C++-ify prologue-value's pv_area
[deliverable/binutils-gdb.git] / gdb / rx-tdep.c
1 /* Target-dependent code for the Renesas RX for GDB, the GNU debugger.
2
3 Copyright (C) 2008-2017 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "prologue-value.h"
25 #include "target.h"
26 #include "regcache.h"
27 #include "opcode/rx.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2-frame.h"
36
37 #include "elf/rx.h"
38 #include "elf-bfd.h"
39 #include <algorithm>
40
41 /* Certain important register numbers. */
42 enum
43 {
44 RX_SP_REGNUM = 0,
45 RX_R1_REGNUM = 1,
46 RX_R4_REGNUM = 4,
47 RX_FP_REGNUM = 6,
48 RX_R15_REGNUM = 15,
49 RX_USP_REGNUM = 16,
50 RX_PSW_REGNUM = 18,
51 RX_PC_REGNUM = 19,
52 RX_BPSW_REGNUM = 21,
53 RX_BPC_REGNUM = 22,
54 RX_FPSW_REGNUM = 24,
55 RX_ACC_REGNUM = 25,
56 RX_NUM_REGS = 26
57 };
58
59 /* RX frame types. */
60 enum rx_frame_type {
61 RX_FRAME_TYPE_NORMAL,
62 RX_FRAME_TYPE_EXCEPTION,
63 RX_FRAME_TYPE_FAST_INTERRUPT
64 };
65
66 /* Architecture specific data. */
67 struct gdbarch_tdep
68 {
69 /* The ELF header flags specify the multilib used. */
70 int elf_flags;
71
72 /* Type of PSW and BPSW. */
73 struct type *rx_psw_type;
74
75 /* Type of FPSW. */
76 struct type *rx_fpsw_type;
77 };
78
79 /* This structure holds the results of a prologue analysis. */
80 struct rx_prologue
81 {
82 /* Frame type, either a normal frame or one of two types of exception
83 frames. */
84 enum rx_frame_type frame_type;
85
86 /* The offset from the frame base to the stack pointer --- always
87 zero or negative.
88
89 Calling this a "size" is a bit misleading, but given that the
90 stack grows downwards, using offsets for everything keeps one
91 from going completely sign-crazy: you never change anything's
92 sign for an ADD instruction; always change the second operand's
93 sign for a SUB instruction; and everything takes care of
94 itself. */
95 int frame_size;
96
97 /* Non-zero if this function has initialized the frame pointer from
98 the stack pointer, zero otherwise. */
99 int has_frame_ptr;
100
101 /* If has_frame_ptr is non-zero, this is the offset from the frame
102 base to where the frame pointer points. This is always zero or
103 negative. */
104 int frame_ptr_offset;
105
106 /* The address of the first instruction at which the frame has been
107 set up and the arguments are where the debug info says they are
108 --- as best as we can tell. */
109 CORE_ADDR prologue_end;
110
111 /* reg_offset[R] is the offset from the CFA at which register R is
112 saved, or 1 if register R has not been saved. (Real values are
113 always zero or negative.) */
114 int reg_offset[RX_NUM_REGS];
115 };
116
117 /* Implement the "register_name" gdbarch method. */
118 static const char *
119 rx_register_name (struct gdbarch *gdbarch, int regnr)
120 {
121 static const char *const reg_names[] = {
122 "r0",
123 "r1",
124 "r2",
125 "r3",
126 "r4",
127 "r5",
128 "r6",
129 "r7",
130 "r8",
131 "r9",
132 "r10",
133 "r11",
134 "r12",
135 "r13",
136 "r14",
137 "r15",
138 "usp",
139 "isp",
140 "psw",
141 "pc",
142 "intb",
143 "bpsw",
144 "bpc",
145 "fintv",
146 "fpsw",
147 "acc"
148 };
149
150 return reg_names[regnr];
151 }
152
153 /* Construct the flags type for PSW and BPSW. */
