2003-09-09 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_frame_args_address (struct frame_info *fi)
215 {
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
219 else
220 return frame_initial_stack_address (fi);
221 }
222
223 /* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228 static CORE_ADDR
229 rs6000_saved_pc_after_call (struct frame_info *fi)
230 {
231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232 }
233
234 /* Get the ith function argument for the current function. */
235 static CORE_ADDR
236 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238 {
239 CORE_ADDR addr;
240 frame_read_register (frame, 3 + argi, &addr);
241 return addr;
242 }
243
244 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246 static CORE_ADDR
247 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248 {
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292 gdbarch_tdep (current_gdbarch)->wordsize);
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305 }
306 else
307 return -1;
308 break;
309
310 default:
311 return -1;
312 }
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314 }
315
316
317 /* Sequence of bytes for breakpoint instruction. */
318
319 const static unsigned char *
320 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321 {
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324 *bp_size = 4;
325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329 }
330
331
332 /* AIX does not support PT_STEP. Simulate it. */
333
334 void
335 rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
337 {
338 CORE_ADDR dummy;
339 int breakp_sz;
340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
346 if (insert_breakpoints_p)
347 {
348
349 loc = read_pc ();
350
351 insn = read_memory_integer (loc, 4);
352
353 breaks[0] = loc + breakp_sz;
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
360
361 stepBreaks[1].address = 0;
362
363 for (ii = 0; ii < 2; ++ii)
364 {
365
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370 stepBreaks[ii].address = breaks[ii];
371 }
372
373 }
374 else
375 {
376
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
382 }
383 errno = 0; /* FIXME, don't ignore errors! */
384 /* What errors? {read,write}_memory call error(). */
385 }
386
387
388 /* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
398 - saved_vr is the number of the first saved vr.
399 - saved_ev is the number of the first saved ev.
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
404 - vr_offset is the offset of the first saved vr from the previous frame.
405 - ev_offset is the offset of the first saved ev from the previous frame.
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
408 - vrsave_offset is the offset of the saved vrsave register
409 */
410
411 #define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418 /* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420 static int max_skip_non_prologue_insns = 10;
421
422 /* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428 static CORE_ADDR
429 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430 {
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467 }
468
469
470 static CORE_ADDR
471 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
472 {
473 CORE_ADDR orig_pc = pc;
474 CORE_ADDR last_prologue_pc = pc;
475 CORE_ADDR li_found_pc = 0;
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
479 long vr_saved_offset = 0;
480 int lr_reg = -1;
481 int cr_reg = -1;
482 int vr_reg = -1;
483 int ev_reg = -1;
484 long ev_offset = 0;
485 int vrsave_reg = -1;
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
489 int prev_insn_was_prologue_insn = 1;
490 int num_skip_non_prologue_insns = 0;
491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
493
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
508
509 memset (fdata, 0, sizeof (struct rs6000_framedata));
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
512 fdata->saved_vr = -1;
513 fdata->saved_ev = -1;
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
518 for (;; pc += 4)
519 {
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
531 prev_insn_was_prologue_insn = 1;
532
533 /* Fetch the instruction and convert it to an integer. */
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
537
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
540 lr_reg = (op & 0x03e00000);
541 continue;
542
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
546 cr_reg = (op & 0x03e00000);
547 continue;
548
549 }
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
559
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
571 if ((op & 0xfc1f0003) == 0xf8010000)
572 op &= ~3UL;
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
576
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
580 /* nop */
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
621 continue;
622
623 }
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
633 cr_reg = 0;
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
653 }
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
659
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
664
665 fdata->frameless = 0;
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
683 }
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
691 }
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
712 }
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
716 && !minimal_toc_loaded)
717 {
718 minimal_toc_loaded = 1;
719 continue;
720
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
728 {
729 continue;
730
731 /* store parameters in stack */
732 }
733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
737 continue;
738
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
766 continue;
767 }
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
935 else
936 {
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
951 /* Never skip branches. */
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
962 }
963 }
964
965 #if 0
966 /* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
972 We'd like to skip over it as well. Fortunately, xlc does some extra
973 work before calling a function right after a prologue, thus we can
974 single out such gcc2 behaviour. */
975
976
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
983
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
986
987 tmp = find_pc_misc_function (pc);
988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
989 return pc + 8;
990 }
991 }
992 #endif /* 0 */
993
994 fdata->offset = -fdata->offset;
995 return last_prologue_pc;
996 }
997
998
999 /*************************************************************************
1000 Support for creating pushing a dummy frame into the stack, and popping
1001 frames, etc.
1002 *************************************************************************/
1003
1004
1005 /* Pop the innermost frame, go back to the caller. */
1006
1007 static void
1008 rs6000_pop_frame (void)
1009 {
1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
1013 int ii, wordsize;
1014
1015 pc = read_pc ();
1016 sp = get_frame_base (frame);
1017
1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
1021 {
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
1025 }
1026
1027 /* Make sure that all registers are valid. */
1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1029
1030 /* Figure out previous %pc value. If the function is frameless, it is
1031 still in the link register, otherwise walk the frames and retrieve the
1032 saved %pc value in the previous frame. */
1033
1034 addr = get_frame_func (frame);
1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1036
1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
1041 prev_sp = read_memory_addr (sp, wordsize);
1042 if (fdata.lr_offset == 0)
1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1044 else
1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
1050 /* reset register values if any was saved earlier. */
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
1057 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1058 wordsize);
1059 addr += wordsize;
1060 }
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
1068 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1069 addr += 8;
1070 }
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076 }
1077
1078 /* All the ABI's require 16 byte alignment. */
1079 static CORE_ADDR
1080 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1081 {
1082 return (addr & -16);
1083 }
1084
1085 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1086 the first eight words of the argument list (that might be less than
1087 eight parameters if some parameters occupy more than one word) are
1088 passed in r3..r10 registers. float and double parameters are
1089 passed in fpr's, in addition to that. Rest of the parameters if any
1090 are passed in user stack. There might be cases in which half of the
1091 parameter is copied into registers, the other half is pushed into
1092 stack.
1093
1094 Stack must be aligned on 64-bit boundaries when synthesizing
1095 function calls.
1096
1097 If the function is returning a structure, then the return address is passed
1098 in r3, then the first 7 words of the parameters can be passed in registers,
1099 starting from r4. */
1100
1101 static CORE_ADDR
1102 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1103 struct regcache *regcache, CORE_ADDR bp_addr,
1104 int nargs, struct value **args, CORE_ADDR sp,
1105 int struct_return, CORE_ADDR struct_addr)
1106 {
1107 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1108 int ii;
1109 int len = 0;
1110 int argno; /* current argument number */
1111 int argbytes; /* current argument byte */
1112 char tmp_buffer[50];
1113 int f_argno = 0; /* current floating point argno */
1114 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1115
1116 struct value *arg = 0;
1117 struct type *type;
1118
1119 CORE_ADDR saved_sp;
1120
1121 /* The first eight words of ther arguments are passed in registers.
1122 Copy them appropriately. */
1123 ii = 0;
1124
1125 /* If the function is returning a `struct', then the first word
1126 (which will be passed in r3) is used for struct return address.
1127 In that case we should advance one word and start from r4
1128 register to copy parameters. */
1129 if (struct_return)
1130 {
1131 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1132 struct_addr);
1133 ii++;
1134 }
1135
1136 /*
1137 effectively indirect call... gcc does...
1138
1139 return_val example( float, int);
1140
1141 eabi:
1142 float in fp0, int in r3
1143 offset of stack on overflow 8/16
1144 for varargs, must go by type.
