2004-11-04 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / ser-unix.c
1 /* Serial interface for local (hardwired) serial ports on Un*x like systems
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
4 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "serial.h"
25 #include "ser-unix.h"
26
27 #include <fcntl.h>
28 #include <sys/types.h>
29 #include "terminal.h"
30 #include <sys/socket.h>
31 #include <sys/time.h>
32
33 #include "gdb_string.h"
34 #include "event-loop.h"
35
36 #ifdef HAVE_TERMIOS
37
38 struct hardwire_ttystate
39 {
40 struct termios termios;
41 };
42 #endif /* termios */
43
44 #ifdef HAVE_TERMIO
45
46 /* It is believed that all systems which have added job control to SVR3
47 (e.g. sco) have also added termios. Even if not, trying to figure out
48 all the variations (TIOCGPGRP vs. TCGETPGRP, etc.) would be pretty
49 bewildering. So we don't attempt it. */
50
51 struct hardwire_ttystate
52 {
53 struct termio termio;
54 };
55 #endif /* termio */
56
57 #ifdef HAVE_SGTTY
58 struct hardwire_ttystate
59 {
60 struct sgttyb sgttyb;
61 struct tchars tc;
62 struct ltchars ltc;
63 /* Line discipline flags. */
64 int lmode;
65 };
66 #endif /* sgtty */
67
68 static int hardwire_open (struct serial *scb, const char *name);
69 static void hardwire_raw (struct serial *scb);
70 static int wait_for (struct serial *scb, int timeout);
71 static int hardwire_readchar (struct serial *scb, int timeout);
72 static int do_hardwire_readchar (struct serial *scb, int timeout);
73 static int generic_readchar (struct serial *scb, int timeout,
74 int (*do_readchar) (struct serial *scb,
75 int timeout));
76 static int rate_to_code (int rate);
77 static int hardwire_setbaudrate (struct serial *scb, int rate);
78 static void hardwire_close (struct serial *scb);
79 static int get_tty_state (struct serial *scb,
80 struct hardwire_ttystate * state);
81 static int set_tty_state (struct serial *scb,
82 struct hardwire_ttystate * state);
83 static serial_ttystate hardwire_get_tty_state (struct serial *scb);
84 static int hardwire_set_tty_state (struct serial *scb, serial_ttystate state);
85 static int hardwire_noflush_set_tty_state (struct serial *, serial_ttystate,
86 serial_ttystate);
87 static void hardwire_print_tty_state (struct serial *, serial_ttystate,
88 struct ui_file *);
89 static int hardwire_drain_output (struct serial *);
90 static int hardwire_flush_output (struct serial *);
91 static int hardwire_flush_input (struct serial *);
92 static int hardwire_send_break (struct serial *);
93 static int hardwire_setstopbits (struct serial *, int);
94
95 static int do_unix_readchar (struct serial *scb, int timeout);
96 static timer_handler_func push_event;
97 static handler_func fd_event;
98 static void reschedule (struct serial *scb);
99
100 void _initialize_ser_hardwire (void);
101
102 /* Open up a real live device for serial I/O */
103
104 static int
105 hardwire_open (struct serial *scb, const char *name)
106 {
107 scb->fd = open (name, O_RDWR);
108 if (scb->fd < 0)
109 return -1;
110
111 return 0;
112 }
113
114 static int
115 get_tty_state (struct serial *scb, struct hardwire_ttystate *state)
116 {
117 #ifdef HAVE_TERMIOS
118 if (tcgetattr (scb->fd, &state->termios) < 0)
119 return -1;
120
121 return 0;
122 #endif
123
124 #ifdef HAVE_TERMIO
125 if (ioctl (scb->fd, TCGETA, &state->termio) < 0)
126 return -1;
127 return 0;
128 #endif
129
130 #ifdef HAVE_SGTTY
131 if (ioctl (scb->fd, TIOCGETP, &state->sgttyb) < 0)
132 return -1;
133 if (ioctl (scb->fd, TIOCGETC, &state->tc) < 0)
134 return -1;
135 if (ioctl (scb->fd, TIOCGLTC, &state->ltc) < 0)
136 return -1;
137 if (ioctl (scb->fd, TIOCLGET, &state->lmode) < 0)
138 return -1;
139
140 return 0;
141 #endif
142 }
143
144 static int
145 set_tty_state (struct serial *scb, struct hardwire_ttystate *state)
146 {
147 #ifdef HAVE_TERMIOS
148 if (tcsetattr (scb->fd, TCSANOW, &state->termios) < 0)
149 return -1;
150
151 return 0;
152 #endif
153
154 #ifdef HAVE_TERMIO
155 if (ioctl (scb->fd, TCSETA, &state->termio) < 0)
156 return -1;
157 return 0;
158 #endif
159
160 #ifdef HAVE_SGTTY
161 if (ioctl (scb->fd, TIOCSETN, &state->sgttyb) < 0)
162 return -1;
163 if (ioctl (scb->fd, TIOCSETC, &state->tc) < 0)
164 return -1;
165 if (ioctl (scb->fd, TIOCSLTC, &state->ltc) < 0)
166 return -1;
167 if (ioctl (scb->fd, TIOCLSET, &state->lmode) < 0)
168 return -1;
169
170 return 0;
171 #endif
172 }
173
174 static serial_ttystate
175 hardwire_get_tty_state (struct serial *scb)
176 {
177 struct hardwire_ttystate *state;
178
179 state = (struct hardwire_ttystate *) xmalloc (sizeof *state);
180
181 if (get_tty_state (scb, state))
182 return NULL;
183
184 return (serial_ttystate) state;
185 }
186
187 static int
188 hardwire_set_tty_state (struct serial *scb, serial_ttystate ttystate)
189 {
190 struct hardwire_ttystate *state;
191
192 state = (struct hardwire_ttystate *) ttystate;
193
194 return set_tty_state (scb, state);
195 }
196
197 static int
198 hardwire_noflush_set_tty_state (struct serial *scb,
199 serial_ttystate new_ttystate,
200 serial_ttystate old_ttystate)
201 {
202 struct hardwire_ttystate new_state;
203 #ifdef HAVE_SGTTY
204 struct hardwire_ttystate *state = (struct hardwire_ttystate *) old_ttystate;
205 #endif
206
207 new_state = *(struct hardwire_ttystate *) new_ttystate;
208
209 /* Don't change in or out of raw mode; we don't want to flush input.
