Really remove file.
[deliverable/binutils-gdb.git] / gdb / ser-unix.c
1 /* Serial interface for local (hardwired) serial ports on Un*x like systems
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
4 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "serial.h"
25 #include "ser-unix.h"
26
27 #include <fcntl.h>
28 #include <sys/types.h>
29 #include "terminal.h"
30 #include <sys/socket.h>
31 #include <sys/time.h>
32
33 #include "gdb_string.h"
34 #include "event-loop.h"
35
36 #ifdef HAVE_TERMIOS
37
38 struct hardwire_ttystate
39 {
40 struct termios termios;
41 };
42 #endif /* termios */
43
44 #ifdef HAVE_TERMIO
45
46 /* It is believed that all systems which have added job control to SVR3
47 (e.g. sco) have also added termios. Even if not, trying to figure out
48 all the variations (TIOCGPGRP vs. TCGETPGRP, etc.) would be pretty
49 bewildering. So we don't attempt it. */
50
51 struct hardwire_ttystate
52 {
53 struct termio termio;
54 };
55 #endif /* termio */
56
57 #ifdef HAVE_SGTTY
58 struct hardwire_ttystate
59 {
60 struct sgttyb sgttyb;
61 struct tchars tc;
62 struct ltchars ltc;
63 /* Line discipline flags. */
64 int lmode;
65 };
66 #endif /* sgtty */
67
68 static int hardwire_open (struct serial *scb, const char *name);
69 static void hardwire_raw (struct serial *scb);
70 static int wait_for (struct serial *scb, int timeout);
71 static int hardwire_readchar (struct serial *scb, int timeout);
72 static int do_hardwire_readchar (struct serial *scb, int timeout);
73 static int generic_readchar (struct serial *scb, int timeout,
74 int (*do_readchar) (struct serial *scb,
75 int timeout));
76 static int rate_to_code (int rate);
77 static int hardwire_setbaudrate (struct serial *scb, int rate);
78 static void hardwire_close (struct serial *scb);
79 static int get_tty_state (struct serial *scb,
80 struct hardwire_ttystate * state);
81 static int set_tty_state (struct serial *scb,
82 struct hardwire_ttystate * state);
83 static serial_ttystate hardwire_get_tty_state (struct serial *scb);
84 static int hardwire_set_tty_state (struct serial *scb, serial_ttystate state);
85 static int hardwire_noflush_set_tty_state (struct serial *, serial_ttystate,
86 serial_ttystate);
87 static void hardwire_print_tty_state (struct serial *, serial_ttystate,
88 struct ui_file *);
89 static int hardwire_drain_output (struct serial *);
90 static int hardwire_flush_output (struct serial *);
91 static int hardwire_flush_input (struct serial *);
92 static int hardwire_send_break (struct serial *);
93 static int hardwire_setstopbits (struct serial *, int);
94
95 static int do_unix_readchar (struct serial *scb, int timeout);
96 static timer_handler_func push_event;
97 static handler_func fd_event;
98 static void reschedule (struct serial *scb);
99
100 void _initialize_ser_hardwire (void);
101
102 extern int (*ui_loop_hook) (int);
103
104 /* Open up a real live device for serial I/O */
105
106 static int
107 hardwire_open (struct serial *scb, const char *name)
108 {
109 scb->fd = open (name, O_RDWR);
110 if (scb->fd < 0)
111 return -1;
112
113 return 0;
114 }
115
116 static int
117 get_tty_state (struct serial *scb, struct hardwire_ttystate *state)
118 {
119 #ifdef HAVE_TERMIOS
120 if (tcgetattr (scb->fd, &state->termios) < 0)
121 return -1;
122
123 return 0;
124 #endif
125
126 #ifdef HAVE_TERMIO
127 if (ioctl (scb->fd, TCGETA, &state->termio) < 0)
128 return -1;
129 return 0;
130 #endif
131
132 #ifdef HAVE_SGTTY
133 if (ioctl (scb->fd, TIOCGETP, &state->sgttyb) < 0)
134 return -1;
135 if (ioctl (scb->fd, TIOCGETC, &state->tc) < 0)
136 return -1;
137 if (ioctl (scb->fd, TIOCGLTC, &state->ltc) < 0)
138 return -1;
139 if (ioctl (scb->fd, TIOCLGET, &state->lmode) < 0)
140 return -1;
141
142 return 0;
143 #endif
144 }
145
146 static int
147 set_tty_state (struct serial *scb, struct hardwire_ttystate *state)
148 {
149 #ifdef HAVE_TERMIOS
150 if (tcsetattr (scb->fd, TCSANOW, &state->termios) < 0)
151 return -1;
152
153 return 0;
154 #endif
155
156 #ifdef HAVE_TERMIO
157 if (ioctl (scb->fd, TCSETA, &state->termio) < 0)
158 return -1;
159 return 0;
160 #endif
161
162 #ifdef HAVE_SGTTY
163 if (ioctl (scb->fd, TIOCSETN, &state->sgttyb) < 0)
164 return -1;
165 if (ioctl (scb->fd, TIOCSETC, &state->tc) < 0)
166 return -1;
167 if (ioctl (scb->fd, TIOCSLTC, &state->ltc) < 0)
168 return -1;
169 if (ioctl (scb->fd, TIOCLSET, &state->lmode) < 0)
170 return -1;
171
172 return 0;
173 #endif
174 }
175
176 static serial_ttystate
177 hardwire_get_tty_state (struct serial *scb)
178 {
179 struct hardwire_ttystate *state;
180
181 state = (struct hardwire_ttystate *) xmalloc (sizeof *state);
182
183 if (get_tty_state (scb, state))
184 return NULL;
185
186 return (serial_ttystate) state;
187 }
188
189 static int
190 hardwire_set_tty_state (struct serial *scb, serial_ttystate ttystate)
191 {
192 struct hardwire_ttystate *state;
193
194 state = (struct hardwire_ttystate *) ttystate;
195
196 return set_tty_state (scb, state);
197 }
198
199 static int
200 hardwire_noflush_set_tty_state (struct serial *scb,
201 serial_ttystate new_ttystate,
202 serial_ttystate old_ttystate)
203 {
204 struct hardwire_ttystate new_state;
205 #ifdef HAVE_SGTTY
206 struct hardwire_ttystate *state = (struct hardwire_ttystate *) old_ttystate;
207 #endif
208
209 new_state = *(struct hardwire_ttystate *) new_ttystate;
210
211 /* Don't change in or out of raw mode; we don't want to flush input.
