* config/tc-xtensa.c (xtensa_move_labels): Remove loops_ok argument.
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "dwarf2-frame.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "value.h"
38 #include "dis-asm.h"
39 #include "inferior.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "arch-utils.h"
43 #include "floatformat.h"
44 #include "regcache.h"
45 #include "doublest.h"
46 #include "osabi.h"
47 #include "reggroups.h"
48
49 #include "sh-tdep.h"
50
51 #include "elf-bfd.h"
52 #include "solib-svr4.h"
53
54 /* sh flags */
55 #include "elf/sh.h"
56 /* registers numbers shared with the simulator */
57 #include "gdb/sim-sh.h"
58
59 static void (*sh_show_regs) (void);
60
61 #define SH_NUM_REGS 67
62
63 struct sh_frame_cache
64 {
65 /* Base address. */
66 CORE_ADDR base;
67 LONGEST sp_offset;
68 CORE_ADDR pc;
69
70 /* Flag showing that a frame has been created in the prologue code. */
71 int uses_fp;
72
73 /* Saved registers. */
74 CORE_ADDR saved_regs[SH_NUM_REGS];
75 CORE_ADDR saved_sp;
76 };
77
78 static const char *
79 sh_sh_register_name (int reg_nr)
80 {
81 static char *register_names[] = {
82 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
83 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
84 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
85 "", "",
86 "", "", "", "", "", "", "", "",
87 "", "", "", "", "", "", "", "",
88 "", "",
89 "", "", "", "", "", "", "", "",
90 "", "", "", "", "", "", "", "",
91 "", "", "", "", "", "", "", "",
92 };
93 if (reg_nr < 0)
94 return NULL;
95 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
96 return NULL;
97 return register_names[reg_nr];
98 }
99
100 static const char *
101 sh_sh3_register_name (int reg_nr)
102 {
103 static char *register_names[] = {
104 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
105 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
106 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
107 "", "",
108 "", "", "", "", "", "", "", "",
109 "", "", "", "", "", "", "", "",
110 "ssr", "spc",
111 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
112 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
113 "", "", "", "", "", "", "", "",
114 };
115 if (reg_nr < 0)
116 return NULL;
117 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
118 return NULL;
119 return register_names[reg_nr];
120 }
121
122 static const char *
123 sh_sh3e_register_name (int reg_nr)
124 {
125 static char *register_names[] = {
126 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
127 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
128 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
129 "fpul", "fpscr",
130 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
131 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
132 "ssr", "spc",
133 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
134 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
135 "", "", "", "", "", "", "", "",
136 };
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
140 return NULL;
141 return register_names[reg_nr];
142 }
143
144 static const char *
145 sh_sh2e_register_name (int reg_nr)
146 {
147 static char *register_names[] = {
148 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
149 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
150 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
151 "fpul", "fpscr",
152 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
153 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
154 "", "",
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
157 "", "", "", "", "", "", "", "",
158 };
159 if (reg_nr < 0)
160 return NULL;
161 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
162 return NULL;
163 return register_names[reg_nr];
164 }
165
166 static const char *
167 sh_sh2a_register_name (int reg_nr)
168 {
169 static char *register_names[] = {
170 /* general registers 0-15 */
171 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
172 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
173 /* 16 - 22 */
174 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
175 /* 23, 24 */
176 "fpul", "fpscr",
177 /* floating point registers 25 - 40 */
178 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
179 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
180 /* 41, 42 */
181 "", "",
182 /* 43 - 62. Banked registers. The bank number used is determined by
183 the bank register (63). */
184 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
185 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
186 "machb", "ivnb", "prb", "gbrb", "maclb",
187 /* 63: register bank number, not a real register but used to
188 communicate the register bank currently get/set. This register
