*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*
23 Contributed by Steve Chamberlain
24 sac@cygnus.com
25 */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "dwarf2-frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "gdbcore.h"
36 #include "value.h"
37 #include "dis-asm.h"
38 #include "inferior.h"
39 #include "gdb_string.h"
40 #include "gdb_assert.h"
41 #include "arch-utils.h"
42 #include "floatformat.h"
43 #include "regcache.h"
44 #include "doublest.h"
45 #include "osabi.h"
46
47 #include "sh-tdep.h"
48
49 #include "elf-bfd.h"
50 #include "solib-svr4.h"
51
52 /* sh flags */
53 #include "elf/sh.h"
54 /* registers numbers shared with the simulator */
55 #include "gdb/sim-sh.h"
56
57 static void (*sh_show_regs) (void);
58
59 #define SH_NUM_REGS 59
60
61 struct sh_frame_cache
62 {
63 /* Base address. */
64 CORE_ADDR base;
65 LONGEST sp_offset;
66 CORE_ADDR pc;
67
68 /* Flag showing that a frame has been created in the prologue code. */
69 int uses_fp;
70
71 /* Saved registers. */
72 CORE_ADDR saved_regs[SH_NUM_REGS];
73 CORE_ADDR saved_sp;
74 };
75
76 static const char *
77 sh_sh_register_name (int reg_nr)
78 {
79 static char *register_names[] = {
80 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
81 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
82 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
83 "", "",
84 "", "", "", "", "", "", "", "",
85 "", "", "", "", "", "", "", "",
86 "", "",
87 "", "", "", "", "", "", "", "",
88 "", "", "", "", "", "", "", "",
89 };
90 if (reg_nr < 0)
91 return NULL;
92 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
93 return NULL;
94 return register_names[reg_nr];
95 }
96
97 static const char *
98 sh_sh3_register_name (int reg_nr)
99 {
100 static char *register_names[] = {
101 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
102 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
103 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
104 "", "",
105 "", "", "", "", "", "", "", "",
106 "", "", "", "", "", "", "", "",
107 "ssr", "spc",
108 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
109 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
110 };
111 if (reg_nr < 0)
112 return NULL;
113 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
114 return NULL;
115 return register_names[reg_nr];
116 }
117
118 static const char *
119 sh_sh3e_register_name (int reg_nr)
120 {
121 static char *register_names[] = {
122 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
123 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
124 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
125 "fpul", "fpscr",
126 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
127 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
128 "ssr", "spc",
129 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
130 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
131 };
132 if (reg_nr < 0)
133 return NULL;
134 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
135 return NULL;
136 return register_names[reg_nr];
137 }
138
139 static const char *
140 sh_sh2e_register_name (int reg_nr)
141 {
142 static char *register_names[] = {
143 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
144 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
145 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
146 "fpul", "fpscr",
147 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
148 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
149 "", "",
150 "", "", "", "", "", "", "", "",
151 "", "", "", "", "", "", "", "",
152 };
153 if (reg_nr < 0)
154 return NULL;
155 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
156 return NULL;
157 return register_names[reg_nr];
158 }
159
160 static const char *
161 sh_sh_dsp_register_name (int reg_nr)
162 {
163 static char *register_names[] = {
164 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
165 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
166 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
167 "", "dsr",
168 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
169 "y0", "y1", "", "", "", "", "", "mod",
170 "", "",
171 "rs", "re", "", "", "", "", "", "",
172 "", "", "", "", "", "", "", "",
173 };
174 if (reg_nr < 0)
175 return NULL;
176 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
177 return NULL;
178 return register_names[reg_nr];
179 }
180
181 static const char *
182 sh_sh3_dsp_register_name (int reg_nr)
183 {
184 static char *register_names[] = {
185 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
186 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
187 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
188 "", "dsr",
189 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
190 "y0", "y1", "", "", "", "", "", "mod",
191 "ssr", "spc",
192 "rs", "re", "", "", "", "", "", "",
193 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
194 "", "", "", "", "", "", "", "",
195 };
196 if (reg_nr < 0)
197 return NULL;
198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return NULL;
200 return register_names[reg_nr];
201 }
202
203 static const char *
204 sh_sh4_register_name (int reg_nr)
205 {
206 static char *register_names[] = {
207 /* general registers 0-15 */
208 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
209 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
210 /* 16 - 22 */
211 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
212 /* 23, 24 */
213 "fpul", "fpscr",
214 /* floating point registers 25 - 40 */
215 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
216 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
217 /* 41, 42 */
218 "ssr", "spc",
219 /* bank 0 43 - 50 */
220 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
221 /* bank 1 51 - 58 */
222 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
223 /* double precision (pseudo) 59 - 66 */
224 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
225 /* vectors (pseudo) 67 - 70 */
226 "fv0", "fv4", "fv8", "fv12",
227 /* FIXME: missing XF 71 - 86 */
228 /* FIXME: missing XD 87 - 94 */
229 };
230 if (reg_nr < 0)
231 return NULL;
232 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
233 return NULL;
234 return register_names[reg_nr];
235 }
236
237 static const char *
238 sh_sh4_nofpu_register_name (int reg_nr)
239 {
240 static char *register_names[] = {
241 /* general registers 0-15 */
242 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
244 /* 16 - 22 */
245 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
246 /* 23, 24 */
247 "", "",
248 /* floating point registers 25 - 40 -- not for nofpu target */
249 "", "", "", "", "", "", "", "",
250 "", "", "", "", "", "", "", "",
251 /* 41, 42 */
252 "ssr", "spc",
253 /* bank 0 43 - 50 */
254 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
255 /* bank 1 51 - 58 */
256 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
257 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
258 "", "", "", "", "", "", "", "",
259 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
260 "", "", "", "",
261 };
262 if (reg_nr < 0)
263 return NULL;
264 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
265 return NULL;
266 return register_names[reg_nr];
267 }
268
269 static const char *
270 sh_sh4al_dsp_register_name (int reg_nr)
271 {
272 static char *register_names[] = {
273 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
274 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
275 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
276 "", "dsr",
277 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
278 "y0", "y1", "", "", "", "", "", "mod",
279 "ssr", "spc",
280 "rs", "re", "", "", "", "", "", "",
281 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
282 "", "", "", "", "", "", "", "",
283 };
284 if (reg_nr < 0)
285 return NULL;
286 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
287 return NULL;
288 return register_names[reg_nr];
289 }
290
291 static const unsigned char *
292 sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
293 {
294 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
295 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
296
297 *lenptr = sizeof (breakpoint);
298 return breakpoint;
