2005-01-13 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / ser-unix.c
1 /* Serial interface for local (hardwired) serial ports on Un*x like systems
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
4 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "serial.h"
25 #include "ser-unix.h"
26
27 #include <fcntl.h>
28 #include <sys/types.h>
29 #include "terminal.h"
30 #include <sys/socket.h>
31 #include <sys/time.h>
32
33 #include "gdb_string.h"
34 #include "event-loop.h"
35
36 #ifdef HAVE_TERMIOS
37
38 struct hardwire_ttystate
39 {
40 struct termios termios;
41 };
42 #endif /* termios */
43
44 #ifdef HAVE_TERMIO
45
46 /* It is believed that all systems which have added job control to SVR3
47 (e.g. sco) have also added termios. Even if not, trying to figure out
48 all the variations (TIOCGPGRP vs. TCGETPGRP, etc.) would be pretty
49 bewildering. So we don't attempt it. */
50
51 struct hardwire_ttystate
52 {
53 struct termio termio;
54 };
55 #endif /* termio */
56
57 #ifdef HAVE_SGTTY
58 struct hardwire_ttystate
59 {
60 struct sgttyb sgttyb;
61 struct tchars tc;
62 struct ltchars ltc;
63 /* Line discipline flags. */
64 int lmode;
65 };
66 #endif /* sgtty */
67
68 static int hardwire_open (struct serial *scb, const char *name);
69 static void hardwire_raw (struct serial *scb);
70 static int wait_for (struct serial *scb, int timeout);
71 static int hardwire_readchar (struct serial *scb, int timeout);
72 static int do_hardwire_readchar (struct serial *scb, int timeout);
73 static int generic_readchar (struct serial *scb, int timeout,
74 int (*do_readchar) (struct serial *scb,
75 int timeout));
76 static int rate_to_code (int rate);
77 static int hardwire_setbaudrate (struct serial *scb, int rate);
78 static void hardwire_close (struct serial *scb);
79 static int get_tty_state (struct serial *scb,
80 struct hardwire_ttystate * state);
81 static int set_tty_state (struct serial *scb,
82 struct hardwire_ttystate * state);
83 static serial_ttystate hardwire_get_tty_state (struct serial *scb);
84 static int hardwire_set_tty_state (struct serial *scb, serial_ttystate state);
85 static int hardwire_noflush_set_tty_state (struct serial *, serial_ttystate,
86 serial_ttystate);
87 static void hardwire_print_tty_state (struct serial *, serial_ttystate,
88 struct ui_file *);
89 static int hardwire_drain_output (struct serial *);
90 static int hardwire_flush_output (struct serial *);
91 static int hardwire_flush_input (struct serial *);
92 static int hardwire_send_break (struct serial *);
93 static int hardwire_setstopbits (struct serial *, int);
94
95 static int do_unix_readchar (struct serial *scb, int timeout);
96 static timer_handler_func push_event;
97 static handler_func fd_event;
98 static void reschedule (struct serial *scb);
99
100 void _initialize_ser_hardwire (void);
101
102 /* Open up a real live device for serial I/O */
103
104 static int
105 hardwire_open (struct serial *scb, const char *name)
106 {
107 scb->fd = open (name, O_RDWR);
108 if (scb->fd < 0)
109 return -1;
110
111 return 0;
112 }
113
114 static int
115 get_tty_state (struct serial *scb, struct hardwire_ttystate *state)
116 {
117 #ifdef HAVE_TERMIOS
118 if (tcgetattr (scb->fd, &state->termios) < 0)
119 return -1;
120
121 return 0;
122 #endif
123
124 #ifdef HAVE_TERMIO
125 if (ioctl (scb->fd, TCGETA, &state->termio) < 0)
126 return -1;
127 return 0;
128 #endif
129
130 #ifdef HAVE_SGTTY
131 if (ioctl (scb->fd, TIOCGETP, &state->sgttyb) < 0)
132 return -1;
133 if (ioctl (scb->fd, TIOCGETC, &state->tc) < 0)
134 return -1;
135 if (ioctl (scb->fd, TIOCGLTC, &state->ltc) < 0)
136 return -1;
137 if (ioctl (scb->fd, TIOCLGET, &state->lmode) < 0)
138 return -1;
139
140 return 0;
141 #endif
142 }
143
144 static int
145 set_tty_state (struct serial *scb, struct hardwire_ttystate *state)
146 {
147 #ifdef HAVE_TERMIOS
148 if (tcsetattr (scb->fd, TCSANOW, &state->termios) < 0)
149 return -1;
150
151 return 0;
152 #endif
153
154 #ifdef HAVE_TERMIO
155 if (ioctl (scb->fd, TCSETA, &state->termio) < 0)
156 return -1;
157 return 0;
158 #endif
159
160 #ifdef HAVE_SGTTY
161 if (ioctl (scb->fd, TIOCSETN, &state->sgttyb) < 0)
162 return -1;
163 if (ioctl (scb->fd, TIOCSETC, &state->tc) < 0)
164 return -1;
165 if (ioctl (scb->fd, TIOCSLTC, &state->ltc) < 0)
166 return -1;
167 if (ioctl (scb->fd, TIOCLSET, &state->lmode) < 0)
168 return -1;
169
170 return 0;
171 #endif
172 }
173
174 static serial_ttystate
175 hardwire_get_tty_state (struct serial *scb)
176 {
177 struct hardwire_ttystate *state;
178
179 state = (struct hardwire_ttystate *) xmalloc (sizeof *state);
180
181 if (get_tty_state (scb, state))
182 return NULL;
183
184 return (serial_ttystate) state;
185 }
186
187 static int
188 hardwire_set_tty_state (struct serial *scb, serial_ttystate ttystate)
189 {
190 struct hardwire_ttystate *state;
191
192 state = (struct hardwire_ttystate *) ttystate;
193
194 return set_tty_state (scb, state);
195 }
196
197 static int
198 hardwire_noflush_set_tty_state (struct serial *scb,
199 serial_ttystate new_ttystate,
200 serial_ttystate old_ttystate)
201 {
202 struct hardwire_ttystate new_state;
203 #ifdef HAVE_SGTTY
204 struct hardwire_ttystate *state = (struct hardwire_ttystate *) old_ttystate;
205 #endif
206
207 new_state = *(struct hardwire_ttystate *) new_ttystate;
208
209 /* Don't change in or out of raw mode; we don't want to flush input.
