR) 1 << ((bs) - 1)))
3866 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3867 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3868 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3869 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3870 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3871 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3872 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3873 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3874 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3875 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3876 | (PPC_FIELD (insn, 16, 5) << 5))
3877 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3878 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3879 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3880 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3881 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3882 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3883 #define PPC_OE(insn) PPC_BIT (insn, 21)
3884 #define PPC_RC(insn) PPC_BIT (insn, 31)
3885 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3886 #define PPC_LK(insn) PPC_BIT (insn, 31)
3887 #define PPC_TX(insn) PPC_BIT (insn, 31)
3888 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3889
3890 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3891 #define PPC_XER_NB(xer) (xer & 0x7f)
3892
3893 /* Record Vector-Scalar Registers.
3894 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3895 Otherwise, it's just a VR register. Record them accordingly. */
3896
3897 static int
3898 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3899 {
3900 if (vsr < 0 || vsr >= 64)
3901 return -1;
3902
3903 if (vsr >= 32)
3904 {
3905 if (tdep->ppc_vr0_regnum >= 0)
3906 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3907 }
3908 else
3909 {
3910 if (tdep->ppc_fp0_regnum >= 0)
3911 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3912 if (tdep->ppc_vsr0_upper_regnum >= 0)
3913 record_full_arch_list_add_reg (regcache,
3914 tdep->ppc_vsr0_upper_regnum + vsr);
3915 }
3916
3917 return 0;
3918 }
3919
3920 /* Parse and record instructions primary opcode-4 at ADDR.
3921 Return 0 if successful. */
3922
3923 static int
3924 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3925 CORE_ADDR addr, uint32_t insn)
3926 {
3927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3928 int ext = PPC_FIELD (insn, 21, 11);
3929 int vra = PPC_FIELD (insn, 11, 5);
3930
3931 switch (ext & 0x3f)
3932 {
3933 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3934 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3935 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3936 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3937 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3938 /* FALL-THROUGH */
3939 case 42: /* Vector Select */
3940 case 43: /* Vector Permute */
3941 case 59: /* Vector Permute Right-indexed */
3942 case 44: /* Vector Shift Left Double by Octet Immediate */
3943 case 45: /* Vector Permute and Exclusive-OR */
3944 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3945 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3946 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3947 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3948 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3949 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
3950 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3951 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3952 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3953 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3954 case 46: /* Vector Multiply-Add Single-Precision */
3955 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3956 record_full_arch_list_add_reg (regcache,
3957 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3958 return 0;
3959
3960 case 48: /* Multiply-Add High Doubleword */
3961 case 49: /* Multiply-Add High Doubleword Unsigned */
3962 case 51: /* Multiply-Add Low Doubleword */
3963 record_full_arch_list_add_reg (regcache,
3964 tdep->ppc_gp0_regnum + PPC_RT (insn));
3965 return 0;
3966 }
3967
3968 switch ((ext & 0x1ff))
3969 {
3970 case 385:
3971 if (vra != 0 /* Decimal Convert To Signed Quadword */
3972 && vra != 2 /* Decimal Convert From Signed Quadword */
3973 && vra != 4 /* Decimal Convert To Zoned */
3974 && vra != 5 /* Decimal Convert To National */
3975 && vra != 6 /* Decimal Convert From Zoned */
3976 && vra != 7 /* Decimal Convert From National */
3977 && vra != 31) /* Decimal Set Sign */
3978 break;
3979 /* 5.16 Decimal Integer Arithmetic Instructions */
3980 case 1: /* Decimal Add Modulo */
3981 case 65: /* Decimal Subtract Modulo */
3982
3983 case 193: /* Decimal Shift */
3984 case 129: /* Decimal Unsigned Shift */
3985 case 449: /* Decimal Shift and Round */
3986
3987 case 257: /* Decimal Truncate */
3988 case 321: /* Decimal Unsigned Truncate */
3989
3990 /* Bit-21 should be set. */
3991 if (!PPC_BIT (insn, 21))
3992 break;
3993
3994 record_full_arch_list_add_reg (regcache,
3995 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3996 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3997 return 0;
3998 }
3999
4000 /* Bit-21 is used for RC */
4001 switch (ext & 0x3ff)
4002 {
4003 case 6: /* Vector Compare Equal To Unsigned Byte */
4004 case 70: /* Vector Compare Equal To Unsigned Halfword */
4005 case 134: /* Vector Compare Equal To Unsigned Word */
4006 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4007 case 774: /* Vector Compare Greater Than Signed Byte */
4008 case 838: /* Vector Compare Greater Than Signed Halfword */
4009 case 902: /* Vector Compare Greater Than Signed Word */
4010 case 967: /* Vector Compare Greater Than Signed Doubleword */
4011 case 518: /* Vector Compare Greater Than Unsigned Byte */
4012 case 646: /* Vector Compare Greater Than Unsigned Word */
4013 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4014 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4015 case 966: /* Vector Compare Bounds Single-Precision */
4016 case 198: /* Vector Compare Equal To Single-Precision */
4017 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4018 case 710: /* Vector Compare Greater Than Single-Precision */
4019 case 7: /* Vector Compare Not Equal Byte */
4020 case 71: /* Vector Compare Not Equal Halfword */
4021 case 135: /* Vector Compare Not Equal Word */
4022 case 263: /* Vector Compare Not Equal or Zero Byte */
4023 case 327: /* Vector Compare Not Equal or Zero Halfword */
4024 case 391: /* Vector Compare Not Equal or Zero Word */
4025 if (PPC_Rc (insn))
4026 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4027 record_full_arch_list_add_reg (regcache,
4028 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4029 return 0;
4030 }
4031
4032 if (ext == 1538)
4033 {
4034 switch (vra)
4035 {
4036 case 0: /* Vector Count Leading Zero Least-Significant Bits
4037 Byte */
4038 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4039 Byte */
4040 record_full_arch_list_add_reg (regcache,
4041 tdep->ppc_gp0_regnum + PPC_RT (insn));
4042 return 0;
4043
4044 case 6: /* Vector Negate Word */
4045 case 7: /* Vector Negate Doubleword */
4046 case 8: /* Vector Parity Byte Word */
4047 case 9: /* Vector Parity Byte Doubleword */
4048 case 10: /* Vector Parity Byte Quadword */
4049 case 16: /* Vector Extend Sign Byte To Word */
4050 case 17: /* Vector Extend Sign Halfword To Word */
4051 case 24: /* Vector Extend Sign Byte To Doubleword */
4052 case 25: /* Vector Extend Sign Halfword To Doubleword */
4053 case 26: /* Vector Extend Sign Word To Doubleword */
4054 case 28: /* Vector Count Trailing Zeros Byte */
4055 case 29: /* Vector Count Trailing Zeros Halfword */
4056 case 30: /* Vector Count Trailing Zeros Word */
4057 case 31: /* Vector Count Trailing Zeros Doubleword */
4058 record_full_arch_list_add_reg (regcache,
4059 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4060 return 0;
4061 }
4062 }
4063
4064 switch (ext)
4065 {
4066 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4067 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4068 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4069 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4070 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4071 case 462: /* Vector Pack Signed Word Signed Saturate */
4072 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4073 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4074 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4075 case 512: /* Vector Add Unsigned Byte Saturate */
4076 case 576: /* Vector Add Unsigned Halfword Saturate */
4077 case 640: /* Vector Add Unsigned Word Saturate */
4078 case 768: /* Vector Add Signed Byte Saturate */
4079 case 832: /* Vector Add Signed Halfword Saturate */
4080 case 896: /* Vector Add Signed Word Saturate */
4081 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4082 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4083 case 1664: /* Vector Subtract Unsigned Word Saturate */
4084 case 1792: /* Vector Subtract Signed Byte Saturate */
4085 case 1856: /* Vector Subtract Signed Halfword Saturate */
4086 case 1920: /* Vector Subtract Signed Word Saturate */
4087
4088 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4089 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4090 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4091 case 1672: /* Vector Sum across Half Signed Word Saturate */
4092 case 1928: /* Vector Sum across Signed Word Saturate */
4093 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4094 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4095 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4096 /* FALL-THROUGH */
4097 case 12: /* Vector Merge High Byte */
4098 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4099 case 76: /* Vector Merge High Halfword */
4100 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4101 case 140: /* Vector Merge High Word */
4102 case 268: /* Vector Merge Low Byte */
4103 case 332: /* Vector Merge Low Halfword */
4104 case 396: /* Vector Merge Low Word */
4105 case 526: /* Vector Unpack High Signed Byte */
4106 case 590: /* Vector Unpack High Signed Halfword */
4107 case 654: /* Vector Unpack Low Signed Byte */
4108 case 718: /* Vector Unpack Low Signed Halfword */
4109 case 782: /* Vector Pack Pixel */
4110 case 846: /* Vector Unpack High Pixel */
4111 case 974: /* Vector Unpack Low Pixel */
4112 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4113 case 1614: /* Vector Unpack High Signed Word */
4114 case 1676: /* Vector Merge Odd Word */
4115 case 1742: /* Vector Unpack Low Signed Word */
4116 case 1932: /* Vector Merge Even Word */
4117 case 524: /* Vector Splat Byte */
4118 case 588: /* Vector Splat Halfword */
4119 case 652: /* Vector Splat Word */
4120 case 780: /* Vector Splat Immediate Signed Byte */
4121 case 844: /* Vector Splat Immediate Signed Halfword */
4122 case 908: /* Vector Splat Immediate Signed Word */
4123 case 452: /* Vector Shift Left */
4124 case 708: /* Vector Shift Right */
4125 case 1036: /* Vector Shift Left by Octet */
4126 case 1100: /* Vector Shift Right by Octet */
4127 case 0: /* Vector Add Unsigned Byte Modulo */
4128 case 64: /* Vector Add Unsigned Halfword Modulo */
4129 case 128: /* Vector Add Unsigned Word Modulo */
4130 case 192: /* Vector Add Unsigned Doubleword Modulo */
4131 case 256: /* Vector Add Unsigned Quadword Modulo */
4132 case 320: /* Vector Add & write Carry Unsigned Quadword */
4133 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4134 case 8: /* Vector Multiply Odd Unsigned Byte */
4135 case 72: /* Vector Multiply Odd Unsigned Halfword */
4136 case 136: /* Vector Multiply Odd Unsigned Word */
4137 case 264: /* Vector Multiply Odd Signed Byte */
4138 case 328: /* Vector Multiply Odd Signed Halfword */
4139 case 392: /* Vector Multiply Odd Signed Word */
4140 case 520: /* Vector Multiply Even Unsigned Byte */
4141 case 584: /* Vector Multiply Even Unsigned Halfword */
4142 case 648: /* Vector Multiply Even Unsigned Word */
4143 case 776: /* Vector Multiply Even Signed Byte */
4144 case 840: /* Vector Multiply Even Signed Halfword */
4145 case 904: /* Vector Multiply Even Signed Word */
4146 case 137: /* Vector Multiply Unsigned Word Modulo */
4147 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4148 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4149 case 1152: /* Vector Subtract Unsigned Word Modulo */
4150 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4151 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4152 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4153 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4154 case 1282: /* Vector Average Signed Byte */
4155 case 1346: /* Vector Average Signed Halfword */
4156 case 1410: /* Vector Average Signed Word */
4157 case 1026: /* Vector Average Unsigned Byte */
4158 case 1090: /* Vector Average Unsigned Halfword */
4159 case 1154: /* Vector Average Unsigned Word */
4160 case 258: /* Vector Maximum Signed Byte */
4161 case 322: /* Vector Maximum Signed Halfword */
4162 case 386: /* Vector Maximum Signed Word */
4163 case 450: /* Vector Maximum Signed Doubleword */
4164 case 2: /* Vector Maximum Unsigned Byte */
4165 case 66: /* Vector Maximum Unsigned Halfword */
4166 case 130: /* Vector Maximum Unsigned Word */
4167 case 194: /* Vector Maximum Unsigned Doubleword */
4168 case 770: /* Vector Minimum Signed Byte */
4169 case 834: /* Vector Minimum Signed Halfword */
4170 case 898: /* Vector Minimum Signed Word */
4171 case 962: /* Vector Minimum Signed Doubleword */
4172 case 514: /* Vector Minimum Unsigned Byte */
4173 case 578: /* Vector Minimum Unsigned Halfword */
4174 case 642: /* Vector Minimum Unsigned Word */
4175 case 706: /* Vector Minimum Unsigned Doubleword */
4176 case 1028: /* Vector Logical AND */
4177 case 1668: /* Vector Logical Equivalent */
4178 case 1092: /* Vector Logical AND with Complement */
4179 case 1412: /* Vector Logical NAND */
4180 case 1348: /* Vector Logical OR with Complement */
4181 case 1156: /* Vector Logical OR */
4182 case 1284: /* Vector Logical NOR */
4183 case 1220: /* Vector Logical XOR */
4184 case 4: /* Vector Rotate Left Byte */
4185 case 132: /* Vector Rotate Left Word VX-form */