299 }
300
301 /* Prologue looks like
302 mov.l r14,@-r15
303 sts.l pr,@-r15
304 mov.l <regs>,@-r15
305 sub <room_for_loca_vars>,r15
306 mov r15,r14
307
308 Actually it can be more complicated than this but that's it, basically.
309 */
310
311 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
312 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
313
314 /* JSR @Rm 0100mmmm00001011 */
315 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
316
317 /* STS.L PR,@-r15 0100111100100010
318 r15-4-->r15, PR-->(r15) */
319 #define IS_STS(x) ((x) == 0x4f22)
320
321 /* MOV.L Rm,@-r15 00101111mmmm0110
322 r15-4-->r15, Rm-->(R15) */
323 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
324
325 /* MOV r15,r14 0110111011110011
326 r15-->r14 */
327 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
328
329 /* ADD #imm,r15 01111111iiiiiiii
330 r15+imm-->r15 */
331 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
332
333 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
334 #define IS_SHLL_R3(x) ((x) == 0x4300)
335
336 /* ADD r3,r15 0011111100111100
337 r15+r3-->r15 */
338 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
339
340 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
341 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
342 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
343 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
344 make this entirely clear. */
345 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
346 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
347
348 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
349 #define IS_MOV_ARG_TO_REG(x) \
350 (((x) & 0xf00f) == 0x6003 && \
351 ((x) & 0x00f0) >= 0x0040 && \
352 ((x) & 0x00f0) <= 0x0070)
353 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
354 #define IS_MOV_ARG_TO_IND_R14(x) \
355 (((x) & 0xff0f) == 0x2e02 && \
356 ((x) & 0x00f0) >= 0x0040 && \
357 ((x) & 0x00f0) <= 0x0070)
358 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
359 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
360 (((x) & 0xff00) == 0x1e00 && \
361 ((x) & 0x00f0) >= 0x0040 && \
362 ((x) & 0x00f0) <= 0x0070)
363
364 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
365 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
366 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
367 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
368 /* SUB Rn,R15 00111111nnnn1000 */
369 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
370
371 #define FPSCR_SZ (1 << 20)
372
373 /* The following instructions are used for epilogue testing. */
374 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
375 #define IS_RTS(x) ((x) == 0x000b)
376 #define IS_LDS(x) ((x) == 0x4f26)
377 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
378 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
379 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
380
381 /* Disassemble an instruction. */
382 static int
383 gdb_print_insn_sh (bfd_vma memaddr, disassemble_info * info)
384 {
385 info->endian = TARGET_BYTE_ORDER;
386 return print_insn_sh (memaddr, info);
387 }
388
389 static CORE_ADDR
390 sh_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
391 struct sh_frame_cache *cache)
392 {
393 ULONGEST inst;
394 CORE_ADDR opc;
395 int offset;
396 int sav_offset = 0;
397 int r3_val = 0;
398 int reg, sav_reg = -1;
399
400 if (pc >= current_pc)
401 return current_pc;
402
403 cache->uses_fp = 0;
404 for (opc = pc + (2 * 28); pc < opc; pc += 2)
405 {
406 inst = read_memory_unsigned_integer (pc, 2);
407 /* See where the registers will be saved to */
408 if (IS_PUSH (inst))
409 {
410 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
411 cache->sp_offset += 4;
412 }
413 else if (IS_STS (inst))
414 {
415 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
416 cache->sp_offset += 4;
417 }
418 else if (IS_MOV_R3 (inst))
419 {
420 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
421 }
422 else if (IS_SHLL_R3 (inst))
423 {
424 r3_val <<= 1;
425 }
426 else if (IS_ADD_R3SP (inst))
427 {
428 cache->sp_offset += -r3_val;
429 }
430 else if (IS_ADD_IMM_SP (inst))
431 {
432 offset = ((inst & 0xff) ^ 0x80) - 0x80;
433 cache->sp_offset -= offset;
434 }
435 else if (IS_MOVW_PCREL_TO_REG (inst))
436 {
437 if (sav_reg < 0)
438 {
439 reg = GET_TARGET_REG (inst);
440 if (reg < 14)
441 {
442 sav_reg = reg;
443 offset = (inst & 0xff) << 1;
444 sav_offset =
445 read_memory_integer ((pc + 4) + offset, 2);
446 }
447 }
448 }
449 else if (IS_MOVL_PCREL_TO_REG (inst))
450 {
451 if (sav_reg < 0)
452 {
453 reg = GET_TARGET_REG (inst);
454 if (reg < 14)
455 {
456 sav_reg = reg;
457 offset = (inst & 0xff) << 2;
458 sav_offset =
459 read_memory_integer (((pc & 0xfffffffc) + 4) + offset, 4);
460 }
461 }
462 }
463 else if (IS_SUB_REG_FROM_SP (inst))
464 {
465 reg = GET_SOURCE_REG (inst);
466 if (sav_reg > 0 && reg == sav_reg)
467 {
468 sav_reg = -1;
469 }
470 cache->sp_offset += sav_offset;
471 }
472 else if (IS_FPUSH (inst))
473 {
474 if (read_register (FPSCR_REGNUM) & FPSCR_SZ)
475 {
476 cache->sp_offset += 8;
477 }
478 else
479 {
480 cache->sp_offset += 4;
481 }
482 }
483 else if (IS_MOV_SP_FP (inst))
484 {
485 cache->uses_fp = 1;
486 /* At this point, only allow argument register moves to other
487 registers or argument register moves to @(X,fp) which are
488 moving the register arguments onto the stack area allocated
489 by a former add somenumber to SP call. Don't allow moving
490 to an fp indirect address above fp + cache->sp_offset. */
491 pc += 2;
492 for (opc = pc + 12; pc < opc; pc += 2)
493 {
494 inst = read_memory_integer (pc, 2);
495 if (IS_MOV_ARG_TO_IND_R14 (inst))
496 {
497 reg = GET_SOURCE_REG (inst);
498 if (cache->sp_offset > 0)
499 cache->saved_regs[reg] = cache->sp_offset;
500 }
501 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
502 {
503 reg = GET_SOURCE_REG (inst);
504 offset = (inst & 0xf) * 4;
505 if (cache->sp_offset > offset)
506 cache->saved_regs[reg] = cache->sp_offset - offset;
507 }
508 else if (IS_MOV_ARG_TO_REG (inst))
509 continue;
510 else
511 break;
512 }
513 break;
514 }
515 else if (IS_JSR (inst))
516 {
517 /* We have found a jsr that has been scheduled into the prologue.
518 If we continue the scan and return a pc someplace after this,
519 then setting a breakpoint on this function will cause it to
520 appear to be called after the function it is calling via the
521 jsr, which will be very confusing. Most likely the next
522 instruction is going to be IS_MOV_SP_FP in the delay slot. If
523 so, note that before returning the current pc. */
524 inst = read_memory_integer (pc + 2, 2);
525 if (IS_MOV_SP_FP (inst))
526 cache->uses_fp = 1;
527 break;
528 }
529 #if 0 /* This used to just stop when it found an instruction that
530 was not considered part of the prologue. Now, we just
531 keep going looking for likely instructions. */
532 else
533 break;
534 #endif
535 }
536
537 return pc;
538 }
539
540 /* Skip any prologue before the guts of a function */
541
542 /* Skip the prologue using the debug information. If this fails we'll
543 fall back on the 'guess' method below. */
544 static CORE_ADDR
545 after_prologue (CORE_ADDR pc)
546 {
547 struct symtab_and_line sal;
548 CORE_ADDR func_addr, func_end;
549
550 /* If we can not find the symbol in the partial symbol table, then
551 there is no hope we can determine the function's start address
552 with this code. */
553 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
554 return 0;
555
556 /* Get the line associated with FUNC_ADDR. */
557 sal = find_pc_line (func_addr, 0);
558
559 /* There are only two cases to consider. First, the end of the source line
560 is within the function bounds. In that case we return the end of the
561 source line. Second is the end of the source line extends beyond the
562 bounds of the current function. We need to use the slow code to
563 examine instructions in that case. */
564 if (sal.end < func_end)
565 return sal.end;
566 else
567 return 0;
568 }
569
570 static CORE_ADDR
571 sh_skip_prologue (CORE_ADDR start_pc)
572 {
573 CORE_ADDR pc;
574 struct sh_frame_cache cache;
575
576 /* See if we can determine the end of the prologue via the symbol table.
577 If so, then return either PC, or the PC after the prologue, whichever
578 is greater. */
579 pc = after_prologue (start_pc);
580
581 /* If after_prologue returned a useful address, then use it. Else
582 fall back on the instruction skipping code. */
583 if (pc)
584 return max (pc, start_pc);
585
586 cache.sp_offset = -4;
587 pc = sh_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
588 if (!cache.uses_fp)
589 return start_pc;
590
591 return pc;
592 }
593
594 /* The ABI says:
595
596 Aggregate types not bigger than 8 bytes that have the same size and
597 alignment as one of the integer scalar types are returned in the
598 same registers as the integer type they match.
599
600 For example, a 2-byte aligned structure with size 2 bytes has the
601 same size and alignment as a short int, and will be returned in R0.
602 A 4-byte aligned structure with size 8 bytes has the same size and
603 alignment as a long long int, and will be returned in R0 and R1.
604
605 When an aggregate type is returned in R0 and R1, R0 contains the
606 first four bytes of the aggregate, and R1 contains the
607 remainder. If the size of the aggregate type is not a multiple of 4
608 bytes, the aggregate is tail-padded up to a multiple of 4
609 bytes. The value of the padding is undefined. For little-endian
610 targets the padding will appear at the most significant end of the
611 last element, for big-endian targets the padding appears at the
612 least significant end of the last element.
613
614 All other aggregate types are returned by address. The caller
615 function passes the address of an area large enough to hold the
616 aggregate value in R2. The called function stores the result in
617 this location.
618
619 To reiterate, structs smaller than 8 bytes could also be returned
620 in memory, if they don't pass the "same size and alignment as an
621 integer type" rule.
622
623 For example, in
624
625 struct s { char c[3]; } wibble;
626 struct s foo(void) { return wibble; }
627
628 the return value from foo() will be in memory, not
629 in R0, because there is no 3-byte integer type.
630
631 Similarly, in
632
633 struct s { char c[2]; } wibble;
634 struct s foo(void) { return wibble; }
635
636 because a struct containing two chars has alignment 1, that matches
637 type char, but size 2, that matches type short. There's no integer
638 type that has alignment 1 and size 2, so the struct is returned in
639 memory.
640
641 */
642
643 static int
644 sh_use_struct_convention (int gcc_p, struct type *type)
645 {
646 int len = TYPE_LENGTH (type);
647 int nelem = TYPE_NFIELDS (type);
648
649 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
650 fit in two registers anyway) use struct convention. */
651 if (len != 1 && len != 2 && len != 4 && len != 8)
652 return 1;
653
654 /* Scalar types and aggregate types with exactly one field are aligned
655 by definition. They are returned in registers. */
656 if (nelem <= 1)
657 return 0;
658
659 /* If the first field in the aggregate has the same length as the entire
660 aggregate type, the type is returned in registers. */
661 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
662 return 0;
663
664 /* If the size of the aggregate is 8 bytes and the first field is
665 of size 4 bytes its alignment is equal to long long's alignment,
666 so it's returned in registers. */
667 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
668 return 0;
669
670 /* Otherwise use struct convention. */
671 return 1;
672 }
673
674 /* Extract from an array REGBUF containing the (raw) register state
675 the address in which a function should return its structure value,
676 as a CORE_ADDR (or an expression that can be used as one). */
677 static CORE_ADDR
678 sh_extract_struct_value_address (struct regcache *regcache)
679 {
680 ULONGEST addr;
681
682 regcache_cooked_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &addr);
683 return addr;
684 }
685
686 static CORE_ADDR
687 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
688 {
689 return sp & ~3;
690 }
691
692 /* Function: push_dummy_call (formerly push_arguments)
693 Setup the function arguments for calling a function in the inferior.
694
695 On the Renesas SH architecture, there are four registers (R4 to R7)
696 which are dedicated for passing function arguments. Up to the first
697 four arguments (depending on size) may go into these registers.