210 termio and termios have no such restriction; for them flushing input
211 is separate from setting the attributes. */
212
213 #ifdef HAVE_SGTTY
214 if (state->sgttyb.sg_flags & RAW)
215 new_state.sgttyb.sg_flags |= RAW;
216 else
217 new_state.sgttyb.sg_flags &= ~RAW;
218
219 /* I'm not sure whether this is necessary; the manpage just mentions
220 RAW not CBREAK. */
221 if (state->sgttyb.sg_flags & CBREAK)
222 new_state.sgttyb.sg_flags |= CBREAK;
223 else
224 new_state.sgttyb.sg_flags &= ~CBREAK;
225 #endif
226
227 return set_tty_state (scb, &new_state);
228 }
229
230 static void
231 hardwire_print_tty_state (struct serial *scb,
232 serial_ttystate ttystate,
233 struct ui_file *stream)
234 {
235 struct hardwire_ttystate *state = (struct hardwire_ttystate *) ttystate;
236 int i;
237
238 #ifdef HAVE_TERMIOS
239 fprintf_filtered (stream, "c_iflag = 0x%x, c_oflag = 0x%x,\n",
240 (int) state->termios.c_iflag,
241 (int) state->termios.c_oflag);
242 fprintf_filtered (stream, "c_cflag = 0x%x, c_lflag = 0x%x\n",
243 (int) state->termios.c_cflag,
244 (int) state->termios.c_lflag);
245 #if 0
246 /* This not in POSIX, and is not really documented by those systems
247 which have it (at least not Sun). */
248 fprintf_filtered (stream, "c_line = 0x%x.\n", state->termios.c_line);
249 #endif
250 fprintf_filtered (stream, "c_cc: ");
251 for (i = 0; i < NCCS; i += 1)
252 fprintf_filtered (stream, "0x%x ", state->termios.c_cc[i]);
253 fprintf_filtered (stream, "\n");
254 #endif
255
256 #ifdef HAVE_TERMIO
257 fprintf_filtered (stream, "c_iflag = 0x%x, c_oflag = 0x%x,\n",
258 state->termio.c_iflag, state->termio.c_oflag);
259 fprintf_filtered (stream, "c_cflag = 0x%x, c_lflag = 0x%x, c_line = 0x%x.\n",
260 state->termio.c_cflag, state->termio.c_lflag,
261 state->termio.c_line);
262 fprintf_filtered (stream, "c_cc: ");
263 for (i = 0; i < NCC; i += 1)
264 fprintf_filtered (stream, "0x%x ", state->termio.c_cc[i]);
265 fprintf_filtered (stream, "\n");
266 #endif
267
268 #ifdef HAVE_SGTTY
269 fprintf_filtered (stream, "sgttyb.sg_flags = 0x%x.\n",
270 state->sgttyb.sg_flags);
271
272 fprintf_filtered (stream, "tchars: ");
273 for (i = 0; i < (int) sizeof (struct tchars); i++)
274 fprintf_filtered (stream, "0x%x ", ((unsigned char *) &state->tc)[i]);
275 fprintf_filtered (stream, "\n");
276
277 fprintf_filtered (stream, "ltchars: ");
278 for (i = 0; i < (int) sizeof (struct ltchars); i++)
279 fprintf_filtered (stream, "0x%x ", ((unsigned char *) &state->ltc)[i]);
280 fprintf_filtered (stream, "\n");
281
282 fprintf_filtered (stream, "lmode: 0x%x\n", state->lmode);
283 #endif
284 }
285
286 /* Wait for the output to drain away, as opposed to flushing (discarding) it */
287
288 static int
289 hardwire_drain_output (struct serial *scb)
290 {
291 #ifdef HAVE_TERMIOS
292 return tcdrain (scb->fd);
293 #endif
294
295 #ifdef HAVE_TERMIO
296 return ioctl (scb->fd, TCSBRK, 1);
297 #endif
298
299 #ifdef HAVE_SGTTY
300 /* Get the current state and then restore it using TIOCSETP,
301 which should cause the output to drain and pending input
302 to be discarded. */
303 {
304 struct hardwire_ttystate state;
305 if (get_tty_state (scb, &state))
306 {
307 return (-1);
308 }
309 else
310 {