4186 case 68: /* Vector Rotate Left Halfword */
4187 case 196: /* Vector Rotate Left Doubleword */
4188 case 260: /* Vector Shift Left Byte */
4189 case 388: /* Vector Shift Left Word */
4190 case 324: /* Vector Shift Left Halfword */
4191 case 1476: /* Vector Shift Left Doubleword */
4192 case 516: /* Vector Shift Right Byte */
4193 case 644: /* Vector Shift Right Word */
4194 case 580: /* Vector Shift Right Halfword */
4195 case 1732: /* Vector Shift Right Doubleword */
4196 case 772: /* Vector Shift Right Algebraic Byte */
4197 case 900: /* Vector Shift Right Algebraic Word */
4198 case 836: /* Vector Shift Right Algebraic Halfword */
4199 case 964: /* Vector Shift Right Algebraic Doubleword */
4200 case 10: /* Vector Add Single-Precision */
4201 case 74: /* Vector Subtract Single-Precision */
4202 case 1034: /* Vector Maximum Single-Precision */
4203 case 1098: /* Vector Minimum Single-Precision */
4204 case 842: /* Vector Convert From Signed Fixed-Point Word */
4205 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4206 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4207 case 522: /* Vector Round to Single-Precision Integer Nearest */
4208 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4209 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4210 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4211 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4212 case 266: /* Vector Reciprocal Estimate Single-Precision */
4213 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4214 case 1288: /* Vector AES Cipher */
4215 case 1289: /* Vector AES Cipher Last */
4216 case 1352: /* Vector AES Inverse Cipher */
4217 case 1353: /* Vector AES Inverse Cipher Last */
4218 case 1480: /* Vector AES SubBytes */
4219 case 1730: /* Vector SHA-512 Sigma Doubleword */
4220 case 1666: /* Vector SHA-256 Sigma Word */
4221 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4222 case 1160: /* Vector Polynomial Multiply-Sum Word */
4223 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4224 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4225 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4226 case 1794: /* Vector Count Leading Zeros Byte */
4227 case 1858: /* Vector Count Leading Zeros Halfword */
4228 case 1922: /* Vector Count Leading Zeros Word */
4229 case 1986: /* Vector Count Leading Zeros Doubleword */
4230 case 1795: /* Vector Population Count Byte */
4231 case 1859: /* Vector Population Count Halfword */
4232 case 1923: /* Vector Population Count Word */
4233 case 1987: /* Vector Population Count Doubleword */
4234 case 1356: /* Vector Bit Permute Quadword */
4235 case 1484: /* Vector Bit Permute Doubleword */
4236 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4237 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4238 Quadword */
4239 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4240 case 65: /* Vector Multiply-by-10 Extended & write Carry
4241 Unsigned Quadword */
4242 case 1027: /* Vector Absolute Difference Unsigned Byte */
4243 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4244 case 1155: /* Vector Absolute Difference Unsigned Word */
4245 case 1796: /* Vector Shift Right Variable */
4246 case 1860: /* Vector Shift Left Variable */
4247 case 133: /* Vector Rotate Left Word then Mask Insert */
4248 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4249 case 389: /* Vector Rotate Left Word then AND with Mask */
4250 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4251 case 525: /* Vector Extract Unsigned Byte */
4252 case 589: /* Vector Extract Unsigned Halfword */
4253 case 653: /* Vector Extract Unsigned Word */
4254 case 717: /* Vector Extract Doubleword */
4255 case 781: /* Vector Insert Byte */
4256 case 845: /* Vector Insert Halfword */
4257 case 909: /* Vector Insert Word */
4258 case 973: /* Vector Insert Doubleword */
4259 record_full_arch_list_add_reg (regcache,
4260 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4261 return 0;
4262
4263 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4264 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4265 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4266 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4267 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4268 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4269 record_full_arch_list_add_reg (regcache,
4270 tdep->ppc_gp0_regnum + PPC_RT (insn));
4271 return 0;
4272
4273 case 1604: /* Move To Vector Status and Control Register */
4274 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4275 return 0;
4276 case 1540: /* Move From Vector Status and Control Register */
4277 record_full_arch_list_add_reg (regcache,
4278 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4279 return 0;
4280 case 833: /* Decimal Copy Sign */
4281 record_full_arch_list_add_reg (regcache,
4282 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4283 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4284 return 0;
4285 }
4286
4287 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4288 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4289 return -1;
4290 }
4291
4292 /* Parse and record instructions of primary opcode-19 at ADDR.
4293 Return 0 if successful. */
4294
4295 static int
4296 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4297 CORE_ADDR addr, uint32_t insn)
4298 {
4299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4300 int ext = PPC_EXTOP (insn);
4301
4302 switch (ext & 0x01f)
4303 {
4304 case 2: /* Add PC Immediate Shifted */
4305 record_full_arch_list_add_reg (regcache,
4306 tdep->ppc_gp0_regnum + PPC_RT (insn));
4307 return 0;
4308 }
4309
4310 switch (ext)
4311 {
4312 case 0: /* Move Condition Register Field */
4313 case 33: /* Condition Register NOR */
4314 case 129: /* Condition Register AND with Complement */
4315 case 193: /* Condition Register XOR */
4316 case 225: /* Condition Register NAND */
4317 case 257: /* Condition Register AND */
4318 case 289: /* Condition Register Equivalent */
4319 case 417: /* Condition Register OR with Complement */
4320 case 449: /* Condition Register OR */
4321 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4322 return 0;
4323
4324 case 16: /* Branch Conditional */
4325 case 560: /* Branch Conditional to Branch Target Address Register */
4326 if ((PPC_BO (insn) & 0x4) == 0)
4327 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4328 /* FALL-THROUGH */
4329 case 528: /* Branch Conditional to Count Register */
4330 if (PPC_LK (insn))
4331 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4332 return 0;
4333
4334 case 150: /* Instruction Synchronize */
4335 /* Do nothing. */
4336 return 0;
4337 }
4338
4339 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4340 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4341 return -1;
4342 }
4343
4344 /* Parse and record instructions of primary opcode-31 at ADDR.
4345 Return 0 if successful. */
4346
4347 static int
4348 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4349 CORE_ADDR addr, uint32_t insn)
4350 {
4351 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4352 int ext = PPC_EXTOP (insn);
4353 int tmp, nr, nb, i;
4354 CORE_ADDR at_dcsz, ea = 0;
4355 ULONGEST rb, ra, xer;
4356 int size = 0;
4357
4358 /* These instructions have OE bit. */
4359 switch (ext & 0x1ff)
4360 {
4361 /* These write RT and XER. Update CR if RC is set. */
4362 case 8: /* Subtract from carrying */
4363 case 10: /* Add carrying */
4364 case 136: /* Subtract from extended */
4365 case 138: /* Add extended */
4366 case 200: /* Subtract from zero extended */
4367 case 202: /* Add to zero extended */
4368 case 232: /* Subtract from minus one extended */
4369 case 234: /* Add to minus one extended */
4370 /* CA is always altered, but SO/OV are only altered when OE=1.
4371 In any case, XER is always altered. */
4372 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4373 if (PPC_RC (insn))
4374 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4375 record_full_arch_list_add_reg (regcache,
4376 tdep->ppc_gp0_regnum + PPC_RT (insn));
4377 return 0;
4378
4379 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4380 case 40: /* Subtract from */
4381 case 104: /* Negate */
4382 case 233: /* Multiply low doubleword */
4383 case 235: /* Multiply low word */
4384 case 266: /* Add */
4385 case 393: /* Divide Doubleword Extended Unsigned */
4386 case 395: /* Divide Word Extended Unsigned */
4387 case 425: /* Divide Doubleword Extended */
4388 case 427: /* Divide Word Extended */
4389 case 457: /* Divide Doubleword Unsigned */
4390 case 459: /* Divide Word Unsigned */
4391 case 489: /* Divide Doubleword */
4392 case 491: /* Divide Word */
4393 if (PPC_OE (insn))
4394 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4395 /* FALL-THROUGH */
4396 case 9: /* Multiply High Doubleword Unsigned */
4397 case 11: /* Multiply High Word Unsigned */
4398 case 73: /* Multiply High Doubleword */
4399 case 75: /* Multiply High Word */
4400 if (PPC_RC (insn))
4401 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4402 record_full_arch_list_add_reg (regcache,
4403 tdep->ppc_gp0_regnum + PPC_RT (insn));
4404 return 0;
4405 }
4406
4407 if ((ext & 0x1f) == 15)
4408 {
4409 /* Integer Select. bit[16:20] is used for BC. */
4410 record_full_arch_list_add_reg (regcache,
4411 tdep->ppc_gp0_regnum + PPC_RT (insn));
4412 return 0;
4413 }
4414
4415 if ((ext & 0xff) == 170)
4416 {
4417 /* Add Extended using alternate carry bits */
4418 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4419 record_full_arch_list_add_reg (regcache,
4420 tdep->ppc_gp0_regnum + PPC_RT (insn));
4421 return 0;
4422 }
4423
4424 switch (ext)
4425 {
4426 case 78: /* Determine Leftmost Zero Byte */
4427 if (PPC_RC (insn))
4428 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4429 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4430 record_full_arch_list_add_reg (regcache,
4431 tdep->ppc_gp0_regnum + PPC_RT (insn));
4432 return 0;
4433
4434 /* These only write RT. */
4435 case 19: /* Move from condition register */
4436 /* Move From One Condition Register Field */
4437 case 74: /* Add and Generate Sixes */
4438 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4439 case 302: /* Move From Branch History Rolling Buffer */
4440 case 339: /* Move From Special Purpose Register */
4441 case 371: /* Move From Time Base [Phased-Out] */
4442 case 309: /* Load Doubleword Monitored Indexed */
4443 case 128: /* Set Boolean */
4444 case 755: /* Deliver A Random Number */
4445 record_full_arch_list_add_reg (regcache,
4446 tdep->ppc_gp0_regnum + PPC_RT (insn));
4447 return 0;
4448
4449 /* These only write to RA. */
4450 case 51: /* Move From VSR Doubleword */
4451 case 115: /* Move From VSR Word and Zero */
4452 case 122: /* Population count bytes */
4453 case 378: /* Population count words */
4454 case 506: /* Population count doublewords */
4455 case 154: /* Parity Word */
4456 case 186: /* Parity Doubleword */
4457 case 252: /* Bit Permute Doubleword */
4458 case 282: /* Convert Declets To Binary Coded Decimal */
4459 case 314: /* Convert Binary Coded Decimal To Declets */
4460 case 508: /* Compare bytes */
4461 case 307: /* Move From VSR Lower Doubleword */
4462 record_full_arch_list_add_reg (regcache,
4463 tdep->ppc_gp0_regnum + PPC_RA (insn));
4464 return 0;
4465
4466 /* These write CR and optional RA. */
4467 case 792: /* Shift Right Algebraic Word */
4468 case 794: /* Shift Right Algebraic Doubleword */
4469 case 824: /* Shift Right Algebraic Word Immediate */
4470 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4471 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4472 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4473 record_full_arch_list_add_reg (regcache,
4474 tdep->ppc_gp0_regnum + PPC_RA (insn));
4475 /* FALL-THROUGH */
4476 case 0: /* Compare */
4477 case 32: /* Compare logical */
4478 case 144: /* Move To Condition Register Fields */
4479 /* Move To One Condition Register Field */
4480 case 192: /* Compare Ranged Byte */
4481 case 224: /* Compare Equal Byte */
4482 case 576: /* Move XER to CR Extended */
4483 case 902: /* Paste (should always fail due to single-stepping and
4484 the memory location might not be accessible, so
4485 record only CR) */
4486 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4487 return 0;
4488
4489 /* These write to RT. Update RA if 'update indexed.' */
4490 case 53: /* Load Doubleword with Update Indexed */
4491 case 119: /* Load Byte and Zero with Update Indexed */
4492 case 311: /* Load Halfword and Zero with Update Indexed */
4493 case 55: /* Load Word and Zero with Update Indexed */
4494 case 375: /* Load Halfword Algebraic with Update Indexed */
4495 case 373: /* Load Word Algebraic with Update Indexed */
4496 record_full_arch_list_add_reg (regcache,
4497 tdep->ppc_gp0_regnum + PPC_RA (insn));
4498 /* FALL-THROUGH */
4499 case 21: /* Load Doubleword Indexed */
4500 case 52: /* Load Byte And Reserve Indexed */
4501 case 116: /* Load Halfword And Reserve Indexed */
4502 case 20: /* Load Word And Reserve Indexed */
4503 case 84: /* Load Doubleword And Reserve Indexed */
4504 case 87: /* Load Byte and Zero Indexed */
4505 case 279: /* Load Halfword and Zero Indexed */
4506 case 23: /* Load Word and Zero Indexed */
4507 case 343: /* Load Halfword Algebraic Indexed */
4508 case 341: /* Load Word Algebraic Indexed */
4509 case 790: /* Load Halfword Byte-Reverse Indexed */
4510 case 534: /* Load Word Byte-Reverse Indexed */
4511 case 532: /* Load Doubleword Byte-Reverse Indexed */
4512 case 582: /* Load Word Atomic */
4513 case 614: /* Load Doubleword Atomic */
4514 case 265: /* Modulo Unsigned Doubleword */
4515 case 777: /* Modulo Signed Doubleword */
4516 case 267: /* Modulo Unsigned Word */
4517 case 779: /* Modulo Signed Word */
4518 record_full_arch_list_add_reg (regcache,
4519 tdep->ppc_gp0_regnum + PPC_RT (insn));
4520 return 0;
4521
4522 case 597: /* Load String Word Immediate */
4523 case 533: /* Load String Word Indexed */
4524 if (ext == 597)
4525 {
4526 nr = PPC_NB (insn);
4527 if (nr == 0)
4528 nr = 32;
4529 }
4530 else
4531 {
4532 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4533 nr = PPC_XER_NB (xer);
4534 }
4535
4536 nr = (nr + 3) >> 2;
4537
4538 /* If n=0, the contents of register RT are undefined. */