698 The rest go on the stack.
699
700 MVS: Except on SH variants that have floating point registers.
701 In that case, float and double arguments are passed in the same
702 manner, but using FP registers instead of GP registers.
703
704 Arguments that are smaller than 4 bytes will still take up a whole
705 register or a whole 32-bit word on the stack, and will be
706 right-justified in the register or the stack word. This includes
707 chars, shorts, and small aggregate types.
708
709 Arguments that are larger than 4 bytes may be split between two or
710 more registers. If there are not enough registers free, an argument
711 may be passed partly in a register (or registers), and partly on the
712 stack. This includes doubles, long longs, and larger aggregates.
713 As far as I know, there is no upper limit to the size of aggregates
714 that will be passed in this way; in other words, the convention of
715 passing a pointer to a large aggregate instead of a copy is not used.
716
717 MVS: The above appears to be true for the SH variants that do not
718 have an FPU, however those that have an FPU appear to copy the
719 aggregate argument onto the stack (and not place it in registers)
720 if it is larger than 16 bytes (four GP registers).
721
722 An exceptional case exists for struct arguments (and possibly other
723 aggregates such as arrays) if the size is larger than 4 bytes but
724 not a multiple of 4 bytes. In this case the argument is never split
725 between the registers and the stack, but instead is copied in its
726 entirety onto the stack, AND also copied into as many registers as
727 there is room for. In other words, space in registers permitting,
728 two copies of the same argument are passed in. As far as I can tell,
729 only the one on the stack is used, although that may be a function
730 of the level of compiler optimization. I suspect this is a compiler
731 bug. Arguments of these odd sizes are left-justified within the
732 word (as opposed to arguments smaller than 4 bytes, which are
733 right-justified).
734
735 If the function is to return an aggregate type such as a struct, it
736 is either returned in the normal return value register R0 (if its
737 size is no greater than one byte), or else the caller must allocate
738 space into which the callee will copy the return value (if the size
739 is greater than one byte). In this case, a pointer to the return
740 value location is passed into the callee in register R2, which does
741 not displace any of the other arguments passed in via registers R4
742 to R7. */
743
744 /* Helper function to justify value in register according to endianess. */
745 static char *
746 sh_justify_value_in_reg (struct value *val, int len)
747 {
748 static char valbuf[4];
749
750 memset (valbuf, 0, sizeof (valbuf));
751 if (len < 4)
752 {
753 /* value gets right-justified in the register or stack word */
754 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
755 memcpy (valbuf + (4 - len), (char *) VALUE_CONTENTS (val), len);
756 else
757 memcpy (valbuf, (char *) VALUE_CONTENTS (val), len);
758 return valbuf;
759 }
760 return (char *) VALUE_CONTENTS (val);
761 }
762
763 /* Helper function to eval number of bytes to allocate on stack. */
764 static CORE_ADDR
765 sh_stack_allocsize (int nargs, struct value **args)
766 {
767 int stack_alloc = 0;
768 while (nargs-- > 0)
769 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[nargs])) + 3) & ~3);
770 return stack_alloc;
771 }
772
773 /* Helper functions for getting the float arguments right. Registers usage
774 depends on the ABI and the endianess. The comments should enlighten how
775 it's intended to work. */
776
777 /* This array stores which of the float arg registers are already in use. */
778 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
779
780 /* This function just resets the above array to "no reg used so far". */
781 static void
782 sh_init_flt_argreg (void)
783 {
784 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
785 }
786
787 /* This function returns the next register to use for float arg passing.
788 It returns either a valid value between FLOAT_ARG0_REGNUM and
789 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
790 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
791
792 Note that register number 0 in flt_argreg_array corresponds with the
793 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
794 29) the parity of the register number is preserved, which is important
795 for the double register passing test (see the "argreg & 1" test below). */
796 static int
797 sh_next_flt_argreg (int len)
798 {
799 int argreg;
800
801 /* First search for the next free register. */
802 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
803 ++argreg)
804 if (!flt_argreg_array[argreg])
805 break;
806
807 /* No register left? */
808 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
809 return FLOAT_ARGLAST_REGNUM + 1;
810
811 if (len == 8)
812 {
813 /* Doubles are always starting in a even register number. */
814 if (argreg & 1)
815 {
816 flt_argreg_array[argreg] = 1;
817
818 ++argreg;
819
820 /* No register left? */
821 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
822 return FLOAT_ARGLAST_REGNUM + 1;
823 }
824 /* Also mark the next register as used. */
825 flt_argreg_array[argreg + 1] = 1;
826 }
827 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
828 {
829 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
830 if (!flt_argreg_array[argreg + 1])
831 ++argreg;
832 }
833 flt_argreg_array[argreg] = 1;
834 return FLOAT_ARG0_REGNUM + argreg;
835 }
836
837 /* Helper function which figures out, if a type is treated like a float type.
838
839 The FPU ABIs have a special way how to treat types as float types.
840 Structures with exactly one member, which is of type float or double, are
841 treated exactly as the base types float or double:
842
843 struct sf {
844 float f;
845 };
846
847 struct sd {
848 double d;
849 };
850
851 are handled the same way as just
852
853 float f;
854
855 double d;
856
857 As a result, arguments of these struct types are pushed into floating point
858 registers exactly as floats or doubles, using the same decision algorithm.
859
860 The same is valid if these types are used as function return types. The
861 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
862 or even using struct convention as it is for other structs. */
863
864 static int
865 sh_treat_as_flt_p (struct type *type)
866 {
867 int len = TYPE_LENGTH (type);
868
869 /* Ordinary float types are obviously treated as float. */
870 if (TYPE_CODE (type) == TYPE_CODE_FLT)
871 return 1;
872 /* Otherwise non-struct types are not treated as float. */
873 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
874 return 0;
875 /* Otherwise structs with more than one memeber are not treated as float. */
876 if (TYPE_NFIELDS (type) != 1)
877 return 0;
878 /* Otherwise if the type of that member is float, the whole type is
879 treated as float. */
880 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
881 return 1;
882 /* Otherwise it's not treated as float. */
883 return 0;
884 }
885
886 static CORE_ADDR
887 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
888 struct value *function,
889 struct regcache *regcache,
890 CORE_ADDR bp_addr, int nargs,
891 struct value **args,
892 CORE_ADDR sp, int struct_return,
893 CORE_ADDR struct_addr)
894 {
895 int stack_offset = 0;
896 int argreg = ARG0_REGNUM;
897 int flt_argreg = 0;
898 int argnum;
899 struct type *type;
900 CORE_ADDR regval;
901 char *val;
902 int len, reg_size = 0;
903 int pass_on_stack = 0;
904 int treat_as_flt;
905
906 /* first force sp to a 4-byte alignment */
907 sp = sh_frame_align (gdbarch, sp);
908
909 if (struct_return)
910 regcache_cooked_write_unsigned (regcache,
911 STRUCT_RETURN_REGNUM, struct_addr);
912
913 /* make room on stack for args */
914 sp -= sh_stack_allocsize (nargs, args);
915
916 /* Initialize float argument mechanism. */
917 sh_init_flt_argreg ();
918
919 /* Now load as many as possible of the first arguments into
920 registers, and push the rest onto the stack. There are 16 bytes
921 in four registers available. Loop thru args from first to last. */
922 for (argnum = 0; argnum < nargs; argnum++)
923 {
924 type = VALUE_TYPE (args[argnum]);
925 len = TYPE_LENGTH (type);
926 val = sh_justify_value_in_reg (args[argnum], len);
927
928 /* Some decisions have to be made how various types are handled.