189 is hidden to the user, who manipulates it using the pseudo
190 register called "bank" (67). See below. */
191 "",
192 /* 64 - 66 */
193 "ibcr", "ibnr", "tbr",
194 /* 67: register bank number, the user visible pseudo register. */
195 "bank",
196 /* double precision (pseudo) 68 - 75 */
197 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
198 };
199 if (reg_nr < 0)
200 return NULL;
201 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
202 return NULL;
203 return register_names[reg_nr];
204 }
205
206 static const char *
207 sh_sh2a_nofpu_register_name (int reg_nr)
208 {
209 static char *register_names[] = {
210 /* general registers 0-15 */
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
213 /* 16 - 22 */
214 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
215 /* 23, 24 */
216 "", "",
217 /* floating point registers 25 - 40 */
218 "", "", "", "", "", "", "", "",
219 "", "", "", "", "", "", "", "",
220 /* 41, 42 */
221 "", "",
222 /* 43 - 62. Banked registers. The bank number used is determined by
223 the bank register (63). */
224 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
225 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
226 "machb", "ivnb", "prb", "gbrb", "maclb",
227 /* 63: register bank number, not a real register but used to
228 communicate the register bank currently get/set. This register
229 is hidden to the user, who manipulates it using the pseudo
230 register called "bank" (67). See below. */
231 "",
232 /* 64 - 66 */
233 "ibcr", "ibnr", "tbr",
234 /* 67: register bank number, the user visible pseudo register. */
235 "bank",
236 /* double precision (pseudo) 68 - 75 */
237 "", "", "", "", "", "", "", "",
238 };
239 if (reg_nr < 0)
240 return NULL;
241 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
242 return NULL;
243 return register_names[reg_nr];
244 }
245
246 static const char *
247 sh_sh_dsp_register_name (int reg_nr)
248 {
249 static char *register_names[] = {
250 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
251 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
252 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
253 "", "dsr",
254 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
255 "y0", "y1", "", "", "", "", "", "mod",
256 "", "",
257 "rs", "re", "", "", "", "", "", "",
258 "", "", "", "", "", "", "", "",
259 "", "", "", "", "", "", "", "",
260 };
261 if (reg_nr < 0)
262 return NULL;
263 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
264 return NULL;
265 return register_names[reg_nr];
266 }
267
268 static const char *
269 sh_sh3_dsp_register_name (int reg_nr)
270 {
271 static char *register_names[] = {
272 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
273 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
274 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
275 "", "dsr",
276 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
277 "y0", "y1", "", "", "", "", "", "mod",
278 "ssr", "spc",
279 "rs", "re", "", "", "", "", "", "",
280 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
281 "", "", "", "", "", "", "", "",
282 "", "", "", "", "", "", "", "",
283 };
284 if (reg_nr < 0)
285 return NULL;
286 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
287 return NULL;
288 return register_names[reg_nr];
289 }
290
291 static const char *
292 sh_sh4_register_name (int reg_nr)
293 {
294 static char *register_names[] = {
295 /* general registers 0-15 */
296 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
297 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
298 /* 16 - 22 */
299 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
300 /* 23, 24 */
301 "fpul", "fpscr",
302 /* floating point registers 25 - 40 */
303 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
304 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
305 /* 41, 42 */
306 "ssr", "spc",
307 /* bank 0 43 - 50 */
308 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
309 /* bank 1 51 - 58 */
310 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
311 "", "", "", "", "", "", "", "",
312 /* pseudo bank register. */
313 "",
314 /* double precision (pseudo) 59 - 66 */
315 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
316 /* vectors (pseudo) 67 - 70 */
317 "fv0", "fv4", "fv8", "fv12",
318 /* FIXME: missing XF 71 - 86 */
319 /* FIXME: missing XD 87 - 94 */
320 };
321 if (reg_nr < 0)
322 return NULL;
323 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
324 return NULL;
325 return register_names[reg_nr];
326 }
327
328 static const char *
329 sh_sh4_nofpu_register_name (int reg_nr)
330 {
331 static char *register_names[] = {
332 /* general registers 0-15 */
333 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
