Constify regset structures.
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include <string.h>
36 #include "gdb_assert.h"
37 #include "arch-utils.h"
38 #include "floatformat.h"
39 #include "regcache.h"
40 #include "doublest.h"
41 #include "osabi.h"
42 #include "reggroups.h"
43 #include "regset.h"
44 #include "objfiles.h"
45
46 #include "sh-tdep.h"
47 #include "sh64-tdep.h"
48
49 #include "elf-bfd.h"
50 #include "solib-svr4.h"
51
52 /* sh flags */
53 #include "elf/sh.h"
54 #include "dwarf2.h"
55 /* registers numbers shared with the simulator. */
56 #include "gdb/sim-sh.h"
57
58 /* List of "set sh ..." and "show sh ..." commands. */
59 static struct cmd_list_element *setshcmdlist = NULL;
60 static struct cmd_list_element *showshcmdlist = NULL;
61
62 static const char sh_cc_gcc[] = "gcc";
63 static const char sh_cc_renesas[] = "renesas";
64 static const char *const sh_cc_enum[] = {
65 sh_cc_gcc,
66 sh_cc_renesas,
67 NULL
68 };
69
70 static const char *sh_active_calling_convention = sh_cc_gcc;
71
72 #define SH_NUM_REGS 67
73
74 struct sh_frame_cache
75 {
76 /* Base address. */
77 CORE_ADDR base;
78 LONGEST sp_offset;
79 CORE_ADDR pc;
80
81 /* Flag showing that a frame has been created in the prologue code. */
82 int uses_fp;
83
84 /* Saved registers. */
85 CORE_ADDR saved_regs[SH_NUM_REGS];
86 CORE_ADDR saved_sp;
87 };
88
89 static int
90 sh_is_renesas_calling_convention (struct type *func_type)
91 {
92 int val = 0;
93
94 if (func_type)
95 {
96 func_type = check_typedef (func_type);
97
98 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
99 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
100
101 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
102 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
103 val = 1;
104 }
105
106 if (sh_active_calling_convention == sh_cc_renesas)
107 val = 1;
108
109 return val;
110 }
111
112 static const char *
113 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
114 {
115 static char *register_names[] = {
116 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
117 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
118 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
119 "", "",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
122 "", "",
123 "", "", "", "", "", "", "", "",
124 "", "", "", "", "", "", "", "",
125 "", "", "", "", "", "", "", "",
126 };
127 if (reg_nr < 0)
128 return NULL;
129 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
130 return NULL;
131 return register_names[reg_nr];
132 }
133
134 static const char *
135 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
136 {
137 static char *register_names[] = {
138 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
139 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
140 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
141 "", "",
142 "", "", "", "", "", "", "", "",
143 "", "", "", "", "", "", "", "",
144 "ssr", "spc",
145 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
146 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
147 "", "", "", "", "", "", "", "",
148 };
149 if (reg_nr < 0)
150 return NULL;
151 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
152 return NULL;
153 return register_names[reg_nr];
154 }
155
156 static const char *
157 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
158 {
159 static char *register_names[] = {
160 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
161 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
162 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
163 "fpul", "fpscr",
164 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
165 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
166 "ssr", "spc",
167 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
168 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
169 "", "", "", "", "", "", "", "",
170 };
171 if (reg_nr < 0)
172 return NULL;
173 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
174 return NULL;
175 return register_names[reg_nr];
176 }
177
178 static const char *
179 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
180 {
181 static char *register_names[] = {
182 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
183 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
184 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
185 "fpul", "fpscr",
186 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
187 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
188 "", "",
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
191 "", "", "", "", "", "", "", "",
192 };
193 if (reg_nr < 0)
194 return NULL;
195 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
196 return NULL;
197 return register_names[reg_nr];
198 }
199
200 static const char *
201 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
202 {
203 static char *register_names[] = {
204 /* general registers 0-15 */
205 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
206 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
207 /* 16 - 22 */
208 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
209 /* 23, 24 */
210 "fpul", "fpscr",
211 /* floating point registers 25 - 40 */
212 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
213 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
214 /* 41, 42 */
215 "", "",
216 /* 43 - 62. Banked registers. The bank number used is determined by
217 the bank register (63). */
218 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
219 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
220 "machb", "ivnb", "prb", "gbrb", "maclb",
221 /* 63: register bank number, not a real register but used to
222 communicate the register bank currently get/set. This register
223 is hidden to the user, who manipulates it using the pseudo
224 register called "bank" (67). See below. */
225 "",
226 /* 64 - 66 */
227 "ibcr", "ibnr", "tbr",
228 /* 67: register bank number, the user visible pseudo register. */
229 "bank",
230 /* double precision (pseudo) 68 - 75 */
231 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
232 };
233 if (reg_nr < 0)
234 return NULL;
235 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
236 return NULL;
237 return register_names[reg_nr];
238 }
239
240 static const char *
241 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
242 {
243 static char *register_names[] = {
244 /* general registers 0-15 */
245 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
246 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
247 /* 16 - 22 */
248 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
249 /* 23, 24 */
250 "", "",
251 /* floating point registers 25 - 40 */
252 "", "", "", "", "", "", "", "",
253 "", "", "", "", "", "", "", "",
254 /* 41, 42 */
255 "", "",
256 /* 43 - 62. Banked registers. The bank number used is determined by
257 the bank register (63). */
258 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
259 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
260 "machb", "ivnb", "prb", "gbrb", "maclb",
261 /* 63: register bank number, not a real register but used to
262 communicate the register bank currently get/set. This register
263 is hidden to the user, who manipulates it using the pseudo
264 register called "bank" (67). See below. */
265 "",
266 /* 64 - 66 */
267 "ibcr", "ibnr", "tbr",
268 /* 67: register bank number, the user visible pseudo register. */
269 "bank",
270 /* double precision (pseudo) 68 - 75 */
271 "", "", "", "", "", "", "", "",
272 };
273 if (reg_nr < 0)
274 return NULL;
275 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
276 return NULL;
277 return register_names[reg_nr];
278 }
279
280 static const char *
281 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
282 {
283 static char *register_names[] = {
284 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
285 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
286 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
287 "", "dsr",
288 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
289 "y0", "y1", "", "", "", "", "", "mod",
290 "", "",
291 "rs", "re", "", "", "", "", "", "",
292 "", "", "", "", "", "", "", "",
293 "", "", "", "", "", "", "", "",
294 };
295 if (reg_nr < 0)
296 return NULL;
297 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
298 return NULL;
299 return register_names[reg_nr];
300 }
301
302 static const char *
303 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
304 {
305 static char *register_names[] = {
306 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
309 "", "dsr",
310 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
311 "y0", "y1", "", "", "", "", "", "mod",
312 "ssr", "spc",
313 "rs", "re", "", "", "", "", "", "",
314 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
315 "", "", "", "", "", "", "", "",
316 "", "", "", "", "", "", "", "",
317 };
318 if (reg_nr < 0)
319 return NULL;
320 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
321 return NULL;
322 return register_names[reg_nr];
323 }
324
325 static const char *
326 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
327 {
328 static char *register_names[] = {
329 /* general registers 0-15 */
330 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
331 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
332 /* 16 - 22 */
333 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
334 /* 23, 24 */
335 "fpul", "fpscr",
336 /* floating point registers 25 - 40 */
337 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
338 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
339 /* 41, 42 */
340 "ssr", "spc",
341 /* bank 0 43 - 50 */
342 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
343 /* bank 1 51 - 58 */
344 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
345 /* 59 - 66 */
346 "", "", "", "", "", "", "", "",
347 /* pseudo bank register. */
348 "",
349 /* double precision (pseudo) 68 - 75 */
350 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
351 /* vectors (pseudo) 76 - 79 */
352 "fv0", "fv4", "fv8", "fv12",