929 This also differs in different ABIs. */
930 pass_on_stack = 0;
931
932 /* Find out the next register to use for a floating point value. */
933 treat_as_flt = sh_treat_as_flt_p (type);
934 if (treat_as_flt)
935 flt_argreg = sh_next_flt_argreg (len);
936 /* In contrast to non-FPU CPUs, arguments are never split between
937 registers and stack. If an argument doesn't fit in the remaining
938 registers it's always pushed entirely on the stack. */
939 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
940 pass_on_stack = 1;
941
942 while (len > 0)
943 {
944 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
945 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
946 || pass_on_stack)))
947 {
948 /* The data goes entirely on the stack, 4-byte aligned. */
949 reg_size = (len + 3) & ~3;
950 write_memory (sp + stack_offset, val, reg_size);
951 stack_offset += reg_size;
952 }
953 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
954 {
955 /* Argument goes in a float argument register. */
956 reg_size = register_size (gdbarch, flt_argreg);
957 regval = extract_unsigned_integer (val, reg_size);
958 /* In little endian mode, float types taking two registers
959 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
960 be stored swapped in the argument registers. The below
961 code first writes the first 32 bits in the next but one
962 register, increments the val and len values accordingly
963 and then proceeds as normal by writing the second 32 bits
964 into the next register. */
965 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE
966 && TYPE_LENGTH (type) == 2 * reg_size)
967 {
968 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
969 regval);
970 val += reg_size;
971 len -= reg_size;
972 regval = extract_unsigned_integer (val, reg_size);
973 }
974 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
975 }
976 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
977 {
978 /* there's room in a register */
979 reg_size = register_size (gdbarch, argreg);
980 regval = extract_unsigned_integer (val, reg_size);
981 regcache_cooked_write_unsigned (regcache, argreg++, regval);
982 }
983 /* Store the value one register at a time or in one step on stack. */
984 len -= reg_size;
985 val += reg_size;
986 }
987 }
988
989 /* Store return address. */
990 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
991
992 /* Update stack pointer. */
993 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
994
995 return sp;
996 }
997
998 static CORE_ADDR
999 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1000 struct value *function,
1001 struct regcache *regcache,
1002 CORE_ADDR bp_addr,
1003 int nargs, struct value **args,
1004 CORE_ADDR sp, int struct_return,
1005 CORE_ADDR struct_addr)
1006 {
1007 int stack_offset = 0;
1008 int argreg = ARG0_REGNUM;
1009 int argnum;
1010 struct type *type;
1011 CORE_ADDR regval;
1012 char *val;
1013 int len, reg_size;
1014
1015 /* first force sp to a 4-byte alignment */
1016 sp = sh_frame_align (gdbarch, sp);
1017
1018 if (struct_return)
1019 regcache_cooked_write_unsigned (regcache,
1020 STRUCT_RETURN_REGNUM, struct_addr);
1021
1022 /* make room on stack for args */
1023 sp -= sh_stack_allocsize (nargs, args);
1024
1025 /* Now load as many as possible of the first arguments into
1026 registers, and push the rest onto the stack. There are 16 bytes
1027 in four registers available. Loop thru args from first to last. */
1028 for (argnum = 0; argnum < nargs; argnum++)
1029 {
1030 type = VALUE_TYPE (args[argnum]);
1031 len = TYPE_LENGTH (type);
1032 val = sh_justify_value_in_reg (args[argnum], len);
1033
1034 while (len > 0)
1035 {
1036 if (argreg > ARGLAST_REGNUM)
1037 {
1038 /* The remainder of the data goes entirely on the stack,
1039 4-byte aligned. */
1040 reg_size = (len + 3) & ~3;
1041 write_memory (sp + stack_offset, val, reg_size);
1042 stack_offset += reg_size;
1043 }
1044 else if (argreg <= ARGLAST_REGNUM)
1045 {
1046 /* there's room in a register */
1047 reg_size = register_size (gdbarch, argreg);
1048 regval = extract_unsigned_integer (val, reg_size);
1049 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1050 }
1051 /* Store the value reg_size bytes at a time. This means that things
1052 larger than reg_size bytes may go partly in registers and partly
1053 on the stack. */
1054 len -= reg_size;
1055 val += reg_size;
1056 }
1057 }
1058
1059 /* Store return address. */
1060 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1061
1062 /* Update stack pointer. */
1063 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1064
1065 return sp;
1066 }
1067
1068 /* Find a function's return value in the appropriate registers (in
1069 regbuf), and copy it into valbuf. Extract from an array REGBUF
1070 containing the (raw) register state a function return value of type
1071 TYPE, and copy that, in virtual format, into VALBUF. */
1072 static void
1073 sh_default_extract_return_value (struct type *type, struct regcache *regcache,
1074 void *valbuf)
1075 {
1076 int len = TYPE_LENGTH (type);
1077 int return_register = R0_REGNUM;
1078 int offset;
1079
1080 if (len <= 4)
1081 {
1082 ULONGEST c;
1083
1084 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1085 store_unsigned_integer (valbuf, len, c);
1086 }
1087 else if (len == 8)
1088 {
1089 int i, regnum = R0_REGNUM;
1090 for (i = 0; i < len; i += 4)
1091 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1092 }
1093 else
1094 error ("bad size for return value");
1095 }
1096
1097 static void
1098 sh3e_sh4_extract_return_value (struct type *type, struct regcache *regcache,
1099 void *valbuf)
1100 {
1101 if (sh_treat_as_flt_p (type))
1102 {
1103 int len = TYPE_LENGTH (type);
1104 int i, regnum = FP0_REGNUM;
1105 for (i = 0; i < len; i += 4)
1106 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1107 regcache_raw_read (regcache, regnum++, (char *) valbuf + len - 4 - i);
1108 else
1109 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1110 }
1111 else
1112 sh_default_extract_return_value (type, regcache, valbuf);
1113 }
1114
1115 /* Write into appropriate registers a function return value
1116 of type TYPE, given in virtual format.
1117 If the architecture is sh4 or sh3e, store a function's return value
1118 in the R0 general register or in the FP0 floating point register,
1119 depending on the type of the return value. In all the other cases
1120 the result is stored in r0, left-justified. */
1121 static void
1122 sh_default_store_return_value (struct type *type, struct regcache *regcache,
1123 const void *valbuf)
1124 {
1125 ULONGEST val;
1126 int len = TYPE_LENGTH (type);
1127
1128 if (len <= 4)
1129 {
1130 val = extract_unsigned_integer (valbuf, len);
1131 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1132 }
1133 else
1134 {
1135 int i, regnum = R0_REGNUM;
1136 for (i = 0; i < len; i += 4)
1137 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1138 }
1139 }
1140
1141 static void
1142 sh3e_sh4_store_return_value (struct type *type, struct regcache *regcache,
1143 const void *valbuf)
1144 {
1145 if (sh_treat_as_flt_p (type))
1146 {
1147 int len = TYPE_LENGTH (type);
1148 int i, regnum = FP0_REGNUM;
1149 for (i = 0; i < len; i += 4)
1150 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1151 regcache_raw_write (regcache, regnum++,
1152 (char *) valbuf + len - 4 - i);
1153 else
1154 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1155 }
1156 else
1157 sh_default_store_return_value (type, regcache, valbuf);
1158 }
1159
1160 /* Print the registers in a form similar to the E7000 */
1161
1162 static void
1163 sh_generic_show_regs (void)
1164 {
1165 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1166 paddr (read_register (PC_REGNUM)),
1167 (long) read_register (SR_REGNUM),
1168 (long) read_register (PR_REGNUM),
1169 (long) read_register (MACH_REGNUM),
1170 (long) read_register (MACL_REGNUM));
1171
1172 printf_filtered ("GBR=%08lx VBR=%08lx",
1173 (long) read_register (GBR_REGNUM),
1174 (long) read_register (VBR_REGNUM));
1175
1176 printf_filtered
1177 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1178 (long) read_register (0), (long) read_register (1),
1179 (long) read_register (2), (long) read_register (3),
1180 (long) read_register (4), (long) read_register (5),
1181 (long) read_register (6), (long) read_register (7));
1182 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1183 (long) read_register (8), (long) read_register (9),
1184 (long) read_register (10), (long) read_register (11),
1185 (long) read_register (12), (long) read_register (13),
1186 (long) read_register (14), (long) read_register (15));
1187 }
1188
1189 static void
1190 sh3_show_regs (void)
1191 {
1192 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1193 paddr (read_register (PC_REGNUM)),
