* s390-tdep.c (s390_push_dummy_call): Error on stack overflow
[deliverable/binutils-gdb.git] / gdb / s390-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
7 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "target.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "floatformat.h"
34 #include "regcache.h"
35 #include "trad-frame.h"
36 #include "frame-base.h"
37 #include "frame-unwind.h"
38 #include "dwarf2-frame.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "value.h"
42 #include "gdb_assert.h"
43 #include "dis-asm.h"
44 #include "solib-svr4.h"
45 #include "prologue-value.h"
46
47 #include "s390-tdep.h"
48
49 #include "features/s390-linux32.c"
50 #include "features/s390-linux64.c"
51 #include "features/s390x-linux64.c"
52
53
54 /* The tdep structure. */
55
56 struct gdbarch_tdep
57 {
58 /* ABI version. */
59 enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
60
61 /* Pseudo register numbers. */
62 int gpr_full_regnum;
63 int pc_regnum;
64 int cc_regnum;
65
66 /* Core file register sets. */
67 const struct regset *gregset;
68 int sizeof_gregset;
69
70 const struct regset *fpregset;
71 int sizeof_fpregset;
72 };
73
74
75 /* ABI call-saved register information. */
76
77 static int
78 s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
79 {
80 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
81
82 switch (tdep->abi)
83 {
84 case ABI_LINUX_S390:
85 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
86 || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
87 || regnum == S390_A0_REGNUM)
88 return 1;
89
90 break;
91
92 case ABI_LINUX_ZSERIES:
93 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
94 || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
95 || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
96 return 1;
97
98 break;
99 }
100
101 return 0;
102 }
103
104
105 /* DWARF Register Mapping. */
106
107 static int s390_dwarf_regmap[] =
108 {
109 /* General Purpose Registers. */
110 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
111 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
112 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
113 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
114
115 /* Floating Point Registers. */
116 S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
117 S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
118 S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
119 S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
120
121 /* Control Registers (not mapped). */
122 -1, -1, -1, -1, -1, -1, -1, -1,
123 -1, -1, -1, -1, -1, -1, -1, -1,
124
125 /* Access Registers. */
126 S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
127 S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
128 S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
129 S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
130
131 /* Program Status Word. */
132 S390_PSWM_REGNUM,
133 S390_PSWA_REGNUM,
134
135 /* GPR Lower Half Access. */
136 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
137 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
138 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
139 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
140 };
141
142 /* Convert DWARF register number REG to the appropriate register
143 number used by GDB. */
144 static int
145 s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 /* In a 32-on-64 debug scenario, debug info refers to the full 64-bit
150 GPRs. Note that call frame information still refers to the 32-bit
151 lower halves, because s390_adjust_frame_regnum uses register numbers
152 66 .. 81 to access GPRs. */
153 if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
154 return tdep->gpr_full_regnum + reg;
155
156 if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
157 return s390_dwarf_regmap[reg];
158
159 warning (_("Unmapped DWARF Register #%d encountered."), reg);
160 return -1;
161 }
162
163 /* Translate a .eh_frame register to DWARF register, or adjust a
164 .debug_frame register. */
165 static int
166 s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
167 {
168 /* See s390_dwarf_reg_to_regnum for comments. */
169 return (num >= 0 && num < 16)? num + 66 : num;
170 }
171
172
173 /* Pseudo registers. */
174
175 static const char *
176 s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
177 {
178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
179
180 if (regnum == tdep->pc_regnum)
181 return "pc";
182
183 if (regnum == tdep->cc_regnum)
184 return "cc";
185
186 if (tdep->gpr_full_regnum != -1
187 && regnum >= tdep->gpr_full_regnum
188 && regnum < tdep->gpr_full_regnum + 16)
189 {
190 static const char *full_name[] = {
191 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
192 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
193 };
194 return full_name[regnum - tdep->gpr_full_regnum];
195 }
196
197 internal_error (__FILE__, __LINE__, _("invalid regnum"));
198 }
199
200 static struct type *
201 s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204
205 if (regnum == tdep->pc_regnum)
206 return builtin_type (gdbarch)->builtin_func_ptr;
207
208 if (regnum == tdep->cc_regnum)
209 return builtin_type (gdbarch)->builtin_int;
210
211 if (tdep->gpr_full_regnum != -1
212 && regnum >= tdep->gpr_full_regnum
213 && regnum < tdep->gpr_full_regnum + 16)
214 return builtin_type (gdbarch)->builtin_uint64;
215
216 internal_error (__FILE__, __LINE__, _("invalid regnum"));
217 }
218
219 static void
220 s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
221 int regnum, gdb_byte *buf)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
225 int regsize = register_size (gdbarch, regnum);
226 ULONGEST val;
227
228 if (regnum == tdep->pc_regnum)
229 {
230 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
231 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
232 val &= 0x7fffffff;
233 store_unsigned_integer (buf, regsize, byte_order, val);
234 return;
235 }
236
237 if (regnum == tdep->cc_regnum)
238 {
239 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
240 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
241 val = (val >> 12) & 3;
242 else
243 val = (val >> 44) & 3;
244 store_unsigned_integer (buf, regsize, byte_order, val);
245 return;
246 }
247
248 if (tdep->gpr_full_regnum != -1
249 && regnum >= tdep->gpr_full_regnum
250 && regnum < tdep->gpr_full_regnum + 16)
251 {
252 ULONGEST val_upper;
253 regnum -= tdep->gpr_full_regnum;
254
255 regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
256 regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
257 &val_upper);
258 val |= val_upper << 32;
259 store_unsigned_integer (buf, regsize, byte_order, val);
260 return;
261 }
262
263 internal_error (__FILE__, __LINE__, _("invalid regnum"));
264 }
265
266 static void
267 s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
268 int regnum, const gdb_byte *buf)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 int regsize = register_size (gdbarch, regnum);
273 ULONGEST val, psw;
274
275 if (regnum == tdep->pc_regnum)
276 {
277 val = extract_unsigned_integer (buf, regsize, byte_order);
278 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
279 {
280 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
281 val = (psw & 0x80000000) | (val & 0x7fffffff);
282 }
283 regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
284 return;
285 }
286
287 if (regnum == tdep->cc_regnum)
288 {
289 val = extract_unsigned_integer (buf, regsize, byte_order);
290 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
291 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
292 val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
293 else
294 val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
295 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
296 return;
297 }
298
299 if (tdep->gpr_full_regnum != -1
300 && regnum >= tdep->gpr_full_regnum
301 && regnum < tdep->gpr_full_regnum + 16)
302 {
303 regnum -= tdep->gpr_full_regnum;
304 val = extract_unsigned_integer (buf, regsize, byte_order);
305 regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
306 val & 0xffffffff);
307 regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
308 val >> 32);
309 return;
310 }
311
312 internal_error (__FILE__, __LINE__, _("invalid regnum"));
313 }
314
315 /* 'float' values are stored in the upper half of floating-point
316 registers, even though we are otherwise a big-endian platform. */
317
318 static struct value *
319 s390_value_from_register (struct type *type, int regnum,
320 struct frame_info *frame)
321 {
322 struct value *value = default_value_from_register (type, regnum, frame);
323 int len = TYPE_LENGTH (type);
324
325 if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8)
326 set_value_offset (value, 0);
327
328 return value;
329 }
330
331 /* Register groups. */
332
333 static int
334 s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
335 struct reggroup *group)
336 {
337 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
338
339 /* PC and CC pseudo registers need to be saved/restored in order to