353 /* FIXME: missing XF */
354 /* FIXME: missing XD */
355 };
356 if (reg_nr < 0)
357 return NULL;
358 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
359 return NULL;
360 return register_names[reg_nr];
361 }
362
363 static const char *
364 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
365 {
366 static char *register_names[] = {
367 /* general registers 0-15 */
368 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
369 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
370 /* 16 - 22 */
371 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
372 /* 23, 24 */
373 "", "",
374 /* floating point registers 25 - 40 -- not for nofpu target */
375 "", "", "", "", "", "", "", "",
376 "", "", "", "", "", "", "", "",
377 /* 41, 42 */
378 "ssr", "spc",
379 /* bank 0 43 - 50 */
380 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
381 /* bank 1 51 - 58 */
382 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
383 /* 59 - 66 */
384 "", "", "", "", "", "", "", "",
385 /* pseudo bank register. */
386 "",
387 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
388 "", "", "", "", "", "", "", "",
389 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
390 "", "", "", "",
391 };
392 if (reg_nr < 0)
393 return NULL;
394 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
395 return NULL;
396 return register_names[reg_nr];
397 }
398
399 static const char *
400 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
401 {
402 static char *register_names[] = {
403 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
404 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
405 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
406 "", "dsr",
407 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
408 "y0", "y1", "", "", "", "", "", "mod",
409 "ssr", "spc",
410 "rs", "re", "", "", "", "", "", "",
411 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
412 "", "", "", "", "", "", "", "",
413 "", "", "", "", "", "", "", "",
414 };
415 if (reg_nr < 0)
416 return NULL;
417 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
418 return NULL;
419 return register_names[reg_nr];
420 }
421
422 static const unsigned char *
423 sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
424 {
425 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
426 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
427
428 /* For remote stub targets, trapa #20 is used. */
429 if (strcmp (target_shortname, "remote") == 0)
430 {
431 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
432 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
433
434 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
435 {
436 *lenptr = sizeof (big_remote_breakpoint);
437 return big_remote_breakpoint;
438 }
439 else
440 {
441 *lenptr = sizeof (little_remote_breakpoint);
442 return little_remote_breakpoint;
443 }
444 }
445
446 *lenptr = sizeof (breakpoint);
447 return breakpoint;
448 }
449
450 /* Prologue looks like
451 mov.l r14,@-r15
452 sts.l pr,@-r15
453 mov.l <regs>,@-r15
454 sub <room_for_loca_vars>,r15
455 mov r15,r14
456
457 Actually it can be more complicated than this but that's it, basically. */
458
459 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
460 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
461
462 /* JSR @Rm 0100mmmm00001011 */
463 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
464
465 /* STS.L PR,@-r15 0100111100100010
466 r15-4-->r15, PR-->(r15) */
467 #define IS_STS(x) ((x) == 0x4f22)
468
469 /* STS.L MACL,@-r15 0100111100010010
470 r15-4-->r15, MACL-->(r15) */
471 #define IS_MACL_STS(x) ((x) == 0x4f12)
472
473 /* MOV.L Rm,@-r15 00101111mmmm0110
474 r15-4-->r15, Rm-->(R15) */
475 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
476
477 /* MOV r15,r14 0110111011110011
478 r15-->r14 */
479 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
480
481 /* ADD #imm,r15 01111111iiiiiiii
482 r15+imm-->r15 */
483 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
484
485 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
486 #define IS_SHLL_R3(x) ((x) == 0x4300)
487
488 /* ADD r3,r15 0011111100111100
489 r15+r3-->r15 */
490 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
491
492 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
493 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
494 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
495 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
496 make this entirely clear. */
497 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
498 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
499
500 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
501 #define IS_MOV_ARG_TO_REG(x) \
502 (((x) & 0xf00f) == 0x6003 && \
503 ((x) & 0x00f0) >= 0x0040 && \
504 ((x) & 0x00f0) <= 0x0070)
505 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
506 #define IS_MOV_ARG_TO_IND_R14(x) \
507 (((x) & 0xff0f) == 0x2e02 && \
508 ((x) & 0x00f0) >= 0x0040 && \
509 ((x) & 0x00f0) <= 0x0070)
510 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
511 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
512 (((x) & 0xff00) == 0x1e00 && \
513 ((x) & 0x00f0) >= 0x0040 && \
514 ((x) & 0x00f0) <= 0x0070)
515
516 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
517 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
518 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
519 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
520 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
521 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
522 /* SUB Rn,R15 00111111nnnn1000 */
523 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
524
525 #define FPSCR_SZ (1 << 20)
526
527 /* The following instructions are used for epilogue testing. */
528 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
529 #define IS_RTS(x) ((x) == 0x000b)
530 #define IS_LDS(x) ((x) == 0x4f26)
531 #define IS_MACL_LDS(x) ((x) == 0x4f16)
532 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
533 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
534 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
535
536 static CORE_ADDR
537 sh_analyze_prologue (struct gdbarch *gdbarch,
538 CORE_ADDR pc, CORE_ADDR limit_pc,
539 struct sh_frame_cache *cache, ULONGEST fpscr)
540 {
541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
542 ULONGEST inst;
543 int offset;
544 int sav_offset = 0;
545 int r3_val = 0;
546 int reg, sav_reg = -1;
547
548 cache->uses_fp = 0;
549 for (; pc < limit_pc; pc += 2)
550 {
551 inst = read_memory_unsigned_integer (pc, 2, byte_order);
552 /* See where the registers will be saved to. */
553 if (IS_PUSH (inst))
554 {
555 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
556 cache->sp_offset += 4;
557 }
558 else if (IS_STS (inst))
559 {
560 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
561 cache->sp_offset += 4;
562 }
563 else if (IS_MACL_STS (inst))
564 {
565 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
566 cache->sp_offset += 4;
567 }
568 else if (IS_MOV_R3 (inst))
569 {
570 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
571 }
572 else if (IS_SHLL_R3 (inst))
573 {
574 r3_val <<= 1;
575 }
576 else if (IS_ADD_R3SP (inst))
577 {
578 cache->sp_offset += -r3_val;
579 }
580 else if (IS_ADD_IMM_SP (inst))
581 {
582 offset = ((inst & 0xff) ^ 0x80) - 0x80;
583 cache->sp_offset -= offset;
584 }
585 else if (IS_MOVW_PCREL_TO_REG (inst))
586 {
587 if (sav_reg < 0)
588 {
589 reg = GET_TARGET_REG (inst);
590 if (reg < 14)
591 {
592 sav_reg = reg;
593 offset = (inst & 0xff) << 1;
594 sav_offset =
595 read_memory_integer ((pc + 4) + offset, 2, byte_order);
596 }
597 }
598 }
599 else if (IS_MOVL_PCREL_TO_REG (inst))
600 {
601 if (sav_reg < 0)
602 {
603 reg = GET_TARGET_REG (inst);
604 if (reg < 14)
605 {
606 sav_reg = reg;
607 offset = (inst & 0xff) << 2;
608 sav_offset =
609 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
610 4, byte_order);
611 }
612 }
613 }
614 else if (IS_MOVI20 (inst)
615 && (pc + 2 < limit_pc))
616 {
617 if (sav_reg < 0)
618 {
619 reg = GET_TARGET_REG (inst);
620 if (reg < 14)
621 {
622 sav_reg = reg;
623 sav_offset = GET_SOURCE_REG (inst) << 16;
624 /* MOVI20 is a 32 bit instruction! */
625 pc += 2;
626 sav_offset
627 |= read_memory_unsigned_integer (pc, 2, byte_order);
628 /* Now sav_offset contains an unsigned 20 bit value.
629 It must still get sign extended. */
630 if (sav_offset & 0x00080000)
631 sav_offset |= 0xfff00000;
632 }
633 }
634 }
635 else if (IS_SUB_REG_FROM_SP (inst))
636 {
637 reg = GET_SOURCE_REG (inst);
638 if (sav_reg > 0 && reg == sav_reg)
639 {
640 sav_reg = -1;
641 }
642 cache->sp_offset += sav_offset;
643 }
644 else if (IS_FPUSH (inst))
645 {
646 if (fpscr & FPSCR_SZ)
647 {
648 cache->sp_offset += 8;
649 }
650 else
651 {
652 cache->sp_offset += 4;
653 }
654 }
655 else if (IS_MOV_SP_FP (inst))
656 {
657 pc += 2;
658 /* Don't go any further than six more instructions. */
659 limit_pc = min (limit_pc, pc + (2 * 6));
660
661 cache->uses_fp = 1;
662 /* At this point, only allow argument register moves to other
663 registers or argument register moves to @(X,fp) which are
664 moving the register arguments onto the stack area allocated
665 by a former add somenumber to SP call. Don't allow moving
666 to an fp indirect address above fp + cache->sp_offset. */
667 for (; pc < limit_pc; pc += 2)
668 {
669 inst = read_memory_integer (pc, 2, byte_order);
670 if (IS_MOV_ARG_TO_IND_R14 (inst))
671 {
672 reg = GET_SOURCE_REG (inst);
673 if (cache->sp_offset > 0)
674 cache->saved_regs[reg] = cache->sp_offset;
675 }
676 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
677 {
678 reg = GET_SOURCE_REG (inst);
679 offset = (inst & 0xf) * 4;
680 if (cache->sp_offset > offset)
681 cache->saved_regs[reg] = cache->sp_offset - offset;
682 }
683 else if (IS_MOV_ARG_TO_REG (inst))
684 continue;
685 else
686 break;
687 }
688 break;
689 }
690 else if (IS_JSR (inst))
691 {
692 /* We have found a jsr that has been scheduled into the prologue.