334 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
335 /* 16 - 22 */
336 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
337 /* 23, 24 */
338 "", "",
339 /* floating point registers 25 - 40 -- not for nofpu target */
340 "", "", "", "", "", "", "", "",
341 "", "", "", "", "", "", "", "",
342 /* 41, 42 */
343 "ssr", "spc",
344 /* bank 0 43 - 50 */
345 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
346 /* bank 1 51 - 58 */
347 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
348 "", "", "", "", "", "", "", "",
349 /* pseudo bank register. */
350 "",
351 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
352 "", "", "", "", "", "", "", "",
353 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
354 "", "", "", "",
355 };
356 if (reg_nr < 0)
357 return NULL;
358 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
359 return NULL;
360 return register_names[reg_nr];
361 }
362
363 static const char *
364 sh_sh4al_dsp_register_name (int reg_nr)
365 {
366 static char *register_names[] = {
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
369 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
370 "", "dsr",
371 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
372 "y0", "y1", "", "", "", "", "", "mod",
373 "ssr", "spc",
374 "rs", "re", "", "", "", "", "", "",
375 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
376 "", "", "", "", "", "", "", "",
377 "", "", "", "", "", "", "", "",
378 };
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
382 return NULL;
383 return register_names[reg_nr];
384 }
385
386 static const unsigned char *
387 sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
388 {
389 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
390 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
391
392 /* For remote stub targets, trapa #20 is used. */
393 if (strcmp (target_shortname, "remote") == 0)
394 {
395 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
396 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
397
398 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
399 {
400 *lenptr = sizeof (big_remote_breakpoint);
401 return big_remote_breakpoint;
402 }
403 else
404 {
405 *lenptr = sizeof (little_remote_breakpoint);
406 return little_remote_breakpoint;
407 }
408 }
409
410 *lenptr = sizeof (breakpoint);
411 return breakpoint;
412 }
413
414 /* Prologue looks like
415 mov.l r14,@-r15
416 sts.l pr,@-r15
417 mov.l <regs>,@-r15
418 sub <room_for_loca_vars>,r15
419 mov r15,r14
420
421 Actually it can be more complicated than this but that's it, basically.
422 */
423
424 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
425 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
426
427 /* JSR @Rm 0100mmmm00001011 */
428 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
429
430 /* STS.L PR,@-r15 0100111100100010
431 r15-4-->r15, PR-->(r15) */
432 #define IS_STS(x) ((x) == 0x4f22)
433
434 /* STS.L MACL,@-r15 0100111100010010
435 r15-4-->r15, MACL-->(r15) */
436 #define IS_MACL_STS(x) ((x) == 0x4f12)
437
438 /* MOV.L Rm,@-r15 00101111mmmm0110
439 r15-4-->r15, Rm-->(R15) */
440 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
441
442 /* MOV r15,r14 0110111011110011
443 r15-->r14 */
444 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
445
446 /* ADD #imm,r15 01111111iiiiiiii
447 r15+imm-->r15 */
448 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
449
450 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
451 #define IS_SHLL_R3(x) ((x) == 0x4300)
452
453 /* ADD r3,r15 0011111100111100
454 r15+r3-->r15 */
455 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
456
457 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
458 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
459 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
460 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
461 make this entirely clear. */
462 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
463 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
464
465 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
466 #define IS_MOV_ARG_TO_REG(x) \
467 (((x) & 0xf00f) == 0x6003 && \
468 ((x) & 0x00f0) >= 0x0040 && \
469 ((x) & 0x00f0) <= 0x0070)
470 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
471 #define IS_MOV_ARG_TO_IND_R14(x) \
472 (((x) & 0xff0f) == 0x2e02 && \
473 ((x) & 0x00f0) >= 0x0040 && \
474 ((x) & 0x00f0) <= 0x0070)
475 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
476 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
477 (((x) & 0xff00) == 0x1e00 && \
478 ((x) & 0x00f0) >= 0x0040 && \
479 ((x) & 0x00f0) <= 0x0070)
480
481 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
482 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