1194 (long) read_register (SR_REGNUM),
1195 (long) read_register (PR_REGNUM),
1196 (long) read_register (MACH_REGNUM),
1197 (long) read_register (MACL_REGNUM));
1198
1199 printf_filtered ("GBR=%08lx VBR=%08lx",
1200 (long) read_register (GBR_REGNUM),
1201 (long) read_register (VBR_REGNUM));
1202 printf_filtered (" SSR=%08lx SPC=%08lx",
1203 (long) read_register (SSR_REGNUM),
1204 (long) read_register (SPC_REGNUM));
1205
1206 printf_filtered
1207 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1208 (long) read_register (0), (long) read_register (1),
1209 (long) read_register (2), (long) read_register (3),
1210 (long) read_register (4), (long) read_register (5),
1211 (long) read_register (6), (long) read_register (7));
1212 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1213 (long) read_register (8), (long) read_register (9),
1214 (long) read_register (10), (long) read_register (11),
1215 (long) read_register (12), (long) read_register (13),
1216 (long) read_register (14), (long) read_register (15));
1217 }
1218
1219
1220 static void
1221 sh2e_show_regs (void)
1222 {
1223 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1224 paddr (read_register (PC_REGNUM)),
1225 (long) read_register (SR_REGNUM),
1226 (long) read_register (PR_REGNUM),
1227 (long) read_register (MACH_REGNUM),
1228 (long) read_register (MACL_REGNUM));
1229
1230 printf_filtered ("GBR=%08lx VBR=%08lx",
1231 (long) read_register (GBR_REGNUM),
1232 (long) read_register (VBR_REGNUM));
1233 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
1234 (long) read_register (FPUL_REGNUM),
1235 (long) read_register (FPSCR_REGNUM));
1236
1237 printf_filtered
1238 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1239 (long) read_register (0), (long) read_register (1),
1240 (long) read_register (2), (long) read_register (3),
1241 (long) read_register (4), (long) read_register (5),
1242 (long) read_register (6), (long) read_register (7));
1243 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1244 (long) read_register (8), (long) read_register (9),
1245 (long) read_register (10), (long) read_register (11),
1246 (long) read_register (12), (long) read_register (13),
1247 (long) read_register (14), (long) read_register (15));
1248
1249 printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 0), (long) read_register (FP0_REGNUM + 1), (long) read_register (FP0_REGNUM + 2), (long) read_register (FP0_REGNUM + 3), (long) read_register (FP0_REGNUM + 4), (long) read_register (FP0_REGNUM + 5), (long) read_register (FP0_REGNUM + 6), (long) read_register (FP0_REGNUM + 7));
1250 printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 8), (long) read_register (FP0_REGNUM + 9), (long) read_register (FP0_REGNUM + 10), (long) read_register (FP0_REGNUM + 11), (long) read_register (FP0_REGNUM + 12), (long) read_register (FP0_REGNUM + 13), (long) read_register (FP0_REGNUM + 14), (long) read_register (FP0_REGNUM + 15));
1251 }
1252
1253 static void
1254 sh3e_show_regs (void)
1255 {
1256 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1257 paddr (read_register (PC_REGNUM)),
1258 (long) read_register (SR_REGNUM),
1259 (long) read_register (PR_REGNUM),
1260 (long) read_register (MACH_REGNUM),
1261 (long) read_register (MACL_REGNUM));
1262
1263 printf_filtered ("GBR=%08lx VBR=%08lx",
1264 (long) read_register (GBR_REGNUM),
1265 (long) read_register (VBR_REGNUM));
1266 printf_filtered (" SSR=%08lx SPC=%08lx",
1267 (long) read_register (SSR_REGNUM),
1268 (long) read_register (SPC_REGNUM));
1269 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
1270 (long) read_register (FPUL_REGNUM),
1271 (long) read_register (FPSCR_REGNUM));
1272
1273 printf_filtered
1274 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1275 (long) read_register (0), (long) read_register (1),
1276 (long) read_register (2), (long) read_register (3),
1277 (long) read_register (4), (long) read_register (5),
1278 (long) read_register (6), (long) read_register (7));
1279 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1280 (long) read_register (8), (long) read_register (9),
1281 (long) read_register (10), (long) read_register (11),
1282 (long) read_register (12), (long) read_register (13),
1283 (long) read_register (14), (long) read_register (15));
1284
1285 printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 0), (long) read_register (FP0_REGNUM + 1), (long) read_register (FP0_REGNUM + 2), (long) read_register (FP0_REGNUM + 3), (long) read_register (FP0_REGNUM + 4), (long) read_register (FP0_REGNUM + 5), (long) read_register (FP0_REGNUM + 6), (long) read_register (FP0_REGNUM + 7));
1286 printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 8), (long) read_register (FP0_REGNUM + 9), (long) read_register (FP0_REGNUM + 10), (long) read_register (FP0_REGNUM + 11), (long) read_register (FP0_REGNUM + 12), (long) read_register (FP0_REGNUM + 13), (long) read_register (FP0_REGNUM + 14), (long) read_register (FP0_REGNUM + 15));
1287 }
1288
1289 static void
1290 sh3_dsp_show_regs (void)
1291 {
1292 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1293 paddr (read_register (PC_REGNUM)),
1294 (long) read_register (SR_REGNUM),
1295 (long) read_register (PR_REGNUM),
1296 (long) read_register (MACH_REGNUM),
1297 (long) read_register (MACL_REGNUM));
1298
1299 printf_filtered ("GBR=%08lx VBR=%08lx",
1300 (long) read_register (GBR_REGNUM),
1301 (long) read_register (VBR_REGNUM));
1302
1303 printf_filtered (" SSR=%08lx SPC=%08lx",
1304 (long) read_register (SSR_REGNUM),
1305 (long) read_register (SPC_REGNUM));
1306
1307 printf_filtered (" DSR=%08lx", (long) read_register (DSR_REGNUM));
1308
1309 printf_filtered
1310 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1311 (long) read_register (0), (long) read_register (1),
1312 (long) read_register (2), (long) read_register (3),
1313 (long) read_register (4), (long) read_register (5),
1314 (long) read_register (6), (long) read_register (7));
1315 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1316 (long) read_register (8), (long) read_register (9),
1317 (long) read_register (10), (long) read_register (11),
1318 (long) read_register (12), (long) read_register (13),
1319 (long) read_register (14), (long) read_register (15));
1320
1321 printf_filtered
1322 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1323 (long) read_register (A0G_REGNUM) & 0xff,
1324 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1325 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1326 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
1327 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1328 (long) read_register (A1G_REGNUM) & 0xff,
1329 (long) read_register (A1_REGNUM),
1330 (long) read_register (M1_REGNUM),
1331 (long) read_register (X1_REGNUM),
1332 (long) read_register (Y1_REGNUM),
1333 (long) read_register (RE_REGNUM));
1334 }
1335
1336 static void
1337 sh4_show_regs (void)
1338 {
1339 int pr = read_register (FPSCR_REGNUM) & 0x80000;
1340 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1341 paddr (read_register (PC_REGNUM)),
1342 (long) read_register (SR_REGNUM),
1343 (long) read_register (PR_REGNUM),
1344 (long) read_register (MACH_REGNUM),
1345 (long) read_register (MACL_REGNUM));
1346
1347 printf_filtered ("GBR=%08lx VBR=%08lx",
1348 (long) read_register (GBR_REGNUM),
1349 (long) read_register (VBR_REGNUM));
1350 printf_filtered (" SSR=%08lx SPC=%08lx",
1351 (long) read_register (SSR_REGNUM),
1352 (long) read_register (SPC_REGNUM));
1353 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
1354 (long) read_register (FPUL_REGNUM),
1355 (long) read_register (FPSCR_REGNUM));
1356
1357 printf_filtered
1358 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1359 (long) read_register (0), (long) read_register (1),
1360 (long) read_register (2), (long) read_register (3),
1361 (long) read_register (4), (long) read_register (5),
1362 (long) read_register (6), (long) read_register (7));
1363 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1364 (long) read_register (8), (long) read_register (9),
1365 (long) read_register (10), (long) read_register (11),
1366 (long) read_register (12), (long) read_register (13),
1367 (long) read_register (14), (long) read_register (15));
1368
1369 printf_filtered ((pr
1370 ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1371 :
1372 "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1373 (long) read_register (FP0_REGNUM + 0),
1374 (long) read_register (FP0_REGNUM + 1),
1375 (long) read_register (FP0_REGNUM + 2),
1376 (long) read_register (FP0_REGNUM + 3),
1377 (long) read_register (FP0_REGNUM + 4),
1378 (long) read_register (FP0_REGNUM + 5),
1379 (long) read_register (FP0_REGNUM + 6),
1380 (long) read_register (FP0_REGNUM + 7));
1381 printf_filtered ((pr ?