693 If we continue the scan and return a pc someplace after this,
694 then setting a breakpoint on this function will cause it to
695 appear to be called after the function it is calling via the
696 jsr, which will be very confusing. Most likely the next
697 instruction is going to be IS_MOV_SP_FP in the delay slot. If
698 so, note that before returning the current pc. */
699 if (pc + 2 < limit_pc)
700 {
701 inst = read_memory_integer (pc + 2, 2, byte_order);
702 if (IS_MOV_SP_FP (inst))
703 cache->uses_fp = 1;
704 }
705 break;
706 }
707 #if 0 /* This used to just stop when it found an instruction
708 that was not considered part of the prologue. Now,
709 we just keep going looking for likely
710 instructions. */
711 else
712 break;
713 #endif
714 }
715
716 return pc;
717 }
718
719 /* Skip any prologue before the guts of a function. */
720 static CORE_ADDR
721 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
722 {
723 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
724 struct sh_frame_cache cache;
725
726 /* See if we can determine the end of the prologue via the symbol table.
727 If so, then return either PC, or the PC after the prologue, whichever
728 is greater. */
729 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
730 {
731 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
732 if (post_prologue_pc != 0)
733 return max (pc, post_prologue_pc);
734 }
735
736 /* Can't determine prologue from the symbol table, need to examine
737 instructions. */
738
739 /* Find an upper limit on the function prologue using the debug
740 information. If the debug information could not be used to provide
741 that bound, then use an arbitrary large number as the upper bound. */
742 limit_pc = skip_prologue_using_sal (gdbarch, pc);
743 if (limit_pc == 0)
744 /* Don't go any further than 28 instructions. */
745 limit_pc = pc + (2 * 28);
746
747 /* Do not allow limit_pc to be past the function end, if we know
748 where that end is... */
749 if (func_end_addr != 0)
750 limit_pc = min (limit_pc, func_end_addr);
751
752 cache.sp_offset = -4;
753 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
754 if (cache.uses_fp)
755 pc = post_prologue_pc;
756
757 return pc;
758 }
759
760 /* The ABI says:
761
762 Aggregate types not bigger than 8 bytes that have the same size and
763 alignment as one of the integer scalar types are returned in the
764 same registers as the integer type they match.
765
766 For example, a 2-byte aligned structure with size 2 bytes has the
767 same size and alignment as a short int, and will be returned in R0.
768 A 4-byte aligned structure with size 8 bytes has the same size and
769 alignment as a long long int, and will be returned in R0 and R1.
770
771 When an aggregate type is returned in R0 and R1, R0 contains the
772 first four bytes of the aggregate, and R1 contains the
773 remainder. If the size of the aggregate type is not a multiple of 4
774 bytes, the aggregate is tail-padded up to a multiple of 4
775 bytes. The value of the padding is undefined. For little-endian
776 targets the padding will appear at the most significant end of the
777 last element, for big-endian targets the padding appears at the
778 least significant end of the last element.
779
780 All other aggregate types are returned by address. The caller
781 function passes the address of an area large enough to hold the
782 aggregate value in R2. The called function stores the result in
783 this location.
784
785 To reiterate, structs smaller than 8 bytes could also be returned
786 in memory, if they don't pass the "same size and alignment as an
787 integer type" rule.
788
789 For example, in
790
791 struct s { char c[3]; } wibble;
792 struct s foo(void) { return wibble; }
793
794 the return value from foo() will be in memory, not
795 in R0, because there is no 3-byte integer type.
796
797 Similarly, in
798
799 struct s { char c[2]; } wibble;
800 struct s foo(void) { return wibble; }
801
802 because a struct containing two chars has alignment 1, that matches
803 type char, but size 2, that matches type short. There's no integer
804 type that has alignment 1 and size 2, so the struct is returned in
805 memory. */
806
807 static int
808 sh_use_struct_convention (int renesas_abi, struct type *type)
809 {
810 int len = TYPE_LENGTH (type);
811 int nelem = TYPE_NFIELDS (type);
812
813 /* The Renesas ABI returns aggregate types always on stack. */
814 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
815 || TYPE_CODE (type) == TYPE_CODE_UNION))
816 return 1;
817
818 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
819 fit in two registers anyway) use struct convention. */
820 if (len != 1 && len != 2 && len != 4 && len != 8)
821 return 1;
822
823 /* Scalar types and aggregate types with exactly one field are aligned
824 by definition. They are returned in registers. */
825 if (nelem <= 1)
826 return 0;
827
828 /* If the first field in the aggregate has the same length as the entire
829 aggregate type, the type is returned in registers. */
830 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
831 return 0;
832
833 /* If the size of the aggregate is 8 bytes and the first field is
834 of size 4 bytes its alignment is equal to long long's alignment,
835 so it's returned in registers. */
836 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
837 return 0;
838
839 /* Otherwise use struct convention. */
840 return 1;
841 }
842
843 static int
844 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
845 {
846 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
847 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
848 return 1;
849 return sh_use_struct_convention (renesas_abi, type);
850 }
851
852 static CORE_ADDR
853 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
854 {
855 return sp & ~3;
856 }
857
858 /* Function: push_dummy_call (formerly push_arguments)
859 Setup the function arguments for calling a function in the inferior.
860
861 On the Renesas SH architecture, there are four registers (R4 to R7)
862 which are dedicated for passing function arguments. Up to the first
863 four arguments (depending on size) may go into these registers.
864 The rest go on the stack.
865
866 MVS: Except on SH variants that have floating point registers.
867 In that case, float and double arguments are passed in the same
868 manner, but using FP registers instead of GP registers.
869
870 Arguments that are smaller than 4 bytes will still take up a whole
871 register or a whole 32-bit word on the stack, and will be
872 right-justified in the register or the stack word. This includes
873 chars, shorts, and small aggregate types.
874
875 Arguments that are larger than 4 bytes may be split between two or
876 more registers. If there are not enough registers free, an argument
877 may be passed partly in a register (or registers), and partly on the
878 stack. This includes doubles, long longs, and larger aggregates.
879 As far as I know, there is no upper limit to the size of aggregates
880 that will be passed in this way; in other words, the convention of
881 passing a pointer to a large aggregate instead of a copy is not used.
882
883 MVS: The above appears to be true for the SH variants that do not
884 have an FPU, however those that have an FPU appear to copy the
885 aggregate argument onto the stack (and not place it in registers)
886 if it is larger than 16 bytes (four GP registers).
887
888 An exceptional case exists for struct arguments (and possibly other
889 aggregates such as arrays) if the size is larger than 4 bytes but
890 not a multiple of 4 bytes. In this case the argument is never split
891 between the registers and the stack, but instead is copied in its
892 entirety onto the stack, AND also copied into as many registers as
893 there is room for. In other words, space in registers permitting,
894 two copies of the same argument are passed in. As far as I can tell,
895 only the one on the stack is used, although that may be a function
896 of the level of compiler optimization. I suspect this is a compiler
897 bug. Arguments of these odd sizes are left-justified within the
898 word (as opposed to arguments smaller than 4 bytes, which are
899 right-justified).
900
901 If the function is to return an aggregate type such as a struct, it
902 is either returned in the normal return value register R0 (if its
903 size is no greater than one byte), or else the caller must allocate
904 space into which the callee will copy the return value (if the size
905 is greater than one byte). In this case, a pointer to the return
906 value location is passed into the callee in register R2, which does
907 not displace any of the other arguments passed in via registers R4
908 to R7. */
909
910 /* Helper function to justify value in register according to endianess. */
911 static const gdb_byte *
912 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
913 {
914 static gdb_byte valbuf[4];
915
916 memset (valbuf, 0, sizeof (valbuf));
917 if (len < 4)
918 {
919 /* value gets right-justified in the register or stack word. */
920 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
921 memcpy (valbuf + (4 - len), value_contents (val), len);
922 else
923 memcpy (valbuf, value_contents (val), len);
924 return valbuf;
925 }
926 return value_contents (val);
927 }
928
929 /* Helper function to eval number of bytes to allocate on stack. */
930 static CORE_ADDR
931 sh_stack_allocsize (int nargs, struct value **args)
932 {
933 int stack_alloc = 0;
934 while (nargs-- > 0)
935 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
936 return stack_alloc;
937 }
938
939 /* Helper functions for getting the float arguments right. Registers usage
940 depends on the ABI and the endianess. The comments should enlighten how
941 it's intended to work. */
942
943 /* This array stores which of the float arg registers are already in use. */
944 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
945
946 /* This function just resets the above array to "no reg used so far". */
947 static void
948 sh_init_flt_argreg (void)
949 {
950 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
951 }
952
953 /* This function returns the next register to use for float arg passing.