340 push or pop frames. */
341 if (group == save_reggroup || group == restore_reggroup)
342 return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
343
344 return default_register_reggroup_p (gdbarch, regnum, group);
345 }
346
347
348 /* Core file register sets. */
349
350 int s390_regmap_gregset[S390_NUM_REGS] =
351 {
352 /* Program Status Word. */
353 0x00, 0x04,
354 /* General Purpose Registers. */
355 0x08, 0x0c, 0x10, 0x14,
356 0x18, 0x1c, 0x20, 0x24,
357 0x28, 0x2c, 0x30, 0x34,
358 0x38, 0x3c, 0x40, 0x44,
359 /* Access Registers. */
360 0x48, 0x4c, 0x50, 0x54,
361 0x58, 0x5c, 0x60, 0x64,
362 0x68, 0x6c, 0x70, 0x74,
363 0x78, 0x7c, 0x80, 0x84,
364 /* Floating Point Control Word. */
365 -1,
366 /* Floating Point Registers. */
367 -1, -1, -1, -1, -1, -1, -1, -1,
368 -1, -1, -1, -1, -1, -1, -1, -1,
369 /* GPR Uppper Halves. */
370 -1, -1, -1, -1, -1, -1, -1, -1,
371 -1, -1, -1, -1, -1, -1, -1, -1,
372 };
373
374 int s390x_regmap_gregset[S390_NUM_REGS] =
375 {
376 /* Program Status Word. */
377 0x00, 0x08,
378 /* General Purpose Registers. */
379 0x10, 0x18, 0x20, 0x28,
380 0x30, 0x38, 0x40, 0x48,
381 0x50, 0x58, 0x60, 0x68,
382 0x70, 0x78, 0x80, 0x88,
383 /* Access Registers. */
384 0x90, 0x94, 0x98, 0x9c,
385 0xa0, 0xa4, 0xa8, 0xac,
386 0xb0, 0xb4, 0xb8, 0xbc,
387 0xc0, 0xc4, 0xc8, 0xcc,
388 /* Floating Point Control Word. */
389 -1,
390 /* Floating Point Registers. */
391 -1, -1, -1, -1, -1, -1, -1, -1,
392 -1, -1, -1, -1, -1, -1, -1, -1,
393 /* GPR Uppper Halves. */
394 0x10, 0x18, 0x20, 0x28,
395 0x30, 0x38, 0x40, 0x48,
396 0x50, 0x58, 0x60, 0x68,
397 0x70, 0x78, 0x80, 0x88,
398 };
399
400 int s390_regmap_fpregset[S390_NUM_REGS] =
401 {
402 /* Program Status Word. */
403 -1, -1,
404 /* General Purpose Registers. */
405 -1, -1, -1, -1, -1, -1, -1, -1,
406 -1, -1, -1, -1, -1, -1, -1, -1,
407 /* Access Registers. */
408 -1, -1, -1, -1, -1, -1, -1, -1,
409 -1, -1, -1, -1, -1, -1, -1, -1,
410 /* Floating Point Control Word. */
411 0x00,
412 /* Floating Point Registers. */
413 0x08, 0x10, 0x18, 0x20,
414 0x28, 0x30, 0x38, 0x40,
415 0x48, 0x50, 0x58, 0x60,
416 0x68, 0x70, 0x78, 0x80,
417 /* GPR Uppper Halves. */
418 -1, -1, -1, -1, -1, -1, -1, -1,
419 -1, -1, -1, -1, -1, -1, -1, -1,
420 };
421
422 int s390_regmap_upper[S390_NUM_REGS] =
423 {
424 /* Program Status Word. */
425 -1, -1,
426 /* General Purpose Registers. */
427 -1, -1, -1, -1, -1, -1, -1, -1,
428 -1, -1, -1, -1, -1, -1, -1, -1,
429 /* Access Registers. */
430 -1, -1, -1, -1, -1, -1, -1, -1,
431 -1, -1, -1, -1, -1, -1, -1, -1,
432 /* Floating Point Control Word. */
433 -1,
434 /* Floating Point Registers. */
435 -1, -1, -1, -1, -1, -1, -1, -1,
436 -1, -1, -1, -1, -1, -1, -1, -1,
437 /* GPR Uppper Halves. */
438 0x00, 0x04, 0x08, 0x0c,
439 0x10, 0x14, 0x18, 0x1c,
440 0x20, 0x24, 0x28, 0x2c,
441 0x30, 0x34, 0x38, 0x3c,
442 };
443
444 /* Supply register REGNUM from the register set REGSET to register cache
445 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
446 static void
447 s390_supply_regset (const struct regset *regset, struct regcache *regcache,
448 int regnum, const void *regs, size_t len)
449 {
450 const int *offset = regset->descr;
451 int i;
452
453 for (i = 0; i < S390_NUM_REGS; i++)
454 {
455 if ((regnum == i || regnum == -1) && offset[i] != -1)
456 regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
457 }
458 }
459
460 /* Collect register REGNUM from the register cache REGCACHE and store
461 it in the buffer specified by REGS and LEN as described by the
462 general-purpose register set REGSET. If REGNUM is -1, do this for
463 all registers in REGSET. */
464 static void
465 s390_collect_regset (const struct regset *regset,
466 const struct regcache *regcache,
467 int regnum, void *regs, size_t len)
468 {
469 const int *offset = regset->descr;
470 int i;
471
472 for (i = 0; i < S390_NUM_REGS; i++)
473 {
474 if ((regnum == i || regnum == -1) && offset[i] != -1)
475 regcache_raw_collect (regcache, i, (char *)regs + offset[i]);
476 }
477 }
478
479 static const struct regset s390_gregset = {
480 s390_regmap_gregset,
481 s390_supply_regset,
482 s390_collect_regset
483 };
484
485 static const struct regset s390x_gregset = {
486 s390x_regmap_gregset,
487 s390_supply_regset,
488 s390_collect_regset
489 };
490
491 static const struct regset s390_fpregset = {
492 s390_regmap_fpregset,
493 s390_supply_regset,
494 s390_collect_regset
495 };
496
497 static const struct regset s390_upper_regset = {
498 s390_regmap_upper,
499 s390_supply_regset,
500 s390_collect_regset
501 };
502
503 static struct core_regset_section s390_upper_regset_sections[] =
504 {
505 { ".reg", s390_sizeof_gregset, "general-purpose" },
506 { ".reg2", s390_sizeof_fpregset, "floating-point" },
507 { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
508 { NULL, 0}
509 };
510
511 /* Return the appropriate register set for the core section identified
512 by SECT_NAME and SECT_SIZE. */
513 static const struct regset *
514 s390_regset_from_core_section (struct gdbarch *gdbarch,
515 const char *sect_name, size_t sect_size)
516 {
517 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
518
519 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
520 return tdep->gregset;
521
522 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
523 return tdep->fpregset;
524
525 if (strcmp (sect_name, ".reg-s390-high-gprs") == 0 && sect_size >= 16*4)
526 return &s390_upper_regset;
527
528 return NULL;
529 }
530
531 static const struct target_desc *
532 s390_core_read_description (struct gdbarch *gdbarch,
533 struct target_ops *target, bfd *abfd)
534 {
535 asection *high_gprs = bfd_get_section_by_name (abfd, ".reg-s390-high-gprs");
536 asection *section = bfd_get_section_by_name (abfd, ".reg");
537 if (!section)
538 return NULL;
539
540 switch (bfd_section_size (abfd, section))
541 {
542 case s390_sizeof_gregset:
543 return high_gprs? tdesc_s390_linux64 : tdesc_s390_linux32;
544
545 case s390x_sizeof_gregset:
546 return tdesc_s390x_linux64;
547
548 default:
549 return NULL;
550 }
551 }
552
553
554 /* Decoding S/390 instructions. */
555
556 /* Named opcode values for the S/390 instructions we recognize. Some
557 instructions have their opcode split across two fields; those are the
558 op1_* and op2_* enums. */
559 enum
560 {
561 op1_lhi = 0xa7, op2_lhi = 0x08,
562 op1_lghi = 0xa7, op2_lghi = 0x09,
563 op1_lgfi = 0xc0, op2_lgfi = 0x01,
564 op_lr = 0x18,
565 op_lgr = 0xb904,
566 op_l = 0x58,
567 op1_ly = 0xe3, op2_ly = 0x58,
568 op1_lg = 0xe3, op2_lg = 0x04,
569 op_lm = 0x98,
570 op1_lmy = 0xeb, op2_lmy = 0x98,
571 op1_lmg = 0xeb, op2_lmg = 0x04,
572 op_st = 0x50,
573 op1_sty = 0xe3, op2_sty = 0x50,
574 op1_stg = 0xe3, op2_stg = 0x24,
575 op_std = 0x60,
576 op_stm = 0x90,
577 op1_stmy = 0xeb, op2_stmy = 0x90,
578 op1_stmg = 0xeb, op2_stmg = 0x24,
579 op1_aghi = 0xa7, op2_aghi = 0x0b,
580 op1_ahi = 0xa7, op2_ahi = 0x0a,
581 op1_agfi = 0xc2, op2_agfi = 0x08,
582 op1_afi = 0xc2, op2_afi = 0x09,
583 op1_algfi= 0xc2, op2_algfi= 0x0a,
584 op1_alfi = 0xc2, op2_alfi = 0x0b,
585 op_ar = 0x1a,
586 op_agr = 0xb908,
587 op_a = 0x5a,
588 op1_ay = 0xe3, op2_ay = 0x5a,
589 op1_ag = 0xe3, op2_ag = 0x08,
590 op1_slgfi= 0xc2, op2_slgfi= 0x04,
591 op1_slfi = 0xc2, op2_slfi = 0x05,
592 op_sr = 0x1b,
593 op_sgr = 0xb909,
594 op_s = 0x5b,
595 op1_sy = 0xe3, op2_sy = 0x5b,
596 op1_sg = 0xe3, op2_sg = 0x09,
597 op_nr = 0x14,
598 op_ngr = 0xb980,
599 op_la = 0x41,
600 op1_lay = 0xe3, op2_lay = 0x71,
601 op1_larl = 0xc0, op2_larl = 0x00,
602 op_basr = 0x0d,
603 op_bas = 0x4d,
604 op_bcr = 0x07,
605 op_bc = 0x0d,
606 op_bctr = 0x06,
607 op_bctgr = 0xb946,
608 op_bct = 0x46,
609 op1_bctg = 0xe3, op2_bctg = 0x46,
610 op_bxh = 0x86,
611 op1_bxhg = 0xeb, op2_bxhg = 0x44,
612 op_bxle = 0x87,
613 op1_bxleg= 0xeb, op2_bxleg= 0x45,
614 op1_bras = 0xa7, op2_bras = 0x05,
615 op1_brasl= 0xc0, op2_brasl= 0x05,
616 op1_brc = 0xa7, op2_brc = 0x04,
617 op1_brcl = 0xc0, op2_brcl = 0x04,
618 op1_brct = 0xa7, op2_brct = 0x06,
619 op1_brctg= 0xa7, op2_brctg= 0x07,
620 op_brxh = 0x84,
621 op1_brxhg= 0xec, op2_brxhg= 0x44,
622 op_brxle = 0x85,
623 op1_brxlg= 0xec, op2_brxlg= 0x45,
624 };
625
626
627 /* Read a single instruction from address AT. */
628
629 #define S390_MAX_INSTR_SIZE 6
630 static int
631 s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
632 {
633 static int s390_instrlen[] = { 2, 4, 4, 6 };
634 int instrlen;
635
636 if (target_read_memory (at, &instr[0], 2))
637 return -1;
638 instrlen = s390_instrlen[instr[0] >> 6];
639 if (instrlen > 2)
640 {
641 if (target_read_memory (at + 2, &instr[2], instrlen - 2))
642 return -1;
643 }
644 return instrlen;
645 }
646
647
648 /* The functions below are for recognizing and decoding S/390
649 instructions of various formats. Each of them checks whether INSN
650 is an instruction of the given format, with the specified opcodes.
651 If it is, it sets the remaining arguments to the values of the
652 instruction's fields, and returns a non-zero value; otherwise, it
653 returns zero.