1382 "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n" :
1383 "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1384 (long) read_register (FP0_REGNUM + 8),
1385 (long) read_register (FP0_REGNUM + 9),
1386 (long) read_register (FP0_REGNUM + 10),
1387 (long) read_register (FP0_REGNUM + 11),
1388 (long) read_register (FP0_REGNUM + 12),
1389 (long) read_register (FP0_REGNUM + 13),
1390 (long) read_register (FP0_REGNUM + 14),
1391 (long) read_register (FP0_REGNUM + 15));
1392 }
1393
1394 static void
1395 sh4_nofpu_show_regs (void)
1396 {
1397 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1398 paddr (read_register (PC_REGNUM)),
1399 (long) read_register (SR_REGNUM),
1400 (long) read_register (PR_REGNUM),
1401 (long) read_register (MACH_REGNUM),
1402 (long) read_register (MACL_REGNUM));
1403
1404 printf_filtered ("GBR=%08lx VBR=%08lx",
1405 (long) read_register (GBR_REGNUM),
1406 (long) read_register (VBR_REGNUM));
1407 printf_filtered (" SSR=%08lx SPC=%08lx",
1408 (long) read_register (SSR_REGNUM),
1409 (long) read_register (SPC_REGNUM));
1410
1411 printf_filtered
1412 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1413 (long) read_register (0), (long) read_register (1),
1414 (long) read_register (2), (long) read_register (3),
1415 (long) read_register (4), (long) read_register (5),
1416 (long) read_register (6), (long) read_register (7));
1417 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1418 (long) read_register (8), (long) read_register (9),
1419 (long) read_register (10), (long) read_register (11),
1420 (long) read_register (12), (long) read_register (13),
1421 (long) read_register (14), (long) read_register (15));
1422 }
1423
1424 static void
1425 sh_dsp_show_regs (void)
1426 {
1427 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1428 paddr (read_register (PC_REGNUM)),
1429 (long) read_register (SR_REGNUM),
1430 (long) read_register (PR_REGNUM),
1431 (long) read_register (MACH_REGNUM),
1432 (long) read_register (MACL_REGNUM));
1433
1434 printf_filtered ("GBR=%08lx VBR=%08lx",
1435 (long) read_register (GBR_REGNUM),
1436 (long) read_register (VBR_REGNUM));
1437
1438 printf_filtered (" DSR=%08lx", (long) read_register (DSR_REGNUM));
1439
1440 printf_filtered
1441 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1442 (long) read_register (0), (long) read_register (1),
1443 (long) read_register (2), (long) read_register (3),
1444 (long) read_register (4), (long) read_register (5),
1445 (long) read_register (6), (long) read_register (7));
1446 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1447 (long) read_register (8), (long) read_register (9),
1448 (long) read_register (10), (long) read_register (11),
1449 (long) read_register (12), (long) read_register (13),
1450 (long) read_register (14), (long) read_register (15));
1451
1452 printf_filtered
1453 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1454 (long) read_register (A0G_REGNUM) & 0xff,
1455 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1456 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1457 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
1458 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1459 (long) read_register (A1G_REGNUM) & 0xff,
1460 (long) read_register (A1_REGNUM),
1461 (long) read_register (M1_REGNUM),
1462 (long) read_register (X1_REGNUM),
1463 (long) read_register (Y1_REGNUM),
1464 (long) read_register (RE_REGNUM));
1465 }
1466
1467 static void
1468 sh_show_regs_command (char *args, int from_tty)
1469 {
1470 if (sh_show_regs)
1471 (*sh_show_regs) ();
1472 }
1473
1474 /* Return the GDB type object for the "standard" data type
1475 of data in register N. */
1476 static struct type *
1477 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1478 {
1479 if ((reg_nr >= FP0_REGNUM
1480 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1481 return builtin_type_float;
1482 else
1483 return builtin_type_int;
1484 }
1485
1486 static struct type *
1487 sh_sh4_build_float_register_type (int high)
1488 {
1489 struct type *temp;
1490
1491 temp = create_range_type (NULL, builtin_type_int, 0, high);
1492 return create_array_type (NULL, builtin_type_float, temp);
1493 }
1494
1495 static struct type *
1496 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1497 {
1498 if ((reg_nr >= FP0_REGNUM
1499 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1500 return builtin_type_float;
1501 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1502 return builtin_type_double;
1503 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1504 return sh_sh4_build_float_register_type (3);
1505 else
1506 return builtin_type_int;
1507 }
1508
1509 static struct type *
1510 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1511 {
1512 return builtin_type_int;
1513 }
1514
1515 /* On the sh4, the DRi pseudo registers are problematic if the target
1516 is little endian. When the user writes one of those registers, for
1517 instance with 'ser var $dr0=1', we want the double to be stored
1518 like this:
1519 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1520 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1521
1522 This corresponds to little endian byte order & big endian word
1523 order. However if we let gdb write the register w/o conversion, it
1524 will write fr0 and fr1 this way:
1525 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1526 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1527 because it will consider fr0 and fr1 as a single LE stretch of memory.
1528
1529 To achieve what we want we must force gdb to store things in
1530 floatformat_ieee_double_littlebyte_bigword (which is defined in
1531 include/floatformat.h and libiberty/floatformat.c.
1532
1533 In case the target is big endian, there is no problem, the
1534 raw bytes will look like:
1535 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1536 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1537
1538 The other pseudo registers (the FVs) also don't pose a problem
1539 because they are stored as 4 individual FP elements. */
1540
1541 static void
1542 sh_register_convert_to_virtual (int regnum, struct type *type,
1543 char *from, char *to)
1544 {
1545 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1546 {
1547 DOUBLEST val;
1548 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1549 from, &val);
1550 store_typed_floating (to, type, val);
1551 }
1552 else
1553 error
1554 ("sh_register_convert_to_virtual called with non DR register number");
1555 }
1556
1557 static void
1558 sh_register_convert_to_raw (struct type *type, int regnum,
1559 const void *from, void *to)
1560 {
1561 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1562 {
1563 DOUBLEST val = extract_typed_floating (from, type);
1564 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1565 &val, to);
1566 }
1567 else
1568 error ("sh_register_convert_to_raw called with non DR register number");
1569 }
1570
1571 /* For vectors of 4 floating point registers. */
1572 static int
1573 fv_reg_base_num (int fv_regnum)
1574 {
1575 int fp_regnum;
1576
1577 fp_regnum = FP0_REGNUM + (fv_regnum - FV0_REGNUM) * 4;
1578 return fp_regnum;
1579 }
1580
1581 /* For double precision floating point registers, i.e 2 fp regs.*/
1582 static int
1583 dr_reg_base_num (int dr_regnum)
1584 {
1585 int fp_regnum;
1586
1587 fp_regnum = FP0_REGNUM + (dr_regnum - DR0_REGNUM) * 2;
1588 return fp_regnum;
1589 }
1590
1591 static void
1592 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1593 int reg_nr, void *buffer)
1594 {
1595 int base_regnum, portion;
1596 char temp_buffer[MAX_REGISTER_SIZE];
1597
1598 if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1599 {
1600 base_regnum = dr_reg_base_num (reg_nr);
1601
1602 /* Build the value in the provided buffer. */
1603 /* Read the real regs for which this one is an alias. */
1604 for (portion = 0; portion < 2; portion++)
1605 regcache_raw_read (regcache, base_regnum + portion,
1606 (temp_buffer
1607 + register_size (gdbarch,
1608 base_regnum) * portion));
1609 /* We must pay attention to the endiannes. */
1610 sh_register_convert_to_virtual (reg_nr,
1611 gdbarch_register_type (gdbarch, reg_nr),
1612 temp_buffer, buffer);
1613 }
1614 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1615 {
1616 base_regnum = fv_reg_base_num (reg_nr);
1617
1618 /* Read the real regs for which this one is an alias. */
1619 for (portion = 0; portion < 4; portion++)
1620 regcache_raw_read (regcache, base_regnum + portion,
1621 ((char *) buffer
1622 + register_size (gdbarch,
1623 base_regnum) * portion));
1624 }
1625 }
1626
1627 static void
1628 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1629 int reg_nr, const void *buffer)
1630 {
1631 int base_regnum, portion;
1632 char temp_buffer[MAX_REGISTER_SIZE];
1633
1634 if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1635 {
1636 base_regnum = dr_reg_base_num (reg_nr);
1637
1638 /* We must pay attention to the endiannes. */
1639 sh_register_convert_to_raw (gdbarch_register_type (gdbarch, reg_nr),
1640 reg_nr, buffer, temp_buffer);
1641
1642 /* Write the real regs for which this one is an alias. */
1643 for (portion = 0; portion < 2; portion++)
1644 regcache_raw_write (regcache, base_regnum + portion,
1645 (temp_buffer
1646 + register_size (gdbarch,
1647 base_regnum) * portion));
1648 }
1649 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1650 {
1651 base_regnum = fv_reg_base_num (reg_nr);
1652
1653 /* Write the real regs for which this one is an alias. */
1654 for (portion = 0; portion < 4; portion++)
1655 regcache_raw_write (regcache, base_regnum + portion,
1656 ((char *) buffer
1657 + register_size (gdbarch,
1658 base_regnum) * portion));
1659 }
1660 }
1661
1662 /* Floating point vector of 4 float registers. */
1663 static void
1664 do_fv_register_info (struct gdbarch *gdbarch, struct ui_file *file,
1665 int fv_regnum)
1666 {
1667 int first_fp_reg_num = fv_reg_base_num (fv_regnum);
1668 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1669 fv_regnum - FV0_REGNUM,
1670 (int) read_register (first_fp_reg_num),
1671 (int) read_register (first_fp_reg_num + 1),
1672 (int) read_register (first_fp_reg_num + 2),
1673 (int) read_register (first_fp_reg_num + 3));
1674 }
1675
1676 /* Double precision registers. */
1677 static void
1678 do_dr_register_info (struct gdbarch *gdbarch, struct ui_file *file,
1679 int dr_regnum)
