s/Linux/.../
[deliverable/binutils-gdb.git] / gdb / s390-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 2001, 2002 Free Software Foundation, Inc.
4
5 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
6 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 #define S390_TDEP /* for special macros in tm-s390.h */
26 #include <defs.h>
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "target.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "tm.h"
37 #include "../bfd/bfd.h"
38 #include "floatformat.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43
44
45
46 /* Number of bytes of storage in the actual machine representation
47 for register N. */
48 int
49 s390_register_raw_size (int reg_nr)
50 {
51 if (S390_FP0_REGNUM <= reg_nr
52 && reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS)
53 return S390_FPR_SIZE;
54 else
55 return 4;
56 }
57
58 int
59 s390x_register_raw_size (int reg_nr)
60 {
61 return (reg_nr == S390_FPC_REGNUM)
62 || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
63 }
64
65 int
66 s390_cannot_fetch_register (int regno)
67 {
68 return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
69 (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
70 }
71
72 int
73 s390_register_byte (int reg_nr)
74 {
75 if (reg_nr <= S390_GP_LAST_REGNUM)
76 return reg_nr * S390_GPR_SIZE;
77 if (reg_nr <= S390_LAST_ACR)
78 return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
79 if (reg_nr <= S390_LAST_CR)
80 return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
81 if (reg_nr == S390_FPC_REGNUM)
82 return S390_FPC_OFFSET;
83 else
84 return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
85 }
86
87 #ifndef GDBSERVER
88 #define S390_MAX_INSTR_SIZE (6)
89 #define S390_SYSCALL_OPCODE (0x0a)
90 #define S390_SYSCALL_SIZE (2)
91 #define S390_SIGCONTEXT_SREGS_OFFSET (8)
92 #define S390X_SIGCONTEXT_SREGS_OFFSET (8)
93 #define S390_SIGREGS_FP0_OFFSET (144)
94 #define S390X_SIGREGS_FP0_OFFSET (216)
95 #define S390_UC_MCONTEXT_OFFSET (256)
96 #define S390X_UC_MCONTEXT_OFFSET (344)
97 #define S390_STACK_FRAME_OVERHEAD (GDB_TARGET_IS_ESAME ? 160:96)
98 #define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96)
99 #define s390_NR_sigreturn 119
100 #define s390_NR_rt_sigreturn 173
101
102
103
104 struct frame_extra_info
105 {
106 int initialised;
107 int good_prologue;
108 CORE_ADDR function_start;
109 CORE_ADDR skip_prologue_function_start;
110 CORE_ADDR saved_pc_valid;
111 CORE_ADDR saved_pc;
112 CORE_ADDR sig_fixed_saved_pc_valid;
113 CORE_ADDR sig_fixed_saved_pc;
114 CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */
115 CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */
116 CORE_ADDR sigcontext;
117 };
118
119
120 static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);
121
122 int
123 s390_readinstruction (bfd_byte instr[], CORE_ADDR at,
124 struct disassemble_info *info)
125 {
126 int instrlen;
127
128 static int s390_instrlen[] = {
129 2,
130 4,
131 4,
132 6
133 };
134 if ((*info->read_memory_func) (at, &instr[0], 2, info))
135 return -1;
136 instrlen = s390_instrlen[instr[0] >> 6];
137 if (instrlen > 2)
138 {
139 if ((*info->read_memory_func) (at + 2, &instr[2], instrlen - 2, info))
140 return -1;
141 }
142 return instrlen;
143 }
144
145 static void
146 s390_memset_extra_info (struct frame_extra_info *fextra_info)
147 {
148 memset (fextra_info, 0, sizeof (struct frame_extra_info));
149 }
150
151
152
153 char *
154 s390_register_name (int reg_nr)
155 {
156 static char *register_names[] = {
157 "pswm", "pswa",
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
161 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
162 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
163 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
164 "fpc",
165 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
166 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
167 };
168
169 if (reg_nr <= S390_LAST_REGNUM)
170 return register_names[reg_nr];
171 else
172 return NULL;
173 }
174
175
176
177
178 int
179 s390_stab_reg_to_regnum (int regno)
180 {
181 return regno >= 64 ? S390_PSWM_REGNUM - 64 :
182 regno >= 48 ? S390_FIRST_ACR - 48 :
183 regno >= 32 ? S390_FIRST_CR - 32 :
184 regno <= 15 ? (regno + 2) :
185 S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
186 (((regno - 16) & 4) >> 2);
187 }
188
189
190 /* Return true if REGIDX is the number of a register used to pass
191 arguments, false otherwise. */
192 static int
193 is_arg_reg (int regidx)
194 {
195 return 2 <= regidx && regidx <= 6;
196 }
197
198
199 /* s390_get_frame_info based on Hartmuts
200 prologue definition in
201 gcc-2.8.1/config/l390/linux.c
202
203 It reads one instruction at a time & based on whether
204 it looks like prologue code or not it makes a decision on
205 whether the prologue is over, there are various state machines
206 in the code to determine if the prologue code is possilby valid.
207
208 This is done to hopefully allow the code survive minor revs of
209 calling conventions.
210
211 */
212
213 int
214 s390_get_frame_info (CORE_ADDR pc, struct frame_extra_info *fextra_info,
215 struct frame_info *fi, int init_extra_info)
216 {
217 #define CONST_POOL_REGIDX 13
218 #define GOT_REGIDX 12
219 bfd_byte instr[S390_MAX_INSTR_SIZE];
220 CORE_ADDR test_pc = pc, test_pc2;
221 CORE_ADDR orig_sp = 0, save_reg_addr = 0, *saved_regs = NULL;
222 int valid_prologue, good_prologue = 0;
223 int gprs_saved[S390_NUM_GPRS];
224 int fprs_saved[S390_NUM_FPRS];
225 int regidx, instrlen;
226 int const_pool_state;
227 int varargs_state;
228 int loop_cnt, gdb_gpr_store, gdb_fpr_store;
229 int offset, expected_offset;
230 int err = 0;
231 disassemble_info info;
232
233 /* Have we seen an instruction initializing the frame pointer yet?
234 If we've seen an `lr %r11, %r15', then frame_pointer_found is
235 non-zero, and frame_pointer_regidx == 11. Otherwise,
236 frame_pointer_found is zero and frame_pointer_regidx is 15,
237 indicating that we're using the stack pointer as our frame
238 pointer. */
239 int frame_pointer_found = 0;
240 int frame_pointer_regidx = 0xf;
241
242 /* What we've seen so far regarding saving the back chain link:
243 0 -- nothing yet; sp still has the same value it had at the entry
244 point. Since not all functions allocate frames, this is a
245 valid state for the prologue to finish in.
246 1 -- We've saved the original sp in some register other than the
247 frame pointer (hard-coded to be %r11, yuck).
248 save_link_regidx is the register we saved it in.
249 2 -- We've seen the initial `bras' instruction of the sequence for
250 reserving more than 32k of stack:
251 bras %rX, .+8
252 .long N
253 s %r15, 0(%rX)
254 where %rX is not the constant pool register.
255 subtract_sp_regidx is %rX, and fextra_info->stack_bought is N.
256 3 -- We've reserved space for a new stack frame. This means we
257 either saw a simple `ahi %r15,-N' in state 1, or the final
258 `s %r15, ...' in state 2.