4539 if (nr == 0)
4540 nr = 1;
4541
4542 for (i = 0; i < nr; i++)
4543 record_full_arch_list_add_reg (regcache,
4544 tdep->ppc_gp0_regnum
4545 + ((PPC_RT (insn) + i) & 0x1f));
4546 return 0;
4547
4548 case 276: /* Load Quadword And Reserve Indexed */
4549 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4550 record_full_arch_list_add_reg (regcache, tmp);
4551 record_full_arch_list_add_reg (regcache, tmp + 1);
4552 return 0;
4553
4554 /* These write VRT. */
4555 case 6: /* Load Vector for Shift Left Indexed */
4556 case 38: /* Load Vector for Shift Right Indexed */
4557 case 7: /* Load Vector Element Byte Indexed */
4558 case 39: /* Load Vector Element Halfword Indexed */
4559 case 71: /* Load Vector Element Word Indexed */
4560 case 103: /* Load Vector Indexed */
4561 case 359: /* Load Vector Indexed LRU */
4562 record_full_arch_list_add_reg (regcache,
4563 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4564 return 0;
4565
4566 /* These write FRT. Update RA if 'update indexed.' */
4567 case 567: /* Load Floating-Point Single with Update Indexed */
4568 case 631: /* Load Floating-Point Double with Update Indexed */
4569 record_full_arch_list_add_reg (regcache,
4570 tdep->ppc_gp0_regnum + PPC_RA (insn));
4571 /* FALL-THROUGH */
4572 case 535: /* Load Floating-Point Single Indexed */
4573 case 599: /* Load Floating-Point Double Indexed */
4574 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4575 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4576 record_full_arch_list_add_reg (regcache,
4577 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4578 return 0;
4579
4580 case 791: /* Load Floating-Point Double Pair Indexed */
4581 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4582 record_full_arch_list_add_reg (regcache, tmp);
4583 record_full_arch_list_add_reg (regcache, tmp + 1);
4584 return 0;
4585
4586 case 179: /* Move To VSR Doubleword */
4587 case 211: /* Move To VSR Word Algebraic */
4588 case 243: /* Move To VSR Word and Zero */
4589 case 588: /* Load VSX Scalar Doubleword Indexed */
4590 case 524: /* Load VSX Scalar Single-Precision Indexed */
4591 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4592 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4593 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4594 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4595 case 780: /* Load VSX Vector Word*4 Indexed */
4596 case 268: /* Load VSX Vector Indexed */
4597 case 364: /* Load VSX Vector Word & Splat Indexed */
4598 case 812: /* Load VSX Vector Halfword*8 Indexed */
4599 case 876: /* Load VSX Vector Byte*16 Indexed */
4600 case 269: /* Load VSX Vector with Length */
4601 case 301: /* Load VSX Vector Left-justified with Length */
4602 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4603 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4604 case 403: /* Move To VSR Word & Splat */
4605 case 435: /* Move To VSR Double Doubleword */
4606 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4607 return 0;
4608
4609 /* These write RA. Update CR if RC is set. */
4610 case 24: /* Shift Left Word */
4611 case 26: /* Count Leading Zeros Word */
4612 case 27: /* Shift Left Doubleword */
4613 case 28: /* AND */
4614 case 58: /* Count Leading Zeros Doubleword */
4615 case 60: /* AND with Complement */
4616 case 124: /* NOR */
4617 case 284: /* Equivalent */
4618 case 316: /* XOR */
4619 case 476: /* NAND */
4620 case 412: /* OR with Complement */
4621 case 444: /* OR */
4622 case 536: /* Shift Right Word */
4623 case 539: /* Shift Right Doubleword */
4624 case 922: /* Extend Sign Halfword */
4625 case 954: /* Extend Sign Byte */
4626 case 986: /* Extend Sign Word */
4627 case 538: /* Count Trailing Zeros Word */
4628 case 570: /* Count Trailing Zeros Doubleword */
4629 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4630 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4631 if (PPC_RC (insn))
4632 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4633 record_full_arch_list_add_reg (regcache,
4634 tdep->ppc_gp0_regnum + PPC_RA (insn));
4635 return 0;
4636
4637 /* Store memory. */
4638 case 181: /* Store Doubleword with Update Indexed */
4639 case 183: /* Store Word with Update Indexed */
4640 case 247: /* Store Byte with Update Indexed */
4641 case 439: /* Store Half Word with Update Indexed */
4642 case 695: /* Store Floating-Point Single with Update Indexed */
4643 case 759: /* Store Floating-Point Double with Update Indexed */
4644 record_full_arch_list_add_reg (regcache,
4645 tdep->ppc_gp0_regnum + PPC_RA (insn));
4646 /* FALL-THROUGH */
4647 case 135: /* Store Vector Element Byte Indexed */
4648 case 167: /* Store Vector Element Halfword Indexed */
4649 case 199: /* Store Vector Element Word Indexed */
4650 case 231: /* Store Vector Indexed */
4651 case 487: /* Store Vector Indexed LRU */
4652 case 716: /* Store VSX Scalar Doubleword Indexed */
4653 case 140: /* Store VSX Scalar as Integer Word Indexed */
4654 case 652: /* Store VSX Scalar Single-Precision Indexed */
4655 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4656 case 908: /* Store VSX Vector Word*4 Indexed */
4657 case 149: /* Store Doubleword Indexed */
4658 case 151: /* Store Word Indexed */
4659 case 215: /* Store Byte Indexed */
4660 case 407: /* Store Half Word Indexed */
4661 case 694: /* Store Byte Conditional Indexed */
4662 case 726: /* Store Halfword Conditional Indexed */
4663 case 150: /* Store Word Conditional Indexed */
4664 case 214: /* Store Doubleword Conditional Indexed */
4665 case 182: /* Store Quadword Conditional Indexed */
4666 case 662: /* Store Word Byte-Reverse Indexed */
4667 case 918: /* Store Halfword Byte-Reverse Indexed */
4668 case 660: /* Store Doubleword Byte-Reverse Indexed */
4669 case 663: /* Store Floating-Point Single Indexed */
4670 case 727: /* Store Floating-Point Double Indexed */
4671 case 919: /* Store Floating-Point Double Pair Indexed */
4672 case 983: /* Store Floating-Point as Integer Word Indexed */
4673 case 396: /* Store VSX Vector Indexed */
4674 case 940: /* Store VSX Vector Halfword*8 Indexed */
4675 case 1004: /* Store VSX Vector Byte*16 Indexed */
4676 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4677 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4678 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4679 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4680
4681 ra = 0;
4682 if (PPC_RA (insn) != 0)
4683 regcache_raw_read_unsigned (regcache,
4684 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4685 regcache_raw_read_unsigned (regcache,
4686 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4687 ea = ra + rb;
4688
4689 switch (ext)
4690 {
4691 case 183: /* Store Word with Update Indexed */
4692 case 199: /* Store Vector Element Word Indexed */
4693 case 140: /* Store VSX Scalar as Integer Word Indexed */
4694 case 652: /* Store VSX Scalar Single-Precision Indexed */
4695 case 151: /* Store Word Indexed */
4696 case 150: /* Store Word Conditional Indexed */
4697 case 662: /* Store Word Byte-Reverse Indexed */
4698 case 663: /* Store Floating-Point Single Indexed */
4699 case 695: /* Store Floating-Point Single with Update Indexed */
4700 case 983: /* Store Floating-Point as Integer Word Indexed */
4701 size = 4;
4702 break;
4703 case 247: /* Store Byte with Update Indexed */
4704 case 135: /* Store Vector Element Byte Indexed */
4705 case 215: /* Store Byte Indexed */
4706 case 694: /* Store Byte Conditional Indexed */
4707 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4708 size = 1;
4709 break;
4710 case 439: /* Store Halfword with Update Indexed */
4711 case 167: /* Store Vector Element Halfword Indexed */
4712 case 407: /* Store Halfword Indexed */
4713 case 726: /* Store Halfword Conditional Indexed */
4714 case 918: /* Store Halfword Byte-Reverse Indexed */
4715 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4716 size = 2;
4717 break;
4718 case 181: /* Store Doubleword with Update Indexed */
4719 case 716: /* Store VSX Scalar Doubleword Indexed */
4720 case 149: /* Store Doubleword Indexed */
4721 case 214: /* Store Doubleword Conditional Indexed */
4722 case 660: /* Store Doubleword Byte-Reverse Indexed */
4723 case 727: /* Store Floating-Point Double Indexed */
4724 case 759: /* Store Floating-Point Double with Update Indexed */
4725 size = 8;
4726 break;
4727 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4728 case 908: /* Store VSX Vector Word*4 Indexed */
4729 case 182: /* Store Quadword Conditional Indexed */
4730 case 231: /* Store Vector Indexed */
4731 case 487: /* Store Vector Indexed LRU */
4732 case 919: /* Store Floating-Point Double Pair Indexed */
4733 case 396: /* Store VSX Vector Indexed */
4734 case 940: /* Store VSX Vector Halfword*8 Indexed */
4735 case 1004: /* Store VSX Vector Byte*16 Indexed */
4736 size = 16;
4737 break;
4738 default:
4739 gdb_assert (0);
4740 }
4741
4742 /* Align address for Store Vector instructions. */
4743 switch (ext)
4744 {
4745 case 167: /* Store Vector Element Halfword Indexed */
4746 addr = addr & ~0x1ULL;
4747 break;
4748
4749 case 199: /* Store Vector Element Word Indexed */
4750 addr = addr & ~0x3ULL;
4751 break;
4752
4753 case 231: /* Store Vector Indexed */
4754 case 487: /* Store Vector Indexed LRU */
4755 addr = addr & ~0xfULL;
4756 break;
4757 }
4758
4759 record_full_arch_list_add_mem (addr, size);
4760 return 0;
4761
4762 case 397: /* Store VSX Vector with Length */
4763 case 429: /* Store VSX Vector Left-justified with Length */
4764 ra = 0;
4765 if (PPC_RA (insn) != 0)
4766 regcache_raw_read_unsigned (regcache,
4767 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4768 ea = ra;
4769 regcache_raw_read_unsigned (regcache,
4770 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4771 /* Store up to 16 bytes. */
4772 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4773 if (nb > 0)
4774 record_full_arch_list_add_mem (ea, nb);
4775 return 0;
4776
4777 case 710: /* Store Word Atomic */
4778 case 742: /* Store Doubleword Atomic */
4779 ra = 0;
4780 if (PPC_RA (insn) != 0)
4781 regcache_raw_read_unsigned (regcache,
4782 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4783 ea = ra;
4784 switch (ext)
4785 {
4786 case 710: /* Store Word Atomic */
4787 size = 8;
4788 break;
4789 case 742: /* Store Doubleword Atomic */
4790 size = 16;
4791 break;
4792 default:
4793 gdb_assert (0);
4794 }
4795 record_full_arch_list_add_mem (ea, size);
4796 return 0;
4797
4798 case 725: /* Store String Word Immediate */
4799 ra = 0;
4800 if (PPC_RA (insn) != 0)
4801 regcache_raw_read_unsigned (regcache,
4802 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4803 ea += ra;
4804
4805 nb = PPC_NB (insn);
4806 if (nb == 0)
4807 nb = 32;
4808
4809 record_full_arch_list_add_mem (ea, nb);
4810
4811 return 0;
4812
4813 case 661: /* Store String Word Indexed */
4814 ra = 0;
4815 if (PPC_RA (insn) != 0)
4816 regcache_raw_read_unsigned (regcache,
4817 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4818 ea += ra;
4819
4820 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4821 nb = PPC_XER_NB (xer);
4822
4823 if (nb != 0)
4824 {
4825 regcache_raw_read_unsigned (regcache,
4826 tdep->ppc_gp0_regnum + PPC_RB (insn),
4827 &rb);
4828 ea += rb;
4829 record_full_arch_list_add_mem (ea, nb);
4830 }
4831
4832 return 0;
4833
4834 case 467: /* Move To Special Purpose Register */
4835 switch (PPC_SPR (insn))
4836 {
4837 case 1: /* XER */
4838 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4839 return 0;
4840 case 8: /* LR */
4841 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4842 return 0;
4843 case 9: /* CTR */
4844 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4845 return 0;
4846 case 256: /* VRSAVE */
4847 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4848 return 0;
4849 }
4850
4851 goto UNKNOWN_OP;
4852
4853 case 147: /* Move To Split Little Endian */
4854 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4855 return 0;
4856
4857 case 512: /* Move to Condition Register from XER */
4858 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4859 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4860 return 0;
4861
4862 case 4: /* Trap Word */
4863 case 68: /* Trap Doubleword */
4864 case 430: /* Clear BHRB */
4865 case 598: /* Synchronize */
4866 case 62: /* Wait for Interrupt */
4867 case 30: /* Wait */
4868 case 22: /* Instruction Cache Block Touch */
4869 case 854: /* Enforce In-order Execution of I/O */
4870 case 246: /* Data Cache Block Touch for Store */
4871 case 54: /* Data Cache Block Store */
4872 case 86: /* Data Cache Block Flush */
4873 case 278: /* Data Cache Block Touch */
4874 case 758: /* Data Cache Block Allocate */
4875 case 982: /* Instruction Cache Block Invalidate */
4876 case 774: /* Copy */
4877 case 838: /* CP_Abort */
4878 return 0;
4879
4880 case 654: /* Transaction Begin */
4881 case 686: /* Transaction End */
4882 case 750: /* Transaction Suspend or Resume */
4883 case 782: /* Transaction Abort Word Conditional */
4884 case 814: /* Transaction Abort Doubleword Conditional */
4885 case 846: /* Transaction Abort Word Conditional Immediate */
4886 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4887 case 910: /* Transaction Abort */
4888 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4889 /* FALL-THROUGH */
4890 case 718: /* Transaction Check */
4891 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4892 return 0;
4893
4894 case 1014: /* Data Cache Block set to Zero */
4895 if (target_auxv_search (&current_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4896 || at_dcsz == 0)
4897 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4898
4899 ra = 0;
4900 if (PPC_RA (insn) != 0)
4901 regcache_raw_read_unsigned (regcache,
4902 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4903 regcache_raw_read_unsigned (regcache,
4904 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4905 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4906 record_full_arch_list_add_mem (ea, at_dcsz);
4907 return 0;
4908 }
4909
4910 UNKNOWN_OP:
4911 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4912 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
4913 return -1;
4914 }
4915
4916 /* Parse and record instructions of primary opcode-59 at ADDR.