1680 {
1681 int first_fp_reg_num = dr_reg_base_num (dr_regnum);
1682
1683 fprintf_filtered (file, "dr%d\t0x%08x%08x\n",
1684 dr_regnum - DR0_REGNUM,
1685 (int) read_register (first_fp_reg_num),
1686 (int) read_register (first_fp_reg_num + 1));
1687 }
1688
1689 static void
1690 sh_print_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1691 int regnum)
1692 {
1693 if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
1694 internal_error (__FILE__, __LINE__,
1695 "Invalid pseudo register number %d\n", regnum);
1696 else if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1697 do_dr_register_info (gdbarch, file, regnum);
1698 else if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1699 do_fv_register_info (gdbarch, file, regnum);
1700 }
1701
1702 static void
1703 sh_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
1704 { /* do values for FP (float) regs */
1705 char *raw_buffer;
1706 double flt; /* double extracted from raw hex data */
1707 int inv;
1708 int j;
1709
1710 /* Allocate space for the float. */
1711 raw_buffer = (char *) alloca (register_size (gdbarch, FP0_REGNUM));
1712
1713 /* Get the data in raw format. */
1714 if (!frame_register_read (get_selected_frame (), regnum, raw_buffer))
1715 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
1716
1717 /* Get the register as a number */
1718 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1719
1720 /* Print the name and some spaces. */
1721 fputs_filtered (REGISTER_NAME (regnum), file);
1722 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
1723
1724 /* Print the value. */
1725 if (inv)
1726 fprintf_filtered (file, "<invalid float>");
1727 else
1728 fprintf_filtered (file, "%-10.9g", flt);
1729
1730 /* Print the fp register as hex. */
1731 fprintf_filtered (file, "\t(raw 0x");
1732 for (j = 0; j < register_size (gdbarch, regnum); j++)
1733 {
1734 int idx = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1735 ? j
1736 : register_size (gdbarch, regnum) - 1 - j);
1737 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
1738 }
1739 fprintf_filtered (file, ")");
1740 fprintf_filtered (file, "\n");
1741 }
1742
1743 static void
1744 sh_do_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
1745 {
1746 char raw_buffer[MAX_REGISTER_SIZE];
1747
1748 fputs_filtered (REGISTER_NAME (regnum), file);
1749 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
1750
1751 /* Get the data in raw format. */
1752 if (!frame_register_read (get_selected_frame (), regnum, raw_buffer))
1753 fprintf_filtered (file, "*value not available*\n");
1754
1755 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
1756 file, 'x', 1, 0, Val_pretty_default);
1757 fprintf_filtered (file, "\t");
1758 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
1759 file, 0, 1, 0, Val_pretty_default);
1760 fprintf_filtered (file, "\n");
1761 }
1762
1763 static void
1764 sh_print_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
1765 {
1766 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
1767 internal_error (__FILE__, __LINE__,
1768 "Invalid register number %d\n", regnum);
1769
1770 else if (regnum >= 0 && regnum < NUM_REGS)
1771 {
1772 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
1773 TYPE_CODE_FLT)
1774 sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
1775 else
1776 sh_do_register (gdbarch, file, regnum); /* All other regs */
1777 }
1778
1779 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
1780 {
1781 sh_print_pseudo_register (gdbarch, file, regnum);
1782 }
1783 }
1784
1785 static void
1786 sh_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1787 struct frame_info *frame, int regnum, int fpregs)
1788 {
1789 if (regnum != -1) /* do one specified register */
1790 {
1791 if (*(REGISTER_NAME (regnum)) == '\0')
1792 error ("Not a valid register for the current processor type");
1793
1794 sh_print_register (gdbarch, file, regnum);
1795 }
1796 else
1797 /* do all (or most) registers */
1798 {
1799 for (regnum = 0; regnum < NUM_REGS; ++regnum)
1800 {
1801 /* If the register name is empty, it is undefined for this
1802 processor, so don't display anything. */
1803 if (REGISTER_NAME (regnum) == NULL
1804 || *(REGISTER_NAME (regnum)) == '\0')
1805 continue;
1806
1807 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
1808 TYPE_CODE_FLT)
1809 {
1810 /* true for "INFO ALL-REGISTERS" command */
1811 if (fpregs)
1812 sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
1813 }
1814 else
1815 sh_do_register (gdbarch, file, regnum); /* All other regs */
1816 }
1817
1818 if (fpregs)
1819 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
1820 {
1821 sh_print_pseudo_register (gdbarch, file, regnum);
1822 regnum++;
1823 }
1824 }
1825 }
1826
1827 /* Fetch (and possibly build) an appropriate link_map_offsets structure
1828 for native i386 linux targets using the struct offsets defined in
1829 link.h (but without actual reference to that file).
1830
1831 This makes it possible to access i386-linux shared libraries from
1832 a gdb that was not built on an i386-linux host (for cross debugging).
1833 */
1834
1835 struct link_map_offsets *
1836 sh_linux_svr4_fetch_link_map_offsets (void)
1837 {
1838 static struct link_map_offsets lmo;
1839 static struct link_map_offsets *lmp = 0;
1840
1841 if (lmp == 0)
1842 {
1843 lmp = &lmo;
1844
1845 lmo.r_debug_size = 8; /* 20 not actual size but all we need */
1846
1847 lmo.r_map_offset = 4;
1848 lmo.r_map_size = 4;
1849
1850 lmo.link_map_size = 20; /* 552 not actual size but all we need */
1851
1852 lmo.l_addr_offset = 0;
1853 lmo.l_addr_size = 4;
1854
1855 lmo.l_name_offset = 4;
1856 lmo.l_name_size = 4;
1857
1858 lmo.l_next_offset = 12;
1859 lmo.l_next_size = 4;
1860
1861 lmo.l_prev_offset = 16;
1862 lmo.l_prev_size = 4;
1863 }
1864
1865 return lmp;
1866 }
1867
1868 static int
1869 sh_dsp_register_sim_regno (int nr)
1870 {
1871 if (legacy_register_sim_regno (nr) < 0)
1872 return legacy_register_sim_regno (nr);
1873 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1874 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1875 if (nr == MOD_REGNUM)
1876 return SIM_SH_MOD_REGNUM;
1877 if (nr == RS_REGNUM)
1878 return SIM_SH_RS_REGNUM;
1879 if (nr == RE_REGNUM)
1880 return SIM_SH_RE_REGNUM;
1881 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1882 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1883 return nr;
1884 }
1885
1886 static struct sh_frame_cache *
1887 sh_alloc_frame_cache (void)
1888 {
1889 struct sh_frame_cache *cache;
1890 int i;
1891
1892 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1893
1894 /* Base address. */
1895 cache->base = 0;
1896 cache->saved_sp = 0;
1897 cache->sp_offset = 0;
1898 cache->pc = 0;
1899
1900 /* Frameless until proven otherwise. */
1901 cache->uses_fp = 0;
1902
1903 /* Saved registers. We initialize these to -1 since zero is a valid
1904 offset (that's where fp is supposed to be stored). */
1905 for (i = 0; i < SH_NUM_REGS; i++)
1906 {
1907 cache->saved_regs[i] = -1;
1908 }
1909
1910 return cache;
1911 }
1912
1913 static struct sh_frame_cache *
1914 sh_frame_cache (struct frame_info *next_frame, void **this_cache)
1915 {
1916 struct sh_frame_cache *cache;
1917 CORE_ADDR current_pc;
1918 int i;
1919
1920 if (*this_cache)
1921 return *this_cache;
1922
1923 cache = sh_alloc_frame_cache ();
1924 *this_cache = cache;
1925
1926 /* In principle, for normal frames, fp holds the frame pointer,
1927 which holds the base address for the current stack frame.
1928 However, for functions that don't need it, the frame pointer is
1929 optional. For these "frameless" functions the frame pointer is
1930 actually the frame pointer of the calling frame. */
1931 cache->base = frame_unwind_register_unsigned (next_frame, FP_REGNUM);
1932 if (cache->base == 0)
1933 return cache;
1934
1935 cache->pc = frame_func_unwind (next_frame);
1936 current_pc = frame_pc_unwind (next_frame);
1937 if (cache->pc != 0)
1938 sh_analyze_prologue (cache->pc, current_pc, cache);
1939
1940 if (!cache->uses_fp)
1941 {
1942 /* We didn't find a valid frame, which means that CACHE->base
1943 currently holds the frame pointer for our calling frame. If
1944 we're at the start of a function, or somewhere half-way its
1945 prologue, the function's frame probably hasn't been fully
1946 setup yet. Try to reconstruct the base address for the stack
1947 frame by looking at the stack pointer. For truly "frameless"
1948 functions this might work too. */
1949 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
1950 }
1951
1952 /* Now that we have the base address for the stack frame we can
1953 calculate the value of sp in the calling frame. */
1954 cache->saved_sp = cache->base + cache->sp_offset;
1955
1956 /* Adjust all the saved registers such that they contain addresses
1957 instead of offsets. */
1958 for (i = 0; i < SH_NUM_REGS; i++)
1959 if (cache->saved_regs[i] != -1)
1960 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1961
1962 return cache;
1963 }
1964
1965 static void
1966 sh_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1967 int regnum, int *optimizedp,
1968 enum lval_type *lvalp, CORE_ADDR *addrp,
1969 int *realnump, void *valuep)
1970 {
1971 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
1972
1973 gdb_assert (regnum >= 0);
1974
1975 if (regnum == SP_REGNUM && cache->saved_sp)
1976 {
1977 *optimizedp = 0;
1978 *lvalp = not_lval;
1979 *addrp = 0;
1980 *realnump = -1;
1981 if (valuep)
1982 {
1983 /* Store the value. */
1984 store_unsigned_integer (valuep, 4, cache->saved_sp);
1985 }
1986 return;
1987 }
1988
1989 /* The PC of the previous frame is stored in the PR register of
1990 the current frame. Frob regnum so that we pull the value from
1991 the correct place. */
1992 if (regnum == PC_REGNUM)
1993 regnum = PR_REGNUM;
1994
1995 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1996 {
1997 *optimizedp = 0;
1998 *lvalp = lval_memory;
1999 *addrp = cache->saved_regs[regnum];
2000 *realnump = -1;
2001 if (valuep)
2002 {
2003 /* Read the value in from memory. */
2004 read_memory (*addrp, valuep,
2005 register_size (current_gdbarch, regnum));
2006 }
2007 return;
2008 }
2009
2010 frame_register_unwind (next_frame, regnum,
2011 optimizedp, lvalp, addrp, realnump, valuep);
2012 }
2013
2014 static void
2015 sh_frame_this_id (struct frame_info *next_frame, void **this_cache,
2016 struct frame_id *this_id)
2017 {