259 4 -- The frame and link are now fully initialized. We've
260 reserved space for the new stack frame, and stored the old
261 stack pointer captured in the back chain pointer field. */
262 int save_link_state = 0;
263 int save_link_regidx, subtract_sp_regidx;
264
265 /* What we've seen so far regarding r12 --- the GOT (Global Offset
266 Table) pointer. We expect to see `l %r12, N(%r13)', which loads
267 r12 with the offset from the constant pool to the GOT, and then
268 an `ar %r12, %r13', which adds the constant pool address,
269 yielding the GOT's address. Here's what got_state means:
270 0 -- seen nothing
271 1 -- seen `l %r12, N(%r13)', but no `ar'
272 2 -- seen load and add, so GOT pointer is totally initialized
273 When got_state is 1, then got_load_addr is the address of the
274 load instruction, and got_load_len is the length of that
275 instruction. */
276 int got_state= 0;
277 CORE_ADDR got_load_addr = 0, got_load_len = 0;
278
279 const_pool_state = varargs_state = 0;
280
281 memset (gprs_saved, 0, sizeof (gprs_saved));
282 memset (fprs_saved, 0, sizeof (fprs_saved));
283 info.read_memory_func = dis_asm_read_memory;
284
285 save_link_regidx = subtract_sp_regidx = 0;
286 if (fextra_info)
287 {
288 if (fi && fi->frame)
289 {
290 orig_sp = fi->frame;
291 if (! init_extra_info && fextra_info->initialised)
292 orig_sp += fextra_info->stack_bought;
293 saved_regs = fi->saved_regs;
294 }
295 if (init_extra_info || !fextra_info->initialised)
296 {
297 s390_memset_extra_info (fextra_info);
298 fextra_info->function_start = pc;
299 fextra_info->initialised = 1;
300 }
301 }
302 instrlen = 0;
303 do
304 {
305 valid_prologue = 0;
306 test_pc += instrlen;
307 /* add the previous instruction len */
308 instrlen = s390_readinstruction (instr, test_pc, &info);
309 if (instrlen < 0)
310 {
311 good_prologue = 0;
312 err = -1;
313 break;
314 }
315 /* We probably are in a glibc syscall */
316 if (instr[0] == S390_SYSCALL_OPCODE && test_pc == pc)
317 {
318 good_prologue = 1;
319 if (saved_regs && fextra_info && fi->next && fi->next->extra_info
320 && fi->next->extra_info->sigcontext)
321 {
322 /* We are backtracing from a signal handler */
323 save_reg_addr = fi->next->extra_info->sigcontext +
324 REGISTER_BYTE (S390_GP0_REGNUM);
325 for (regidx = 0; regidx < S390_NUM_GPRS; regidx++)
326 {
327 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
328 save_reg_addr += S390_GPR_SIZE;
329 }
330 save_reg_addr = fi->next->extra_info->sigcontext +
331 (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
332 S390_SIGREGS_FP0_OFFSET);
333 for (regidx = 0; regidx < S390_NUM_FPRS; regidx++)
334 {
335 saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
336 save_reg_addr += S390_FPR_SIZE;
337 }
338 }
339 break;
340 }
341 if (save_link_state == 0)
342 {
343 /* check for a stack relative STMG or STM */
344 if (((GDB_TARGET_IS_ESAME &&
345 ((instr[0] == 0xeb) && (instr[5] == 0x24))) ||
346 (instr[0] == 0x90)) && ((instr[2] >> 4) == 0xf))
347 {
348 regidx = (instr[1] >> 4);
349 if (regidx < 6)
350 varargs_state = 1;
351 offset = ((instr[2] & 0xf) << 8) + instr[3];
352 expected_offset =
353 S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
354 if (offset != expected_offset)
355 {
356 good_prologue = 0;
357 break;
358 }
359 if (saved_regs)
360 save_reg_addr = orig_sp + offset;
361 for (; regidx <= (instr[1] & 0xf); regidx++)
362 {
363 if (gprs_saved[regidx])
364 {
365 good_prologue = 0;
366 break;
367 }
368 good_prologue = 1;
369 gprs_saved[regidx] = 1;
370 if (saved_regs)
371 {
372 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
373 save_reg_addr += S390_GPR_SIZE;
374 }
375 }
376 valid_prologue = 1;
377 continue;
378 }
379 }
380 /* check for a stack relative STG or ST */
381 if ((save_link_state == 0 || save_link_state == 3) &&
382 ((GDB_TARGET_IS_ESAME &&
383 ((instr[0] == 0xe3) && (instr[5] == 0x24))) ||
384 (instr[0] == 0x50)) && ((instr[2] >> 4) == 0xf))
385 {
386 regidx = instr[1] >> 4;
387 offset = ((instr[2] & 0xf) << 8) + instr[3];
388 if (offset == 0)
389 {
390 if (save_link_state == 3 && regidx == save_link_regidx)
391 {
392 save_link_state = 4;
393 valid_prologue = 1;
394 continue;
395 }
396 else
397 break;
398 }
399 if (regidx < 6)
400 varargs_state = 1;
401 expected_offset =
402 S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
403 if (offset != expected_offset)
404 {
405 good_prologue = 0;
406 break;
407 }
408 if (gprs_saved[regidx])
409 {
410 good_prologue = 0;
411 break;
412 }
413 good_prologue = 1;
414 gprs_saved[regidx] = 1;
415 if (saved_regs)
416 {
417 save_reg_addr = orig_sp + offset;
418 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
419 }
420 valid_prologue = 1;
421 continue;
422 }
423
424 /* Check for an fp-relative STG, ST, or STM. This is probably
425 spilling an argument from a register out into a stack slot.
426 This could be a user instruction, but if we haven't included
427 any other suspicious instructions in the prologue, this
428 could only be an initializing store, which isn't too bad to
429 skip. The consequences of not including arg-to-stack spills
430 are more serious, though --- you don't see the proper values
431 of the arguments. */
432 if ((save_link_state == 3 || save_link_state == 4)
433 && ((instr[0] == 0x50 /* st %rA, D(%rX,%rB) */
434 && (instr[1] & 0xf) == 0 /* %rX is zero, no index reg */
435 && is_arg_reg ((instr[1] >> 4) & 0xf)
436 && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)
437 || (instr[0] == 0x90 /* stm %rA, %rB, D(%rC) */
438 && is_arg_reg ((instr[1] >> 4) & 0xf)
439 && is_arg_reg (instr[1] & 0xf)
440 && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)))
441 {
442 valid_prologue = 1;
443 continue;
444 }
445
446 /* check for STD */
447 if (instr[0] == 0x60 && (instr[2] >> 4) == 0xf)
448 {
449 regidx = instr[1] >> 4;
450 if (regidx == 0 || regidx == 2)
451 varargs_state = 1;
452 if (fprs_saved[regidx])
453 {
454 good_prologue = 0;
455 break;
456 }
457 fprs_saved[regidx] = 1;
458 if (saved_regs)
459 {
460 save_reg_addr = orig_sp + (((instr[2] & 0xf) << 8) + instr[3]);
461 saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