212 termio and termios have no such restriction; for them flushing input
213 is separate from setting the attributes. */
214
215 #ifdef HAVE_SGTTY
216 if (state->sgttyb.sg_flags & RAW)
217 new_state.sgttyb.sg_flags |= RAW;
218 else
219 new_state.sgttyb.sg_flags &= ~RAW;
220
221 /* I'm not sure whether this is necessary; the manpage just mentions
222 RAW not CBREAK. */
223 if (state->sgttyb.sg_flags & CBREAK)
224 new_state.sgttyb.sg_flags |= CBREAK;
225 else
226 new_state.sgttyb.sg_flags &= ~CBREAK;
227 #endif
228
229 return set_tty_state (scb, &new_state);
230 }
231
232 static void
233 hardwire_print_tty_state (struct serial *scb,
234 serial_ttystate ttystate,
235 struct ui_file *stream)
236 {
237 struct hardwire_ttystate *state = (struct hardwire_ttystate *) ttystate;
238 int i;
239
240 #ifdef HAVE_TERMIOS
241 fprintf_filtered (stream, "c_iflag = 0x%x, c_oflag = 0x%x,\n",
242 (int) state->termios.c_iflag,
243 (int) state->termios.c_oflag);
244 fprintf_filtered (stream, "c_cflag = 0x%x, c_lflag = 0x%x\n",
245 (int) state->termios.c_cflag,
246 (int) state->termios.c_lflag);
247 #if 0
248 /* This not in POSIX, and is not really documented by those systems
249 which have it (at least not Sun). */
250 fprintf_filtered (stream, "c_line = 0x%x.\n", state->termios.c_line);
251 #endif
252 fprintf_filtered (stream, "c_cc: ");
253 for (i = 0; i < NCCS; i += 1)
254 fprintf_filtered (stream, "0x%x ", state->termios.c_cc[i]);
255 fprintf_filtered (stream, "\n");
256 #endif
257
258 #ifdef HAVE_TERMIO
259 fprintf_filtered (stream, "c_iflag = 0x%x, c_oflag = 0x%x,\n",
260 state->termio.c_iflag, state->termio.c_oflag);
261 fprintf_filtered (stream, "c_cflag = 0x%x, c_lflag = 0x%x, c_line = 0x%x.\n",
262 state->termio.c_cflag, state->termio.c_lflag,
263 state->termio.c_line);
264 fprintf_filtered (stream, "c_cc: ");
265 for (i = 0; i < NCC; i += 1)
266 fprintf_filtered (stream, "0x%x ", state->termio.c_cc[i]);
267 fprintf_filtered (stream, "\n");
268 #endif
269
270 #ifdef HAVE_SGTTY
271 fprintf_filtered (stream, "sgttyb.sg_flags = 0x%x.\n",
272 state->sgttyb.sg_flags);
273
274 fprintf_filtered (stream, "tchars: ");
275 for (i = 0; i < (int) sizeof (struct tchars); i++)
276 fprintf_filtered (stream, "0x%x ", ((unsigned char *) &state->tc)[i]);
277 fprintf_filtered (stream, "\n");
278
279 fprintf_filtered (stream, "ltchars: ");
280 for (i = 0; i < (int) sizeof (struct ltchars); i++)
281 fprintf_filtered (stream, "0x%x ", ((unsigned char *) &state->ltc)[i]);
282 fprintf_filtered (stream, "\n");
283
284 fprintf_filtered (stream, "lmode: 0x%x\n", state->lmode);
285 #endif
286 }
287
288 /* Wait for the output to drain away, as opposed to flushing (discarding) it */
289
290 static int
291 hardwire_drain_output (struct serial *scb)
292 {
293 #ifdef HAVE_TERMIOS
294 return tcdrain (scb->fd);
295 #endif
296
297 #ifdef HAVE_TERMIO
298 return ioctl (scb->fd, TCSBRK, 1);
299 #endif
300
301 #ifdef HAVE_SGTTY
302 /* Get the current state and then restore it using TIOCSETP,
303 which should cause the output to drain and pending input
304 to be discarded. */
305 {
306 struct hardwire_ttystate state;
307 if (get_tty_state (scb, &state))
308 {
309 return (-1);
310 }
311 else
312 {