2018 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2019
2020 /* This marks the outermost frame. */
2021 if (cache->base == 0)
2022 return;
2023
2024 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2025 }
2026
2027 static const struct frame_unwind sh_frame_unwind = {
2028 NORMAL_FRAME,
2029 sh_frame_this_id,
2030 sh_frame_prev_register
2031 };
2032
2033 static const struct frame_unwind *
2034 sh_frame_sniffer (struct frame_info *next_frame)
2035 {
2036 return &sh_frame_unwind;
2037 }
2038
2039 static CORE_ADDR
2040 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2041 {
2042 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2043 }
2044
2045 static CORE_ADDR
2046 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2047 {
2048 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2049 }
2050
2051 static struct frame_id
2052 sh_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2053 {
2054 return frame_id_build (sh_unwind_sp (gdbarch, next_frame),
2055 frame_pc_unwind (next_frame));
2056 }
2057
2058 static CORE_ADDR
2059 sh_frame_base_address (struct frame_info *next_frame, void **this_cache)
2060 {
2061 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2062
2063 return cache->base;
2064 }
2065
2066 static const struct frame_base sh_frame_base = {
2067 &sh_frame_unwind,
2068 sh_frame_base_address,
2069 sh_frame_base_address,
2070 sh_frame_base_address
2071 };
2072
2073 /* The epilogue is defined here as the area at the end of a function,
2074 either on the `ret' instruction itself or after an instruction which
2075 destroys the function's stack frame. */
2076 static int
2077 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2078 {
2079 CORE_ADDR func_addr = 0, func_end = 0;
2080
2081 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2082 {
2083 ULONGEST inst;
2084 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2085 for a nop and some fixed data (e.g. big offsets) which are
2086 unfortunately also treated as part of the function (which
2087 means, they are below func_end. */
2088 CORE_ADDR addr = func_end - 28;
2089 if (addr < func_addr + 4)
2090 addr = func_addr + 4;
2091 if (pc < addr)
2092 return 0;
2093
2094 /* First search forward until hitting an rts. */
2095 while (addr < func_end
2096 && !IS_RTS (read_memory_unsigned_integer (addr, 2)))
2097 addr += 2;
2098 if (addr >= func_end)
2099 return 0;
2100
2101 /* At this point we should find a mov.l @r15+,r14 instruction,
2102 either before or after the rts. If not, then the function has
2103 probably no "normal" epilogue and we bail out here. */
2104 inst = read_memory_unsigned_integer (addr - 2, 2);
2105 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2)))
2106 addr -= 2;
2107 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2)))
2108 return 0;
2109
2110 /* Step over possible lds.l @r15+,pr. */
2111 inst = read_memory_unsigned_integer (addr - 2, 2);
2112 if (IS_LDS (inst))
2113 {
2114 addr -= 2;
2115 inst = read_memory_unsigned_integer (addr - 2, 2);
2116 }
2117
2118 /* Step over possible mov r14,r15. */
2119 if (IS_MOV_FP_SP (inst))
2120 {
2121 addr -= 2;
2122 inst = read_memory_unsigned_integer (addr - 2, 2);
2123 }
2124
2125 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2126 instructions. */
2127 while (addr > func_addr + 4
2128 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2129 {
2130 addr -= 2;
2131 inst = read_memory_unsigned_integer (addr - 2, 2);
2132 }
2133
2134 if (pc >= addr)
2135 return 1;
2136 }
2137 return 0;
2138 }
2139
2140 static gdbarch_init_ftype sh_gdbarch_init;
2141
2142 static struct gdbarch *
2143 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2144 {
2145 struct gdbarch *gdbarch;
2146
2147 sh_show_regs = sh_generic_show_regs;
2148 switch (info.bfd_arch_info->mach)
2149 {
2150 case bfd_mach_sh2e:
2151 sh_show_regs = sh2e_show_regs;
2152 break;
2153 case bfd_mach_sh_dsp:
2154 sh_show_regs = sh_dsp_show_regs;
2155 break;
2156
2157 case bfd_mach_sh3:
2158 sh_show_regs = sh3_show_regs;
2159 break;
2160
2161 case bfd_mach_sh3e:
2162 sh_show_regs = sh3e_show_regs;
2163 break;
2164
2165 case bfd_mach_sh3_dsp:
2166 case bfd_mach_sh4al_dsp:
2167 sh_show_regs = sh3_dsp_show_regs;
2168 break;
2169
2170 case bfd_mach_sh4:
2171 case bfd_mach_sh4a:
2172 sh_show_regs = sh4_show_regs;
2173 break;
2174
2175 case bfd_mach_sh4_nofpu:
2176 case bfd_mach_sh4a_nofpu:
2177 sh_show_regs = sh4_nofpu_show_regs;
2178 break;
2179
2180 #if 0
2181 case bfd_mach_sh5:
2182 sh_show_regs = sh64_show_regs;
2183 /* SH5 is handled entirely in sh64-tdep.c */
2184 return sh64_gdbarch_init (info, arches);
2185 #endif
2186 }
2187
2188 /* If there is already a candidate, use it. */
2189 arches = gdbarch_list_lookup_by_info (arches, &info);
2190 if (arches != NULL)
2191 return arches->gdbarch;
2192
2193 /* None found, create a new architecture from the information
2194 provided. */
2195 gdbarch = gdbarch_alloc (&info, NULL);
2196
2197 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2198 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2199 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2200 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2201 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2202 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2203 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2204 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2205
2206 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2207 set_gdbarch_sp_regnum (gdbarch, 15);
2208 set_gdbarch_pc_regnum (gdbarch, 16);
2209 set_gdbarch_fp0_regnum (gdbarch, -1);
2210 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2211
2212 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2213
2214 set_gdbarch_print_registers_info (gdbarch, sh_print_registers_info);
2215
2216 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2217 set_gdbarch_deprecated_use_struct_convention (gdbarch, sh_use_struct_convention);
2218
2219 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
2220 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2221
2222 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2223
2224 set_gdbarch_store_return_value (gdbarch, sh_default_store_return_value);
2225 set_gdbarch_extract_return_value (gdbarch, sh_default_extract_return_value);
2226 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sh_extract_struct_value_address);
2227
2228 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2229 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2230
2231 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2232
2233 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2234
2235 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2236 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2237 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2238 set_gdbarch_unwind_dummy_id (gdbarch, sh_unwind_dummy_id);
2239 frame_base_set_default (gdbarch, &sh_frame_base);
2240
2241 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
2242
2243 switch (info.bfd_arch_info->mach)
2244 {
2245 case bfd_mach_sh:
2246 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2247 break;
2248
2249 case bfd_mach_sh2:
2250 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2251 break;
2252
2253 case bfd_mach_sh2e:
2254 /* doubles on sh2e and sh3e are actually 4 byte. */
2255 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2256
2257 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2258 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2259 set_gdbarch_fp0_regnum (gdbarch, 25);
2260 set_gdbarch_store_return_value (gdbarch, sh3e_sh4_store_return_value);
2261 set_gdbarch_extract_return_value (gdbarch,
2262 sh3e_sh4_extract_return_value);
2263 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2264 break;
2265
2266 case bfd_mach_sh_dsp:
2267 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2268 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2269 break;
2270
2271 case bfd_mach_sh3:
2272 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2273 break;
2274
2275 case bfd_mach_sh3e:
2276 /* doubles on sh2e and sh3e are actually 4 byte. */
2277 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2278
2279 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2280 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2281 set_gdbarch_fp0_regnum (gdbarch, 25);
2282 set_gdbarch_store_return_value (gdbarch, sh3e_sh4_store_return_value);
2283 set_gdbarch_extract_return_value (gdbarch,
2284 sh3e_sh4_extract_return_value);
2285 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2286 break;
2287
2288 case bfd_mach_sh3_dsp:
2289 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2290 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2291 break;
2292
2293 case bfd_mach_sh4:
2294 case bfd_mach_sh4a:
2295 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2296 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2297 set_gdbarch_fp0_regnum (gdbarch, 25);
2298 set_gdbarch_num_pseudo_regs (gdbarch, 12);
2299 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2300 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2301 set_gdbarch_store_return_value (gdbarch, sh3e_sh4_store_return_value);
2302 set_gdbarch_extract_return_value (gdbarch,
2303 sh3e_sh4_extract_return_value);
2304 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2305 break;
2306
2307 case bfd_mach_sh4_nofpu:
2308 case bfd_mach_sh4a_nofpu:
2309 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2310 break;
2311
2312 case bfd_mach_sh4al_dsp:
2313 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2314 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2315 break;
2316
2317 default:
2318 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2319 break;
2320 }
2321
2322 /* Hook in ABI-specific overrides, if they have been registered. */
2323 gdbarch_init_osabi (info, gdbarch);
2324
2325 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2326 frame_unwind_append_sniffer (gdbarch, sh_frame_sniffer);
2327
2328 return gdbarch;
2329 }
2330
2331 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2332
2333 void
2334 _initialize_sh_tdep (void)
2335 {
2336 struct cmd_list_element *c;
2337
2338 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2339
2340 add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
2341 }
This page took 0.085449 seconds and 4 git commands to generate.