462 }
463 valid_prologue = 1;
464 continue;
465 }
466
467
468 if (const_pool_state == 0)
469 {
470
471 if (GDB_TARGET_IS_ESAME)
472 {
473 /* Check for larl CONST_POOL_REGIDX,offset on ESAME */
474 if ((instr[0] == 0xc0)
475 && (instr[1] == (CONST_POOL_REGIDX << 4)))
476 {
477 const_pool_state = 2;
478 valid_prologue = 1;
479 continue;
480 }
481 }
482 else
483 {
484 /* Check for BASR gpr13,gpr0 used to load constant pool pointer to r13 in old compiler */
485 if (instr[0] == 0xd && (instr[1] & 0xf) == 0
486 && ((instr[1] >> 4) == CONST_POOL_REGIDX))
487 {
488 const_pool_state = 1;
489 valid_prologue = 1;
490 continue;
491 }
492 }
493 /* Check for new fangled bras %r13,newpc to load new constant pool */
494 /* embedded in code, older pre abi compilers also emitted this stuff. */
495 if ((instr[0] == 0xa7) && ((instr[1] & 0xf) == 0x5) &&
496 ((instr[1] >> 4) == CONST_POOL_REGIDX)
497 && ((instr[2] & 0x80) == 0))
498 {
499 const_pool_state = 2;
500 test_pc +=
501 (((((instr[2] & 0xf) << 8) + instr[3]) << 1) - instrlen);
502 valid_prologue = 1;
503 continue;
504 }
505 }
506 /* Check for AGHI or AHI CONST_POOL_REGIDX,val */
507 if (const_pool_state == 1 && (instr[0] == 0xa7) &&
508 ((GDB_TARGET_IS_ESAME &&
509 (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xb))) ||
510 (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xa))))
511 {
512 const_pool_state = 2;
513 valid_prologue = 1;
514 continue;
515 }
516 /* Check for LGR or LR gprx,15 */
517 if ((GDB_TARGET_IS_ESAME &&
518 instr[0] == 0xb9 && instr[1] == 0x04 && (instr[3] & 0xf) == 0xf) ||
519 (instr[0] == 0x18 && (instr[1] & 0xf) == 0xf))
520 {
521 if (GDB_TARGET_IS_ESAME)
522 regidx = instr[3] >> 4;
523 else
524 regidx = instr[1] >> 4;
525 if (save_link_state == 0 && regidx != 0xb)
526 {
527 /* Almost defintely code for
528 decrementing the stack pointer
529 ( i.e. a non leaf function
530 or else leaf with locals ) */
531 save_link_regidx = regidx;
532 save_link_state = 1;
533 valid_prologue = 1;
534 continue;
535 }
536 /* We use this frame pointer for alloca
537 unfortunately we need to assume its gpr11
538 otherwise we would need a smarter prologue
539 walker. */
540 if (!frame_pointer_found && regidx == 0xb)
541 {
542 frame_pointer_regidx = 0xb;
543 frame_pointer_found = 1;
544 if (fextra_info)
545 fextra_info->frame_pointer_saved_pc = test_pc;
546 valid_prologue = 1;
547 continue;
548 }
549 }
550 /* Check for AHI or AGHI gpr15,val */
551 if (save_link_state == 1 && (instr[0] == 0xa7) &&
552 ((GDB_TARGET_IS_ESAME && (instr[1] == 0xfb)) || (instr[1] == 0xfa)))
553 {
554 if (fextra_info)
555 fextra_info->stack_bought =
556 -extract_signed_integer (&instr[2], 2);
557 save_link_state = 3;
558 valid_prologue = 1;
559 continue;
560 }
561 /* Alternatively check for the complex construction for
562 buying more than 32k of stack
563 BRAS gprx,.+8
564 long val
565 s %r15,0(%gprx) gprx currently r1 */
566 if ((save_link_state == 1) && (instr[0] == 0xa7)
567 && ((instr[1] & 0xf) == 0x5) && (instr[2] == 0)
568 && (instr[3] == 0x4) && ((instr[1] >> 4) != CONST_POOL_REGIDX))
569 {
570 subtract_sp_regidx = instr[1] >> 4;
571 save_link_state = 2;
572 if (fextra_info)
573 target_read_memory (test_pc + instrlen,
574 (char *) &fextra_info->stack_bought,
575 sizeof (fextra_info->stack_bought));
576 test_pc += 4;
577 valid_prologue = 1;
578 continue;
579 }
580 if (save_link_state == 2 && instr[0] == 0x5b
581 && instr[1] == 0xf0 &&
582 instr[2] == (subtract_sp_regidx << 4) && instr[3] == 0)
583 {
584 save_link_state = 3;
585 valid_prologue = 1;
586 continue;
587 }
588 /* check for LA gprx,offset(15) used for varargs */
589 if ((instr[0] == 0x41) && ((instr[2] >> 4) == 0xf) &&
590 ((instr[1] & 0xf) == 0))
591 {
592 /* some code uses gpr7 to point to outgoing args */
593 if (((instr[1] >> 4) == 7) && (save_link_state == 0) &&
594 ((instr[2] & 0xf) == 0)
595 && (instr[3] == S390_STACK_FRAME_OVERHEAD))
596 {
597 valid_prologue = 1;
598 continue;
599 }
600 if (varargs_state == 1)
601 {
602 varargs_state = 2;
603 valid_prologue = 1;
604 continue;
605 }
606 }
607 /* Check for a GOT load */
608
609 if (GDB_TARGET_IS_ESAME)
610 {
611 /* Check for larl GOT_REGIDX, on ESAME */
612 if ((got_state == 0) && (instr[0] == 0xc0)
613 && (instr[1] == (GOT_REGIDX << 4)))
614 {
615 got_state = 2;
616 valid_prologue = 1;
617 continue;
618 }
619 }
620 else
621 {
622 /* check for l GOT_REGIDX,x(CONST_POOL_REGIDX) */
623 if (got_state == 0 && const_pool_state == 2 && instr[0] == 0x58
624 && (instr[2] == (CONST_POOL_REGIDX << 4))
625 && ((instr[1] >> 4) == GOT_REGIDX))
626 {
627 got_state = 1;
628 got_load_addr = test_pc;
629 got_load_len = instrlen;
630 valid_prologue = 1;
631 continue;
632 }
633 /* Check for subsequent ar got_regidx,basr_regidx */
634 if (got_state == 1 && instr[0] == 0x1a &&
635 instr[1] == ((GOT_REGIDX << 4) | CONST_POOL_REGIDX))
636 {
637 got_state = 2;
638 valid_prologue = 1;
639 continue;
640 }
641 }
642 }
643 while (valid_prologue && good_prologue);
644 if (good_prologue)
645 {
646 /* If this function doesn't reference the global offset table,
647 then the compiler may use r12 for other things. If the last
648 instruction we saw was a load of r12 from the constant pool,
649 with no subsequent add to make the address PC-relative, then
650 the load was probably a genuine body instruction; don't treat
651 it as part of the prologue. */
652 if (got_state == 1
653 && got_load_addr + got_load_len == test_pc)
654 {
655 test_pc = got_load_addr;
656 instrlen = got_load_len;
657 }
658
659 good_prologue = (((const_pool_state == 0) || (const_pool_state == 2)) &&
660 ((save_link_state == 0) || (save_link_state == 4)) &&
661 ((varargs_state == 0) || (varargs_state == 2)));
662 }
663 if (fextra_info)
664 {
665 fextra_info->good_prologue = good_prologue;
666 fextra_info->skip_prologue_function_start =
667 (good_prologue ? test_pc : pc);
668 }
669 if (saved_regs)
670 /* The SP's element of the saved_regs array holds the old SP,
671 not the address at which it is saved. */
672 saved_regs[S390_SP_REGNUM] = orig_sp;
673 return err;
674 }
675
676
677 int