4917 Return 0 if successful. */
4918
4919 static int
4920 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4921 CORE_ADDR addr, uint32_t insn)
4922 {
4923 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4924 int ext = PPC_EXTOP (insn);
4925
4926 switch (ext & 0x1f)
4927 {
4928 case 18: /* Floating Divide */
4929 case 20: /* Floating Subtract */
4930 case 21: /* Floating Add */
4931 case 22: /* Floating Square Root */
4932 case 24: /* Floating Reciprocal Estimate */
4933 case 25: /* Floating Multiply */
4934 case 26: /* Floating Reciprocal Square Root Estimate */
4935 case 28: /* Floating Multiply-Subtract */
4936 case 29: /* Floating Multiply-Add */
4937 case 30: /* Floating Negative Multiply-Subtract */
4938 case 31: /* Floating Negative Multiply-Add */
4939 record_full_arch_list_add_reg (regcache,
4940 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4941 if (PPC_RC (insn))
4942 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4943 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4944
4945 return 0;
4946 }
4947
4948 switch (ext)
4949 {
4950 case 2: /* DFP Add */
4951 case 3: /* DFP Quantize */
4952 case 34: /* DFP Multiply */
4953 case 35: /* DFP Reround */
4954 case 67: /* DFP Quantize Immediate */
4955 case 99: /* DFP Round To FP Integer With Inexact */
4956 case 227: /* DFP Round To FP Integer Without Inexact */
4957 case 258: /* DFP Convert To DFP Long! */
4958 case 290: /* DFP Convert To Fixed */
4959 case 514: /* DFP Subtract */
4960 case 546: /* DFP Divide */
4961 case 770: /* DFP Round To DFP Short! */
4962 case 802: /* DFP Convert From Fixed */
4963 case 834: /* DFP Encode BCD To DPD */
4964 if (PPC_RC (insn))
4965 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4966 record_full_arch_list_add_reg (regcache,
4967 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4968 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4969 return 0;
4970
4971 case 130: /* DFP Compare Ordered */
4972 case 162: /* DFP Test Exponent */
4973 case 194: /* DFP Test Data Class */
4974 case 226: /* DFP Test Data Group */
4975 case 642: /* DFP Compare Unordered */
4976 case 674: /* DFP Test Significance */
4977 case 675: /* DFP Test Significance Immediate */
4978 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4979 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4980 return 0;
4981
4982 case 66: /* DFP Shift Significand Left Immediate */
4983 case 98: /* DFP Shift Significand Right Immediate */
4984 case 322: /* DFP Decode DPD To BCD */
4985 case 354: /* DFP Extract Biased Exponent */
4986 case 866: /* DFP Insert Biased Exponent */
4987 record_full_arch_list_add_reg (regcache,
4988 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4989 if (PPC_RC (insn))
4990 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4991 return 0;
4992
4993 case 846: /* Floating Convert From Integer Doubleword Single */
4994 case 974: /* Floating Convert From Integer Doubleword Unsigned
4995 Single */
4996 record_full_arch_list_add_reg (regcache,
4997 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4998 if (PPC_RC (insn))
4999 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5000 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5001
5002 return 0;
5003 }
5004
5005 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5006 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5007 return -1;
5008 }
5009
5010 /* Parse and record instructions of primary opcode-60 at ADDR.
5011 Return 0 if successful. */
5012
5013 static int
5014 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5015 CORE_ADDR addr, uint32_t insn)
5016 {
5017 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5018 int ext = PPC_EXTOP (insn);
5019
5020 switch (ext >> 2)
5021 {
5022 case 0: /* VSX Scalar Add Single-Precision */
5023 case 32: /* VSX Scalar Add Double-Precision */
5024 case 24: /* VSX Scalar Divide Single-Precision */
5025 case 56: /* VSX Scalar Divide Double-Precision */
5026 case 176: /* VSX Scalar Copy Sign Double-Precision */
5027 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5028 case 41: /* ditto */
5029 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5030 case 9: /* ditto */
5031 case 160: /* VSX Scalar Maximum Double-Precision */
5032 case 168: /* VSX Scalar Minimum Double-Precision */
5033 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5034 case 57: /* ditto */
5035 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5036 case 25: /* ditto */
5037 case 48: /* VSX Scalar Multiply Double-Precision */
5038 case 16: /* VSX Scalar Multiply Single-Precision */
5039 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5040 case 169: /* ditto */
5041 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5042 case 137: /* ditto */
5043 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5044 case 185: /* ditto */
5045 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5046 case 153: /* ditto */
5047 case 40: /* VSX Scalar Subtract Double-Precision */
5048 case 8: /* VSX Scalar Subtract Single-Precision */
5049 case 96: /* VSX Vector Add Double-Precision */
5050 case 64: /* VSX Vector Add Single-Precision */
5051 case 120: /* VSX Vector Divide Double-Precision */
5052 case 88: /* VSX Vector Divide Single-Precision */
5053 case 97: /* VSX Vector Multiply-Add Double-Precision */
5054 case 105: /* ditto */
5055 case 65: /* VSX Vector Multiply-Add Single-Precision */
5056 case 73: /* ditto */
5057 case 224: /* VSX Vector Maximum Double-Precision */
5058 case 192: /* VSX Vector Maximum Single-Precision */
5059 case 232: /* VSX Vector Minimum Double-Precision */
5060 case 200: /* VSX Vector Minimum Single-Precision */
5061 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5062 case 121: /* ditto */
5063 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5064 case 89: /* ditto */
5065 case 112: /* VSX Vector Multiply Double-Precision */
5066 case 80: /* VSX Vector Multiply Single-Precision */
5067 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5068 case 233: /* ditto */
5069 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5070 case 201: /* ditto */
5071 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5072 case 249: /* ditto */
5073 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5074 case 217: /* ditto */
5075 case 104: /* VSX Vector Subtract Double-Precision */
5076 case 72: /* VSX Vector Subtract Single-Precision */
5077 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5078 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5079 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5080 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5081 case 3: /* VSX Scalar Compare Equal Double-Precision */
5082 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5083 case 19: /* VSX Scalar Compare Greater Than or Equal
5084 Double-Precision */
5085 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5086 /* FALL-THROUGH */
5087 case 240: /* VSX Vector Copy Sign Double-Precision */
5088 case 208: /* VSX Vector Copy Sign Single-Precision */
5089 case 130: /* VSX Logical AND */
5090 case 138: /* VSX Logical AND with Complement */
5091 case 186: /* VSX Logical Equivalence */
5092 case 178: /* VSX Logical NAND */
5093 case 170: /* VSX Logical OR with Complement */
5094 case 162: /* VSX Logical NOR */
5095 case 146: /* VSX Logical OR */
5096 case 154: /* VSX Logical XOR */
5097 case 18: /* VSX Merge High Word */
5098 case 50: /* VSX Merge Low Word */
5099 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5100 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5101 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5102 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5103 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5104 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5105 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5106 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5107 case 216: /* VSX Vector Insert Exponent Single-Precision */
5108 case 248: /* VSX Vector Insert Exponent Double-Precision */
5109 case 26: /* VSX Vector Permute */
5110 case 58: /* VSX Vector Permute Right-indexed */
5111 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5112 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5113 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5114 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5115 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5116 return 0;
5117
5118 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5119 case 125: /* VSX Vector Test for software Divide Double-Precision */
5120 case 93: /* VSX Vector Test for software Divide Single-Precision */
5121 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5122 return 0;
5123
5124 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5125 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5126 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5127 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5128 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5129 return 0;
5130 }
5131
5132 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5133 {
5134 case 99: /* VSX Vector Compare Equal To Double-Precision */
5135 case 67: /* VSX Vector Compare Equal To Single-Precision */
5136 case 115: /* VSX Vector Compare Greater Than or
5137 Equal To Double-Precision */
5138 case 83: /* VSX Vector Compare Greater Than or
5139 Equal To Single-Precision */
5140 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5141 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5142 if (PPC_Rc (insn))
5143 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5144 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5145 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5146 return 0;
5147 }
5148
5149 switch (ext >> 1)
5150 {
5151 case 265: /* VSX Scalar round Double-Precision to
5152 Single-Precision and Convert to
5153 Single-Precision format */
5154 case 344: /* VSX Scalar truncate Double-Precision to
5155 Integer and Convert to Signed Integer
5156 Doubleword format with Saturate */
5157 case 88: /* VSX Scalar truncate Double-Precision to
5158 Integer and Convert to Signed Integer Word
5159 Format with Saturate */
5160 case 328: /* VSX Scalar truncate Double-Precision integer
5161 and Convert to Unsigned Integer Doubleword
5162 Format with Saturate */
5163 case 72: /* VSX Scalar truncate Double-Precision to
5164 Integer and Convert to Unsigned Integer Word
5165 Format with Saturate */
5166 case 329: /* VSX Scalar Convert Single-Precision to
5167 Double-Precision format */
5168 case 376: /* VSX Scalar Convert Signed Integer
5169 Doubleword to floating-point format and
5170 Round to Double-Precision format */
5171 case 312: /* VSX Scalar Convert Signed Integer
5172 Doubleword to floating-point format and
5173 round to Single-Precision */
5174 case 360: /* VSX Scalar Convert Unsigned Integer
5175 Doubleword to floating-point format and
5176 Round to Double-Precision format */
5177 case 296: /* VSX Scalar Convert Unsigned Integer
5178 Doubleword to floating-point format and
5179 Round to Single-Precision */
5180 case 73: /* VSX Scalar Round to Double-Precision Integer
5181 Using Round to Nearest Away */
5182 case 107: /* VSX Scalar Round to Double-Precision Integer
5183 Exact using Current rounding mode */
5184 case 121: /* VSX Scalar Round to Double-Precision Integer
5185 Using Round toward -Infinity */
5186 case 105: /* VSX Scalar Round to Double-Precision Integer
5187 Using Round toward +Infinity */
5188 case 89: /* VSX Scalar Round to Double-Precision Integer
5189 Using Round toward Zero */
5190 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5191 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5192 case 281: /* VSX Scalar Round to Single-Precision */
5193 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5194 Double-Precision */
5195 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5196 Single-Precision */
5197 case 75: /* VSX Scalar Square Root Double-Precision */
5198 case 11: /* VSX Scalar Square Root Single-Precision */
5199 case 393: /* VSX Vector round Double-Precision to
5200 Single-Precision and Convert to
5201 Single-Precision format */
5202 case 472: /* VSX Vector truncate Double-Precision to
5203 Integer and Convert to Signed Integer
5204 Doubleword format with Saturate */
5205 case 216: /* VSX Vector truncate Double-Precision to
5206 Integer and Convert to Signed Integer Word
5207 Format with Saturate */
5208 case 456: /* VSX Vector truncate Double-Precision to
5209 Integer and Convert to Unsigned Integer
5210 Doubleword format with Saturate */
5211 case 200: /* VSX Vector truncate Double-Precision to
5212 Integer and Convert to Unsigned Integer Word
5213 Format with Saturate */
5214 case 457: /* VSX Vector Convert Single-Precision to
5215 Double-Precision format */
5216 case 408: /* VSX Vector truncate Single-Precision to
5217 Integer and Convert to Signed Integer
5218 Doubleword format with Saturate */
5219 case 152: /* VSX Vector truncate Single-Precision to
5220 Integer and Convert to Signed Integer Word
5221 Format with Saturate */
5222 case 392: /* VSX Vector truncate Single-Precision to
5223 Integer and Convert to Unsigned Integer
5224 Doubleword format with Saturate */
5225 case 136: /* VSX Vector truncate Single-Precision to
5226 Integer and Convert to Unsigned Integer Word
5227 Format with Saturate */
5228 case 504: /* VSX Vector Convert and round Signed Integer
5229 Doubleword to Double-Precision format */
5230 case 440: /* VSX Vector Convert and round Signed Integer
5231 Doubleword to Single-Precision format */
5232 case 248: /* VSX Vector Convert Signed Integer Word to
5233 Double-Precision format */
5234 case 184: /* VSX Vector Convert and round Signed Integer
5235 Word to Single-Precision format */
5236 case 488: /* VSX Vector Convert and round Unsigned
5237 Integer Doubleword to Double-Precision format */
5238 case 424: /* VSX Vector Convert and round Unsigned
5239 Integer Doubleword to Single-Precision format */
5240 case 232: /* VSX Vector Convert and round Unsigned
5241 Integer Word to Double-Precision format */
5242 case 168: /* VSX Vector Convert and round Unsigned
5243 Integer Word to Single-Precision format */
5244 case 201: /* VSX Vector Round to Double-Precision
5245 Integer using round to Nearest Away */
5246 case 235: /* VSX Vector Round to Double-Precision
5247 Integer Exact using Current rounding mode */
5248 case 249: /* VSX Vector Round to Double-Precision
5249 Integer using round toward -Infinity */
5250 case 233: /* VSX Vector Round to Double-Precision
5251 Integer using round toward +Infinity */
5252 case 217: /* VSX Vector Round to Double-Precision
5253 Integer using round toward Zero */
5254 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5255 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5256 case 137: /* VSX Vector Round to Single-Precision Integer
5257 Using Round to Nearest Away */
5258 case 171: /* VSX Vector Round to Single-Precision Integer
5259 Exact Using Current rounding mode */
5260 case 185: /* VSX Vector Round to Single-Precision Integer
5261 Using Round toward -Infinity */
5262 case 169: /* VSX Vector Round to Single-Precision Integer
5263 Using Round toward +Infinity */
5264 case 153: /* VSX Vector Round to Single-Precision Integer
5265 Using round toward Zero */
5266 case 202: /* VSX Vector Reciprocal Square Root Estimate
5267 Double-Precision */
5268 case 138: /* VSX Vector Reciprocal Square Root Estimate
5269 Single-Precision */
5270 case 203: /* VSX Vector Square Root Double-Precision */
5271 case 139: /* VSX Vector Square Root Single-Precision */
5272 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5273 /* FALL-THROUGH */