654
655 These functions' arguments appear in the order they appear in the
656 instruction, not in the machine-language form. So, opcodes always
657 come first, even though they're sometimes scattered around the
658 instructions. And displacements appear before base and extension
659 registers, as they do in the assembly syntax, not at the end, as
660 they do in the machine language. */
661 static int
662 is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
663 {
664 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
665 {
666 *r1 = (insn[1] >> 4) & 0xf;
667 /* i2 is a 16-bit signed quantity. */
668 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
669 return 1;
670 }
671 else
672 return 0;
673 }
674
675
676 static int
677 is_ril (bfd_byte *insn, int op1, int op2,
678 unsigned int *r1, int *i2)
679 {
680 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
681 {
682 *r1 = (insn[1] >> 4) & 0xf;
683 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
684 no sign extension is necessary, but we don't want to assume
685 that. */
686 *i2 = (((insn[2] << 24)
687 | (insn[3] << 16)
688 | (insn[4] << 8)
689 | (insn[5])) ^ 0x80000000) - 0x80000000;
690 return 1;
691 }
692 else
693 return 0;
694 }
695
696
697 static int
698 is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
699 {
700 if (insn[0] == op)
701 {
702 *r1 = (insn[1] >> 4) & 0xf;
703 *r2 = insn[1] & 0xf;
704 return 1;
705 }
706 else
707 return 0;
708 }
709
710
711 static int
712 is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
713 {
714 if (((insn[0] << 8) | insn[1]) == op)
715 {
716 /* Yes, insn[3]. insn[2] is unused in RRE format. */
717 *r1 = (insn[3] >> 4) & 0xf;
718 *r2 = insn[3] & 0xf;
719 return 1;
720 }
721 else
722 return 0;
723 }
724
725
726 static int
727 is_rs (bfd_byte *insn, int op,
728 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
729 {
730 if (insn[0] == op)
731 {
732 *r1 = (insn[1] >> 4) & 0xf;
733 *r3 = insn[1] & 0xf;
734 *b2 = (insn[2] >> 4) & 0xf;
735 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
736 return 1;
737 }
738 else
739 return 0;
740 }
741
742
743 static int
744 is_rsy (bfd_byte *insn, int op1, int op2,
745 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
746 {
747 if (insn[0] == op1
748 && insn[5] == op2)
749 {
750 *r1 = (insn[1] >> 4) & 0xf;
751 *r3 = insn[1] & 0xf;
752 *b2 = (insn[2] >> 4) & 0xf;
753 /* The 'long displacement' is a 20-bit signed integer. */
754 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
755 ^ 0x80000) - 0x80000;
756 return 1;
757 }
758 else
759 return 0;
760 }
761
762
763 static int
764 is_rsi (bfd_byte *insn, int op,
765 unsigned int *r1, unsigned int *r3, int *i2)
766 {
767 if (insn[0] == op)
768 {
769 *r1 = (insn[1] >> 4) & 0xf;
770 *r3 = insn[1] & 0xf;
771 /* i2 is a 16-bit signed quantity. */
772 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
773 return 1;
774 }
775 else
776 return 0;
777 }
778
779
780 static int
781 is_rie (bfd_byte *insn, int op1, int op2,
782 unsigned int *r1, unsigned int *r3, int *i2)
783 {
784 if (insn[0] == op1
785 && insn[5] == op2)
786 {
787 *r1 = (insn[1] >> 4) & 0xf;
788 *r3 = insn[1] & 0xf;
789 /* i2 is a 16-bit signed quantity. */
790 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
791 return 1;
792 }
793 else
794 return 0;
795 }
796
797
798 static int
799 is_rx (bfd_byte *insn, int op,
800 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
801 {
802 if (insn[0] == op)
803 {
804 *r1 = (insn[1] >> 4) & 0xf;
805 *x2 = insn[1] & 0xf;
806 *b2 = (insn[2] >> 4) & 0xf;
807 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
808 return 1;
809 }
810 else
811 return 0;
812 }
813
814
815 static int
816 is_rxy (bfd_byte *insn, int op1, int op2,
817 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
818 {
819 if (insn[0] == op1
820 && insn[5] == op2)
821 {
822 *r1 = (insn[1] >> 4) & 0xf;
823 *x2 = insn[1] & 0xf;
824 *b2 = (insn[2] >> 4) & 0xf;
825 /* The 'long displacement' is a 20-bit signed integer. */
826 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
827 ^ 0x80000) - 0x80000;
828 return 1;
829 }
830 else
831 return 0;
832 }
833
834
835 /* Prologue analysis. */
836
837 #define S390_NUM_GPRS 16
838 #define S390_NUM_FPRS 16
839
840 struct s390_prologue_data {
841
842 /* The stack. */
843 struct pv_area *stack;
844
845 /* The size and byte-order of a GPR or FPR. */
846 int gpr_size;
847 int fpr_size;
848 enum bfd_endian byte_order;
849
850 /* The general-purpose registers. */
851 pv_t gpr[S390_NUM_GPRS];
852
853 /* The floating-point registers. */
854 pv_t fpr[S390_NUM_FPRS];
855
856 /* The offset relative to the CFA where the incoming GPR N was saved
857 by the function prologue. 0 if not saved or unknown. */
858 int gpr_slot[S390_NUM_GPRS];
859
860 /* Likewise for FPRs. */
861 int fpr_slot[S390_NUM_FPRS];
862
863 /* Nonzero if the backchain was saved. This is assumed to be the
864 case when the incoming SP is saved at the current SP location. */
865 int back_chain_saved_p;
866 };
867
868 /* Return the effective address for an X-style instruction, like:
869
870 L R1, D2(X2, B2)
871
872 Here, X2 and B2 are registers, and D2 is a signed 20-bit
873 constant; the effective address is the sum of all three. If either
874 X2 or B2 are zero, then it doesn't contribute to the sum --- this
875 means that r0 can't be used as either X2 or B2. */
876 static pv_t
877 s390_addr (struct s390_prologue_data *data,
878 int d2, unsigned int x2, unsigned int b2)
879 {
880 pv_t result;
881
882 result = pv_constant (d2);
883 if (x2)
884 result = pv_add (result, data->gpr[x2]);
885 if (b2)
886 result = pv_add (result, data->gpr[b2]);
887
888 return result;
889 }
890
891 /* Do a SIZE-byte store of VALUE to D2(X2,B2). */
892 static void
893 s390_store (struct s390_prologue_data *data,
894 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
895 pv_t value)
896 {
897 pv_t addr = s390_addr (data, d2, x2, b2);
898 pv_t offset;
899
900 /* Check whether we are storing the backchain. */
901 offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
902
903 if (pv_is_constant (offset) && offset.k == 0)
904 if (size == data->gpr_size
905 && pv_is_register_k (value, S390_SP_REGNUM, 0))
906 {
907 data->back_chain_saved_p = 1;
908 return;
909 }
910
911
912 /* Check whether we are storing a register into the stack. */
913 if (!pv_area_store_would_trash (data->stack, addr))
914 pv_area_store (data->stack, addr, size, value);
915
916
917 /* Note: If this is some store we cannot identify, you might think we
918 should forget our cached values, as any of those might have been hit.
919
920 However, we make the assumption that the register save areas are only
921 ever stored to once in any given function, and we do recognize these
922 stores. Thus every store we cannot recognize does not hit our data. */
923 }
924
925 /* Do a SIZE-byte load from D2(X2,B2). */
926 static pv_t
927 s390_load (struct s390_prologue_data *data,
928 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
929
930 {
931 pv_t addr = s390_addr (data, d2, x2, b2);
932 pv_t offset;
933
934 /* If it's a load from an in-line constant pool, then we can
935 simulate that, under the assumption that the code isn't
936 going to change between the time the processor actually
937 executed it creating the current frame, and the time when
938 we're analyzing the code to unwind past that frame. */
939 if (pv_is_constant (addr))
940 {
941 struct target_section *secp;
942 secp = target_section_by_addr (&current_target, addr.k);
943 if (secp != NULL
944 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
945 & SEC_READONLY))
946 return pv_constant (read_memory_integer (addr.k, size,
947 data->byte_order));
948 }
949
950 /* Check whether we are accessing one of our save slots. */
951 return pv_area_fetch (data->stack, addr, size);
952 }
953
954 /* Function for finding saved registers in a 'struct pv_area'; we pass
955 this to pv_area_scan.
956
957 If VALUE is a saved register, ADDR says it was saved at a constant
958 offset from the frame base, and SIZE indicates that the whole
959 register was saved, record its offset in the reg_offset table in
960 PROLOGUE_UNTYPED. */
961 static void
962 s390_check_for_saved (void *data_untyped, pv_t addr, CORE_ADDR size, pv_t value)
963 {
964 struct s390_prologue_data *data = data_untyped;
965 int i, offset;
966
967 if (!pv_is_register (addr, S390_SP_REGNUM))
968 return;
969
970 offset = 16 * data->gpr_size + 32 - addr.k;
971
972 /* If we are storing the original value of a register, we want to
973 record the CFA offset. If the same register is stored multiple
974 times, the stack slot with the highest address counts. */
975
976 for (i = 0; i < S390_NUM_GPRS; i++)
977 if (size == data->gpr_size
978 && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
979 if (data->gpr_slot[i] == 0
980 || data->gpr_slot[i] > offset)
981 {
982 data->gpr_slot[i] = offset;
983 return;
984 }
985
986 for (i = 0; i < S390_NUM_FPRS; i++)
987 if (size == data->fpr_size
988 && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
989 if (data->fpr_slot[i] == 0
990 || data->fpr_slot[i] > offset)
991 {
992 data->fpr_slot[i] = offset;
993 return;
994 }
995 }
996
997 /* Analyze the prologue of the function starting at START_PC,
998 continuing at most until CURRENT_PC. Initialize DATA to
999 hold all information we find out about the state of the registers
1000 and stack slots. Return the address of the instruction after
1001 the last one that changed the SP, FP, or back chain; or zero
1002 on error. */
1003 static CORE_ADDR
1004 s390_analyze_prologue (struct gdbarch *gdbarch,
1005 CORE_ADDR start_pc,
1006 CORE_ADDR current_pc,
1007 struct s390_prologue_data *data)
1008 {
1009 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1010
1011 /* Our return value:
1012 The address of the instruction after the last one that changed
1013 the SP, FP, or back chain; zero if we got an error trying to
1014 read memory. */
1015 CORE_ADDR result = start_pc;
1016
1017 /* The current PC for our abstract interpretation. */
1018 CORE_ADDR pc;
1019
1020 /* The address of the next instruction after that. */
1021 CORE_ADDR next_pc;
1022
1023 /* Set up everything's initial value. */
1024 {
1025 int i;
1026
1027 data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1028
1029 /* For the purpose of prologue tracking, we consider the GPR size to
1030 be equal to the ABI word size, even if it is actually larger
1031 (i.e. when running a 32-bit binary under a 64-bit kernel). */
1032 data->gpr_size = word_size;
1033 data->fpr_size = 8;
1034 data->byte_order = gdbarch_byte_order (gdbarch);
1035
1036 for (i = 0; i < S390_NUM_GPRS; i++)
1037 data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
1038
1039 for (i = 0; i < S390_NUM_FPRS; i++)
1040 data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
1041
1042 for (i = 0; i < S390_NUM_GPRS; i++)
1043 data->gpr_slot[i] = 0;
1044
1045 for (i = 0; i < S390_NUM_FPRS; i++)
1046 data->fpr_slot[i] = 0;
1047
1048 data->back_chain_saved_p = 0;
1049 }
1050
1051 /* Start interpreting instructions, until we hit the frame's
1052 current PC or the first branch instruction. */
1053 for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
1054 {
1055 bfd_byte insn[S390_MAX_INSTR_SIZE];
1056 int insn_len = s390_readinstruction (insn, pc);
1057
1058 bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
1059 bfd_byte *insn32 = word_size == 4 ? insn : dummy;
1060 bfd_byte *insn64 = word_size == 8 ? insn : dummy;
1061
1062 /* Fields for various kinds of instructions. */
1063 unsigned int b2, r1, r2, x2, r3;
1064 int i2, d2;
1065
1066 /* The values of SP and FP before this instruction,
1067 for detecting instructions that change them. */
1068 pv_t pre_insn_sp, pre_insn_fp;
1069 /* Likewise for the flag whether the back chain was saved. */
1070 int pre_insn_back_chain_saved_p;
1071
1072 /* If we got an error trying to read the instruction, report it. */
1073 if (insn_len < 0)
1074 {
1075 result = 0;
1076 break;
1077 }
1078
1079 next_pc = pc + insn_len;
1080
1081 pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1082 pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1083 pre_insn_back_chain_saved_p = data->back_chain_saved_p;
1084
1085
1086 /* LHI r1, i2 --- load halfword immediate. */
1087 /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
1088 /* LGFI r1, i2 --- load fullword immediate. */
1089 if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
1090 || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
1091 || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
1092 data->gpr[r1] = pv_constant (i2);
1093
1094 /* LR r1, r2 --- load from register. */
1095 /* LGR r1, r2 --- load from register (64-bit version). */
1096 else if (is_rr (insn32, op_lr, &r1, &r2)
1097 || is_rre (insn64, op_lgr, &r1, &r2))
1098 data->gpr[r1] = data->gpr[r2];
1099
1100 /* L r1, d2(x2, b2) --- load. */
1101 /* LY r1, d2(x2, b2) --- load (long-displacement version). */
1102 /* LG r1, d2(x2, b2) --- load (64-bit version). */
1103 else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
1104 || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
1105 || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
1106 data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
1107
1108 /* ST r1, d2(x2, b2) --- store. */
1109 /* STY r1, d2(x2, b2) --- store (long-displacement version). */
1110 /* STG r1, d2(x2, b2) --- store (64-bit version). */
1111 else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
1112 || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
1113 || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
1114 s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
1115
1116 /* STD r1, d2(x2,b2) --- store floating-point register. */
1117 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
1118 s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
1119
1120 /* STM r1, r3, d2(b2) --- store multiple. */
1121 /* STMY r1, r3, d2(b2) --- store multiple (long-displacement version). */
1122 /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
1123 else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
1124 || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
1125 || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
1126 {
1127 for (; r1 <= r3; r1++, d2 += data->gpr_size)
1128 s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
1129 }
1130
1131 /* AHI r1, i2 --- add halfword immediate. */
1132 /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
1133 /* AFI r1, i2 --- add fullword immediate. */
1134 /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
1135 else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
1136 || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
1137 || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
1138 || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
1139 data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
1140
1141 /* ALFI r1, i2 --- add logical immediate. */
1142 /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
1143 else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
1144 || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
1145 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1146 (CORE_ADDR)i2 & 0xffffffff);
1147
1148 /* AR r1, r2 -- add register. */
1149 /* AGR r1, r2 -- add register (64-bit version). */
1150 else if (is_rr (insn32, op_ar, &r1, &r2)
1151 || is_rre (insn64, op_agr, &r1, &r2))
1152 data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
1153
1154 /* A r1, d2(x2, b2) -- add. */
1155 /* AY r1, d2(x2, b2) -- add (long-displacement version). */
1156 /* AG r1, d2(x2, b2) -- add (64-bit version). */
1157 else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
1158 || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
1159 || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
1160 data->gpr[r1] = pv_add (data->gpr[r1],
1161 s390_load (data, d2, x2, b2, data->gpr_size));
1162
1163 /* SLFI r1, i2 --- subtract logical immediate. */
1164 /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
1165 else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
1166 || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
1167 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1168 -((CORE_ADDR)i2 & 0xffffffff));
1169
1170 /* SR r1, r2 -- subtract register. */
1171 /* SGR r1, r2 -- subtract register (64-bit version). */
1172 else if (is_rr (insn32, op_sr, &r1, &r2)
1173 || is_rre (insn64, op_sgr, &r1, &r2))
1174 data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
1175
1176 /* S r1, d2(x2, b2) -- subtract. */
1177 /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
1178 /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
1179 else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
1180 || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
1181 || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
1182 data->gpr[r1] = pv_subtract (data->gpr[r1],
1183 s390_load (data, d2, x2, b2, data->gpr_size));
1184
1185 /* LA r1, d2(x2, b2) --- load address. */
1186 /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
1187 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
1188 || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
1189 data->gpr[r1] = s390_addr (data, d2, x2, b2);
1190
1191 /* LARL r1, i2 --- load address relative long. */
1192 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1193 data->gpr[r1] = pv_constant (pc + i2 * 2);
1194
1195 /* BASR r1, 0 --- branch and save.