154
155 static struct type *
156 rx_psw_type (struct gdbarch *gdbarch)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 if (tdep->rx_psw_type == NULL)
161 {
162 tdep->rx_psw_type = arch_flags_type (gdbarch, "rx_psw_type", 32);
163 append_flags_type_flag (tdep->rx_psw_type, 0, "C");
164 append_flags_type_flag (tdep->rx_psw_type, 1, "Z");
165 append_flags_type_flag (tdep->rx_psw_type, 2, "S");
166 append_flags_type_flag (tdep->rx_psw_type, 3, "O");
167 append_flags_type_flag (tdep->rx_psw_type, 16, "I");
168 append_flags_type_flag (tdep->rx_psw_type, 17, "U");
169 append_flags_type_flag (tdep->rx_psw_type, 20, "PM");
170 append_flags_type_flag (tdep->rx_psw_type, 24, "IPL0");
171 append_flags_type_flag (tdep->rx_psw_type, 25, "IPL1");
172 append_flags_type_flag (tdep->rx_psw_type, 26, "IPL2");
173 append_flags_type_flag (tdep->rx_psw_type, 27, "IPL3");
174 }
175 return tdep->rx_psw_type;
176 }
177
178 /* Construct flags type for FPSW. */
179
180 static struct type *
181 rx_fpsw_type (struct gdbarch *gdbarch)
182 {
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 if (tdep->rx_fpsw_type == NULL)
186 {
187 tdep->rx_fpsw_type = arch_flags_type (gdbarch, "rx_fpsw_type", 32);
188 append_flags_type_flag (tdep->rx_fpsw_type, 0, "RM0");
189 append_flags_type_flag (tdep->rx_fpsw_type, 1, "RM1");
190 append_flags_type_flag (tdep->rx_fpsw_type, 2, "CV");
191 append_flags_type_flag (tdep->rx_fpsw_type, 3, "CO");
192 append_flags_type_flag (tdep->rx_fpsw_type, 4, "CZ");
193 append_flags_type_flag (tdep->rx_fpsw_type, 5, "CU");
194 append_flags_type_flag (tdep->rx_fpsw_type, 6, "CX");
195 append_flags_type_flag (tdep->rx_fpsw_type, 7, "CE");
196 append_flags_type_flag (tdep->rx_fpsw_type, 8, "DN");
197 append_flags_type_flag (tdep->rx_fpsw_type, 10, "EV");
198 append_flags_type_flag (tdep->rx_fpsw_type, 11, "EO");
199 append_flags_type_flag (tdep->rx_fpsw_type, 12, "EZ");
200 append_flags_type_flag (tdep->rx_fpsw_type, 13, "EU");
201 append_flags_type_flag (tdep->rx_fpsw_type, 14, "EX");
202 append_flags_type_flag (tdep->rx_fpsw_type, 26, "FV");
203 append_flags_type_flag (tdep->rx_fpsw_type, 27, "FO");
204 append_flags_type_flag (tdep->rx_fpsw_type, 28, "FZ");
205 append_flags_type_flag (tdep->rx_fpsw_type, 29, "FU");
206 append_flags_type_flag (tdep->rx_fpsw_type, 30, "FX");
207 append_flags_type_flag (tdep->rx_fpsw_type, 31, "FS");
208 }
209
210 return tdep->rx_fpsw_type;
211 }
212
213 /* Implement the "register_type" gdbarch method. */
214 static struct type *
215 rx_register_type (struct gdbarch *gdbarch, int reg_nr)
216 {
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218
219 if (reg_nr == RX_PC_REGNUM)
220 return builtin_type (gdbarch)->builtin_func_ptr;
221 else if (reg_nr == RX_PSW_REGNUM || reg_nr == RX_BPSW_REGNUM)
222 return rx_psw_type (gdbarch);
223 else if (reg_nr == RX_FPSW_REGNUM)
224 return rx_fpsw_type (gdbarch);
225 else if (reg_nr == RX_ACC_REGNUM)
226 return builtin_type (gdbarch)->builtin_unsigned_long_long;
227 else
228 return builtin_type (gdbarch)->builtin_unsigned_long;
229 }
230
231
232 /* Function for finding saved registers in a 'struct pv_area'; this
233 function is passed to pv_area::scan.