5274 case 345: /* VSX Scalar Absolute Value Double-Precision */
5275 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5276 Vector Single-Precision format Non-signalling */
5277 case 331: /* VSX Scalar Convert Single-Precision to
5278 Double-Precision format Non-signalling */
5279 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5280 case 377: /* VSX Scalar Negate Double-Precision */
5281 case 473: /* VSX Vector Absolute Value Double-Precision */
5282 case 409: /* VSX Vector Absolute Value Single-Precision */
5283 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5284 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5285 case 505: /* VSX Vector Negate Double-Precision */
5286 case 441: /* VSX Vector Negate Single-Precision */
5287 case 164: /* VSX Splat Word */
5288 case 165: /* VSX Vector Extract Unsigned Word */
5289 case 181: /* VSX Vector Insert Word */
5290 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5291 return 0;
5292
5293 case 298: /* VSX Scalar Test Data Class Single-Precision */
5294 case 362: /* VSX Scalar Test Data Class Double-Precision */
5295 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5296 /* FALL-THROUGH */
5297 case 106: /* VSX Scalar Test for software Square Root
5298 Double-Precision */
5299 case 234: /* VSX Vector Test for software Square Root
5300 Double-Precision */
5301 case 170: /* VSX Vector Test for software Square Root
5302 Single-Precision */
5303 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5304 return 0;
5305
5306 case 347:
5307 switch (PPC_FIELD (insn, 11, 5))
5308 {
5309 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5310 case 1: /* VSX Scalar Extract Significand Double-Precision */
5311 record_full_arch_list_add_reg (regcache,
5312 tdep->ppc_gp0_regnum + PPC_RT (insn));
5313 return 0;
5314 case 16: /* VSX Scalar Convert Half-Precision format to
5315 Double-Precision format */
5316 case 17: /* VSX Scalar round & Convert Double-Precision format
5317 to Half-Precision format */
5318 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5319 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5320 return 0;
5321 }
5322 break;
5323
5324 case 475:
5325 switch (PPC_FIELD (insn, 11, 5))
5326 {
5327 case 24: /* VSX Vector Convert Half-Precision format to
5328 Single-Precision format */
5329 case 25: /* VSX Vector round and Convert Single-Precision format
5330 to Half-Precision format */
5331 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5332 /* FALL-THROUGH */
5333 case 0: /* VSX Vector Extract Exponent Double-Precision */
5334 case 1: /* VSX Vector Extract Significand Double-Precision */
5335 case 7: /* VSX Vector Byte-Reverse Halfword */
5336 case 8: /* VSX Vector Extract Exponent Single-Precision */
5337 case 9: /* VSX Vector Extract Significand Single-Precision */
5338 case 15: /* VSX Vector Byte-Reverse Word */
5339 case 23: /* VSX Vector Byte-Reverse Doubleword */
5340 case 31: /* VSX Vector Byte-Reverse Quadword */
5341 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5342 return 0;
5343 }
5344 break;
5345 }
5346
5347 switch (ext)
5348 {
5349 case 360: /* VSX Vector Splat Immediate Byte */
5350 if (PPC_FIELD (insn, 11, 2) == 0)
5351 {
5352 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5353 return 0;
5354 }
5355 break;
5356 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5357 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5358 return 0;
5359 }
5360
5361 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5362 {
5363 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5364 return 0;
5365 }
5366
5367 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5368 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5369 return -1;
5370 }
5371
5372 /* Parse and record instructions of primary opcode-61 at ADDR.
5373 Return 0 if successful. */
5374
5375 static int
5376 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5377 CORE_ADDR addr, uint32_t insn)
5378 {
5379 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5380 ULONGEST ea = 0;
5381 int size;
5382
5383 switch (insn & 0x3)
5384 {
5385 case 0: /* Store Floating-Point Double Pair */
5386 case 2: /* Store VSX Scalar Doubleword */
5387 case 3: /* Store VSX Scalar Single */
5388 if (PPC_RA (insn) != 0)
5389 regcache_raw_read_unsigned (regcache,
5390 tdep->ppc_gp0_regnum + PPC_RA (insn),
5391 &ea);
5392 ea += PPC_DS (insn) << 2;
5393 switch (insn & 0x3)
5394 {
5395 case 0: /* Store Floating-Point Double Pair */
5396 size = 16;
5397 break;
5398 case 2: /* Store VSX Scalar Doubleword */
5399 size = 8;
5400 break;
5401 case 3: /* Store VSX Scalar Single */
5402 size = 4;
5403 break;
5404 default:
5405 gdb_assert (0);
5406 }
5407 record_full_arch_list_add_mem (ea, size);
5408 return 0;
5409 }
5410
5411 switch (insn & 0x7)
5412 {
5413 case 1: /* Load VSX Vector */
5414 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5415 return 0;
5416 case 5: /* Store VSX Vector */
5417 if (PPC_RA (insn) != 0)
5418 regcache_raw_read_unsigned (regcache,
5419 tdep->ppc_gp0_regnum + PPC_RA (insn),
5420 &ea);
5421 ea += PPC_DQ (insn) << 4;
5422 record_full_arch_list_add_mem (ea, 16);
5423 return 0;
5424 }
5425
5426 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5427 "at %s.\n", insn, paddress (gdbarch, addr));
5428 return -1;
5429 }
5430
5431 /* Parse and record instructions of primary opcode-63 at ADDR.
5432 Return 0 if successful. */
5433
5434 static int
5435 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5436 CORE_ADDR addr, uint32_t insn)
5437 {
5438 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5439 int ext = PPC_EXTOP (insn);
5440 int tmp;
5441
5442 switch (ext & 0x1f)
5443 {
5444 case 18: /* Floating Divide */
5445 case 20: /* Floating Subtract */
5446 case 21: /* Floating Add */
5447 case 22: /* Floating Square Root */
5448 case 24: /* Floating Reciprocal Estimate */
5449 case 25: /* Floating Multiply */
5450 case 26: /* Floating Reciprocal Square Root Estimate */
5451 case 28: /* Floating Multiply-Subtract */
5452 case 29: /* Floating Multiply-Add */
5453 case 30: /* Floating Negative Multiply-Subtract */
5454 case 31: /* Floating Negative Multiply-Add */
5455 record_full_arch_list_add_reg (regcache,
5456 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5457 if (PPC_RC (insn))
5458 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5459 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5460 return 0;
5461
5462 case 23: /* Floating Select */
5463 record_full_arch_list_add_reg (regcache,
5464 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5465 if (PPC_RC (insn))
5466 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5467 return 0;
5468 }
5469
5470 switch (ext & 0xff)
5471 {
5472 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5473 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5474 Precision */
5475 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5476 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5477 return 0;
5478 }
5479
5480 switch (ext)
5481 {
5482 case 2: /* DFP Add Quad */
5483 case 3: /* DFP Quantize Quad */
5484 case 34: /* DFP Multiply Quad */
5485 case 35: /* DFP Reround Quad */
5486 case 67: /* DFP Quantize Immediate Quad */
5487 case 99: /* DFP Round To FP Integer With Inexact Quad */
5488 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5489 case 258: /* DFP Convert To DFP Extended Quad */
5490 case 514: /* DFP Subtract Quad */
5491 case 546: /* DFP Divide Quad */
5492 case 770: /* DFP Round To DFP Long Quad */
5493 case 802: /* DFP Convert From Fixed Quad */
5494 case 834: /* DFP Encode BCD To DPD Quad */
5495 if (PPC_RC (insn))
5496 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5497 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5498 record_full_arch_list_add_reg (regcache, tmp);
5499 record_full_arch_list_add_reg (regcache, tmp + 1);
5500 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5501 return 0;
5502
5503 case 130: /* DFP Compare Ordered Quad */
5504 case 162: /* DFP Test Exponent Quad */
5505 case 194: /* DFP Test Data Class Quad */
5506 case 226: /* DFP Test Data Group Quad */
5507 case 642: /* DFP Compare Unordered Quad */
5508 case 674: /* DFP Test Significance Quad */
5509 case 675: /* DFP Test Significance Immediate Quad */
5510 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5511 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5512 return 0;
5513
5514 case 66: /* DFP Shift Significand Left Immediate Quad */
5515 case 98: /* DFP Shift Significand Right Immediate Quad */
5516 case 322: /* DFP Decode DPD To BCD Quad */
5517 case 866: /* DFP Insert Biased Exponent Quad */
5518 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5519 record_full_arch_list_add_reg (regcache, tmp);
5520 record_full_arch_list_add_reg (regcache, tmp + 1);
5521 if (PPC_RC (insn))
5522 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5523 return 0;
5524
5525 case 290: /* DFP Convert To Fixed Quad */
5526 record_full_arch_list_add_reg (regcache,
5527 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5528 if (PPC_RC (insn))
5529 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5530 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5531 return 0;
5532
5533 case 354: /* DFP Extract Biased Exponent Quad */
5534 record_full_arch_list_add_reg (regcache,
5535 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5536 if (PPC_RC (insn))
5537 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5538 return 0;
5539
5540 case 12: /* Floating Round to Single-Precision */
5541 case 14: /* Floating Convert To Integer Word */
5542 case 15: /* Floating Convert To Integer Word
5543 with round toward Zero */
5544 case 142: /* Floating Convert To Integer Word Unsigned */
5545 case 143: /* Floating Convert To Integer Word Unsigned
5546 with round toward Zero */
5547 case 392: /* Floating Round to Integer Nearest */
5548 case 424: /* Floating Round to Integer Toward Zero */
5549 case 456: /* Floating Round to Integer Plus */
5550 case 488: /* Floating Round to Integer Minus */
5551 case 814: /* Floating Convert To Integer Doubleword */
5552 case 815: /* Floating Convert To Integer Doubleword
5553 with round toward Zero */
5554 case 846: /* Floating Convert From Integer Doubleword */
5555 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5556 case 943: /* Floating Convert To Integer Doubleword Unsigned
5557 with round toward Zero */
5558 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5559 record_full_arch_list_add_reg (regcache,
5560 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5561 if (PPC_RC (insn))
5562 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5563 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5564 return 0;
5565
5566 case 583:
5567 switch (PPC_FIELD (insn, 11, 5))
5568 {
5569 case 1: /* Move From FPSCR & Clear Enables */
5570 case 20: /* Move From FPSCR Control & set DRN */
5571 case 21: /* Move From FPSCR Control & set DRN Immediate */
5572 case 22: /* Move From FPSCR Control & set RN */
5573 case 23: /* Move From FPSCR Control & set RN Immediate */
5574 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5575 case 0: /* Move From FPSCR */
5576 case 24: /* Move From FPSCR Lightweight */
5577 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5578 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5579 record_full_arch_list_add_reg (regcache,
5580 tdep->ppc_fp0_regnum
5581 + PPC_FRT (insn));
5582 return 0;
5583 }
5584 break;
5585
5586 case 8: /* Floating Copy Sign */
5587 case 40: /* Floating Negate */
5588 case 72: /* Floating Move Register */
5589 case 136: /* Floating Negative Absolute Value */
5590 case 264: /* Floating Absolute Value */
5591 record_full_arch_list_add_reg (regcache,
5592 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5593 if (PPC_RC (insn))
5594 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5595 return 0;
5596
5597 case 838: /* Floating Merge Odd Word */
5598 case 966: /* Floating Merge Even Word */
5599 record_full_arch_list_add_reg (regcache,
5600 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5601 return 0;
5602
5603 case 38: /* Move To FPSCR Bit 1 */
5604 case 70: /* Move To FPSCR Bit 0 */
5605 case 134: /* Move To FPSCR Field Immediate */
5606 case 711: /* Move To FPSCR Fields */
5607 if (PPC_RC (insn))
5608 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5609 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5610 return 0;
5611
5612 case 0: /* Floating Compare Unordered */
5613 case 32: /* Floating Compare Ordered */
5614 case 64: /* Move to Condition Register from FPSCR */
5615 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5616 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5617 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5618 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5619 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5620 /* FALL-THROUGH */
5621 case 128: /* Floating Test for software Divide */
5622 case 160: /* Floating Test for software Square Root */
5623 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5624 return 0;
5625
5626 case 4: /* VSX Scalar Add Quad-Precision */
5627 case 36: /* VSX Scalar Multiply Quad-Precision */
5628 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5629 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5630 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5631 case 484: /* VSX Scalar Negative Multiply-Subtract
5632 Quad-Precision */
5633 case 516: /* VSX Scalar Subtract Quad-Precision */
5634 case 548: /* VSX Scalar Divide Quad-Precision */
5635 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5636 /* FALL-THROUGH */
5637 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5638 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5639 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5640 return 0;
5641
5642 case 804:
5643 switch (PPC_FIELD (insn, 11, 5))
5644 {
5645 case 27: /* VSX Scalar Square Root Quad-Precision */
5646 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5647 /* FALL-THROUGH */
5648 case 0: /* VSX Scalar Absolute Quad-Precision */
5649 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5650 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5651 case 16: /* VSX Scalar Negate Quad-Precision */
5652 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5653 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5654 return 0;
5655 }
5656 break;
5657
5658 case 836:
5659 switch (PPC_FIELD (insn, 11, 5))
5660 {
5661 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5662 to Unsigned Word format */
5663 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5664 Quad-Precision format */
5665 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5666 to Signed Word format */
5667 case 10: /* VSX Scalar Convert Signed Doubleword format to
5668 Quad-Precision format */
5669 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5670 to Unsigned Doubleword format */
5671 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5672 Double-Precision format */
5673 case 22: /* VSX Scalar Convert Double-Precision format to
5674 Quad-Precision format */
5675 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5676 to Signed Doubleword format */
5677 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5678 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5679 return 0;
5680 }
5681 }
5682
5683 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5684 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5685 return -1;
5686 }
5687
5688 /* Parse the current instruction and record the values of the registers and
5689 memory that will be changed in current instruction to "record_arch_list".
