2001-07-26 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Hitachi Super-H, for GDB.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*
23 Contributed by Steve Chamberlain
24 sac@cygnus.com
25 */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "value.h"
36 #include "dis-asm.h"
37 #include "inferior.h" /* for BEFORE_TEXT_END etc. */
38 #include "gdb_string.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "regcache.h"
42
43 #include "solib-svr4.h"
44
45 #undef XMALLOC
46 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
47
48 void (*sh_show_regs) (void);
49 int (*print_sh_insn) (bfd_vma, disassemble_info*);
50 CORE_ADDR (*skip_prologue_hard_way) (CORE_ADDR);
51 void (*do_pseudo_register) (int);
52
53 #define SH_DEFAULT_NUM_REGS 59
54
55 /* Define other aspects of the stack frame.
56 we keep a copy of the worked out return pc lying around, since it
57 is a useful bit of info */
58
59 struct frame_extra_info
60 {
61 CORE_ADDR return_pc;
62 int leaf_function;
63 int f_offset;
64 };
65
66 static char *
67 sh_generic_register_name (int reg_nr)
68 {
69 static char *register_names[] =
70 {
71 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
72 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
73 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
74 "fpul", "fpscr",
75 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
76 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
77 "ssr", "spc",
78 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
79 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
80 };
81 if (reg_nr < 0)
82 return NULL;
83 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
84 return NULL;
85 return register_names[reg_nr];
86 }
87
88 static char *
89 sh_sh_register_name (int reg_nr)
90 {
91 static char *register_names[] =
92 {
93 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
94 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
95 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
96 "", "",
97 "", "", "", "", "", "", "", "",
98 "", "", "", "", "", "", "", "",
99 "", "",
100 "", "", "", "", "", "", "", "",
101 "", "", "", "", "", "", "", "",
102 };
103 if (reg_nr < 0)
104 return NULL;
105 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
106 return NULL;
107 return register_names[reg_nr];
108 }
109
110 static char *
111 sh_sh3_register_name (int reg_nr)
112 {
113 static char *register_names[] =
114 {
115 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
116 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
117 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
118 "", "",
119 "", "", "", "", "", "", "", "",
120 "", "", "", "", "", "", "", "",
121 "ssr", "spc",
122 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
123 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
124 };
125 if (reg_nr < 0)
126 return NULL;
127 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
128 return NULL;
129 return register_names[reg_nr];
130 }
131
132 static char *
133 sh_sh3e_register_name (int reg_nr)
134 {
135 static char *register_names[] =
136 {
137 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
138 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
139 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
140 "fpul", "fpscr",
141 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
142 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
143 "ssr", "spc",
144 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
145 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
146 };
147 if (reg_nr < 0)
148 return NULL;
149 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
150 return NULL;
151 return register_names[reg_nr];
152 }
153
154 static char *
155 sh_sh_dsp_register_name (int reg_nr)
156 {
157 static char *register_names[] =
158 {
159 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
160 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
161 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
162 "", "dsr",
163 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
164 "y0", "y1", "", "", "", "", "", "mod",
165 "", "",
166 "rs", "re", "", "", "", "", "", "",
167 "", "", "", "", "", "", "", "",
168 };
169 if (reg_nr < 0)
170 return NULL;
171 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
172 return NULL;
173 return register_names[reg_nr];
174 }
175
176 static char *
177 sh_sh3_dsp_register_name (int reg_nr)
178 {
179 static char *register_names[] =
180 {
181 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
182 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
183 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
184 "", "dsr",
185 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
186 "y0", "y1", "", "", "", "", "", "mod",
187 "ssr", "spc",
188 "rs", "re", "", "", "", "", "", "",
189 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b"
190 "", "", "", "", "", "", "", "",
191 };
192 if (reg_nr < 0)
193 return NULL;
194 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
195 return NULL;
196 return register_names[reg_nr];
197 }
198
199 static char *
200 sh_sh4_register_name (int reg_nr)
201 {
202 static char *register_names[] =
203 {
204 /* general registers 0-15 */
205 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
206 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
207 /* 16 - 22 */
208 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
209 /* 23, 24 */
210 "fpul", "fpscr",
211 /* floating point registers 25 - 40 */
212 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
213 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
214 /* 41, 42 */
215 "ssr", "spc",
216 /* bank 0 43 - 50 */
217 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
218 /* bank 1 51 - 58 */
219 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
220 /* double precision (pseudo) 59 - 66 */
221 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
222 /* vectors (pseudo) 67 - 70 */
223 "fv0", "fv4", "fv8", "fv12",
224 /* FIXME: missing XF 71 - 86 */
225 /* FIXME: missing XD 87 - 94 */
226 };
227 if (reg_nr < 0)
228 return NULL;
229 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
230 return NULL;
231 return register_names[reg_nr];
232 }
233
234 static unsigned char *
235 sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
236 {
237 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
238 static unsigned char breakpoint[] = {0xc3, 0xc3};
239
240 *lenptr = sizeof (breakpoint);
241 return breakpoint;
242 }
243
244 /* Prologue looks like
245 [mov.l <regs>,@-r15]...
246 [sts.l pr,@-r15]
247 [mov.l r14,@-r15]
248 [mov r15,r14]
249
250 Actually it can be more complicated than this. For instance, with
251 newer gcc's:
252
253 mov.l r14,@-r15
254 add #-12,r15
255 mov r15,r14
256 mov r4,r1
257 mov r5,r2
258 mov.l r6,@(4,r14)
259 mov.l r7,@(8,r14)
260 mov.b r1,@r14
261 mov r14,r1
262 mov r14,r1
263 add #2,r1
264 mov.w r2,@r1
265
266 */
267
268 /* STS.L PR,@-r15 0100111100100010
269 r15-4-->r15, PR-->(r15) */
270 #define IS_STS(x) ((x) == 0x4f22)
271
272 /* MOV.L Rm,@-r15 00101111mmmm0110
273 r15-4-->r15, Rm-->(R15) */
274 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
275
276 #define GET_PUSHED_REG(x) (((x) >> 4) & 0xf)
277
278 /* MOV r15,r14 0110111011110011
279 r15-->r14 */
280 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
281
282 /* ADD #imm,r15 01111111iiiiiiii
283 r15+imm-->r15 */
284 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
285
286 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
287 #define IS_SHLL_R3(x) ((x) == 0x4300)
288
289 /* ADD r3,r15 0011111100111100
290 r15+r3-->r15 */
291 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
292
293 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
294 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
295 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
296 #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b)
297
298 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011
299 MOV.L Rm,@(disp,Rn) Rm-->(dispx4+Rn) 0001nnnnmmmmdddd
300 MOV.L Rm,@Rn Rm-->(Rn) 0010nnnnmmmm0010
301 where Rm is one of r4,r5,r6,r7 which are the argument registers. */
302 #define IS_ARG_MOV(x) \
303 (((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
304 || ((((x) & 0xf000) == 0x1000) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
305 || ((((x) & 0xf00f) == 0x2002) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)))
306
307 /* MOV.L Rm,@(disp,r14) 00011110mmmmdddd
308 Rm-->(dispx4+r14) where Rm is one of r4,r5,r6,r7 */
309 #define IS_MOV_TO_R14(x) \
310 ((((x) & 0xff00) == 0x1e) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070))
311
312 #define FPSCR_SZ (1 << 20)
313
314 /* Skip any prologue before the guts of a function */
315
316 /* Skip the prologue using the debug information. If this fails we'll
317 fall back on the 'guess' method below. */
318 static CORE_ADDR
319 after_prologue (CORE_ADDR pc)
320 {
321 struct symtab_and_line sal;
322 CORE_ADDR func_addr, func_end;
323
324 /* If we can not find the symbol in the partial symbol table, then
325 there is no hope we can determine the function's start address
326 with this code. */
327 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
328 return 0;
329
330 /* Get the line associated with FUNC_ADDR. */
331 sal = find_pc_line (func_addr, 0);
332
333 /* There are only two cases to consider. First, the end of the source line
334 is within the function bounds. In that case we return the end of the
335 source line. Second is the end of the source line extends beyond the
336 bounds of the current function. We need to use the slow code to
337 examine instructions in that case. */
338 if (sal.end < func_end)
339 return sal.end;
340 else
341 return 0;
342 }
343
344 /* Here we look at each instruction in the function, and try to guess
345 where the prologue ends. Unfortunately this is not always
346 accurate. */
347 static CORE_ADDR
348 sh_skip_prologue_hard_way (CORE_ADDR start_pc)
349 {
350 CORE_ADDR here, end;
351 int updated_fp = 0;
352
353 if (!start_pc)
354 return 0;
355
356 for (here = start_pc, end = start_pc + (2 * 28); here < end;)
357 {
358 int w = read_memory_integer (here, 2);
359 here += 2;
360 if (IS_FMOV (w) || IS_PUSH (w) || IS_STS (w) || IS_MOV_R3 (w)
361 || IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w)
362 || IS_ARG_MOV (w) || IS_MOV_TO_R14 (w))
363 {
364 start_pc = here;
365 }
366 else if (IS_MOV_SP_FP (w))
367 {
368 start_pc = here;
369 updated_fp = 1;
370 }
371 else
372 /* Don't bail out yet, if we are before the copy of sp. */
373 if (updated_fp)
374 break;
375 }
376
377 return start_pc;
378 }
379
380 static CORE_ADDR
381 sh_skip_prologue (CORE_ADDR pc)
382 {
383 CORE_ADDR post_prologue_pc;
384
385 /* See if we can determine the end of the prologue via the symbol table.