210 termio and termios have no such restriction; for them flushing input
211 is separate from setting the attributes. */
212
213 #ifdef HAVE_SGTTY
214 if (state->sgttyb.sg_flags & RAW)
215 new_state.sgttyb.sg_flags |= RAW;
216 else
217 new_state.sgttyb.sg_flags &= ~RAW;
218
219 /* I'm not sure whether this is necessary; the manpage just mentions
220 RAW not CBREAK. */
221 if (state->sgttyb.sg_flags & CBREAK)
222 new_state.sgttyb.sg_flags |= CBREAK;
223 else
224 new_state.sgttyb.sg_flags &= ~CBREAK;
225 #endif
226
227 return set_tty_state (scb, &new_state);
228 }
229
230 static void
231 hardwire_print_tty_state (struct serial *scb,
232 serial_ttystate ttystate,
233 struct ui_file *stream)
234 {
235 struct hardwire_ttystate *state = (struct hardwire_ttystate *) ttystate;
236 int i;
237
238 #ifdef HAVE_TERMIOS
239 fprintf_filtered (stream, "c_iflag = 0x%x, c_oflag = 0x%x,\n",
240 (int) state->termios.c_iflag,
241 (int) state->termios.c_oflag);
242 fprintf_filtered (stream, "c_cflag = 0x%x, c_lflag = 0x%x\n",
243 (int) state->termios.c_cflag,
244 (int) state->termios.c_lflag);
245 #if 0
246 /* This not in POSIX, and is not really documented by those systems
247 which have it (at least not Sun). */
248 fprintf_filtered (stream, "c_line = 0x%x.\n", state->termios.c_line);
249 #endif
250 fprintf_filtered (stream, "c_cc: ");
251 for (i = 0; i < NCCS; i += 1)
252 fprintf_filtered (stream, "0x%x ", state->termios.c_cc[i]);
253 fprintf_filtered (stream, "\n");
254 #endif
255
256 #ifdef HAVE_TERMIO
257 fprintf_filtered (stream, "c_iflag = 0x%x, c_oflag = 0x%x,\n",
258 state->termio.c_iflag, state->termio.c_oflag);
259 fprintf_filtered (stream, "c_cflag = 0x%x, c_lflag = 0x%x, c_line = 0x%x.\n",
260 state->termio.c_cflag, state->termio.c_lflag,
261 state->termio.c_line);
262 fprintf_filtered (stream, "c_cc: ");
263 for (i = 0; i < NCC; i += 1)
264 fprintf_filtered (stream, "0x%x ", state->termio.c_cc[i]);
265 fprintf_filtered (stream, "\n");
266 #endif
267
268 #ifdef HAVE_SGTTY
269 fprintf_filtered (stream, "sgttyb.sg_flags = 0x%x.\n",
270 state->sgttyb.sg_flags);
271
272 fprintf_filtered (stream, "tchars: ");
273 for (i = 0; i < (int) sizeof (struct tchars); i++)
274 fprintf_filtered (stream, "0x%x ", ((unsigned char *) &state->tc)[i]);
275 fprintf_filtered (stream, "\n");
276
277 fprintf_filtered (stream, "ltchars: ");
278 for (i = 0; i < (int) sizeof (struct ltchars); i++)
279 fprintf_filtered (stream, "0x%x ", ((unsigned char *) &state->ltc)[i]);
280 fprintf_filtered (stream, "\n");
281
282 fprintf_filtered (stream, "lmode: 0x%x\n", state->lmode);
283 #endif
284 }
285
286 /* Wait for the output to drain away, as opposed to flushing (discarding) it */
287
288 static int
289 hardwire_drain_output (struct serial *scb)
290 {
291 #ifdef HAVE_TERMIOS
292 return tcdrain (scb->fd);
293 #endif
294
295 #ifdef HAVE_TERMIO
296 return ioctl (scb->fd, TCSBRK, 1);
297 #endif
298
299 #ifdef HAVE_SGTTY
300 /* Get the current state and then restore it using TIOCSETP,
301 which should cause the output to drain and pending input
302 to be discarded. */
303 {
304 struct hardwire_ttystate state;
305 if (get_tty_state (scb, &state))
306 {
307 return (-1);
308 }
309 else
310 {