234
235 If VALUE is a saved register, ADDR says it was saved at a constant
236 offset from the frame base, and SIZE indicates that the whole
237 register was saved, record its offset. */
238 static void
239 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
240 {
241 struct rx_prologue *result = (struct rx_prologue *) result_untyped;
242
243 if (value.kind == pvk_register
244 && value.k == 0
245 && pv_is_register (addr, RX_SP_REGNUM)
246 && size == register_size (target_gdbarch (), value.reg))
247 result->reg_offset[value.reg] = addr.k;
248 }
249
250 /* Define a "handle" struct for fetching the next opcode. */
251 struct rx_get_opcode_byte_handle
252 {
253 CORE_ADDR pc;
254 };
255
256 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
257 the memory address of the next byte to fetch. If successful,
258 the address in the handle is updated and the byte fetched is
259 returned as the value of the function. If not successful, -1
260 is returned. */
261 static int
262 rx_get_opcode_byte (void *handle)
263 {
264 struct rx_get_opcode_byte_handle *opcdata
265 = (struct rx_get_opcode_byte_handle *) handle;
266 int status;
267 gdb_byte byte;
268
269 status = target_read_code (opcdata->pc, &byte, 1);
270 if (status == 0)
271 {
272 opcdata->pc += 1;
273 return byte;
274 }
275 else
276 return -1;
277 }
278
279 /* Analyze a prologue starting at START_PC, going no further than
280 LIMIT_PC. Fill in RESULT as appropriate. */
281
282 static void
283 rx_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
284 enum rx_frame_type frame_type,
285 struct rx_prologue *result)
286 {
287 CORE_ADDR pc, next_pc;
288 int rn;
289 pv_t reg[RX_NUM_REGS];
290 CORE_ADDR after_last_frame_setup_insn = start_pc;
291
292 memset (result, 0, sizeof (*result));
293
294 result->frame_type = frame_type;
295
296 for (rn = 0; rn < RX_NUM_REGS; rn++)
297 {
298 reg[rn] = pv_register (rn, 0);
299 result->reg_offset[rn] = 1;
300 }
301
302 pv_area stack (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
303
304 if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT)
305 {
306 /* This code won't do anything useful at present, but this is
307 what happens for fast interrupts. */
308 reg[RX_BPSW_REGNUM] = reg[RX_PSW_REGNUM];
309 reg[RX_BPC_REGNUM] = reg[RX_PC_REGNUM];
310 }
311 else
312 {
313 /* When an exception occurs, the PSW is saved to the interrupt stack
314 first. */
315 if (frame_type == RX_FRAME_TYPE_EXCEPTION)
316 {
317 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
318 stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PSW_REGNUM]);
319 }
320
321 /* The call instruction (or an exception/interrupt) has saved the return
322 address on the stack. */
323 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
324 stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]);
325
326 }
327
328
329 pc = start_pc;
330 while (pc < limit_pc)
331 {
332 int bytes_read;
333 struct rx_get_opcode_byte_handle opcode_handle;
334 RX_Opcode_Decoded opc;
335
336 opcode_handle.pc = pc;
337 bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
338 &opcode_handle);
339 next_pc = pc + bytes_read;
340
341 if (opc.id == RXO_pushm /* pushm r1, r2 */
342 && opc.op[1].type == RX_Operand_Register
343 && opc.op[2].type == RX_Operand_Register)
344 {
345 int r1, r2;
346 int r;
347
348 r1 = opc.op[1].reg;
349 r2 = opc.op[2].reg;
350 for (r = r2; r >= r1; r--)
351 {
352 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
353 stack.store (reg[RX_SP_REGNUM], 4, reg[r]);
354 }
355 after_last_frame_setup_insn = next_pc;
356 }
357 else if (opc.id == RXO_mov /* mov.l rdst, rsrc */
358 && opc.op[0].type == RX_Operand_Register
359 && opc.op[1].type == RX_Operand_Register
360 && opc.size == RX_Long)
361 {
362 int rdst, rsrc;
363
364 rdst = opc.op[0].reg;
365 rsrc = opc.op[1].reg;
366 reg[rdst] = reg[rsrc];
367 if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM)
368 after_last_frame_setup_insn = next_pc;
369 }
370 else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */
371 && opc.op[0].type == RX_Operand_Predec
372 && opc.op[0].reg == RX_SP_REGNUM
373 && opc.op[1].type == RX_Operand_Register
374 && opc.size == RX_Long)
375 {
376 int rsrc;
377
378 rsrc = opc.op[1].reg;
379 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
380 stack.store (reg[RX_SP_REGNUM], 4, reg[rsrc]);
381 after_last_frame_setup_insn = next_pc;
382 }
383 else if (opc.id == RXO_add /* add #const, rsrc, rdst */
384 && opc.op[0].type == RX_Operand_Register
385 && opc.op[1].type == RX_Operand_Immediate
386 && opc.op[2].type == RX_Operand_Register)
387 {
388 int rdst = opc.op[0].reg;
389 int addend = opc.op[1].addend;
390 int rsrc = opc.op[2].reg;
391 reg[rdst] = pv_add_constant (reg[rsrc], addend);
392 /* Negative adjustments to the stack pointer or frame pointer
393 are (most likely) part of the prologue. */
394 if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0)
395 after_last_frame_setup_insn = next_pc;
396 }
397 else if (opc.id == RXO_mov
398 && opc.op[0].type == RX_Operand_Indirect
399 && opc.op[1].type == RX_Operand_Register
400 && opc.size == RX_Long
401 && (opc.op[0].reg == RX_SP_REGNUM
402 || opc.op[0].reg == RX_FP_REGNUM)
403 && (RX_R1_REGNUM <= opc.op[1].reg
404 && opc.op[1].reg <= RX_R4_REGNUM))
405 {
406 /* This moves an argument register to the stack. Don't
407 record it, but allow it to be a part of the prologue. */
408 }
409 else if (opc.id == RXO_branch
410 && opc.op[0].type == RX_Operand_Immediate
411 && next_pc < opc.op[0].addend)
412 {
413 /* When a loop appears as the first statement of a function
414 body, gcc 4.x will use a BRA instruction to branch to the
415 loop condition checking code. This BRA instruction is
416 marked as part of the prologue. We therefore set next_pc
417 to this branch target and also stop the prologue scan.