483 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
484 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
485 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
486 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
487 /* SUB Rn,R15 00111111nnnn1000 */
488 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
489
490 #define FPSCR_SZ (1 << 20)
491
492 /* The following instructions are used for epilogue testing. */
493 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
494 #define IS_RTS(x) ((x) == 0x000b)
495 #define IS_LDS(x) ((x) == 0x4f26)
496 #define IS_MACL_LDS(x) ((x) == 0x4f16)
497 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
498 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
499 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
500
501 /* Disassemble an instruction. */
502 static int
503 gdb_print_insn_sh (bfd_vma memaddr, disassemble_info * info)
504 {
505 info->endian = TARGET_BYTE_ORDER;
506 return print_insn_sh (memaddr, info);
507 }
508
509 static CORE_ADDR
510 sh_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
511 struct sh_frame_cache *cache)
512 {
513 ULONGEST inst;
514 CORE_ADDR opc;
515 int offset;
516 int sav_offset = 0;
517 int r3_val = 0;
518 int reg, sav_reg = -1;
519
520 if (pc >= current_pc)
521 return current_pc;
522
523 cache->uses_fp = 0;
524 for (opc = pc + (2 * 28); pc < opc; pc += 2)
525 {
526 inst = read_memory_unsigned_integer (pc, 2);
527 /* See where the registers will be saved to */
528 if (IS_PUSH (inst))
529 {
530 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
531 cache->sp_offset += 4;
532 }
533 else if (IS_STS (inst))
534 {
535 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
536 cache->sp_offset += 4;
537 }
538 else if (IS_MACL_STS (inst))
539 {
540 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
541 cache->sp_offset += 4;
542 }
543 else if (IS_MOV_R3 (inst))
544 {
545 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
546 }
547 else if (IS_SHLL_R3 (inst))
548 {
549 r3_val <<= 1;
550 }
551 else if (IS_ADD_R3SP (inst))
552 {
553 cache->sp_offset += -r3_val;
554 }
555 else if (IS_ADD_IMM_SP (inst))
556 {
557 offset = ((inst & 0xff) ^ 0x80) - 0x80;
558 cache->sp_offset -= offset;
559 }
560 else if (IS_MOVW_PCREL_TO_REG (inst))
561 {
562 if (sav_reg < 0)
563 {
564 reg = GET_TARGET_REG (inst);
565 if (reg < 14)
566 {
567 sav_reg = reg;
568 offset = (inst & 0xff) << 1;
569 sav_offset =
570 read_memory_integer ((pc + 4) + offset, 2);
571 }
572 }
573 }
574 else if (IS_MOVL_PCREL_TO_REG (inst))
575 {
576 if (sav_reg < 0)
577 {
578 reg = GET_TARGET_REG (inst);
579 if (reg < 14)
580 {
581 sav_reg = reg;
582 offset = (inst & 0xff) << 2;
583 sav_offset =
584 read_memory_integer (((pc & 0xfffffffc) + 4) + offset, 4);
585 }
586 }
587 }
588 else if (IS_MOVI20 (inst))
589 {
590 if (sav_reg < 0)
591 {
592 reg = GET_TARGET_REG (inst);
593 if (reg < 14)
594 {
595 sav_reg = reg;
596 sav_offset = GET_SOURCE_REG (inst) << 16;
597 /* MOVI20 is a 32 bit instruction! */
598 pc += 2;
599 sav_offset |= read_memory_unsigned_integer (pc, 2);
600 /* Now sav_offset contains an unsigned 20 bit value.
601 It must still get sign extended. */
602 if (sav_offset & 0x00080000)
603 sav_offset |= 0xfff00000;
604 }
605 }
606 }
607 else if (IS_SUB_REG_FROM_SP (inst))
608 {
609 reg = GET_SOURCE_REG (inst);
610 if (sav_reg > 0 && reg == sav_reg)
611 {
612 sav_reg = -1;
613 }
614 cache->sp_offset += sav_offset;
615 }
616 else if (IS_FPUSH (inst))
617 {
618 if (read_register (FPSCR_REGNUM) & FPSCR_SZ)
619 {
620 cache->sp_offset += 8;
621 }
622 else
623 {
624 cache->sp_offset += 4;
625 }
626 }
627 else if (IS_MOV_SP_FP (inst))
628 {
629 cache->uses_fp = 1;
630 /* At this point, only allow argument register moves to other
631 registers or argument register moves to @(X,fp) which are
632 moving the register arguments onto the stack area allocated
633 by a former add somenumber to SP call. Don't allow moving
634 to an fp indirect address above fp + cache->sp_offset. */
635 pc += 2;
636 for (opc = pc + 12; pc < opc; pc += 2)
637 {
638 inst = read_memory_integer (pc, 2);
639 if (IS_MOV_ARG_TO_IND_R14 (inst))
640 {
641 reg = GET_SOURCE_REG (inst);
642 if (cache->sp_offset > 0)
643 cache->saved_regs[reg] = cache->sp_offset;
644 }
645 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
646 {
647 reg = GET_SOURCE_REG (inst);
648 offset = (inst & 0xf) * 4;
649 if (cache->sp_offset > offset)
650 cache->saved_regs[reg] = cache->sp_offset - offset;
651 }
652 else if (IS_MOV_ARG_TO_REG (inst))
653 continue;
654 else
655 break;
656 }
657 break;
658 }
659 else if (IS_JSR (inst))
660 {
661 /* We have found a jsr that has been scheduled into the prologue.