1196 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1197 else if (is_rr (insn, op_basr, &r1, &r2)
1198 && r2 == 0)
1199 data->gpr[r1] = pv_constant (next_pc);
1200
1201 /* BRAS r1, i2 --- branch relative and save. */
1202 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1203 {
1204 data->gpr[r1] = pv_constant (next_pc);
1205 next_pc = pc + i2 * 2;
1206
1207 /* We'd better not interpret any backward branches. We'll
1208 never terminate. */
1209 if (next_pc <= pc)
1210 break;
1211 }
1212
1213 /* Terminate search when hitting any other branch instruction. */
1214 else if (is_rr (insn, op_basr, &r1, &r2)
1215 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
1216 || is_rr (insn, op_bcr, &r1, &r2)
1217 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1218 || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1219 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1220 || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
1221 break;
1222
1223 else
1224 /* An instruction we don't know how to simulate. The only
1225 safe thing to do would be to set every value we're tracking
1226 to 'unknown'. Instead, we'll be optimistic: we assume that
1227 we *can* interpret every instruction that the compiler uses
1228 to manipulate any of the data we're interested in here --
1229 then we can just ignore anything else. */
1230 ;
1231
1232 /* Record the address after the last instruction that changed
1233 the FP, SP, or backlink. Ignore instructions that changed
1234 them back to their original values --- those are probably
1235 restore instructions. (The back chain is never restored,
1236 just popped.) */
1237 {
1238 pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1239 pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1240
1241 if ((! pv_is_identical (pre_insn_sp, sp)
1242 && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
1243 && sp.kind != pvk_unknown)
1244 || (! pv_is_identical (pre_insn_fp, fp)
1245 && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
1246 && fp.kind != pvk_unknown)
1247 || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
1248 result = next_pc;
1249 }
1250 }
1251
1252 /* Record where all the registers were saved. */
1253 pv_area_scan (data->stack, s390_check_for_saved, data);
1254
1255 free_pv_area (data->stack);
1256 data->stack = NULL;
1257
1258 return result;
1259 }
1260
1261 /* Advance PC across any function entry prologue instructions to reach
1262 some "real" code. */
1263 static CORE_ADDR
1264 s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1265 {
1266 struct s390_prologue_data data;
1267 CORE_ADDR skip_pc;
1268 skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
1269 return skip_pc ? skip_pc : pc;
1270 }
1271
1272 /* Return true if we are in the functin's epilogue, i.e. after the
1273 instruction that destroyed the function's stack frame. */
1274 static int
1275 s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1276 {
1277 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1278
1279 /* In frameless functions, there's not frame to destroy and thus
1280 we don't care about the epilogue.
1281
1282 In functions with frame, the epilogue sequence is a pair of
1283 a LM-type instruction that restores (amongst others) the
1284 return register %r14 and the stack pointer %r15, followed
1285 by a branch 'br %r14' --or equivalent-- that effects the
1286 actual return.
1287
1288 In that situation, this function needs to return 'true' in
1289 exactly one case: when pc points to that branch instruction.
1290
1291 Thus we try to disassemble the one instructions immediately
1292 preceeding pc and check whether it is an LM-type instruction
1293 modifying the stack pointer.
1294
1295 Note that disassembling backwards is not reliable, so there
1296 is a slight chance of false positives here ... */
1297
1298 bfd_byte insn[6];
1299 unsigned int r1, r3, b2;
1300 int d2;
1301
1302 if (word_size == 4
1303 && !target_read_memory (pc - 4, insn, 4)
1304 && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
1305 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1306 return 1;
1307
1308 if (word_size == 4
1309 && !target_read_memory (pc - 6, insn, 6)
1310 && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
1311 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1312 return 1;
1313
1314 if (word_size == 8
1315 && !target_read_memory (pc - 6, insn, 6)
1316 && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
1317 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1318 return 1;
1319
1320 return 0;
1321 }
1322
1323 /* Displaced stepping. */
1324
1325 /* Fix up the state of registers and memory after having single-stepped
1326 a displaced instruction. */
1327 static void
1328 s390_displaced_step_fixup (struct gdbarch *gdbarch,
1329 struct displaced_step_closure *closure,
1330 CORE_ADDR from, CORE_ADDR to,
1331 struct regcache *regs)
1332 {
1333 /* Since we use simple_displaced_step_copy_insn, our closure is a
1334 copy of the instruction. */
1335 gdb_byte *insn = (gdb_byte *) closure;
1336 static int s390_instrlen[] = { 2, 4, 4, 6 };
1337 int insnlen = s390_instrlen[insn[0] >> 6];
1338
1339 /* Fields for various kinds of instructions. */
1340 unsigned int b2, r1, r2, x2, r3;
1341 int i2, d2;
1342
1343 /* Get current PC and addressing mode bit. */
1344 CORE_ADDR pc = regcache_read_pc (regs);
1345 ULONGEST amode = 0;
1346
1347 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
1348 {
1349 regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
1350 amode &= 0x80000000;
1351 }
1352
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: (s390) fixup (%s, %s) pc %s amode 0x%x\n",
1356 paddress (gdbarch, from), paddress (gdbarch, to),
1357 paddress (gdbarch, pc), (int) amode);
1358
1359 /* Handle absolute branch and save instructions. */
1360 if (is_rr (insn, op_basr, &r1, &r2)
1361 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
1362 {
1363 /* Recompute saved return address in R1. */
1364 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1365 amode | (from + insnlen));
1366 }
1367
1368 /* Handle absolute branch instructions. */
1369 else if (is_rr (insn, op_bcr, &r1, &r2)
1370 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1371 || is_rr (insn, op_bctr, &r1, &r2)
1372 || is_rre (insn, op_bctgr, &r1, &r2)
1373 || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
1374 || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
1375 || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
1376 || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
1377 || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
1378 || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
1379 {
1380 /* Update PC iff branch was *not* taken. */
1381 if (pc == to + insnlen)
1382 regcache_write_pc (regs, from + insnlen);
1383 }
1384
1385 /* Handle PC-relative branch and save instructions. */
1386 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
1387 || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
1388 {
1389 /* Update PC. */
1390 regcache_write_pc (regs, pc - to + from);
1391 /* Recompute saved return address in R1. */
1392 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1393 amode | (from + insnlen));
1394 }
1395
1396 /* Handle PC-relative branch instructions. */
1397 else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1398 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1399 || is_ri (insn, op1_brct, op2_brct, &r1, &i2)
1400 || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
1401 || is_rsi (insn, op_brxh, &r1, &r3, &i2)
1402 || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
1403 || is_rsi (insn, op_brxle, &r1, &r3, &i2)
1404 || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
1405 {
1406 /* Update PC. */
1407 regcache_write_pc (regs, pc - to + from);
1408 }
1409
1410 /* Handle LOAD ADDRESS RELATIVE LONG. */
1411 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1412 {
1413 /* Recompute output address in R1. */
1414 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1415 amode | (from + insnlen + i2*2));
1416 }
1417
1418 /* If we executed a breakpoint instruction, point PC right back at it. */
1419 else if (insn[0] == 0x0 && insn[1] == 0x1)
1420 regcache_write_pc (regs, from);
1421
1422 /* For any other insn, PC points right after the original instruction. */
1423 else
1424 regcache_write_pc (regs, from + insnlen);
1425 }
1426
1427 /* Normal stack frames. */
1428
1429 struct s390_unwind_cache {
1430
1431 CORE_ADDR func;
1432 CORE_ADDR frame_base;
1433 CORE_ADDR local_base;
1434
1435 struct trad_frame_saved_reg *saved_regs;
1436 };
1437
1438 static int
1439 s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
1440 struct s390_unwind_cache *info)
1441 {
1442 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1444 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1445 struct s390_prologue_data data;
1446 pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1447 pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1448 int i;
1449 CORE_ADDR cfa;
1450 CORE_ADDR func;
1451 CORE_ADDR result;
1452 ULONGEST reg;
1453 CORE_ADDR prev_sp;
1454 int frame_pointer;
1455 int size;
1456 struct frame_info *next_frame;
1457
1458 /* Try to find the function start address. If we can't find it, we don't
1459 bother searching for it -- with modern compilers this would be mostly
1460 pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
1461 or else a valid backchain ... */
1462 func = get_frame_func (this_frame);
1463 if (!func)
1464 return 0;
1465
1466 /* Try to analyze the prologue. */
1467 result = s390_analyze_prologue (gdbarch, func,
1468 get_frame_pc (this_frame), &data);
1469 if (!result)
1470 return 0;
1471
1472 /* If this was successful, we should have found the instruction that
1473 sets the stack pointer register to the previous value of the stack
1474 pointer minus the frame size. */
1475 if (!pv_is_register (*sp, S390_SP_REGNUM))
1476 return 0;
1477
1478 /* A frame size of zero at this point can mean either a real
1479 frameless function, or else a failure to find the prologue.
1480 Perform some sanity checks to verify we really have a
1481 frameless function. */
1482 if (sp->k == 0)
1483 {
1484 /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
1485 size zero. This is only possible if the next frame is a sentinel
1486 frame, a dummy frame, or a signal trampoline frame. */
1487 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
1488 needed, instead the code should simpliy rely on its
1489 analysis. */
1490 next_frame = get_next_frame (this_frame);
1491 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1492 next_frame = get_next_frame (next_frame);
1493 if (next_frame
1494 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
1495 return 0;
1496
1497 /* If we really have a frameless function, %r14 must be valid
1498 -- in particular, it must point to a different function. */
1499 reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
1500 reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
1501 if (get_pc_function_start (reg) == func)
1502 {
1503 /* However, there is one case where it *is* valid for %r14
1504 to point to the same function -- if this is a recursive
1505 call, and we have stopped in the prologue *before* the
1506 stack frame was allocated.