311 return (ioctl (scb->fd, TIOCSETP, &state.sgttyb));
312 }
313 }
314 #endif
315 }
316
317 static int
318 hardwire_flush_output (struct serial *scb)
319 {
320 #ifdef HAVE_TERMIOS
321 return tcflush (scb->fd, TCOFLUSH);
322 #endif
323
324 #ifdef HAVE_TERMIO
325 return ioctl (scb->fd, TCFLSH, 1);
326 #endif
327
328 #ifdef HAVE_SGTTY
329 /* This flushes both input and output, but we can't do better. */
330 return ioctl (scb->fd, TIOCFLUSH, 0);
331 #endif
332 }
333
334 static int
335 hardwire_flush_input (struct serial *scb)
336 {
337 ser_unix_flush_input (scb);
338
339 #ifdef HAVE_TERMIOS
340 return tcflush (scb->fd, TCIFLUSH);
341 #endif
342
343 #ifdef HAVE_TERMIO
344 return ioctl (scb->fd, TCFLSH, 0);
345 #endif
346
347 #ifdef HAVE_SGTTY
348 /* This flushes both input and output, but we can't do better. */
349 return ioctl (scb->fd, TIOCFLUSH, 0);
350 #endif
351 }
352
353 static int
354 hardwire_send_break (struct serial *scb)
355 {
356 #ifdef HAVE_TERMIOS
357 return tcsendbreak (scb->fd, 0);
358 #endif
359
360 #ifdef HAVE_TERMIO
361 return ioctl (scb->fd, TCSBRK, 0);
362 #endif
363
364 #ifdef HAVE_SGTTY
365 {
366 int status;
367 struct timeval timeout;
368
369 status = ioctl (scb->fd, TIOCSBRK, 0);
370
371 /* Can't use usleep; it doesn't exist in BSD 4.2. */
372 /* Note that if this select() is interrupted by a signal it will not wait
373 the full length of time. I think that is OK. */
374 timeout.tv_sec = 0;
375 timeout.tv_usec = 250000;
376 select (0, 0, 0, 0, &timeout);
377 status = ioctl (scb->fd, TIOCCBRK, 0);
378 return status;
379 }
380 #endif
381 }
382
383 static void
384 hardwire_raw (struct serial *scb)
385 {
386 struct hardwire_ttystate state;
387
388 if (get_tty_state (scb, &state))
389 fprintf_unfiltered (gdb_stderr, "get_tty_state failed: %s\n", safe_strerror (errno));
390
391 #ifdef HAVE_TERMIOS
392 state.termios.c_iflag = 0;
393 state.termios.c_oflag = 0;
394 state.termios.c_lflag = 0;
395 state.termios.c_cflag &= ~(CSIZE | PARENB);
396 state.termios.c_cflag |= CLOCAL | CS8;
397 state.termios.c_cc[VMIN] = 0;
398 state.termios.c_cc[VTIME] = 0;
399 #endif
400
401 #ifdef HAVE_TERMIO
402 state.termio.c_iflag = 0;
403 state.termio.c_oflag = 0;
404 state.termio.c_lflag = 0;
405 state.termio.c_cflag &= ~(CSIZE | PARENB);
406 state.termio.c_cflag |= CLOCAL | CS8;
407 state.termio.c_cc[VMIN] = 0;
408 state.termio.c_cc[VTIME] = 0;
409 #endif
410
411 #ifdef HAVE_SGTTY
412 state.sgttyb.sg_flags |= RAW | ANYP;
413 state.sgttyb.sg_flags &= ~(CBREAK | ECHO);
414 #endif
415
416 scb->current_timeout = 0;
417
418 if (set_tty_state (scb, &state))
419 fprintf_unfiltered (gdb_stderr, "set_tty_state failed: %s\n", safe_strerror (errno));
420 }
421
422 /* Wait for input on scb, with timeout seconds. Returns 0 on success,
423 otherwise SERIAL_TIMEOUT or SERIAL_ERROR.
424
425 For termio{s}, we actually just setup VTIME if necessary, and let the
426 timeout occur in the read() in hardwire_read().
427 */
428
429 /* FIXME: cagney/1999-09-16: Don't replace this with the equivalent
430 ser_unix*() until the old TERMIOS/SGTTY/... timer code has been
431 flushed. . */
432
433 /* NOTE: cagney/1999-09-30: Much of the code below is dead. The only
434 possible values of the TIMEOUT parameter are ONE and ZERO.