418 The instructions at and beyond the branch target should
419 no longer be associated with the prologue.
420
421 Note that we only consider forward branches here. We
422 presume that a forward branch is being used to skip over
423 a loop body.
424
425 A backwards branch is covered by the default case below.
426 If we were to encounter a backwards branch, that would
427 most likely mean that we've scanned through a loop body.
428 We definitely want to stop the prologue scan when this
429 happens and that is precisely what is done by the default
430 case below. */
431
432 after_last_frame_setup_insn = opc.op[0].addend;
433 break; /* Scan no further if we hit this case. */
434 }
435 else
436 {
437 /* Terminate the prologue scan. */
438 break;
439 }
440
441 pc = next_pc;
442 }
443
444 /* Is the frame size (offset, really) a known constant? */
445 if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM))
446 result->frame_size = reg[RX_SP_REGNUM].k;
447
448 /* Was the frame pointer initialized? */
449 if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM))
450 {
451 result->has_frame_ptr = 1;
452 result->frame_ptr_offset = reg[RX_FP_REGNUM].k;
453 }
454
455 /* Record where all the registers were saved. */
456 stack.scan (check_for_saved, (void *) result);
457
458 result->prologue_end = after_last_frame_setup_insn;
459 }
460
461
462 /* Implement the "skip_prologue" gdbarch method. */
463 static CORE_ADDR
464 rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
465 {
466 const char *name;
467 CORE_ADDR func_addr, func_end;
468 struct rx_prologue p;
469
470 /* Try to find the extent of the function that contains PC. */
471 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
472 return pc;
473
474 /* The frame type doesn't matter here, since we only care about
475 where the prologue ends. We'll use RX_FRAME_TYPE_NORMAL. */
476 rx_analyze_prologue (pc, func_end, RX_FRAME_TYPE_NORMAL, &p);
477 return p.prologue_end;
478 }
479
480 /* Given a frame described by THIS_FRAME, decode the prologue of its
481 associated function if there is not cache entry as specified by
482 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
483 return that struct as the value of this function. */
484
485 static struct rx_prologue *
486 rx_analyze_frame_prologue (struct frame_info *this_frame,
487 enum rx_frame_type frame_type,
488 void **this_prologue_cache)
489 {
490 if (!*this_prologue_cache)
491 {
492 CORE_ADDR func_start, stop_addr;
493
494 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue);
495
496 func_start = get_frame_func (this_frame);
497 stop_addr = get_frame_pc (this_frame);
498
499 /* If we couldn't find any function containing the PC, then
500 just initialize the prologue cache, but don't do anything. */
501 if (!func_start)
502 stop_addr = func_start;
503
504 rx_analyze_prologue (func_start, stop_addr, frame_type,
505 (struct rx_prologue *) *this_prologue_cache);
506 }
507
508 return (struct rx_prologue *) *this_prologue_cache;
509 }
510
511 /* Determine type of frame by scanning the function for a return
512 instruction. */
513
514 static enum rx_frame_type
515 rx_frame_type (struct frame_info *this_frame, void **this_cache)
516 {
517 const char *name;
518 CORE_ADDR pc, start_pc, lim_pc;
519 int bytes_read;
520 struct rx_get_opcode_byte_handle opcode_handle;
521 RX_Opcode_Decoded opc;
522
523 gdb_assert (this_cache != NULL);
524
525 /* If we have a cached value, return it. */
526
527 if (*this_cache != NULL)
528 {
529 struct rx_prologue *p = (struct rx_prologue *) *this_cache;
530
531 return p->frame_type;
532 }
533
534 /* No cached value; scan the function. The frame type is cached in
535 rx_analyze_prologue / rx_analyze_frame_prologue. */
536
537 pc = get_frame_pc (this_frame);
538
539 /* Attempt to find the last address in the function. If it cannot
540 be determined, set the limit to be a short ways past the frame's
541 pc. */
542 if (!find_pc_partial_function (pc, &name, &start_pc, &lim_pc))
543 lim_pc = pc + 20;
544
545 while (pc < lim_pc)
546 {
547 opcode_handle.pc = pc;
548 bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
549 &opcode_handle);
550
551 if (bytes_read <= 0 || opc.id == RXO_rts)
552 return RX_FRAME_TYPE_NORMAL;
553 else if (opc.id == RXO_rtfi)
554 return RX_FRAME_TYPE_FAST_INTERRUPT;
555 else if (opc.id == RXO_rte)
556 return RX_FRAME_TYPE_EXCEPTION;
557
558 pc += bytes_read;
559 }
560
561 return RX_FRAME_TYPE_NORMAL;
562 }
563
564
565 /* Given the next frame and a prologue cache, return this frame's
566 base. */
567