1507
1508 Recognize this case by looking ahead a bit ... */
1509
1510 struct s390_prologue_data data2;
1511 pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1512
1513 if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
1514 && pv_is_register (*sp, S390_SP_REGNUM)
1515 && sp->k != 0))
1516 return 0;
1517 }
1518 }
1519
1520
1521 /* OK, we've found valid prologue data. */
1522 size = -sp->k;
1523
1524 /* If the frame pointer originally also holds the same value
1525 as the stack pointer, we're probably using it. If it holds
1526 some other value -- even a constant offset -- it is most
1527 likely used as temp register. */
1528 if (pv_is_identical (*sp, *fp))
1529 frame_pointer = S390_FRAME_REGNUM;
1530 else
1531 frame_pointer = S390_SP_REGNUM;
1532
1533 /* If we've detected a function with stack frame, we'll still have to
1534 treat it as frameless if we're currently within the function epilog
1535 code at a point where the frame pointer has already been restored.
1536 This can only happen in an innermost frame. */
1537 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
1538 instead the code should simpliy rely on its analysis. */
1539 next_frame = get_next_frame (this_frame);
1540 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1541 next_frame = get_next_frame (next_frame);
1542 if (size > 0
1543 && (next_frame == NULL
1544 || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
1545 {
1546 /* See the comment in s390_in_function_epilogue_p on why this is
1547 not completely reliable ... */
1548 if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
1549 {
1550 memset (&data, 0, sizeof (data));
1551 size = 0;
1552 frame_pointer = S390_SP_REGNUM;
1553 }
1554 }
1555
1556 /* Once we know the frame register and the frame size, we can unwind
1557 the current value of the frame register from the next frame, and
1558 add back the frame size to arrive that the previous frame's
1559 stack pointer value. */
1560 prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
1561 cfa = prev_sp + 16*word_size + 32;
1562
1563 /* Set up ABI call-saved/call-clobbered registers. */
1564 for (i = 0; i < S390_NUM_REGS; i++)
1565 if (!s390_register_call_saved (gdbarch, i))
1566 trad_frame_set_unknown (info->saved_regs, i);
1567
1568 /* CC is always call-clobbered. */
1569 trad_frame_set_unknown (info->saved_regs, tdep->cc_regnum);
1570
1571 /* Record the addresses of all register spill slots the prologue parser
1572 has recognized. Consider only registers defined as call-saved by the
1573 ABI; for call-clobbered registers the parser may have recognized
1574 spurious stores. */
1575
1576 for (i = 0; i < 16; i++)
1577 if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
1578 && data.gpr_slot[i] != 0)
1579 info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
1580
1581 for (i = 0; i < 16; i++)
1582 if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
1583 && data.fpr_slot[i] != 0)
1584 info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
1585
1586 /* Function return will set PC to %r14. */
1587 info->saved_regs[tdep->pc_regnum] = info->saved_regs[S390_RETADDR_REGNUM];
1588
1589 /* In frameless functions, we unwind simply by moving the return
1590 address to the PC. However, if we actually stored to the
1591 save area, use that -- we might only think the function frameless
1592 because we're in the middle of the prologue ... */
1593 if (size == 0
1594 && !trad_frame_addr_p (info->saved_regs, tdep->pc_regnum))
1595 {
1596 info->saved_regs[tdep->pc_regnum].realreg = S390_RETADDR_REGNUM;
1597 }
1598
1599 /* Another sanity check: unless this is a frameless function,
1600 we should have found spill slots for SP and PC.
1601 If not, we cannot unwind further -- this happens e.g. in
1602 libc's thread_start routine. */
1603 if (size > 0)
1604 {
1605 if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
1606 || !trad_frame_addr_p (info->saved_regs, tdep->pc_regnum))
1607 prev_sp = -1;
1608 }
1609
1610 /* We use the current value of the frame register as local_base,
1611 and the top of the register save area as frame_base. */
1612 if (prev_sp != -1)
1613 {
1614 info->frame_base = prev_sp + 16*word_size + 32;
1615 info->local_base = prev_sp - size;
1616 }
1617
1618 info->func = func;
1619 return 1;
1620 }
1621
1622 static void
1623 s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
1624 struct s390_unwind_cache *info)
1625 {
1626 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1628 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1629 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1630 CORE_ADDR backchain;
1631 ULONGEST reg;
1632 LONGEST sp;
1633 int i;
1634
1635 /* Set up ABI call-saved/call-clobbered registers. */
1636 for (i = 0; i < S390_NUM_REGS; i++)
1637 if (!s390_register_call_saved (gdbarch, i))
1638 trad_frame_set_unknown (info->saved_regs, i);
1639
1640 /* CC is always call-clobbered. */
1641 trad_frame_set_unknown (info->saved_regs, tdep->cc_regnum);
1642
1643 /* Get the backchain. */
1644 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1645 backchain = read_memory_unsigned_integer (reg, word_size, byte_order);
1646
1647 /* A zero backchain terminates the frame chain. As additional
1648 sanity check, let's verify that the spill slot for SP in the
1649 save area pointed to by the backchain in fact links back to
1650 the save area. */
1651 if (backchain != 0
1652 && safe_read_memory_integer (backchain + 15*word_size,
1653 word_size, byte_order, &sp)
1654 && (CORE_ADDR)sp == backchain)
1655 {
1656 /* We don't know which registers were saved, but it will have
1657 to be at least %r14 and %r15. This will allow us to continue
1658 unwinding, but other prev-frame registers may be incorrect ... */
1659 info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
1660 info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
1661
1662 /* Function return will set PC to %r14. */
1663 info->saved_regs[tdep->pc_regnum]
1664 = info->saved_regs[S390_RETADDR_REGNUM];
1665
1666 /* We use the current value of the frame register as local_base,
1667 and the top of the register save area as frame_base. */
1668 info->frame_base = backchain + 16*word_size + 32;
1669 info->local_base = reg;
1670 }
1671
1672 info->func = get_frame_pc (this_frame);
1673 }
1674
1675 static struct s390_unwind_cache *
1676 s390_frame_unwind_cache (struct frame_info *this_frame,
1677 void **this_prologue_cache)
1678 {
1679 struct s390_unwind_cache *info;
1680 if (*this_prologue_cache)
1681 return *this_prologue_cache;
1682
1683 info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
1684 *this_prologue_cache = info;
1685 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1686 info->func = -1;
1687 info->frame_base = -1;
1688 info->local_base = -1;
1689
1690 /* Try to use prologue analysis to fill the unwind cache.
1691 If this fails, fall back to reading the stack backchain. */
1692 if (!s390_prologue_frame_unwind_cache (this_frame, info))
1693 s390_backchain_frame_unwind_cache (this_frame, info);
1694
1695 return info;
1696 }
1697
1698 static void
1699 s390_frame_this_id (struct frame_info *this_frame,
1700 void **this_prologue_cache,
1701 struct frame_id *this_id)
1702 {
1703 struct s390_unwind_cache *info
1704 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
1705
1706 if (info->frame_base == -1)
1707 return;
1708
1709 *this_id = frame_id_build (info->frame_base, info->func);
1710 }
1711
1712 static struct value *
1713 s390_frame_prev_register (struct frame_info *this_frame,
1714 void **this_prologue_cache, int regnum)
1715 {
1716 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1718 struct s390_unwind_cache *info
1719 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
1720
1721 /* Unwind full GPRs to show at least the lower halves (as the
1722 upper halves are undefined). */
1723 if (tdep->gpr_full_regnum != -1
1724 && regnum >= tdep->gpr_full_regnum
1725 && regnum < tdep->gpr_full_regnum + 16)
1726 {
1727 int reg = regnum - tdep->gpr_full_regnum + S390_R0_REGNUM;
1728 struct value *val, *newval;
1729
1730 val = trad_frame_get_prev_register (this_frame, info->saved_regs, reg);
1731 newval = value_cast (register_type (gdbarch, regnum), val);
1732 if (value_optimized_out (val))
1733 set_value_optimized_out (newval, 1);
1734
1735 return newval;
1736 }
1737
1738 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1739 }
1740
1741 static const struct frame_unwind s390_frame_unwind = {
1742 NORMAL_FRAME,
1743 s390_frame_this_id,
1744 s390_frame_prev_register,
1745 NULL,
1746 default_frame_sniffer
1747 };
1748
1749
1750 /* Code stubs and their stack frames. For things like PLTs and NULL
1751 function calls (where there is no true frame and the return address
1752 is in the RETADDR register). */
1753
1754 struct s390_stub_unwind_cache
1755 {
1756 CORE_ADDR frame_base;
1757 struct trad_frame_saved_reg *saved_regs;
1758 };
1759
1760 static struct s390_stub_unwind_cache *
1761 s390_stub_frame_unwind_cache (struct frame_info *this_frame,
1762 void **this_prologue_cache)
1763 {
1764 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1765 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1766 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1767 struct s390_stub_unwind_cache *info;
1768 ULONGEST reg;
1769
1770 if (*this_prologue_cache)
1771 return *this_prologue_cache;
1772
1773 info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
1774 *this_prologue_cache = info;
1775 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1776
1777 /* The return address is in register %r14. */
1778 info->saved_regs[tdep->pc_regnum].realreg = S390_RETADDR_REGNUM;
1779
1780 /* Retrieve stack pointer and determine our frame base. */
1781 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1782 info->frame_base = reg + 16*word_size + 32;
1783
1784 return info;
1785 }
1786
1787 static void
1788 s390_stub_frame_this_id (struct frame_info *this_frame,
1789 void **this_prologue_cache,
1790 struct frame_id *this_id)
1791 {
1792 struct s390_stub_unwind_cache *info
1793 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1794 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
1795 }
1796
1797 static struct value *
1798 s390_stub_frame_prev_register (struct frame_info *this_frame,
1799 void **this_prologue_cache, int regnum)
1800 {
1801 struct s390_stub_unwind_cache *info
1802 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1803 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1804 }
1805
1806 static int
1807 s390_stub_frame_sniffer (const struct frame_unwind *self,
1808 struct frame_info *this_frame,
1809 void **this_prologue_cache)
1810 {
1811 CORE_ADDR addr_in_block;
1812 bfd_byte insn[S390_MAX_INSTR_SIZE];
1813
1814 /* If the current PC points to non-readable memory, we assume we
1815 have trapped due to an invalid function pointer call. We handle
1816 the non-existing current function like a PLT stub. */
1817 addr_in_block = get_frame_address_in_block (this_frame);
1818 if (in_plt_section (addr_in_block, NULL)
1819 || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
1820 return 1;
1821 return 0;
1822 }
1823
1824 static const struct frame_unwind s390_stub_frame_unwind = {
1825 NORMAL_FRAME,
1826 s390_stub_frame_this_id,
1827 s390_stub_frame_prev_register,
1828 NULL,
1829 s390_stub_frame_sniffer
1830 };
1831
1832