386 If so, then return either PC, or the PC after the prologue, whichever
387 is greater. */
388 post_prologue_pc = after_prologue (pc);
389
390 /* If after_prologue returned a useful address, then use it. Else
391 fall back on the instruction skipping code. */
392 if (post_prologue_pc != 0)
393 return max (pc, post_prologue_pc);
394 else
395 return (skip_prologue_hard_way (pc));
396 }
397
398 /* Immediately after a function call, return the saved pc.
399 Can't always go through the frames for this because on some machines
400 the new frame is not set up until the new function executes
401 some instructions.
402
403 The return address is the value saved in the PR register + 4 */
404 static CORE_ADDR
405 sh_saved_pc_after_call (struct frame_info *frame)
406 {
407 return (ADDR_BITS_REMOVE (read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM)));
408 }
409
410 /* Should call_function allocate stack space for a struct return? */
411 static int
412 sh_use_struct_convention (int gcc_p, struct type *type)
413 {
414 return (TYPE_LENGTH (type) > 1);
415 }
416
417 /* Store the address of the place in which to copy the structure the
418 subroutine will return. This is called from call_function.
419
420 We store structs through a pointer passed in R2 */
421 static void
422 sh_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
423 {
424 write_register (STRUCT_RETURN_REGNUM, (addr));
425 }
426
427 /* Disassemble an instruction. */
428 static int
429 gdb_print_insn_sh (bfd_vma memaddr, disassemble_info *info)
430 {
431 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
432 return print_insn_sh (memaddr, info);
433 else
434 return print_insn_shl (memaddr, info);
435 }
436
437 /* Given a GDB frame, determine the address of the calling function's frame.
438 This will be used to create a new GDB frame struct, and then
439 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
440
441 For us, the frame address is its stack pointer value, so we look up
442 the function prologue to determine the caller's sp value, and return it. */
443 static CORE_ADDR
444 sh_frame_chain (struct frame_info *frame)
445 {
446 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
447 return frame->frame; /* dummy frame same as caller's frame */
448 if (frame->pc && !inside_entry_file (frame->pc))
449 return read_memory_integer (FRAME_FP (frame) + frame->extra_info->f_offset, 4);
450 else
451 return 0;
452 }
453
454 /* Find REGNUM on the stack. Otherwise, it's in an active register. One thing
455 we might want to do here is to check REGNUM against the clobber mask, and
456 somehow flag it as invalid if it isn't saved on the stack somewhere. This
457 would provide a graceful failure mode when trying to get the value of
458 caller-saves registers for an inner frame. */
459 static CORE_ADDR
460 sh_find_callers_reg (struct frame_info *fi, int regnum)
461 {
462 for (; fi; fi = fi->next)
463 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
464 /* When the caller requests PR from the dummy frame, we return PC because
465 that's where the previous routine appears to have done a call from. */
466 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
467 else
468 {
469 FRAME_INIT_SAVED_REGS (fi);
470 if (!fi->pc)
471 return 0;
472 if (fi->saved_regs[regnum] != 0)
473 return read_memory_integer (fi->saved_regs[regnum],
474 REGISTER_RAW_SIZE (regnum));
475 }
476 return read_register (regnum);
477 }
478
479 /* Put here the code to store, into a struct frame_saved_regs, the
480 addresses of the saved registers of frame described by FRAME_INFO.
481 This includes special registers such as pc and fp saved in special
482 ways in the stack frame. sp is even more special: the address we
483 return for it IS the sp for the next frame. */
484 static void
485 sh_nofp_frame_init_saved_regs (struct frame_info *fi)
486 {
487 int where[NUM_REGS];
488 int rn;
489 int have_fp = 0;
490 int depth;
491 int pc;
492 int opc;
493 int insn;
494 int r3_val = 0;
495 char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
496
497 if (fi->saved_regs == NULL)
498 frame_saved_regs_zalloc (fi);
499 else
500 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
501
502 if (dummy_regs)
503 {
504 /* DANGER! This is ONLY going to work if the char buffer format of
505 the saved registers is byte-for-byte identical to the
506 CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
507 memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
508 return;
509 }
510
511 fi->extra_info->leaf_function = 1;
512 fi->extra_info->f_offset = 0;
513
514 for (rn = 0; rn < NUM_REGS; rn++)
515 where[rn] = -1;
516
517 depth = 0;
518
519 /* Loop around examining the prologue insns until we find something
520 that does not appear to be part of the prologue. But give up
521 after 20 of them, since we're getting silly then. */
522
523 pc = get_pc_function_start (fi->pc);
524 if (!pc)
525 {
526 fi->pc = 0;
527 return;
528 }
529
530 for (opc = pc + (2 * 28); pc < opc; pc += 2)
531 {
532 insn = read_memory_integer (pc, 2);
533 /* See where the registers will be saved to */
534 if (IS_PUSH (insn))
535 {
536 rn = GET_PUSHED_REG (insn);
537 where[rn] = depth;
538 depth += 4;
539 }
540 else if (IS_STS (insn))
541 {
542 where[gdbarch_tdep (current_gdbarch)->PR_REGNUM] = depth;
543 /* If we're storing the pr then this isn't a leaf */
544 fi->extra_info->leaf_function = 0;
545 depth += 4;
546 }
547 else if (IS_MOV_R3 (insn))
548 {
549 r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
550 }
551 else if (IS_SHLL_R3 (insn))
552 {
553 r3_val <<= 1;
554 }
555 else if (IS_ADD_R3SP (insn))
556 {
557 depth += -r3_val;
558 }
559 else if (IS_ADD_SP (insn))
560 {
561 depth -= ((insn & 0xff) ^ 0x80) - 0x80;
562 }
563 else if (IS_MOV_SP_FP (insn))
564 break;
565 #if 0 /* This used to just stop when it found an instruction that
566 was not considered part of the prologue. Now, we just
567 keep going looking for likely instructions. */
568 else
569 break;
570 #endif
571 }
572
573 /* Now we know how deep things are, we can work out their addresses */
574
575 for (rn = 0; rn < NUM_REGS; rn++)
576 {
577 if (where[rn] >= 0)
578 {
579 if (rn == FP_REGNUM)
580 have_fp = 1;
581
582 fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
583 }
584 else
585 {
586 fi->saved_regs[rn] = 0;
587 }
588 }
589
590 if (have_fp)
591 {
592 fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
593 }
594 else
595 {
596 fi->saved_regs[SP_REGNUM] = fi->frame - 4;
597 }
598
599 fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
600 /* Work out the return pc - either from the saved pr or the pr
601 value */
602 }
603
604 /* For vectors of 4 floating point registers. */
605 static int
606 fv_reg_base_num (int fv_regnum)
607 {
608 int fp_regnum;
609
610 fp_regnum = FP0_REGNUM +
611 (fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM) * 4;
612 return fp_regnum;
613 }
614
615 /* For double precision floating point registers, i.e 2 fp regs.*/
616 static int
617 dr_reg_base_num (int dr_regnum)
618 {
619 int fp_regnum;
620
621 fp_regnum = FP0_REGNUM +
622 (dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM) * 2;
623 return fp_regnum;
624 }
625
626 static void
627 sh_fp_frame_init_saved_regs (struct frame_info *fi)
628 {
629 int where[NUM_REGS];
630 int rn;
631 int have_fp = 0;
632 int depth;
633 int pc;
634 int opc;
635 int insn;
636 int r3_val = 0;
637 char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
638
639 if (fi->saved_regs == NULL)
640 frame_saved_regs_zalloc (fi);
641 else
642 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
643
644 if (dummy_regs)
645 {
646 /* DANGER! This is ONLY going to work if the char buffer format of
647 the saved registers is byte-for-byte identical to the
648 CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
649 memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
650 return;
651 }
652
653 fi->extra_info->leaf_function = 1;
654 fi->extra_info->f_offset = 0;
655
656 for (rn = 0; rn < NUM_REGS; rn++)
657 where[rn] = -1;
658
659 depth = 0;
660
661 /* Loop around examining the prologue insns until we find something
662 that does not appear to be part of the prologue. But give up
663 after 20 of them, since we're getting silly then. */
664
665 pc = get_pc_function_start (fi->pc);
666 if (!pc)
667 {
668 fi->pc = 0;
669 return;
670 }
671
672 for (opc = pc + (2 * 28); pc < opc; pc += 2)
673 {
