gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "gdb_string.h"
36 #include "gdb_assert.h"
37 #include "arch-utils.h"
38 #include "floatformat.h"
39 #include "regcache.h"
40 #include "doublest.h"
41 #include "osabi.h"
42 #include "reggroups.h"
43 #include "regset.h"
44 #include "objfiles.h"
45
46 #include "sh-tdep.h"
47 #include "sh64-tdep.h"
48
49 #include "elf-bfd.h"
50 #include "solib-svr4.h"
51
52 /* sh flags */
53 #include "elf/sh.h"
54 #include "dwarf2.h"
55 /* registers numbers shared with the simulator. */
56 #include "gdb/sim-sh.h"
57
58 /* List of "set sh ..." and "show sh ..." commands. */
59 static struct cmd_list_element *setshcmdlist = NULL;
60 static struct cmd_list_element *showshcmdlist = NULL;
61
62 static const char sh_cc_gcc[] = "gcc";
63 static const char sh_cc_renesas[] = "renesas";
64 static const char *const sh_cc_enum[] = {
65 sh_cc_gcc,
66 sh_cc_renesas,
67 NULL
68 };
69
70 static const char *sh_active_calling_convention = sh_cc_gcc;
71
72 #define SH_NUM_REGS 67
73
74 struct sh_frame_cache
75 {
76 /* Base address. */
77 CORE_ADDR base;
78 LONGEST sp_offset;
79 CORE_ADDR pc;
80
81 /* Flag showing that a frame has been created in the prologue code. */
82 int uses_fp;
83
84 /* Saved registers. */
85 CORE_ADDR saved_regs[SH_NUM_REGS];
86 CORE_ADDR saved_sp;
87 };
88
89 static int
90 sh_is_renesas_calling_convention (struct type *func_type)
91 {
92 int val = 0;
93
94 if (func_type)
95 {
96 func_type = check_typedef (func_type);
97
98 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
99 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
100
101 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
102 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
103 val = 1;
104 }
105
106 if (sh_active_calling_convention == sh_cc_renesas)
107 val = 1;
108
109 return val;
110 }
111
112 static const char *
113 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
114 {
115 static char *register_names[] = {
116 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
117 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
118 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
119 "", "",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
122 "", "",
123 "", "", "", "", "", "", "", "",
124 "", "", "", "", "", "", "", "",
125 "", "", "", "", "", "", "", "",
126 };
127 if (reg_nr < 0)
128 return NULL;
129 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
130 return NULL;
131 return register_names[reg_nr];
132 }
133
134 static const char *
135 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
136 {
137 static char *register_names[] = {
138 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
139 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
140 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
141 "", "",
142 "", "", "", "", "", "", "", "",
143 "", "", "", "", "", "", "", "",
144 "ssr", "spc",
145 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
146 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
147 "", "", "", "", "", "", "", "",
148 };
149 if (reg_nr < 0)
150 return NULL;
151 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
152 return NULL;
153 return register_names[reg_nr];
154 }
155
156 static const char *
157 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
158 {
159 static char *register_names[] = {
160 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
161 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
162 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
163 "fpul", "fpscr",
164 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
165 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
166 "ssr", "spc",
167 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
168 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
169 "", "", "", "", "", "", "", "",
170 };
171 if (reg_nr < 0)
172 return NULL;
173 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
174 return NULL;
175 return register_names[reg_nr];
176 }
177
178 static const char *
179 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
180 {
181 static char *register_names[] = {
182 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
183 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
184 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
185 "fpul", "fpscr",
186 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
187 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
188 "", "",
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
191 "", "", "", "", "", "", "", "",
192 };
193 if (reg_nr < 0)
194 return NULL;
195 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
196 return NULL;
197 return register_names[reg_nr];
198 }
199
200 static const char *
201 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
202 {
203 static char *register_names[] = {
204 /* general registers 0-15 */
205 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
206 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
207 /* 16 - 22 */
208 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
209 /* 23, 24 */
210 "fpul", "fpscr",
211 /* floating point registers 25 - 40 */
212 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
213 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
214 /* 41, 42 */
215 "", "",
216 /* 43 - 62. Banked registers. The bank number used is determined by
217 the bank register (63). */
218 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
219 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
220 "machb", "ivnb", "prb", "gbrb", "maclb",
221 /* 63: register bank number, not a real register but used to
222 communicate the register bank currently get/set. This register
223 is hidden to the user, who manipulates it using the pseudo
224 register called "bank" (67). See below. */
225 "",
226 /* 64 - 66 */
227 "ibcr", "ibnr", "tbr",
228 /* 67: register bank number, the user visible pseudo register. */
229 "bank",
230 /* double precision (pseudo) 68 - 75 */
231 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
232 };
233 if (reg_nr < 0)
234 return NULL;
235 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
236 return NULL;
237 return register_names[reg_nr];
238 }
239
240 static const char *
241 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
242 {
243 static char *register_names[] = {
244 /* general registers 0-15 */
245 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
246 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
247 /* 16 - 22 */
248 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
249 /* 23, 24 */
250 "", "",
251 /* floating point registers 25 - 40 */
252 "", "", "", "", "", "", "", "",
253 "", "", "", "", "", "", "", "",
254 /* 41, 42 */
255 "", "",
256 /* 43 - 62. Banked registers. The bank number used is determined by
257 the bank register (63). */
258 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
259 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
260 "machb", "ivnb", "prb", "gbrb", "maclb",
261 /* 63: register bank number, not a real register but used to
262 communicate the register bank currently get/set. This register
263 is hidden to the user, who manipulates it using the pseudo
264 register called "bank" (67). See below. */
265 "",
266 /* 64 - 66 */
267 "ibcr", "ibnr", "tbr",
268 /* 67: register bank number, the user visible pseudo register. */
269 "bank",
270 /* double precision (pseudo) 68 - 75 */
271 "", "", "", "", "", "", "", "",
272 };
273 if (reg_nr < 0)
274 return NULL;
275 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
276 return NULL;
277 return register_names[reg_nr];
278 }
279
280 static const char *
281 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
282 {
283 static char *register_names[] = {
284 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
285 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
286 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
287 "", "dsr",
288 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
289 "y0", "y1", "", "", "", "", "", "mod",
290 "", "",
291 "rs", "re", "", "", "", "", "", "",
292 "", "", "", "", "", "", "", "",
293 "", "", "", "", "", "", "", "",
294 };
295 if (reg_nr < 0)
296 return NULL;
297 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
298 return NULL;
299 return register_names[reg_nr];
300 }
301
302 static const char *
303 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
304 {
305 static char *register_names[] = {
306 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
309 "", "dsr",
310 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
311 "y0", "y1", "", "", "", "", "", "mod",
312 "ssr", "spc",
313 "rs", "re", "", "", "", "", "", "",
314 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
315 "", "", "", "", "", "", "", "",
316 "", "", "", "", "", "", "", "",
317 };
318 if (reg_nr < 0)
319 return NULL;
320 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
321 return NULL;
322 return register_names[reg_nr];
323 }
324
325 static const char *
326 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
327 {
328 static char *register_names[] = {
329 /* general registers 0-15 */
330 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
331 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
332 /* 16 - 22 */
333 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
334 /* 23, 24 */
335 "fpul", "fpscr",
336 /* floating point registers 25 - 40 */
337 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
338 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
339 /* 41, 42 */
340 "ssr", "spc",
341 /* bank 0 43 - 50 */
342 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
343 /* bank 1 51 - 58 */
344 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
345 "", "", "", "", "", "", "", "",
346 /* pseudo bank register. */
347 "",
348 /* double precision (pseudo) 59 - 66 */
349 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