1833 /* Signal trampoline stack frames. */
1834
1835 struct s390_sigtramp_unwind_cache {
1836 CORE_ADDR frame_base;
1837 struct trad_frame_saved_reg *saved_regs;
1838 };
1839
1840 static struct s390_sigtramp_unwind_cache *
1841 s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
1842 void **this_prologue_cache)
1843 {
1844 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1846 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1848 struct s390_sigtramp_unwind_cache *info;
1849 ULONGEST this_sp, prev_sp;
1850 CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
1851 ULONGEST pswm;
1852 int i;
1853
1854 if (*this_prologue_cache)
1855 return *this_prologue_cache;
1856
1857 info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
1858 *this_prologue_cache = info;
1859 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1860
1861 this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1862 next_ra = get_frame_pc (this_frame);
1863 next_cfa = this_sp + 16*word_size + 32;
1864
1865 /* New-style RT frame:
1866 retcode + alignment (8 bytes)
1867 siginfo (128 bytes)
1868 ucontext (contains sigregs at offset 5 words) */
1869 if (next_ra == next_cfa)
1870 {
1871 sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
1872 /* sigregs are followed by uc_sigmask (8 bytes), then by the
1873 upper GPR halves if present. */
1874 sigreg_high_off = 8;
1875 }
1876
1877 /* Old-style RT frame and all non-RT frames:
1878 old signal mask (8 bytes)
1879 pointer to sigregs */
1880 else
1881 {
1882 sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
1883 word_size, byte_order);
1884 /* sigregs are followed by signo (4 bytes), then by the
1885 upper GPR halves if present. */
1886 sigreg_high_off = 4;
1887 }
1888
1889 /* The sigregs structure looks like this:
1890 long psw_mask;
1891 long psw_addr;
1892 long gprs[16];
1893 int acrs[16];
1894 int fpc;
1895 int __pad;
1896 double fprs[16]; */
1897
1898 /* PSW mask and address. */
1899 info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
1900 sigreg_ptr += word_size;
1901 info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
1902 sigreg_ptr += word_size;
1903
1904 /* Point PC to PSWA as well. */
1905 info->saved_regs[tdep->pc_regnum] = info->saved_regs[S390_PSWA_REGNUM];
1906
1907 /* Extract CC from PSWM. */
1908 pswm = read_memory_unsigned_integer (
1909 info->saved_regs[S390_PSWM_REGNUM].addr,
1910 word_size, byte_order);
1911 trad_frame_set_value (info->saved_regs, tdep->cc_regnum,
1912 (pswm >> (8 * word_size - 20)) & 3);
1913
1914 /* Then the GPRs. */
1915 for (i = 0; i < 16; i++)
1916 {
1917 info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
1918 sigreg_ptr += word_size;
1919 }
1920
1921 /* Then the ACRs. */
1922 for (i = 0; i < 16; i++)
1923 {
1924 info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
1925 sigreg_ptr += 4;
1926 }
1927
1928 /* The floating-point control word. */
1929 info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
1930 sigreg_ptr += 8;
1931
1932 /* And finally the FPRs. */
1933 for (i = 0; i < 16; i++)
1934 {
1935 info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
1936 sigreg_ptr += 8;
1937 }
1938
1939 /* If we have them, the GPR upper halves are appended at the end. */
1940 sigreg_ptr += sigreg_high_off;
1941 if (tdep->gpr_full_regnum != -1)
1942 for (i = 0; i < 16; i++)
1943 {
1944 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
1945 sigreg_ptr += 4;
1946 }
1947
1948 /* Provide read-only copies of the full registers. */
1949 if (tdep->gpr_full_regnum != -1)
1950 for (i = 0; i < 16; i++)
1951 {
1952 ULONGEST low, high;
1953 low = read_memory_unsigned_integer (
1954 info->saved_regs[S390_R0_REGNUM + i].addr,
1955 4, byte_order);
1956 high = read_memory_unsigned_integer (
1957 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr,
1958 4, byte_order);
1959
1960 trad_frame_set_value (info->saved_regs, tdep->gpr_full_regnum + i,
1961 (high << 32) | low);
1962 }
1963
1964 /* Restore the previous frame's SP. */
1965 prev_sp = read_memory_unsigned_integer (
1966 info->saved_regs[S390_SP_REGNUM].addr,
1967 word_size, byte_order);
1968
1969 /* Determine our frame base. */
1970 info->frame_base = prev_sp + 16*word_size + 32;
1971
1972 return info;
1973 }
1974
1975 static void
1976 s390_sigtramp_frame_this_id (struct frame_info *this_frame,
1977 void **this_prologue_cache,
1978 struct frame_id *this_id)
1979 {
1980 struct s390_sigtramp_unwind_cache *info
1981 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
1982 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
1983 }
1984
1985 static struct value *
1986 s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
1987 void **this_prologue_cache, int regnum)
1988 {
1989 struct s390_sigtramp_unwind_cache *info
1990 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
1991 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1992 }
1993
1994 static int
1995 s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
1996 struct frame_info *this_frame,
1997 void **this_prologue_cache)
1998 {
1999 CORE_ADDR pc = get_frame_pc (this_frame);
2000 bfd_byte sigreturn[2];
2001
2002 if (target_read_memory (pc, sigreturn, 2))
2003 return 0;
2004
2005 if (sigreturn[0] != 0x0a /* svc */)
2006 return 0;
2007
2008 if (sigreturn[1] != 119 /* sigreturn */
2009 && sigreturn[1] != 173 /* rt_sigreturn */)
2010 return 0;
2011
2012 return 1;
2013 }
2014
2015 static const struct frame_unwind s390_sigtramp_frame_unwind = {
2016 SIGTRAMP_FRAME,
2017 s390_sigtramp_frame_this_id,
2018 s390_sigtramp_frame_prev_register,
2019 NULL,
2020 s390_sigtramp_frame_sniffer
2021 };
2022
2023
2024 /* Frame base handling. */
2025
2026 static CORE_ADDR
2027 s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
2028 {
2029 struct s390_unwind_cache *info
2030 = s390_frame_unwind_cache (this_frame, this_cache);
2031 return info->frame_base;
2032 }
2033
2034 static CORE_ADDR
2035 s390_local_base_address (struct frame_info *this_frame, void **this_cache)
2036 {
2037 struct s390_unwind_cache *info
2038 = s390_frame_unwind_cache (this_frame, this_cache);
2039 return info->local_base;
2040 }
2041
2042 static const struct frame_base s390_frame_base = {
2043 &s390_frame_unwind,
2044 s390_frame_base_address,
2045 s390_local_base_address,
2046 s390_local_base_address
2047 };
2048
2049 static CORE_ADDR
2050 s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2051 {
2052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2053 ULONGEST pc;
2054 pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
2055 return gdbarch_addr_bits_remove (gdbarch, pc);
2056 }
2057
2058 static CORE_ADDR
2059 s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2060 {
2061 ULONGEST sp;
2062 sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
2063 return gdbarch_addr_bits_remove (gdbarch, sp);
2064 }
2065
2066
2067 /* DWARF-2 frame support. */
2068
2069 static struct value *
2070 s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
2071 int regnum)
2072 {
2073 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2074 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2075 int reg = regnum - tdep->gpr_full_regnum;
2076 struct value *val, *newval;
2077
2078 val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
2079 newval = value_cast (register_type (gdbarch, regnum), val);
2080 if (value_optimized_out (val))
2081 set_value_optimized_out (newval, 1);
2082
2083 return newval;
2084 }
2085
2086 static void
2087 s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2088 struct dwarf2_frame_state_reg *reg,
2089 struct frame_info *this_frame)
2090 {
2091 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2092
2093 /* Fixed registers are call-saved or call-clobbered
2094 depending on the ABI in use. */
2095 if (regnum >= 0 && regnum < S390_NUM_REGS)
2096 {
2097 if (s390_register_call_saved (gdbarch, regnum))
2098 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2099 else
2100 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2101 }
2102
2103 /* The CC pseudo register is call-clobbered. */
2104 else if (regnum == tdep->cc_regnum)
2105 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2106
2107 /* The PC register unwinds to the return address. */
2108 else if (regnum == tdep->pc_regnum)
2109 reg->how = DWARF2_FRAME_REG_RA;
2110
2111 /* We install a special function to unwind full GPRs to show at
2112 least the lower halves (as the upper halves are undefined). */
2113 else if (tdep->gpr_full_regnum != -1
2114 && regnum >= tdep->gpr_full_regnum
2115 && regnum < tdep->gpr_full_regnum + 16)
2116 {
2117 reg->how = DWARF2_FRAME_REG_FN;
2118 reg->loc.fn = s390_dwarf2_prev_register;
2119 }
2120 }
2121
2122
2123 /* Dummy function calls. */
2124
2125 /* Return non-zero if TYPE is an integer-like type, zero otherwise.
2126 "Integer-like" types are those that should be passed the way
2127 integers are: integers, enums, ranges, characters, and booleans. */
2128 static int
2129 is_integer_like (struct type *type)
2130 {
2131 enum type_code code = TYPE_CODE (type);
2132
2133 return (code == TYPE_CODE_INT
2134 || code == TYPE_CODE_ENUM
2135 || code == TYPE_CODE_RANGE
2136 || code == TYPE_CODE_CHAR
2137 || code == TYPE_CODE_BOOL);
2138 }
2139
2140 /* Return non-zero if TYPE is a pointer-like type, zero otherwise.
2141 "Pointer-like" types are those that should be passed the way
2142 pointers are: pointers and references. */
2143 static int
2144 is_pointer_like (struct type *type)
2145 {
2146 enum type_code code = TYPE_CODE (type);
2147
2148 return (code == TYPE_CODE_PTR
2149 || code == TYPE_CODE_REF);
2150 }
2151
2152
2153 /* Return non-zero if TYPE is a `float singleton' or `double
2154 singleton', zero otherwise.
2155
2156 A `T singleton' is a struct type with one member, whose type is
2157 either T or a `T singleton'. So, the following are all float
2158 singletons:
2159
2160 struct { float x };
2161 struct { struct { float x; } x; };
2162 struct { struct { struct { float x; } x; } x; };
2163
2164 ... and so on.
2165
2166 All such structures are passed as if they were floats or doubles,
2167 as the (revised) ABI says. */
2168 static int
2169 is_float_singleton (struct type *type)
2170 {
2171 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2172 {
2173 struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
2174 CHECK_TYPEDEF (singleton_type);
2175
2176 return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
2177 || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
2178 || is_float_singleton (singleton_type));
2179 }
2180
2181 return 0;
2182 }
2183
2184
2185 /* Return non-zero if TYPE is a struct-like type, zero otherwise.
2186 "Struct-like" types are those that should be passed as structs are:
2187 structs and unions.
2188
2189 As an odd quirk, not mentioned in the ABI, GCC passes float and
2190 double singletons as if they were a plain float, double, etc. (The
2191 corresponding union types are handled normally.) So we exclude
2192 those types here. *shrug* */
2193 static int
2194 is_struct_like (struct type *type)
2195 {
2196 enum type_code code = TYPE_CODE (type);
2197
2198 return (code == TYPE_CODE_UNION
2199 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
2200 }
2201
2202
2203 /* Return non-zero if TYPE is a float-like type, zero otherwise.
2204 "Float-like" types are those that should be passed as
2205 floating-point values are.