5690 Return -1 if something wrong. */
5691
5692 int
5693 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5694 CORE_ADDR addr)
5695 {
5696 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5697 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5698 uint32_t insn;
5699 int op6, tmp, i;
5700
5701 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5702 op6 = PPC_OP6 (insn);
5703
5704 switch (op6)
5705 {
5706 case 2: /* Trap Doubleword Immediate */
5707 case 3: /* Trap Word Immediate */
5708 /* Do nothing. */
5709 break;
5710
5711 case 4:
5712 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5713 return -1;
5714 break;
5715
5716 case 17: /* System call */
5717 if (PPC_LEV (insn) != 0)
5718 goto UNKNOWN_OP;
5719
5720 if (tdep->ppc_syscall_record != NULL)
5721 {
5722 if (tdep->ppc_syscall_record (regcache) != 0)
5723 return -1;
5724 }
5725 else
5726 {
5727 printf_unfiltered (_("no syscall record support\n"));
5728 return -1;
5729 }
5730 break;
5731
5732 case 7: /* Multiply Low Immediate */
5733 record_full_arch_list_add_reg (regcache,
5734 tdep->ppc_gp0_regnum + PPC_RT (insn));
5735 break;
5736
5737 case 8: /* Subtract From Immediate Carrying */
5738 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5739 record_full_arch_list_add_reg (regcache,
5740 tdep->ppc_gp0_regnum + PPC_RT (insn));
5741 break;
5742
5743 case 10: /* Compare Logical Immediate */
5744 case 11: /* Compare Immediate */
5745 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5746 break;
5747
5748 case 13: /* Add Immediate Carrying and Record */
5749 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5750 /* FALL-THROUGH */
5751 case 12: /* Add Immediate Carrying */
5752 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5753 /* FALL-THROUGH */
5754 case 14: /* Add Immediate */
5755 case 15: /* Add Immediate Shifted */
5756 record_full_arch_list_add_reg (regcache,
5757 tdep->ppc_gp0_regnum + PPC_RT (insn));
5758 break;
5759
5760 case 16: /* Branch Conditional */
5761 if ((PPC_BO (insn) & 0x4) == 0)
5762 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5763 /* FALL-THROUGH */
5764 case 18: /* Branch */
5765 if (PPC_LK (insn))
5766 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5767 break;
5768
5769 case 19:
5770 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5771 return -1;
5772 break;
5773
5774 case 20: /* Rotate Left Word Immediate then Mask Insert */
5775 case 21: /* Rotate Left Word Immediate then AND with Mask */
5776 case 23: /* Rotate Left Word then AND with Mask */
5777 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5778 /* Rotate Left Doubleword Immediate then Clear Right */
5779 /* Rotate Left Doubleword Immediate then Clear */
5780 /* Rotate Left Doubleword then Clear Left */
5781 /* Rotate Left Doubleword then Clear Right */
5782 /* Rotate Left Doubleword Immediate then Mask Insert */
5783 if (PPC_RC (insn))
5784 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5785 record_full_arch_list_add_reg (regcache,
5786 tdep->ppc_gp0_regnum + PPC_RA (insn));
5787 break;
5788
5789 case 28: /* AND Immediate */
5790 case 29: /* AND Immediate Shifted */
5791 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5792 /* FALL-THROUGH */
5793 case 24: /* OR Immediate */
5794 case 25: /* OR Immediate Shifted */
5795 case 26: /* XOR Immediate */
5796 case 27: /* XOR Immediate Shifted */
5797 record_full_arch_list_add_reg (regcache,
5798 tdep->ppc_gp0_regnum + PPC_RA (insn));
5799 break;
5800
5801 case 31:
5802 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5803 return -1;
5804 break;
5805
5806 case 33: /* Load Word and Zero with Update */
5807 case 35: /* Load Byte and Zero with Update */
5808 case 41: /* Load Halfword and Zero with Update */
5809 case 43: /* Load Halfword Algebraic with Update */
5810 record_full_arch_list_add_reg (regcache,
5811 tdep->ppc_gp0_regnum + PPC_RA (insn));
5812 /* FALL-THROUGH */
5813 case 32: /* Load Word and Zero */
5814 case 34: /* Load Byte and Zero */
5815 case 40: /* Load Halfword and Zero */
5816 case 42: /* Load Halfword Algebraic */
5817 record_full_arch_list_add_reg (regcache,
5818 tdep->ppc_gp0_regnum + PPC_RT (insn));
5819 break;
5820
5821 case 46: /* Load Multiple Word */
5822 for (i = PPC_RT (insn); i < 32; i++)
5823 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5824 break;
5825
5826 case 56: /* Load Quadword */
5827 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5828 record_full_arch_list_add_reg (regcache, tmp);
5829 record_full_arch_list_add_reg (regcache, tmp + 1);
5830 break;
5831
5832 case 49: /* Load Floating-Point Single with Update */
5833 case 51: /* Load Floating-Point Double with Update */
5834 record_full_arch_list_add_reg (regcache,
5835 tdep->ppc_gp0_regnum + PPC_RA (insn));
5836 /* FALL-THROUGH */
5837 case 48: /* Load Floating-Point Single */
5838 case 50: /* Load Floating-Point Double */
5839 record_full_arch_list_add_reg (regcache,
5840 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5841 break;
5842
5843 case 47: /* Store Multiple Word */
5844 {
5845 ULONGEST addr = 0;
5846
5847 if (PPC_RA (insn) != 0)
5848 regcache_raw_read_unsigned (regcache,
5849 tdep->ppc_gp0_regnum + PPC_RA (insn),
5850 &addr);
5851
5852 addr += PPC_D (insn);
5853 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5854 }
5855 break;
5856
5857 case 37: /* Store Word with Update */
5858 case 39: /* Store Byte with Update */
5859 case 45: /* Store Halfword with Update */
5860 case 53: /* Store Floating-Point Single with Update */
5861 case 55: /* Store Floating-Point Double with Update */
5862 record_full_arch_list_add_reg (regcache,
5863 tdep->ppc_gp0_regnum + PPC_RA (insn));
5864 /* FALL-THROUGH */
5865 case 36: /* Store Word */
5866 case 38: /* Store Byte */
5867 case 44: /* Store Halfword */
5868 case 52: /* Store Floating-Point Single */
5869 case 54: /* Store Floating-Point Double */
5870 {
5871 ULONGEST addr = 0;
5872 int size = -1;
5873
5874 if (PPC_RA (insn) != 0)
5875 regcache_raw_read_unsigned (regcache,
5876 tdep->ppc_gp0_regnum + PPC_RA (insn),
5877 &addr);
5878 addr += PPC_D (insn);
5879
5880 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5881 size = 4;
5882 else if (op6 == 54 || op6 == 55)
5883 size = 8;
5884 else if (op6 == 44 || op6 == 45)
5885 size = 2;
5886 else if (op6 == 38 || op6 == 39)
5887 size = 1;
5888 else
5889 gdb_assert (0);
5890
5891 record_full_arch_list_add_mem (addr, size);
5892 }
5893 break;
5894
5895 case 57:
5896 switch (insn & 0x3)
5897 {
5898 case 0: /* Load Floating-Point Double Pair */
5899 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5900 record_full_arch_list_add_reg (regcache, tmp);
5901 record_full_arch_list_add_reg (regcache, tmp + 1);
5902 break;
5903 case 2: /* Load VSX Scalar Doubleword */
5904 case 3: /* Load VSX Scalar Single */
5905 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5906 break;
5907 default:
5908 goto UNKNOWN_OP;
5909 }
5910 break;
5911
5912 case 58: /* Load Doubleword */
5913 /* Load Doubleword with Update */
5914 /* Load Word Algebraic */
5915 if (PPC_FIELD (insn, 30, 2) > 2)
5916 goto UNKNOWN_OP;
5917
5918 record_full_arch_list_add_reg (regcache,
5919 tdep->ppc_gp0_regnum + PPC_RT (insn));
5920 if (PPC_BIT (insn, 31))
5921 record_full_arch_list_add_reg (regcache,
5922 tdep->ppc_gp0_regnum + PPC_RA (insn));
5923 break;
5924
5925 case 59:
5926 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5927 return -1;
5928 break;
5929
5930 case 60:
5931 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5932 return -1;
5933 break;
5934
5935 case 61:
5936 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
5937 return -1;
5938 break;
5939
5940 case 62: /* Store Doubleword */
5941 /* Store Doubleword with Update */
5942 /* Store Quadword with Update */
5943 {
5944 ULONGEST addr = 0;
5945 int size;
5946 int sub2 = PPC_FIELD (insn, 30, 2);
5947
5948 if (sub2 > 2)
5949 goto UNKNOWN_OP;
5950
5951 if (PPC_RA (insn) != 0)
5952 regcache_raw_read_unsigned (regcache,
5953 tdep->ppc_gp0_regnum + PPC_RA (insn),
5954 &addr);
5955
5956 size = (sub2 == 2) ? 16 : 8;
5957
5958 addr += PPC_DS (insn) << 2;
5959 record_full_arch_list_add_mem (addr, size);
5960
5961 if (op6 == 62 && sub2 == 1)
5962 record_full_arch_list_add_reg (regcache,
5963 tdep->ppc_gp0_regnum +
5964 PPC_RA (insn));
5965
5966 break;
5967 }
5968
5969 case 63:
5970 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5971 return -1;
5972 break;
5973
5974 default:
5975 UNKNOWN_OP:
5976 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5977 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
5978 return -1;
5979 }
5980
5981 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5982 return -1;
5983 if (record_full_arch_list_add_end ())
5984 return -1;
5985 return 0;
5986 }
5987
5988 /* Initialize the current architecture based on INFO. If possible, re-use an
5989 architecture from ARCHES, which is a list of architectures already created
5990 during this debugging session.