954 It returns either a valid value between FLOAT_ARG0_REGNUM and
955 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
956 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
957
958 Note that register number 0 in flt_argreg_array corresponds with the
959 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
960 29) the parity of the register number is preserved, which is important
961 for the double register passing test (see the "argreg & 1" test below). */
962 static int
963 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
964 {
965 int argreg;
966
967 /* First search for the next free register. */
968 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
969 ++argreg)
970 if (!flt_argreg_array[argreg])
971 break;
972
973 /* No register left? */
974 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
975 return FLOAT_ARGLAST_REGNUM + 1;
976
977 if (len == 8)
978 {
979 /* Doubles are always starting in a even register number. */
980 if (argreg & 1)
981 {
982 /* In gcc ABI, the skipped register is lost for further argument
983 passing now. Not so in Renesas ABI. */
984 if (!sh_is_renesas_calling_convention (func_type))
985 flt_argreg_array[argreg] = 1;
986
987 ++argreg;
988
989 /* No register left? */
990 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
991 return FLOAT_ARGLAST_REGNUM + 1;
992 }
993 /* Also mark the next register as used. */
994 flt_argreg_array[argreg + 1] = 1;
995 }
996 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
997 && !sh_is_renesas_calling_convention (func_type))
998 {
999 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
1000 if (!flt_argreg_array[argreg + 1])
1001 ++argreg;
1002 }
1003 flt_argreg_array[argreg] = 1;
1004 return FLOAT_ARG0_REGNUM + argreg;
1005 }
1006
1007 /* Helper function which figures out, if a type is treated like a float type.
1008
1009 The FPU ABIs have a special way how to treat types as float types.
1010 Structures with exactly one member, which is of type float or double, are
1011 treated exactly as the base types float or double:
1012
1013 struct sf {
1014 float f;
1015 };
1016
1017 struct sd {
1018 double d;
1019 };
1020
1021 are handled the same way as just
1022
1023 float f;
1024
1025 double d;
1026
1027 As a result, arguments of these struct types are pushed into floating point
1028 registers exactly as floats or doubles, using the same decision algorithm.
1029
1030 The same is valid if these types are used as function return types. The
1031 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1032 or even using struct convention as it is for other structs. */
1033
1034 static int
1035 sh_treat_as_flt_p (struct type *type)
1036 {
1037 /* Ordinary float types are obviously treated as float. */
1038 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1039 return 1;
1040 /* Otherwise non-struct types are not treated as float. */
1041 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1042 return 0;
1043 /* Otherwise structs with more than one memeber are not treated as float. */
1044 if (TYPE_NFIELDS (type) != 1)
1045 return 0;
1046 /* Otherwise if the type of that member is float, the whole type is
1047 treated as float. */
1048 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1049 return 1;
1050 /* Otherwise it's not treated as float. */
1051 return 0;
1052 }
1053
1054 static CORE_ADDR
1055 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1056 struct value *function,
1057 struct regcache *regcache,
1058 CORE_ADDR bp_addr, int nargs,
1059 struct value **args,
1060 CORE_ADDR sp, int struct_return,
1061 CORE_ADDR struct_addr)
1062 {
1063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1064 int stack_offset = 0;
1065 int argreg = ARG0_REGNUM;
1066 int flt_argreg = 0;
1067 int argnum;
1068 struct type *func_type = value_type (function);
1069 struct type *type;
1070 CORE_ADDR regval;
1071 const gdb_byte *val;
1072 int len, reg_size = 0;
1073 int pass_on_stack = 0;
1074 int treat_as_flt;
1075 int last_reg_arg = INT_MAX;
1076
1077 /* The Renesas ABI expects all varargs arguments, plus the last
1078 non-vararg argument to be on the stack, no matter how many
1079 registers have been used so far. */
1080 if (sh_is_renesas_calling_convention (func_type)
1081 && TYPE_VARARGS (func_type))
1082 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1083
1084 /* First force sp to a 4-byte alignment. */
1085 sp = sh_frame_align (gdbarch, sp);
1086
1087 /* Make room on stack for args. */
1088 sp -= sh_stack_allocsize (nargs, args);
1089
1090 /* Initialize float argument mechanism. */
1091 sh_init_flt_argreg ();
1092
1093 /* Now load as many as possible of the first arguments into
1094 registers, and push the rest onto the stack. There are 16 bytes
1095 in four registers available. Loop thru args from first to last. */
1096 for (argnum = 0; argnum < nargs; argnum++)
1097 {
1098 type = value_type (args[argnum]);
1099 len = TYPE_LENGTH (type);
1100 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1101
1102 /* Some decisions have to be made how various types are handled.
1103 This also differs in different ABIs. */
1104 pass_on_stack = 0;
1105
1106 /* Find out the next register to use for a floating point value. */
1107 treat_as_flt = sh_treat_as_flt_p (type);
1108 if (treat_as_flt)
1109 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1110 /* In Renesas ABI, long longs and aggregate types are always passed
1111 on stack. */
1112 else if (sh_is_renesas_calling_convention (func_type)
1113 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1114 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1115 || TYPE_CODE (type) == TYPE_CODE_UNION))
1116 pass_on_stack = 1;
1117 /* In contrast to non-FPU CPUs, arguments are never split between
1118 registers and stack. If an argument doesn't fit in the remaining
1119 registers it's always pushed entirely on the stack. */
1120 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1121 pass_on_stack = 1;
1122
1123 while (len > 0)
1124 {
1125 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1126 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1127 || pass_on_stack))
1128 || argnum > last_reg_arg)
1129 {
1130 /* The data goes entirely on the stack, 4-byte aligned. */
1131 reg_size = (len + 3) & ~3;
1132 write_memory (sp + stack_offset, val, reg_size);
1133 stack_offset += reg_size;
1134 }
1135 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1136 {
1137 /* Argument goes in a float argument register. */
1138 reg_size = register_size (gdbarch, flt_argreg);
1139 regval = extract_unsigned_integer (val, reg_size, byte_order);
1140 /* In little endian mode, float types taking two registers
1141 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1142 be stored swapped in the argument registers. The below
1143 code first writes the first 32 bits in the next but one
1144 register, increments the val and len values accordingly
1145 and then proceeds as normal by writing the second 32 bits
1146 into the next register. */
1147 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1148 && TYPE_LENGTH (type) == 2 * reg_size)
1149 {
1150 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1151 regval);
1152 val += reg_size;
1153 len -= reg_size;
1154 regval = extract_unsigned_integer (val, reg_size,
1155 byte_order);
1156 }
1157 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1158 }
1159 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1160 {
1161 /* there's room in a register */
1162 reg_size = register_size (gdbarch, argreg);
1163 regval = extract_unsigned_integer (val, reg_size, byte_order);
1164 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1165 }
1166 /* Store the value one register at a time or in one step on
1167 stack. */
1168 len -= reg_size;
1169 val += reg_size;
1170 }
1171 }
1172
1173 if (struct_return)
1174 {
1175 if (sh_is_renesas_calling_convention (func_type))
1176 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1177 the stack and store the struct return address there. */
1178 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1179 else
1180 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1181 its own dedicated register. */
1182 regcache_cooked_write_unsigned (regcache,
1183 STRUCT_RETURN_REGNUM, struct_addr);
1184 }
1185
1186 /* Store return address. */
1187 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1188
1189 /* Update stack pointer. */
1190 regcache_cooked_write_unsigned (regcache,
1191 gdbarch_sp_regnum (gdbarch), sp);
1192
1193 return sp;
1194 }
1195
1196 static CORE_ADDR
1197 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1198 struct value *function,
1199 struct regcache *regcache,
1200 CORE_ADDR bp_addr,
1201 int nargs, struct value **args,
1202 CORE_ADDR sp, int struct_return,
1203 CORE_ADDR struct_addr)
1204 {
1205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1206 int stack_offset = 0;
1207 int argreg = ARG0_REGNUM;
1208 int argnum;
1209 struct type *func_type = value_type (function);
1210 struct type *type;
1211 CORE_ADDR regval;
1212 const gdb_byte *val;
1213 int len, reg_size = 0;
1214 int pass_on_stack = 0;
1215 int last_reg_arg = INT_MAX;
1216
1217 /* The Renesas ABI expects all varargs arguments, plus the last
1218 non-vararg argument to be on the stack, no matter how many
1219 registers have been used so far. */
1220 if (sh_is_renesas_calling_convention (func_type)
1221 && TYPE_VARARGS (func_type))
1222 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1223
1224 /* First force sp to a 4-byte alignment. */
1225 sp = sh_frame_align (gdbarch, sp);
1226
1227 /* Make room on stack for args. */
1228 sp -= sh_stack_allocsize (nargs, args);
1229
1230 /* Now load as many as possible of the first arguments into
1231 registers, and push the rest onto the stack. There are 16 bytes
1232 in four registers available. Loop thru args from first to last. */
1233 for (argnum = 0; argnum < nargs; argnum++)
1234 {
1235 type = value_type (args[argnum]);
1236 len = TYPE_LENGTH (type);
1237 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1238
1239 /* Some decisions have to be made how various types are handled.