674 insn = read_memory_integer (pc, 2);
675 /* See where the registers will be saved to */
676 if (IS_PUSH (insn))
677 {
678 rn = GET_PUSHED_REG (insn);
679 where[rn] = depth;
680 depth += 4;
681 }
682 else if (IS_STS (insn))
683 {
684 where[gdbarch_tdep (current_gdbarch)->PR_REGNUM] = depth;
685 /* If we're storing the pr then this isn't a leaf */
686 fi->extra_info->leaf_function = 0;
687 depth += 4;
688 }
689 else if (IS_MOV_R3 (insn))
690 {
691 r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
692 }
693 else if (IS_SHLL_R3 (insn))
694 {
695 r3_val <<= 1;
696 }
697 else if (IS_ADD_R3SP (insn))
698 {
699 depth += -r3_val;
700 }
701 else if (IS_ADD_SP (insn))
702 {
703 depth -= ((insn & 0xff) ^ 0x80) - 0x80;
704 }
705 else if (IS_FMOV (insn))
706 {
707 if (read_register (gdbarch_tdep (current_gdbarch)->FPSCR_REGNUM) & FPSCR_SZ)
708 {
709 depth += 8;
710 }
711 else
712 {
713 depth += 4;
714 }
715 }
716 else if (IS_MOV_SP_FP (insn))
717 break;
718 #if 0 /* This used to just stop when it found an instruction that
719 was not considered part of the prologue. Now, we just
720 keep going looking for likely instructions. */
721 else
722 break;
723 #endif
724 }
725
726 /* Now we know how deep things are, we can work out their addresses */
727
728 for (rn = 0; rn < NUM_REGS; rn++)
729 {
730 if (where[rn] >= 0)
731 {
732 if (rn == FP_REGNUM)
733 have_fp = 1;
734
735 fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
736 }
737 else
738 {
739 fi->saved_regs[rn] = 0;
740 }
741 }
742
743 if (have_fp)
744 {
745 fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
746 }
747 else
748 {
749 fi->saved_regs[SP_REGNUM] = fi->frame - 4;
750 }
751
752 fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
753 /* Work out the return pc - either from the saved pr or the pr
754 value */
755 }
756
757 /* Initialize the extra info saved in a FRAME */
758 static void
759 sh_init_extra_frame_info (int fromleaf, struct frame_info *fi)
760 {
761
762 fi->extra_info = (struct frame_extra_info *)
763 frame_obstack_alloc (sizeof (struct frame_extra_info));
764
765 if (fi->next)
766 fi->pc = FRAME_SAVED_PC (fi->next);
767
768 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
769 {
770 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
771 by assuming it's always FP. */
772 fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
773 SP_REGNUM);
774 fi->extra_info->return_pc = generic_read_register_dummy (fi->pc, fi->frame,
775 PC_REGNUM);
776 fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4);
777 fi->extra_info->leaf_function = 0;
778 return;
779 }
780 else
781 {
782 FRAME_INIT_SAVED_REGS (fi);
783 fi->extra_info->return_pc = sh_find_callers_reg (fi, gdbarch_tdep (current_gdbarch)->PR_REGNUM);
784 }
785 }
786
787 /* Extract from an array REGBUF containing the (raw) register state
788 the address in which a function should return its structure value,
789 as a CORE_ADDR (or an expression that can be used as one). */
790 static CORE_ADDR
791 sh_extract_struct_value_address (char *regbuf)
792 {
793 return (extract_address ((regbuf), REGISTER_RAW_SIZE (0)));
794 }
795
796 static CORE_ADDR
797 sh_frame_saved_pc (struct frame_info *frame)
798 {
799 return ((frame)->extra_info->return_pc);
800 }
801
802 /* Discard from the stack the innermost frame,
803 restoring all saved registers. */
804 static void
805 sh_pop_frame (void)
806 {
807 register struct frame_info *frame = get_current_frame ();
808 register CORE_ADDR fp;
809 register int regnum;
810
811 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
812 generic_pop_dummy_frame ();
813 else
814 {
815 fp = FRAME_FP (frame);
816 FRAME_INIT_SAVED_REGS (frame);
817
818 /* Copy regs from where they were saved in the frame */
819 for (regnum = 0; regnum < NUM_REGS; regnum++)
820 if (frame->saved_regs[regnum])
821 write_register (regnum, read_memory_integer (frame->saved_regs[regnum], 4));
822
823 write_register (PC_REGNUM, frame->extra_info->return_pc);
824 write_register (SP_REGNUM, fp + 4);
825 }
826 flush_cached_frames ();
827 }
828
829 /* Function: push_arguments
830 Setup the function arguments for calling a function in the inferior.
831
832 On the Hitachi SH architecture, there are four registers (R4 to R7)
833 which are dedicated for passing function arguments. Up to the first
834 four arguments (depending on size) may go into these registers.
835 The rest go on the stack.
836
837 Arguments that are smaller than 4 bytes will still take up a whole
838 register or a whole 32-bit word on the stack, and will be
839 right-justified in the register or the stack word. This includes
840 chars, shorts, and small aggregate types.
841
842 Arguments that are larger than 4 bytes may be split between two or
843 more registers. If there are not enough registers free, an argument
844 may be passed partly in a register (or registers), and partly on the
845 stack. This includes doubles, long longs, and larger aggregates.
846 As far as I know, there is no upper limit to the size of aggregates
847 that will be passed in this way; in other words, the convention of
848 passing a pointer to a large aggregate instead of a copy is not used.
849
850 An exceptional case exists for struct arguments (and possibly other
851 aggregates such as arrays) if the size is larger than 4 bytes but
852 not a multiple of 4 bytes. In this case the argument is never split
853 between the registers and the stack, but instead is copied in its
854 entirety onto the stack, AND also copied into as many registers as
855 there is room for. In other words, space in registers permitting,
856 two copies of the same argument are passed in. As far as I can tell,
857 only the one on the stack is used, although that may be a function
858 of the level of compiler optimization. I suspect this is a compiler
859 bug. Arguments of these odd sizes are left-justified within the
860 word (as opposed to arguments smaller than 4 bytes, which are
861 right-justified).
862
863 If the function is to return an aggregate type such as a struct, it
864 is either returned in the normal return value register R0 (if its
865 size is no greater than one byte), or else the caller must allocate
866 space into which the callee will copy the return value (if the size
867 is greater than one byte). In this case, a pointer to the return
868 value location is passed into the callee in register R2, which does
869 not displace any of the other arguments passed in via registers R4
870 to R7. */
871
872 static CORE_ADDR
873 sh_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
874 int struct_return, CORE_ADDR struct_addr)
875 {
876 int stack_offset, stack_alloc;
877 int argreg;
878 int argnum;
879 struct type *type;
880 CORE_ADDR regval;
881 char *val;
882 char valbuf[4];
883 int len;
884 int odd_sized_struct;
885
886 /* first force sp to a 4-byte alignment */
887 sp = sp & ~3;
888
889 /* The "struct return pointer" pseudo-argument has its own dedicated
890 register */
891 if (struct_return)
892 write_register (STRUCT_RETURN_REGNUM, struct_addr);
893
894 /* Now make sure there's space on the stack */
895 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
896 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
897 sp -= stack_alloc; /* make room on stack for args */
898
899 /* Now load as many as possible of the first arguments into
900 registers, and push the rest onto the stack. There are 16 bytes
901 in four registers available. Loop thru args from first to last. */
902
903 argreg = gdbarch_tdep (current_gdbarch)->ARG0_REGNUM;
904 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
905 {
906 type = VALUE_TYPE (args[argnum]);
907 len = TYPE_LENGTH (type);
908 memset (valbuf, 0, sizeof (valbuf));
909 if (len < 4)
910 {
911 /* value gets right-justified in the register or stack word */
912 memcpy (valbuf + (4 - len),
913 (char *) VALUE_CONTENTS (args[argnum]), len);
914 val = valbuf;
915 }
916 else
917 val = (char *) VALUE_CONTENTS (args[argnum]);
918
919 if (len > 4 && (len & 3) != 0)
920 odd_sized_struct = 1; /* such structs go entirely on stack */
921 else
922 odd_sized_struct = 0;
923 while (len > 0)
924 {
925 if (argreg > gdbarch_tdep (current_gdbarch)->ARGLAST_REGNUM
926 || odd_sized_struct)
927 {
928 /* must go on the stack */
929 write_memory (sp + stack_offset, val, 4);
930 stack_offset += 4;
931 }
932 /* NOTE WELL!!!!! This is not an "else if" clause!!!