435 Consequently all the code that tries to handle the possability of
436 an overflowed timer is unnecessary. */
437
438 static int
439 wait_for (struct serial *scb, int timeout)
440 {
441 #ifdef HAVE_SGTTY
442 while (1)
443 {
444 struct timeval tv;
445 fd_set readfds;
446 int numfds;
447
448 /* NOTE: Some OS's can scramble the READFDS when the select()
449 call fails (ex the kernel with Red Hat 5.2). Initialize all
450 arguments before each call. */
451
452 tv.tv_sec = timeout;
453 tv.tv_usec = 0;
454
455 FD_ZERO (&readfds);
456 FD_SET (scb->fd, &readfds);
457
458 if (timeout >= 0)
459 numfds = select (scb->fd + 1, &readfds, 0, 0, &tv);
460 else
461 numfds = select (scb->fd + 1, &readfds, 0, 0, 0);
462
463 if (numfds <= 0)
464 if (numfds == 0)
465 return SERIAL_TIMEOUT;
466 else if (errno == EINTR)
467 continue;
468 else
469 return SERIAL_ERROR; /* Got an error from select or poll */
470
471 return 0;
472 }
473 #endif /* HAVE_SGTTY */
474
475 #if defined HAVE_TERMIO || defined HAVE_TERMIOS
476 if (timeout == scb->current_timeout)
477 return 0;
478
479 scb->current_timeout = timeout;
480
481 {
482 struct hardwire_ttystate state;
483
484 if (get_tty_state (scb, &state))
485 fprintf_unfiltered (gdb_stderr, "get_tty_state failed: %s\n", safe_strerror (errno));
486
487 #ifdef HAVE_TERMIOS
488 if (timeout < 0)
489 {
490 /* No timeout. */
491 state.termios.c_cc[VTIME] = 0;
492 state.termios.c_cc[VMIN] = 1;
493 }
494 else
495 {
496 state.termios.c_cc[VMIN] = 0;
497 state.termios.c_cc[VTIME] = timeout * 10;
498 if (state.termios.c_cc[VTIME] != timeout * 10)
499 {
500
501 /* If c_cc is an 8-bit signed character, we can't go
502 bigger than this. If it is always unsigned, we could use
503 25. */
504
505 scb->current_timeout = 12;
506 state.termios.c_cc[VTIME] = scb->current_timeout * 10;
507 scb->timeout_remaining = timeout - scb->current_timeout;
508 }
509 }
510 #endif
511
512 #ifdef HAVE_TERMIO
513 if (timeout < 0)
514 {
515 /* No timeout. */
516 state.termio.c_cc[VTIME] = 0;
517 state.termio.c_cc[VMIN] = 1;
518 }
519 else
520 {
521 state.termio.c_cc[VMIN] = 0;
522 state.termio.c_cc[VTIME] = timeout * 10;
523 if (state.termio.c_cc[VTIME] != timeout * 10)
524 {
525 /* If c_cc is an 8-bit signed character, we can't go
526 bigger than this. If it is always unsigned, we could use
527 25. */
528
529 scb->current_timeout = 12;
530 state.termio.c_cc[VTIME] = scb->current_timeout * 10;
531 scb->timeout_remaining = timeout - scb->current_timeout;
532 }
533 }
534 #endif
535
536 if (set_tty_state (scb, &state))
537 fprintf_unfiltered (gdb_stderr, "set_tty_state failed: %s\n", safe_strerror (errno));
538
539 return 0;
540 }
541 #endif /* HAVE_TERMIO || HAVE_TERMIOS */
542 }
543
544 /* Read a character with user-specified timeout. TIMEOUT is number of seconds
545 to wait, or -1 to wait forever. Use timeout of 0 to effect a poll. Returns
546 char if successful. Returns SERIAL_TIMEOUT if timeout expired, EOF if line
547 dropped dead, or SERIAL_ERROR for any other error (see errno in that case). */
548
549 /* FIXME: cagney/1999-09-16: Don't replace this with the equivalent
550 ser_unix*() until the old TERMIOS/SGTTY/... timer code has been
551 flushed. */
552
553 /* NOTE: cagney/1999-09-16: This function is not identical to
554 ser_unix_readchar() as part of replacing it with ser_unix*()
555 merging will be required - this code handles the case where read()
556 times out due to no data while ser_unix_readchar() doesn't expect
557 that. */
558
559 static int
560 do_hardwire_readchar (struct serial *scb, int timeout)
561 {
562 int status, delta;
563 int detach = 0;
564
565 if (timeout > 0)
566 timeout++;
567
568 /* We have to be able to keep the GUI alive here, so we break the original
569 timeout into steps of 1 second, running the "keep the GUI alive" hook
570 each time through the loop.