313 return (ioctl (scb->fd, TIOCSETP, &state.sgttyb));
314 }
315 }
316 #endif
317 }
318
319 static int
320 hardwire_flush_output (struct serial *scb)
321 {
322 #ifdef HAVE_TERMIOS
323 return tcflush (scb->fd, TCOFLUSH);
324 #endif
325
326 #ifdef HAVE_TERMIO
327 return ioctl (scb->fd, TCFLSH, 1);
328 #endif
329
330 #ifdef HAVE_SGTTY
331 /* This flushes both input and output, but we can't do better. */
332 return ioctl (scb->fd, TIOCFLUSH, 0);
333 #endif
334 }
335
336 static int
337 hardwire_flush_input (struct serial *scb)
338 {
339 ser_unix_flush_input (scb);
340
341 #ifdef HAVE_TERMIOS
342 return tcflush (scb->fd, TCIFLUSH);
343 #endif
344
345 #ifdef HAVE_TERMIO
346 return ioctl (scb->fd, TCFLSH, 0);
347 #endif
348
349 #ifdef HAVE_SGTTY
350 /* This flushes both input and output, but we can't do better. */
351 return ioctl (scb->fd, TIOCFLUSH, 0);
352 #endif
353 }
354
355 static int
356 hardwire_send_break (struct serial *scb)
357 {
358 #ifdef HAVE_TERMIOS
359 return tcsendbreak (scb->fd, 0);
360 #endif
361
362 #ifdef HAVE_TERMIO
363 return ioctl (scb->fd, TCSBRK, 0);
364 #endif
365
366 #ifdef HAVE_SGTTY
367 {
368 int status;
369 struct timeval timeout;
370
371 status = ioctl (scb->fd, TIOCSBRK, 0);
372
373 /* Can't use usleep; it doesn't exist in BSD 4.2. */
374 /* Note that if this select() is interrupted by a signal it will not wait
375 the full length of time. I think that is OK. */
376 timeout.tv_sec = 0;
377 timeout.tv_usec = 250000;
378 select (0, 0, 0, 0, &timeout);
379 status = ioctl (scb->fd, TIOCCBRK, 0);
380 return status;
381 }
382 #endif
383 }
384
385 static void
386 hardwire_raw (struct serial *scb)
387 {
388 struct hardwire_ttystate state;
389
390 if (get_tty_state (scb, &state))
391 fprintf_unfiltered (gdb_stderr, "get_tty_state failed: %s\n", safe_strerror (errno));
392
393 #ifdef HAVE_TERMIOS
394 state.termios.c_iflag = 0;
395 state.termios.c_oflag = 0;
396 state.termios.c_lflag = 0;
397 state.termios.c_cflag &= ~(CSIZE | PARENB);
398 state.termios.c_cflag |= CLOCAL | CS8;
399 state.termios.c_cc[VMIN] = 0;
400 state.termios.c_cc[VTIME] = 0;
401 #endif
402
403 #ifdef HAVE_TERMIO
404 state.termio.c_iflag = 0;
405 state.termio.c_oflag = 0;
406 state.termio.c_lflag = 0;
407 state.termio.c_cflag &= ~(CSIZE | PARENB);
408 state.termio.c_cflag |= CLOCAL | CS8;
409 state.termio.c_cc[VMIN] = 0;
410 state.termio.c_cc[VTIME] = 0;
411 #endif
412
413 #ifdef HAVE_SGTTY
414 state.sgttyb.sg_flags |= RAW | ANYP;
415 state.sgttyb.sg_flags &= ~(CBREAK | ECHO);
416 #endif
417
418 scb->current_timeout = 0;
419
420 if (set_tty_state (scb, &state))
421 fprintf_unfiltered (gdb_stderr, "set_tty_state failed: %s\n", safe_strerror (errno));
422 }
423
424 /* Wait for input on scb, with timeout seconds. Returns 0 on success,
425 otherwise SERIAL_TIMEOUT or SERIAL_ERROR.
426
427 For termio{s}, we actually just setup VTIME if necessary, and let the
428 timeout occur in the read() in hardwire_read().
429 */
430
431 /* FIXME: cagney/1999-09-16: Don't replace this with the equivalent
432 ser_unix*() until the old TERMIOS/SGTTY/... timer code has been
433 flushed. . */
434
435 /* NOTE: cagney/1999-09-30: Much of the code below is dead. The only
436 possible values of the TIMEOUT parameter are ONE and ZERO.