1145 power open:
1146 float in r3&r4, int in r5
1147 offset of stack on overflow different
1148 both:
1149 return in r3 or f0. If no float, must study how gcc emulates floats;
1150 pay attention to arg promotion.
1151 User may have to cast\args to handle promotion correctly
1152 since gdb won't know if prototype supplied or not.
1153 */
1154
1155 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1156 {
1157 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1158
1159 arg = args[argno];
1160 type = check_typedef (VALUE_TYPE (arg));
1161 len = TYPE_LENGTH (type);
1162
1163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1164 {
1165
1166 /* Floating point arguments are passed in fpr's, as well as gpr's.
1167 There are 13 fpr's reserved for passing parameters. At this point
1168 there is no way we would run out of them. */
1169
1170 if (len > 8)
1171 printf_unfiltered (
1172 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1173
1174 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1175 VALUE_CONTENTS (arg),
1176 len);
1177 ++f_argno;
1178 }
1179
1180 if (len > reg_size)
1181 {
1182
1183 /* Argument takes more than one register. */
1184 while (argbytes < len)
1185 {
1186 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1187 reg_size);
1188 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1189 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1190 (len - argbytes) > reg_size
1191 ? reg_size : len - argbytes);
1192 ++ii, argbytes += reg_size;
1193
1194 if (ii >= 8)
1195 goto ran_out_of_registers_for_arguments;
1196 }
1197 argbytes = 0;
1198 --ii;
1199 }
1200 else
1201 {
1202 /* Argument can fit in one register. No problem. */
1203 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1204 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1205 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1206 VALUE_CONTENTS (arg), len);
1207 }
1208 ++argno;
1209 }
1210
1211 ran_out_of_registers_for_arguments:
1212
1213 saved_sp = read_sp ();
1214
1215 /* Location for 8 parameters are always reserved. */
1216 sp -= wordsize * 8;
1217
1218 /* Another six words for back chain, TOC register, link register, etc. */
1219 sp -= wordsize * 6;
1220
1221 /* Stack pointer must be quadword aligned. */
1222 sp &= -16;
1223
1224 /* If there are more arguments, allocate space for them in
1225 the stack, then push them starting from the ninth one. */
1226
1227 if ((argno < nargs) || argbytes)
1228 {
1229 int space = 0, jj;
1230
1231 if (argbytes)
1232 {
1233 space += ((len - argbytes + 3) & -4);
1234 jj = argno + 1;
1235 }
1236 else
1237 jj = argno;
1238
1239 for (; jj < nargs; ++jj)
1240 {
1241 struct value *val = args[jj];
1242 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1243 }
1244
1245 /* Add location required for the rest of the parameters. */
1246 space = (space + 15) & -16;
1247 sp -= space;
1248
1249 /* This is another instance we need to be concerned about
1250 securing our stack space. If we write anything underneath %sp
1251 (r1), we might conflict with the kernel who thinks he is free
1252 to use this area. So, update %sp first before doing anything
1253 else. */
1254
1255 write_register (SP_REGNUM, sp);
1256
1257 /* If the last argument copied into the registers didn't fit there
1258 completely, push the rest of it into stack. */
1259
1260 if (argbytes)
1261 {
1262 write_memory (sp + 24 + (ii * 4),
1263 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1264 len - argbytes);
1265 ++argno;
1266 ii += ((len - argbytes + 3) & -4) / 4;
1267 }
1268
1269 /* Push the rest of the arguments into stack. */
1270 for (; argno < nargs; ++argno)
1271 {
1272
1273 arg = args[argno];
1274 type = check_typedef (VALUE_TYPE (arg));
1275 len = TYPE_LENGTH (type);
1276
1277
1278 /* Float types should be passed in fpr's, as well as in the
1279 stack. */
1280 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1281 {
1282
1283 if (len > 8)
1284 printf_unfiltered (
1285 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1286
1287 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1288 VALUE_CONTENTS (arg),
1289 len);
1290 ++f_argno;
1291 }
1292
1293 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1294 ii += ((len + 3) & -4) / 4;
1295 }
1296 }
1297 else
1298 /* Secure stack areas first, before doing anything else. */
1299 write_register (SP_REGNUM, sp);
1300
1301 /* set back chain properly */
1302 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1303 write_memory (sp, tmp_buffer, 4);
1304
1305 /* Point the inferior function call's return address at the dummy's
1306 breakpoint. */
1307 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1308
1309 /* Set the TOC register, get the value from the objfile reader
1310 which, in turn, gets it from the VMAP table. */
1311 if (rs6000_find_toc_address_hook != NULL)
1312 {
1313 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1314 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1315 }
1316
1317 target_store_registers (-1);
1318 return sp;
1319 }
1320
1321 /* Extract a function return value of type TYPE from raw register array
1322 REGBUF, and copy that return value into VALBUF in virtual format. */
1323 static void
1324 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1325 {
1326 int offset = 0;
1327 int vallen = TYPE_LENGTH (valtype);
1328 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1329
1330 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1331 && vallen == 8
1332 && TYPE_VECTOR (valtype))
1333 {
1334 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1335 }
1336 else
1337 {
1338 /* Return value is copied starting from r3. Note that r3 for us
1339 is a pseudo register. */
1340 int offset = 0;
1341 int return_regnum = tdep->ppc_gp0_regnum + 3;
1342 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1343 int reg_part_size;
1344 char *val_buffer;
1345 int copied = 0;
1346 int i = 0;
1347
1348 /* Compute where we will start storing the value from. */
1349 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1350 {
1351 if (vallen <= reg_size)
1352 offset = reg_size - vallen;
1353 else
1354 offset = reg_size + (reg_size - vallen);
1355 }
1356
1357 /* How big does the local buffer need to be? */
1358 if (vallen <= reg_size)
1359 val_buffer = alloca (reg_size);
1360 else
1361 val_buffer = alloca (vallen);
1362
1363 /* Read all we need into our private buffer. We copy it in
1364 chunks that are as long as one register, never shorter, even
1365 if the value is smaller than the register. */
1366 while (copied < vallen)
1367 {
1368 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1369 /* It is a pseudo/cooked register. */
1370 regcache_cooked_read (regbuf, return_regnum + i,
1371 val_buffer + copied);
1372 copied += reg_part_size;
1373 i++;
1374 }
1375 /* Put the stuff in the return buffer. */
1376 memcpy (valbuf, val_buffer + offset, vallen);
1377 }
1378 }
1379
1380 static void
1381 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1382 {
1383 int offset = 0;
1384 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1385
1386 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1387 {
1388
1389 double dd;
1390 float ff;
1391 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1392 We need to truncate the return value into float size (4 byte) if
1393 necessary. */
1394
1395 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1396 memcpy (valbuf,
1397 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1398 TYPE_LENGTH (valtype));
1399 else
1400 { /* float */
1401 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1402 ff = (float) dd;
1403 memcpy (valbuf, &ff, sizeof (float));
1404 }
1405 }
1406 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1407 && TYPE_LENGTH (valtype) == 16
1408 && TYPE_VECTOR (valtype))
1409 {
1410 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1411 TYPE_LENGTH (valtype));
1412 }
1413 else
1414 {
1415 /* return value is copied starting from r3. */
1416 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1417 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1418 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1419
1420 memcpy (valbuf,
1421 regbuf + REGISTER_BYTE (3) + offset,
1422 TYPE_LENGTH (valtype));
1423 }
1424 }
1425
1426 /* Return whether handle_inferior_event() should proceed through code
1427 starting at PC in function NAME when stepping.