568 static CORE_ADDR
569 rx_frame_base (struct frame_info *this_frame, void **this_cache)
570 {
571 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
572 struct rx_prologue *p
573 = rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
574
575 /* In functions that use alloca, the distance between the stack
576 pointer and the frame base varies dynamically, so we can't use
577 the SP plus static information like prologue analysis to find the
578 frame base. However, such functions must have a frame pointer,
579 to be able to restore the SP on exit. So whenever we do have a
580 frame pointer, use that to find the base. */
581 if (p->has_frame_ptr)
582 {
583 CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM);
584 return fp - p->frame_ptr_offset;
585 }
586 else
587 {
588 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM);
589 return sp - p->frame_size;
590 }
591 }
592
593 /* Implement the "frame_this_id" method for unwinding frames. */
594
595 static void
596 rx_frame_this_id (struct frame_info *this_frame, void **this_cache,
597 struct frame_id *this_id)
598 {
599 *this_id = frame_id_build (rx_frame_base (this_frame, this_cache),
600 get_frame_func (this_frame));
601 }
602
603 /* Implement the "frame_prev_register" method for unwinding frames. */
604
605 static struct value *
606 rx_frame_prev_register (struct frame_info *this_frame, void **this_cache,
607 int regnum)
608 {
609 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
610 struct rx_prologue *p
611 = rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
612 CORE_ADDR frame_base = rx_frame_base (this_frame, this_cache);
613
614 if (regnum == RX_SP_REGNUM)
615 {
616 if (frame_type == RX_FRAME_TYPE_EXCEPTION)
617 {
618 struct value *psw_val;
619 CORE_ADDR psw;
620
621 psw_val = rx_frame_prev_register (this_frame, this_cache,
622 RX_PSW_REGNUM);
623 psw = extract_unsigned_integer (value_contents_all (psw_val), 4,
624 gdbarch_byte_order (
625 get_frame_arch (this_frame)));
626
627 if ((psw & 0x20000 /* U bit */) != 0)
628 return rx_frame_prev_register (this_frame, this_cache,
629 RX_USP_REGNUM);
630
631 /* Fall through for the case where U bit is zero. */
632 }
633
634 return frame_unwind_got_constant (this_frame, regnum, frame_base);
635 }
636
637 if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT)
638 {
639 if (regnum == RX_PC_REGNUM)
640 return rx_frame_prev_register (this_frame, this_cache,
641 RX_BPC_REGNUM);
642 if (regnum == RX_PSW_REGNUM)
643 return rx_frame_prev_register (this_frame, this_cache,
644 RX_BPSW_REGNUM);
645 }
646
647 /* If prologue analysis says we saved this register somewhere,
648 return a description of the stack slot holding it. */
649 if (p->reg_offset[regnum] != 1)
650 return frame_unwind_got_memory (this_frame, regnum,
651 frame_base + p->reg_offset[regnum]);
652
653 /* Otherwise, presume we haven't changed the value of this
654 register, and get it from the next frame. */
655 return frame_unwind_got_register (this_frame, regnum, regnum);
656 }
657
658 /* Return TRUE if the frame indicated by FRAME_TYPE is a normal frame. */
659
660 static int
661 normal_frame_p (enum rx_frame_type frame_type)
662 {
663 return (frame_type == RX_FRAME_TYPE_NORMAL);
664 }
665
666 /* Return TRUE if the frame indicated by FRAME_TYPE is an exception
667 frame. */
668
669 static int
670 exception_frame_p (enum rx_frame_type frame_type)
671 {
672 return (frame_type == RX_FRAME_TYPE_EXCEPTION
673 || frame_type == RX_FRAME_TYPE_FAST_INTERRUPT);
674 }
675
676 /* Common code used by both normal and exception frame sniffers. */
677
678 static int
679 rx_frame_sniffer_common (const struct frame_unwind *self,
680 struct frame_info *this_frame,
681 void **this_cache,
682 int (*sniff_p)(enum rx_frame_type) )
683 {
684 gdb_assert (this_cache != NULL);
685
686 if (*this_cache == NULL)
687 {
688 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
689
690 if (sniff_p (frame_type))
691 {
692 /* The call below will fill in the cache, including the frame
693 type. */
694 (void) rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
695
696 return 1;
697 }
698 else
699 return 0;
700 }
701 else
702 {
703 struct rx_prologue *p = (struct rx_prologue *) *this_cache;
704
705 return sniff_p (p->frame_type);
706 }
707 }
708
709 /* Frame sniffer for normal (non-exception) frames. */
710
711 static int
712 rx_frame_sniffer (const struct frame_unwind *self,
713 struct frame_info *this_frame,
714 void **this_cache)
715 {
716 return rx_frame_sniffer_common (self, this_frame, this_cache,