350 /* vectors (pseudo) 67 - 70 */
351 "fv0", "fv4", "fv8", "fv12",
352 /* FIXME: missing XF 71 - 86 */
353 /* FIXME: missing XD 87 - 94 */
354 };
355 if (reg_nr < 0)
356 return NULL;
357 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
358 return NULL;
359 return register_names[reg_nr];
360 }
361
362 static const char *
363 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
364 {
365 static char *register_names[] = {
366 /* general registers 0-15 */
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
369 /* 16 - 22 */
370 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
371 /* 23, 24 */
372 "", "",
373 /* floating point registers 25 - 40 -- not for nofpu target */
374 "", "", "", "", "", "", "", "",
375 "", "", "", "", "", "", "", "",
376 /* 41, 42 */
377 "ssr", "spc",
378 /* bank 0 43 - 50 */
379 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
380 /* bank 1 51 - 58 */
381 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
382 "", "", "", "", "", "", "", "",
383 /* pseudo bank register. */
384 "",
385 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
386 "", "", "", "", "", "", "", "",
387 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
388 "", "", "", "",
389 };
390 if (reg_nr < 0)
391 return NULL;
392 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
393 return NULL;
394 return register_names[reg_nr];
395 }
396
397 static const char *
398 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
399 {
400 static char *register_names[] = {
401 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
402 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
403 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
404 "", "dsr",
405 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
406 "y0", "y1", "", "", "", "", "", "mod",
407 "ssr", "spc",
408 "rs", "re", "", "", "", "", "", "",
409 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
412 };
413 if (reg_nr < 0)
414 return NULL;
415 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
416 return NULL;
417 return register_names[reg_nr];
418 }
419
420 static const unsigned char *
421 sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
422 {
423 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
424 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
425
426 /* For remote stub targets, trapa #20 is used. */
427 if (strcmp (target_shortname, "remote") == 0)
428 {
429 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
430 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
431
432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
433 {
434 *lenptr = sizeof (big_remote_breakpoint);
435 return big_remote_breakpoint;
436 }
437 else
438 {
439 *lenptr = sizeof (little_remote_breakpoint);
440 return little_remote_breakpoint;
441 }
442 }
443
444 *lenptr = sizeof (breakpoint);
445 return breakpoint;
446 }
447
448 /* Prologue looks like
449 mov.l r14,@-r15
450 sts.l pr,@-r15
451 mov.l <regs>,@-r15
452 sub <room_for_loca_vars>,r15
453 mov r15,r14
454
455 Actually it can be more complicated than this but that's it, basically. */
456
457 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
458 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
459
460 /* JSR @Rm 0100mmmm00001011 */
461 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
462
463 /* STS.L PR,@-r15 0100111100100010
464 r15-4-->r15, PR-->(r15) */
465 #define IS_STS(x) ((x) == 0x4f22)
466
467 /* STS.L MACL,@-r15 0100111100010010
468 r15-4-->r15, MACL-->(r15) */
469 #define IS_MACL_STS(x) ((x) == 0x4f12)
470
471 /* MOV.L Rm,@-r15 00101111mmmm0110
472 r15-4-->r15, Rm-->(R15) */
473 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
474
475 /* MOV r15,r14 0110111011110011
476 r15-->r14 */
477 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
478
479 /* ADD #imm,r15 01111111iiiiiiii
480 r15+imm-->r15 */
481 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
482
483 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
484 #define IS_SHLL_R3(x) ((x) == 0x4300)
485
486 /* ADD r3,r15 0011111100111100
487 r15+r3-->r15 */
488 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
489
490 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
491 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
492 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
493 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
494 make this entirely clear. */
495 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
496 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
497
498 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
499 #define IS_MOV_ARG_TO_REG(x) \
500 (((x) & 0xf00f) == 0x6003 && \
501 ((x) & 0x00f0) >= 0x0040 && \
502 ((x) & 0x00f0) <= 0x0070)
503 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
504 #define IS_MOV_ARG_TO_IND_R14(x) \
505 (((x) & 0xff0f) == 0x2e02 && \
506 ((x) & 0x00f0) >= 0x0040 && \
507 ((x) & 0x00f0) <= 0x0070)
508 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
509 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
510 (((x) & 0xff00) == 0x1e00 && \
511 ((x) & 0x00f0) >= 0x0040 && \
512 ((x) & 0x00f0) <= 0x0070)
513
514 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
515 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
516 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
517 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
518 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
519 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
520 /* SUB Rn,R15 00111111nnnn1000 */
521 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
522
523 #define FPSCR_SZ (1 << 20)
524
525 /* The following instructions are used for epilogue testing. */
526 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
527 #define IS_RTS(x) ((x) == 0x000b)
528 #define IS_LDS(x) ((x) == 0x4f26)
529 #define IS_MACL_LDS(x) ((x) == 0x4f16)
530 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
531 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
532 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
533
534 static CORE_ADDR
535 sh_analyze_prologue (struct gdbarch *gdbarch,
536 CORE_ADDR pc, CORE_ADDR limit_pc,
537 struct sh_frame_cache *cache, ULONGEST fpscr)
538 {
539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
540 ULONGEST inst;
541 int offset;
542 int sav_offset = 0;
543 int r3_val = 0;
544 int reg, sav_reg = -1;
545
546 cache->uses_fp = 0;
547 for (; pc < limit_pc; pc += 2)
548 {
549 inst = read_memory_unsigned_integer (pc, 2, byte_order);
550 /* See where the registers will be saved to. */
551 if (IS_PUSH (inst))
552 {
553 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
554 cache->sp_offset += 4;
555 }
556 else if (IS_STS (inst))
557 {
558 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
559 cache->sp_offset += 4;
560 }
561 else if (IS_MACL_STS (inst))
562 {
563 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
564 cache->sp_offset += 4;
565 }
566 else if (IS_MOV_R3 (inst))
567 {
568 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
569 }
570 else if (IS_SHLL_R3 (inst))
571 {
572 r3_val <<= 1;
573 }
574 else if (IS_ADD_R3SP (inst))
575 {
576 cache->sp_offset += -r3_val;
577 }
578 else if (IS_ADD_IMM_SP (inst))
579 {
580 offset = ((inst & 0xff) ^ 0x80) - 0x80;
581 cache->sp_offset -= offset;
582 }
583 else if (IS_MOVW_PCREL_TO_REG (inst))
584 {
585 if (sav_reg < 0)
586 {
587 reg = GET_TARGET_REG (inst);
588 if (reg < 14)
589 {
590 sav_reg = reg;
591 offset = (inst & 0xff) << 1;
592 sav_offset =
593 read_memory_integer ((pc + 4) + offset, 2, byte_order);
594 }
595 }
596 }
597 else if (IS_MOVL_PCREL_TO_REG (inst))
598 {
599 if (sav_reg < 0)
600 {
601 reg = GET_TARGET_REG (inst);
602 if (reg < 14)
603 {
604 sav_reg = reg;
605 offset = (inst & 0xff) << 2;
606 sav_offset =
607 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
608 4, byte_order);
609 }
610 }
611 }
612 else if (IS_MOVI20 (inst)
613 && (pc + 2 < limit_pc))
614 {
615 if (sav_reg < 0)
616 {
617 reg = GET_TARGET_REG (inst);
618 if (reg < 14)
619 {
620 sav_reg = reg;
621 sav_offset = GET_SOURCE_REG (inst) << 16;
622 /* MOVI20 is a 32 bit instruction! */
623 pc += 2;
624 sav_offset
625 |= read_memory_unsigned_integer (pc, 2, byte_order);
626 /* Now sav_offset contains an unsigned 20 bit value.
627 It must still get sign extended. */
628 if (sav_offset & 0x00080000)
629 sav_offset |= 0xfff00000;
630 }
631 }
632 }
633 else if (IS_SUB_REG_FROM_SP (inst))
634 {
635 reg = GET_SOURCE_REG (inst);
636 if (sav_reg > 0 && reg == sav_reg)
637 {
638 sav_reg = -1;
639 }
640 cache->sp_offset += sav_offset;
641 }
642 else if (IS_FPUSH (inst))
643 {
644 if (fpscr & FPSCR_SZ)
645 {
646 cache->sp_offset += 8;
647 }
648 else
649 {
650 cache->sp_offset += 4;
651 }
652 }
653 else if (IS_MOV_SP_FP (inst))
654 {
655 pc += 2;
656 /* Don't go any further than six more instructions. */
657 limit_pc = min (limit_pc, pc + (2 * 6));
658
659 cache->uses_fp = 1;
660 /* At this point, only allow argument register moves to other
661 registers or argument register moves to @(X,fp) which are
662 moving the register arguments onto the stack area allocated
663 by a former add somenumber to SP call. Don't allow moving
664 to an fp indirect address above fp + cache->sp_offset. */
665 for (; pc < limit_pc; pc += 2)
666 {
667 inst = read_memory_integer (pc, 2, byte_order);
668 if (IS_MOV_ARG_TO_IND_R14 (inst))
669 {
670 reg = GET_SOURCE_REG (inst);
671 if (cache->sp_offset > 0)
672 cache->saved_regs[reg] = cache->sp_offset;
673 }
674 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
675 {
676 reg = GET_SOURCE_REG (inst);
677 offset = (inst & 0xf) * 4;
678 if (cache->sp_offset > offset)
679 cache->saved_regs[reg] = cache->sp_offset - offset;
680 }
681 else if (IS_MOV_ARG_TO_REG (inst))
682 continue;
683 else
684 break;
685 }
686 break;
687 }
688 else if (IS_JSR (inst))
689 {
690 /* We have found a jsr that has been scheduled into the prologue.