311 return (ioctl (scb->fd, TIOCSETP, &state.sgttyb));
312 }
313 }
314 #endif
315 }
316
317 static int
318 hardwire_flush_output (struct serial *scb)
319 {
320 #ifdef HAVE_TERMIOS
321 return tcflush (scb->fd, TCOFLUSH);
322 #endif
323
324 #ifdef HAVE_TERMIO
325 return ioctl (scb->fd, TCFLSH, 1);
326 #endif
327
328 #ifdef HAVE_SGTTY
329 /* This flushes both input and output, but we can't do better. */
330 return ioctl (scb->fd, TIOCFLUSH, 0);
331 #endif
332 }
333
334 static int
335 hardwire_flush_input (struct serial *scb)
336 {
337 ser_unix_flush_input (scb);
338
339 #ifdef HAVE_TERMIOS
340 return tcflush (scb->fd, TCIFLUSH);
341 #endif
342
343 #ifdef HAVE_TERMIO
344 return ioctl (scb->fd, TCFLSH, 0);
345 #endif
346
347 #ifdef HAVE_SGTTY
348 /* This flushes both input and output, but we can't do better. */
349 return ioctl (scb->fd, TIOCFLUSH, 0);
350 #endif
351 }
352
353 static int
354 hardwire_send_break (struct serial *scb)
355 {
356 #ifdef HAVE_TERMIOS
357 return tcsendbreak (scb->fd, 0);
358 #endif
359
360 #ifdef HAVE_TERMIO
361 return ioctl (scb->fd, TCSBRK, 0);
362 #endif
363
364 #ifdef HAVE_SGTTY
365 {
366 int status;
367 struct timeval timeout;
368
369 status = ioctl (scb->fd, TIOCSBRK, 0);
370
371 /* Can't use usleep; it doesn't exist in BSD 4.2. */
372 /* Note that if this select() is interrupted by a signal it will not wait
373 the full length of time. I think that is OK. */
374 timeout.tv_sec = 0;
375 timeout.tv_usec = 250000;
376 select (0, 0, 0, 0, &timeout);
377 status = ioctl (scb->fd, TIOCCBRK, 0);
378 return status;
379 }
380 #endif
381 }
382
383 static void
384 hardwire_raw (struct serial *scb)
385 {
386 struct hardwire_ttystate state;
387
388 if (get_tty_state (scb, &state))
389 fprintf_unfiltered (gdb_stderr, "get_tty_state failed: %s\n", safe_strerror (errno));
390
391 #ifdef HAVE_TERMIOS
392 state.termios.c_iflag = 0;
393 state.termios.c_oflag = 0;
394 state.termios.c_lflag = 0;
395 state.termios.c_cflag &= ~(CSIZE | PARENB);
396 state.termios.c_cflag |= CLOCAL | CS8;
397 state.termios.c_cc[VMIN] = 0;
398 state.termios.c_cc[VTIME] = 0;
399 #endif
400
401 #ifdef HAVE_TERMIO
402 state.termio.c_iflag = 0;
403 state.termio.c_oflag = 0;
404 state.termio.c_lflag = 0;
405 state.termio.c_cflag &= ~(CSIZE | PARENB);
406 state.termio.c_cflag |= CLOCAL | CS8;
407 state.termio.c_cc[VMIN] = 0;
408 state.termio.c_cc[VTIME] = 0;
409 #endif
410
411 #ifdef HAVE_SGTTY
412 state.sgttyb.sg_flags |= RAW | ANYP;
413 state.sgttyb.sg_flags &= ~(CBREAK | ECHO);
414 #endif
415
416 scb->current_timeout = 0;
417
418 if (set_tty_state (scb, &state))
419 fprintf_unfiltered (gdb_stderr, "set_tty_state failed: %s\n", safe_strerror (errno));
420 }
421
422 /* Wait for input on scb, with timeout seconds. Returns 0 on success,
423 otherwise SERIAL_TIMEOUT or SERIAL_ERROR.
424
425 For termio{s}, we actually just setup VTIME if necessary, and let the
426 timeout occur in the read() in hardwire_read().
427 */
428
429 /* FIXME: cagney/1999-09-16: Don't replace this with the equivalent
430 ser_unix*() until the old TERMIOS/SGTTY/... timer code has been
431 flushed. . */
432
433 /* NOTE: cagney/1999-09-30: Much of the code below is dead. The only
434 possible values of the TIMEOUT parameter are ONE and ZERO.