571 Also, timeout = 0 means to poll, so we just set the delta to 0, so we
572 will only go through the loop once. */
573
574 delta = (timeout == 0 ? 0 : 1);
575 while (1)
576 {
577
578 /* N.B. The UI may destroy our world (for instance by calling
579 remote_stop,) in which case we want to get out of here as
580 quickly as possible. It is not safe to touch scb, since
581 someone else might have freed it. The
582 deprecated_ui_loop_hook signals that we should exit by
583 returning 1. */
584
585 if (deprecated_ui_loop_hook)
586 detach = deprecated_ui_loop_hook (0);
587
588 if (detach)
589 return SERIAL_TIMEOUT;
590
591 scb->timeout_remaining = (timeout < 0 ? timeout : timeout - delta);
592 status = wait_for (scb, delta);
593
594 if (status < 0)
595 return status;
596
597 status = read (scb->fd, scb->buf, BUFSIZ);
598
599 if (status <= 0)
600 {
601 if (status == 0)
602 {
603 /* Zero characters means timeout (it could also be EOF, but
604 we don't (yet at least) distinguish). */
605 if (scb->timeout_remaining > 0)
606 {
607 timeout = scb->timeout_remaining;
608 continue;
609 }
610 else if (scb->timeout_remaining < 0)
611 continue;
612 else
613 return SERIAL_TIMEOUT;
614 }
615 else if (errno == EINTR)
616 continue;
617 else
618 return SERIAL_ERROR; /* Got an error from read */
619 }
620
621 scb->bufcnt = status;
622 scb->bufcnt--;
623 scb->bufp = scb->buf;
624 return *scb->bufp++;
625 }
626 }
627
628 static int
629 hardwire_readchar (struct serial *scb, int timeout)
630 {
631 return generic_readchar (scb, timeout, do_hardwire_readchar);
632 }
633
634
635 #ifndef B19200
636 #define B19200 EXTA
637 #endif
638
639 #ifndef B38400
640 #define B38400 EXTB
641 #endif
642
643 /* Translate baud rates from integers to damn B_codes. Unix should
644 have outgrown this crap years ago, but even POSIX wouldn't buck it. */
645
646 static struct
647 {
648 int rate;
649 int code;
650 }
651 baudtab[] =
652 {
653 {
654 50, B50
655 }
656 ,
657 {
658 75, B75
659 }
660 ,
661 {
662 110, B110
663 }
664 ,
665 {
666 134, B134
667 }
668 ,
669 {
670 150, B150
671 }
672 ,
673 {
674 200, B200
675 }
676 ,
677 {
678 300, B300
679 }
680 ,
681 {
682 600, B600
683 }
684 ,
685 {
686 1200, B1200
687 }
688 ,
689 {
690 1800, B1800
691 }
692 ,
693 {
694 2400, B2400
695 }
696 ,
697 {
698 4800, B4800
699 }
700 ,
701 {
702 9600, B9600
703 }
704 ,
705 {
706 19200, B19200
707 }
708 ,
709 {
710 38400, B38400
711 }
712 ,
713 #ifdef B57600
714 {
715 57600, B57600
716 }
717 ,
718 #endif
719 #ifdef B115200
720 {
721 115200, B115200
722 }
723 ,
724 #endif
725 #ifdef B230400
726 {
727 230400, B230400
728 }
729 ,
730 #endif
731 #ifdef B460800
732 {
733 460800, B460800
734 }
735 ,
736 #endif
737 {
738 -1, -1
739 }
740 ,
741 };
742
743 static int
744 rate_to_code (int rate)
745 {
746 int i;
747
748 for (i = 0; baudtab[i].rate != -1; i++)
749 {
750 /* test for perfect macth. */
751 if (rate == baudtab[i].rate)
752 return baudtab[i].code;
753 else
754 {
755 /* check if it is in between valid values. */
756 if (rate < baudtab[i].rate)
757 {
758 if (i)
759 {
760 warning ("Invalid baud rate %d. Closest values are %d and %d.",
761 rate, baudtab[i - 1].rate, baudtab[i].rate);
762 }
763 else
764 {
765 warning ("Invalid baud rate %d. Minimum value is %d.",
766 rate, baudtab[0].rate);
767 }
768 return -1;
769 }
770 }
771 }
772
773 /* The requested speed was too large. */
774 warning ("Invalid baud rate %d. Maximum value is %d.",
775 rate, baudtab[i - 1].rate);
776 return -1;
777 }
778
779 static int
780 hardwire_setbaudrate (struct serial *scb, int rate)
781 {
782 struct hardwire_ttystate state;
783 int baud_code = rate_to_code (rate);
784
785 if (baud_code < 0)
786 {
787 /* The baud rate was not valid.
788 A warning has already been issued. */
789 errno = EINVAL;
790 return -1;
791 }
792
793 if (get_tty_state (scb, &state))
794 return -1;
795
796 #ifdef HAVE_TERMIOS
797 cfsetospeed (&state.termios, baud_code);
798 cfsetispeed (&state.termios, baud_code);
799 #endif
800
801 #ifdef HAVE_TERMIO
802 #ifndef CIBAUD
803 #define CIBAUD CBAUD
804 #endif
805
806 state.termio.c_cflag &= ~(CBAUD | CIBAUD);
807 state.termio.c_cflag |= baud_code;
808 #endif
809
810 #ifdef HAVE_SGTTY
811 state.sgttyb.sg_ispeed = baud_code;
812 state.sgttyb.sg_ospeed = baud_code;
813 #endif
814
815 return set_tty_state (scb, &state);
816 }
817
818 static int
819 hardwire_setstopbits (struct serial *scb, int num)
820 {
821 struct hardwire_ttystate state;
822 int newbit;
823
824 if (get_tty_state (scb, &state))
825 return -1;
826
827 switch (num)
828 {
829 case SERIAL_1_STOPBITS:
830 newbit = 0;
831 break;
832 case SERIAL_1_AND_A_HALF_STOPBITS:
833 case SERIAL_2_STOPBITS:
834 newbit = 1;
835 break;
836 default:
837 return 1;
838 }
839
840 #ifdef HAVE_TERMIOS
841 if (!newbit)
842 state.termios.c_cflag &= ~CSTOPB;
843 else
844 state.termios.c_cflag |= CSTOPB; /* two bits */
845 #endif
846
847 #ifdef HAVE_TERMIO
848 if (!newbit)
849 state.termio.c_cflag &= ~CSTOPB;
850 else
851 state.termio.c_cflag |= CSTOPB; /* two bits */
852 #endif
853
854 #ifdef HAVE_SGTTY
855 return 0; /* sgtty doesn't support this */
856 #endif
857
858 return set_tty_state (scb, &state);
859 }
860
861 static void
862 hardwire_close (struct serial *scb)
863 {
864 if (scb->fd < 0)
865 return;
866
867 close (scb->fd);
868 scb->fd = -1;
869 }
870
871 \f
872 /* Generic operations used by all UNIX/FD based serial interfaces. */
873
874 serial_ttystate
875 ser_unix_nop_get_tty_state (struct serial *scb)
876 {
877 /* allocate a dummy */
878 return (serial_ttystate) XMALLOC (int);
879 }
880
881 int
882 ser_unix_nop_set_tty_state (struct serial *scb, serial_ttystate ttystate)
883 {
884 return 0;
885 }
886
887 void
888 ser_unix_nop_raw (struct serial *scb)
889 {
890 return; /* Always in raw mode */
891 }
892
893 /* Wait for input on scb, with timeout seconds. Returns 0 on success,
894 otherwise SERIAL_TIMEOUT or SERIAL_ERROR. */
895
896 int
897 ser_unix_wait_for (struct serial *scb, int timeout)
898 {
899 while (1)
900 {
901 int numfds;
902 struct timeval tv;
903 fd_set readfds, exceptfds;
904
905 /* NOTE: Some OS's can scramble the READFDS when the select()
906 call fails (ex the kernel with Red Hat 5.2). Initialize all
907 arguments before each call. */
908
909 tv.tv_sec = timeout;
910 tv.tv_usec = 0;
911
912 FD_ZERO (&readfds);
913 FD_ZERO (&exceptfds);
914 FD_SET (scb->fd, &readfds);
915 FD_SET (scb->fd, &exceptfds);
916
917 if (timeout >= 0)
918 numfds = select (scb->fd + 1, &readfds, 0, &exceptfds, &tv);
919 else
920 numfds = select (scb->fd + 1, &readfds, 0, &exceptfds, 0);
921
922 if (numfds <= 0)
923 {
924 if (numfds == 0)
925 return SERIAL_TIMEOUT;
926 else if (errno == EINTR)
927 continue;
928 else
929 return SERIAL_ERROR; /* Got an error from select or poll */
930 }
931
932 return 0;
933 }
934 }
935
936 /* Read a character with user-specified timeout. TIMEOUT is number of seconds
937 to wait, or -1 to wait forever. Use timeout of 0 to effect a poll. Returns
938 char if successful. Returns -2 if timeout expired, EOF if line dropped
939 dead, or -3 for any other error (see errno in that case). */
940
941 static int
942 do_unix_readchar (struct serial *scb, int timeout)
943 {
944 int status;
945 int delta;
946
947 /* We have to be able to keep the GUI alive here, so we break the original
948 timeout into steps of 1 second, running the "keep the GUI alive" hook
949 each time through the loop.
950
951 Also, timeout = 0 means to poll, so we just set the delta to 0, so we
952 will only go through the loop once. */
953
954 delta = (timeout == 0 ? 0 : 1);
955 while (1)
956 {
957
958 /* N.B. The UI may destroy our world (for instance by calling
959 remote_stop,) in which case we want to get out of here as
960 quickly as possible. It is not safe to touch scb, since
961 someone else might have freed it. The
962 deprecated_ui_loop_hook signals that we should exit by
963 returning 1. */
964
965 if (deprecated_ui_loop_hook)
966 {
967 if (deprecated_ui_loop_hook (0))
968 return SERIAL_TIMEOUT;
969 }
970
971 status = ser_unix_wait_for (scb, delta);
972 if (timeout > 0)
973 timeout -= delta;
974
975 /* If we got a character or an error back from wait_for, then we can
976 break from the loop before the timeout is completed. */
977
978 if (status != SERIAL_TIMEOUT)
979 {
980 break;
981 }
982
983 /* If we have exhausted the original timeout, then generate
984 a SERIAL_TIMEOUT, and pass it out of the loop. */
985
986 else if (timeout == 0)
987 {
988 status = SERIAL_TIMEOUT;
989 break;
990 }
991 }
992
993 if (status < 0)
994 return status;
995
996 while (1)
997 {
998 status = read (scb->fd, scb->buf, BUFSIZ);
999 if (status != -1 || errno != EINTR)
1000 break;
1001 }
1002
1003 if (status <= 0)
1004 {
1005 if (status == 0)
1006 return SERIAL_TIMEOUT; /* 0 chars means timeout [may need to
1007 distinguish between EOF & timeouts
1008 someday] */
1009 else
1010 return SERIAL_ERROR; /* Got an error from read */
1011 }
1012
1013 scb->bufcnt = status;
1014 scb->bufcnt--;
1015 scb->bufp = scb->buf;
1016 return *scb->bufp++;
1017 }
1018
1019 /* Perform operations common to both old and new readchar. */
1020
1021 /* Return the next character from the input FIFO. If the FIFO is
1022 empty, call the SERIAL specific routine to try and read in more
1023 characters.