437 Consequently all the code that tries to handle the possability of
438 an overflowed timer is unnecessary. */
439
440 static int
441 wait_for (struct serial *scb, int timeout)
442 {
443 #ifdef HAVE_SGTTY
444 while (1)
445 {
446 struct timeval tv;
447 fd_set readfds;
448 int numfds;
449
450 /* NOTE: Some OS's can scramble the READFDS when the select()
451 call fails (ex the kernel with Red Hat 5.2). Initialize all
452 arguments before each call. */
453
454 tv.tv_sec = timeout;
455 tv.tv_usec = 0;
456
457 FD_ZERO (&readfds);
458 FD_SET (scb->fd, &readfds);
459
460 if (timeout >= 0)
461 numfds = select (scb->fd + 1, &readfds, 0, 0, &tv);
462 else
463 numfds = select (scb->fd + 1, &readfds, 0, 0, 0);
464
465 if (numfds <= 0)
466 if (numfds == 0)
467 return SERIAL_TIMEOUT;
468 else if (errno == EINTR)
469 continue;
470 else
471 return SERIAL_ERROR; /* Got an error from select or poll */
472
473 return 0;
474 }
475 #endif /* HAVE_SGTTY */
476
477 #if defined HAVE_TERMIO || defined HAVE_TERMIOS
478 if (timeout == scb->current_timeout)
479 return 0;
480
481 scb->current_timeout = timeout;
482
483 {
484 struct hardwire_ttystate state;
485
486 if (get_tty_state (scb, &state))
487 fprintf_unfiltered (gdb_stderr, "get_tty_state failed: %s\n", safe_strerror (errno));
488
489 #ifdef HAVE_TERMIOS
490 if (timeout < 0)
491 {
492 /* No timeout. */
493 state.termios.c_cc[VTIME] = 0;
494 state.termios.c_cc[VMIN] = 1;
495 }
496 else
497 {
498 state.termios.c_cc[VMIN] = 0;
499 state.termios.c_cc[VTIME] = timeout * 10;
500 if (state.termios.c_cc[VTIME] != timeout * 10)
501 {
502
503 /* If c_cc is an 8-bit signed character, we can't go
504 bigger than this. If it is always unsigned, we could use
505 25. */
506
507 scb->current_timeout = 12;
508 state.termios.c_cc[VTIME] = scb->current_timeout * 10;
509 scb->timeout_remaining = timeout - scb->current_timeout;
510 }
511 }
512 #endif
513
514 #ifdef HAVE_TERMIO
515 if (timeout < 0)
516 {
517 /* No timeout. */
518 state.termio.c_cc[VTIME] = 0;
519 state.termio.c_cc[VMIN] = 1;
520 }
521 else
522 {
523 state.termio.c_cc[VMIN] = 0;
524 state.termio.c_cc[VTIME] = timeout * 10;
525 if (state.termio.c_cc[VTIME] != timeout * 10)
526 {
527 /* If c_cc is an 8-bit signed character, we can't go
528 bigger than this. If it is always unsigned, we could use
529 25. */
530
531 scb->current_timeout = 12;
532 state.termio.c_cc[VTIME] = scb->current_timeout * 10;
533 scb->timeout_remaining = timeout - scb->current_timeout;
534 }
535 }
536 #endif
537
538 if (set_tty_state (scb, &state))
539 fprintf_unfiltered (gdb_stderr, "set_tty_state failed: %s\n", safe_strerror (errno));
540
541 return 0;
542 }
543 #endif /* HAVE_TERMIO || HAVE_TERMIOS */
544 }
545
546 /* Read a character with user-specified timeout. TIMEOUT is number of seconds
547 to wait, or -1 to wait forever. Use timeout of 0 to effect a poll. Returns
548 char if successful. Returns SERIAL_TIMEOUT if timeout expired, EOF if line
549 dropped dead, or SERIAL_ERROR for any other error (see errno in that case). */
550
551 /* FIXME: cagney/1999-09-16: Don't replace this with the equivalent
552 ser_unix*() until the old TERMIOS/SGTTY/... timer code has been
553 flushed. */
554
555 /* NOTE: cagney/1999-09-16: This function is not identical to
556 ser_unix_readchar() as part of replacing it with ser_unix*()
557 merging will be required - this code handles the case where read()
558 times out due to no data while ser_unix_readchar() doesn't expect
559 that. */
560
561 static int
562 do_hardwire_readchar (struct serial *scb, int timeout)
563 {
564 int status, delta;
565 int detach = 0;
566
567 if (timeout > 0)
568 timeout++;
569
570 /* We have to be able to keep the GUI alive here, so we break the original
571 timeout into steps of 1 second, running the "keep the GUI alive" hook
572 each time through the loop.