435 Consequently all the code that tries to handle the possability of
436 an overflowed timer is unnecessary. */
437
438 static int
439 wait_for (struct serial *scb, int timeout)
440 {
441 #ifdef HAVE_SGTTY
442 while (1)
443 {
444 struct timeval tv;
445 fd_set readfds;
446 int numfds;
447
448 /* NOTE: Some OS's can scramble the READFDS when the select()
449 call fails (ex the kernel with Red Hat 5.2). Initialize all
450 arguments before each call. */
451
452 tv.tv_sec = timeout;
453 tv.tv_usec = 0;
454
455 FD_ZERO (&readfds);
456 FD_SET (scb->fd, &readfds);
457
458 if (timeout >= 0)
459 numfds = select (scb->fd + 1, &readfds, 0, 0, &tv);
460 else
461 numfds = select (scb->fd + 1, &readfds, 0, 0, 0);
462
463 if (numfds <= 0)
464 if (numfds == 0)
465 return SERIAL_TIMEOUT;
466 else if (errno == EINTR)
467 continue;
468 else
469 return SERIAL_ERROR; /* Got an error from select or poll */
470
471 return 0;
472 }
473 #endif /* HAVE_SGTTY */
474
475 #if defined HAVE_TERMIO || defined HAVE_TERMIOS
476 if (timeout == scb->current_timeout)
477 return 0;
478
479 scb->current_timeout = timeout;
480
481 {
482 struct hardwire_ttystate state;
483
484 if (get_tty_state (scb, &state))
485 fprintf_unfiltered (gdb_stderr, "get_tty_state failed: %s\n", safe_strerror (errno));
486
487 #ifdef HAVE_TERMIOS
488 if (timeout < 0)
489 {
490 /* No timeout. */
491 state.termios.c_cc[VTIME] = 0;
492 state.termios.c_cc[VMIN] = 1;
493 }
494 else
495 {
496 state.termios.c_cc[VMIN] = 0;
497 state.termios.c_cc[VTIME] = timeout * 10;
498 if (state.termios.c_cc[VTIME] != timeout * 10)
499 {
500
501 /* If c_cc is an 8-bit signed character, we can't go
502 bigger than this. If it is always unsigned, we could use
503 25. */
504
505 scb->current_timeout = 12;
506 state.termios.c_cc[VTIME] = scb->current_timeout * 10;
507 scb->timeout_remaining = timeout - scb->current_timeout;
508 }
509 }
510 #endif
511
512 #ifdef HAVE_TERMIO
513 if (timeout < 0)
514 {
515 /* No timeout. */
516 state.termio.c_cc[VTIME] = 0;
517 state.termio.c_cc[VMIN] = 1;
518 }
519 else
520 {
521 state.termio.c_cc[VMIN] = 0;
522 state.termio.c_cc[VTIME] = timeout * 10;
523 if (state.termio.c_cc[VTIME] != timeout * 10)
524 {
525 /* If c_cc is an 8-bit signed character, we can't go
526 bigger than this. If it is always unsigned, we could use
527 25. */
528
529 scb->current_timeout = 12;
530 state.termio.c_cc[VTIME] = scb->current_timeout * 10;
531 scb->timeout_remaining = timeout - scb->current_timeout;
532 }
533 }
534 #endif
535
536 if (set_tty_state (scb, &state))
537 fprintf_unfiltered (gdb_stderr, "set_tty_state failed: %s\n", safe_strerror (errno));
538
539 return 0;
540 }
541 #endif /* HAVE_TERMIO || HAVE_TERMIOS */
542 }
543
544 /* Read a character with user-specified timeout. TIMEOUT is number of seconds
545 to wait, or -1 to wait forever. Use timeout of 0 to effect a poll. Returns
546 char if successful. Returns SERIAL_TIMEOUT if timeout expired, EOF if line
547 dropped dead, or SERIAL_ERROR for any other error (see errno in that case). */
548
549 /* FIXME: cagney/1999-09-16: Don't replace this with the equivalent
550 ser_unix*() until the old TERMIOS/SGTTY/... timer code has been
551 flushed. */
552
553 /* NOTE: cagney/1999-09-16: This function is not identical to
554 ser_unix_readchar() as part of replacing it with ser_unix*()
555 merging will be required - this code handles the case where read()
556 times out due to no data while ser_unix_readchar() doesn't expect
557 that. */
558
559 static int
560 do_hardwire_readchar (struct serial *scb, int timeout)
561 {
562 int status, delta;
563 int detach = 0;
564
565 if (timeout > 0)
566 timeout++;