691 If we continue the scan and return a pc someplace after this,
692 then setting a breakpoint on this function will cause it to
693 appear to be called after the function it is calling via the
694 jsr, which will be very confusing. Most likely the next
695 instruction is going to be IS_MOV_SP_FP in the delay slot. If
696 so, note that before returning the current pc. */
697 if (pc + 2 < limit_pc)
698 {
699 inst = read_memory_integer (pc + 2, 2, byte_order);
700 if (IS_MOV_SP_FP (inst))
701 cache->uses_fp = 1;
702 }
703 break;
704 }
705 #if 0 /* This used to just stop when it found an instruction
706 that was not considered part of the prologue. Now,
707 we just keep going looking for likely
708 instructions. */
709 else
710 break;
711 #endif
712 }
713
714 return pc;
715 }
716
717 /* Skip any prologue before the guts of a function. */
718 static CORE_ADDR
719 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
720 {
721 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
722 struct sh_frame_cache cache;
723
724 /* See if we can determine the end of the prologue via the symbol table.
725 If so, then return either PC, or the PC after the prologue, whichever
726 is greater. */
727 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
728 {
729 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
730 if (post_prologue_pc != 0)
731 return max (pc, post_prologue_pc);
732 }
733
734 /* Can't determine prologue from the symbol table, need to examine
735 instructions. */
736
737 /* Find an upper limit on the function prologue using the debug
738 information. If the debug information could not be used to provide
739 that bound, then use an arbitrary large number as the upper bound. */
740 limit_pc = skip_prologue_using_sal (gdbarch, pc);
741 if (limit_pc == 0)
742 /* Don't go any further than 28 instructions. */
743 limit_pc = pc + (2 * 28);
744
745 /* Do not allow limit_pc to be past the function end, if we know
746 where that end is... */
747 if (func_end_addr != 0)
748 limit_pc = min (limit_pc, func_end_addr);
749
750 cache.sp_offset = -4;
751 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
752 if (cache.uses_fp)
753 pc = post_prologue_pc;
754
755 return pc;
756 }
757
758 /* The ABI says:
759
760 Aggregate types not bigger than 8 bytes that have the same size and
761 alignment as one of the integer scalar types are returned in the
762 same registers as the integer type they match.
763
764 For example, a 2-byte aligned structure with size 2 bytes has the
765 same size and alignment as a short int, and will be returned in R0.
766 A 4-byte aligned structure with size 8 bytes has the same size and
767 alignment as a long long int, and will be returned in R0 and R1.
768
769 When an aggregate type is returned in R0 and R1, R0 contains the
770 first four bytes of the aggregate, and R1 contains the
771 remainder. If the size of the aggregate type is not a multiple of 4
772 bytes, the aggregate is tail-padded up to a multiple of 4
773 bytes. The value of the padding is undefined. For little-endian
774 targets the padding will appear at the most significant end of the
775 last element, for big-endian targets the padding appears at the
776 least significant end of the last element.
777
778 All other aggregate types are returned by address. The caller
779 function passes the address of an area large enough to hold the
780 aggregate value in R2. The called function stores the result in
781 this location.
782
783 To reiterate, structs smaller than 8 bytes could also be returned
784 in memory, if they don't pass the "same size and alignment as an
785 integer type" rule.
786
787 For example, in
788
789 struct s { char c[3]; } wibble;
790 struct s foo(void) { return wibble; }
791
792 the return value from foo() will be in memory, not
793 in R0, because there is no 3-byte integer type.
794
795 Similarly, in
796
797 struct s { char c[2]; } wibble;
798 struct s foo(void) { return wibble; }
799
800 because a struct containing two chars has alignment 1, that matches
801 type char, but size 2, that matches type short. There's no integer
802 type that has alignment 1 and size 2, so the struct is returned in
803 memory. */
804
805 static int
806 sh_use_struct_convention (int renesas_abi, struct type *type)
807 {
808 int len = TYPE_LENGTH (type);
809 int nelem = TYPE_NFIELDS (type);
810
811 /* The Renesas ABI returns aggregate types always on stack. */
812 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
813 || TYPE_CODE (type) == TYPE_CODE_UNION))
814 return 1;
815
816 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
817 fit in two registers anyway) use struct convention. */
818 if (len != 1 && len != 2 && len != 4 && len != 8)
819 return 1;
820
821 /* Scalar types and aggregate types with exactly one field are aligned
822 by definition. They are returned in registers. */
823 if (nelem <= 1)
824 return 0;
825
826 /* If the first field in the aggregate has the same length as the entire
827 aggregate type, the type is returned in registers. */
828 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
829 return 0;
830
831 /* If the size of the aggregate is 8 bytes and the first field is
832 of size 4 bytes its alignment is equal to long long's alignment,
833 so it's returned in registers. */
834 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
835 return 0;
836
837 /* Otherwise use struct convention. */
838 return 1;
839 }
840
841 static int
842 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
843 {
844 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
845 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
846 return 1;
847 return sh_use_struct_convention (renesas_abi, type);
848 }
849
850 static CORE_ADDR
851 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
852 {
853 return sp & ~3;
854 }
855
856 /* Function: push_dummy_call (formerly push_arguments)
857 Setup the function arguments for calling a function in the inferior.
858
859 On the Renesas SH architecture, there are four registers (R4 to R7)
860 which are dedicated for passing function arguments. Up to the first
861 four arguments (depending on size) may go into these registers.
862 The rest go on the stack.
863
864 MVS: Except on SH variants that have floating point registers.
865 In that case, float and double arguments are passed in the same
866 manner, but using FP registers instead of GP registers.
867
868 Arguments that are smaller than 4 bytes will still take up a whole
869 register or a whole 32-bit word on the stack, and will be
870 right-justified in the register or the stack word. This includes
871 chars, shorts, and small aggregate types.
872
873 Arguments that are larger than 4 bytes may be split between two or
874 more registers. If there are not enough registers free, an argument
875 may be passed partly in a register (or registers), and partly on the
876 stack. This includes doubles, long longs, and larger aggregates.
877 As far as I know, there is no upper limit to the size of aggregates
878 that will be passed in this way; in other words, the convention of
879 passing a pointer to a large aggregate instead of a copy is not used.
880
881 MVS: The above appears to be true for the SH variants that do not
882 have an FPU, however those that have an FPU appear to copy the
883 aggregate argument onto the stack (and not place it in registers)
884 if it is larger than 16 bytes (four GP registers).
885
886 An exceptional case exists for struct arguments (and possibly other
887 aggregates such as arrays) if the size is larger than 4 bytes but
888 not a multiple of 4 bytes. In this case the argument is never split
889 between the registers and the stack, but instead is copied in its
890 entirety onto the stack, AND also copied into as many registers as
891 there is room for. In other words, space in registers permitting,
892 two copies of the same argument are passed in. As far as I can tell,
893 only the one on the stack is used, although that may be a function
894 of the level of compiler optimization. I suspect this is a compiler
895 bug. Arguments of these odd sizes are left-justified within the
896 word (as opposed to arguments smaller than 4 bytes, which are
897 right-justified).
898
899 If the function is to return an aggregate type such as a struct, it
900 is either returned in the normal return value register R0 (if its
901 size is no greater than one byte), or else the caller must allocate
902 space into which the callee will copy the return value (if the size
903 is greater than one byte). In this case, a pointer to the return
904 value location is passed into the callee in register R2, which does
905 not displace any of the other arguments passed in via registers R4
906 to R7. */
907
908 /* Helper function to justify value in register according to endianess. */
909 static char *
910 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
911 {
912 static char valbuf[4];
913
914 memset (valbuf, 0, sizeof (valbuf));
915 if (len < 4)
916 {
917 /* value gets right-justified in the register or stack word. */
918 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
919 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
920 else
921 memcpy (valbuf, (char *) value_contents (val), len);
922 return valbuf;
923 }
924 return (char *) value_contents (val);
925 }
926
927 /* Helper function to eval number of bytes to allocate on stack. */
928 static CORE_ADDR
929 sh_stack_allocsize (int nargs, struct value **args)
930 {
931 int stack_alloc = 0;
932 while (nargs-- > 0)
933 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
934 return stack_alloc;
935 }
936
937 /* Helper functions for getting the float arguments right. Registers usage
938 depends on the ABI and the endianess. The comments should enlighten how
939 it's intended to work. */
940
941 /* This array stores which of the float arg registers are already in use. */
942 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
943
944 /* This function just resets the above array to "no reg used so far". */
945 static void
946 sh_init_flt_argreg (void)
947 {
948 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
949 }
950
951 /* This function returns the next register to use for float arg passing.