933 That's because some *&^%$ things get passed on the stack
934 AND in the registers! */
935 if (argreg <= gdbarch_tdep (current_gdbarch)->ARGLAST_REGNUM)
936 {
937 /* there's room in a register */
938 regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
939 write_register (argreg++, regval);
940 }
941 /* Store the value 4 bytes at a time. This means that things
942 larger than 4 bytes may go partly in registers and partly
943 on the stack. */
944 len -= REGISTER_RAW_SIZE (argreg);
945 val += REGISTER_RAW_SIZE (argreg);
946 }
947 }
948 return sp;
949 }
950
951 /* Function: push_return_address (pc)
952 Set up the return address for the inferior function call.
953 Needed for targets where we don't actually execute a JSR/BSR instruction */
954
955 static CORE_ADDR
956 sh_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
957 {
958 write_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM, CALL_DUMMY_ADDRESS ());
959 return sp;
960 }
961
962 /* Function: fix_call_dummy
963 Poke the callee function's address into the destination part of
964 the CALL_DUMMY. The address is actually stored in a data word
965 following the actualy CALL_DUMMY instructions, which will load
966 it into a register using PC-relative addressing. This function
967 expects the CALL_DUMMY to look like this:
968
969 mov.w @(2,PC), R8
970 jsr @R8
971 nop
972 trap
973 <destination>
974 */
975
976 #if 0
977 void
978 sh_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
979 struct value **args, struct type *type, int gcc_p)
980 {
981 *(unsigned long *) (dummy + 8) = fun;
982 }
983 #endif
984
985 static int
986 sh_coerce_float_to_double (struct type *formal, struct type *actual)
987 {
988 return 1;
989 }
990
991 /* Find a function's return value in the appropriate registers (in
992 regbuf), and copy it into valbuf. Extract from an array REGBUF
993 containing the (raw) register state a function return value of type
994 TYPE, and copy that, in virtual format, into VALBUF. */
995 static void
996 sh_extract_return_value (struct type *type, char *regbuf, char *valbuf)
997 {
998 int len = TYPE_LENGTH (type);
999 int return_register = R0_REGNUM;
1000 int offset;
1001
1002 if (len <= 4)
1003 {
1004 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1005 offset = REGISTER_BYTE (return_register) + 4 - len;
1006 else
1007 offset = REGISTER_BYTE (return_register);
1008 memcpy (valbuf, regbuf + offset, len);
1009 }
1010 else if (len <= 8)
1011 {
1012 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1013 offset = REGISTER_BYTE (return_register) + 8 - len;
1014 else
1015 offset = REGISTER_BYTE (return_register);
1016 memcpy (valbuf, regbuf + offset, len);
1017 }
1018 else
1019 error ("bad size for return value");
1020 }
1021
1022 static void
1023 sh3e_sh4_extract_return_value (struct type *type, char *regbuf, char *valbuf)
1024 {
1025 int return_register;
1026 int offset;
1027 int len = TYPE_LENGTH (type);
1028
1029 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1030 return_register = FP0_REGNUM;
1031 else
1032 return_register = R0_REGNUM;
1033
1034 if (len == 8 && TYPE_CODE (type) == TYPE_CODE_FLT)
1035 {
1036 DOUBLEST val;
1037 if (TARGET_BYTE_ORDER == LITTLE_ENDIAN)
1038 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1039 (char *) regbuf + REGISTER_BYTE (return_register),
1040 &val);
1041 else
1042 floatformat_to_doublest (&floatformat_ieee_double_big,
1043 (char *) regbuf + REGISTER_BYTE (return_register),
1044 &val);
1045 store_floating (valbuf, len, val);
1046 }
1047 else if (len <= 4)
1048 {
1049 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1050 offset = REGISTER_BYTE (return_register) + 4 - len;
1051 else
1052 offset = REGISTER_BYTE (return_register);
1053 memcpy (valbuf, regbuf + offset, len);
1054 }
1055 else if (len <= 8)
1056 {
1057 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1058 offset = REGISTER_BYTE (return_register) + 8 - len;
1059 else
1060 offset = REGISTER_BYTE (return_register);
1061 memcpy (valbuf, regbuf + offset, len);
1062 }
1063 else
1064 error ("bad size for return value");
1065 }
1066
1067 /* Write into appropriate registers a function return value
1068 of type TYPE, given in virtual format.
1069 If the architecture is sh4 or sh3e, store a function's return value
1070 in the R0 general register or in the FP0 floating point register,
1071 depending on the type of the return value. In all the other cases
1072 the result is stored in r0, left-justified. */
1073 static void
1074 sh_default_store_return_value (struct type *type, char *valbuf)
1075 {
1076 char buf[32]; /* more than enough... */
1077
1078 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (R0_REGNUM))
1079 {
1080 /* Add leading zeros to the value. */
1081 memset (buf, 0, REGISTER_RAW_SIZE (R0_REGNUM));
1082 memcpy (buf + REGISTER_RAW_SIZE (R0_REGNUM) - TYPE_LENGTH (type),
1083 valbuf, TYPE_LENGTH (type));
1084 write_register_bytes (REGISTER_BYTE (R0_REGNUM), buf,
1085 REGISTER_RAW_SIZE (R0_REGNUM));
1086 }
1087 else
1088 write_register_bytes (REGISTER_BYTE (R0_REGNUM), valbuf,
1089 TYPE_LENGTH (type));
1090 }
1091
1092 static void
1093 sh3e_sh4_store_return_value (struct type *type, char *valbuf)
1094 {
1095 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1096 write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1097 valbuf, TYPE_LENGTH (type));
1098 else
1099 sh_default_store_return_value (type, valbuf);
1100 }
1101
1102 /* Print the registers in a form similar to the E7000 */
1103
1104 static void
1105 sh_generic_show_regs (void)
1106 {
1107 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1108 paddr (read_register (PC_REGNUM)),
1109 (long) read_register (gdbarch_tdep (current_gdbarch)->SR_REGNUM),
1110 (long) read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM),
1111 (long) read_register (MACH_REGNUM),
1112 (long) read_register (MACL_REGNUM));
1113
1114 printf_filtered ("GBR=%08lx VBR=%08lx",
1115 (long) read_register (GBR_REGNUM),
1116 (long) read_register (VBR_REGNUM));
1117
1118 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1119 (long) read_register (0),
1120 (long) read_register (1),
1121 (long) read_register (2),
1122 (long) read_register (3),
1123 (long) read_register (4),
1124 (long) read_register (5),
1125 (long) read_register (6),
1126 (long) read_register (7));
1127 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1128 (long) read_register (8),
1129 (long) read_register (9),
1130 (long) read_register (10),
1131 (long) read_register (11),
1132 (long) read_register (12),
1133 (long) read_register (13),
1134 (long) read_register (14),
1135 (long) read_register (15));
1136 }
1137
1138 static void
1139 sh3_show_regs (void)
1140 {
1141 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1142 paddr (read_register (PC_REGNUM)),
1143 (long) read_register (gdbarch_tdep (current_gdbarch)->SR_REGNUM),
1144 (long) read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM),
1145 (long) read_register (MACH_REGNUM),
1146 (long) read_register (MACL_REGNUM));
1147
1148 printf_filtered ("GBR=%08lx VBR=%08lx",
1149 (long) read_register (GBR_REGNUM),
1150 (long) read_register (VBR_REGNUM));
1151 printf_filtered (" SSR=%08lx SPC=%08lx",
1152 (long) read_register (gdbarch_tdep (current_gdbarch)->SSR_REGNUM),
1153 (long) read_register (gdbarch_tdep (current_gdbarch)->SPC_REGNUM));
1154
1155 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1156 (long) read_register (0),
1157 (long) read_register (1),
1158 (long) read_register (2),
1159 (long) read_register (3),
1160 (long) read_register (4),
1161 (long) read_register (5),
1162 (long) read_register (6),
1163 (long) read_register (7));
1164 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1165 (long) read_register (8),
1166 (long) read_register (9),
1167 (long) read_register (10),
1168 (long) read_register (11),
1169 (long) read_register (12),
1170 (long) read_register (13),
1171 (long) read_register (14),
1172 (long) read_register (15));
1173 }
1174
1175
1176 static void
1177 sh3e_show_regs (void)
1178 {
1179 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1180 paddr (read_register (PC_REGNUM)),
1181 (long) read_register (gdbarch_tdep (current_gdbarch)->SR_REGNUM),
1182 (long) read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM),
1183 (long) read_register (MACH_REGNUM),
1184 (long) read_register (MACL_REGNUM));
1185
1186 printf_filtered ("GBR=%08lx VBR=%08lx",
1187 (long) read_register (GBR_REGNUM),
1188 (long) read_register (VBR_REGNUM));
1189 printf_filtered (" SSR=%08lx SPC=%08lx",
1190 (long) read_register (gdbarch_tdep (current_gdbarch)->SSR_REGNUM),
1191 (long) read_register (gdbarch_tdep (current_gdbarch)->SPC_REGNUM));
1192 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
1193 (long) read_register (gdbarch_tdep (current_gdbarch)->FPUL_REGNUM),
1194 (long) read_register (gdbarch_tdep (current_gdbarch)->FPSCR_REGNUM));