1428
1429 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1430 handle memory references that are too distant to fit in instructions
1431 generated by the compiler. For example, if 'foo' in the following
1432 instruction:
1433
1434 lwz r9,foo(r2)
1435
1436 is greater than 32767, the linker might replace the lwz with a branch to
1437 somewhere in @FIX1 that does the load in 2 instructions and then branches
1438 back to where execution should continue.
1439
1440 GDB should silently step over @FIX code, just like AIX dbx does.
1441 Unfortunately, the linker uses the "b" instruction for the branches,
1442 meaning that the link register doesn't get set. Therefore, GDB's usual
1443 step_over_function() mechanism won't work.
1444
1445 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1446 in handle_inferior_event() to skip past @FIX code. */
1447
1448 int
1449 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1450 {
1451 return name && !strncmp (name, "@FIX", 4);
1452 }
1453
1454 /* Skip code that the user doesn't want to see when stepping:
1455
1456 1. Indirect function calls use a piece of trampoline code to do context
1457 switching, i.e. to set the new TOC table. Skip such code if we are on
1458 its first instruction (as when we have single-stepped to here).
1459
1460 2. Skip shared library trampoline code (which is different from
1461 indirect function call trampolines).
1462
1463 3. Skip bigtoc fixup code.
1464
1465 Result is desired PC to step until, or NULL if we are not in
1466 code that should be skipped. */
1467
1468 CORE_ADDR
1469 rs6000_skip_trampoline_code (CORE_ADDR pc)
1470 {
1471 register unsigned int ii, op;
1472 int rel;
1473 CORE_ADDR solib_target_pc;
1474 struct minimal_symbol *msymbol;
1475
1476 static unsigned trampoline_code[] =
1477 {
1478 0x800b0000, /* l r0,0x0(r11) */
1479 0x90410014, /* st r2,0x14(r1) */
1480 0x7c0903a6, /* mtctr r0 */
1481 0x804b0004, /* l r2,0x4(r11) */
1482 0x816b0008, /* l r11,0x8(r11) */
1483 0x4e800420, /* bctr */
1484 0x4e800020, /* br */
1485 0
1486 };
1487
1488 /* Check for bigtoc fixup code. */
1489 msymbol = lookup_minimal_symbol_by_pc (pc);
1490 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1491 {
1492 /* Double-check that the third instruction from PC is relative "b". */
1493 op = read_memory_integer (pc + 8, 4);
1494 if ((op & 0xfc000003) == 0x48000000)
1495 {
1496 /* Extract bits 6-29 as a signed 24-bit relative word address and
1497 add it to the containing PC. */
1498 rel = ((int)(op << 6) >> 6);
1499 return pc + 8 + rel;
1500 }
1501 }
1502
1503 /* If pc is in a shared library trampoline, return its target. */
1504 solib_target_pc = find_solib_trampoline_target (pc);
1505 if (solib_target_pc)
1506 return solib_target_pc;
1507
1508 for (ii = 0; trampoline_code[ii]; ++ii)
1509 {
1510 op = read_memory_integer (pc + (ii * 4), 4);
1511 if (op != trampoline_code[ii])
1512 return 0;
1513 }
1514 ii = read_register (11); /* r11 holds destination addr */
1515 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1516 return pc;
1517 }
1518
1519 /* Determines whether the function FI has a frame on the stack or not. */
1520
1521 int
1522 rs6000_frameless_function_invocation (struct frame_info *fi)
1523 {
1524 CORE_ADDR func_start;
1525 struct rs6000_framedata fdata;
1526
1527 /* Don't even think about framelessness except on the innermost frame
1528 or if the function was interrupted by a signal. */
1529 if (get_next_frame (fi) != NULL
1530 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1531 return 0;
1532
1533 func_start = get_frame_func (fi);
1534
1535 /* If we failed to find the start of the function, it is a mistake
1536 to inspect the instructions. */
1537
1538 if (!func_start)
1539 {
1540 /* A frame with a zero PC is usually created by dereferencing a NULL
1541 function pointer, normally causing an immediate core dump of the
1542 inferior. Mark function as frameless, as the inferior has no chance
1543 of setting up a stack frame. */
1544 if (get_frame_pc (fi) == 0)
1545 return 1;
1546 else
1547 return 0;
1548 }
1549
1550 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1551 return fdata.frameless;
1552 }
1553
1554 /* Return the PC saved in a frame. */
1555
1556 CORE_ADDR
1557 rs6000_frame_saved_pc (struct frame_info *fi)
1558 {
1559 CORE_ADDR func_start;
1560 struct rs6000_framedata fdata;
1561 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1562 int wordsize = tdep->wordsize;
1563
1564 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1565 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1566 wordsize);
1567
1568 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1569 get_frame_base (fi),
1570 get_frame_base (fi)))
1571 return deprecated_read_register_dummy (get_frame_pc (fi),
1572 get_frame_base (fi), PC_REGNUM);
1573
1574 func_start = get_frame_func (fi);
1575
1576 /* If we failed to find the start of the function, it is a mistake
1577 to inspect the instructions. */
1578 if (!func_start)
1579 return 0;
1580
1581 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1582
1583 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1584 {
1585 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1586 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1587 + SIG_FRAME_LR_OFFSET),
1588 wordsize);
1589 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1590 /* The link register wasn't saved by this frame and the next
1591 (inner, newer) frame is a dummy. Get the link register
1592 value by unwinding it from that [dummy] frame. */
1593 {
1594 ULONGEST lr;
1595 frame_unwind_unsigned_register (get_next_frame (fi),
1596 tdep->ppc_lr_regnum, &lr);
1597 return lr;
1598 }
1599 else
1600 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1601 + tdep->lr_frame_offset,
1602 wordsize);
1603 }
1604
1605 if (fdata.lr_offset == 0)
1606 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1607
1608 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1609 wordsize);
1610 }
1611
1612 /* If saved registers of frame FI are not known yet, read and cache them.