952 It returns either a valid value between FLOAT_ARG0_REGNUM and
953 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
954 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
955
956 Note that register number 0 in flt_argreg_array corresponds with the
957 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
958 29) the parity of the register number is preserved, which is important
959 for the double register passing test (see the "argreg & 1" test below). */
960 static int
961 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
962 {
963 int argreg;
964
965 /* First search for the next free register. */
966 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
967 ++argreg)
968 if (!flt_argreg_array[argreg])
969 break;
970
971 /* No register left? */
972 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
973 return FLOAT_ARGLAST_REGNUM + 1;
974
975 if (len == 8)
976 {
977 /* Doubles are always starting in a even register number. */
978 if (argreg & 1)
979 {
980 /* In gcc ABI, the skipped register is lost for further argument
981 passing now. Not so in Renesas ABI. */
982 if (!sh_is_renesas_calling_convention (func_type))
983 flt_argreg_array[argreg] = 1;
984
985 ++argreg;
986
987 /* No register left? */
988 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
989 return FLOAT_ARGLAST_REGNUM + 1;
990 }
991 /* Also mark the next register as used. */
992 flt_argreg_array[argreg + 1] = 1;
993 }
994 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
995 && !sh_is_renesas_calling_convention (func_type))
996 {
997 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
998 if (!flt_argreg_array[argreg + 1])
999 ++argreg;
1000 }
1001 flt_argreg_array[argreg] = 1;
1002 return FLOAT_ARG0_REGNUM + argreg;
1003 }
1004
1005 /* Helper function which figures out, if a type is treated like a float type.
1006
1007 The FPU ABIs have a special way how to treat types as float types.
1008 Structures with exactly one member, which is of type float or double, are
1009 treated exactly as the base types float or double:
1010
1011 struct sf {
1012 float f;
1013 };
1014
1015 struct sd {
1016 double d;
1017 };
1018
1019 are handled the same way as just
1020
1021 float f;
1022
1023 double d;
1024
1025 As a result, arguments of these struct types are pushed into floating point
1026 registers exactly as floats or doubles, using the same decision algorithm.
1027
1028 The same is valid if these types are used as function return types. The
1029 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1030 or even using struct convention as it is for other structs. */
1031
1032 static int
1033 sh_treat_as_flt_p (struct type *type)
1034 {
1035 /* Ordinary float types are obviously treated as float. */
1036 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1037 return 1;
1038 /* Otherwise non-struct types are not treated as float. */
1039 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1040 return 0;
1041 /* Otherwise structs with more than one memeber are not treated as float. */
1042 if (TYPE_NFIELDS (type) != 1)
1043 return 0;
1044 /* Otherwise if the type of that member is float, the whole type is
1045 treated as float. */
1046 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1047 return 1;
1048 /* Otherwise it's not treated as float. */
1049 return 0;
1050 }
1051
1052 static CORE_ADDR
1053 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1054 struct value *function,
1055 struct regcache *regcache,
1056 CORE_ADDR bp_addr, int nargs,
1057 struct value **args,
1058 CORE_ADDR sp, int struct_return,
1059 CORE_ADDR struct_addr)
1060 {
1061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1062 int stack_offset = 0;
1063 int argreg = ARG0_REGNUM;
1064 int flt_argreg = 0;
1065 int argnum;
1066 struct type *func_type = value_type (function);
1067 struct type *type;
1068 CORE_ADDR regval;
1069 char *val;
1070 int len, reg_size = 0;
1071 int pass_on_stack = 0;
1072 int treat_as_flt;
1073 int last_reg_arg = INT_MAX;
1074
1075 /* The Renesas ABI expects all varargs arguments, plus the last
1076 non-vararg argument to be on the stack, no matter how many
1077 registers have been used so far. */
1078 if (sh_is_renesas_calling_convention (func_type)
1079 && TYPE_VARARGS (func_type))
1080 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1081
1082 /* First force sp to a 4-byte alignment. */
1083 sp = sh_frame_align (gdbarch, sp);
1084
1085 /* Make room on stack for args. */
1086 sp -= sh_stack_allocsize (nargs, args);
1087
1088 /* Initialize float argument mechanism. */
1089 sh_init_flt_argreg ();
1090
1091 /* Now load as many as possible of the first arguments into
1092 registers, and push the rest onto the stack. There are 16 bytes
1093 in four registers available. Loop thru args from first to last. */
1094 for (argnum = 0; argnum < nargs; argnum++)
1095 {
1096 type = value_type (args[argnum]);
1097 len = TYPE_LENGTH (type);
1098 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1099
1100 /* Some decisions have to be made how various types are handled.
1101 This also differs in different ABIs. */
1102 pass_on_stack = 0;
1103
1104 /* Find out the next register to use for a floating point value. */
1105 treat_as_flt = sh_treat_as_flt_p (type);
1106 if (treat_as_flt)
1107 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1108 /* In Renesas ABI, long longs and aggregate types are always passed
1109 on stack. */
1110 else if (sh_is_renesas_calling_convention (func_type)
1111 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1112 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1113 || TYPE_CODE (type) == TYPE_CODE_UNION))
1114 pass_on_stack = 1;
1115 /* In contrast to non-FPU CPUs, arguments are never split between
1116 registers and stack. If an argument doesn't fit in the remaining
1117 registers it's always pushed entirely on the stack. */
1118 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1119 pass_on_stack = 1;
1120
1121 while (len > 0)
1122 {
1123 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1124 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1125 || pass_on_stack))
1126 || argnum > last_reg_arg)
1127 {
1128 /* The data goes entirely on the stack, 4-byte aligned. */
1129 reg_size = (len + 3) & ~3;
1130 write_memory (sp + stack_offset, val, reg_size);
1131 stack_offset += reg_size;
1132 }
1133 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1134 {
1135 /* Argument goes in a float argument register. */
1136 reg_size = register_size (gdbarch, flt_argreg);
1137 regval = extract_unsigned_integer (val, reg_size, byte_order);
1138 /* In little endian mode, float types taking two registers
1139 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1140 be stored swapped in the argument registers. The below
1141 code first writes the first 32 bits in the next but one
1142 register, increments the val and len values accordingly
1143 and then proceeds as normal by writing the second 32 bits
1144 into the next register. */
1145 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1146 && TYPE_LENGTH (type) == 2 * reg_size)
1147 {
1148 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1149 regval);
1150 val += reg_size;
1151 len -= reg_size;
1152 regval = extract_unsigned_integer (val, reg_size,
1153 byte_order);
1154 }
1155 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1156 }
1157 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1158 {
1159 /* there's room in a register */
1160 reg_size = register_size (gdbarch, argreg);
1161 regval = extract_unsigned_integer (val, reg_size, byte_order);
1162 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1163 }
1164 /* Store the value one register at a time or in one step on
1165 stack. */
1166 len -= reg_size;
1167 val += reg_size;
1168 }
1169 }
1170
1171 if (struct_return)
1172 {
1173 if (sh_is_renesas_calling_convention (func_type))
1174 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1175 the stack and store the struct return address there. */
1176 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1177 else
1178 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1179 its own dedicated register. */
1180 regcache_cooked_write_unsigned (regcache,
1181 STRUCT_RETURN_REGNUM, struct_addr);
1182 }
1183
1184 /* Store return address. */
1185 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1186
1187 /* Update stack pointer. */
1188 regcache_cooked_write_unsigned (regcache,
1189 gdbarch_sp_regnum (gdbarch), sp);
1190
1191 return sp;
1192 }
1193
1194 static CORE_ADDR
1195 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1196 struct value *function,
1197 struct regcache *regcache,
1198 CORE_ADDR bp_addr,
1199 int nargs, struct value **args,
1200 CORE_ADDR sp, int struct_return,
1201 CORE_ADDR struct_addr)
1202 {
1203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1204 int stack_offset = 0;
1205 int argreg = ARG0_REGNUM;
1206 int argnum;
1207 struct type *func_type = value_type (function);
1208 struct type *type;
1209 CORE_ADDR regval;
1210 char *val;
1211 int len, reg_size = 0;
1212 int pass_on_stack = 0;
1213 int last_reg_arg = INT_MAX;
1214
1215 /* The Renesas ABI expects all varargs arguments, plus the last
1216 non-vararg argument to be on the stack, no matter how many
1217 registers have been used so far. */
1218 if (sh_is_renesas_calling_convention (func_type)
1219 && TYPE_VARARGS (func_type))
1220 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1221
1222 /* First force sp to a 4-byte alignment. */
1223 sp = sh_frame_align (gdbarch, sp);
1224
1225 /* Make room on stack for args. */
1226 sp -= sh_stack_allocsize (nargs, args);
1227
1228 /* Now load as many as possible of the first arguments into
1229 registers, and push the rest onto the stack. There are 16 bytes
1230 in four registers available. Loop thru args from first to last. */
1231 for (argnum = 0; argnum < nargs; argnum++)
1232 {
1233 type = value_type (args[argnum]);
1234 len = TYPE_LENGTH (type);
1235 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1236
1237 /* Some decisions have to be made how various types are handled.