573 Also, timeout = 0 means to poll, so we just set the delta to 0, so we
574 will only go through the loop once. */
575
576 delta = (timeout == 0 ? 0 : 1);
577 while (1)
578 {
579
580 /* N.B. The UI may destroy our world (for instance by calling
581 remote_stop,) in which case we want to get out of here as
582 quickly as possible. It is not safe to touch scb, since
583 someone else might have freed it. The ui_loop_hook signals that
584 we should exit by returning 1. */
585
586 if (ui_loop_hook)
587 detach = ui_loop_hook (0);
588
589 if (detach)
590 return SERIAL_TIMEOUT;
591
592 scb->timeout_remaining = (timeout < 0 ? timeout : timeout - delta);
593 status = wait_for (scb, delta);
594
595 if (status < 0)
596 return status;
597
598 status = read (scb->fd, scb->buf, BUFSIZ);
599
600 if (status <= 0)
601 {
602 if (status == 0)
603 {
604 /* Zero characters means timeout (it could also be EOF, but
605 we don't (yet at least) distinguish). */
606 if (scb->timeout_remaining > 0)
607 {
608 timeout = scb->timeout_remaining;
609 continue;
610 }
611 else if (scb->timeout_remaining < 0)
612 continue;
613 else
614 return SERIAL_TIMEOUT;
615 }
616 else if (errno == EINTR)
617 continue;
618 else
619 return SERIAL_ERROR; /* Got an error from read */
620 }
621
622 scb->bufcnt = status;
623 scb->bufcnt--;
624 scb->bufp = scb->buf;
625 return *scb->bufp++;
626 }
627 }
628
629 static int
630 hardwire_readchar (struct serial *scb, int timeout)
631 {
632 return generic_readchar (scb, timeout, do_hardwire_readchar);
633 }
634
635
636 #ifndef B19200
637 #define B19200 EXTA
638 #endif
639
640 #ifndef B38400
641 #define B38400 EXTB
642 #endif
643
644 /* Translate baud rates from integers to damn B_codes. Unix should
645 have outgrown this crap years ago, but even POSIX wouldn't buck it. */
646
647 static struct
648 {
649 int rate;
650 int code;
651 }
652 baudtab[] =
653 {
654 {
655 50, B50
656 }
657 ,
658 {
659 75, B75
660 }
661 ,
662 {
663 110, B110
664 }
665 ,
666 {
667 134, B134
668 }
669 ,
670 {
671 150, B150
672 }
673 ,
674 {
675 200, B200
676 }
677 ,
678 {
679 300, B300
680 }
681 ,
682 {
683 600, B600
684 }
685 ,
686 {
687 1200, B1200
688 }
689 ,
690 {
691 1800, B1800
692 }
693 ,
694 {
695 2400, B2400
696 }
697 ,
698 {
699 4800, B4800
700 }
701 ,
702 {
703 9600, B9600
704 }
705 ,
706 {
707 19200, B19200
708 }
709 ,
710 {
711 38400, B38400
712 }
713 ,
714 #ifdef B57600
715 {
716 57600, B57600
717 }
718 ,
719 #endif
720 #ifdef B115200
721 {
722 115200, B115200
723 }
724 ,
725 #endif
726 #ifdef B230400
727 {
728 230400, B230400
729 }
730 ,
731 #endif
732 #ifdef B460800
733 {
734 460800, B460800
735 }
736 ,
737 #endif
738 {
739 -1, -1
740 }
741 ,
742 };
743
744 static int
745 rate_to_code (int rate)
746 {
747 int i;
748
749 for (i = 0; baudtab[i].rate != -1; i++)
750 {
751 /* test for perfect macth. */
752 if (rate == baudtab[i].rate)
753 return baudtab[i].code;
754 else
755 {
756 /* check if it is in between valid values. */
757 if (rate < baudtab[i].rate)
758 {
759 if (i)
760 {
761 warning ("Invalid baud rate %d. Closest values are %d and %d.",
762 rate, baudtab[i - 1].rate, baudtab[i].rate);
763 }
764 else
765 {
766 warning ("Invalid baud rate %d. Minimum value is %d.",
767 rate, baudtab[0].rate);
768 }
769 return -1;
770 }
771 }
772 }
773
774 /* The requested speed was too large. */
775 warning ("Invalid baud rate %d. Maximum value is %d.",
776 rate, baudtab[i - 1].rate);
777 return -1;
778 }
779
780 static int
781 hardwire_setbaudrate (struct serial *scb, int rate)
782 {
783 struct hardwire_ttystate state;
784 int baud_code = rate_to_code (rate);
785
786 if (baud_code < 0)
787 {
788 /* The baud rate was not valid.
789 A warning has already been issued. */
790 errno = EINVAL;
791 return -1;
792 }
793
794 if (get_tty_state (scb, &state))
795 return -1;
796
797 #ifdef HAVE_TERMIOS
798 cfsetospeed (&state.termios, baud_code);
799 cfsetispeed (&state.termios, baud_code);
800 #endif
801
802 #ifdef HAVE_TERMIO
803 #ifndef CIBAUD
804 #define CIBAUD CBAUD
805 #endif
806
807 state.termio.c_cflag &= ~(CBAUD | CIBAUD);
808 state.termio.c_cflag |= baud_code;
809 #endif
810
811 #ifdef HAVE_SGTTY
812 state.sgttyb.sg_ispeed = baud_code;
813 state.sgttyb.sg_ospeed = baud_code;
814 #endif
815
816 return set_tty_state (scb, &state);
817 }
818
819 static int
820 hardwire_setstopbits (struct serial *scb, int num)
821 {
822 struct hardwire_ttystate state;
823 int newbit;
824
825 if (get_tty_state (scb, &state))
826 return -1;
827
828 switch (num)
829 {
830 case SERIAL_1_STOPBITS:
831 newbit = 0;
832 break;
833 case SERIAL_1_AND_A_HALF_STOPBITS:
834 case SERIAL_2_STOPBITS:
835 newbit = 1;
836 break;
837 default:
838 return 1;
839 }
840
841 #ifdef HAVE_TERMIOS
842 if (!newbit)
843 state.termios.c_cflag &= ~CSTOPB;
844 else
845 state.termios.c_cflag |= CSTOPB; /* two bits */
846 #endif
847
848 #ifdef HAVE_TERMIO
849 if (!newbit)
850 state.termio.c_cflag &= ~CSTOPB;
851 else
852 state.termio.c_cflag |= CSTOPB; /* two bits */
853 #endif
854
855 #ifdef HAVE_SGTTY
856 return 0; /* sgtty doesn't support this */
857 #endif
858
859 return set_tty_state (scb, &state);
860 }
861
862 static void
863 hardwire_close (struct serial *scb)
864 {
865 if (scb->fd < 0)
866 return;
867
868 close (scb->fd);
869 scb->fd = -1;
870 }
871
872 \f
873 /* Generic operations used by all UNIX/FD based serial interfaces. */
874
875 serial_ttystate
876 ser_unix_nop_get_tty_state (struct serial *scb)
877 {
878 /* allocate a dummy */
879 return (serial_ttystate) XMALLOC (int);
880 }
881
882 int
883 ser_unix_nop_set_tty_state (struct serial *scb, serial_ttystate ttystate)
884 {
885 return 0;
886 }
887
888 void
889 ser_unix_nop_raw (struct serial *scb)
890 {
891 return; /* Always in raw mode */
892 }
893
894 /* Wait for input on scb, with timeout seconds. Returns 0 on success,
895 otherwise SERIAL_TIMEOUT or SERIAL_ERROR. */
896
897 int
898 ser_unix_wait_for (struct serial *scb, int timeout)
899 {
900 while (1)
901 {
902 int numfds;
903 struct timeval tv;
904 fd_set readfds, exceptfds;
905
906 /* NOTE: Some OS's can scramble the READFDS when the select()
907 call fails (ex the kernel with Red Hat 5.2). Initialize all
908 arguments before each call. */
909
910 tv.tv_sec = timeout;
911 tv.tv_usec = 0;
912
913 FD_ZERO (&readfds);
914 FD_ZERO (&exceptfds);
915 FD_SET (scb->fd, &readfds);
916 FD_SET (scb->fd, &exceptfds);
917
918 if (timeout >= 0)
919 numfds = select (scb->fd + 1, &readfds, 0, &exceptfds, &tv);
920 else
921 numfds = select (scb->fd + 1, &readfds, 0, &exceptfds, 0);
922
923 if (numfds <= 0)
924 {
925 if (numfds == 0)
926 return SERIAL_TIMEOUT;
927 else if (errno == EINTR)
928 continue;
929 else
930 return SERIAL_ERROR; /* Got an error from select or poll */
931 }
932
933 return 0;
934 }
935 }
936
937 /* Read a character with user-specified timeout. TIMEOUT is number of seconds
938 to wait, or -1 to wait forever. Use timeout of 0 to effect a poll. Returns
939 char if successful. Returns -2 if timeout expired, EOF if line dropped
940 dead, or -3 for any other error (see errno in that case). */
941
942 static int
943 do_unix_readchar (struct serial *scb, int timeout)
944 {
945 int status;
946 int delta;
947
948 /* We have to be able to keep the GUI alive here, so we break the original
949 timeout into steps of 1 second, running the "keep the GUI alive" hook
950 each time through the loop.
951
952 Also, timeout = 0 means to poll, so we just set the delta to 0, so we
953 will only go through the loop once. */
954
955 delta = (timeout == 0 ? 0 : 1);
956 while (1)
957 {
958
959 /* N.B. The UI may destroy our world (for instance by calling
960 remote_stop,) in which case we want to get out of here as
961 quickly as possible. It is not safe to touch scb, since
962 someone else might have freed it. The ui_loop_hook signals that
963 we should exit by returning 1. */
964
965 if (ui_loop_hook)
966 {
967 if (ui_loop_hook (0))
968 return SERIAL_TIMEOUT;
969 }
970
971 status = ser_unix_wait_for (scb, delta);
972 if (timeout > 0)
973 timeout -= delta;
974
975 /* If we got a character or an error back from wait_for, then we can
976 break from the loop before the timeout is completed. */
977
978 if (status != SERIAL_TIMEOUT)
979 {
980 break;
981 }
982
983 /* If we have exhausted the original timeout, then generate
984 a SERIAL_TIMEOUT, and pass it out of the loop. */
985
986 else if (timeout == 0)
987 {
988 status = SERIAL_TIMEOUT;
989 break;
990 }
991 }
992
993 if (status < 0)
994 return status;
995
996 while (1)
997 {
998 status = read (scb->fd, scb->buf, BUFSIZ);
999 if (status != -1 || errno != EINTR)
1000 break;
1001 }
1002
1003 if (status <= 0)
1004 {
1005 if (status == 0)
1006 return SERIAL_TIMEOUT; /* 0 chars means timeout [may need to
1007 distinguish between EOF & timeouts
1008 someday] */
1009 else
1010 return SERIAL_ERROR; /* Got an error from read */
1011 }
1012
1013 scb->bufcnt = status;
1014 scb->bufcnt--;
1015 scb->bufp = scb->buf;
1016 return *scb->bufp++;
1017 }
1018
1019 /* Perform operations common to both old and new readchar. */
1020
1021 /* Return the next character from the input FIFO. If the FIFO is
1022 empty, call the SERIAL specific routine to try and read in more
1023 characters.