2206
2207 You'd think this would just be floats, doubles, long doubles, etc.
2208 But as an odd quirk, not mentioned in the ABI, GCC passes float and
2209 double singletons as if they were a plain float, double, etc. (The
2210 corresponding union types are handled normally.) So we include
2211 those types here. *shrug* */
2212 static int
2213 is_float_like (struct type *type)
2214 {
2215 return (TYPE_CODE (type) == TYPE_CODE_FLT
2216 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2217 || is_float_singleton (type));
2218 }
2219
2220
2221 static int
2222 is_power_of_two (unsigned int n)
2223 {
2224 return ((n & (n - 1)) == 0);
2225 }
2226
2227 /* Return non-zero if TYPE should be passed as a pointer to a copy,
2228 zero otherwise. */
2229 static int
2230 s390_function_arg_pass_by_reference (struct type *type)
2231 {
2232 unsigned length = TYPE_LENGTH (type);
2233 if (length > 8)
2234 return 1;
2235
2236 /* FIXME: All complex and vector types are also returned by reference. */
2237 return is_struct_like (type) && !is_power_of_two (length);
2238 }
2239
2240 /* Return non-zero if TYPE should be passed in a float register
2241 if possible. */
2242 static int
2243 s390_function_arg_float (struct type *type)
2244 {
2245 unsigned length = TYPE_LENGTH (type);
2246 if (length > 8)
2247 return 0;
2248
2249 return is_float_like (type);
2250 }
2251
2252 /* Return non-zero if TYPE should be passed in an integer register
2253 (or a pair of integer registers) if possible. */
2254 static int
2255 s390_function_arg_integer (struct type *type)
2256 {
2257 unsigned length = TYPE_LENGTH (type);
2258 if (length > 8)
2259 return 0;
2260
2261 return is_integer_like (type)
2262 || is_pointer_like (type)
2263 || (is_struct_like (type) && is_power_of_two (length));
2264 }
2265
2266 /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
2267 word as required for the ABI. */
2268 static LONGEST
2269 extend_simple_arg (struct gdbarch *gdbarch, struct value *arg)
2270 {
2271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2272 struct type *type = value_type (arg);
2273
2274 /* Even structs get passed in the least significant bits of the
2275 register / memory word. It's not really right to extract them as
2276 an integer, but it does take care of the extension. */
2277 if (TYPE_UNSIGNED (type))
2278 return extract_unsigned_integer (value_contents (arg),
2279 TYPE_LENGTH (type), byte_order);
2280 else
2281 return extract_signed_integer (value_contents (arg),
2282 TYPE_LENGTH (type), byte_order);
2283 }
2284
2285
2286 /* Return the alignment required by TYPE. */
2287 static int
2288 alignment_of (struct type *type)
2289 {
2290 int alignment;
2291
2292 if (is_integer_like (type)
2293 || is_pointer_like (type)
2294 || TYPE_CODE (type) == TYPE_CODE_FLT
2295 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2296 alignment = TYPE_LENGTH (type);
2297 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2298 || TYPE_CODE (type) == TYPE_CODE_UNION)
2299 {
2300 int i;
2301
2302 alignment = 1;
2303 for (i = 0; i < TYPE_NFIELDS (type); i++)
2304 {
2305 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
2306
2307 if (field_alignment > alignment)
2308 alignment = field_alignment;
2309 }
2310 }
2311 else
2312 alignment = 1;
2313
2314 /* Check that everything we ever return is a power of two. Lots of
2315 code doesn't want to deal with aligning things to arbitrary
2316 boundaries. */
2317 gdb_assert ((alignment & (alignment - 1)) == 0);
2318
2319 return alignment;
2320 }
2321
2322
2323 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
2324 place to be passed to a function, as specified by the "GNU/Linux
2325 for S/390 ELF Application Binary Interface Supplement".
2326
2327 SP is the current stack pointer. We must put arguments, links,
2328 padding, etc. whereever they belong, and return the new stack
2329 pointer value.
2330
2331 If STRUCT_RETURN is non-zero, then the function we're calling is
2332 going to return a structure by value; STRUCT_ADDR is the address of
2333 a block we've allocated for it on the stack.
2334
2335 Our caller has taken care of any type promotions needed to satisfy
2336 prototypes or the old K&R argument-passing rules. */
2337 static CORE_ADDR
2338 s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2339 struct regcache *regcache, CORE_ADDR bp_addr,
2340 int nargs, struct value **args, CORE_ADDR sp,
2341 int struct_return, CORE_ADDR struct_addr)
2342 {
2343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2344 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2346 int i;
2347
2348 /* If the i'th argument is passed as a reference to a copy, then
2349 copy_addr[i] is the address of the copy we made. */
2350 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
2351
2352 /* Reserve space for the reference-to-copy area. */
2353 for (i = 0; i < nargs; i++)
2354 {
2355 struct value *arg = args[i];
2356 struct type *type = value_type (arg);
2357 unsigned length = TYPE_LENGTH (type);
2358
2359 if (s390_function_arg_pass_by_reference (type))
2360 {
2361 sp -= length;
2362 sp = align_down (sp, alignment_of (type));
2363 copy_addr[i] = sp;
2364 }
2365 }
2366
2367 /* Reserve space for the parameter area. As a conservative
2368 simplification, we assume that everything will be passed on the
2369 stack. Since every argument larger than 8 bytes will be
2370 passed by reference, we use this simple upper bound. */
2371 sp -= nargs * 8;
2372
2373 /* After all that, make sure it's still aligned on an eight-byte
2374 boundary. */
2375 sp = align_down (sp, 8);
2376
2377 /* Allocate the standard frame areas: the register save area, the
2378 word reserved for the compiler (which seems kind of meaningless),
2379 and the back chain pointer. */
2380 sp -= 16*word_size + 32;
2381
2382 /* Now we have the final SP value. Make sure we didn't underflow;
2383 on 31-bit, this would result in addresses with the high bit set,
2384 which causes confusion elsewhere. Note that if we error out
2385 here, stack and registers remain untouched. */
2386 if (gdbarch_addr_bits_remove (gdbarch, sp) != sp)
2387 error (_("Stack overflow"));
2388
2389
2390 /* Finally, place the actual parameters, working from SP towards
2391 higher addresses. The code above is supposed to reserve enough
2392 space for this. */
2393 {
2394 int fr = 0;
2395 int gr = 2;
2396 CORE_ADDR starg = sp + 16*word_size + 32;
2397
2398 /* A struct is returned using general register 2. */
2399 if (struct_return)
2400 {
2401 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2402 struct_addr);
2403 gr++;
2404 }
2405
2406 for (i = 0; i < nargs; i++)
2407 {
2408 struct value *arg = args[i];
2409 struct type *type = value_type (arg);
2410 unsigned length = TYPE_LENGTH (type);
2411
2412 if (s390_function_arg_pass_by_reference (type))
2413 {
2414 /* Actually copy the argument contents to the stack slot
2415 that was reserved above. */
2416 write_memory (copy_addr[i], value_contents (arg), length);
2417
2418 if (gr <= 6)
2419 {
2420 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2421 copy_addr[i]);
2422 gr++;
2423 }
2424 else
2425 {
2426 write_memory_unsigned_integer (starg, word_size, byte_order,
2427 copy_addr[i]);
2428 starg += word_size;
2429 }
2430 }
2431 else if (s390_function_arg_float (type))
2432 {
2433 /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
2434 the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
2435 if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
2436 {
2437 /* When we store a single-precision value in an FP register,
2438 it occupies the leftmost bits. */
2439 regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
2440 0, length, value_contents (arg));
2441 fr += 2;
2442 }
2443 else
2444 {
2445 /* When we store a single-precision value in a stack slot,
2446 it occupies the rightmost bits. */
2447 starg = align_up (starg + length, word_size);
2448 write_memory (starg - length, value_contents (arg), length);
2449 }
2450 }
2451 else if (s390_function_arg_integer (type) && length <= word_size)
2452 {
2453 if (gr <= 6)
2454 {
2455 /* Integer arguments are always extended to word size. */
2456 regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
2457 extend_simple_arg (gdbarch, arg));
2458 gr++;
2459 }
2460 else
2461 {
2462 /* Integer arguments are always extended to word size. */
2463 write_memory_signed_integer (starg, word_size, byte_order,
2464 extend_simple_arg (gdbarch, arg));
2465 starg += word_size;
2466 }
2467 }
2468 else if (s390_function_arg_integer (type) && length == 2*word_size)
2469 {
2470 if (gr <= 5)
2471 {
2472 regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
2473 value_contents (arg));
2474 regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
2475 value_contents (arg) + word_size);
2476 gr += 2;
2477 }
2478 else
2479 {
2480 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2481 in it, then don't go back and use it again later. */
2482 gr = 7;
2483
2484 write_memory (starg, value_contents (arg), length);
2485 starg += length;
2486 }
2487 }
2488 else
2489 internal_error (__FILE__, __LINE__, _("unknown argument type"));
2490 }
2491 }
2492
2493 /* Store return address. */
2494 regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
2495
2496 /* Store updated stack pointer. */
2497 regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
2498
2499 /* We need to return the 'stack part' of the frame ID,
2500 which is actually the top of the register save area. */
2501 return sp + 16*word_size + 32;
2502 }
2503
2504 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
2505 dummy frame. The frame ID's base needs to match the TOS value
2506 returned by push_dummy_call, and the PC match the dummy frame's
2507 breakpoint. */
2508 static struct frame_id
2509 s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2510 {
2511 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2512 CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2513 sp = gdbarch_addr_bits_remove (gdbarch, sp);
2514
2515 return frame_id_build (sp + 16*word_size + 32,
2516 get_frame_pc (this_frame));
2517 }
2518
2519 static CORE_ADDR
2520 s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2521 {
2522 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2523 always be aligned on an eight-byte boundary. */
2524 return (addr & -8);
2525 }
2526
2527
2528 /* Function return value access. */
2529
2530 static enum return_value_convention
2531 s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
2532 {
2533 int length = TYPE_LENGTH (type);
2534 if (length > 8)
2535 return RETURN_VALUE_STRUCT_CONVENTION;
2536
2537 switch (TYPE_CODE (type))
2538 {
2539 case TYPE_CODE_STRUCT:
2540 case TYPE_CODE_UNION:
2541 case TYPE_CODE_ARRAY:
2542 return RETURN_VALUE_STRUCT_CONVENTION;
2543
2544 default:
2545 return RETURN_VALUE_REGISTER_CONVENTION;
2546 }
2547 }
2548
2549 static enum return_value_convention
2550 s390_return_value (struct gdbarch *gdbarch, struct type *func_type,
2551 struct type *type, struct regcache *regcache,
2552 gdb_byte *out, const gdb_byte *in)
2553 {
2554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2555 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2556 int length = TYPE_LENGTH (type);
2557 enum return_value_convention rvc =
2558 s390_return_value_convention (gdbarch, type);
2559 if (in)
2560 {
2561 switch (rvc)
2562 {
2563 case RETURN_VALUE_REGISTER_CONVENTION:
2564 if (TYPE_CODE (type) == TYPE_CODE_FLT
2565 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2566 {
2567 /* When we store a single-precision value in an FP register,
2568 it occupies the leftmost bits. */
2569 regcache_cooked_write_part (regcache, S390_F0_REGNUM,
2570 0, length, in);
2571 }
2572 else if (length <= word_size)
2573 {
2574 /* Integer arguments are always extended to word size. */
2575 if (TYPE_UNSIGNED (type))
2576 regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
2577 extract_unsigned_integer (in, length, byte_order));
2578 else
2579 regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
2580 extract_signed_integer (in, length, byte_order));
2581 }
2582 else if (length == 2*word_size)
2583 {
2584 regcache_cooked_write (regcache, S390_R2_REGNUM, in);
2585 regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
2586 }
2587 else