1238 This also differs in different ABIs. */
1239 pass_on_stack = 0;
1240 /* Renesas ABI pushes doubles and long longs entirely on stack.
1241 Same goes for aggregate types. */
1242 if (sh_is_renesas_calling_convention (func_type)
1243 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1244 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1245 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1246 || TYPE_CODE (type) == TYPE_CODE_UNION))
1247 pass_on_stack = 1;
1248 while (len > 0)
1249 {
1250 if (argreg > ARGLAST_REGNUM || pass_on_stack
1251 || argnum > last_reg_arg)
1252 {
1253 /* The remainder of the data goes entirely on the stack,
1254 4-byte aligned. */
1255 reg_size = (len + 3) & ~3;
1256 write_memory (sp + stack_offset, val, reg_size);
1257 stack_offset += reg_size;
1258 }
1259 else if (argreg <= ARGLAST_REGNUM)
1260 {
1261 /* There's room in a register. */
1262 reg_size = register_size (gdbarch, argreg);
1263 regval = extract_unsigned_integer (val, reg_size, byte_order);
1264 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1265 }
1266 /* Store the value reg_size bytes at a time. This means that things
1267 larger than reg_size bytes may go partly in registers and partly
1268 on the stack. */
1269 len -= reg_size;
1270 val += reg_size;
1271 }
1272 }
1273
1274 if (struct_return)
1275 {
1276 if (sh_is_renesas_calling_convention (func_type))
1277 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1278 the stack and store the struct return address there. */
1279 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1280 else
1281 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1282 its own dedicated register. */
1283 regcache_cooked_write_unsigned (regcache,
1284 STRUCT_RETURN_REGNUM, struct_addr);
1285 }
1286
1287 /* Store return address. */
1288 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1289
1290 /* Update stack pointer. */
1291 regcache_cooked_write_unsigned (regcache,
1292 gdbarch_sp_regnum (gdbarch), sp);
1293
1294 return sp;
1295 }
1296
1297 /* Find a function's return value in the appropriate registers (in
1298 regbuf), and copy it into valbuf. Extract from an array REGBUF
1299 containing the (raw) register state a function return value of type
1300 TYPE, and copy that, in virtual format, into VALBUF. */
1301 static void
1302 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1303 void *valbuf)
1304 {
1305 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1307 int len = TYPE_LENGTH (type);
1308 int return_register = R0_REGNUM;
1309 int offset;
1310
1311 if (len <= 4)
1312 {
1313 ULONGEST c;
1314
1315 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1316 store_unsigned_integer (valbuf, len, byte_order, c);
1317 }
1318 else if (len == 8)
1319 {
1320 int i, regnum = R0_REGNUM;
1321 for (i = 0; i < len; i += 4)
1322 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1323 }
1324 else
1325 error (_("bad size for return value"));
1326 }
1327
1328 static void
1329 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1330 void *valbuf)
1331 {
1332 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1333 if (sh_treat_as_flt_p (type))
1334 {
1335 int len = TYPE_LENGTH (type);
1336 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1337 for (i = 0; i < len; i += 4)
1338 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1339 regcache_raw_read (regcache, regnum++,
1340 (char *) valbuf + len - 4 - i);
1341 else
1342 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1343 }
1344 else
1345 sh_extract_return_value_nofpu (type, regcache, valbuf);
1346 }
1347
1348 /* Write into appropriate registers a function return value
1349 of type TYPE, given in virtual format.
1350 If the architecture is sh4 or sh3e, store a function's return value
1351 in the R0 general register or in the FP0 floating point register,
1352 depending on the type of the return value. In all the other cases
1353 the result is stored in r0, left-justified. */
1354 static void
1355 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1356 const void *valbuf)
1357 {
1358 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1359 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1360 ULONGEST val;
1361 int len = TYPE_LENGTH (type);
1362
1363 if (len <= 4)
1364 {
1365 val = extract_unsigned_integer (valbuf, len, byte_order);
1366 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1367 }
1368 else
1369 {
1370 int i, regnum = R0_REGNUM;
1371 for (i = 0; i < len; i += 4)
1372 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1373 }
1374 }
1375
1376 static void
1377 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1378 const void *valbuf)
1379 {
1380 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1381 if (sh_treat_as_flt_p (type))
1382 {
1383 int len = TYPE_LENGTH (type);
1384 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1385 for (i = 0; i < len; i += 4)
1386 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1387 regcache_raw_write (regcache, regnum++,
1388 (char *) valbuf + len - 4 - i);
1389 else
1390 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1391 }
1392 else
1393 sh_store_return_value_nofpu (type, regcache, valbuf);
1394 }
1395
1396 static enum return_value_convention
1397 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1398 struct type *type, struct regcache *regcache,
1399 gdb_byte *readbuf, const gdb_byte *writebuf)
1400 {
1401 struct type *func_type = function ? value_type (function) : NULL;
1402
1403 if (sh_use_struct_convention_nofpu (
1404 sh_is_renesas_calling_convention (func_type), type))
1405 return RETURN_VALUE_STRUCT_CONVENTION;
1406 if (writebuf)
1407 sh_store_return_value_nofpu (type, regcache, writebuf);
1408 else if (readbuf)
1409 sh_extract_return_value_nofpu (type, regcache, readbuf);
1410 return RETURN_VALUE_REGISTER_CONVENTION;
1411 }
1412
1413 static enum return_value_convention
1414 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1415 struct type *type, struct regcache *regcache,
1416 gdb_byte *readbuf, const gdb_byte *writebuf)
1417 {
1418 struct type *func_type = function ? value_type (function) : NULL;
1419
1420 if (sh_use_struct_convention (
1421 sh_is_renesas_calling_convention (func_type), type))
1422 return RETURN_VALUE_STRUCT_CONVENTION;
1423 if (writebuf)
1424 sh_store_return_value_fpu (type, regcache, writebuf);
1425 else if (readbuf)
1426 sh_extract_return_value_fpu (type, regcache, readbuf);
1427 return RETURN_VALUE_REGISTER_CONVENTION;
1428 }
1429
1430 static struct type *
1431 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1432 {
1433 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1434 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1435 return builtin_type (gdbarch)->builtin_float;
1436 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1437 return builtin_type (gdbarch)->builtin_double;
1438 else
1439 return builtin_type (gdbarch)->builtin_int;
1440 }
1441
1442 /* Return the GDB type object for the "standard" data type
1443 of data in register N. */
1444 static struct type *
1445 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1446 {
1447 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1448 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1449 return builtin_type (gdbarch)->builtin_float;
1450 else
1451 return builtin_type (gdbarch)->builtin_int;
1452 }
1453
1454 static struct type *
1455 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1456 {
1457 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1458 0, high);
1459 }
1460
1461 static struct type *
1462 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1463 {
1464 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1465 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1466 return builtin_type (gdbarch)->builtin_float;
1467 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1468 return builtin_type (gdbarch)->builtin_double;
1469 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1470 return sh_sh4_build_float_register_type (gdbarch, 3);
1471 else
1472 return builtin_type (gdbarch)->builtin_int;
1473 }
1474
1475 static struct type *
1476 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1477 {
1478 return builtin_type (gdbarch)->builtin_int;
1479 }
1480
1481 /* Is a register in a reggroup?
1482 The default code in reggroup.c doesn't identify system registers, some
1483 float registers or any of the vector registers.
1484 TODO: sh2a and dsp registers. */
1485 static int
1486 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1487 struct reggroup *reggroup)
1488 {
1489 if (gdbarch_register_name (gdbarch, regnum) == NULL
1490 || *gdbarch_register_name (gdbarch, regnum) == '\0')
1491 return 0;
1492
1493 if (reggroup == float_reggroup
1494 && (regnum == FPUL_REGNUM
1495 || regnum == FPSCR_REGNUM))
1496 return 1;
1497
1498 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1499 {
1500 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1501 return 1;
1502 if (reggroup == general_reggroup)
1503 return 0;
1504 }
1505
1506 if (regnum == VBR_REGNUM
1507 || regnum == SR_REGNUM
1508 || regnum == FPSCR_REGNUM
1509 || regnum == SSR_REGNUM
1510 || regnum == SPC_REGNUM)
1511 {
1512 if (reggroup == system_reggroup)
1513 return 1;
1514 if (reggroup == general_reggroup)
1515 return 0;
1516 }
1517
1518 /* The default code can cope with any other registers. */
1519 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1520 }
1521
1522 /* On the sh4, the DRi pseudo registers are problematic if the target
1523 is little endian. When the user writes one of those registers, for
1524 instance with 'ser var $dr0=1', we want the double to be stored
1525 like this:
1526 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1527 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1528
1529 This corresponds to little endian byte order & big endian word
1530 order. However if we let gdb write the register w/o conversion, it
1531 will write fr0 and fr1 this way:
1532 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1533 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1534 because it will consider fr0 and fr1 as a single LE stretch of memory.