1613 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1614 in which case the framedata are read. */
1615
1616 static void
1617 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1618 {
1619 CORE_ADDR frame_addr;
1620 struct rs6000_framedata work_fdata;
1621 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1622 int wordsize = tdep->wordsize;
1623
1624 if (get_frame_saved_regs (fi))
1625 return;
1626
1627 if (fdatap == NULL)
1628 {
1629 fdatap = &work_fdata;
1630 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1631 }
1632
1633 frame_saved_regs_zalloc (fi);
1634
1635 /* If there were any saved registers, figure out parent's stack
1636 pointer. */
1637 /* The following is true only if the frame doesn't have a call to
1638 alloca(), FIXME. */
1639
1640 if (fdatap->saved_fpr == 0
1641 && fdatap->saved_gpr == 0
1642 && fdatap->saved_vr == 0
1643 && fdatap->saved_ev == 0
1644 && fdatap->lr_offset == 0
1645 && fdatap->cr_offset == 0
1646 && fdatap->vr_offset == 0
1647 && fdatap->ev_offset == 0)
1648 frame_addr = 0;
1649 else
1650 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1651 address of the current frame. Things might be easier if the
1652 ->frame pointed to the outer-most address of the frame. In the
1653 mean time, the address of the prev frame is used as the base
1654 address of this frame. */
1655 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1656
1657 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1658 All fpr's from saved_fpr to fp31 are saved. */
1659
1660 if (fdatap->saved_fpr >= 0)
1661 {
1662 int i;
1663 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1664 for (i = fdatap->saved_fpr; i < 32; i++)
1665 {
1666 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1667 fpr_addr += 8;
1668 }
1669 }
1670
1671 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1672 All gpr's from saved_gpr to gpr31 are saved. */
1673
1674 if (fdatap->saved_gpr >= 0)
1675 {
1676 int i;
1677 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1678 for (i = fdatap->saved_gpr; i < 32; i++)
1679 {
1680 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1681 gpr_addr += wordsize;
1682 }
1683 }
1684
1685 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1686 All vr's from saved_vr to vr31 are saved. */
1687 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1688 {
1689 if (fdatap->saved_vr >= 0)
1690 {
1691 int i;
1692 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1693 for (i = fdatap->saved_vr; i < 32; i++)
1694 {
1695 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1696 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1697 }
1698 }
1699 }
1700
1701 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1702 All vr's from saved_ev to ev31 are saved. ????? */
1703 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1704 {
1705 if (fdatap->saved_ev >= 0)
1706 {
1707 int i;
1708 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1709 for (i = fdatap->saved_ev; i < 32; i++)
1710 {
1711 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1712 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1713 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1714 }
1715 }
1716 }
1717
1718 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1719 the CR. */
1720 if (fdatap->cr_offset != 0)
1721 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1722
1723 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1724 the LR. */
1725 if (fdatap->lr_offset != 0)
1726 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1727
1728 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1729 the VRSAVE. */
1730 if (fdatap->vrsave_offset != 0)
1731 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1732 }
1733
1734 /* Return the address of a frame. This is the inital %sp value when the frame
1735 was first allocated. For functions calling alloca(), it might be saved in
1736 an alloca register. */
1737
1738 static CORE_ADDR
1739 frame_initial_stack_address (struct frame_info *fi)
1740 {
1741 CORE_ADDR tmpaddr;
1742 struct rs6000_framedata fdata;
1743 struct frame_info *callee_fi;
1744
1745 /* If the initial stack pointer (frame address) of this frame is known,
1746 just return it. */
1747
1748 if (get_frame_extra_info (fi)->initial_sp)
1749 return get_frame_extra_info (fi)->initial_sp;
1750
1751 /* Find out if this function is using an alloca register. */
1752
1753 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1754
1755 /* If saved registers of this frame are not known yet, read and
1756 cache them. */
1757
1758 if (!get_frame_saved_regs (fi))
1759 frame_get_saved_regs (fi, &fdata);
1760
1761 /* If no alloca register used, then fi->frame is the value of the %sp for
1762 this frame, and it is good enough. */
1763
1764 if (fdata.alloca_reg < 0)
1765 {
1766 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1767 return get_frame_extra_info (fi)->initial_sp;
1768 }
1769
1770 /* There is an alloca register, use its value, in the current frame,
1771 as the initial stack pointer. */
1772 {
1773 char tmpbuf[MAX_REGISTER_SIZE];
1774 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1775 {
1776 get_frame_extra_info (fi)->initial_sp
1777 = extract_unsigned_integer (tmpbuf,
1778 REGISTER_RAW_SIZE (fdata.alloca_reg));
1779 }
1780 else
1781 /* NOTE: cagney/2002-04-17: At present the only time
1782 frame_register_read will fail is when the register isn't
1783 available. If that does happen, use the frame. */
1784 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1785 }
1786 return get_frame_extra_info (fi)->initial_sp;
1787 }
1788
1789 /* Describe the pointer in each stack frame to the previous stack frame
1790 (its caller). */
1791
1792 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1793 the frame's chain-pointer. */
1794
1795 /* In the case of the RS/6000, the frame's nominal address
1796 is the address of a 4-byte word containing the calling frame's address. */
1797
1798 CORE_ADDR
1799 rs6000_frame_chain (struct frame_info *thisframe)
1800 {
1801 CORE_ADDR fp, fpp, lr;
1802 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1803
1804 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1805 get_frame_base (thisframe),
1806 get_frame_base (thisframe)))
1807 /* A dummy frame always correctly chains back to the previous
1808 frame. */
1809 return read_memory_addr (get_frame_base (thisframe), wordsize);
1810
1811 if (inside_entry_file (get_frame_pc (thisframe))
1812 || get_frame_pc (thisframe) == entry_point_address ())
1813 return 0;
1814
1815 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1816 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1817 wordsize);
1818 else if (get_next_frame (thisframe) != NULL
1819 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1820 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1821 /* A frameless function interrupted by a signal did not change the
1822 frame pointer. */
1823 fp = get_frame_base (thisframe);
1824 else
1825 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1826 return fp;
1827 }
1828
1829 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1830 isn't available with that word size, return 0. */
1831
1832 static int
1833 regsize (const struct reg *reg, int wordsize)
1834 {
1835 return wordsize == 8 ? reg->sz64 : reg->sz32;
1836 }
1837
1838 /* Return the name of register number N, or null if no such register exists
1839 in the current architecture. */
1840
1841 static const char *
1842 rs6000_register_name (int n)
1843 {
1844 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1845 const struct reg *reg = tdep->regs + n;
1846
1847 if (!regsize (reg, tdep->wordsize))
1848 return NULL;
1849 return reg->name;
1850 }
1851
1852 /* Index within `registers' of the first byte of the space for
1853 register N. */
1854
1855 static int
1856 rs6000_register_byte (int n)
1857 {
1858 return gdbarch_tdep (current_gdbarch)->regoff[n];
1859 }
1860
1861 /* Return the number of bytes of storage in the actual machine representation
1862 for register N if that register is available, else return 0. */
1863
1864 static int
1865 rs6000_register_raw_size (int n)
1866 {
1867 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1868 const struct reg *reg = tdep->regs + n;
1869 return regsize (reg, tdep->wordsize);
1870 }
1871
1872 /* Return the GDB type object for the "standard" data type
1873 of data in register N. */
1874
1875 static struct type *
1876 rs6000_register_virtual_type (int n)
1877 {
1878 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1879 const struct reg *reg = tdep->regs + n;
1880
1881 if (reg->fpr)
1882 return builtin_type_double;
1883 else
1884 {
1885 int size = regsize (reg, tdep->wordsize);
1886 switch (size)
1887 {
1888 case 0:
1889 return builtin_type_int0;
1890 case 4:
1891 return builtin_type_int32;
1892 case 8:
1893 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1894 return builtin_type_vec64;
1895 else
1896 return builtin_type_int64;
1897 break;
1898 case 16:
1899 return builtin_type_vec128;
1900 break;
1901 default:
1902 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1903 n, size);
1904 }
1905 }
1906 }
1907
1908 /* Return whether register N requires conversion when moving from raw format
1909 to virtual format.