567
568 /* We have to be able to keep the GUI alive here, so we break the
569 original timeout into steps of 1 second, running the "keep the
570 GUI alive" hook each time through the loop.
571
572 Also, timeout = 0 means to poll, so we just set the delta to 0,
573 so we will only go through the loop once. */
574
575 delta = (timeout == 0 ? 0 : 1);
576 while (1)
577 {
578
579 /* N.B. The UI may destroy our world (for instance by calling
580 remote_stop,) in which case we want to get out of here as
581 quickly as possible. It is not safe to touch scb, since
582 someone else might have freed it. The
583 deprecated_ui_loop_hook signals that we should exit by
584 returning 1. */
585
586 if (deprecated_ui_loop_hook)
587 detach = deprecated_ui_loop_hook (0);
588
589 if (detach)
590 return SERIAL_TIMEOUT;
591
592 scb->timeout_remaining = (timeout < 0 ? timeout : timeout - delta);
593 status = wait_for (scb, delta);
594
595 if (status < 0)
596 return status;
597
598 status = read (scb->fd, scb->buf, BUFSIZ);
599
600 if (status <= 0)
601 {
602 if (status == 0)
603 {
604 /* Zero characters means timeout (it could also be EOF, but
605 we don't (yet at least) distinguish). */
606 if (scb->timeout_remaining > 0)
607 {
608 timeout = scb->timeout_remaining;
609 continue;
610 }
611 else if (scb->timeout_remaining < 0)
612 continue;
613 else
614 return SERIAL_TIMEOUT;
615 }
616 else if (errno == EINTR)
617 continue;
618 else
619 return SERIAL_ERROR; /* Got an error from read */
620 }
621
622 scb->bufcnt = status;
623 scb->bufcnt--;
624 scb->bufp = scb->buf;
625 return *scb->bufp++;
626 }
627 }
628
629 static int
630 hardwire_readchar (struct serial *scb, int timeout)
631 {
632 return generic_readchar (scb, timeout, do_hardwire_readchar);
633 }
634
635
636 #ifndef B19200
637 #define B19200 EXTA
638 #endif
639
640 #ifndef B38400
641 #define B38400 EXTB
642 #endif
643
644 /* Translate baud rates from integers to damn B_codes. Unix should
645 have outgrown this crap years ago, but even POSIX wouldn't buck it. */
646
647 static struct
648 {
649 int rate;
650 int code;
651 }
652 baudtab[] =
653 {
654 {
655 50, B50
656 }
657 ,
658 {
659 75, B75
660 }
661 ,
662 {
663 110, B110
664 }
665 ,
666 {
667 134, B134
668 }
669 ,
670 {
671 150, B150
672 }
673 ,
674 {
675 200, B200
676 }
677 ,
678 {
679 300, B300
680 }
681 ,
682 {
683 600, B600
684 }
685 ,
686 {
687 1200, B1200
688 }
689 ,
690 {
691 1800, B1800
692 }
693 ,
694 {
695 2400, B2400
696 }
697 ,
698 {
699 4800, B4800
700 }
701 ,
702 {
703 9600, B9600
704 }
705 ,
706 {
707 19200, B19200
708 }
709 ,
710 {
711 38400, B38400
712 }
713 ,
714 #ifdef B57600
715 {
716 57600, B57600
717 }
718 ,
719 #endif
720 #ifdef B115200
721 {
722 115200, B115200
723 }
724 ,
725 #endif
726 #ifdef B230400
727 {
728 230400, B230400
729 }
730 ,
731 #endif
732 #ifdef B460800
733 {
734 460800, B460800
735 }
736 ,
737 #endif
738 {
739 -1, -1
740 }
741 ,
742 };
743
744 static int
745 rate_to_code (int rate)
746 {
747 int i;
748
749 for (i = 0; baudtab[i].rate != -1; i++)
750 {
751 /* test for perfect macth. */
752 if (rate == baudtab[i].rate)
753 return baudtab[i].code;
754 else
755 {
756 /* check if it is in between valid values. */
757 if (rate < baudtab[i].rate)
758 {
759 if (i)
760 {
761 warning ("Invalid baud rate %d. Closest values are %d and %d.",
762 rate, baudtab[i - 1].rate, baudtab[i].rate);
763 }
764 else
765 {
766 warning ("Invalid baud rate %d. Minimum value is %d.",
767 rate, baudtab[0].rate);
768 }
769 return -1;
770 }
771 }
772 }
773
774 /* The requested speed was too large. */
775 warning ("Invalid baud rate %d. Maximum value is %d.",
776 rate, baudtab[i - 1].rate);
777 return -1;
778 }
779
780 static int
781 hardwire_setbaudrate (struct serial *scb, int rate)
782 {
783 struct hardwire_ttystate state;
784 int baud_code = rate_to_code (rate);
785
786 if (baud_code < 0)
787 {
788 /* The baud rate was not valid.
789 A warning has already been issued. */
790 errno = EINVAL;
791 return -1;
792 }
793
794 if (get_tty_state (scb, &state))
795 return -1;
796
797 #ifdef HAVE_TERMIOS
798 cfsetospeed (&state.termios, baud_code);
799 cfsetispeed (&state.termios, baud_code);
800 #endif
801
802 #ifdef HAVE_TERMIO
803 #ifndef CIBAUD
804 #define CIBAUD CBAUD
805 #endif
806
807 state.termio.c_cflag &= ~(CBAUD | CIBAUD);
808 state.termio.c_cflag |= baud_code;
809 #endif
810
811 #ifdef HAVE_SGTTY
812 state.sgttyb.sg_ispeed = baud_code;
813 state.sgttyb.sg_ospeed = baud_code;
814 #endif
815
816 return set_tty_state (scb, &state);
817 }
818
819 static int
820 hardwire_setstopbits (struct serial *scb, int num)
821 {
822 struct hardwire_ttystate state;
823 int newbit;
824
825 if (get_tty_state (scb, &state))
826 return -1;
827
828 switch (num)
829 {