1535
1536 To achieve what we want we must force gdb to store things in
1537 floatformat_ieee_double_littlebyte_bigword (which is defined in
1538 include/floatformat.h and libiberty/floatformat.c.
1539
1540 In case the target is big endian, there is no problem, the
1541 raw bytes will look like:
1542 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1543 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1544
1545 The other pseudo registers (the FVs) also don't pose a problem
1546 because they are stored as 4 individual FP elements. */
1547
1548 static void
1549 sh_register_convert_to_virtual (int regnum, struct type *type,
1550 char *from, char *to)
1551 {
1552 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1553 {
1554 DOUBLEST val;
1555 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1556 from, &val);
1557 store_typed_floating (to, type, val);
1558 }
1559 else
1560 error
1561 ("sh_register_convert_to_virtual called with non DR register number");
1562 }
1563
1564 static void
1565 sh_register_convert_to_raw (struct type *type, int regnum,
1566 const void *from, void *to)
1567 {
1568 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1569 {
1570 DOUBLEST val = extract_typed_floating (from, type);
1571 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1572 &val, to);
1573 }
1574 else
1575 error (_("sh_register_convert_to_raw called with non DR register number"));
1576 }
1577
1578 /* For vectors of 4 floating point registers. */
1579 static int
1580 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1581 {
1582 int fp_regnum;
1583
1584 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1585 + (fv_regnum - FV0_REGNUM) * 4;
1586 return fp_regnum;
1587 }
1588
1589 /* For double precision floating point registers, i.e 2 fp regs. */
1590 static int
1591 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1592 {
1593 int fp_regnum;
1594
1595 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1596 + (dr_regnum - DR0_REGNUM) * 2;
1597 return fp_regnum;
1598 }
1599
1600 /* Concatenate PORTIONS contiguous raw registers starting at
1601 BASE_REGNUM into BUFFER. */
1602
1603 static enum register_status
1604 pseudo_register_read_portions (struct gdbarch *gdbarch,
1605 struct regcache *regcache,
1606 int portions,
1607 int base_regnum, gdb_byte *buffer)
1608 {
1609 int portion;
1610
1611 for (portion = 0; portion < portions; portion++)
1612 {
1613 enum register_status status;
1614 gdb_byte *b;
1615
1616 b = buffer + register_size (gdbarch, base_regnum) * portion;
1617 status = regcache_raw_read (regcache, base_regnum + portion, b);
1618 if (status != REG_VALID)
1619 return status;
1620 }
1621
1622 return REG_VALID;
1623 }
1624
1625 static enum register_status
1626 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1627 int reg_nr, gdb_byte *buffer)
1628 {
1629 int base_regnum;
1630 char temp_buffer[MAX_REGISTER_SIZE];
1631 enum register_status status;
1632
1633 if (reg_nr == PSEUDO_BANK_REGNUM)
1634 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1635 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1636 {
1637 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1638
1639 /* Build the value in the provided buffer. */
1640 /* Read the real regs for which this one is an alias. */
1641 status = pseudo_register_read_portions (gdbarch, regcache,
1642 2, base_regnum, temp_buffer);
1643 if (status == REG_VALID)
1644 {
1645 /* We must pay attention to the endiannes. */
1646 sh_register_convert_to_virtual (reg_nr,
1647 register_type (gdbarch, reg_nr),
1648 temp_buffer, buffer);
1649 }
1650 return status;
1651 }
1652 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1653 {
1654 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1655
1656 /* Read the real regs for which this one is an alias. */
1657 return pseudo_register_read_portions (gdbarch, regcache,
1658 4, base_regnum, buffer);
1659 }
1660 else
1661 gdb_assert_not_reached ("invalid pseudo register number");
1662 }
1663
1664 static void
1665 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1666 int reg_nr, const gdb_byte *buffer)
1667 {
1668 int base_regnum, portion;
1669 char temp_buffer[MAX_REGISTER_SIZE];
1670
1671 if (reg_nr == PSEUDO_BANK_REGNUM)
1672 {
1673 /* When the bank register is written to, the whole register bank
1674 is switched and all values in the bank registers must be read
1675 from the target/sim again. We're just invalidating the regcache
1676 so that a re-read happens next time it's necessary. */
1677 int bregnum;
1678
1679 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1680 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1681 regcache_invalidate (regcache, bregnum);
1682 }
1683 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1684 {
1685 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1686
1687 /* We must pay attention to the endiannes. */
1688 sh_register_convert_to_raw (register_type (gdbarch, reg_nr),
1689 reg_nr, buffer, temp_buffer);
1690
1691 /* Write the real regs for which this one is an alias. */
1692 for (portion = 0; portion < 2; portion++)
1693 regcache_raw_write (regcache, base_regnum + portion,
1694 (temp_buffer
1695 + register_size (gdbarch,
1696 base_regnum) * portion));
1697 }
1698 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1699 {
1700 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1701
1702 /* Write the real regs for which this one is an alias. */
1703 for (portion = 0; portion < 4; portion++)
1704 regcache_raw_write (regcache, base_regnum + portion,
1705 ((char *) buffer
1706 + register_size (gdbarch,
1707 base_regnum) * portion));
1708 }
1709 }
1710
1711 static int
1712 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1713 {
1714 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1715 return legacy_register_sim_regno (gdbarch, nr);
1716 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1717 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1718 if (nr == MOD_REGNUM)
1719 return SIM_SH_MOD_REGNUM;
1720 if (nr == RS_REGNUM)
1721 return SIM_SH_RS_REGNUM;
1722 if (nr == RE_REGNUM)
1723 return SIM_SH_RE_REGNUM;
1724 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1725 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1726 return nr;
1727 }
1728
1729 static int
1730 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1731 {
1732 switch (nr)
1733 {
1734 case TBR_REGNUM:
1735 return SIM_SH_TBR_REGNUM;
1736 case IBNR_REGNUM:
1737 return SIM_SH_IBNR_REGNUM;
1738 case IBCR_REGNUM:
1739 return SIM_SH_IBCR_REGNUM;
1740 case BANK_REGNUM:
1741 return SIM_SH_BANK_REGNUM;
1742 case MACLB_REGNUM:
1743 return SIM_SH_BANK_MACL_REGNUM;
1744 case GBRB_REGNUM:
1745 return SIM_SH_BANK_GBR_REGNUM;
1746 case PRB_REGNUM:
1747 return SIM_SH_BANK_PR_REGNUM;
1748 case IVNB_REGNUM:
1749 return SIM_SH_BANK_IVN_REGNUM;
1750 case MACHB_REGNUM:
1751 return SIM_SH_BANK_MACH_REGNUM;
1752 default:
1753 break;
1754 }
1755 return legacy_register_sim_regno (gdbarch, nr);
1756 }
1757
1758 /* Set up the register unwinding such that call-clobbered registers are
1759 not displayed in frames >0 because the true value is not certain.