1240 This also differs in different ABIs. */
1241 pass_on_stack = 0;
1242 /* Renesas ABI pushes doubles and long longs entirely on stack.
1243 Same goes for aggregate types. */
1244 if (sh_is_renesas_calling_convention (func_type)
1245 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1246 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1247 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (type) == TYPE_CODE_UNION))
1249 pass_on_stack = 1;
1250 while (len > 0)
1251 {
1252 if (argreg > ARGLAST_REGNUM || pass_on_stack
1253 || argnum > last_reg_arg)
1254 {
1255 /* The remainder of the data goes entirely on the stack,
1256 4-byte aligned. */
1257 reg_size = (len + 3) & ~3;
1258 write_memory (sp + stack_offset, val, reg_size);
1259 stack_offset += reg_size;
1260 }
1261 else if (argreg <= ARGLAST_REGNUM)
1262 {
1263 /* There's room in a register. */
1264 reg_size = register_size (gdbarch, argreg);
1265 regval = extract_unsigned_integer (val, reg_size, byte_order);
1266 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1267 }
1268 /* Store the value reg_size bytes at a time. This means that things
1269 larger than reg_size bytes may go partly in registers and partly
1270 on the stack. */
1271 len -= reg_size;
1272 val += reg_size;
1273 }
1274 }
1275
1276 if (struct_return)
1277 {
1278 if (sh_is_renesas_calling_convention (func_type))
1279 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1280 the stack and store the struct return address there. */
1281 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1282 else
1283 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1284 its own dedicated register. */
1285 regcache_cooked_write_unsigned (regcache,
1286 STRUCT_RETURN_REGNUM, struct_addr);
1287 }
1288
1289 /* Store return address. */
1290 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1291
1292 /* Update stack pointer. */
1293 regcache_cooked_write_unsigned (regcache,
1294 gdbarch_sp_regnum (gdbarch), sp);
1295
1296 return sp;
1297 }
1298
1299 /* Find a function's return value in the appropriate registers (in
1300 regbuf), and copy it into valbuf. Extract from an array REGBUF
1301 containing the (raw) register state a function return value of type
1302 TYPE, and copy that, in virtual format, into VALBUF. */
1303 static void
1304 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1305 gdb_byte *valbuf)
1306 {
1307 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1309 int len = TYPE_LENGTH (type);
1310 int return_register = R0_REGNUM;
1311 int offset;
1312
1313 if (len <= 4)
1314 {
1315 ULONGEST c;
1316
1317 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1318 store_unsigned_integer (valbuf, len, byte_order, c);
1319 }
1320 else if (len == 8)
1321 {
1322 int i, regnum = R0_REGNUM;
1323 for (i = 0; i < len; i += 4)
1324 regcache_raw_read (regcache, regnum++, valbuf + i);
1325 }
1326 else
1327 error (_("bad size for return value"));
1328 }
1329
1330 static void
1331 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1332 gdb_byte *valbuf)
1333 {
1334 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1335 if (sh_treat_as_flt_p (type))
1336 {
1337 int len = TYPE_LENGTH (type);
1338 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1339 for (i = 0; i < len; i += 4)
1340 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1341 regcache_raw_read (regcache, regnum++,
1342 valbuf + len - 4 - i);
1343 else
1344 regcache_raw_read (regcache, regnum++, valbuf + i);
1345 }
1346 else
1347 sh_extract_return_value_nofpu (type, regcache, valbuf);
1348 }
1349
1350 /* Write into appropriate registers a function return value
1351 of type TYPE, given in virtual format.
1352 If the architecture is sh4 or sh3e, store a function's return value
1353 in the R0 general register or in the FP0 floating point register,
1354 depending on the type of the return value. In all the other cases
1355 the result is stored in r0, left-justified. */
1356 static void
1357 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1358 const gdb_byte *valbuf)
1359 {
1360 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1362 ULONGEST val;
1363 int len = TYPE_LENGTH (type);
1364
1365 if (len <= 4)
1366 {
1367 val = extract_unsigned_integer (valbuf, len, byte_order);
1368 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1369 }
1370 else
1371 {
1372 int i, regnum = R0_REGNUM;
1373 for (i = 0; i < len; i += 4)
1374 regcache_raw_write (regcache, regnum++, valbuf + i);
1375 }
1376 }
1377
1378 static void
1379 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1380 const gdb_byte *valbuf)
1381 {
1382 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1383 if (sh_treat_as_flt_p (type))
1384 {
1385 int len = TYPE_LENGTH (type);
1386 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1387 for (i = 0; i < len; i += 4)
1388 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1389 regcache_raw_write (regcache, regnum++,
1390 valbuf + len - 4 - i);
1391 else
1392 regcache_raw_write (regcache, regnum++, valbuf + i);
1393 }
1394 else
1395 sh_store_return_value_nofpu (type, regcache, valbuf);
1396 }
1397
1398 static enum return_value_convention
1399 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1400 struct type *type, struct regcache *regcache,
1401 gdb_byte *readbuf, const gdb_byte *writebuf)
1402 {
1403 struct type *func_type = function ? value_type (function) : NULL;
1404
1405 if (sh_use_struct_convention_nofpu (
1406 sh_is_renesas_calling_convention (func_type), type))
1407 return RETURN_VALUE_STRUCT_CONVENTION;
1408 if (writebuf)
1409 sh_store_return_value_nofpu (type, regcache, writebuf);
1410 else if (readbuf)
1411 sh_extract_return_value_nofpu (type, regcache, readbuf);
1412 return RETURN_VALUE_REGISTER_CONVENTION;
1413 }
1414
1415 static enum return_value_convention
1416 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1417 struct type *type, struct regcache *regcache,
1418 gdb_byte *readbuf, const gdb_byte *writebuf)
1419 {
1420 struct type *func_type = function ? value_type (function) : NULL;
1421
1422 if (sh_use_struct_convention (
1423 sh_is_renesas_calling_convention (func_type), type))
1424 return RETURN_VALUE_STRUCT_CONVENTION;
1425 if (writebuf)
1426 sh_store_return_value_fpu (type, regcache, writebuf);
1427 else if (readbuf)
1428 sh_extract_return_value_fpu (type, regcache, readbuf);
1429 return RETURN_VALUE_REGISTER_CONVENTION;
1430 }
1431
1432 static struct type *
1433 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1434 {
1435 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1436 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1437 return builtin_type (gdbarch)->builtin_float;
1438 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1439 return builtin_type (gdbarch)->builtin_double;
1440 else
1441 return builtin_type (gdbarch)->builtin_int;
1442 }
1443
1444 /* Return the GDB type object for the "standard" data type
1445 of data in register N. */
1446 static struct type *
1447 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1448 {
1449 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1450 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1451 return builtin_type (gdbarch)->builtin_float;
1452 else
1453 return builtin_type (gdbarch)->builtin_int;
1454 }
1455
1456 static struct type *
1457 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1458 {
1459 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1460 0, high);
1461 }
1462
1463 static struct type *
1464 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1465 {
1466 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1467 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1468 return builtin_type (gdbarch)->builtin_float;
1469 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1470 return builtin_type (gdbarch)->builtin_double;
1471 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1472 return sh_sh4_build_float_register_type (gdbarch, 3);
1473 else
1474 return builtin_type (gdbarch)->builtin_int;
1475 }
1476
1477 static struct type *
1478 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1479 {
1480 return builtin_type (gdbarch)->builtin_int;
1481 }
1482
1483 /* Is a register in a reggroup?
1484 The default code in reggroup.c doesn't identify system registers, some
1485 float registers or any of the vector registers.