830 case SERIAL_1_STOPBITS:
831 newbit = 0;
832 break;
833 case SERIAL_1_AND_A_HALF_STOPBITS:
834 case SERIAL_2_STOPBITS:
835 newbit = 1;
836 break;
837 default:
838 return 1;
839 }
840
841 #ifdef HAVE_TERMIOS
842 if (!newbit)
843 state.termios.c_cflag &= ~CSTOPB;
844 else
845 state.termios.c_cflag |= CSTOPB; /* two bits */
846 #endif
847
848 #ifdef HAVE_TERMIO
849 if (!newbit)
850 state.termio.c_cflag &= ~CSTOPB;
851 else
852 state.termio.c_cflag |= CSTOPB; /* two bits */
853 #endif
854
855 #ifdef HAVE_SGTTY
856 return 0; /* sgtty doesn't support this */
857 #endif
858
859 return set_tty_state (scb, &state);
860 }
861
862 static void
863 hardwire_close (struct serial *scb)
864 {
865 if (scb->fd < 0)
866 return;
867
868 close (scb->fd);
869 scb->fd = -1;
870 }
871
872 \f
873 /* Generic operations used by all UNIX/FD based serial interfaces. */
874
875 serial_ttystate
876 ser_unix_nop_get_tty_state (struct serial *scb)
877 {
878 /* allocate a dummy */
879 return (serial_ttystate) XMALLOC (int);
880 }
881
882 int
883 ser_unix_nop_set_tty_state (struct serial *scb, serial_ttystate ttystate)
884 {
885 return 0;
886 }
887
888 void
889 ser_unix_nop_raw (struct serial *scb)
890 {
891 return; /* Always in raw mode */
892 }
893
894 /* Wait for input on scb, with timeout seconds. Returns 0 on success,
895 otherwise SERIAL_TIMEOUT or SERIAL_ERROR. */
896
897 int
898 ser_unix_wait_for (struct serial *scb, int timeout)
899 {
900 while (1)
901 {
902 int numfds;
903 struct timeval tv;
904 fd_set readfds, exceptfds;
905
906 /* NOTE: Some OS's can scramble the READFDS when the select()
907 call fails (ex the kernel with Red Hat 5.2). Initialize all
908 arguments before each call. */
909
910 tv.tv_sec = timeout;
911 tv.tv_usec = 0;
912
913 FD_ZERO (&readfds);
914 FD_ZERO (&exceptfds);
915 FD_SET (scb->fd, &readfds);
916 FD_SET (scb->fd, &exceptfds);
917
918 if (timeout >= 0)
919 numfds = select (scb->fd + 1, &readfds, 0, &exceptfds, &tv);
920 else
921 numfds = select (scb->fd + 1, &readfds, 0, &exceptfds, 0);
922
923 if (numfds <= 0)
924 {
925 if (numfds == 0)
926 return SERIAL_TIMEOUT;
927 else if (errno == EINTR)
928 continue;
929 else
930 return SERIAL_ERROR; /* Got an error from select or poll */
931 }
932
933 return 0;
934 }
935 }
936
937 /* Read a character with user-specified timeout. TIMEOUT is number of seconds
938 to wait, or -1 to wait forever. Use timeout of 0 to effect a poll. Returns
939 char if successful. Returns -2 if timeout expired, EOF if line dropped
940 dead, or -3 for any other error (see errno in that case). */
941
942 static int
943 do_unix_readchar (struct serial *scb, int timeout)
944 {
945 int status;
946 int delta;
947
948 /* We have to be able to keep the GUI alive here, so we break the
949 original timeout into steps of 1 second, running the "keep the
950 GUI alive" hook each time through the loop.
951
952 Also, timeout = 0 means to poll, so we just set the delta to 0,
953 so we will only go through the loop once. */
954
955 delta = (timeout == 0 ? 0 : 1);
956 while (1)
957 {
958
959 /* N.B. The UI may destroy our world (for instance by calling
960 remote_stop,) in which case we want to get out of here as
961 quickly as possible. It is not safe to touch scb, since
962 someone else might have freed it. The
963 deprecated_ui_loop_hook signals that we should exit by
964 returning 1. */
965
966 if (deprecated_ui_loop_hook)
967 {
968 if (deprecated_ui_loop_hook (0))
969 return SERIAL_TIMEOUT;
970 }
971
972 status = ser_unix_wait_for (scb, delta);
973 if (timeout > 0)
974 timeout -= delta;
975
976 /* If we got a character or an error back from wait_for, then we can
977 break from the loop before the timeout is completed. */
978
979 if (status != SERIAL_TIMEOUT)
980 {
981 break;
982 }
983
984 /* If we have exhausted the original timeout, then generate
985 a SERIAL_TIMEOUT, and pass it out of the loop. */
986
987 else if (timeout == 0)
988 {
989 status = SERIAL_TIMEOUT;
990 break;
991 }
992 }
993
994 if (status < 0)
995 return status;
996
997 while (1)
998 {
999 status = read (scb->fd, scb->buf, BUFSIZ);
1000 if (status != -1 || errno != EINTR)
1001 break;
1002 }
1003
1004 if (status <= 0)
1005 {
1006 if (status == 0)
1007 return SERIAL_TIMEOUT; /* 0 chars means timeout [may need to
1008 distinguish between EOF & timeouts
1009 someday] */
1010 else
1011 return SERIAL_ERROR; /* Got an error from read */
1012 }
1013
1014 scb->bufcnt = status;
1015 scb->bufcnt--;
1016 scb->bufp = scb->buf;
1017 return *scb->bufp++;
1018 }
1019
1020 /* Perform operations common to both old and new readchar. */
1021
1022 /* Return the next character from the input FIFO. If the FIFO is
1023 empty, call the SERIAL specific routine to try and read in more
1024 characters.