678 s390_check_function_end (CORE_ADDR pc)
679 {
680 bfd_byte instr[S390_MAX_INSTR_SIZE];
681 disassemble_info info;
682 int regidx, instrlen;
683
684 info.read_memory_func = dis_asm_read_memory;
685 instrlen = s390_readinstruction (instr, pc, &info);
686 if (instrlen < 0)
687 return -1;
688 /* check for BR */
689 if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
690 return 0;
691 regidx = instr[1] & 0xf;
692 /* Check for LMG or LG */
693 instrlen =
694 s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4), &info);
695 if (instrlen < 0)
696 return -1;
697 if (GDB_TARGET_IS_ESAME)
698 {
699
700 if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
701 return 0;
702 }
703 else if (instrlen != 4 || instr[0] != 0x98)
704 {
705 return 0;
706 }
707 if ((instr[2] >> 4) != 0xf)
708 return 0;
709 if (regidx == 14)
710 return 1;
711 instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8),
712 &info);
713 if (instrlen < 0)
714 return -1;
715 if (GDB_TARGET_IS_ESAME)
716 {
717 /* Check for LG */
718 if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
719 return 0;
720 }
721 else
722 {
723 /* Check for L */
724 if (instrlen != 4 || instr[0] != 0x58)
725 return 0;
726 }
727 if (instr[2] >> 4 != 0xf)
728 return 0;
729 if (instr[1] >> 4 != regidx)
730 return 0;
731 return 1;
732 }
733
734 static CORE_ADDR
735 s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
736 {
737 CORE_ADDR function_start, test_function_start;
738 int loop_cnt, err, function_end;
739 struct frame_extra_info fextra_info;
740 function_start = get_pc_function_start (pc);
741
742 if (function_start == 0)
743 {
744 test_function_start = pc;
745 if (test_function_start & 1)
746 return 0; /* This has to be bogus */
747 loop_cnt = 0;
748 do
749 {
750
751 err =
752 s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
753 loop_cnt++;
754 test_function_start -= 2;
755 function_end = s390_check_function_end (test_function_start);
756 }
757 while (!(function_end == 1 || err || loop_cnt >= 4096 ||
758 (fextra_info.good_prologue)));
759 if (fextra_info.good_prologue)
760 function_start = fextra_info.function_start;
761 else if (function_end == 1)
762 function_start = test_function_start;
763 }
764 return function_start;
765 }
766
767
768
769 CORE_ADDR
770 s390_function_start (struct frame_info *fi)
771 {
772 CORE_ADDR function_start = 0;
773
774 if (fi->extra_info && fi->extra_info->initialised)
775 function_start = fi->extra_info->function_start;
776 else if (fi->pc)
777 function_start = get_pc_function_start (fi->pc);
778 return function_start;
779 }
780
781
782
783
784 int
785 s390_frameless_function_invocation (struct frame_info *fi)
786 {
787 struct frame_extra_info fextra_info, *fextra_info_ptr;
788 int frameless = 0;
789
790 if (fi->next == NULL) /* no may be frameless */
791 {
792 if (fi->extra_info)
793 fextra_info_ptr = fi->extra_info;
794 else
795 {
796 fextra_info_ptr = &fextra_info;
797 s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
798 fextra_info_ptr, fi, 1);
799 }
800 frameless = ((fextra_info_ptr->stack_bought == 0));
801 }
802 return frameless;
803
804 }
805
806
807 static int
808 s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
809 CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
810 {
811 bfd_byte instr[S390_MAX_INSTR_SIZE];
812 disassemble_info info;
813 int instrlen;
814 CORE_ADDR scontext;
815 int retval = 0;
816 CORE_ADDR orig_sp;
817 CORE_ADDR temp_sregs;
818
819 scontext = temp_sregs = 0;
820
821 info.read_memory_func = dis_asm_read_memory;
822 instrlen = s390_readinstruction (instr, pc, &info);
823 if (sigcaller_pc)
824 *sigcaller_pc = 0;
825 if (((instrlen == S390_SYSCALL_SIZE) &&
826 (instr[0] == S390_SYSCALL_OPCODE)) &&
827 ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
828 {
829 if (sighandler_fi)
830 {
831 if (s390_frameless_function_invocation (sighandler_fi))
832 orig_sp = sighandler_fi->frame;
833 else
834 orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
835 read_memory_integer (sighandler_fi->
836 frame,
837 S390_GPR_SIZE));
838 if (orig_sp && sigcaller_pc)
839 {
840 scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
841 if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
842 {
843 /* We got a new style rt_signal */
844 /* get address of read ucontext->uc_mcontext */
845 temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
846 S390X_UC_MCONTEXT_OFFSET :
847 S390_UC_MCONTEXT_OFFSET);
848 }
849 else
850 {
851 /* read sigcontext->sregs */
852 temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
853 read_memory_integer (scontext
854 +
855 (GDB_TARGET_IS_ESAME
856 ?
857 S390X_SIGCONTEXT_SREGS_OFFSET
858 :
859 S390_SIGCONTEXT_SREGS_OFFSET),
860 S390_GPR_SIZE));
861
862 }
863 /* read sigregs->psw.addr */
864 *sigcaller_pc =
865 ADDR_BITS_REMOVE ((CORE_ADDR)
866 read_memory_integer (temp_sregs +
867 REGISTER_BYTE
868 (S390_PC_REGNUM),
869 S390_PSW_ADDR_SIZE));
870 }
871 }
872 retval = 1;
873 }
874 if (sregs)
875 *sregs = temp_sregs;
876 return retval;
877 }
878
879 /*
880 We need to do something better here but this will keep us out of trouble
881 for the moment.
882 For some reason the blockframe.c calls us with fi->next->fromleaf
883 so this seems of little use to us. */
884 void
885 s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
886 {
887 CORE_ADDR sigcaller_pc;
888
889 fi->pc = 0;
890 if (next_fromleaf)
891 {
892 fi->pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
893 /* fix signal handlers */
894 }
895 else if (fi->next && fi->next->pc)
896 fi->pc = s390_frame_saved_pc_nofix (fi->next);
897 if (fi->pc && fi->next && fi->next->frame &&
898 s390_is_sigreturn (fi->pc, fi->next, NULL, &sigcaller_pc))
899 {
900 fi->pc = sigcaller_pc;
901 }
902
903 }
904
905 void
906 s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
907 {
908 fi->extra_info = frame_obstack_alloc (sizeof (struct frame_extra_info));
909 if (fi->pc)
910 s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
911 fi->extra_info, fi, 1);
912 else
913 s390_memset_extra_info (fi->extra_info);
914 }
915
916 /* If saved registers of frame FI are not known yet, read and cache them.