717 normal_frame_p);
718 }
719
720 /* Frame sniffer for exception frames. */
721
722 static int
723 rx_exception_sniffer (const struct frame_unwind *self,
724 struct frame_info *this_frame,
725 void **this_cache)
726 {
727 return rx_frame_sniffer_common (self, this_frame, this_cache,
728 exception_frame_p);
729 }
730
731 /* Data structure for normal code using instruction-based prologue
732 analyzer. */
733
734 static const struct frame_unwind rx_frame_unwind = {
735 NORMAL_FRAME,
736 default_frame_unwind_stop_reason,
737 rx_frame_this_id,
738 rx_frame_prev_register,
739 NULL,
740 rx_frame_sniffer
741 };
742
743 /* Data structure for exception code using instruction-based prologue
744 analyzer. */
745
746 static const struct frame_unwind rx_exception_unwind = {
747 /* SIGTRAMP_FRAME could be used here, but backtraces are less informative. */
748 NORMAL_FRAME,
749 default_frame_unwind_stop_reason,
750 rx_frame_this_id,
751 rx_frame_prev_register,
752 NULL,
753 rx_exception_sniffer
754 };
755
756 /* Implement the "unwind_pc" gdbarch method. */
757 static CORE_ADDR
758 rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
759 {
760 ULONGEST pc;
761
762 pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM);
763 return pc;
764 }
765
766 /* Implement the "unwind_sp" gdbarch method. */
767 static CORE_ADDR
768 rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
769 {
770 ULONGEST sp;
771
772 sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM);
773 return sp;
774 }
775
776 /* Implement the "dummy_id" gdbarch method. */
777 static struct frame_id
778 rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
779 {
780 return
781 frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM),
782 get_frame_pc (this_frame));
783 }
784
785 /* Implement the "push_dummy_call" gdbarch method. */
786 static CORE_ADDR
787 rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
788 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
789 struct value **args, CORE_ADDR sp, int struct_return,
790 CORE_ADDR struct_addr)
791 {
792 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
793 int write_pass;
794 int sp_off = 0;
795 CORE_ADDR cfa;
796 int num_register_candidate_args;
797
798 struct type *func_type = value_type (function);
799
800 /* Dereference function pointer types. */
801 while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
802 func_type = TYPE_TARGET_TYPE (func_type);
803
804 /* The end result had better be a function or a method. */
805 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
806 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
807
808 /* Functions with a variable number of arguments have all of their
809 variable arguments and the last non-variable argument passed
810 on the stack.
811
812 Otherwise, we can pass up to four arguments on the stack.
813
814 Once computed, we leave this value alone. I.e. we don't update
815 it in case of a struct return going in a register or an argument
816 requiring multiple registers, etc. We rely instead on the value
817 of the ``arg_reg'' variable to get these other details correct. */
818
819 if (TYPE_VARARGS (func_type))
820 num_register_candidate_args = TYPE_NFIELDS (func_type) - 1;
821 else
822 num_register_candidate_args = 4;
823
824 /* We make two passes; the first does the stack allocation,
825 the second actually stores the arguments. */
826 for (write_pass = 0; write_pass <= 1; write_pass++)
827 {
828 int i;
829 int arg_reg = RX_R1_REGNUM;
830
831 if (write_pass)
832 sp = align_down (sp - sp_off, 4);
833 sp_off = 0;
834
835 if (struct_return)
836 {
837 struct type *return_type = TYPE_TARGET_TYPE (func_type);
838
839 gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT
840 || TYPE_CODE (func_type) == TYPE_CODE_UNION);
841
842 if (TYPE_LENGTH (return_type) > 16
843 || TYPE_LENGTH (return_type) % 4 != 0)
844 {
845 if (write_pass)
846 regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
847 struct_addr);
848 }
849 }
850
851 /* Push the arguments. */
852 for (i = 0; i < nargs; i++)
853 {
854 struct value *arg = args[i];
855 const gdb_byte *arg_bits = value_contents_all (arg);
856 struct type *arg_type = check_typedef (value_type (arg));
857 ULONGEST arg_size = TYPE_LENGTH (arg_type);
858
859 if (i == 0 && struct_addr != 0 && !struct_return
860 && TYPE_CODE (arg_type) == TYPE_CODE_PTR
861 && extract_unsigned_integer (arg_bits, 4,
862 byte_order) == struct_addr)
863 {
864 /* This argument represents the address at which C++ (and
865 possibly other languages) store their return value.