1024
1025 Initially data from the input FIFO is returned (fd_event()
1026 pre-reads the input into that FIFO. Once that has been emptied,
1027 further data is obtained by polling the input FD using the device
1028 specific readchar() function. Note: reschedule() is called after
1029 every read. This is because there is no guarentee that the lower
1030 level fd_event() poll_event() code (which also calls reschedule())
1031 will be called. */
1032
1033 static int
1034 generic_readchar (struct serial *scb, int timeout,
1035 int (do_readchar) (struct serial *scb, int timeout))
1036 {
1037 int ch;
1038 if (scb->bufcnt > 0)
1039 {
1040 ch = *scb->bufp;
1041 scb->bufcnt--;
1042 scb->bufp++;
1043 }
1044 else if (scb->bufcnt < 0)
1045 {
1046 /* Some errors/eof are are sticky. */
1047 ch = scb->bufcnt;
1048 }
1049 else
1050 {
1051 ch = do_readchar (scb, timeout);
1052 if (ch < 0)
1053 {
1054 switch ((enum serial_rc) ch)
1055 {
1056 case SERIAL_EOF:
1057 case SERIAL_ERROR:
1058 /* Make the error/eof stick. */
1059 scb->bufcnt = ch;
1060 break;
1061 case SERIAL_TIMEOUT:
1062 scb->bufcnt = 0;
1063 break;
1064 }
1065 }
1066 }
1067 reschedule (scb);
1068 return ch;
1069 }
1070
1071 int
1072 ser_unix_readchar (struct serial *scb, int timeout)
1073 {
1074 return generic_readchar (scb, timeout, do_unix_readchar);
1075 }
1076
1077 int
1078 ser_unix_nop_noflush_set_tty_state (struct serial *scb,
1079 serial_ttystate new_ttystate,
1080 serial_ttystate old_ttystate)
1081 {
1082 return 0;
1083 }
1084
1085 void
1086 ser_unix_nop_print_tty_state (struct serial *scb,
1087 serial_ttystate ttystate,
1088 struct ui_file *stream)
1089 {
1090 /* Nothing to print. */
1091 return;
1092 }
1093
1094 int
1095 ser_unix_nop_setbaudrate (struct serial *scb, int rate)
1096 {
1097 return 0; /* Never fails! */
1098 }
1099
1100 int
1101 ser_unix_nop_setstopbits (struct serial *scb, int num)
1102 {
1103 return 0; /* Never fails! */
1104 }
1105
1106 int
1107 ser_unix_write (struct serial *scb, const char *str, int len)
1108 {
1109 int cc;
1110
1111 while (len > 0)
1112 {
1113 cc = write (scb->fd, str, len);
1114
1115 if (cc < 0)
1116 return 1;
1117 len -= cc;
1118 str += cc;
1119 }
1120 return 0;
1121 }
1122
1123 int
1124 ser_unix_nop_flush_output (struct serial *scb)
1125 {
1126 return 0;
1127 }
1128
1129 int
1130 ser_unix_flush_input (struct serial *scb)
1131 {
1132 if (scb->bufcnt >= 0)
1133 {
1134 scb->bufcnt = 0;
1135 scb->bufp = scb->buf;
1136 return 0;
1137 }
1138 else
1139 return SERIAL_ERROR;
1140 }
1141
1142 int
1143 ser_unix_nop_send_break (struct serial *scb)
1144 {
1145 return 0;
1146 }
1147
1148 int
1149 ser_unix_nop_drain_output (struct serial *scb)
1150 {
1151 return 0;
1152 }
1153
1154
1155 \f
1156 /* Event handling for ASYNC serial code.
1157
1158 At any time the SERIAL device either: has an empty FIFO and is
1159 waiting on a FD event; or has a non-empty FIFO/error condition and
1160 is constantly scheduling timer events.
1161
1162 ASYNC only stops pestering its client when it is de-async'ed or it
1163 is told to go away. */
1164
1165 /* Value of scb->async_state: */
1166 enum {
1167 /* >= 0 (TIMER_SCHEDULED) */
1168 /* The ID of the currently scheduled timer event. This state is
1169 rarely encountered. Timer events are one-off so as soon as the
1170 event is delivered the state is shanged to NOTHING_SCHEDULED. */
1171 FD_SCHEDULED = -1,
1172 /* The fd_event() handler is scheduled. It is called when ever the
1173 file descriptor becomes ready. */
1174 NOTHING_SCHEDULED = -2
1175 /* Either no task is scheduled (just going into ASYNC mode) or a
1176 timer event has just gone off and the current state has been
1177 forced into nothing scheduled. */
1178 };
1179
1180 /* Identify and schedule the next ASYNC task based on scb->async_state
1181 and scb->buf* (the input FIFO). A state machine is used to avoid
1182 the need to make redundant calls into the event-loop - the next
1183 scheduled task is only changed when needed. */
1184
1185 static void
1186 reschedule (struct serial *scb)
1187 {
1188 if (serial_is_async_p (scb))
1189 {
1190 int next_state;
1191 switch (scb->async_state)
1192 {
1193 case FD_SCHEDULED:
1194 if (scb->bufcnt == 0)
1195 next_state = FD_SCHEDULED;
1196 else
1197 {
1198 delete_file_handler (scb->fd);
1199 next_state = create_timer (0, push_event, scb);
1200 }
1201 break;
1202 case NOTHING_SCHEDULED:
1203 if (scb->bufcnt == 0)
1204 {
1205 add_file_handler (scb->fd, fd_event, scb);
1206 next_state = FD_SCHEDULED;