917 &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
918 in which case the framedata are read. */
919
920 void
921 s390_frame_init_saved_regs (struct frame_info *fi)
922 {
923
924 int quick;
925
926 if (fi->saved_regs == NULL)
927 {
928 /* zalloc memsets the saved regs */
929 frame_saved_regs_zalloc (fi);
930 if (fi->pc)
931 {
932 quick = (fi->extra_info && fi->extra_info->initialised
933 && fi->extra_info->good_prologue);
934 s390_get_frame_info (quick ? fi->extra_info->function_start :
935 s390_sniff_pc_function_start (fi->pc, fi),
936 fi->extra_info, fi, !quick);
937 }
938 }
939 }
940
941
942
943 CORE_ADDR
944 s390_frame_args_address (struct frame_info *fi)
945 {
946
947 /* Apparently gdb already knows gdb_args_offset itself */
948 return fi->frame;
949 }
950
951
952 static CORE_ADDR
953 s390_frame_saved_pc_nofix (struct frame_info *fi)
954 {
955 if (fi->extra_info && fi->extra_info->saved_pc_valid)
956 return fi->extra_info->saved_pc;
957
958 if (generic_find_dummy_frame (fi->pc, fi->frame))
959 return generic_read_register_dummy (fi->pc, fi->frame, S390_PC_REGNUM);
960
961 s390_frame_init_saved_regs (fi);
962 if (fi->extra_info)
963 {
964 fi->extra_info->saved_pc_valid = 1;
965 if (fi->extra_info->good_prologue
966 && fi->saved_regs[S390_RETADDR_REGNUM])
967 fi->extra_info->saved_pc
968 = ADDR_BITS_REMOVE (read_memory_integer
969 (fi->saved_regs[S390_RETADDR_REGNUM],
970 S390_GPR_SIZE));
971 else
972 fi->extra_info->saved_pc
973 = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
974 return fi->extra_info->saved_pc;
975 }
976 return 0;
977 }
978
979 CORE_ADDR
980 s390_frame_saved_pc (struct frame_info *fi)
981 {
982 CORE_ADDR saved_pc = 0, sig_pc;
983
984 if (fi->extra_info && fi->extra_info->sig_fixed_saved_pc_valid)
985 return fi->extra_info->sig_fixed_saved_pc;
986 saved_pc = s390_frame_saved_pc_nofix (fi);
987
988 if (fi->extra_info)
989 {
990 fi->extra_info->sig_fixed_saved_pc_valid = 1;
991 if (saved_pc)
992 {
993 if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
994 saved_pc = sig_pc;
995 }
996 fi->extra_info->sig_fixed_saved_pc = saved_pc;
997 }
998 return saved_pc;
999 }
1000
1001
1002
1003
1004 /* We want backtraces out of signal handlers so we don't
1005 set thisframe->signal_handler_caller to 1 */
1006
1007 CORE_ADDR
1008 s390_frame_chain (struct frame_info *thisframe)
1009 {
1010 CORE_ADDR prev_fp = 0;
1011
1012 if (thisframe->prev && thisframe->prev->frame)
1013 prev_fp = thisframe->prev->frame;
1014 else if (generic_find_dummy_frame (thisframe->pc, thisframe->frame))
1015 return generic_read_register_dummy (thisframe->pc, thisframe->frame,
1016 S390_SP_REGNUM);
1017 else
1018 {
1019 int sigreturn = 0;
1020 CORE_ADDR sregs = 0;
1021 struct frame_extra_info prev_fextra_info;
1022
1023 memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
1024 if (thisframe->pc)
1025 {
1026 CORE_ADDR saved_pc, sig_pc;
1027
1028 saved_pc = s390_frame_saved_pc_nofix (thisframe);
1029 if (saved_pc)
1030 {
1031 if ((sigreturn =
1032 s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
1033 saved_pc = sig_pc;
1034 s390_get_frame_info (s390_sniff_pc_function_start
1035 (saved_pc, NULL), &prev_fextra_info, NULL,
1036 1);
1037 }
1038 }
1039 if (sigreturn)
1040 {
1041 /* read sigregs,regs.gprs[11 or 15] */
1042 prev_fp = read_memory_integer (sregs +
1043 REGISTER_BYTE (S390_GP0_REGNUM +
1044 (prev_fextra_info.
1045 frame_pointer_saved_pc
1046 ? 11 : 15)),
1047 S390_GPR_SIZE);
1048 thisframe->extra_info->sigcontext = sregs;
1049 }
1050 else
1051 {
1052 if (thisframe->saved_regs)
1053 {
1054 int regno;
1055
1056 if (prev_fextra_info.frame_pointer_saved_pc
1057 && thisframe->saved_regs[S390_FRAME_REGNUM])
1058 regno = S390_FRAME_REGNUM;
1059 else
1060 regno = S390_SP_REGNUM;
1061
1062 if (thisframe->saved_regs[regno])
1063 {
1064 /* The SP's entry of `saved_regs' is special. */
1065 if (regno == S390_SP_REGNUM)
1066 prev_fp = thisframe->saved_regs[regno];
1067 else
1068 prev_fp =
1069 read_memory_integer (thisframe->saved_regs[regno],
1070 S390_GPR_SIZE);
1071 }
1072 }
1073 }
1074 }
1075 return ADDR_BITS_REMOVE (prev_fp);
1076 }
1077
1078 /*
1079 Whether struct frame_extra_info is actually needed I'll have to figure
1080 out as our frames are similar to rs6000 there is a possibility
1081 i386 dosen't need it. */
1082
1083
1084
1085 /* a given return value in `regbuf' with a type `valtype', extract and copy its
1086 value into `valbuf' */
1087 void
1088 s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1089 {
1090 /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
1091 We need to truncate the return value into float size (4 byte) if
1092 necessary. */
1093 int len = TYPE_LENGTH (valtype);
1094
1095 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1096 memcpy (valbuf, &regbuf[REGISTER_BYTE (S390_FP0_REGNUM)], len);
1097 else
1098 {
1099 int offset = 0;
1100 /* return value is copied starting from r2. */
1101 if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
1102 offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
1103 memcpy (valbuf,
1104 regbuf + REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
1105 TYPE_LENGTH (valtype));
1106 }
1107 }
1108
1109
1110 static char *
1111 s390_promote_integer_argument (struct type *valtype, char *valbuf,
1112 char *reg_buff, int *arglen)
1113 {
1114 char *value = valbuf;
1115 int len = TYPE_LENGTH (valtype);
1116
1117 if (len < S390_GPR_SIZE)
1118 {
1119 /* We need to upgrade this value to a register to pass it correctly */
1120 int idx, diff = S390_GPR_SIZE - len, negative =
1121 (!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
1122 for (idx = 0; idx < S390_GPR_SIZE; idx++)
1123 {
1124 reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
1125 value[idx - diff]);
1126 }
1127 value = reg_buff;
1128 *arglen = S390_GPR_SIZE;
1129 }
1130 else
1131 {
1132 if (len & (S390_GPR_SIZE - 1))
1133 {
1134 fprintf_unfiltered (gdb_stderr,
1135 "s390_promote_integer_argument detected an argument not "
1136 "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
1137 "we might not deal with this correctly.\n");
1138 }
1139 *arglen = len;
1140 }
1141
1142 return (value);
1143 }
1144
1145 void
1146 s390_store_return_value (struct type *valtype, char *valbuf)
1147 {
1148 int arglen;
1149 char *reg_buff = alloca (max (S390_FPR_SIZE, REGISTER_SIZE)), *value;
1150
1151 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1152 {
1153 if (TYPE_LENGTH (valtype) == 4
1154 || TYPE_LENGTH (valtype) == 8)
1155 write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM), valbuf,
1156 TYPE_LENGTH (valtype));
1157 else
1158 error ("GDB is unable to return `long double' values "
1159 "on this architecture.");
1160 }
1161 else
1162 {
1163 value =
1164 s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
1165 /* Everything else is returned in GPR2 and up. */
1166 write_register_bytes (REGISTER_BYTE (S390_GP0_REGNUM + 2), value,
1167 arglen);
1168 }
1169 }
1170 static int
1171 gdb_print_insn_s390 (bfd_vma memaddr, disassemble_info * info)
1172 {
1173 bfd_byte instrbuff[S390_MAX_INSTR_SIZE];
1174 int instrlen, cnt;
1175
1176 instrlen = s390_readinstruction (instrbuff, (CORE_ADDR) memaddr, info);
1177 if (instrlen < 0)
1178 {
1179 (*info->memory_error_func) (instrlen, memaddr, info);
1180 return -1;
1181 }
1182 for (cnt = 0; cnt < instrlen; cnt++)
1183 info->fprintf_func (info->stream, "%02X ", instrbuff[cnt]);
1184 for (cnt = instrlen; cnt < S390_MAX_INSTR_SIZE; cnt++)
1185 info->fprintf_func (info->stream, " ");
1186 instrlen = print_insn_s390 (memaddr, info);
1187 return instrlen;
1188 }
1189
1190
1191
1192 /* Not the most efficent code in the world */
1193 int
1194 s390_fp_regnum ()
1195 {
1196 int regno = S390_SP_REGNUM;
1197 struct frame_extra_info fextra_info;
1198
1199 CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));
1200
1201 s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
1202 NULL, 1);
1203 if (fextra_info.frame_pointer_saved_pc)
1204 regno = S390_FRAME_REGNUM;
1205 return regno;
1206 }
1207
1208 CORE_ADDR
1209 s390_read_fp ()
1210 {
1211 return read_register (s390_fp_regnum ());
1212 }
1213
1214
1215 void
1216 s390_write_fp (CORE_ADDR val)
1217 {
1218 write_register (s390_fp_regnum (), val);
1219 }
1220
1221
1222 static void
1223 s390_pop_frame_regular (struct frame_info *frame)
1224 {
1225 int regnum;
1226
1227 write_register (S390_PC_REGNUM, FRAME_SAVED_PC (frame));
1228
1229 /* Restore any saved registers. */
1230 if (frame->saved_regs)
1231 {
1232 for (regnum = 0; regnum < NUM_REGS; regnum++)
1233 if (frame->saved_regs[regnum] != 0)
1234 {
1235 ULONGEST value;
1236
1237 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
1238 REGISTER_RAW_SIZE (regnum));
1239 write_register (regnum, value);
1240 }
1241
1242 /* Actually cut back the stack. Remember that the SP's element of
1243 saved_regs is the old SP itself, not the address at which it is
1244 saved. */
1245 write_register (S390_SP_REGNUM, frame->saved_regs[S390_SP_REGNUM]);
1246 }
1247
1248 /* Throw away any cached frame information. */
1249 flush_cached_frames ();
1250 }
1251
1252
1253 /* Destroy the innermost (Top-Of-Stack) stack frame, restoring the
1254 machine state that was in effect before the frame was created.