1195
1196 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1197 (long) read_register (0),
1198 (long) read_register (1),
1199 (long) read_register (2),
1200 (long) read_register (3),
1201 (long) read_register (4),
1202 (long) read_register (5),
1203 (long) read_register (6),
1204 (long) read_register (7));
1205 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1206 (long) read_register (8),
1207 (long) read_register (9),
1208 (long) read_register (10),
1209 (long) read_register (11),
1210 (long) read_register (12),
1211 (long) read_register (13),
1212 (long) read_register (14),
1213 (long) read_register (15));
1214
1215 printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1216 (long) read_register (FP0_REGNUM + 0),
1217 (long) read_register (FP0_REGNUM + 1),
1218 (long) read_register (FP0_REGNUM + 2),
1219 (long) read_register (FP0_REGNUM + 3),
1220 (long) read_register (FP0_REGNUM + 4),
1221 (long) read_register (FP0_REGNUM + 5),
1222 (long) read_register (FP0_REGNUM + 6),
1223 (long) read_register (FP0_REGNUM + 7));
1224 printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1225 (long) read_register (FP0_REGNUM + 8),
1226 (long) read_register (FP0_REGNUM + 9),
1227 (long) read_register (FP0_REGNUM + 10),
1228 (long) read_register (FP0_REGNUM + 11),
1229 (long) read_register (FP0_REGNUM + 12),
1230 (long) read_register (FP0_REGNUM + 13),
1231 (long) read_register (FP0_REGNUM + 14),
1232 (long) read_register (FP0_REGNUM + 15));
1233 }
1234
1235 static void
1236 sh3_dsp_show_regs (void)
1237 {
1238 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1239 paddr (read_register (PC_REGNUM)),
1240 (long) read_register (gdbarch_tdep (current_gdbarch)->SR_REGNUM),
1241 (long) read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM),
1242 (long) read_register (MACH_REGNUM),
1243 (long) read_register (MACL_REGNUM));
1244
1245 printf_filtered ("GBR=%08lx VBR=%08lx",
1246 (long) read_register (GBR_REGNUM),
1247 (long) read_register (VBR_REGNUM));
1248
1249 printf_filtered (" SSR=%08lx SPC=%08lx",
1250 (long) read_register (gdbarch_tdep (current_gdbarch)->SSR_REGNUM),
1251 (long) read_register (gdbarch_tdep (current_gdbarch)->SPC_REGNUM));
1252
1253 printf_filtered (" DSR=%08lx",
1254 (long) read_register (gdbarch_tdep (current_gdbarch)->DSR_REGNUM));
1255
1256 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1257 (long) read_register (0),
1258 (long) read_register (1),
1259 (long) read_register (2),
1260 (long) read_register (3),
1261 (long) read_register (4),
1262 (long) read_register (5),
1263 (long) read_register (6),
1264 (long) read_register (7));
1265 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1266 (long) read_register (8),
1267 (long) read_register (9),
1268 (long) read_register (10),
1269 (long) read_register (11),
1270 (long) read_register (12),
1271 (long) read_register (13),
1272 (long) read_register (14),
1273 (long) read_register (15));
1274
1275 printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1276 (long) read_register (gdbarch_tdep (current_gdbarch)->A0G_REGNUM) & 0xff,
1277 (long) read_register (gdbarch_tdep (current_gdbarch)->A0_REGNUM),
1278 (long) read_register (gdbarch_tdep (current_gdbarch)->M0_REGNUM),
1279 (long) read_register (gdbarch_tdep (current_gdbarch)->X0_REGNUM),
1280 (long) read_register (gdbarch_tdep (current_gdbarch)->Y0_REGNUM),
1281 (long) read_register (gdbarch_tdep (current_gdbarch)->RS_REGNUM),
1282 (long) read_register (gdbarch_tdep (current_gdbarch)->MOD_REGNUM));
1283 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1284 (long) read_register (gdbarch_tdep (current_gdbarch)->A1G_REGNUM) & 0xff,
1285 (long) read_register (gdbarch_tdep (current_gdbarch)->A1_REGNUM),
1286 (long) read_register (gdbarch_tdep (current_gdbarch)->M1_REGNUM),
1287 (long) read_register (gdbarch_tdep (current_gdbarch)->X1_REGNUM),
1288 (long) read_register (gdbarch_tdep (current_gdbarch)->Y1_REGNUM),
1289 (long) read_register (gdbarch_tdep (current_gdbarch)->RE_REGNUM));
1290 }
1291
1292 static void
1293 sh4_show_regs (void)
1294 {
1295 int pr = read_register (gdbarch_tdep (current_gdbarch)->FPSCR_REGNUM) & 0x80000;
1296 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1297 paddr (read_register (PC_REGNUM)),
1298 (long) read_register (gdbarch_tdep (current_gdbarch)->SR_REGNUM),
1299 (long) read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM),
1300 (long) read_register (MACH_REGNUM),
1301 (long) read_register (MACL_REGNUM));
1302
1303 printf_filtered ("GBR=%08lx VBR=%08lx",
1304 (long) read_register (GBR_REGNUM),
1305 (long) read_register (VBR_REGNUM));
1306 printf_filtered (" SSR=%08lx SPC=%08lx",
1307 (long) read_register (gdbarch_tdep (current_gdbarch)->SSR_REGNUM),
1308 (long) read_register (gdbarch_tdep (current_gdbarch)->SPC_REGNUM));
1309 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
1310 (long) read_register (gdbarch_tdep (current_gdbarch)->FPUL_REGNUM),
1311 (long) read_register (gdbarch_tdep (current_gdbarch)->FPSCR_REGNUM));
1312
1313 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1314 (long) read_register (0),
1315 (long) read_register (1),
1316 (long) read_register (2),
1317 (long) read_register (3),
1318 (long) read_register (4),
1319 (long) read_register (5),
1320 (long) read_register (6),
1321 (long) read_register (7));
1322 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1323 (long) read_register (8),
1324 (long) read_register (9),
1325 (long) read_register (10),
1326 (long) read_register (11),
1327 (long) read_register (12),
1328 (long) read_register (13),
1329 (long) read_register (14),
1330 (long) read_register (15));
1331
1332 printf_filtered ((pr
1333 ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1334 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1335 (long) read_register (FP0_REGNUM + 0),
1336 (long) read_register (FP0_REGNUM + 1),
1337 (long) read_register (FP0_REGNUM + 2),
1338 (long) read_register (FP0_REGNUM + 3),
1339 (long) read_register (FP0_REGNUM + 4),
1340 (long) read_register (FP0_REGNUM + 5),
1341 (long) read_register (FP0_REGNUM + 6),
1342 (long) read_register (FP0_REGNUM + 7));
1343 printf_filtered ((pr
1344 ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1345 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1346 (long) read_register (FP0_REGNUM + 8),
1347 (long) read_register (FP0_REGNUM + 9),
1348 (long) read_register (FP0_REGNUM + 10),
1349 (long) read_register (FP0_REGNUM + 11),
1350 (long) read_register (FP0_REGNUM + 12),
1351 (long) read_register (FP0_REGNUM + 13),
1352 (long) read_register (FP0_REGNUM + 14),
1353 (long) read_register (FP0_REGNUM + 15));
1354 }
1355
1356 static void
1357 sh_dsp_show_regs (void)
1358 {
1359 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1360 paddr (read_register (PC_REGNUM)),
1361 (long) read_register (gdbarch_tdep (current_gdbarch)->SR_REGNUM),
1362 (long) read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM),
1363 (long) read_register (MACH_REGNUM),
1364 (long) read_register (MACL_REGNUM));
1365
1366 printf_filtered ("GBR=%08lx VBR=%08lx",
1367 (long) read_register (GBR_REGNUM),
1368 (long) read_register (VBR_REGNUM));
1369
1370 printf_filtered (" DSR=%08lx",
1371 (long) read_register (gdbarch_tdep (current_gdbarch)->DSR_REGNUM));
1372
1373 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1374 (long) read_register (0),
1375 (long) read_register (1),
1376 (long) read_register (2),
1377 (long) read_register (3),
1378 (long) read_register (4),
1379 (long) read_register (5),
1380 (long) read_register (6),
1381 (long) read_register (7));
1382 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1383 (long) read_register (8),
1384 (long) read_register (9),
1385 (long) read_register (10),
1386 (long) read_register (11),
1387 (long) read_register (12),
1388 (long) read_register (13),
1389 (long) read_register (14),
1390 (long) read_register (15));
1391
1392 printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1393 (long) read_register (gdbarch_tdep (current_gdbarch)->A0G_REGNUM) & 0xff,
1394 (long) read_register (gdbarch_tdep (current_gdbarch)->A0_REGNUM),
1395 (long) read_register (gdbarch_tdep (current_gdbarch)->M0_REGNUM),
1396 (long) read_register (gdbarch_tdep (current_gdbarch)->X0_REGNUM),
1397 (long) read_register (gdbarch_tdep (current_gdbarch)->Y0_REGNUM),
1398 (long) read_register (gdbarch_tdep (current_gdbarch)->RS_REGNUM),
1399 (long) read_register (gdbarch_tdep (current_gdbarch)->MOD_REGNUM));
1400 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1401 (long) read_register (gdbarch_tdep (current_gdbarch)->A1G_REGNUM) & 0xff,
1402 (long) read_register (gdbarch_tdep (current_gdbarch)->A1_REGNUM),
1403 (long) read_register (gdbarch_tdep (current_gdbarch)->M1_REGNUM),
1404 (long) read_register (gdbarch_tdep (current_gdbarch)->X1_REGNUM),