1486 TODO: sh2a and dsp registers. */
1487 static int
1488 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1489 struct reggroup *reggroup)
1490 {
1491 if (gdbarch_register_name (gdbarch, regnum) == NULL
1492 || *gdbarch_register_name (gdbarch, regnum) == '\0')
1493 return 0;
1494
1495 if (reggroup == float_reggroup
1496 && (regnum == FPUL_REGNUM
1497 || regnum == FPSCR_REGNUM))
1498 return 1;
1499
1500 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1501 {
1502 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1503 return 1;
1504 if (reggroup == general_reggroup)
1505 return 0;
1506 }
1507
1508 if (regnum == VBR_REGNUM
1509 || regnum == SR_REGNUM
1510 || regnum == FPSCR_REGNUM
1511 || regnum == SSR_REGNUM
1512 || regnum == SPC_REGNUM)
1513 {
1514 if (reggroup == system_reggroup)
1515 return 1;
1516 if (reggroup == general_reggroup)
1517 return 0;
1518 }
1519
1520 /* The default code can cope with any other registers. */
1521 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1522 }
1523
1524 /* On the sh4, the DRi pseudo registers are problematic if the target
1525 is little endian. When the user writes one of those registers, for
1526 instance with 'set var $dr0=1', we want the double to be stored
1527 like this:
1528 fr0 = 0x00 0x00 0xf0 0x3f
1529 fr1 = 0x00 0x00 0x00 0x00
1530
1531 This corresponds to little endian byte order & big endian word
1532 order. However if we let gdb write the register w/o conversion, it
1533 will write fr0 and fr1 this way:
1534 fr0 = 0x00 0x00 0x00 0x00
1535 fr1 = 0x00 0x00 0xf0 0x3f
1536 because it will consider fr0 and fr1 as a single LE stretch of memory.
1537
1538 To achieve what we want we must force gdb to store things in
1539 floatformat_ieee_double_littlebyte_bigword (which is defined in
1540 include/floatformat.h and libiberty/floatformat.c.
1541
1542 In case the target is big endian, there is no problem, the
1543 raw bytes will look like:
1544 fr0 = 0x3f 0xf0 0x00 0x00
1545 fr1 = 0x00 0x00 0x00 0x00
1546
1547 The other pseudo registers (the FVs) also don't pose a problem
1548 because they are stored as 4 individual FP elements. */
1549
1550 static void
1551 sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1552 struct type *type, gdb_byte *from, gdb_byte *to)
1553 {
1554 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1555 {
1556 /* It is a no-op. */
1557 memcpy (to, from, register_size (gdbarch, regnum));
1558 return;
1559 }
1560
1561 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1562 {
1563 DOUBLEST val;
1564 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1565 from, &val);
1566 store_typed_floating (to, type, val);
1567 }
1568 else
1569 error
1570 ("sh_register_convert_to_virtual called with non DR register number");
1571 }
1572
1573 static void
1574 sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1575 int regnum, const gdb_byte *from, gdb_byte *to)
1576 {
1577 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1578 {
1579 /* It is a no-op. */
1580 memcpy (to, from, register_size (gdbarch, regnum));
1581 return;
1582 }
1583
1584 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1585 {
1586 DOUBLEST val = extract_typed_floating (from, type);
1587 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1588 &val, to);
1589 }
1590 else
1591 error (_("sh_register_convert_to_raw called with non DR register number"));
1592 }
1593
1594 /* For vectors of 4 floating point registers. */
1595 static int
1596 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1597 {
1598 int fp_regnum;
1599
1600 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1601 + (fv_regnum - FV0_REGNUM) * 4;
1602 return fp_regnum;
1603 }
1604
1605 /* For double precision floating point registers, i.e 2 fp regs. */
1606 static int
1607 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1608 {
1609 int fp_regnum;
1610
1611 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1612 + (dr_regnum - DR0_REGNUM) * 2;
1613 return fp_regnum;
1614 }
1615
1616 /* Concatenate PORTIONS contiguous raw registers starting at
1617 BASE_REGNUM into BUFFER. */
1618
1619 static enum register_status
1620 pseudo_register_read_portions (struct gdbarch *gdbarch,
1621 struct regcache *regcache,
1622 int portions,
1623 int base_regnum, gdb_byte *buffer)
1624 {
1625 int portion;
1626
1627 for (portion = 0; portion < portions; portion++)
1628 {
1629 enum register_status status;
1630 gdb_byte *b;
1631
1632 b = buffer + register_size (gdbarch, base_regnum) * portion;
1633 status = regcache_raw_read (regcache, base_regnum + portion, b);
1634 if (status != REG_VALID)
1635 return status;
1636 }
1637
1638 return REG_VALID;
1639 }
1640
1641 static enum register_status
1642 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1643 int reg_nr, gdb_byte *buffer)
1644 {
1645 int base_regnum;
1646 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1647 enum register_status status;
1648
1649 if (reg_nr == PSEUDO_BANK_REGNUM)
1650 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1651 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1652 {
1653 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1654
1655 /* Build the value in the provided buffer. */
1656 /* Read the real regs for which this one is an alias. */
1657 status = pseudo_register_read_portions (gdbarch, regcache,
1658 2, base_regnum, temp_buffer);
1659 if (status == REG_VALID)
1660 {
1661 /* We must pay attention to the endiannes. */
1662 sh_register_convert_to_virtual (gdbarch, reg_nr,
1663 register_type (gdbarch, reg_nr),
1664 temp_buffer, buffer);
1665 }
1666 return status;
1667 }
1668 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1669 {
1670 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1671
1672 /* Read the real regs for which this one is an alias. */
1673 return pseudo_register_read_portions (gdbarch, regcache,
1674 4, base_regnum, buffer);
1675 }
1676 else
1677 gdb_assert_not_reached ("invalid pseudo register number");
1678 }
1679
1680 static void
1681 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1682 int reg_nr, const gdb_byte *buffer)
1683 {
1684 int base_regnum, portion;
1685 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1686
1687 if (reg_nr == PSEUDO_BANK_REGNUM)
1688 {
1689 /* When the bank register is written to, the whole register bank
1690 is switched and all values in the bank registers must be read
1691 from the target/sim again. We're just invalidating the regcache
1692 so that a re-read happens next time it's necessary. */
1693 int bregnum;
1694
1695 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1696 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1697 regcache_invalidate (regcache, bregnum);
1698 }
1699 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1700 {
1701 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1702
1703 /* We must pay attention to the endiannes. */
1704 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1705 reg_nr, buffer, temp_buffer);
1706
1707 /* Write the real regs for which this one is an alias. */
1708 for (portion = 0; portion < 2; portion++)
1709 regcache_raw_write (regcache, base_regnum + portion,
1710 (temp_buffer
1711 + register_size (gdbarch,
1712 base_regnum) * portion));
1713 }
1714 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1715 {
1716 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1717
1718 /* Write the real regs for which this one is an alias. */
1719 for (portion = 0; portion < 4; portion++)
1720 regcache_raw_write (regcache, base_regnum + portion,
1721 (buffer
1722 + register_size (gdbarch,
1723 base_regnum) * portion));
1724 }
1725 }
1726
1727 static int
1728 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1729 {
1730 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1731 return legacy_register_sim_regno (gdbarch, nr);
1732 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1733 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1734 if (nr == MOD_REGNUM)
1735 return SIM_SH_MOD_REGNUM;
1736 if (nr == RS_REGNUM)
1737 return SIM_SH_RS_REGNUM;
1738 if (nr == RE_REGNUM)
1739 return SIM_SH_RE_REGNUM;
1740 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1741 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1742 return nr;
1743 }
1744
1745 static int
1746 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1747 {
1748 switch (nr)
1749 {
1750 case TBR_REGNUM:
1751 return SIM_SH_TBR_REGNUM;
1752 case IBNR_REGNUM:
1753 return SIM_SH_IBNR_REGNUM;
1754 case IBCR_REGNUM:
1755 return SIM_SH_IBCR_REGNUM;
1756 case BANK_REGNUM:
1757 return SIM_SH_BANK_REGNUM;
1758 case MACLB_REGNUM:
1759 return SIM_SH_BANK_MACL_REGNUM;
1760 case GBRB_REGNUM:
1761 return SIM_SH_BANK_GBR_REGNUM;
1762 case PRB_REGNUM:
1763 return SIM_SH_BANK_PR_REGNUM;
1764 case IVNB_REGNUM:
1765 return SIM_SH_BANK_IVN_REGNUM;
1766 case MACHB_REGNUM:
1767 return SIM_SH_BANK_MACH_REGNUM;
1768 default:
1769 break;
1770 }
1771 return legacy_register_sim_regno (gdbarch, nr);
1772 }
1773
1774 /* Set up the register unwinding such that call-clobbered registers are
1775 not displayed in frames >0 because the true value is not certain.