866 Put this value in R15. */
867 if (write_pass)
868 regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
869 struct_addr);
870 }
871 else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT
872 && TYPE_CODE (arg_type) != TYPE_CODE_UNION
873 && arg_size <= 8)
874 {
875 /* Argument is a scalar. */
876 if (arg_size == 8)
877 {
878 if (i < num_register_candidate_args
879 && arg_reg <= RX_R4_REGNUM - 1)
880 {
881 /* If argument registers are going to be used to pass
882 an 8 byte scalar, the ABI specifies that two registers
883 must be available. */
884 if (write_pass)
885 {
886 regcache_cooked_write_unsigned (regcache, arg_reg,
887 extract_unsigned_integer
888 (arg_bits, 4,
889 byte_order));
890 regcache_cooked_write_unsigned (regcache,
891 arg_reg + 1,
892 extract_unsigned_integer
893 (arg_bits + 4, 4,
894 byte_order));
895 }
896 arg_reg += 2;
897 }
898 else
899 {
900 sp_off = align_up (sp_off, 4);
901 /* Otherwise, pass the 8 byte scalar on the stack. */
902 if (write_pass)
903 write_memory (sp + sp_off, arg_bits, 8);
904 sp_off += 8;
905 }
906 }
907 else
908 {
909 ULONGEST u;
910
911 gdb_assert (arg_size <= 4);
912
913 u =
914 extract_unsigned_integer (arg_bits, arg_size, byte_order);
915
916 if (i < num_register_candidate_args
917 && arg_reg <= RX_R4_REGNUM)
918 {
919 if (write_pass)
920 regcache_cooked_write_unsigned (regcache, arg_reg, u);
921 arg_reg += 1;
922 }
923 else
924 {
925 int p_arg_size = 4;
926
927 if (TYPE_PROTOTYPED (func_type)
928 && i < TYPE_NFIELDS (func_type))
929 {
930 struct type *p_arg_type =
931 TYPE_FIELD_TYPE (func_type, i);
932 p_arg_size = TYPE_LENGTH (p_arg_type);
933 }
934
935 sp_off = align_up (sp_off, p_arg_size);
936
937 if (write_pass)
938 write_memory_unsigned_integer (sp + sp_off,
939 p_arg_size, byte_order,
940 u);
941 sp_off += p_arg_size;
942 }
943 }
944 }
945 else
946 {
947 /* Argument is a struct or union. Pass as much of the struct
948 in registers, if possible. Pass the rest on the stack. */
949 while (arg_size > 0)
950 {
951 if (i < num_register_candidate_args
952 && arg_reg <= RX_R4_REGNUM
953 && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1)
954 && arg_size % 4 == 0)
955 {
956 int len = std::min (arg_size, (ULONGEST) 4);
957
958 if (write_pass)
959 regcache_cooked_write_unsigned (regcache, arg_reg,
960 extract_unsigned_integer
961 (arg_bits, len,
962 byte_order));
963 arg_bits += len;
964 arg_size -= len;
965 arg_reg++;
966 }
967 else
968 {
969 sp_off = align_up (sp_off, 4);
970 if (write_pass)
971 write_memory (sp + sp_off, arg_bits, arg_size);
972 sp_off += align_up (arg_size, 4);
973 arg_size = 0;
974 }
975 }
976 }
977 }
978 }
979
980 /* Keep track of the stack address prior to pushing the return address.
981 This is the value that we'll return. */
982 cfa = sp;
983
984 /* Push the return address. */
985 sp = sp - 4;
986 write_memory_unsigned_integer (sp, 4, byte_order, bp_addr);
987
988 /* Update the stack pointer. */
989 regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp);
990
991 return cfa;
992 }
993
994 /* Implement the "return_value" gdbarch method. */
995 static enum return_value_convention
996 rx_return_value (struct gdbarch *gdbarch,
997 struct value *function,
998 struct type *valtype,
999 struct regcache *regcache,
1000 gdb_byte *readbuf, const gdb_byte *writebuf)
1001 {
1002 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1003 ULONGEST valtype_len = TYPE_LENGTH (valtype);
1004
1005 if (TYPE_LENGTH (valtype) > 16
1006 || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1007 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
1008 && TYPE_LENGTH (valtype) % 4 != 0))
1009 return RETURN_VALUE_STRUCT_CONVENTION;
1010
1011 if (readbuf)
1012 {
1013 ULONGEST u;
1014 int argreg = RX_R1_REGNUM;
1015 int offset = 0;
1016
1017 while (valtype_len > 0)
1018 {
1019 int len = std::min (valtype_len, (ULONGEST) 4);
1020
1021 regcache_cooked_read_unsigned (regcache, argreg, &u);
1022 store_unsigned_integer (readbuf + offset, len, byte_order, u);
1023 valtype_len -= len;
1024 offset += len;
1025 argreg++;
1026 }
1027 }
1028
1029 if (writebuf)
1030 {
1031 ULONGEST u;
1032 int argreg = RX_R1_REGNUM;
1033 int offset = 0;
1034
1035 while (valtype_len > 0)
1036 {
1037 int len = std::min (valtype_len, (ULONGEST) 4);
1038
1039 u = extract_unsigned_integer (writebuf + offset, len, byte_order);
1040 regcache_cooked_write_unsigned (regcache, argreg, u);
1041 valtype_len -= len;