1255 Used in the contexts of the "return" command, and of
1256 target function calls from the debugger. */
1257 void
1258 s390_pop_frame ()
1259 {
1260 /* This function checks for and handles generic dummy frames, and
1261 calls back to our function for ordinary frames. */
1262 generic_pop_current_frame (s390_pop_frame_regular);
1263 }
1264
1265
1266 /* Return non-zero if TYPE is an integer-like type, zero otherwise.
1267 "Integer-like" types are those that should be passed the way
1268 integers are: integers, enums, ranges, characters, and booleans. */
1269 static int
1270 is_integer_like (struct type *type)
1271 {
1272 enum type_code code = TYPE_CODE (type);
1273
1274 return (code == TYPE_CODE_INT
1275 || code == TYPE_CODE_ENUM
1276 || code == TYPE_CODE_RANGE
1277 || code == TYPE_CODE_CHAR
1278 || code == TYPE_CODE_BOOL);
1279 }
1280
1281
1282 /* Return non-zero if TYPE is a pointer-like type, zero otherwise.
1283 "Pointer-like" types are those that should be passed the way
1284 pointers are: pointers and references. */
1285 static int
1286 is_pointer_like (struct type *type)
1287 {
1288 enum type_code code = TYPE_CODE (type);
1289
1290 return (code == TYPE_CODE_PTR
1291 || code == TYPE_CODE_REF);
1292 }
1293
1294
1295 /* Return non-zero if TYPE is a `float singleton' or `double
1296 singleton', zero otherwise.
1297
1298 A `T singleton' is a struct type with one member, whose type is
1299 either T or a `T singleton'. So, the following are all float
1300 singletons:
1301
1302 struct { float x };
1303 struct { struct { float x; } x; };
1304 struct { struct { struct { float x; } x; } x; };
1305
1306 ... and so on.
1307
1308 WHY THE HECK DO WE CARE ABOUT THIS??? Well, it turns out that GCC
1309 passes all float singletons and double singletons as if they were
1310 simply floats or doubles. This is *not* what the ABI says it
1311 should do. */
1312 static int
1313 is_float_singleton (struct type *type)
1314 {
1315 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1316 && TYPE_NFIELDS (type) == 1
1317 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT
1318 || is_float_singleton (TYPE_FIELD_TYPE (type, 0))));
1319 }
1320
1321
1322 /* Return non-zero if TYPE is a struct-like type, zero otherwise.
1323 "Struct-like" types are those that should be passed as structs are:
1324 structs and unions.
1325
1326 As an odd quirk, not mentioned in the ABI, GCC passes float and
1327 double singletons as if they were a plain float, double, etc. (The
1328 corresponding union types are handled normally.) So we exclude
1329 those types here. *shrug* */
1330 static int
1331 is_struct_like (struct type *type)
1332 {
1333 enum type_code code = TYPE_CODE (type);
1334
1335 return (code == TYPE_CODE_UNION
1336 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
1337 }
1338
1339
1340 /* Return non-zero if TYPE is a float-like type, zero otherwise.
1341 "Float-like" types are those that should be passed as
1342 floating-point values are.
1343
1344 You'd think this would just be floats, doubles, long doubles, etc.
1345 But as an odd quirk, not mentioned in the ABI, GCC passes float and
1346 double singletons as if they were a plain float, double, etc. (The
1347 corresponding union types are handled normally.) So we exclude
1348 those types here. *shrug* */
1349 static int
1350 is_float_like (struct type *type)
1351 {
1352 return (TYPE_CODE (type) == TYPE_CODE_FLT
1353 || is_float_singleton (type));
1354 }
1355
1356
1357 /* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
1358 defined by the parameter passing conventions described in the
1359 "GNU/Linux for S/390 ELF Application Binary Interface Supplement".
1360 Otherwise, return zero. */
1361 static int
1362 is_double_or_float (struct type *type)
1363 {
1364 return (is_float_like (type)
1365 && (TYPE_LENGTH (type) == 4
1366 || TYPE_LENGTH (type) == 8));
1367 }
1368
1369
1370 /* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
1371 the parameter passing conventions described in the "GNU/Linux for
1372 S/390 ELF Application Binary Interface Supplement". Return zero
1373 otherwise. */
1374 static int
1375 is_simple_arg (struct type *type)
1376 {
1377 unsigned length = TYPE_LENGTH (type);
1378
1379 /* This is almost a direct translation of the ABI's language, except
1380 that we have to exclude 8-byte structs; those are DOUBLE_ARGs. */
1381 return ((is_integer_like (type) && length <= 4)
1382 || is_pointer_like (type)
1383 || (is_struct_like (type) && length != 8)
1384 || (is_float_like (type) && length == 16));
1385 }
1386
1387
1388 /* Return non-zero if TYPE should be passed as a pointer to a copy,
1389 zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by
1390 `is_simple_arg'. */
1391 static int
1392 pass_by_copy_ref (struct type *type)
1393 {
1394 unsigned length = TYPE_LENGTH (type);
1395
1396 return ((is_struct_like (type) && length != 1 && length != 2 && length != 4)
1397 || (is_float_like (type) && length == 16));
1398 }
1399
1400
1401 /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
1402 word as required for the ABI. */
1403 static LONGEST
1404 extend_simple_arg (struct value *arg)
1405 {
1406 struct type *type = VALUE_TYPE (arg);
1407
1408 /* Even structs get passed in the least significant bits of the
1409 register / memory word. It's not really right to extract them as
1410 an integer, but it does take care of the extension. */
1411 if (TYPE_UNSIGNED (type))
1412 return extract_unsigned_integer (VALUE_CONTENTS (arg),
1413 TYPE_LENGTH (type));
1414 else
1415 return extract_signed_integer (VALUE_CONTENTS (arg),
1416 TYPE_LENGTH (type));
1417 }
1418
1419
1420 /* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
1421 parameter passing conventions described in the "GNU/Linux for S/390
1422 ELF Application Binary Interface Supplement". Return zero
1423 otherwise. */
1424 static int
1425 is_double_arg (struct type *type)
1426 {
1427 unsigned length = TYPE_LENGTH (type);
1428
1429 return ((is_integer_like (type)
1430 || is_struct_like (type))
1431 && length == 8);
1432 }
1433
1434
1435 /* Round ADDR up to the next N-byte boundary. N must be a power of
1436 two. */
1437 static CORE_ADDR
1438 round_up (CORE_ADDR addr, int n)
1439 {
1440 /* Check that N is really a power of two. */
1441 gdb_assert (n && (n & (n-1)) == 0);
1442 return ((addr + n - 1) & -n);
1443 }
1444
1445
1446 /* Round ADDR down to the next N-byte boundary. N must be a power of
1447 two. */
1448 static CORE_ADDR
1449 round_down (CORE_ADDR addr, int n)
1450 {
1451 /* Check that N is really a power of two. */
1452 gdb_assert (n && (n & (n-1)) == 0);
1453 return (addr & -n);
1454 }
1455
1456
1457 /* Return the alignment required by TYPE. */
1458 static int
1459 alignment_of (struct type *type)
1460 {
1461 int alignment;
1462
1463 if (is_integer_like (type)
1464 || is_pointer_like (type)
1465 || TYPE_CODE (type) == TYPE_CODE_FLT)
1466 alignment = TYPE_LENGTH (type);
1467 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1468 || TYPE_CODE (type) == TYPE_CODE_UNION)
1469 {
1470 int i;
1471
1472 alignment = 1;
1473 for (i = 0; i < TYPE_NFIELDS (type); i++)
1474 {
1475 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
1476
1477 if (field_alignment > alignment)
1478 alignment = field_alignment;
1479 }
1480 }
1481 else
1482 alignment = 1;
1483
1484 /* Check that everything we ever return is a power of two. Lots of
1485 code doesn't want to deal with aligning things to arbitrary
1486 boundaries. */
1487 gdb_assert ((alignment & (alignment - 1)) == 0);
1488
1489 return alignment;
1490 }
1491
1492
1493 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
1494 place to be passed to a function, as specified by the "GNU/Linux
1495 for S/390 ELF Application Binary Interface Supplement".