1776 The 'undefined' registers will show up as 'not available' unless the
1777 CFI says otherwise.
1778
1779 This function is currently set up for SH4 and compatible only. */
1780
1781 static void
1782 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1783 struct dwarf2_frame_state_reg *reg,
1784 struct frame_info *this_frame)
1785 {
1786 /* Mark the PC as the destination for the return address. */
1787 if (regnum == gdbarch_pc_regnum (gdbarch))
1788 reg->how = DWARF2_FRAME_REG_RA;
1789
1790 /* Mark the stack pointer as the call frame address. */
1791 else if (regnum == gdbarch_sp_regnum (gdbarch))
1792 reg->how = DWARF2_FRAME_REG_CFA;
1793
1794 /* The above was taken from the default init_reg in dwarf2-frame.c
1795 while the below is SH specific. */
1796
1797 /* Caller save registers. */
1798 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1799 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1800 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1801 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1802 || (regnum == MACH_REGNUM)
1803 || (regnum == MACL_REGNUM)
1804 || (regnum == FPUL_REGNUM)
1805 || (regnum == SR_REGNUM))
1806 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1807
1808 /* Callee save registers. */
1809 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1810 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1811 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1812 || (regnum == FV0_REGNUM+3))
1813 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1814
1815 /* Other registers. These are not in the ABI and may or may not
1816 mean anything in frames >0 so don't show them. */
1817 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1818 || (regnum == GBR_REGNUM)
1819 || (regnum == VBR_REGNUM)
1820 || (regnum == FPSCR_REGNUM)
1821 || (regnum == SSR_REGNUM)
1822 || (regnum == SPC_REGNUM))
1823 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1824 }
1825
1826 static struct sh_frame_cache *
1827 sh_alloc_frame_cache (void)
1828 {
1829 struct sh_frame_cache *cache;
1830 int i;
1831
1832 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1833
1834 /* Base address. */
1835 cache->base = 0;
1836 cache->saved_sp = 0;
1837 cache->sp_offset = 0;
1838 cache->pc = 0;
1839
1840 /* Frameless until proven otherwise. */
1841 cache->uses_fp = 0;
1842
1843 /* Saved registers. We initialize these to -1 since zero is a valid
1844 offset (that's where fp is supposed to be stored). */
1845 for (i = 0; i < SH_NUM_REGS; i++)
1846 {
1847 cache->saved_regs[i] = -1;
1848 }
1849
1850 return cache;
1851 }
1852
1853 static struct sh_frame_cache *
1854 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1855 {
1856 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1857 struct sh_frame_cache *cache;
1858 CORE_ADDR current_pc;
1859 int i;
1860
1861 if (*this_cache)
1862 return *this_cache;
1863
1864 cache = sh_alloc_frame_cache ();
1865 *this_cache = cache;
1866
1867 /* In principle, for normal frames, fp holds the frame pointer,
1868 which holds the base address for the current stack frame.
1869 However, for functions that don't need it, the frame pointer is
1870 optional. For these "frameless" functions the frame pointer is
1871 actually the frame pointer of the calling frame. */
1872 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1873 if (cache->base == 0)
1874 return cache;
1875
1876 cache->pc = get_frame_func (this_frame);
1877 current_pc = get_frame_pc (this_frame);
1878 if (cache->pc != 0)
1879 {
1880 ULONGEST fpscr;
1881
1882 /* Check for the existence of the FPSCR register. If it exists,
1883 fetch its value for use in prologue analysis. Passing a zero
1884 value is the best choice for architecture variants upon which
1885 there's no FPSCR register. */
1886 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1887 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1888 else
1889 fpscr = 0;
1890
1891 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1892 }
1893
1894 if (!cache->uses_fp)
1895 {
1896 /* We didn't find a valid frame, which means that CACHE->base
1897 currently holds the frame pointer for our calling frame. If
1898 we're at the start of a function, or somewhere half-way its
1899 prologue, the function's frame probably hasn't been fully
1900 setup yet. Try to reconstruct the base address for the stack
1901 frame by looking at the stack pointer. For truly "frameless"
1902 functions this might work too. */
1903 cache->base = get_frame_register_unsigned
1904 (this_frame, gdbarch_sp_regnum (gdbarch));
1905 }
1906
1907 /* Now that we have the base address for the stack frame we can
1908 calculate the value of sp in the calling frame. */
1909 cache->saved_sp = cache->base + cache->sp_offset;
1910
1911 /* Adjust all the saved registers such that they contain addresses
1912 instead of offsets. */
1913 for (i = 0; i < SH_NUM_REGS; i++)
1914 if (cache->saved_regs[i] != -1)
1915 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1916
1917 return cache;
1918 }
1919
1920 static struct value *
1921 sh_frame_prev_register (struct frame_info *this_frame,
1922 void **this_cache, int regnum)
1923 {
1924 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1925 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1926
1927 gdb_assert (regnum >= 0);
1928
1929 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1930 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1931
1932 /* The PC of the previous frame is stored in the PR register of
1933 the current frame. Frob regnum so that we pull the value from
1934 the correct place. */
1935 if (regnum == gdbarch_pc_regnum (gdbarch))
1936 regnum = PR_REGNUM;
1937
1938 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1939 return frame_unwind_got_memory (this_frame, regnum,
1940 cache->saved_regs[regnum]);
1941
1942 return frame_unwind_got_register (this_frame, regnum, regnum);
1943 }
1944
1945 static void
1946 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1947 struct frame_id *this_id)
1948 {
1949 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1950
1951 /* This marks the outermost frame. */
1952 if (cache->base == 0)
1953 return;
1954
1955 *this_id = frame_id_build (cache->saved_sp, cache->pc);
1956 }
1957
1958 static const struct frame_unwind sh_frame_unwind = {
1959 NORMAL_FRAME,
1960 default_frame_unwind_stop_reason,
1961 sh_frame_this_id,
1962 sh_frame_prev_register,
1963 NULL,
1964 default_frame_sniffer
1965 };
1966
1967 static CORE_ADDR
1968 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1969 {
1970 return frame_unwind_register_unsigned (next_frame,
1971 gdbarch_sp_regnum (gdbarch));
1972 }
1973
1974 static CORE_ADDR
1975 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1976 {
1977 return frame_unwind_register_unsigned (next_frame,
1978 gdbarch_pc_regnum (gdbarch));
1979 }
1980
1981 static struct frame_id
1982 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1983 {
1984 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1985 gdbarch_sp_regnum (gdbarch));
1986 return frame_id_build (sp, get_frame_pc (this_frame));
1987 }
1988
1989 static CORE_ADDR
1990 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
1991 {
1992 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1993
1994 return cache->base;
1995 }
1996
1997 static const struct frame_base sh_frame_base = {
1998 &sh_frame_unwind,
1999 sh_frame_base_address,
2000 sh_frame_base_address,
2001 sh_frame_base_address
2002 };
2003
2004 static struct sh_frame_cache *
2005 sh_make_stub_cache (struct frame_info *this_frame)
2006 {
2007 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2008 struct sh_frame_cache *cache;
2009
2010 cache = sh_alloc_frame_cache ();
2011
2012 cache->saved_sp
2013 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2014
2015 return cache;
2016 }
2017
2018 static void
2019 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2020 struct frame_id *this_id)
2021 {
2022 struct sh_frame_cache *cache;
2023
2024 if (*this_cache == NULL)
2025 *this_cache = sh_make_stub_cache (this_frame);
2026 cache = *this_cache;
2027
2028 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2029 }
2030
2031 static int
2032 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2033 struct frame_info *this_frame,
2034 void **this_prologue_cache)
2035 {
2036 CORE_ADDR addr_in_block;
2037
2038 addr_in_block = get_frame_address_in_block (this_frame);
2039 if (in_plt_section (addr_in_block))
2040 return 1;
2041
2042 return 0;
2043 }
2044
2045 static const struct frame_unwind sh_stub_unwind =
2046 {
2047 NORMAL_FRAME,
2048 default_frame_unwind_stop_reason,
2049 sh_stub_this_id,
2050 sh_frame_prev_register,
2051 NULL,
2052 sh_stub_unwind_sniffer
2053 };
2054
2055 /* The epilogue is defined here as the area at the end of a function,
2056 either on the `ret' instruction itself or after an instruction which
2057 destroys the function's stack frame. */
2058 static int
2059 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2060 {
2061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2062 CORE_ADDR func_addr = 0, func_end = 0;
2063
2064 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2065 {
2066 ULONGEST inst;
2067 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2068 for a nop and some fixed data (e.g. big offsets) which are
2069 unfortunately also treated as part of the function (which
2070 means, they are below func_end. */
2071 CORE_ADDR addr = func_end - 28;
2072 if (addr < func_addr + 4)
2073 addr = func_addr + 4;
2074 if (pc < addr)
2075 return 0;
2076
2077 /* First search forward until hitting an rts. */
2078 while (addr < func_end
2079 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2080 addr += 2;
2081 if (addr >= func_end)
2082 return 0;
2083
2084 /* At this point we should find a mov.l @r15+,r14 instruction,
2085 either before or after the rts. If not, then the function has
2086 probably no "normal" epilogue and we bail out here. */
2087 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2088 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2089 byte_order)))
2090 addr -= 2;
2091 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2092 byte_order)))
2093 return 0;
2094
2095 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2096
2097 /* Step over possible lds.l @r15+,macl. */
2098 if (IS_MACL_LDS (inst))
2099 {
2100 addr -= 2;
2101 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2102 }
2103
2104 /* Step over possible lds.l @r15+,pr. */
2105 if (IS_LDS (inst))
2106 {
2107 addr -= 2;
2108 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2109 }
2110
2111 /* Step over possible mov r14,r15. */
2112 if (IS_MOV_FP_SP (inst))
2113 {
2114 addr -= 2;
2115 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2116 }
2117
2118 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2119 instructions. */
2120 while (addr > func_addr + 4
2121 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2122 {
2123 addr -= 2;
2124 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2125 }
2126
2127 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2128 That's allowed for the epilogue. */
2129 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2130 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2131 && addr > func_addr + 6
2132 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2133 byte_order)))
2134 addr -= 4;
2135
2136 if (pc >= addr)
2137 return 1;
2138 }
2139 return 0;
2140 }
2141
2142
2143 /* Supply register REGNUM from the buffer specified by REGS and LEN
2144 in the register set REGSET to register cache REGCACHE.