1405 (long) read_register (gdbarch_tdep (current_gdbarch)->Y1_REGNUM),
1406 (long) read_register (gdbarch_tdep (current_gdbarch)->RE_REGNUM));
1407 }
1408
1409 void sh_show_regs_command (char *args, int from_tty)
1410 {
1411 if (sh_show_regs)
1412 (*sh_show_regs)();
1413 }
1414
1415 /* Index within `registers' of the first byte of the space for
1416 register N. */
1417 static int
1418 sh_default_register_byte (int reg_nr)
1419 {
1420 return (reg_nr * 4);
1421 }
1422
1423 static int
1424 sh_sh4_register_byte (int reg_nr)
1425 {
1426 if (reg_nr >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1427 && reg_nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1428 return (dr_reg_base_num (reg_nr) * 4);
1429 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1430 && reg_nr <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1431 return (fv_reg_base_num (reg_nr) * 4);
1432 else
1433 return (reg_nr * 4);
1434 }
1435
1436 /* Number of bytes of storage in the actual machine representation for
1437 register REG_NR. */
1438 static int
1439 sh_default_register_raw_size (int reg_nr)
1440 {
1441 return 4;
1442 }
1443
1444 static int
1445 sh_sh4_register_raw_size (int reg_nr)
1446 {
1447 if (reg_nr >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1448 && reg_nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1449 return 8;
1450 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1451 && reg_nr <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1452 return 16;
1453 else
1454 return 4;
1455 }
1456
1457 /* Number of bytes of storage in the program's representation
1458 for register N. */
1459 static int
1460 sh_register_virtual_size (int reg_nr)
1461 {
1462 return 4;
1463 }
1464
1465 /* Return the GDB type object for the "standard" data type
1466 of data in register N. */
1467 static struct type *
1468 sh_sh3e_register_virtual_type (int reg_nr)
1469 {
1470 if ((reg_nr >= FP0_REGNUM
1471 && (reg_nr <= gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM))
1472 || (reg_nr == gdbarch_tdep (current_gdbarch)->FPUL_REGNUM))
1473 return builtin_type_float;
1474 else
1475 return builtin_type_int;
1476 }
1477
1478 static struct type *
1479 sh_sh4_build_float_register_type (int high)
1480 {
1481 struct type *temp;
1482
1483 temp = create_range_type (NULL, builtin_type_int, 0, high);
1484 return create_array_type (NULL, builtin_type_float, temp);
1485 }
1486
1487 static struct type *
1488 sh_sh4_register_virtual_type (int reg_nr)
1489 {
1490 if ((reg_nr >= FP0_REGNUM
1491 && (reg_nr <= gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM))
1492 || (reg_nr == gdbarch_tdep (current_gdbarch)->FPUL_REGNUM))
1493 return builtin_type_float;
1494 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1495 && reg_nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1496 return builtin_type_double;
1497 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1498 && reg_nr <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1499 return sh_sh4_build_float_register_type (3);
1500 else
1501 return builtin_type_int;
1502 }
1503
1504 static struct type *
1505 sh_default_register_virtual_type (int reg_nr)
1506 {
1507 return builtin_type_int;
1508 }
1509
1510 /* On the sh4, the DRi pseudo registers are problematic if the target
1511 is little endian. When the user writes one of those registers, for
1512 instance with 'ser var $dr0=1', we want the double to be stored
1513 like this:
1514 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1515 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1516
1517 This corresponds to little endian byte order & big endian word
1518 order. However if we let gdb write the register w/o conversion, it
1519 will write fr0 and fr1 this way:
1520 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1521 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1522 because it will consider fr0 and fr1 as a single LE stretch of memory.
1523
1524 To achieve what we want we must force gdb to store things in
1525 floatformat_ieee_double_littlebyte_bigword (which is defined in
1526 include/floatformat.h and libiberty/floatformat.c.
1527
1528 In case the target is big endian, there is no problem, the
1529 raw bytes will look like:
1530 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1531 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1532
1533 The other pseudo registers (the FVs) also don't pose a problem
1534 because they are stored as 4 individual FP elements. */
1535
1536 int
1537 sh_sh4_register_convertible (int nr)
1538 {
1539 if (TARGET_BYTE_ORDER == LITTLE_ENDIAN)
1540 return (gdbarch_tdep (current_gdbarch)->DR0_REGNUM <= nr
1541 && nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM);
1542 else
1543 return 0;
1544 }
1545
1546 void
1547 sh_sh4_register_convert_to_virtual (int regnum, struct type *type,
1548 char *from, char *to)
1549 {
1550 if (regnum >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1551 && regnum <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1552 {
1553 DOUBLEST val;
1554 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val);
1555 store_floating (to, TYPE_LENGTH (type), val);
1556 }
1557 else
1558 error ("sh_register_convert_to_virtual called with non DR register number");
1559 }
1560
1561 void
1562 sh_sh4_register_convert_to_raw (struct type *type, int regnum,
1563 char *from, char *to)
1564 {
1565 if (regnum >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1566 && regnum <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1567 {
1568 DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
1569 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
1570 }
1571 else
1572 error("sh_register_convert_to_raw called with non DR register number");
1573 }
1574
1575 void
1576 sh_fetch_pseudo_register (int reg_nr)
1577 {
1578 int base_regnum, portion;
1579
1580 if (!register_cached (reg_nr))
1581 {
1582 if (reg_nr >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1583 && reg_nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1584 {
1585 base_regnum = dr_reg_base_num (reg_nr);
1586
1587 /* Read the real regs for which this one is an alias. */
1588 for (portion = 0; portion < 2; portion++)
1589 if (!register_cached (base_regnum + portion))
1590 target_fetch_registers (base_regnum + portion);
1591 }
1592 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1593 && reg_nr <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1594 {
1595 base_regnum = fv_reg_base_num (reg_nr);
1596
1597 /* Read the real regs for which this one is an alias. */
1598 for (portion = 0; portion < 4; portion++)
1599 if (!register_cached (base_regnum + portion))
1600 target_fetch_registers (base_regnum + portion);
1601 }
1602 register_valid [reg_nr] = 1;
1603 }
1604 }
1605
1606 void
1607 sh_store_pseudo_register (int reg_nr)
1608 {
1609 int base_regnum, portion;
1610
1611 if (reg_nr >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1612 && reg_nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1613 {
1614 base_regnum = dr_reg_base_num (reg_nr);
1615
1616 /* Write the real regs for which this one is an alias. */
1617 for (portion = 0; portion < 2; portion++)
1618 {
1619 register_valid[base_regnum + portion] = 1;
1620 target_store_registers (base_regnum + portion);
1621 }
1622 }
1623 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1624 && reg_nr <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1625 {
1626 base_regnum = fv_reg_base_num (reg_nr);
1627
1628 /* Write the real regs for which this one is an alias. */
1629 for (portion = 0; portion < 4; portion++)
1630 {
1631 register_valid[base_regnum + portion] = 1;
1632 target_store_registers (base_regnum + portion);
1633 }
1634 }
1635 }
1636
1637 /* Floating point vector of 4 float registers. */
1638 static void
1639 do_fv_register_info (int fv_regnum)
1640 {
1641 int first_fp_reg_num = fv_reg_base_num (fv_regnum);
1642 printf_filtered ("fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1643 fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM,
1644 (int) read_register (first_fp_reg_num),
1645 (int) read_register (first_fp_reg_num + 1),
1646 (int) read_register (first_fp_reg_num + 2),
1647 (int) read_register (first_fp_reg_num + 3));
1648 }
1649
1650 /* Double precision registers. */
1651 static void
1652 do_dr_register_info (int dr_regnum)
1653 {
1654 int first_fp_reg_num = dr_reg_base_num (dr_regnum);
1655
1656 printf_filtered ("dr%d\t0x%08x%08x\n",
1657 dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM,
1658 (int) read_register (first_fp_reg_num),
1659 (int) read_register (first_fp_reg_num + 1));
1660 }
1661
1662 static void
1663 sh_do_pseudo_register (int regnum)
1664 {
1665 if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
1666 internal_error (__FILE__, __LINE__,
1667 "Invalid pseudo register number %d\n", regnum);