1042 offset += len;
1043 argreg++;
1044 }
1045 }
1046
1047 return RETURN_VALUE_REGISTER_CONVENTION;
1048 }
1049
1050 constexpr gdb_byte rx_break_insn[] = { 0x00 };
1051
1052 typedef BP_MANIPULATION (rx_break_insn) rx_breakpoint;
1053
1054 /* Implement the dwarf_reg_to_regnum" gdbarch method. */
1055
1056 static int
1057 rx_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1058 {
1059 if (0 <= reg && reg <= 15)
1060 return reg;
1061 else if (reg == 16)
1062 return RX_PSW_REGNUM;
1063 else if (reg == 17)
1064 return RX_PC_REGNUM;
1065 else
1066 return -1;
1067 }
1068
1069 /* Allocate and initialize a gdbarch object. */
1070 static struct gdbarch *
1071 rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1072 {
1073 struct gdbarch *gdbarch;
1074 struct gdbarch_tdep *tdep;
1075 int elf_flags;
1076
1077 /* Extract the elf_flags if available. */
1078 if (info.abfd != NULL
1079 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1080 elf_flags = elf_elfheader (info.abfd)->e_flags;
1081 else
1082 elf_flags = 0;
1083
1084
1085 /* Try to find the architecture in the list of already defined
1086 architectures. */
1087 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1088 arches != NULL;
1089 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1090 {
1091 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1092 continue;
1093
1094 return arches->gdbarch;
1095 }
1096
1097 /* None found, create a new architecture from the information
1098 provided. */
1099 tdep = XCNEW (struct gdbarch_tdep);
1100 gdbarch = gdbarch_alloc (&info, tdep);
1101 tdep->elf_flags = elf_flags;
1102
1103 set_gdbarch_num_regs (gdbarch, RX_NUM_REGS);
1104 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1105 set_gdbarch_register_name (gdbarch, rx_register_name);
1106 set_gdbarch_register_type (gdbarch, rx_register_type);
1107 set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM);
1108 set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM);
1109 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1110 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1111 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rx_breakpoint::kind_from_pc);
1112 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rx_breakpoint::bp_from_kind);
1113 set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue);
1114
1115 set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc);
1116 set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp);
1117
1118 /* Target builtin data types. */
1119 set_gdbarch_char_signed (gdbarch, 0);
1120 set_gdbarch_short_bit (gdbarch, 16);
1121 set_gdbarch_int_bit (gdbarch, 32);
1122 set_gdbarch_long_bit (gdbarch, 32);
1123 set_gdbarch_long_long_bit (gdbarch, 64);
1124 set_gdbarch_ptr_bit (gdbarch, 32);
1125 set_gdbarch_float_bit (gdbarch, 32);
1126 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1127 if (elf_flags & E_FLAG_RX_64BIT_DOUBLES)
1128 {
1129 set_gdbarch_double_bit (gdbarch, 64);
1130 set_gdbarch_long_double_bit (gdbarch, 64);
1131 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1132 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1133 }
1134 else
1135 {
1136 set_gdbarch_double_bit (gdbarch, 32);
1137 set_gdbarch_long_double_bit (gdbarch, 32);
1138 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1139 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1140 }
1141
1142 /* DWARF register mapping. */
1143 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rx_dwarf_reg_to_regnum);
1144
1145 /* Frame unwinding. */
1146 frame_unwind_append_unwinder (gdbarch, &rx_exception_unwind);
1147 dwarf2_append_unwinders (gdbarch);
1148 frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind);
1149
1150 /* Methods for saving / extracting a dummy frame's ID.
1151 The ID's stack address must match the SP value returned by
1152 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1153 set_gdbarch_dummy_id (gdbarch, rx_dummy_id);
1154 set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call);
1155 set_gdbarch_return_value (gdbarch, rx_return_value);
1156
1157 /* Virtual tables. */
1158 set_gdbarch_vbit_in_delta (gdbarch, 1);
1159
1160 return gdbarch;
1161 }
1162
1163 /* Register the above initialization routine. */
1164
1165 void
1166 _initialize_rx_tdep (void)
1167 {
1168 register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init);
1169 }
This page took 0.053792 seconds and 5 git commands to generate.