1025
1026 Initially data from the input FIFO is returned (fd_event()
1027 pre-reads the input into that FIFO. Once that has been emptied,
1028 further data is obtained by polling the input FD using the device
1029 specific readchar() function. Note: reschedule() is called after
1030 every read. This is because there is no guarentee that the lower
1031 level fd_event() poll_event() code (which also calls reschedule())
1032 will be called. */
1033
1034 static int
1035 generic_readchar (struct serial *scb, int timeout,
1036 int (do_readchar) (struct serial *scb, int timeout))
1037 {
1038 int ch;
1039 if (scb->bufcnt > 0)
1040 {
1041 ch = *scb->bufp;
1042 scb->bufcnt--;
1043 scb->bufp++;
1044 }
1045 else if (scb->bufcnt < 0)
1046 {
1047 /* Some errors/eof are are sticky. */
1048 ch = scb->bufcnt;
1049 }
1050 else
1051 {
1052 ch = do_readchar (scb, timeout);
1053 if (ch < 0)
1054 {
1055 switch ((enum serial_rc) ch)
1056 {
1057 case SERIAL_EOF:
1058 case SERIAL_ERROR:
1059 /* Make the error/eof stick. */
1060 scb->bufcnt = ch;
1061 break;
1062 case SERIAL_TIMEOUT:
1063 scb->bufcnt = 0;
1064 break;
1065 }
1066 }
1067 }
1068 reschedule (scb);
1069 return ch;
1070 }
1071
1072 int
1073 ser_unix_readchar (struct serial *scb, int timeout)
1074 {
1075 return generic_readchar (scb, timeout, do_unix_readchar);
1076 }
1077
1078 int
1079 ser_unix_nop_noflush_set_tty_state (struct serial *scb,
1080 serial_ttystate new_ttystate,
1081 serial_ttystate old_ttystate)
1082 {
1083 return 0;
1084 }
1085
1086 void
1087 ser_unix_nop_print_tty_state (struct serial *scb,
1088 serial_ttystate ttystate,
1089 struct ui_file *stream)
1090 {
1091 /* Nothing to print. */
1092 return;
1093 }
1094
1095 int
1096 ser_unix_nop_setbaudrate (struct serial *scb, int rate)
1097 {
1098 return 0; /* Never fails! */
1099 }
1100
1101 int
1102 ser_unix_nop_setstopbits (struct serial *scb, int num)
1103 {
1104 return 0; /* Never fails! */
1105 }
1106
1107 int
1108 ser_unix_write (struct serial *scb, const char *str, int len)
1109 {
1110 int cc;
1111
1112 while (len > 0)
1113 {
1114 cc = write (scb->fd, str, len);
1115
1116 if (cc < 0)
1117 return 1;
1118 len -= cc;
1119 str += cc;
1120 }
1121 return 0;
1122 }
1123
1124 int
1125 ser_unix_nop_flush_output (struct serial *scb)
1126 {
1127 return 0;
1128 }
1129
1130 int
1131 ser_unix_flush_input (struct serial *scb)
1132 {
1133 if (scb->bufcnt >= 0)
1134 {
1135 scb->bufcnt = 0;
1136 scb->bufp = scb->buf;
1137 return 0;
1138 }
1139 else
1140 return SERIAL_ERROR;
1141 }
1142
1143 int
1144 ser_unix_nop_send_break (struct serial *scb)
1145 {
1146 return 0;
1147 }
1148
1149 int
1150 ser_unix_nop_drain_output (struct serial *scb)
1151 {
1152 return 0;
1153 }
1154
1155
1156 \f
1157 /* Event handling for ASYNC serial code.
1158
1159 At any time the SERIAL device either: has an empty FIFO and is
1160 waiting on a FD event; or has a non-empty FIFO/error condition and
1161 is constantly scheduling timer events.
1162
1163 ASYNC only stops pestering its client when it is de-async'ed or it
1164 is told to go away. */
1165
1166 /* Value of scb->async_state: */
1167 enum {
1168 /* >= 0 (TIMER_SCHEDULED) */
1169 /* The ID of the currently scheduled timer event. This state is
1170 rarely encountered. Timer events are one-off so as soon as the
1171 event is delivered the state is shanged to NOTHING_SCHEDULED. */
1172 FD_SCHEDULED = -1,
1173 /* The fd_event() handler is scheduled. It is called when ever the
1174 file descriptor becomes ready. */
1175 NOTHING_SCHEDULED = -2
1176 /* Either no task is scheduled (just going into ASYNC mode) or a
1177 timer event has just gone off and the current state has been
1178 forced into nothing scheduled. */
1179 };
1180
1181 /* Identify and schedule the next ASYNC task based on scb->async_state
1182 and scb->buf* (the input FIFO). A state machine is used to avoid
1183 the need to make redundant calls into the event-loop - the next
1184 scheduled task is only changed when needed. */
1185
1186 static void
1187 reschedule (struct serial *scb)
1188 {
1189 if (serial_is_async_p (scb))
1190 {
1191 int next_state;
1192 switch (scb->async_state)
1193 {
1194 case FD_SCHEDULED:
1195 if (scb->bufcnt == 0)
1196 next_state = FD_SCHEDULED;
1197 else
1198 {
1199 delete_file_handler (scb->fd);
1200 next_state = create_timer (0, push_event, scb);
1201 }
1202 break;
1203 case NOTHING_SCHEDULED:
1204 if (scb->bufcnt == 0)
1205 {
1206 add_file_handler (scb->fd, fd_event, scb);
1207 next_state = FD_SCHEDULED;