5991
5992 Called e.g. at program startup, when reading a core file, and when reading
5993 a binary file. */
5994
5995 static struct gdbarch *
5996 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5997 {
5998 struct gdbarch *gdbarch;
5999 struct gdbarch_tdep *tdep;
6000 int wordsize, from_xcoff_exec, from_elf_exec;
6001 enum bfd_architecture arch;
6002 unsigned long mach;
6003 bfd abfd;
6004 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6005 int soft_float;
6006 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
6007 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
6008 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
6009 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
6010 have_vsx = 0;
6011 int tdesc_wordsize = -1;
6012 const struct target_desc *tdesc = info.target_desc;
6013 struct tdesc_arch_data *tdesc_data = NULL;
6014 int num_pseudoregs = 0;
6015 int cur_reg;
6016
6017 /* INFO may refer to a binary that is not of the PowerPC architecture,
6018 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
6019 In this case, we must not attempt to infer properties of the (PowerPC
6020 side) of the target system from properties of that executable. Trust
6021 the target description instead. */
6022 if (info.abfd
6023 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
6024 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
6025 info.abfd = NULL;
6026
6027 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
6028 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6029
6030 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6031 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6032
6033 /* Check word size. If INFO is from a binary file, infer it from
6034 that, else choose a likely default. */
6035 if (from_xcoff_exec)
6036 {
6037 if (bfd_xcoff_is_xcoff64 (info.abfd))
6038 wordsize = 8;
6039 else
6040 wordsize = 4;
6041 }
6042 else if (from_elf_exec)
6043 {
6044 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6045 wordsize = 8;
6046 else
6047 wordsize = 4;
6048 }
6049 else if (tdesc_has_registers (tdesc))
6050 wordsize = -1;
6051 else
6052 {
6053 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6054 wordsize = (info.bfd_arch_info->bits_per_word
6055 / info.bfd_arch_info->bits_per_byte);
6056 else
6057 wordsize = 4;
6058 }
6059
6060 /* Get the architecture and machine from the BFD. */
6061 arch = info.bfd_arch_info->arch;
6062 mach = info.bfd_arch_info->mach;
6063
6064 /* For e500 executables, the apuinfo section is of help here. Such
6065 section contains the identifier and revision number of each
6066 Application-specific Processing Unit that is present on the
6067 chip. The content of the section is determined by the assembler
6068 which looks at each instruction and determines which unit (and
6069 which version of it) can execute it. Grovel through the section
6070 looking for relevant e500 APUs. */
6071
6072 if (bfd_uses_spe_extensions (info.abfd))
6073 {
6074 arch = info.bfd_arch_info->arch;
6075 mach = bfd_mach_ppc_e500;
6076 bfd_default_set_arch_mach (&abfd, arch, mach);
6077 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6078 }
6079
6080 /* Find a default target description which describes our register
6081 layout, if we do not already have one. */
6082 if (! tdesc_has_registers (tdesc))
6083 {
6084 const struct variant *v;
6085
6086 /* Choose variant. */
6087 v = find_variant_by_arch (arch, mach);
6088 if (!v)
6089 return NULL;
6090
6091 tdesc = *v->tdesc;
6092 }
6093
6094 gdb_assert (tdesc_has_registers (tdesc));
6095
6096 /* Check any target description for validity. */
6097 if (tdesc_has_registers (tdesc))
6098 {
6099 static const char *const gprs[] = {
6100 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6101 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6102 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6103 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6104 };
6105 const struct tdesc_feature *feature;
6106 int i, valid_p;
6107 static const char *const msr_names[] = { "msr", "ps" };
6108 static const char *const cr_names[] = { "cr", "cnd" };
6109 static const char *const ctr_names[] = { "ctr", "cnt" };
6110
6111 feature = tdesc_find_feature (tdesc,
6112 "org.gnu.gdb.power.core");
6113 if (feature == NULL)
6114 return NULL;
6115
6116 tdesc_data = tdesc_data_alloc ();
6117
6118 valid_p = 1;
6119 for (i = 0; i < ppc_num_gprs; i++)
6120 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6121 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6122 "pc");
6123 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6124 "lr");
6125 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6126 "xer");
6127
6128 /* Allow alternate names for these registers, to accomodate GDB's
6129 historic naming. */
6130 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6131 PPC_MSR_REGNUM, msr_names);
6132 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6133 PPC_CR_REGNUM, cr_names);
6134 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6135 PPC_CTR_REGNUM, ctr_names);
6136
6137 if (!valid_p)
6138 {
6139 tdesc_data_cleanup (tdesc_data);
6140 return NULL;
6141 }
6142
6143 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6144 "mq");
6145
6146 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
6147 if (wordsize == -1)
6148 wordsize = tdesc_wordsize;
6149
6150 feature = tdesc_find_feature (tdesc,
6151 "org.gnu.gdb.power.fpu");
6152 if (feature != NULL)
6153 {
6154 static const char *const fprs[] = {
6155 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6156 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6157 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6158 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6159 };
6160 valid_p = 1;
6161 for (i = 0; i < ppc_num_fprs; i++)
6162 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6163 PPC_F0_REGNUM + i, fprs[i]);
6164 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6165 PPC_FPSCR_REGNUM, "fpscr");
6166
6167 if (!valid_p)
6168 {
6169 tdesc_data_cleanup (tdesc_data);
6170 return NULL;
6171 }
6172 have_fpu = 1;
6173 }
6174 else
6175 have_fpu = 0;
6176
6177 /* The DFP pseudo-registers will be available when there are floating
6178 point registers. */
6179 have_dfp = have_fpu;
6180
6181 feature = tdesc_find_feature (tdesc,
6182 "org.gnu.gdb.power.altivec");
6183 if (feature != NULL)
6184 {
6185 static const char *const vector_regs[] = {
6186 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6187 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6188 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6189 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6190 };
6191
6192 valid_p = 1;
6193 for (i = 0; i < ppc_num_gprs; i++)
6194 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6195 PPC_VR0_REGNUM + i,
6196 vector_regs[i]);
6197 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6198 PPC_VSCR_REGNUM, "vscr");
6199 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6200 PPC_VRSAVE_REGNUM, "vrsave");
6201
6202 if (have_spe || !valid_p)
6203 {
6204 tdesc_data_cleanup (tdesc_data);
6205 return NULL;
6206 }
6207 have_altivec = 1;
6208 }
6209 else
6210 have_altivec = 0;
6211
6212 /* Check for POWER7 VSX registers support. */
6213 feature = tdesc_find_feature (tdesc,
6214 "org.gnu.gdb.power.vsx");
6215
6216 if (feature != NULL)
6217 {
6218 static const char *const vsx_regs[] = {
6219 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6220 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6221 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6222 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6223 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6224 "vs30h", "vs31h"
6225 };
6226
6227 valid_p = 1;
6228
6229 for (i = 0; i < ppc_num_vshrs; i++)
6230 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6231 PPC_VSR0_UPPER_REGNUM + i,
6232 vsx_regs[i]);
6233 if (!valid_p)
6234 {
6235 tdesc_data_cleanup (tdesc_data);
6236 return NULL;
6237 }
6238
6239 have_vsx = 1;
6240 }
6241 else
6242 have_vsx = 0;
6243
6244 /* On machines supporting the SPE APU, the general-purpose registers
6245 are 64 bits long. There are SIMD vector instructions to treat them
6246 as pairs of floats, but the rest of the instruction set treats them
6247 as 32-bit registers, and only operates on their lower halves.
6248
6249 In the GDB regcache, we treat their high and low halves as separate
6250 registers. The low halves we present as the general-purpose
6251 registers, and then we have pseudo-registers that stitch together
6252 the upper and lower halves and present them as pseudo-registers.
6253
6254 Thus, the target description is expected to supply the upper
6255 halves separately. */
6256
6257 feature = tdesc_find_feature (tdesc,
6258 "org.gnu.gdb.power.spe");
6259 if (feature != NULL)
6260 {
6261 static const char *const upper_spe[] = {
6262 "ev0h", "ev1h", "ev2h", "ev3h",
6263 "ev4h", "ev5h", "ev6h", "ev7h",
6264 "ev8h", "ev9h", "ev10h", "ev11h",
6265 "ev12h", "ev13h", "ev14h", "ev15h",
6266 "ev16h", "ev17h", "ev18h", "ev19h",
6267 "ev20h", "ev21h", "ev22h", "ev23h",
6268 "ev24h", "ev25h", "ev26h", "ev27h",
6269 "ev28h", "ev29h", "ev30h", "ev31h"
6270 };
6271
6272 valid_p = 1;
6273 for (i = 0; i < ppc_num_gprs; i++)
6274 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6275 PPC_SPE_UPPER_GP0_REGNUM + i,
6276 upper_spe[i]);
6277 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6278 PPC_SPE_ACC_REGNUM, "acc");
6279 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6280 PPC_SPE_FSCR_REGNUM, "spefscr");
6281
6282 if (have_mq || have_fpu || !valid_p)
6283 {
6284 tdesc_data_cleanup (tdesc_data);
6285 return NULL;
6286 }
6287 have_spe = 1;
6288 }
6289 else
6290 have_spe = 0;
6291 }
6292
6293 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6294 complain for a 32-bit binary on a 64-bit target; we do not yet
6295 support that. For instance, the 32-bit ABI routines expect
6296 32-bit GPRs.