1668 else if (regnum >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1669 && regnum < gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1670 do_dr_register_info (regnum);
1671 else if (regnum >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1672 && regnum <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1673 do_fv_register_info (regnum);
1674 }
1675
1676 static void
1677 sh_do_fp_register (int regnum)
1678 { /* do values for FP (float) regs */
1679 char *raw_buffer;
1680 double flt; /* double extracted from raw hex data */
1681 int inv;
1682 int j;
1683
1684 /* Allocate space for the float. */
1685 raw_buffer = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
1686
1687 /* Get the data in raw format. */
1688 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1689 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
1690
1691 /* Get the register as a number */
1692 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1693
1694 /* Print the name and some spaces. */
1695 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
1696 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
1697
1698 /* Print the value. */
1699 if (inv)
1700 printf_filtered ("<invalid float>");
1701 else
1702 printf_filtered ("%-10.9g", flt);
1703
1704 /* Print the fp register as hex. */
1705 printf_filtered ("\t(raw 0x");
1706 for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
1707 {
1708 register int idx = TARGET_BYTE_ORDER == BIG_ENDIAN ? j
1709 : REGISTER_RAW_SIZE (regnum) - 1 - j;
1710 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1711 }
1712 printf_filtered (")");
1713 printf_filtered ("\n");
1714 }
1715
1716 static void
1717 sh_do_register (int regnum)
1718 {
1719 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1720
1721 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
1722 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
1723
1724 /* Get the data in raw format. */
1725 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1726 printf_filtered ("*value not available*\n");
1727
1728 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
1729 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1730 printf_filtered ("\t");
1731 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
1732 gdb_stdout, 0, 1, 0, Val_pretty_default);
1733 printf_filtered ("\n");
1734 }
1735
1736 static void
1737 sh_print_register (int regnum)
1738 {
1739 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
1740 internal_error (__FILE__, __LINE__,
1741 "Invalid register number %d\n", regnum);
1742
1743 else if (regnum >= 0 && regnum < NUM_REGS)
1744 {
1745 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1746 sh_do_fp_register (regnum); /* FP regs */
1747 else
1748 sh_do_register (regnum); /* All other regs */
1749 }
1750
1751 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
1752 do_pseudo_register (regnum);
1753 }
1754
1755 void
1756 sh_do_registers_info (int regnum, int fpregs)
1757 {
1758 if (regnum != -1) /* do one specified register */
1759 {
1760 if (*(REGISTER_NAME (regnum)) == '\0')
1761 error ("Not a valid register for the current processor type");
1762
1763 sh_print_register (regnum);
1764 }
1765 else
1766 /* do all (or most) registers */
1767 {
1768 regnum = 0;
1769 while (regnum < NUM_REGS)
1770 {
1771 /* If the register name is empty, it is undefined for this
1772 processor, so don't display anything. */
1773 if (REGISTER_NAME (regnum) == NULL
1774 || *(REGISTER_NAME (regnum)) == '\0')
1775 {
1776 regnum++;
1777 continue;
1778 }
1779
1780 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1781 {
1782 if (fpregs)
1783 {
1784 /* true for "INFO ALL-REGISTERS" command */
1785 sh_do_fp_register (regnum); /* FP regs */
1786 regnum ++;
1787 }
1788 else
1789 regnum += (gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM - FP0_REGNUM); /* skip FP regs */
1790 }
1791 else
1792 {
1793 sh_do_register (regnum); /* All other regs */
1794 regnum++;
1795 }
1796 }
1797
1798 if (fpregs)
1799 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
1800 {
1801 do_pseudo_register (regnum);
1802 regnum++;
1803 }
1804 }
1805 }
1806
1807 #ifdef SVR4_SHARED_LIBS
1808
1809 /* Fetch (and possibly build) an appropriate link_map_offsets structure
1810 for native i386 linux targets using the struct offsets defined in
1811 link.h (but without actual reference to that file).
1812
1813 This makes it possible to access i386-linux shared libraries from
1814 a gdb that was not built on an i386-linux host (for cross debugging).
1815 */
1816
1817 struct link_map_offsets *
1818 sh_linux_svr4_fetch_link_map_offsets (void)
1819 {
1820 static struct link_map_offsets lmo;
1821 static struct link_map_offsets *lmp = 0;
1822
1823 if (lmp == 0)
1824 {
1825 lmp = &lmo;
1826
1827 lmo.r_debug_size = 8; /* 20 not actual size but all we need */
1828
1829 lmo.r_map_offset = 4;
1830 lmo.r_map_size = 4;
1831
1832 lmo.link_map_size = 20; /* 552 not actual size but all we need */
1833
1834 lmo.l_addr_offset = 0;
1835 lmo.l_addr_size = 4;
1836
1837 lmo.l_name_offset = 4;
1838 lmo.l_name_size = 4;
1839
1840 lmo.l_next_offset = 12;
1841 lmo.l_next_size = 4;
1842
1843 lmo.l_prev_offset = 16;
1844 lmo.l_prev_size = 4;
1845 }
1846
1847 return lmp;
1848 }
1849 #endif /* SVR4_SHARED_LIBS */
1850
1851 static gdbarch_init_ftype sh_gdbarch_init;
1852
1853 static struct gdbarch *
1854 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1855 {
1856 static LONGEST sh_call_dummy_words[] = {0};
1857 struct gdbarch *gdbarch;
1858 struct gdbarch_tdep *tdep;
1859 gdbarch_register_name_ftype *sh_register_name;
1860 gdbarch_store_return_value_ftype *sh_store_return_value;
1861 gdbarch_register_virtual_type_ftype *sh_register_virtual_type;
1862
1863 /* Find a candidate among the list of pre-declared architectures. */
1864 arches = gdbarch_list_lookup_by_info (arches, &info);
1865 if (arches != NULL)
1866 return arches->gdbarch;
1867
1868 /* None found, create a new architecture from the information
1869 provided. */
1870 tdep = XMALLOC (struct gdbarch_tdep);
1871 gdbarch = gdbarch_alloc (&info, tdep);
1872
1873 /* Initialize the register numbers that are not common to all the
1874 variants to -1, if necessary thse will be overwritten in the case
1875 statement below. */
1876 tdep->FPUL_REGNUM = -1;
1877 tdep->FPSCR_REGNUM = -1;
1878 tdep->PR_REGNUM = 17;
1879 tdep->SR_REGNUM = 22;
1880 tdep->DSR_REGNUM = -1;
1881 tdep->FP_LAST_REGNUM = -1;
1882 tdep->A0G_REGNUM = -1;
1883 tdep->A0_REGNUM = -1;
1884 tdep->A1G_REGNUM = -1;
1885 tdep->A1_REGNUM = -1;
1886 tdep->M0_REGNUM = -1;
1887 tdep->M1_REGNUM = -1;
1888 tdep->X0_REGNUM = -1;
1889 tdep->X1_REGNUM = -1;
1890 tdep->Y0_REGNUM = -1;
1891 tdep->Y1_REGNUM = -1;
1892 tdep->MOD_REGNUM = -1;
1893 tdep->RS_REGNUM = -1;
1894 tdep->RE_REGNUM = -1;
1895 tdep->SSR_REGNUM = -1;
1896 tdep->SPC_REGNUM = -1;
1897 tdep->DR0_REGNUM = -1;
1898 tdep->DR_LAST_REGNUM = -1;
1899 tdep->FV0_REGNUM = -1;
1900 tdep->FV_LAST_REGNUM = -1;
1901 tdep->ARG0_REGNUM = 4;
1902 tdep->ARGLAST_REGNUM = 7;
1903 tdep->RETURN_REGNUM = 0;
1904 tdep->FLOAT_ARGLAST_REGNUM = -1;
1905
1906 set_gdbarch_fp0_regnum (gdbarch, -1);
1907 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1908 set_gdbarch_max_register_raw_size (gdbarch, 4);
1909 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1910 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1911 set_gdbarch_num_regs (gdbarch, SH_DEFAULT_NUM_REGS);
1912 set_gdbarch_sp_regnum (gdbarch, 15);
1913 set_gdbarch_fp_regnum (gdbarch, 14);
1914 set_gdbarch_pc_regnum (gdbarch, 16);
1915 set_gdbarch_register_size (gdbarch, 4);
1916 set_gdbarch_register_bytes (gdbarch, SH_DEFAULT_NUM_REGS * 4);
1917 set_gdbarch_fetch_pseudo_register (gdbarch, sh_fetch_pseudo_register);
1918 set_gdbarch_store_pseudo_register (gdbarch, sh_store_pseudo_register);
1919 set_gdbarch_do_registers_info (gdbarch, sh_do_registers_info);
1920 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
1921 set_gdbarch_frame_chain (gdbarch, sh_frame_chain);
1922 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1923 set_gdbarch_init_extra_frame_info (gdbarch, sh_init_extra_frame_info);
1924 set_gdbarch_extract_return_value (gdbarch, sh_extract_return_value);
1925 set_gdbarch_push_arguments (gdbarch, sh_push_arguments);
1926 set_gdbarch_store_struct_return (gdbarch, sh_store_struct_return);
1927 set_gdbarch_use_struct_convention (gdbarch, sh_use_struct_convention);
1928 set_gdbarch_extract_struct_value_address (gdbarch, sh_extract_struct_value_address);
1929 set_gdbarch_pop_frame (gdbarch, sh_pop_frame);
1930 print_sh_insn = gdb_print_insn_sh;
1931 skip_prologue_hard_way = sh_skip_prologue_hard_way;
1932 do_pseudo_register = sh_do_pseudo_register;
1933
1934 switch (info.bfd_arch_info->mach)
1935 {
1936 case bfd_mach_sh:
1937 sh_register_name = sh_sh_register_name;
1938 sh_show_regs = sh_generic_show_regs;
1939 sh_store_return_value = sh_default_store_return_value;