2145 REGTABLE specifies where each register can be found in REGS.
2146 If REGNUM is -1, do this for all registers in REGSET. */
2147
2148 void
2149 sh_corefile_supply_regset (const struct regset *regset,
2150 struct regcache *regcache,
2151 int regnum, const void *regs, size_t len)
2152 {
2153 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2155 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2156 ? tdep->core_gregmap
2157 : tdep->core_fpregmap);
2158 int i;
2159
2160 for (i = 0; regmap[i].regnum != -1; i++)
2161 {
2162 if ((regnum == -1 || regnum == regmap[i].regnum)
2163 && regmap[i].offset + 4 <= len)
2164 regcache_raw_supply (regcache, regmap[i].regnum,
2165 (char *)regs + regmap[i].offset);
2166 }
2167 }
2168
2169 /* Collect register REGNUM in the register set REGSET from register cache
2170 REGCACHE into the buffer specified by REGS and LEN.
2171 REGTABLE specifies where each register can be found in REGS.
2172 If REGNUM is -1, do this for all registers in REGSET. */
2173
2174 void
2175 sh_corefile_collect_regset (const struct regset *regset,
2176 const struct regcache *regcache,
2177 int regnum, void *regs, size_t len)
2178 {
2179 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2181 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2182 ? tdep->core_gregmap
2183 : tdep->core_fpregmap);
2184 int i;
2185
2186 for (i = 0; regmap[i].regnum != -1; i++)
2187 {
2188 if ((regnum == -1 || regnum == regmap[i].regnum)
2189 && regmap[i].offset + 4 <= len)
2190 regcache_raw_collect (regcache, regmap[i].regnum,
2191 (char *)regs + regmap[i].offset);
2192 }
2193 }
2194
2195 /* The following two regsets have the same contents, so it is tempting to
2196 unify them, but they are distiguished by their address, so don't. */
2197
2198 const struct regset sh_corefile_gregset =
2199 {
2200 NULL,
2201 sh_corefile_supply_regset,
2202 sh_corefile_collect_regset
2203 };
2204
2205 static const struct regset sh_corefile_fpregset =
2206 {
2207 NULL,
2208 sh_corefile_supply_regset,
2209 sh_corefile_collect_regset
2210 };
2211
2212 static const struct regset *
2213 sh_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name,
2214 size_t sect_size)
2215 {
2216 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2217
2218 if (tdep->core_gregmap && strcmp (sect_name, ".reg") == 0)
2219 return &sh_corefile_gregset;
2220
2221 if (tdep->core_fpregmap && strcmp (sect_name, ".reg2") == 0)
2222 return &sh_corefile_fpregset;
2223
2224 return NULL;
2225 }
2226
2227 /* This is the implementation of gdbarch method
2228 return_in_first_hidden_param_p. */
2229
2230 static int
2231 sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2232 struct type *type)
2233 {
2234 return 0;
2235 }
2236
2237 \f
2238
2239 static struct gdbarch *
2240 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2241 {
2242 struct gdbarch *gdbarch;
2243 struct gdbarch_tdep *tdep;
2244
2245 /* SH5 is handled entirely in sh64-tdep.c. */
2246 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2247 return sh64_gdbarch_init (info, arches);
2248
2249 /* If there is already a candidate, use it. */
2250 arches = gdbarch_list_lookup_by_info (arches, &info);
2251 if (arches != NULL)
2252 return arches->gdbarch;
2253
2254 /* None found, create a new architecture from the information
2255 provided. */
2256 tdep = XCNEW (struct gdbarch_tdep);
2257 gdbarch = gdbarch_alloc (&info, tdep);
2258
2259 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2260 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2261 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2262 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2263 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2264 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2265 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2266 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2267
2268 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2269 set_gdbarch_sp_regnum (gdbarch, 15);
2270 set_gdbarch_pc_regnum (gdbarch, 16);
2271 set_gdbarch_fp0_regnum (gdbarch, -1);
2272 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2273
2274 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2275 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2276
2277 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2278
2279 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2280 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2281
2282 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2283
2284 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2285 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2286
2287 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2288 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2289 sh_return_in_first_hidden_param_p);
2290
2291 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2292
2293 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2294 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2295 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2296 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
2297 frame_base_set_default (gdbarch, &sh_frame_base);
2298
2299 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
2300
2301 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2302
2303 set_gdbarch_regset_from_core_section (gdbarch, sh_regset_from_core_section);
2304
2305 switch (info.bfd_arch_info->mach)
2306 {
2307 case bfd_mach_sh:
2308 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2309 break;
2310
2311 case bfd_mach_sh2:
2312 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2313 break;
2314
2315 case bfd_mach_sh2e:
2316 /* doubles on sh2e and sh3e are actually 4 byte. */
2317 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2318 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2319
2320 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2321 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2322 set_gdbarch_fp0_regnum (gdbarch, 25);
2323 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2324 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2325 break;
2326
2327 case bfd_mach_sh2a:
2328 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2329 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2330 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2331
2332 set_gdbarch_fp0_regnum (gdbarch, 25);
2333 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2334 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2335 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2336 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2337 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2338 break;
2339
2340 case bfd_mach_sh2a_nofpu:
2341 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2342 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2343
2344 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2345 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2346 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2347 break;
2348
2349 case bfd_mach_sh_dsp:
2350 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2351 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2352 break;
2353
2354 case bfd_mach_sh3:
2355 case bfd_mach_sh3_nommu:
2356 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2357 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2358 break;
2359
2360 case bfd_mach_sh3e:
2361 case bfd_mach_sh2a_or_sh3e:
2362 /* doubles on sh2e and sh3e are actually 4 byte. */
2363 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2364 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2365
2366 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2367 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2368 set_gdbarch_fp0_regnum (gdbarch, 25);
2369 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2370 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2371 break;
2372
2373 case bfd_mach_sh3_dsp:
2374 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2375 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2376 break;
2377
2378 case bfd_mach_sh4:
2379 case bfd_mach_sh4a:
2380 case bfd_mach_sh2a_or_sh4:
2381 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2382 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2383 set_gdbarch_fp0_regnum (gdbarch, 25);
2384 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2385 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2386 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2387 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2388 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2389 break;
2390
2391 case bfd_mach_sh4_nofpu:
2392 case bfd_mach_sh4a_nofpu:
2393 case bfd_mach_sh4_nommu_nofpu:
2394 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2395 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2396 break;
2397
2398 case bfd_mach_sh4al_dsp:
2399 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2400 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2401 break;
2402
2403 default:
2404 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2405 break;
2406 }
2407
2408 /* Hook in ABI-specific overrides, if they have been registered. */
2409 gdbarch_init_osabi (info, gdbarch);
2410
2411 dwarf2_append_unwinders (gdbarch);
2412 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2413 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2414
2415 return gdbarch;
2416 }
2417
2418 static void
2419 show_sh_command (char *args, int from_tty)
2420 {
2421 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2422 }
2423
2424 static void
2425 set_sh_command (char *args, int from_tty)
2426 {
2427 printf_unfiltered
2428 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2429 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2430 }
2431
2432 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2433
2434 void
2435 _initialize_sh_tdep (void)
2436 {
2437 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2438
2439 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2440 &setshcmdlist, "set sh ", 0, &setlist);
2441 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2442 &showshcmdlist, "show sh ", 0, &showlist);
2443
2444 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2445 &sh_active_calling_convention,
2446 _("Set calling convention used when calling target "
2447 "functions from GDB."),
2448 _("Show calling convention used when calling target "
2449 "functions from GDB."),
2450 _("gcc - Use GCC calling convention (default).\n"
2451 "renesas - Enforce Renesas calling convention."),
2452 NULL, NULL,
2453 &setshcmdlist, &showshcmdlist);
2454 }
This page took 0.087376 seconds and 4 git commands to generate.