1910
1911 The register format for RS/6000 floating point registers is always
1912 double, we need a conversion if the memory format is float. */
1913
1914 static int
1915 rs6000_register_convertible (int n)
1916 {
1917 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1918 return reg->fpr;
1919 }
1920
1921 /* Convert data from raw format for register N in buffer FROM
1922 to virtual format with type TYPE in buffer TO. */
1923
1924 static void
1925 rs6000_register_convert_to_virtual (int n, struct type *type,
1926 char *from, char *to)
1927 {
1928 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1929 {
1930 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1931 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1932 }
1933 else
1934 memcpy (to, from, REGISTER_RAW_SIZE (n));
1935 }
1936
1937 /* Convert data from virtual format with type TYPE in buffer FROM
1938 to raw format for register N in buffer TO. */
1939
1940 static void
1941 rs6000_register_convert_to_raw (struct type *type, int n,
1942 const char *from, char *to)
1943 {
1944 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1945 {
1946 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1947 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
1948 }
1949 else
1950 memcpy (to, from, REGISTER_RAW_SIZE (n));
1951 }
1952
1953 static void
1954 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1955 int reg_nr, void *buffer)
1956 {
1957 int base_regnum;
1958 int offset = 0;
1959 char temp_buffer[MAX_REGISTER_SIZE];
1960 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1961
1962 if (reg_nr >= tdep->ppc_gp0_regnum
1963 && reg_nr <= tdep->ppc_gplast_regnum)
1964 {
1965 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1966
1967 /* Build the value in the provided buffer. */
1968 /* Read the raw register of which this one is the lower portion. */
1969 regcache_raw_read (regcache, base_regnum, temp_buffer);
1970 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1971 offset = 4;
1972 memcpy ((char *) buffer, temp_buffer + offset, 4);
1973 }
1974 }
1975
1976 static void
1977 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1978 int reg_nr, const void *buffer)
1979 {
1980 int base_regnum;
1981 int offset = 0;
1982 char temp_buffer[MAX_REGISTER_SIZE];
1983 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1984
1985 if (reg_nr >= tdep->ppc_gp0_regnum
1986 && reg_nr <= tdep->ppc_gplast_regnum)
1987 {
1988 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1989 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1990 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1991 offset = 4;
1992
1993 /* Let's read the value of the base register into a temporary
1994 buffer, so that overwriting the last four bytes with the new
1995 value of the pseudo will leave the upper 4 bytes unchanged. */
1996 regcache_raw_read (regcache, base_regnum, temp_buffer);
1997
1998 /* Write as an 8 byte quantity. */
1999 memcpy (temp_buffer + offset, (char *) buffer, 4);
2000 regcache_raw_write (regcache, base_regnum, temp_buffer);
2001 }
2002 }
2003
2004 /* Convert a dwarf2 register number to a gdb REGNUM. */
2005 static int
2006 e500_dwarf2_reg_to_regnum (int num)
2007 {
2008 int regnum;
2009 if (0 <= num && num <= 31)
2010 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2011 else
2012 return num;
2013 }
2014
2015 /* Convert a dbx stab register number (from `r' declaration) to a gdb
2016 REGNUM. */
2017 static int
2018 rs6000_stab_reg_to_regnum (int num)
2019 {
2020 int regnum;
2021 switch (num)
2022 {
2023 case 64:
2024 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2025 break;
2026 case 65:
2027 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2028 break;
2029 case 66:
2030 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2031 break;
2032 case 76:
2033 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2034 break;
2035 default:
2036 regnum = num;
2037 break;
2038 }
2039 return regnum;
2040 }
2041
2042 /* Write into appropriate registers a function return value
2043 of type TYPE, given in virtual format. */
2044 static void
2045 e500_store_return_value (struct type *type, char *valbuf)
2046 {
2047 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2048
2049 /* Everything is returned in GPR3 and up. */
2050 int copied = 0;
2051 int i = 0;
2052 int len = TYPE_LENGTH (type);
2053 while (copied < len)
2054 {
2055 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2056 int reg_size = REGISTER_RAW_SIZE (regnum);
2057 char *reg_val_buf = alloca (reg_size);
2058
2059 memcpy (reg_val_buf, valbuf + copied, reg_size);
2060 copied += reg_size;
2061 deprecated_write_register_gen (regnum, reg_val_buf);
2062 i++;
2063 }
2064 }
2065
2066 static void
2067 rs6000_store_return_value (struct type *type, char *valbuf)
2068 {
2069 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2070
2071 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2072
2073 /* Floating point values are returned starting from FPR1 and up.
2074 Say a double_double_double type could be returned in
2075 FPR1/FPR2/FPR3 triple. */
2076
2077 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2078 TYPE_LENGTH (type));
2079 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2080 {
2081 if (TYPE_LENGTH (type) == 16
2082 && TYPE_VECTOR (type))
2083 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2084 valbuf, TYPE_LENGTH (type));
2085 }
2086 else
2087 /* Everything else is returned in GPR3 and up. */
2088 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2089 valbuf, TYPE_LENGTH (type));
2090 }
2091
2092 /* Extract from an array REGBUF containing the (raw) register state
2093 the address in which a function should return its structure value,
2094 as a CORE_ADDR (or an expression that can be used as one). */
2095
2096 static CORE_ADDR
2097 rs6000_extract_struct_value_address (struct regcache *regcache)
2098 {
2099 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2100 function call GDB knows the address of the struct return value
2101 and hence, should not need to call this function. Unfortunately,
2102 the current call_function_by_hand() code only saves the most
2103 recent struct address leading to occasional calls. The code
2104 should instead maintain a stack of such addresses (in the dummy
2105 frame object). */
2106 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2107 really got no idea where the return value is being stored. While
2108 r3, on function entry, contained the address it will have since
2109 been reused (scratch) and hence wouldn't be valid */
2110 return 0;
2111 }
2112
2113 /* Return whether PC is in a dummy function call.
2114
2115 FIXME: This just checks for the end of the stack, which is broken
2116 for things like stepping through gcc nested function stubs. */
2117
2118 static int
2119 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2120 {
2121 return sp < pc && pc < fp;
2122 }
2123
2124 /* Hook called when a new child process is started. */
2125
2126 void
2127 rs6000_create_inferior (int pid)
2128 {
2129 if (rs6000_set_host_arch_hook)
2130 rs6000_set_host_arch_hook (pid);
2131 }
2132 \f
2133 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2134
2135 Usually a function pointer's representation is simply the address
2136 of the function. On the RS/6000 however, a function pointer is
2137 represented by a pointer to a TOC entry. This TOC entry contains
2138 three words, the first word is the address of the function, the
2139 second word is the TOC pointer (r2), and the third word is the
2140 static chain value. Throughout GDB it is currently assumed that a
2141 function pointer contains the address of the function, which is not
2142 easy to fix. In addition, the conversion of a function address to
2143 a function pointer would require allocation of a TOC entry in the
2144 inferior's memory space, with all its drawbacks. To be able to
2145 call C++ virtual methods in the inferior (which are called via
2146 function pointers), find_function_addr uses this function to get the
2147 function address from a function pointer. */
2148
2149 /* Return real function address if ADDR (a function pointer) is in the data
2150 space and is therefore a special function pointer. */
2151
2152 static CORE_ADDR
2153 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2154 {
2155 struct obj_section *s;
2156
2157 s = find_pc_section (addr);
2158 if (s && s->the_bfd_section->flags & SEC_CODE)
2159 return addr;
2160
2161 /* ADDR is in the data space, so it's a special function pointer. */
2162 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2163 }
2164 \f
2165
2166 /* Handling the various POWER/PowerPC variants. */
2167
2168
2169 /* The arrays here called registers_MUMBLE hold information about available
2170 registers.
2171
2172 For each family of PPC variants, I've tried to isolate out the
2173 common registers and put them up front, so that as long as you get
2174 the general family right, GDB will correctly identify the registers
2175 common to that family. The common register sets are:
2176
2177 For the 60x family: hid0 hid1 iabr dabr pir
2178
2179 For the 505 and 860 family: eie eid nri
2180
2181 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2182 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2183 pbu1 pbl2 pbu2
2184
2185 Most of these register groups aren't anything formal. I arrived at
2186 them by looking at the registers that occurred in more than one
2187 processor.