6297
6298 As long as there isn't an explicit target description, we'll
6299 choose one based on the BFD architecture and get a word size
6300 matching the binary (probably powerpc:common or
6301 powerpc:common64). So there is only trouble if a 64-bit target
6302 supplies a 64-bit description while debugging a 32-bit
6303 binary. */
6304 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6305 {
6306 tdesc_data_cleanup (tdesc_data);
6307 return NULL;
6308 }
6309
6310 #ifdef HAVE_ELF
6311 if (from_elf_exec)
6312 {
6313 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6314 {
6315 case 1:
6316 elf_abi = POWERPC_ELF_V1;
6317 break;
6318 case 2:
6319 elf_abi = POWERPC_ELF_V2;
6320 break;
6321 default:
6322 break;
6323 }
6324 }
6325
6326 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6327 {
6328 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6329 Tag_GNU_Power_ABI_FP) & 3)
6330 {
6331 case 1:
6332 soft_float_flag = AUTO_BOOLEAN_FALSE;
6333 break;
6334 case 2:
6335 soft_float_flag = AUTO_BOOLEAN_TRUE;
6336 break;
6337 default:
6338 break;
6339 }
6340 }
6341
6342 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6343 {
6344 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6345 Tag_GNU_Power_ABI_FP) >> 2)
6346 {
6347 case 1:
6348 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6349 break;
6350 case 3:
6351 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6352 break;
6353 default:
6354 break;
6355 }
6356 }
6357
6358 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6359 {
6360 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6361 Tag_GNU_Power_ABI_Vector))
6362 {
6363 case 1:
6364 vector_abi = POWERPC_VEC_GENERIC;
6365 break;
6366 case 2:
6367 vector_abi = POWERPC_VEC_ALTIVEC;
6368 break;
6369 case 3:
6370 vector_abi = POWERPC_VEC_SPE;
6371 break;
6372 default:
6373 break;
6374 }
6375 }
6376 #endif
6377
6378 /* At this point, the only supported ELF-based 64-bit little-endian
6379 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6380 default. All other supported ELF-based operating systems use the
6381 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6382 e.g. because we run a legacy binary, or have attached to a process
6383 and have not found any associated binary file, set the default
6384 according to this heuristic. */
6385 if (elf_abi == POWERPC_ELF_AUTO)
6386 {
6387 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6388 elf_abi = POWERPC_ELF_V2;
6389 else
6390 elf_abi = POWERPC_ELF_V1;
6391 }
6392
6393 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6394 soft_float = 1;
6395 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6396 soft_float = 0;
6397 else
6398 soft_float = !have_fpu;
6399
6400 /* If we have a hard float binary or setting but no floating point
6401 registers, downgrade to soft float anyway. We're still somewhat
6402 useful in this scenario. */
6403 if (!soft_float && !have_fpu)
6404 soft_float = 1;
6405
6406 /* Similarly for vector registers. */
6407 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6408 vector_abi = POWERPC_VEC_GENERIC;
6409
6410 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6411 vector_abi = POWERPC_VEC_GENERIC;
6412
6413 if (vector_abi == POWERPC_VEC_AUTO)
6414 {
6415 if (have_altivec)
6416 vector_abi = POWERPC_VEC_ALTIVEC;
6417 else if (have_spe)
6418 vector_abi = POWERPC_VEC_SPE;
6419 else
6420 vector_abi = POWERPC_VEC_GENERIC;
6421 }
6422
6423 /* Do not limit the vector ABI based on available hardware, since we
6424 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6425
6426 /* Find a candidate among extant architectures. */
6427 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6428 arches != NULL;
6429 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6430 {
6431 /* Word size in the various PowerPC bfd_arch_info structs isn't
6432 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6433 separate word size check. */
6434 tdep = gdbarch_tdep (arches->gdbarch);
6435 if (tdep && tdep->elf_abi != elf_abi)
6436 continue;
6437 if (tdep && tdep->soft_float != soft_float)
6438 continue;
6439 if (tdep && tdep->long_double_abi != long_double_abi)
6440 continue;
6441 if (tdep && tdep->vector_abi != vector_abi)
6442 continue;
6443 if (tdep && tdep->wordsize == wordsize)
6444 {
6445 if (tdesc_data != NULL)
6446 tdesc_data_cleanup (tdesc_data);
6447 return arches->gdbarch;
6448 }
6449 }
6450
6451 /* None found, create a new architecture from INFO, whose bfd_arch_info
6452 validity depends on the source:
6453 - executable useless
6454 - rs6000_host_arch() good
6455 - core file good
6456 - "set arch" trust blindly
6457 - GDB startup useless but harmless */
6458
6459 tdep = XCNEW (struct gdbarch_tdep);
6460 tdep->wordsize = wordsize;
6461 tdep->elf_abi = elf_abi;
6462 tdep->soft_float = soft_float;
6463 tdep->long_double_abi = long_double_abi;
6464 tdep->vector_abi = vector_abi;
6465
6466 gdbarch = gdbarch_alloc (&info, tdep);
6467
6468 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6469 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6470 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6471 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6472 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6473 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6474 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6475 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6476
6477 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6478 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6479 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6480 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6481 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6482 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6483 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6484 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6485
6486 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6487 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6488 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6489 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6490
6491 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6492 GDB traditionally called it "ps", though, so let GDB add an
6493 alias. */
6494 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6495
6496 if (wordsize == 8)
6497 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6498 else
6499 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6500
6501 /* Set lr_frame_offset. */
6502 if (wordsize == 8)
6503 tdep->lr_frame_offset = 16;
6504 else
6505 tdep->lr_frame_offset = 4;
6506
6507 if (have_spe || have_dfp || have_vsx)
6508 {
6509 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6510 set_gdbarch_pseudo_register_write (gdbarch,
6511 rs6000_pseudo_register_write);
6512 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6513 rs6000_ax_pseudo_register_collect);
6514 }
6515
6516 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6517
6518 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6519
6520 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6521
6522 if (have_spe)
6523 num_pseudoregs += 32;
6524 if (have_dfp)
6525 num_pseudoregs += 16;
6526 if (have_vsx)
6527 /* Include both VSX and Extended FP registers. */
6528 num_pseudoregs += 96;
6529
6530 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6531
6532 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6533 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6534 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6535 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6536 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6537 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6538 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6539 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6540 set_gdbarch_char_signed (gdbarch, 0);
6541
6542 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6543 if (wordsize == 8)
6544 /* PPC64 SYSV. */
6545 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6546
6547 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6548 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6549 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6550
6551 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6552 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6553
6554 if (wordsize == 4)
6555 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6556 else if (wordsize == 8)
6557 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6558
6559 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6560 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6561 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6562
6563 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6564
6565 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
6566 rs6000_breakpoint::kind_from_pc);
6567 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
6568 rs6000_breakpoint::bp_from_kind);
6569
6570 /* The value of symbols of type N_SO and N_FUN maybe null when
6571 it shouldn't be. */
6572 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6573
6574 /* Handles single stepping of atomic sequences. */
6575 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6576
6577 /* Not sure on this. FIXMEmgo */
6578 set_gdbarch_frame_args_skip (gdbarch, 8);
6579
6580 /* Helpers for function argument information. */
6581 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6582
6583 /* Trampoline. */
6584 set_gdbarch_in_solib_return_trampoline
6585 (gdbarch, rs6000_in_solib_return_trampoline);
6586 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6587
6588 /* Hook in the DWARF CFI frame unwinder. */
6589 dwarf2_append_unwinders (gdbarch);
6590 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6591
6592 /* Frame handling. */
6593 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6594
6595 /* Setup displaced stepping. */
6596 set_gdbarch_displaced_step_copy_insn (gdbarch,
6597 ppc_displaced_step_copy_insn);
6598 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6599 ppc_displaced_step_hw_singlestep);
6600 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6601 set_gdbarch_displaced_step_location (gdbarch,
6602 displaced_step_at_entry_point);
6603
6604 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6605
6606 /* Hook in ABI-specific overrides, if they have been registered. */
6607 info.target_desc = tdesc;
6608 info.tdesc_data = tdesc_data;
6609 gdbarch_init_osabi (info, gdbarch);
6610
6611 switch (info.osabi)
6612 {
6613 case GDB_OSABI_LINUX:
6614 case GDB_OSABI_NETBSD:
6615 case GDB_OSABI_UNKNOWN:
6616 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6617 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6618 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6619 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6620 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6621 break;
6622 default:
6623 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
6624
6625 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6626 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6627 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6628 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6629 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6630 }
6631
6632 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6633 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6634 rs6000_pseudo_register_reggroup_p);
6635 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6636
6637 /* Override the normal target description method to make the SPE upper
6638 halves anonymous. */
6639 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6640
6641 /* Choose register numbers for all supported pseudo-registers. */
6642 tdep->ppc_ev0_regnum = -1;
6643 tdep->ppc_dl0_regnum = -1;
6644 tdep->ppc_vsr0_regnum = -1;
6645 tdep->ppc_efpr0_regnum = -1;
6646
6647 cur_reg = gdbarch_num_regs (gdbarch);
6648
6649 if (have_spe)
6650 {
6651 tdep->ppc_ev0_regnum = cur_reg;
6652 cur_reg += 32;
6653 }
6654 if (have_dfp)
6655 {
6656 tdep->ppc_dl0_regnum = cur_reg;
6657 cur_reg += 16;
6658 }
6659 if (have_vsx)
6660 {
6661 tdep->ppc_vsr0_regnum = cur_reg;
6662 cur_reg += 64;
6663 tdep->ppc_efpr0_regnum = cur_reg;
6664 cur_reg += 32;
6665 }
6666
6667 gdb_assert (gdbarch_num_regs (gdbarch)
6668 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
6669
6670 /* Register the ravenscar_arch_ops. */
6671 if (mach == bfd_mach_ppc_e500)
6672 register_e500_ravenscar_ops (gdbarch);
6673 else
6674 register_ppc_ravenscar_ops (gdbarch);
6675
6676 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
6677 set_gdbarch_valid_disassembler_options (gdbarch,
6678 disassembler_options_powerpc ());
6679
6680 return gdbarch;
6681 }
6682
6683 static void
6684 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6685 {
6686 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6687
6688 if (tdep == NULL)
6689 return;
6690
6691 /* FIXME: Dump gdbarch_tdep. */
6692 }
6693
6694 /* PowerPC-specific commands. */
6695
6696 static void
6697 set_powerpc_command (const char *args, int from_tty)
6698 {
6699 printf_unfiltered (_("\
6700 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
6701 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6702 }
6703
6704 static void
6705 show_powerpc_command (const char *args, int from_tty)
6706 {
6707 cmd_show_list (showpowerpccmdlist, from_tty, "");
6708 }
6709
6710 static void
6711 powerpc_set_soft_float (const char *args, int from_tty,
6712 struct cmd_list_element *c)
6713 {
6714 struct gdbarch_info info;
6715
6716 /* Update the architecture. */
6717 gdbarch_info_init (&info);
6718 if (!gdbarch_update_p (info))
6719 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6720 }
6721
6722 static void
6723 powerpc_set_vector_abi (const char *args, int from_tty,
6724 struct cmd_list_element *c)
6725 {
6726 struct gdbarch_info info;
6727 int vector_abi;
6728
6729 for (vector_abi = POWERPC_VEC_AUTO;
6730 vector_abi != POWERPC_VEC_LAST;
6731 vector_abi++)
6732 if (strcmp (powerpc_vector_abi_string,
6733 powerpc_vector_strings[vector_abi]) == 0)
6734 {
6735 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
6736 break;
6737 }
6738
6739 if (vector_abi == POWERPC_VEC_LAST)
6740 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6741 powerpc_vector_abi_string);
6742
6743 /* Update the architecture. */
6744 gdbarch_info_init (&info);
6745 if (!gdbarch_update_p (info))
6746 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6747 }
6748
6749 /* Show the current setting of the exact watchpoints flag. */
6750
6751 static void
6752 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6753 struct cmd_list_element *c,
6754 const char *value)
6755 {
6756 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6757 }
6758
6759 /* Read a PPC instruction from memory. */
6760
6761 static unsigned int
6762 read_insn (struct frame_info *frame, CORE_ADDR pc)
6763 {
6764 struct gdbarch *gdbarch = get_frame_arch (frame);
6765 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6766
6767 return read_memory_unsigned_integer (pc, 4, byte_order);
6768 }
6769
6770 /* Return non-zero if the instructions at PC match the series
6771 described in PATTERN, or zero otherwise. PATTERN is an array of
6772 'struct ppc_insn_pattern' objects, terminated by an entry whose
6773 mask is zero.
6774
6775 When the match is successful, fill INSNS[i] with what PATTERN[i]
6776 matched. If PATTERN[i] is optional, and the instruction wasn't
6777 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
6778 INSNS should have as many elements as PATTERN, minus the terminator.
6779 Note that, if PATTERN contains optional instructions which aren't
6780 present in memory, then INSNS will have holes, so INSNS[i] isn't
6781 necessarily the i'th instruction in memory. */
6782
6783 int
6784 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6785 const struct ppc_insn_pattern *pattern,
6786 unsigned int *insns)
6787 {
6788 int i;
6789 unsigned int insn;
6790
6791 for (i = 0, insn = 0; pattern[i].mask; i++)
6792 {
6793 if (insn == 0)
6794 insn = read_insn (frame, pc);
6795 insns[i] = 0;
6796 if ((insn & pattern[i].mask) == pattern[i].data)
6797 {
6798 insns[i] = insn;
6799 pc += 4;
6800 insn = 0;
6801 }
6802 else if (!pattern[i].optional)
6803 return 0;
6804 }
6805
6806 return 1;
6807 }
6808
6809 /* Return the 'd' field of the d-form instruction INSN, properly
6810 sign-extended. */
6811
6812 CORE_ADDR
6813 ppc_insn_d_field (unsigned int insn)
6814 {
6815 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6816 }
6817
6818 /* Return the 'ds' field of the ds-form instruction INSN, with the two
6819 zero bits concatenated at the right, and properly
6820 sign-extended. */
6821
6822 CORE_ADDR
6823 ppc_insn_ds_field (unsigned int insn)
6824 {
6825 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6826 }
6827
6828 /* Initialization code. */
6829
6830 void
6831 _initialize_rs6000_tdep (void)
6832 {
6833 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6834 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6835
6836 /* Initialize the standard target descriptions. */
6837 initialize_tdesc_powerpc_32 ();
6838 initialize_tdesc_powerpc_altivec32 ();
6839 initialize_tdesc_powerpc_vsx32 ();
6840 initialize_tdesc_powerpc_403 ();
6841 initialize_tdesc_powerpc_403gc ();
6842 initialize_tdesc_powerpc_405 ();
6843 initialize_tdesc_powerpc_505 ();
6844 initialize_tdesc_powerpc_601 ();
6845 initialize_tdesc_powerpc_602 ();
6846 initialize_tdesc_powerpc_603 ();
6847 initialize_tdesc_powerpc_604 ();
6848 initialize_tdesc_powerpc_64 ();
6849 initialize_tdesc_powerpc_altivec64 ();
6850 initialize_tdesc_powerpc_vsx64 ();
6851 initialize_tdesc_powerpc_7400 ();
6852 initialize_tdesc_powerpc_750 ();
6853 initialize_tdesc_powerpc_860 ();
6854 initialize_tdesc_powerpc_e500 ();
6855 initialize_tdesc_rs6000 ();
6856
6857 /* Add root prefix command for all "set powerpc"/"show powerpc"
6858 commands. */
6859 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6860 _("Various PowerPC-specific commands."),
6861 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6862
6863 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6864 _("Various PowerPC-specific commands."),
6865 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6866
6867 /* Add a command to allow the user to force the ABI. */
6868 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6869 &powerpc_soft_float_global,
6870 _("Set whether to use a soft-float ABI."),
6871 _("Show whether to use a soft-float ABI."),
6872 NULL,
6873 powerpc_set_soft_float, NULL,
6874 &setpowerpccmdlist, &showpowerpccmdlist);
6875
6876 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6877 &powerpc_vector_abi_string,
6878 _("Set the vector ABI."),
6879 _("Show the vector ABI."),
6880 NULL, powerpc_set_vector_abi, NULL,
6881 &setpowerpccmdlist, &showpowerpccmdlist);
6882
6883 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6884 &target_exact_watchpoints,
6885 _("\
6886 Set whether to use just one debug register for watchpoints on scalars."),
6887 _("\
6888 Show whether to use just one debug register for watchpoints on scalars."),
6889 _("\
6890 If true, GDB will use only one debug register when watching a variable of\n\
6891 scalar type, thus assuming that the variable is accessed through the address\n\
6892 of its first byte."),
6893 NULL, show_powerpc_exact_watchpoints,
6894 &setpowerpccmdlist, &showpowerpccmdlist);
6895 }
This page took 0.175186 seconds and 5 git commands to generate.