1760 The 'undefined' registers will show up as 'not available' unless the
1761 CFI says otherwise.
1762
1763 This function is currently set up for SH4 and compatible only. */
1764
1765 static void
1766 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1767 struct dwarf2_frame_state_reg *reg,
1768 struct frame_info *this_frame)
1769 {
1770 /* Mark the PC as the destination for the return address. */
1771 if (regnum == gdbarch_pc_regnum (gdbarch))
1772 reg->how = DWARF2_FRAME_REG_RA;
1773
1774 /* Mark the stack pointer as the call frame address. */
1775 else if (regnum == gdbarch_sp_regnum (gdbarch))
1776 reg->how = DWARF2_FRAME_REG_CFA;
1777
1778 /* The above was taken from the default init_reg in dwarf2-frame.c
1779 while the below is SH specific. */
1780
1781 /* Caller save registers. */
1782 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1783 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1784 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1785 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1786 || (regnum == MACH_REGNUM)
1787 || (regnum == MACL_REGNUM)
1788 || (regnum == FPUL_REGNUM)
1789 || (regnum == SR_REGNUM))
1790 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1791
1792 /* Callee save registers. */
1793 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1794 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1795 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1796 || (regnum == FV0_REGNUM+3))
1797 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1798
1799 /* Other registers. These are not in the ABI and may or may not
1800 mean anything in frames >0 so don't show them. */
1801 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1802 || (regnum == GBR_REGNUM)
1803 || (regnum == VBR_REGNUM)
1804 || (regnum == FPSCR_REGNUM)
1805 || (regnum == SSR_REGNUM)
1806 || (regnum == SPC_REGNUM))
1807 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1808 }
1809
1810 static struct sh_frame_cache *
1811 sh_alloc_frame_cache (void)
1812 {
1813 struct sh_frame_cache *cache;
1814 int i;
1815
1816 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1817
1818 /* Base address. */
1819 cache->base = 0;
1820 cache->saved_sp = 0;
1821 cache->sp_offset = 0;
1822 cache->pc = 0;
1823
1824 /* Frameless until proven otherwise. */
1825 cache->uses_fp = 0;
1826
1827 /* Saved registers. We initialize these to -1 since zero is a valid
1828 offset (that's where fp is supposed to be stored). */
1829 for (i = 0; i < SH_NUM_REGS; i++)
1830 {
1831 cache->saved_regs[i] = -1;
1832 }
1833
1834 return cache;
1835 }
1836
1837 static struct sh_frame_cache *
1838 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1839 {
1840 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1841 struct sh_frame_cache *cache;
1842 CORE_ADDR current_pc;
1843 int i;
1844
1845 if (*this_cache)
1846 return *this_cache;
1847
1848 cache = sh_alloc_frame_cache ();
1849 *this_cache = cache;
1850
1851 /* In principle, for normal frames, fp holds the frame pointer,
1852 which holds the base address for the current stack frame.
1853 However, for functions that don't need it, the frame pointer is
1854 optional. For these "frameless" functions the frame pointer is
1855 actually the frame pointer of the calling frame. */
1856 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1857 if (cache->base == 0)
1858 return cache;
1859
1860 cache->pc = get_frame_func (this_frame);
1861 current_pc = get_frame_pc (this_frame);
1862 if (cache->pc != 0)
1863 {
1864 ULONGEST fpscr;
1865
1866 /* Check for the existence of the FPSCR register. If it exists,
1867 fetch its value for use in prologue analysis. Passing a zero
1868 value is the best choice for architecture variants upon which
1869 there's no FPSCR register. */
1870 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1871 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1872 else
1873 fpscr = 0;
1874
1875 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1876 }
1877
1878 if (!cache->uses_fp)
1879 {
1880 /* We didn't find a valid frame, which means that CACHE->base
1881 currently holds the frame pointer for our calling frame. If
1882 we're at the start of a function, or somewhere half-way its
1883 prologue, the function's frame probably hasn't been fully
1884 setup yet. Try to reconstruct the base address for the stack
1885 frame by looking at the stack pointer. For truly "frameless"
1886 functions this might work too. */
1887 cache->base = get_frame_register_unsigned
1888 (this_frame, gdbarch_sp_regnum (gdbarch));
1889 }
1890
1891 /* Now that we have the base address for the stack frame we can
1892 calculate the value of sp in the calling frame. */
1893 cache->saved_sp = cache->base + cache->sp_offset;
1894
1895 /* Adjust all the saved registers such that they contain addresses
1896 instead of offsets. */
1897 for (i = 0; i < SH_NUM_REGS; i++)
1898 if (cache->saved_regs[i] != -1)
1899 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1900
1901 return cache;
1902 }
1903
1904 static struct value *
1905 sh_frame_prev_register (struct frame_info *this_frame,
1906 void **this_cache, int regnum)
1907 {
1908 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1909 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1910
1911 gdb_assert (regnum >= 0);
1912
1913 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1914 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1915
1916 /* The PC of the previous frame is stored in the PR register of
1917 the current frame. Frob regnum so that we pull the value from
1918 the correct place. */
1919 if (regnum == gdbarch_pc_regnum (gdbarch))
1920 regnum = PR_REGNUM;
1921
1922 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1923 return frame_unwind_got_memory (this_frame, regnum,
1924 cache->saved_regs[regnum]);
1925
1926 return frame_unwind_got_register (this_frame, regnum, regnum);
1927 }
1928
1929 static void
1930 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1931 struct frame_id *this_id)
1932 {
1933 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1934
1935 /* This marks the outermost frame. */
1936 if (cache->base == 0)
1937 return;
1938
1939 *this_id = frame_id_build (cache->saved_sp, cache->pc);
1940 }
1941
1942 static const struct frame_unwind sh_frame_unwind = {
1943 NORMAL_FRAME,
1944 default_frame_unwind_stop_reason,
1945 sh_frame_this_id,
1946 sh_frame_prev_register,
1947 NULL,
1948 default_frame_sniffer
1949 };
1950
1951 static CORE_ADDR
1952 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1953 {
1954 return frame_unwind_register_unsigned (next_frame,
1955 gdbarch_sp_regnum (gdbarch));
1956 }
1957
1958 static CORE_ADDR
1959 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1960 {
1961 return frame_unwind_register_unsigned (next_frame,
1962 gdbarch_pc_regnum (gdbarch));
1963 }
1964
1965 static struct frame_id
1966 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1967 {
1968 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1969 gdbarch_sp_regnum (gdbarch));
1970 return frame_id_build (sp, get_frame_pc (this_frame));
1971 }
1972
1973 static CORE_ADDR
1974 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
1975 {
1976 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1977
1978 return cache->base;
1979 }
1980
1981 static const struct frame_base sh_frame_base = {
1982 &sh_frame_unwind,
1983 sh_frame_base_address,
1984 sh_frame_base_address,
1985 sh_frame_base_address
1986 };
1987
1988 static struct sh_frame_cache *
1989 sh_make_stub_cache (struct frame_info *this_frame)
1990 {
1991 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1992 struct sh_frame_cache *cache;
1993
1994 cache = sh_alloc_frame_cache ();
1995
1996 cache->saved_sp
1997 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
1998
1999 return cache;
2000 }
2001
2002 static void
2003 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2004 struct frame_id *this_id)
2005 {
2006 struct sh_frame_cache *cache;
2007
2008 if (*this_cache == NULL)
2009 *this_cache = sh_make_stub_cache (this_frame);
2010 cache = *this_cache;
2011
2012 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2013 }
2014
2015 static int
2016 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2017 struct frame_info *this_frame,
2018 void **this_prologue_cache)
2019 {
2020 CORE_ADDR addr_in_block;
2021
2022 addr_in_block = get_frame_address_in_block (this_frame);
2023 if (in_plt_section (addr_in_block, NULL))
2024 return 1;
2025
2026 return 0;
2027 }
2028
2029 static const struct frame_unwind sh_stub_unwind =
2030 {
2031 NORMAL_FRAME,
2032 default_frame_unwind_stop_reason,
2033 sh_stub_this_id,
2034 sh_frame_prev_register,
2035 NULL,
2036 sh_stub_unwind_sniffer
2037 };
2038
2039 /* The epilogue is defined here as the area at the end of a function,
2040 either on the `ret' instruction itself or after an instruction which
2041 destroys the function's stack frame. */
2042 static int
2043 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2044 {
2045 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2046 CORE_ADDR func_addr = 0, func_end = 0;
2047
2048 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2049 {
2050 ULONGEST inst;
2051 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2052 for a nop and some fixed data (e.g. big offsets) which are
2053 unfortunately also treated as part of the function (which
2054 means, they are below func_end. */
2055 CORE_ADDR addr = func_end - 28;
2056 if (addr < func_addr + 4)
2057 addr = func_addr + 4;
2058 if (pc < addr)
2059 return 0;
2060
2061 /* First search forward until hitting an rts. */
2062 while (addr < func_end
2063 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2064 addr += 2;
2065 if (addr >= func_end)
2066 return 0;
2067
2068 /* At this point we should find a mov.l @r15+,r14 instruction,
2069 either before or after the rts. If not, then the function has
2070 probably no "normal" epilogue and we bail out here. */
2071 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2072 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2073 byte_order)))
2074 addr -= 2;
2075 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2076 byte_order)))
2077 return 0;
2078
2079 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2080
2081 /* Step over possible lds.l @r15+,macl. */
2082 if (IS_MACL_LDS (inst))
2083 {
2084 addr -= 2;
2085 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2086 }
2087
2088 /* Step over possible lds.l @r15+,pr. */
2089 if (IS_LDS (inst))
2090 {
2091 addr -= 2;
2092 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2093 }
2094
2095 /* Step over possible mov r14,r15. */
2096 if (IS_MOV_FP_SP (inst))
2097 {
2098 addr -= 2;
2099 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2100 }
2101
2102 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2103 instructions. */
2104 while (addr > func_addr + 4
2105 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2106 {
2107 addr -= 2;
2108 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2109 }
2110
2111 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2112 That's allowed for the epilogue. */
2113 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2114 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2115 && addr > func_addr + 6
2116 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2117 byte_order)))
2118 addr -= 4;
2119
2120 if (pc >= addr)
2121 return 1;
2122 }
2123 return 0;
2124 }
2125
2126
2127 /* Supply register REGNUM from the buffer specified by REGS and LEN
2128 in the register set REGSET to register cache REGCACHE.