2588 internal_error (__FILE__, __LINE__, _("invalid return type"));
2589 break;
2590
2591 case RETURN_VALUE_STRUCT_CONVENTION:
2592 error (_("Cannot set function return value."));
2593 break;
2594 }
2595 }
2596 else if (out)
2597 {
2598 switch (rvc)
2599 {
2600 case RETURN_VALUE_REGISTER_CONVENTION:
2601 if (TYPE_CODE (type) == TYPE_CODE_FLT
2602 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2603 {
2604 /* When we store a single-precision value in an FP register,
2605 it occupies the leftmost bits. */
2606 regcache_cooked_read_part (regcache, S390_F0_REGNUM,
2607 0, length, out);
2608 }
2609 else if (length <= word_size)
2610 {
2611 /* Integer arguments occupy the rightmost bits. */
2612 regcache_cooked_read_part (regcache, S390_R2_REGNUM,
2613 word_size - length, length, out);
2614 }
2615 else if (length == 2*word_size)
2616 {
2617 regcache_cooked_read (regcache, S390_R2_REGNUM, out);
2618 regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
2619 }
2620 else
2621 internal_error (__FILE__, __LINE__, _("invalid return type"));
2622 break;
2623
2624 case RETURN_VALUE_STRUCT_CONVENTION:
2625 error (_("Function return value unknown."));
2626 break;
2627 }
2628 }
2629
2630 return rvc;
2631 }
2632
2633
2634 /* Breakpoints. */
2635
2636 static const gdb_byte *
2637 s390_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
2638 {
2639 static const gdb_byte breakpoint[] = { 0x0, 0x1 };
2640
2641 *lenptr = sizeof (breakpoint);
2642 return breakpoint;
2643 }
2644
2645
2646 /* Address handling. */
2647
2648 static CORE_ADDR
2649 s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2650 {
2651 return addr & 0x7fffffff;
2652 }
2653
2654 static int
2655 s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2656 {
2657 if (byte_size == 4)
2658 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2659 else
2660 return 0;
2661 }
2662
2663 static const char *
2664 s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2665 {
2666 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
2667 return "mode32";
2668 else
2669 return NULL;
2670 }
2671
2672 static int
2673 s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
2674 int *type_flags_ptr)
2675 {
2676 if (strcmp (name, "mode32") == 0)
2677 {
2678 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2679 return 1;
2680 }
2681 else
2682 return 0;
2683 }
2684
2685 /* Set up gdbarch struct. */
2686
2687 static struct gdbarch *
2688 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2689 {
2690 const struct target_desc *tdesc = info.target_desc;
2691 struct tdesc_arch_data *tdesc_data = NULL;
2692 struct gdbarch *gdbarch;
2693 struct gdbarch_tdep *tdep;
2694 int tdep_abi;
2695 int have_upper = 0;
2696 int first_pseudo_reg, last_pseudo_reg;
2697
2698 /* Default ABI and register size. */
2699 switch (info.bfd_arch_info->mach)
2700 {
2701 case bfd_mach_s390_31:
2702 tdep_abi = ABI_LINUX_S390;
2703 break;
2704
2705 case bfd_mach_s390_64:
2706 tdep_abi = ABI_LINUX_ZSERIES;
2707 break;
2708
2709 default:
2710 return NULL;
2711 }
2712
2713 /* Use default target description if none provided by the target. */
2714 if (!tdesc_has_registers (tdesc))
2715 {
2716 if (tdep_abi == ABI_LINUX_S390)
2717 tdesc = tdesc_s390_linux32;
2718 else
2719 tdesc = tdesc_s390x_linux64;
2720 }
2721
2722 /* Check any target description for validity. */
2723 if (tdesc_has_registers (tdesc))
2724 {
2725 static const char *const gprs[] = {
2726 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2727 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2728 };
2729 static const char *const fprs[] = {
2730 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2731 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
2732 };
2733 static const char *const acrs[] = {
2734 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
2735 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
2736 };
2737 static const char *const gprs_lower[] = {
2738 "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
2739 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
2740 };
2741 static const char *const gprs_upper[] = {
2742 "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
2743 "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
2744 };
2745 const struct tdesc_feature *feature;
2746 int i, valid_p = 1;
2747
2748 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
2749 if (feature == NULL)
2750 return NULL;
2751
2752 tdesc_data = tdesc_data_alloc ();
2753
2754 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2755 S390_PSWM_REGNUM, "pswm");
2756 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2757 S390_PSWA_REGNUM, "pswa");
2758
2759 if (tdesc_unnumbered_register (feature, "r0"))
2760 {
2761 for (i = 0; i < 16; i++)
2762 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2763 S390_R0_REGNUM + i, gprs[i]);
2764 }
2765 else
2766 {
2767 have_upper = 1;
2768
2769 for (i = 0; i < 16; i++)
2770 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2771 S390_R0_REGNUM + i,
2772 gprs_lower[i]);
2773 for (i = 0; i < 16; i++)
2774 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2775 S390_R0_UPPER_REGNUM + i,
2776 gprs_upper[i]);
2777 }
2778
2779 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
2780 if (feature == NULL)
2781 {
2782 tdesc_data_cleanup (tdesc_data);
2783 return NULL;
2784 }
2785
2786 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2787 S390_FPC_REGNUM, "fpc");
2788 for (i = 0; i < 16; i++)
2789 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2790 S390_F0_REGNUM + i, fprs[i]);
2791
2792 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
2793 if (feature == NULL)
2794 {
2795 tdesc_data_cleanup (tdesc_data);
2796 return NULL;
2797 }
2798
2799 for (i = 0; i < 16; i++)
2800 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2801 S390_A0_REGNUM + i, acrs[i]);
2802
2803 if (!valid_p)
2804 {
2805 tdesc_data_cleanup (tdesc_data);
2806 return NULL;
2807 }
2808 }
2809
2810 /* Find a candidate among extant architectures. */
2811 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2812 arches != NULL;
2813 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2814 {
2815 tdep = gdbarch_tdep (arches->gdbarch);
2816 if (!tdep)
2817 continue;
2818 if (tdep->abi != tdep_abi)
2819 continue;
2820 if ((tdep->gpr_full_regnum != -1) != have_upper)
2821 continue;
2822 if (tdesc_data != NULL)
2823 tdesc_data_cleanup (tdesc_data);
2824 return arches->gdbarch;
2825 }
2826
2827 /* Otherwise create a new gdbarch for the specified machine type. */
2828 tdep = XCALLOC (1, struct gdbarch_tdep);
2829 tdep->abi = tdep_abi;
2830 gdbarch = gdbarch_alloc (&info, tdep);
2831
2832 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
2833 set_gdbarch_char_signed (gdbarch, 0);
2834
2835 /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
2836 We can safely let them default to 128-bit, since the debug info
2837 will give the size of type actually used in each case. */
2838 set_gdbarch_long_double_bit (gdbarch, 128);
2839 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2840
2841 /* Amount PC must be decremented by after a breakpoint. This is
2842 often the number of bytes returned by gdbarch_breakpoint_from_pc but not
2843 always. */
2844 set_gdbarch_decr_pc_after_break (gdbarch, 2);
2845 /* Stack grows downward. */
2846 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2847 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
2848 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
2849 set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
2850
2851 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
2852 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
2853 set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
2854 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2855 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2856 set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
2857 set_gdbarch_regset_from_core_section (gdbarch,
2858 s390_regset_from_core_section);
2859 set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
2860 if (have_upper)
2861 set_gdbarch_core_regset_sections (gdbarch, s390_upper_regset_sections);
2862 set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
2863 set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
2864 set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
2865 set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
2866 set_tdesc_pseudo_register_reggroup_p (gdbarch,
2867 s390_pseudo_register_reggroup_p);
2868 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2869
2870 /* Assign pseudo register numbers. */
2871 first_pseudo_reg = gdbarch_num_regs (gdbarch);
2872 last_pseudo_reg = first_pseudo_reg;
2873 tdep->gpr_full_regnum = -1;
2874 if (have_upper)
2875 {
2876 tdep->gpr_full_regnum = last_pseudo_reg;
2877 last_pseudo_reg += 16;
2878 }
2879 tdep->pc_regnum = last_pseudo_reg++;
2880 tdep->cc_regnum = last_pseudo_reg++;
2881 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2882 set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
2883
2884 /* Inferior function calls. */
2885 set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
2886 set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
2887 set_gdbarch_frame_align (gdbarch, s390_frame_align);
2888 set_gdbarch_return_value (gdbarch, s390_return_value);
2889
2890 /* Frame handling. */
2891 dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
2892 dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
2893 dwarf2_append_unwinders (gdbarch);
2894 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
2895 frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
2896 frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
2897 frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
2898 frame_base_set_default (gdbarch, &s390_frame_base);
2899 set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
2900 set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
2901
2902 /* Displaced stepping. */
2903 set_gdbarch_displaced_step_copy_insn (gdbarch,
2904 simple_displaced_step_copy_insn);
2905 set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
2906 set_gdbarch_displaced_step_free_closure (gdbarch,
2907 simple_displaced_step_free_closure);
2908 set_gdbarch_displaced_step_location (gdbarch,
2909 displaced_step_at_entry_point);
2910 set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
2911
2912 switch (tdep->abi)
2913 {
2914 case ABI_LINUX_S390:
2915 tdep->gregset = &s390_gregset;
2916 tdep->sizeof_gregset = s390_sizeof_gregset;
2917 tdep->fpregset = &s390_fpregset;
2918 tdep->sizeof_fpregset = s390_sizeof_fpregset;
2919
2920 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
2921 set_solib_svr4_fetch_link_map_offsets
2922 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2923 break;
2924
2925 case ABI_LINUX_ZSERIES:
2926 tdep->gregset = &s390x_gregset;
2927 tdep->sizeof_gregset = s390x_sizeof_gregset;
2928 tdep->fpregset = &s390_fpregset;
2929 tdep->sizeof_fpregset = s390_sizeof_fpregset;
2930
2931 set_gdbarch_long_bit (gdbarch, 64);
2932 set_gdbarch_long_long_bit (gdbarch, 64);
2933 set_gdbarch_ptr_bit (gdbarch, 64);
2934 set_solib_svr4_fetch_link_map_offsets
2935 (gdbarch, svr4_lp64_fetch_link_map_offsets);
2936 set_gdbarch_address_class_type_flags (gdbarch,
2937 s390_address_class_type_flags);
2938 set_gdbarch_address_class_type_flags_to_name (gdbarch,
2939 s390_address_class_type_flags_to_name);
2940 set_gdbarch_address_class_name_to_type_flags (gdbarch,
2941 s390_address_class_name_to_type_flags);
2942 break;
2943 }
2944
2945 set_gdbarch_print_insn (gdbarch, print_insn_s390);
2946
2947 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2948
2949 /* Enable TLS support. */
2950 set_gdbarch_fetch_tls_load_module_address (gdbarch,
2951 svr4_fetch_objfile_link_map);
2952
2953 return gdbarch;
2954 }
2955
2956
2957 extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
2958
2959 void
2960 _initialize_s390_tdep (void)
2961 {
2962 /* Hook us into the gdbarch mechanism. */
2963 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
2964
2965 /* Initialize the Linux target descriptions. */
2966 initialize_tdesc_s390_linux32 ();
2967 initialize_tdesc_s390_linux64 ();
2968 initialize_tdesc_s390x_linux64 ();
2969 }
This page took 0.091413 seconds and 5 git commands to generate.