1024
1025 Initially data from the input FIFO is returned (fd_event()
1026 pre-reads the input into that FIFO. Once that has been emptied,
1027 further data is obtained by polling the input FD using the device
1028 specific readchar() function. Note: reschedule() is called after
1029 every read. This is because there is no guarentee that the lower
1030 level fd_event() poll_event() code (which also calls reschedule())
1031 will be called. */
1032
1033 static int
1034 generic_readchar (struct serial *scb, int timeout,
1035 int (do_readchar) (struct serial *scb, int timeout))
1036 {
1037 int ch;
1038 if (scb->bufcnt > 0)
1039 {
1040 ch = *scb->bufp;
1041 scb->bufcnt--;
1042 scb->bufp++;
1043 }
1044 else if (scb->bufcnt < 0)
1045 {
1046 /* Some errors/eof are are sticky. */
1047 ch = scb->bufcnt;
1048 }
1049 else
1050 {
1051 ch = do_readchar (scb, timeout);
1052 if (ch < 0)
1053 {
1054 switch ((enum serial_rc) ch)
1055 {
1056 case SERIAL_EOF:
1057 case SERIAL_ERROR:
1058 /* Make the error/eof stick. */
1059 scb->bufcnt = ch;
1060 break;
1061 case SERIAL_TIMEOUT:
1062 scb->bufcnt = 0;
1063 break;
1064 }
1065 }
1066 }
1067 reschedule (scb);
1068 return ch;
1069 }
1070
1071 int
1072 ser_unix_readchar (struct serial *scb, int timeout)
1073 {
1074 return generic_readchar (scb, timeout, do_unix_readchar);
1075 }
1076
1077 int
1078 ser_unix_nop_noflush_set_tty_state (struct serial *scb,
1079 serial_ttystate new_ttystate,
1080 serial_ttystate old_ttystate)
1081 {
1082 return 0;
1083 }
1084
1085 void
1086 ser_unix_nop_print_tty_state (struct serial *scb,
1087 serial_ttystate ttystate,
1088 struct ui_file *stream)
1089 {
1090 /* Nothing to print. */
1091 return;
1092 }
1093
1094 int
1095 ser_unix_nop_setbaudrate (struct serial *scb, int rate)
1096 {
1097 return 0; /* Never fails! */
1098 }
1099
1100 int
1101 ser_unix_nop_setstopbits (struct serial *scb, int num)
1102 {
1103 return 0; /* Never fails! */
1104 }
1105
1106 int
1107 ser_unix_write (struct serial *scb, const char *str, int len)
1108 {
1109 int cc;
1110
1111 while (len > 0)
1112 {
1113 cc = write (scb->fd, str, len);
1114
1115 if (cc < 0)
1116 return 1;
1117 len -= cc;
1118 str += cc;
1119 }
1120 return 0;
1121 }
1122
1123 int
1124 ser_unix_nop_flush_output (struct serial *scb)
1125 {
1126 return 0;
1127 }
1128
1129 int
1130 ser_unix_flush_input (struct serial *scb)
1131 {
1132 if (scb->bufcnt >= 0)
1133 {
1134 scb->bufcnt = 0;
1135 scb->bufp = scb->buf;
1136 return 0;
1137 }
1138 else
1139 return SERIAL_ERROR;
1140 }
1141
1142 int
1143 ser_unix_nop_send_break (struct serial *scb)
1144 {
1145 return 0;
1146 }
1147
1148 int
1149 ser_unix_nop_drain_output (struct serial *scb)
1150 {
1151 return 0;
1152 }
1153
1154
1155 \f
1156 /* Event handling for ASYNC serial code.
1157
1158 At any time the SERIAL device either: has an empty FIFO and is
1159 waiting on a FD event; or has a non-empty FIFO/error condition and
1160 is constantly scheduling timer events.
1161
1162 ASYNC only stops pestering its client when it is de-async'ed or it
1163 is told to go away. */
1164
1165 /* Value of scb->async_state: */
1166 enum {
1167 /* >= 0 (TIMER_SCHEDULED) */
1168 /* The ID of the currently scheduled timer event. This state is
1169 rarely encountered. Timer events are one-off so as soon as the
1170 event is delivered the state is shanged to NOTHING_SCHEDULED. */
1171 FD_SCHEDULED = -1,
1172 /* The fd_event() handler is scheduled. It is called when ever the
1173 file descriptor becomes ready. */
1174 NOTHING_SCHEDULED = -2
1175 /* Either no task is scheduled (just going into ASYNC mode) or a
1176 timer event has just gone off and the current state has been
1177 forced into nothing scheduled. */
1178 };
1179
1180 /* Identify and schedule the next ASYNC task based on scb->async_state
1181 and scb->buf* (the input FIFO). A state machine is used to avoid
1182 the need to make redundant calls into the event-loop - the next
1183 scheduled task is only changed when needed. */
1184
1185 static void
1186 reschedule (struct serial *scb)
1187 {
1188 if (serial_is_async_p (scb))
1189 {
1190 int next_state;
1191 switch (scb->async_state)
1192 {
1193 case FD_SCHEDULED:
1194 if (scb->bufcnt == 0)
1195 next_state = FD_SCHEDULED;
1196 else
1197 {
1198 delete_file_handler (scb->fd);
1199 next_state = create_timer (0, push_event, scb);
1200 }
1201 break;
1202 case NOTHING_SCHEDULED:
1203 if (scb->bufcnt == 0)
1204 {
1205 add_file_handler (scb->fd, fd_event, scb);
1206 next_state = FD_SCHEDULED;