1940 sh_register_virtual_type = sh_default_register_virtual_type;
1941 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1942 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1943 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1944 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1945 break;
1946 case bfd_mach_sh2:
1947 sh_register_name = sh_sh_register_name;
1948 sh_show_regs = sh_generic_show_regs;
1949 sh_store_return_value = sh_default_store_return_value;
1950 sh_register_virtual_type = sh_default_register_virtual_type;
1951 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1952 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1953 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1954 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1955 break;
1956 case bfd_mach_sh_dsp:
1957 sh_register_name = sh_sh_dsp_register_name;
1958 sh_show_regs = sh_dsp_show_regs;
1959 sh_store_return_value = sh_default_store_return_value;
1960 sh_register_virtual_type = sh_default_register_virtual_type;
1961 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1962 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1963 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1964 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1965 tdep->DSR_REGNUM = 24;
1966 tdep->A0G_REGNUM = 25;
1967 tdep->A0_REGNUM = 26;
1968 tdep->A1G_REGNUM = 27;
1969 tdep->A1_REGNUM = 28;
1970 tdep->M0_REGNUM = 29;
1971 tdep->M1_REGNUM = 30;
1972 tdep->X0_REGNUM = 31;
1973 tdep->X1_REGNUM = 32;
1974 tdep->Y0_REGNUM = 33;
1975 tdep->Y1_REGNUM = 34;
1976 tdep->MOD_REGNUM = 40;
1977 tdep->RS_REGNUM = 43;
1978 tdep->RE_REGNUM = 44;
1979 break;
1980 case bfd_mach_sh3:
1981 sh_register_name = sh_sh3_register_name;
1982 sh_show_regs = sh3_show_regs;
1983 sh_store_return_value = sh_default_store_return_value;
1984 sh_register_virtual_type = sh_default_register_virtual_type;
1985 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1986 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1987 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1988 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1989 tdep->SSR_REGNUM = 41;
1990 tdep->SPC_REGNUM = 42;
1991 break;
1992 case bfd_mach_sh3e:
1993 sh_register_name = sh_sh3e_register_name;
1994 sh_show_regs = sh3e_show_regs;
1995 sh_store_return_value = sh3e_sh4_store_return_value;
1996 sh_register_virtual_type = sh_sh3e_register_virtual_type;
1997 set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
1998 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1999 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
2000 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
2001 set_gdbarch_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
2002 set_gdbarch_fp0_regnum (gdbarch, 25);
2003 tdep->FPUL_REGNUM = 23;
2004 tdep->FPSCR_REGNUM = 24;
2005 tdep->FP_LAST_REGNUM = 40;
2006 tdep->SSR_REGNUM = 41;
2007 tdep->SPC_REGNUM = 42;
2008 break;
2009 case bfd_mach_sh3_dsp:
2010 sh_register_name = sh_sh3_dsp_register_name;
2011 sh_show_regs = sh3_dsp_show_regs;
2012 sh_store_return_value = sh_default_store_return_value;
2013 sh_register_virtual_type = sh_default_register_virtual_type;
2014 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
2015 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
2016 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
2017 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
2018 tdep->DSR_REGNUM = 24;
2019 tdep->A0G_REGNUM = 25;
2020 tdep->A0_REGNUM = 26;
2021 tdep->A1G_REGNUM = 27;
2022 tdep->A1_REGNUM = 28;
2023 tdep->M0_REGNUM = 29;
2024 tdep->M1_REGNUM = 30;
2025 tdep->X0_REGNUM = 31;
2026 tdep->X1_REGNUM = 32;
2027 tdep->Y0_REGNUM = 33;
2028 tdep->Y1_REGNUM = 34;
2029 tdep->MOD_REGNUM = 40;
2030 tdep->RS_REGNUM = 43;
2031 tdep->RE_REGNUM = 44;
2032 tdep->SSR_REGNUM = 41;
2033 tdep->SPC_REGNUM = 42;
2034 break;
2035 case bfd_mach_sh4:
2036 sh_register_name = sh_sh4_register_name;
2037 sh_show_regs = sh4_show_regs;
2038 sh_store_return_value = sh3e_sh4_store_return_value;
2039 sh_register_virtual_type = sh_sh4_register_virtual_type;
2040 set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
2041 set_gdbarch_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
2042 set_gdbarch_fp0_regnum (gdbarch, 25);
2043 set_gdbarch_register_raw_size (gdbarch, sh_sh4_register_raw_size);
2044 set_gdbarch_register_virtual_size (gdbarch, sh_sh4_register_raw_size);
2045 set_gdbarch_register_byte (gdbarch, sh_sh4_register_byte);
2046 set_gdbarch_num_pseudo_regs (gdbarch, 12);
2047 set_gdbarch_max_register_raw_size (gdbarch, 4 * 4);
2048 set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4);
2049 set_gdbarch_register_convert_to_raw (gdbarch, sh_sh4_register_convert_to_raw);
2050 set_gdbarch_register_convert_to_virtual (gdbarch, sh_sh4_register_convert_to_virtual);
2051 set_gdbarch_register_convertible (gdbarch, sh_sh4_register_convertible);
2052 tdep->FPUL_REGNUM = 23;
2053 tdep->FPSCR_REGNUM = 24;
2054 tdep->FP_LAST_REGNUM = 40;
2055 tdep->SSR_REGNUM = 41;
2056 tdep->SPC_REGNUM = 42;
2057 tdep->DR0_REGNUM = 59;
2058 tdep->DR_LAST_REGNUM = 66;
2059 tdep->FV0_REGNUM = 67;
2060 tdep->FV_LAST_REGNUM = 70;
2061 break;
2062 default:
2063 sh_register_name = sh_generic_register_name;
2064 sh_show_regs = sh_generic_show_regs;
2065 sh_store_return_value = sh_default_store_return_value;
2066 sh_register_virtual_type = sh_default_register_virtual_type;
2067 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
2068 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
2069 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
2070 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
2071 break;
2072 }
2073
2074 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2075 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2076 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2077 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
2078 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2079 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2080
2081 set_gdbarch_register_name (gdbarch, sh_register_name);
2082 set_gdbarch_register_virtual_type (gdbarch, sh_register_virtual_type);
2083
2084 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2085 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2086 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2087 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2088 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2089 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2090 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);/*??should be 8?*/
2091
2092 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2093 set_gdbarch_call_dummy_length (gdbarch, 0);
2094 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2095 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2096 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
2097 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2098 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2099 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2100 set_gdbarch_call_dummy_words (gdbarch, sh_call_dummy_words);
2101 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (sh_call_dummy_words));
2102 set_gdbarch_call_dummy_p (gdbarch, 1);
2103 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2104 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
2105 set_gdbarch_coerce_float_to_double (gdbarch,
2106 sh_coerce_float_to_double);
2107
2108 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2109 set_gdbarch_push_return_address (gdbarch, sh_push_return_address);
2110
2111 set_gdbarch_store_return_value (gdbarch, sh_store_return_value);
2112 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2113 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2114 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2115 set_gdbarch_function_start_offset (gdbarch, 0);
2116
2117 set_gdbarch_frame_args_skip (gdbarch, 0);
2118 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
2119 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
2120 set_gdbarch_frame_saved_pc (gdbarch, sh_frame_saved_pc);
2121 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
2122 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
2123 set_gdbarch_saved_pc_after_call (gdbarch, sh_saved_pc_after_call);
2124 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2125 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2126 set_gdbarch_ieee_float (gdbarch, 1);
2127 tm_print_insn = print_sh_insn;
2128
2129 return gdbarch;
2130 }
2131
2132 void
2133 _initialize_sh_tdep (void)
2134 {
2135 struct cmd_list_element *c;
2136
2137 register_gdbarch_init (bfd_arch_sh, sh_gdbarch_init);
2138
2139 add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
2140 }
This page took 0.088242 seconds and 4 git commands to generate.