1207 }
1208 else
1209 {
1210 next_state = create_timer (0, push_event, scb);
1211 }
1212 break;
1213 default: /* TIMER SCHEDULED */
1214 if (scb->bufcnt == 0)
1215 {
1216 delete_timer (scb->async_state);
1217 add_file_handler (scb->fd, fd_event, scb);
1218 next_state = FD_SCHEDULED;
1219 }
1220 else
1221 next_state = scb->async_state;
1222 break;
1223 }
1224 if (serial_debug_p (scb))
1225 {
1226 switch (next_state)
1227 {
1228 case FD_SCHEDULED:
1229 if (scb->async_state != FD_SCHEDULED)
1230 fprintf_unfiltered (gdb_stdlog, "[fd%d->fd-scheduled]\n",
1231 scb->fd);
1232 break;
1233 default: /* TIMER SCHEDULED */
1234 if (scb->async_state == FD_SCHEDULED)
1235 fprintf_unfiltered (gdb_stdlog, "[fd%d->timer-scheduled]\n",
1236 scb->fd);
1237 break;
1238 }
1239 }
1240 scb->async_state = next_state;
1241 }
1242 }
1243
1244 /* FD_EVENT: This is scheduled when the input FIFO is empty (and there
1245 is no pending error). As soon as data arrives, it is read into the
1246 input FIFO and the client notified. The client should then drain
1247 the FIFO using readchar(). If the FIFO isn't immediatly emptied,
1248 push_event() is used to nag the client until it is. */
1249
1250 static void
1251 fd_event (int error, void *context)
1252 {
1253 struct serial *scb = context;
1254 if (error != 0)
1255 {
1256 scb->bufcnt = SERIAL_ERROR;
1257 }
1258 else if (scb->bufcnt == 0)
1259 {
1260 /* Prime the input FIFO. The readchar() function is used to
1261 pull characters out of the buffer. See also
1262 generic_readchar(). */
1263 int nr;
1264 do
1265 {
1266 nr = read (scb->fd, scb->buf, BUFSIZ);
1267 }
1268 while (nr == -1 && errno == EINTR);
1269 if (nr == 0)
1270 {
1271 scb->bufcnt = SERIAL_EOF;
1272 }
1273 else if (nr > 0)
1274 {
1275 scb->bufcnt = nr;
1276 scb->bufp = scb->buf;
1277 }
1278 else
1279 {
1280 scb->bufcnt = SERIAL_ERROR;
1281 }
1282 }
1283 scb->async_handler (scb, scb->async_context);
1284 reschedule (scb);
1285 }
1286
1287 /* PUSH_EVENT: The input FIFO is non-empty (or there is a pending
1288 error). Nag the client until all the data has been read. In the
1289 case of errors, the client will need to close or de-async the
1290 device before naging stops. */
1291
1292 static void
1293 push_event (void *context)
1294 {
1295 struct serial *scb = context;
1296 scb->async_state = NOTHING_SCHEDULED; /* Timers are one-off */
1297 scb->async_handler (scb, scb->async_context);
1298 /* re-schedule */
1299 reschedule (scb);
1300 }
1301
1302 /* Put the SERIAL device into/out-of ASYNC mode. */
1303
1304 void
1305 ser_unix_async (struct serial *scb,
1306 int async_p)
1307 {
1308 if (async_p)
1309 {
1310 /* Force a re-schedule. */
1311 scb->async_state = NOTHING_SCHEDULED;
1312 if (serial_debug_p (scb))
1313 fprintf_unfiltered (gdb_stdlog, "[fd%d->asynchronous]\n",
1314 scb->fd);
1315 reschedule (scb);
1316 }
1317 else
1318 {
1319 if (serial_debug_p (scb))
1320 fprintf_unfiltered (gdb_stdlog, "[fd%d->synchronous]\n",
1321 scb->fd);
1322 /* De-schedule whatever tasks are currently scheduled. */
1323 switch (scb->async_state)
1324 {
1325 case FD_SCHEDULED:
1326 delete_file_handler (scb->fd);
1327 break;
1328 case NOTHING_SCHEDULED:
1329 break;
1330 default: /* TIMER SCHEDULED */
1331 delete_timer (scb->async_state);
1332 break;
1333 }
1334 }
1335 }
1336
1337 void
1338 _initialize_ser_hardwire (void)
1339 {
1340 struct serial_ops *ops = XMALLOC (struct serial_ops);
1341 memset (ops, 0, sizeof (struct serial_ops));
1342 ops->name = "hardwire";
1343 ops->next = 0;
1344 ops->open = hardwire_open;
1345 ops->close = hardwire_close;
1346 /* FIXME: Don't replace this with the equivalent ser_unix*() until
1347 the old TERMIOS/SGTTY/... timer code has been flushed. cagney
1348 1999-09-16. */
1349 ops->readchar = hardwire_readchar;
1350 ops->write = ser_unix_write;
1351 ops->flush_output = hardwire_flush_output;
1352 ops->flush_input = hardwire_flush_input;
1353 ops->send_break = hardwire_send_break;
1354 ops->go_raw = hardwire_raw;
1355 ops->get_tty_state = hardwire_get_tty_state;
1356 ops->set_tty_state = hardwire_set_tty_state;
1357 ops->print_tty_state = hardwire_print_tty_state;
1358 ops->noflush_set_tty_state = hardwire_noflush_set_tty_state;
1359 ops->setbaudrate = hardwire_setbaudrate;
1360 ops->setstopbits = hardwire_setstopbits;
1361 ops->drain_output = hardwire_drain_output;
1362 ops->async = ser_unix_async;
1363 serial_add_interface (ops);
1364 }
This page took 0.073947 seconds and 4 git commands to generate.