2188
2189 Note: kevinb/2002-04-30: Support for the fpscr register was added
2190 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2191 for Power. For PowerPC, slot 70 was unused and was already in the
2192 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2193 slot 70 was being used for "mq", so the next available slot (71)
2194 was chosen. It would have been nice to be able to make the
2195 register numbers the same across processor cores, but this wasn't
2196 possible without either 1) renumbering some registers for some
2197 processors or 2) assigning fpscr to a really high slot that's
2198 larger than any current register number. Doing (1) is bad because
2199 existing stubs would break. Doing (2) is undesirable because it
2200 would introduce a really large gap between fpscr and the rest of
2201 the registers for most processors. */
2202
2203 /* Convenience macros for populating register arrays. */
2204
2205 /* Within another macro, convert S to a string. */
2206
2207 #define STR(s) #s
2208
2209 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2210 and 64 bits on 64-bit systems. */
2211 #define R(name) { STR(name), 4, 8, 0, 0 }
2212
2213 /* Return a struct reg defining register NAME that's 32 bits on all
2214 systems. */
2215 #define R4(name) { STR(name), 4, 4, 0, 0 }
2216
2217 /* Return a struct reg defining register NAME that's 64 bits on all
2218 systems. */
2219 #define R8(name) { STR(name), 8, 8, 0, 0 }
2220
2221 /* Return a struct reg defining register NAME that's 128 bits on all
2222 systems. */
2223 #define R16(name) { STR(name), 16, 16, 0, 0 }
2224
2225 /* Return a struct reg defining floating-point register NAME. */
2226 #define F(name) { STR(name), 8, 8, 1, 0 }
2227
2228 /* Return a struct reg defining a pseudo register NAME. */
2229 #define P(name) { STR(name), 4, 8, 0, 1}
2230
2231 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2232 systems and that doesn't exist on 64-bit systems. */
2233 #define R32(name) { STR(name), 4, 0, 0, 0 }
2234
2235 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2236 systems and that doesn't exist on 32-bit systems. */
2237 #define R64(name) { STR(name), 0, 8, 0, 0 }
2238
2239 /* Return a struct reg placeholder for a register that doesn't exist. */
2240 #define R0 { 0, 0, 0, 0, 0 }
2241
2242 /* UISA registers common across all architectures, including POWER. */
2243
2244 #define COMMON_UISA_REGS \
2245 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2246 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2247 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2248 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2249 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2250 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2251 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2252 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2253 /* 64 */ R(pc), R(ps)
2254
2255 #define COMMON_UISA_NOFP_REGS \
2256 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2257 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2258 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2259 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2260 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2261 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2262 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2263 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2264 /* 64 */ R(pc), R(ps)
2265
2266 /* UISA-level SPRs for PowerPC. */
2267 #define PPC_UISA_SPRS \
2268 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2269
2270 /* UISA-level SPRs for PowerPC without floating point support. */
2271 #define PPC_UISA_NOFP_SPRS \
2272 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2273
2274 /* Segment registers, for PowerPC. */
2275 #define PPC_SEGMENT_REGS \
2276 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2277 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2278 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2279 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2280
2281 /* OEA SPRs for PowerPC. */
2282 #define PPC_OEA_SPRS \
2283 /* 87 */ R4(pvr), \
2284 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2285 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2286 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2287 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2288 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2289 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2290 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2291 /* 116 */ R4(dec), R(dabr), R4(ear)
2292
2293 /* AltiVec registers. */
2294 #define PPC_ALTIVEC_REGS \
2295 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2296 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2297 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2298 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2299 /*151*/R4(vscr), R4(vrsave)
2300
2301 /* Vectors of hi-lo general purpose registers. */
2302 #define PPC_EV_REGS \
2303 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2304 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2305 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2306 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2307
2308 /* Lower half of the EV registers. */
2309 #define PPC_GPRS_PSEUDO_REGS \
2310 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2311 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2312 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2313 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2314
2315 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2316 user-level SPR's. */
2317 static const struct reg registers_power[] =
2318 {
2319 COMMON_UISA_REGS,
2320 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2321 /* 71 */ R4(fpscr)
2322 };
2323
2324 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2325 view of the PowerPC. */
2326 static const struct reg registers_powerpc[] =
2327 {
2328 COMMON_UISA_REGS,
2329 PPC_UISA_SPRS,
2330 PPC_ALTIVEC_REGS
2331 };
2332
2333 /* PowerPC UISA - a PPC processor as viewed by user-level
2334 code, but without floating point registers. */
2335 static const struct reg registers_powerpc_nofp[] =
2336 {
2337 COMMON_UISA_NOFP_REGS,
2338 PPC_UISA_SPRS
2339 };
2340
2341 /* IBM PowerPC 403. */
2342 static const struct reg registers_403[] =
2343 {
2344 COMMON_UISA_REGS,
2345 PPC_UISA_SPRS,
2346 PPC_SEGMENT_REGS,
2347 PPC_OEA_SPRS,
2348 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2349 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2350 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2351 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2352 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2353 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2354 };
2355
2356 /* IBM PowerPC 403GC. */
2357 static const struct reg registers_403GC[] =
2358 {
2359 COMMON_UISA_REGS,
2360 PPC_UISA_SPRS,
2361 PPC_SEGMENT_REGS,
2362 PPC_OEA_SPRS,
2363 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2364 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2365 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2366 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2367 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2368 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2369 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2370 /* 147 */ R(tbhu), R(tblu)
2371 };
2372
2373 /* Motorola PowerPC 505. */
2374 static const struct reg registers_505[] =
2375 {
2376 COMMON_UISA_REGS,
2377 PPC_UISA_SPRS,
2378 PPC_SEGMENT_REGS,
2379 PPC_OEA_SPRS,
2380 /* 119 */ R(eie), R(eid), R(nri)
2381 };
2382
2383 /* Motorola PowerPC 860 or 850. */
2384 static const struct reg registers_860[] =
2385 {
2386 COMMON_UISA_REGS,
2387 PPC_UISA_SPRS,
2388 PPC_SEGMENT_REGS,
2389 PPC_OEA_SPRS,
2390 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2391 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2392 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2393 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2394 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2395 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2396 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2397 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2398 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2399 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2400 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2401 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2402 };
2403
2404 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2405 for reading and writing RTCU and RTCL. However, how one reads and writes a
2406 register is the stub's problem. */
2407 static const struct reg registers_601[] =
2408 {
2409 COMMON_UISA_REGS,
2410 PPC_UISA_SPRS,
2411 PPC_SEGMENT_REGS,
2412 PPC_OEA_SPRS,
2413 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2414 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2415 };
2416
2417 /* Motorola PowerPC 602. */
2418 static const struct reg registers_602[] =
2419 {
2420 COMMON_UISA_REGS,
2421 PPC_UISA_SPRS,
2422 PPC_SEGMENT_REGS,
2423 PPC_OEA_SPRS,
2424 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2425 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2426 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2427 };
2428
2429 /* Motorola/IBM PowerPC 603 or 603e. */
2430 static const struct reg registers_603[] =
2431 {
2432 COMMON_UISA_REGS,
2433 PPC_UISA_SPRS,
2434 PPC_SEGMENT_REGS,
2435 PPC_OEA_SPRS,
2436 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2437 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2438 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2439 };
2440
2441 /* Motorola PowerPC 604 or 604e. */
2442 static const struct reg registers_604[] =
2443 {