1207 }
1208 else
1209 {
1210 next_state = create_timer (0, push_event, scb);
1211 }
1212 break;
1213 default: /* TIMER SCHEDULED */
1214 if (scb->bufcnt == 0)
1215 {
1216 delete_timer (scb->async_state);
1217 add_file_handler (scb->fd, fd_event, scb);
1218 next_state = FD_SCHEDULED;
1219 }
1220 else
1221 next_state = scb->async_state;
1222 break;
1223 }
1224 if (serial_debug_p (scb))
1225 {
1226 switch (next_state)
1227 {
1228 case FD_SCHEDULED:
1229 if (scb->async_state != FD_SCHEDULED)
1230 fprintf_unfiltered (gdb_stdlog, "[fd%d->fd-scheduled]\n",
1231 scb->fd);
1232 break;
1233 default: /* TIMER SCHEDULED */
1234 if (scb->async_state == FD_SCHEDULED)
1235 fprintf_unfiltered (gdb_stdlog, "[fd%d->timer-scheduled]\n",
1236 scb->fd);
1237 break;
1238 }
1239 }
1240 scb->async_state = next_state;
1241 }
1242 }
1243
1244 /* FD_EVENT: This is scheduled when the input FIFO is empty (and there
1245 is no pending error). As soon as data arrives, it is read into the
1246 input FIFO and the client notified. The client should then drain
1247 the FIFO using readchar(). If the FIFO isn't immediatly emptied,
1248 push_event() is used to nag the client until it is. */
1249
1250 static void
1251 fd_event (int error, void *context)
1252 {
1253 struct serial *scb = context;
1254 if (error != 0)
1255 {
1256 scb->bufcnt = SERIAL_ERROR;
1257 }
1258 else if (scb->bufcnt == 0)
1259 {
1260 /* Prime the input FIFO. The readchar() function is used to
1261 pull characters out of the buffer. See also
1262 generic_readchar(). */
1263 int nr;
1264 do
1265 {
1266 nr = read (scb->fd, scb->buf, BUFSIZ);
1267 }
1268 while (nr == -1 && errno == EINTR);
1269 if (nr == 0)
1270 {
1271 scb->bufcnt = SERIAL_EOF;
1272 }
1273 else if (nr > 0)
1274 {
1275 scb->bufcnt = nr;
1276 scb->bufp = scb->buf;
1277 }
1278 else
1279 {
1280 scb->bufcnt = SERIAL_ERROR;
1281 }
1282 }
1283 scb->async_handler (scb, scb->async_context);
1284 reschedule (scb);
1285 }
1286
1287 /* PUSH_EVENT: The input FIFO is non-empty (or there is a pending
1288 error). Nag the client until all the data has been read. In the
1289 case of errors, the client will need to close or de-async the
1290 device before naging stops. */
1291
1292 static void
1293 push_event (void *context)
1294 {
1295 struct serial *scb = context;
1296 scb->async_state = NOTHING_SCHEDULED; /* Timers are one-off */
1297 scb->async_handler (scb, scb->async_context);
1298 /* re-schedule */
1299 reschedule (scb);
1300 }
1301
1302 /* Put the SERIAL device into/out-of ASYNC mode. */
1303
1304 void
1305 ser_unix_async (struct serial *scb,
1306 int async_p)
1307 {
1308 if (async_p)
1309 {
1310 /* Force a re-schedule. */
1311 scb->async_state = NOTHING_SCHEDULED;
1312 if (serial_debug_p (scb))
1313 fprintf_unfiltered (gdb_stdlog, "[fd%d->asynchronous]\n",
1314 scb->fd);
1315 reschedule (scb);
1316 }
1317 else
1318 {
1319 if (serial_debug_p (scb))
1320 fprintf_unfiltered (gdb_stdlog, "[fd%d->synchronous]\n",
1321 scb->fd);
1322 /* De-schedule whatever tasks are currently scheduled. */
1323 switch (scb->async_state)
1324 {
1325 case FD_SCHEDULED:
1326 delete_file_handler (scb->fd);
1327 break;
1328 case NOTHING_SCHEDULED:
1329 break;
1330 default: /* TIMER SCHEDULED */
1331 delete_timer (scb->async_state);
1332 break;
1333 }
1334 }
1335 }
1336
1337 void
1338 _initialize_ser_hardwire (void)
1339 {
1340 struct serial_ops *ops = XMALLOC (struct serial_ops);
1341 memset (ops, 0, sizeof (struct serial_ops));
1342 ops->name = "hardwire";
1343 ops->next = 0;
1344 ops->open = hardwire_open;
1345 ops->close = hardwire_close;
1346 /* FIXME: Don't replace this with the equivalent ser_unix*() until
1347 the old TERMIOS/SGTTY/... timer code has been flushed. cagney
1348 1999-09-16. */
1349 ops->readchar = hardwire_readchar;
1350 ops->write = ser_unix_write;
1351 ops->flush_output = hardwire_flush_output;
1352 ops->flush_input = hardwire_flush_input;
1353 ops->send_break = hardwire_send_break;
1354 ops->go_raw = hardwire_raw;
1355 ops->get_tty_state = hardwire_get_tty_state;
1356 ops->set_tty_state = hardwire_set_tty_state;
1357 ops->print_tty_state = hardwire_print_tty_state;
1358 ops->noflush_set_tty_state = hardwire_noflush_set_tty_state;
1359 ops->setbaudrate = hardwire_setbaudrate;
1360 ops->setstopbits = hardwire_setstopbits;
1361 ops->drain_output = hardwire_drain_output;
1362 ops->async = ser_unix_async;
1363 serial_add_interface (ops);
1364 }
This page took 0.07976 seconds and 4 git commands to generate.