1496
1497 SP is the current stack pointer. We must put arguments, links,
1498 padding, etc. whereever they belong, and return the new stack
1499 pointer value.
1500
1501 If STRUCT_RETURN is non-zero, then the function we're calling is
1502 going to return a structure by value; STRUCT_ADDR is the address of
1503 a block we've allocated for it on the stack.
1504
1505 Our caller has taken care of any type promotions needed to satisfy
1506 prototypes or the old K&R argument-passing rules. */
1507 CORE_ADDR
1508 s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1509 int struct_return, CORE_ADDR struct_addr)
1510 {
1511 int i;
1512 int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);
1513
1514 /* The number of arguments passed by reference-to-copy. */
1515 int num_copies;
1516
1517 /* If the i'th argument is passed as a reference to a copy, then
1518 copy_addr[i] is the address of the copy we made. */
1519 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
1520
1521 /* Build the reference-to-copy area. */
1522 num_copies = 0;
1523 for (i = 0; i < nargs; i++)
1524 {
1525 struct value *arg = args[i];
1526 struct type *type = VALUE_TYPE (arg);
1527 unsigned length = TYPE_LENGTH (type);
1528
1529 if (is_simple_arg (type)
1530 && pass_by_copy_ref (type))
1531 {
1532 sp -= length;
1533 sp = round_down (sp, alignment_of (type));
1534 write_memory (sp, VALUE_CONTENTS (arg), length);
1535 copy_addr[i] = sp;
1536 num_copies++;
1537 }
1538 }
1539
1540 /* Reserve space for the parameter area. As a conservative
1541 simplification, we assume that everything will be passed on the
1542 stack. */
1543 {
1544 int i;
1545
1546 for (i = 0; i < nargs; i++)
1547 {
1548 struct value *arg = args[i];
1549 struct type *type = VALUE_TYPE (arg);
1550 int length = TYPE_LENGTH (type);
1551
1552 sp = round_down (sp, alignment_of (type));
1553
1554 /* SIMPLE_ARG values get extended to 32 bits. Assume every
1555 argument is. */
1556 if (length < 4) length = 4;
1557 sp -= length;
1558 }
1559 }
1560
1561 /* Include space for any reference-to-copy pointers. */
1562 sp = round_down (sp, pointer_size);
1563 sp -= num_copies * pointer_size;
1564
1565 /* After all that, make sure it's still aligned on an eight-byte
1566 boundary. */
1567 sp = round_down (sp, 8);
1568
1569 /* Finally, place the actual parameters, working from SP towards
1570 higher addresses. The code above is supposed to reserve enough
1571 space for this. */
1572 {
1573 int fr = 0;
1574 int gr = 2;
1575 CORE_ADDR starg = sp;
1576
1577 for (i = 0; i < nargs; i++)
1578 {
1579 struct value *arg = args[i];
1580 struct type *type = VALUE_TYPE (arg);
1581
1582 if (is_double_or_float (type)
1583 && fr <= 2)
1584 {
1585 /* When we store a single-precision value in an FP register,
1586 it occupies the leftmost bits. */
1587 write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM + fr),
1588 VALUE_CONTENTS (arg),
1589 TYPE_LENGTH (type));
1590 fr += 2;
1591 }
1592 else if (is_simple_arg (type)
1593 && gr <= 6)
1594 {
1595 /* Do we need to pass a pointer to our copy of this
1596 argument? */
1597 if (pass_by_copy_ref (type))
1598 write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
1599 else
1600 write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));
1601
1602 gr++;
1603 }
1604 else if (is_double_arg (type)
1605 && gr <= 5)
1606 {
1607 write_register_gen (S390_GP0_REGNUM + gr,
1608 VALUE_CONTENTS (arg));
1609 write_register_gen (S390_GP0_REGNUM + gr + 1,
1610 VALUE_CONTENTS (arg) + 4);
1611 gr += 2;
1612 }
1613 else
1614 {
1615 /* The `OTHER' case. */
1616 enum type_code code = TYPE_CODE (type);
1617 unsigned length = TYPE_LENGTH (type);
1618
1619 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
1620 in it, then don't go back and use it again later. */
1621 if (is_double_arg (type) && gr == 6)
1622 gr = 7;
1623
1624 if (is_simple_arg (type))
1625 {
1626 /* Simple args are always either extended to 32 bits,
1627 or pointers. */
1628 starg = round_up (starg, 4);
1629
1630 /* Do we need to pass a pointer to our copy of this
1631 argument? */
1632 if (pass_by_copy_ref (type))
1633 write_memory_signed_integer (starg, pointer_size,
1634 copy_addr[i]);
1635 else
1636 /* Simple args are always extended to 32 bits. */
1637 write_memory_signed_integer (starg, 4,
1638 extend_simple_arg (arg));
1639 starg += 4;
1640 }
1641 else
1642 {
1643 /* You'd think we should say:
1644 starg = round_up (starg, alignment_of (type));
1645 Unfortunately, GCC seems to simply align the stack on
1646 a four-byte boundary, even when passing doubles. */
1647 starg = round_up (starg, 4);
1648 write_memory (starg, VALUE_CONTENTS (arg), length);
1649 starg += length;
1650 }
1651 }
1652 }
1653 }
1654
1655 /* Allocate the standard frame areas: the register save area, the
1656 word reserved for the compiler (which seems kind of meaningless),
1657 and the back chain pointer. */
1658 sp -= 96;
1659
1660 /* Write the back chain pointer into the first word of the stack
1661 frame. This will help us get backtraces from within functions
1662 called from GDB. */
1663 write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
1664 read_fp ());
1665
1666 return sp;
1667 }
1668
1669
1670 static int
1671 s390_use_struct_convention (int gcc_p, struct type *value_type)
1672 {
1673 enum type_code code = TYPE_CODE (value_type);
1674
1675 return (code == TYPE_CODE_STRUCT
1676 || code == TYPE_CODE_UNION);
1677 }
1678
1679
1680 /* Return the GDB type object for the "standard" data type
1681 of data in register N. */
1682 struct type *
1683 s390_register_virtual_type (int regno)
1684 {
1685 if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS)
1686 return builtin_type_double;
1687 else
1688 return builtin_type_int;
1689 }
1690
1691
1692 struct type *
1693 s390x_register_virtual_type (int regno)
1694 {
1695 return (regno == S390_FPC_REGNUM) ||
1696 (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
1697 (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
1698 }
1699
1700
1701
1702 void
1703 s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1704 {
1705 write_register (S390_GP0_REGNUM + 2, addr);
1706 }
1707
1708
1709
1710 static unsigned char *
1711 s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1712 {
1713 static unsigned char breakpoint[] = { 0x0, 0x1 };
1714
1715 *lenptr = sizeof (breakpoint);
1716 return breakpoint;
1717 }
1718
1719 /* Advance PC across any function entry prologue instructions to reach some
1720 "real" code. */
1721 CORE_ADDR
1722 s390_skip_prologue (CORE_ADDR pc)
1723 {
1724 struct frame_extra_info fextra_info;
1725
1726 s390_get_frame_info (pc, &fextra_info, NULL, 1);
1727 return fextra_info.skip_prologue_function_start;
1728 }
1729
1730 /* Immediately after a function call, return the saved pc.