1208 }
1209 else
1210 {
1211 next_state = create_timer (0, push_event, scb);
1212 }
1213 break;
1214 default: /* TIMER SCHEDULED */
1215 if (scb->bufcnt == 0)
1216 {
1217 delete_timer (scb->async_state);
1218 add_file_handler (scb->fd, fd_event, scb);
1219 next_state = FD_SCHEDULED;
1220 }
1221 else
1222 next_state = scb->async_state;
1223 break;
1224 }
1225 if (serial_debug_p (scb))
1226 {
1227 switch (next_state)
1228 {
1229 case FD_SCHEDULED:
1230 if (scb->async_state != FD_SCHEDULED)
1231 fprintf_unfiltered (gdb_stdlog, "[fd%d->fd-scheduled]\n",
1232 scb->fd);
1233 break;
1234 default: /* TIMER SCHEDULED */
1235 if (scb->async_state == FD_SCHEDULED)
1236 fprintf_unfiltered (gdb_stdlog, "[fd%d->timer-scheduled]\n",
1237 scb->fd);
1238 break;
1239 }
1240 }
1241 scb->async_state = next_state;
1242 }
1243 }
1244
1245 /* FD_EVENT: This is scheduled when the input FIFO is empty (and there
1246 is no pending error). As soon as data arrives, it is read into the
1247 input FIFO and the client notified. The client should then drain
1248 the FIFO using readchar(). If the FIFO isn't immediatly emptied,
1249 push_event() is used to nag the client until it is. */
1250
1251 static void
1252 fd_event (int error, void *context)
1253 {
1254 struct serial *scb = context;
1255 if (error != 0)
1256 {
1257 scb->bufcnt = SERIAL_ERROR;
1258 }
1259 else if (scb->bufcnt == 0)
1260 {
1261 /* Prime the input FIFO. The readchar() function is used to
1262 pull characters out of the buffer. See also
1263 generic_readchar(). */
1264 int nr;
1265 do
1266 {
1267 nr = read (scb->fd, scb->buf, BUFSIZ);
1268 }
1269 while (nr == -1 && errno == EINTR);
1270 if (nr == 0)
1271 {
1272 scb->bufcnt = SERIAL_EOF;
1273 }
1274 else if (nr > 0)
1275 {
1276 scb->bufcnt = nr;
1277 scb->bufp = scb->buf;
1278 }
1279 else
1280 {
1281 scb->bufcnt = SERIAL_ERROR;
1282 }
1283 }
1284 scb->async_handler (scb, scb->async_context);
1285 reschedule (scb);
1286 }
1287
1288 /* PUSH_EVENT: The input FIFO is non-empty (or there is a pending
1289 error). Nag the client until all the data has been read. In the
1290 case of errors, the client will need to close or de-async the
1291 device before naging stops. */
1292
1293 static void
1294 push_event (void *context)
1295 {
1296 struct serial *scb = context;
1297 scb->async_state = NOTHING_SCHEDULED; /* Timers are one-off */
1298 scb->async_handler (scb, scb->async_context);
1299 /* re-schedule */
1300 reschedule (scb);
1301 }
1302
1303 /* Put the SERIAL device into/out-of ASYNC mode. */
1304
1305 void
1306 ser_unix_async (struct serial *scb,
1307 int async_p)
1308 {
1309 if (async_p)
1310 {
1311 /* Force a re-schedule. */
1312 scb->async_state = NOTHING_SCHEDULED;
1313 if (serial_debug_p (scb))
1314 fprintf_unfiltered (gdb_stdlog, "[fd%d->asynchronous]\n",
1315 scb->fd);
1316 reschedule (scb);
1317 }
1318 else
1319 {
1320 if (serial_debug_p (scb))
1321 fprintf_unfiltered (gdb_stdlog, "[fd%d->synchronous]\n",
1322 scb->fd);
1323 /* De-schedule whatever tasks are currently scheduled. */
1324 switch (scb->async_state)
1325 {
1326 case FD_SCHEDULED:
1327 delete_file_handler (scb->fd);
1328 break;
1329 case NOTHING_SCHEDULED:
1330 break;
1331 default: /* TIMER SCHEDULED */
1332 delete_timer (scb->async_state);
1333 break;
1334 }
1335 }
1336 }
1337
1338 void
1339 _initialize_ser_hardwire (void)
1340 {
1341 struct serial_ops *ops = XMALLOC (struct serial_ops);
1342 memset (ops, 0, sizeof (struct serial_ops));
1343 ops->name = "hardwire";
1344 ops->next = 0;
1345 ops->open = hardwire_open;
1346 ops->close = hardwire_close;
1347 /* FIXME: Don't replace this with the equivalent ser_unix*() until
1348 the old TERMIOS/SGTTY/... timer code has been flushed. cagney
1349 1999-09-16. */
1350 ops->readchar = hardwire_readchar;
1351 ops->write = ser_unix_write;
1352 ops->flush_output = hardwire_flush_output;
1353 ops->flush_input = hardwire_flush_input;
1354 ops->send_break = hardwire_send_break;
1355 ops->go_raw = hardwire_raw;
1356 ops->get_tty_state = hardwire_get_tty_state;
1357 ops->set_tty_state = hardwire_set_tty_state;
1358 ops->print_tty_state = hardwire_print_tty_state;
1359 ops->noflush_set_tty_state = hardwire_noflush_set_tty_state;
1360 ops->setbaudrate = hardwire_setbaudrate;
1361 ops->setstopbits = hardwire_setstopbits;
1362 ops->drain_output = hardwire_drain_output;
1363 ops->async = ser_unix_async;
1364 serial_add_interface (ops);
1365 }
This page took 0.05531 seconds and 5 git commands to generate.