2444 COMMON_UISA_REGS,
2445 PPC_UISA_SPRS,
2446 PPC_SEGMENT_REGS,
2447 PPC_OEA_SPRS,
2448 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2449 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2450 /* 127 */ R(sia), R(sda)
2451 };
2452
2453 /* Motorola/IBM PowerPC 750 or 740. */
2454 static const struct reg registers_750[] =
2455 {
2456 COMMON_UISA_REGS,
2457 PPC_UISA_SPRS,
2458 PPC_SEGMENT_REGS,
2459 PPC_OEA_SPRS,
2460 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2461 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2462 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2463 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2464 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2465 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2466 };
2467
2468
2469 /* Motorola PowerPC 7400. */
2470 static const struct reg registers_7400[] =
2471 {
2472 /* gpr0-gpr31, fpr0-fpr31 */
2473 COMMON_UISA_REGS,
2474 /* ctr, xre, lr, cr */
2475 PPC_UISA_SPRS,
2476 /* sr0-sr15 */
2477 PPC_SEGMENT_REGS,
2478 PPC_OEA_SPRS,
2479 /* vr0-vr31, vrsave, vscr */
2480 PPC_ALTIVEC_REGS
2481 /* FIXME? Add more registers? */
2482 };
2483
2484 /* Motorola e500. */
2485 static const struct reg registers_e500[] =
2486 {
2487 R(pc), R(ps),
2488 /* cr, lr, ctr, xer, "" */
2489 PPC_UISA_NOFP_SPRS,
2490 /* 7...38 */
2491 PPC_EV_REGS,
2492 R8(acc), R(spefscr),
2493 /* NOTE: Add new registers here the end of the raw register
2494 list and just before the first pseudo register. */
2495 /* 39...70 */
2496 PPC_GPRS_PSEUDO_REGS
2497 };
2498
2499 /* Information about a particular processor variant. */
2500
2501 struct variant
2502 {
2503 /* Name of this variant. */
2504 char *name;
2505
2506 /* English description of the variant. */
2507 char *description;
2508
2509 /* bfd_arch_info.arch corresponding to variant. */
2510 enum bfd_architecture arch;
2511
2512 /* bfd_arch_info.mach corresponding to variant. */
2513 unsigned long mach;
2514
2515 /* Number of real registers. */
2516 int nregs;
2517
2518 /* Number of pseudo registers. */
2519 int npregs;
2520
2521 /* Number of total registers (the sum of nregs and npregs). */
2522 int num_tot_regs;
2523
2524 /* Table of register names; registers[R] is the name of the register
2525 number R. */
2526 const struct reg *regs;
2527 };
2528
2529 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2530
2531 static int
2532 num_registers (const struct reg *reg_list, int num_tot_regs)
2533 {
2534 int i;
2535 int nregs = 0;
2536
2537 for (i = 0; i < num_tot_regs; i++)
2538 if (!reg_list[i].pseudo)
2539 nregs++;
2540
2541 return nregs;
2542 }
2543
2544 static int
2545 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2546 {
2547 int i;
2548 int npregs = 0;
2549
2550 for (i = 0; i < num_tot_regs; i++)
2551 if (reg_list[i].pseudo)
2552 npregs ++;
2553
2554 return npregs;
2555 }
2556
2557 /* Information in this table comes from the following web sites:
2558 IBM: http://www.chips.ibm.com:80/products/embedded/
2559 Motorola: http://www.mot.com/SPS/PowerPC/
2560
2561 I'm sure I've got some of the variant descriptions not quite right.
2562 Please report any inaccuracies you find to GDB's maintainer.
2563
2564 If you add entries to this table, please be sure to allow the new
2565 value as an argument to the --with-cpu flag, in configure.in. */
2566
2567 static struct variant variants[] =
2568 {
2569
2570 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2571 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2572 registers_powerpc},
2573 {"power", "POWER user-level", bfd_arch_rs6000,
2574 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2575 registers_power},
2576 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2577 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2578 registers_403},
2579 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2580 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2581 registers_601},
2582 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2583 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2584 registers_602},
2585 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2586 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2587 registers_603},
2588 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2589 604, -1, -1, tot_num_registers (registers_604),
2590 registers_604},
2591 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2592 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2593 registers_403GC},
2594 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2595 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2596 registers_505},
2597 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2598 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2599 registers_860},
2600 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2601 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2602 registers_750},
2603 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2604 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2605 registers_7400},
2606 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2607 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2608 registers_e500},
2609
2610 /* 64-bit */
2611 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2612 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2613 registers_powerpc},
2614 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2615 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2616 registers_powerpc},
2617 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2618 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2619 registers_powerpc},
2620 {"a35", "PowerPC A35", bfd_arch_powerpc,
2621 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2622 registers_powerpc},
2623 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2624 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2625 registers_powerpc},
2626 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2627 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2628 registers_powerpc},
2629
2630 /* FIXME: I haven't checked the register sets of the following. */
2631 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2632 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2633 registers_power},
2634 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2635 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2636 registers_power},
2637 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2638 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2639 registers_power},
2640
2641 {0, 0, 0, 0, 0, 0, 0, 0}
2642 };
2643
2644 /* Initialize the number of registers and pseudo registers in each variant. */
2645
2646 static void
2647 init_variants (void)
2648 {
2649 struct variant *v;
2650
2651 for (v = variants; v->name; v++)
2652 {
2653 if (v->nregs == -1)
2654 v->nregs = num_registers (v->regs, v->num_tot_regs);
2655 if (v->npregs == -1)
2656 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2657 }
2658 }
2659
2660 /* Return the variant corresponding to architecture ARCH and machine number
2661 MACH. If no such variant exists, return null. */
2662
2663 static const struct variant *
2664 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2665 {
2666 const struct variant *v;
2667
2668 for (v = variants; v->name; v++)
2669 if (arch == v->arch && mach == v->mach)
2670 return v;
2671
2672 return NULL;
2673 }
2674
2675 static int
2676 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2677 {
2678 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2679 return print_insn_big_powerpc (memaddr, info);
2680 else
2681 return print_insn_little_powerpc (memaddr, info);
2682 }
2683 \f
2684 /* Initialize the current architecture based on INFO. If possible, re-use an
2685 architecture from ARCHES, which is a list of architectures already created
2686 during this debugging session.
2687
2688 Called e.g. at program startup, when reading a core file, and when reading
2689 a binary file. */
2690
2691 static struct gdbarch *
2692 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2693 {
2694 struct gdbarch *gdbarch;
2695 struct gdbarch_tdep *tdep;
2696 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2697 struct reg *regs;
2698 const struct variant *v;
2699 enum bfd_architecture arch;
2700 unsigned long mach;
2701 bfd abfd;
2702 int sysv_abi;
2703 asection *sect;
2704
2705 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2706 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2707
2708 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2709 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2710
2711 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2712
2713 /* Check word size. If INFO is from a binary file, infer it from
2714 that, else choose a likely default. */
2715 if (from_xcoff_exec)
2716 {
2717 if (bfd_xcoff_is_xcoff64 (info.abfd))
2718 wordsize = 8;
2719 else
2720 wordsize = 4;
2721 }
2722 else if (from_elf_exec)
2723 {
2724 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2725 wordsize = 8;
2726 else
2727 wordsize = 4;
2728 }
2729 else
2730 {
2731 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2732 wordsize = info.bfd_arch_info->bits_per_word /
2733 info.bfd_arch_info->bits_per_byte;
2734 else
2735 wordsize = 4;
2736 }
2737
2738 /* Find a candidate among extant architectures. */
2739 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2740 arches != NULL;
2741 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2742 {
2743 /* Word size in the various PowerPC bfd_arch_info structs isn't
2744 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2745 separate word size check. */
2746 tdep = gdbarch_tdep (arches->gdbarch);
2747 if (tdep && tdep->wordsize == wordsize)
2748 return arches->gdbarch;
2749 }
2750
2751 /* None found, create a new architecture from INFO, whose bfd_arch_info