1731 Can't go through the frames for this because on some machines
1732 the new frame is not set up until the new function executes
1733 some instructions. */
1734 CORE_ADDR
1735 s390_saved_pc_after_call (struct frame_info *frame)
1736 {
1737 return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
1738 }
1739
1740 static CORE_ADDR
1741 s390_addr_bits_remove (CORE_ADDR addr)
1742 {
1743 return (addr) & 0x7fffffff;
1744 }
1745
1746
1747 static CORE_ADDR
1748 s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1749 {
1750 write_register (S390_RETADDR_REGNUM, CALL_DUMMY_ADDRESS ());
1751 return sp;
1752 }
1753
1754 struct gdbarch *
1755 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1756 {
1757 static LONGEST s390_call_dummy_words[] = { 0 };
1758 struct gdbarch *gdbarch;
1759 struct gdbarch_tdep *tdep;
1760 int elf_flags;
1761
1762 /* First see if there is already a gdbarch that can satisfy the request. */
1763 arches = gdbarch_list_lookup_by_info (arches, &info);
1764 if (arches != NULL)
1765 return arches->gdbarch;
1766
1767 /* None found: is the request for a s390 architecture? */
1768 if (info.bfd_arch_info->arch != bfd_arch_s390)
1769 return NULL; /* No; then it's not for us. */
1770
1771 /* Yes: create a new gdbarch for the specified machine type. */
1772 gdbarch = gdbarch_alloc (&info, NULL);
1773
1774 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
1775 set_gdbarch_char_signed (gdbarch, 0);
1776
1777 set_gdbarch_frame_args_skip (gdbarch, 0);
1778 set_gdbarch_frame_args_address (gdbarch, s390_frame_args_address);
1779 set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
1780 set_gdbarch_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
1781 set_gdbarch_frame_locals_address (gdbarch, s390_frame_args_address);
1782 /* We can't do this */
1783 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1784 set_gdbarch_store_struct_return (gdbarch, s390_store_struct_return);
1785 set_gdbarch_extract_return_value (gdbarch, s390_extract_return_value);
1786 set_gdbarch_store_return_value (gdbarch, s390_store_return_value);
1787 /* Amount PC must be decremented by after a breakpoint.
1788 This is often the number of bytes in BREAKPOINT
1789 but not always. */
1790 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1791 set_gdbarch_pop_frame (gdbarch, s390_pop_frame);
1792 /* Stack grows downward. */
1793 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1794 /* Offset from address of function to start of its code.
1795 Zero on most machines. */
1796 set_gdbarch_function_start_offset (gdbarch, 0);
1797 set_gdbarch_max_register_raw_size (gdbarch, 8);
1798 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1799 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
1800 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
1801 set_gdbarch_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
1802 set_gdbarch_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
1803 set_gdbarch_read_fp (gdbarch, s390_read_fp);
1804 set_gdbarch_write_fp (gdbarch, s390_write_fp);
1805 /* This function that tells us whether the function invocation represented
1806 by FI does not have a frame on the stack associated with it. If it
1807 does not, FRAMELESS is set to 1, else 0. */
1808 set_gdbarch_frameless_function_invocation (gdbarch,
1809 s390_frameless_function_invocation);
1810 /* Return saved PC from a frame */
1811 set_gdbarch_frame_saved_pc (gdbarch, s390_frame_saved_pc);
1812 /* FRAME_CHAIN takes a frame's nominal address
1813 and produces the frame's chain-pointer. */
1814 set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
1815 set_gdbarch_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
1816 set_gdbarch_register_byte (gdbarch, s390_register_byte);
1817 set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
1818 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
1819 set_gdbarch_fp_regnum (gdbarch, S390_FP_REGNUM);
1820 set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
1821 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
1822 set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
1823 set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
1824 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1825 set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention);
1826 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1827 set_gdbarch_register_name (gdbarch, s390_register_name);
1828 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1829 set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1830 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1831 set_gdbarch_extract_struct_value_address
1832 (gdbarch, generic_cannot_extract_struct_value_address);
1833
1834 /* Parameters for inferior function calls. */
1835 set_gdbarch_call_dummy_p (gdbarch, 1);
1836 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1837 set_gdbarch_call_dummy_length (gdbarch, 0);
1838 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1839 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1840 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1841 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1842 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1843 set_gdbarch_push_arguments (gdbarch, s390_push_arguments);
1844 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1845 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1846 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1847 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1848 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1849 set_gdbarch_push_return_address (gdbarch, s390_push_return_address);
1850 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1851 sizeof (s390_call_dummy_words));
1852 set_gdbarch_call_dummy_words (gdbarch, s390_call_dummy_words);
1853 set_gdbarch_coerce_float_to_double (gdbarch,
1854 standard_coerce_float_to_double);
1855
1856 switch (info.bfd_arch_info->mach)
1857 {
1858 case bfd_mach_s390_31:
1859 set_gdbarch_register_size (gdbarch, 4);
1860 set_gdbarch_register_raw_size (gdbarch, s390_register_raw_size);
1861 set_gdbarch_register_virtual_size (gdbarch, s390_register_raw_size);
1862 set_gdbarch_register_virtual_type (gdbarch, s390_register_virtual_type);
1863
1864 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
1865 set_gdbarch_register_bytes (gdbarch, S390_REGISTER_BYTES);
1866 break;
1867 case bfd_mach_s390_64:
1868 set_gdbarch_register_size (gdbarch, 8);
1869 set_gdbarch_register_raw_size (gdbarch, s390x_register_raw_size);
1870 set_gdbarch_register_virtual_size (gdbarch, s390x_register_raw_size);
1871 set_gdbarch_register_virtual_type (gdbarch,
1872 s390x_register_virtual_type);
1873
1874 set_gdbarch_long_bit (gdbarch, 64);
1875 set_gdbarch_long_long_bit (gdbarch, 64);
1876 set_gdbarch_ptr_bit (gdbarch, 64);
1877 set_gdbarch_register_bytes (gdbarch, S390X_REGISTER_BYTES);
1878 break;
1879 }
1880
1881 return gdbarch;
1882 }
1883
1884
1885
1886 void
1887 _initialize_s390_tdep ()
1888 {
1889
1890 /* Hook us into the gdbarch mechanism. */
1891 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
1892 if (!tm_print_insn) /* Someone may have already set it */
1893 tm_print_insn = gdb_print_insn_s390;
1894 }
1895
1896 #endif /* GDBSERVER */
This page took 0.110064 seconds and 4 git commands to generate.