2129 REGTABLE specifies where each register can be found in REGS.
2130 If REGNUM is -1, do this for all registers in REGSET. */
2131
2132 void
2133 sh_corefile_supply_regset (const struct regset *regset,
2134 struct regcache *regcache,
2135 int regnum, const void *regs, size_t len)
2136 {
2137 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2139 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2140 ? tdep->core_gregmap
2141 : tdep->core_fpregmap);
2142 int i;
2143
2144 for (i = 0; regmap[i].regnum != -1; i++)
2145 {
2146 if ((regnum == -1 || regnum == regmap[i].regnum)
2147 && regmap[i].offset + 4 <= len)
2148 regcache_raw_supply (regcache, regmap[i].regnum,
2149 (char *)regs + regmap[i].offset);
2150 }
2151 }
2152
2153 /* Collect register REGNUM in the register set REGSET from register cache
2154 REGCACHE into the buffer specified by REGS and LEN.
2155 REGTABLE specifies where each register can be found in REGS.
2156 If REGNUM is -1, do this for all registers in REGSET. */
2157
2158 void
2159 sh_corefile_collect_regset (const struct regset *regset,
2160 const struct regcache *regcache,
2161 int regnum, void *regs, size_t len)
2162 {
2163 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2165 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2166 ? tdep->core_gregmap
2167 : tdep->core_fpregmap);
2168 int i;
2169
2170 for (i = 0; regmap[i].regnum != -1; i++)
2171 {
2172 if ((regnum == -1 || regnum == regmap[i].regnum)
2173 && regmap[i].offset + 4 <= len)
2174 regcache_raw_collect (regcache, regmap[i].regnum,
2175 (char *)regs + regmap[i].offset);
2176 }
2177 }
2178
2179 /* The following two regsets have the same contents, so it is tempting to
2180 unify them, but they are distiguished by their address, so don't. */
2181
2182 struct regset sh_corefile_gregset =
2183 {
2184 NULL,
2185 sh_corefile_supply_regset,
2186 sh_corefile_collect_regset
2187 };
2188
2189 static struct regset sh_corefile_fpregset =
2190 {
2191 NULL,
2192 sh_corefile_supply_regset,
2193 sh_corefile_collect_regset
2194 };
2195
2196 static const struct regset *
2197 sh_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name,
2198 size_t sect_size)
2199 {
2200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2201
2202 if (tdep->core_gregmap && strcmp (sect_name, ".reg") == 0)
2203 return &sh_corefile_gregset;
2204
2205 if (tdep->core_fpregmap && strcmp (sect_name, ".reg2") == 0)
2206 return &sh_corefile_fpregset;
2207
2208 return NULL;
2209 }
2210
2211 /* This is the implementation of gdbarch method
2212 return_in_first_hidden_param_p. */
2213
2214 static int
2215 sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2216 struct type *type)
2217 {
2218 return 0;
2219 }
2220
2221 \f
2222
2223 static struct gdbarch *
2224 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2225 {
2226 struct gdbarch *gdbarch;
2227 struct gdbarch_tdep *tdep;
2228
2229 /* SH5 is handled entirely in sh64-tdep.c. */
2230 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2231 return sh64_gdbarch_init (info, arches);
2232
2233 /* If there is already a candidate, use it. */
2234 arches = gdbarch_list_lookup_by_info (arches, &info);
2235 if (arches != NULL)
2236 return arches->gdbarch;
2237
2238 /* None found, create a new architecture from the information
2239 provided. */
2240 tdep = XZALLOC (struct gdbarch_tdep);
2241 gdbarch = gdbarch_alloc (&info, tdep);
2242
2243 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2244 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2245 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2246 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2247 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2248 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2249 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2250 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2251
2252 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2253 set_gdbarch_sp_regnum (gdbarch, 15);
2254 set_gdbarch_pc_regnum (gdbarch, 16);
2255 set_gdbarch_fp0_regnum (gdbarch, -1);
2256 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2257
2258 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2259 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2260
2261 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2262
2263 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2264 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2265
2266 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2267
2268 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2269 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2270
2271 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2272 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2273 sh_return_in_first_hidden_param_p);
2274
2275 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2276
2277 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2278 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2279 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2280 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
2281 frame_base_set_default (gdbarch, &sh_frame_base);
2282
2283 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
2284
2285 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2286
2287 set_gdbarch_regset_from_core_section (gdbarch, sh_regset_from_core_section);
2288
2289 switch (info.bfd_arch_info->mach)
2290 {
2291 case bfd_mach_sh:
2292 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2293 break;
2294
2295 case bfd_mach_sh2:
2296 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2297 break;
2298
2299 case bfd_mach_sh2e:
2300 /* doubles on sh2e and sh3e are actually 4 byte. */
2301 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2302
2303 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2304 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2305 set_gdbarch_fp0_regnum (gdbarch, 25);
2306 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2307 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2308 break;
2309
2310 case bfd_mach_sh2a:
2311 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2312 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2313 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2314
2315 set_gdbarch_fp0_regnum (gdbarch, 25);
2316 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2317 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2318 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2319 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2320 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2321 break;
2322
2323 case bfd_mach_sh2a_nofpu:
2324 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2325 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2326
2327 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2328 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2329 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2330 break;
2331
2332 case bfd_mach_sh_dsp:
2333 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2334 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2335 break;
2336
2337 case bfd_mach_sh3:
2338 case bfd_mach_sh3_nommu:
2339 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2340 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2341 break;
2342
2343 case bfd_mach_sh3e:
2344 case bfd_mach_sh2a_or_sh3e:
2345 /* doubles on sh2e and sh3e are actually 4 byte. */
2346 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2347
2348 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2349 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2350 set_gdbarch_fp0_regnum (gdbarch, 25);
2351 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2352 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2353 break;
2354
2355 case bfd_mach_sh3_dsp:
2356 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2357 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2358 break;
2359
2360 case bfd_mach_sh4:
2361 case bfd_mach_sh4a:
2362 case bfd_mach_sh2a_or_sh4:
2363 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2364 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2365 set_gdbarch_fp0_regnum (gdbarch, 25);
2366 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2367 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2368 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2369 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2370 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2371 break;
2372
2373 case bfd_mach_sh4_nofpu:
2374 case bfd_mach_sh4a_nofpu:
2375 case bfd_mach_sh4_nommu_nofpu:
2376 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2377 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2378 break;
2379
2380 case bfd_mach_sh4al_dsp:
2381 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2382 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2383 break;
2384
2385 default:
2386 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2387 break;
2388 }
2389
2390 /* Hook in ABI-specific overrides, if they have been registered. */
2391 gdbarch_init_osabi (info, gdbarch);
2392
2393 dwarf2_append_unwinders (gdbarch);
2394 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2395 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2396
2397 return gdbarch;
2398 }
2399
2400 static void
2401 show_sh_command (char *args, int from_tty)
2402 {
2403 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2404 }
2405
2406 static void
2407 set_sh_command (char *args, int from_tty)
2408 {
2409 printf_unfiltered
2410 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2411 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2412 }
2413
2414 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2415
2416 void
2417 _initialize_sh_tdep (void)
2418 {
2419 struct cmd_list_element *c;
2420
2421 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2422
2423 /* We can't use an alias here because 'info registers' has not yet been
2424 registered. */
2425 c = add_com ("regs", class_vars, all_registers_info,
2426 _("Print all registers"));
2427 deprecate_cmd (c, "info all-registers");
2428
2429 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2430 &setshcmdlist, "set sh ", 0, &setlist);
2431 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2432 &showshcmdlist, "show sh ", 0, &showlist);
2433
2434 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2435 &sh_active_calling_convention,
2436 _("Set calling convention used when calling target "
2437 "functions from GDB."),
2438 _("Show calling convention used when calling target "
2439 "functions from GDB."),
2440 _("gcc - Use GCC calling convention (default).\n"
2441 "renesas - Enforce Renesas calling convention."),
2442 NULL, NULL,
2443 &setshcmdlist, &showshcmdlist);
2444 }
This page took 0.08766 seconds and 4 git commands to generate.