2752 validity depends on the source:
2753 - executable useless
2754 - rs6000_host_arch() good
2755 - core file good
2756 - "set arch" trust blindly
2757 - GDB startup useless but harmless */
2758
2759 if (!from_xcoff_exec)
2760 {
2761 arch = info.bfd_arch_info->arch;
2762 mach = info.bfd_arch_info->mach;
2763 }
2764 else
2765 {
2766 arch = bfd_arch_powerpc;
2767 bfd_default_set_arch_mach (&abfd, arch, 0);
2768 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2769 mach = info.bfd_arch_info->mach;
2770 }
2771 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2772 tdep->wordsize = wordsize;
2773
2774 /* For e500 executables, the apuinfo section is of help here. Such
2775 section contains the identifier and revision number of each
2776 Application-specific Processing Unit that is present on the
2777 chip. The content of the section is determined by the assembler
2778 which looks at each instruction and determines which unit (and
2779 which version of it) can execute it. In our case we just look for
2780 the existance of the section. */
2781
2782 if (info.abfd)
2783 {
2784 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2785 if (sect)
2786 {
2787 arch = info.bfd_arch_info->arch;
2788 mach = bfd_mach_ppc_e500;
2789 bfd_default_set_arch_mach (&abfd, arch, mach);
2790 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2791 }
2792 }
2793
2794 gdbarch = gdbarch_alloc (&info, tdep);
2795 power = arch == bfd_arch_rs6000;
2796
2797 /* Initialize the number of real and pseudo registers in each variant. */
2798 init_variants ();
2799
2800 /* Choose variant. */
2801 v = find_variant_by_arch (arch, mach);
2802 if (!v)
2803 return NULL;
2804
2805 tdep->regs = v->regs;
2806
2807 tdep->ppc_gp0_regnum = 0;
2808 tdep->ppc_gplast_regnum = 31;
2809 tdep->ppc_toc_regnum = 2;
2810 tdep->ppc_ps_regnum = 65;
2811 tdep->ppc_cr_regnum = 66;
2812 tdep->ppc_lr_regnum = 67;
2813 tdep->ppc_ctr_regnum = 68;
2814 tdep->ppc_xer_regnum = 69;
2815 if (v->mach == bfd_mach_ppc_601)
2816 tdep->ppc_mq_regnum = 124;
2817 else if (power)
2818 tdep->ppc_mq_regnum = 70;
2819 else
2820 tdep->ppc_mq_regnum = -1;
2821 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2822
2823 set_gdbarch_pc_regnum (gdbarch, 64);
2824 set_gdbarch_sp_regnum (gdbarch, 1);
2825 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2826 set_gdbarch_deprecated_extract_return_value (gdbarch,
2827 rs6000_extract_return_value);
2828 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2829
2830 if (v->arch == bfd_arch_powerpc)
2831 switch (v->mach)
2832 {
2833 case bfd_mach_ppc:
2834 tdep->ppc_vr0_regnum = 71;
2835 tdep->ppc_vrsave_regnum = 104;
2836 tdep->ppc_ev0_regnum = -1;
2837 tdep->ppc_ev31_regnum = -1;
2838 break;
2839 case bfd_mach_ppc_7400:
2840 tdep->ppc_vr0_regnum = 119;
2841 tdep->ppc_vrsave_regnum = 152;
2842 tdep->ppc_ev0_regnum = -1;
2843 tdep->ppc_ev31_regnum = -1;
2844 break;
2845 case bfd_mach_ppc_e500:
2846 tdep->ppc_gp0_regnum = 41;
2847 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2848 tdep->ppc_toc_regnum = -1;
2849 tdep->ppc_ps_regnum = 1;
2850 tdep->ppc_cr_regnum = 2;
2851 tdep->ppc_lr_regnum = 3;
2852 tdep->ppc_ctr_regnum = 4;
2853 tdep->ppc_xer_regnum = 5;
2854 tdep->ppc_ev0_regnum = 7;
2855 tdep->ppc_ev31_regnum = 38;
2856 set_gdbarch_pc_regnum (gdbarch, 0);
2857 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2858 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2859 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2860 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2861 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2862 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2863 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2864 break;
2865 default:
2866 tdep->ppc_vr0_regnum = -1;
2867 tdep->ppc_vrsave_regnum = -1;
2868 tdep->ppc_ev0_regnum = -1;
2869 tdep->ppc_ev31_regnum = -1;
2870 break;
2871 }
2872
2873 /* Sanity check on registers. */
2874 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2875
2876 /* Set lr_frame_offset. */
2877 if (wordsize == 8)
2878 tdep->lr_frame_offset = 16;
2879 else if (sysv_abi)
2880 tdep->lr_frame_offset = 4;
2881 else
2882 tdep->lr_frame_offset = 8;
2883
2884 /* Calculate byte offsets in raw register array. */
2885 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2886 for (i = off = 0; i < v->num_tot_regs; i++)
2887 {
2888 tdep->regoff[i] = off;
2889 off += regsize (v->regs + i, wordsize);
2890 }
2891
2892 /* Select instruction printer. */
2893 if (arch == power)
2894 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2895 else
2896 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2897
2898 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2899 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
2900
2901 set_gdbarch_num_regs (gdbarch, v->nregs);
2902 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2903 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2904 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2905 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2906 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2907 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2908 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2909
2910 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2911 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2912 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2913 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2914 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2915 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2916 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2917 if (sysv_abi)
2918 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2919 else
2920 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2921 set_gdbarch_char_signed (gdbarch, 0);
2922
2923 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2924 if (sysv_abi && wordsize == 8)
2925 /* PPC64 SYSV. */
2926 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2927 else if (!sysv_abi && wordsize == 4)
2928 /* PowerOpen / AIX 32 bit. */
2929 set_gdbarch_frame_red_zone_size (gdbarch, 220);
2930 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2931 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2932
2933 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2934 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2935 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2936 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2937 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2938 is correct for the SysV ABI when the wordsize is 8, but I'm also
2939 fairly certain that ppc_sysv_abi_push_arguments() will give even
2940 worse results since it only works for 32-bit code. So, for the moment,
2941 we're better off calling rs6000_push_arguments() since it works for
2942 64-bit code. At some point in the future, this matter needs to be
2943 revisited. */
2944 if (sysv_abi && wordsize == 4)
2945 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2946 else
2947 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2948
2949 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2950 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2951
2952 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2953 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2954 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2955 set_gdbarch_function_start_offset (gdbarch, 0);
2956 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2957
2958 /* Not sure on this. FIXMEmgo */
2959 set_gdbarch_frame_args_skip (gdbarch, 8);
2960
2961 if (sysv_abi)
2962 set_gdbarch_use_struct_convention (gdbarch,
2963 ppc_sysv_abi_use_struct_convention);
2964 else
2965 set_gdbarch_use_struct_convention (gdbarch,
2966 generic_use_struct_convention);
2967
2968 set_gdbarch_frameless_function_invocation (gdbarch,
2969 rs6000_frameless_function_invocation);
2970 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2971 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2972
2973 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2974 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2975
2976 if (!sysv_abi)
2977 {
2978 /* Handle RS/6000 function pointers (which are really function
2979 descriptors). */
2980 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2981 rs6000_convert_from_func_ptr_addr);
2982 }
2983 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2984 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
2985 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2986
2987 /* Helpers for function argument information. */
2988 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2989
2990 /* Hook in ABI-specific overrides, if they have been registered. */
2991 gdbarch_init_osabi (info, gdbarch);
2992
2993 return gdbarch;
2994 }
2995
2996 static void
2997 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2998 {
2999 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3000
3001 if (tdep == NULL)
3002 return;
3003
3004 /* FIXME: Dump gdbarch_tdep. */
3005 }
3006
3007 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3008
3009 static void
3010 rs6000_info_powerpc_command (char *args, int from_tty)
3011 {
3012 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3013 }
3014
3015 /* Initialization code. */
3016
3017 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3018
3019 void
3020 _initialize_rs6000_tdep (void)
3021 {
3022 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3023 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3024
3025 /* Add root prefix command for "info powerpc" commands */
3026 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3027 "Various POWERPC info specific commands.",
3028 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3029 }
This page took 0.094078 seconds and 5 git commands to generate.