662 If we continue the scan and return a pc someplace after this,
663 then setting a breakpoint on this function will cause it to
664 appear to be called after the function it is calling via the
665 jsr, which will be very confusing. Most likely the next
666 instruction is going to be IS_MOV_SP_FP in the delay slot. If
667 so, note that before returning the current pc. */
668 inst = read_memory_integer (pc + 2, 2);
669 if (IS_MOV_SP_FP (inst))
670 cache->uses_fp = 1;
671 break;
672 }
673 #if 0 /* This used to just stop when it found an instruction that
674 was not considered part of the prologue. Now, we just
675 keep going looking for likely instructions. */
676 else
677 break;
678 #endif
679 }
680
681 return pc;
682 }
683
684 /* Skip any prologue before the guts of a function */
685
686 /* Skip the prologue using the debug information. If this fails we'll
687 fall back on the 'guess' method below. */
688 static CORE_ADDR
689 after_prologue (CORE_ADDR pc)
690 {
691 struct symtab_and_line sal;
692 CORE_ADDR func_addr, func_end;
693
694 /* If we can not find the symbol in the partial symbol table, then
695 there is no hope we can determine the function's start address
696 with this code. */
697 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
698 return 0;
699
700 /* Get the line associated with FUNC_ADDR. */
701 sal = find_pc_line (func_addr, 0);
702
703 /* There are only two cases to consider. First, the end of the source line
704 is within the function bounds. In that case we return the end of the
705 source line. Second is the end of the source line extends beyond the
706 bounds of the current function. We need to use the slow code to
707 examine instructions in that case. */
708 if (sal.end < func_end)
709 return sal.end;
710 else
711 return 0;
712 }
713
714 static CORE_ADDR
715 sh_skip_prologue (CORE_ADDR start_pc)
716 {
717 CORE_ADDR pc;
718 struct sh_frame_cache cache;
719
720 /* See if we can determine the end of the prologue via the symbol table.
721 If so, then return either PC, or the PC after the prologue, whichever
722 is greater. */
723 pc = after_prologue (start_pc);
724
725 /* If after_prologue returned a useful address, then use it. Else
726 fall back on the instruction skipping code. */
727 if (pc)
728 return max (pc, start_pc);
729
730 cache.sp_offset = -4;
731 pc = sh_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
732 if (!cache.uses_fp)
733 return start_pc;
734
735 return pc;
736 }
737
738 /* The ABI says:
739
740 Aggregate types not bigger than 8 bytes that have the same size and
741 alignment as one of the integer scalar types are returned in the
742 same registers as the integer type they match.
743
744 For example, a 2-byte aligned structure with size 2 bytes has the
745 same size and alignment as a short int, and will be returned in R0.
746 A 4-byte aligned structure with size 8 bytes has the same size and
747 alignment as a long long int, and will be returned in R0 and R1.
748
749 When an aggregate type is returned in R0 and R1, R0 contains the
750 first four bytes of the aggregate, and R1 contains the
751 remainder. If the size of the aggregate type is not a multiple of 4
752 bytes, the aggregate is tail-padded up to a multiple of 4
753 bytes. The value of the padding is undefined. For little-endian
754 targets the padding will appear at the most significant end of the
755 last element, for big-endian targets the padding appears at the
756 least significant end of the last element.
757
758 All other aggregate types are returned by address. The caller
759 function passes the address of an area large enough to hold the
760 aggregate value in R2. The called function stores the result in
761 this location.
762
763 To reiterate, structs smaller than 8 bytes could also be returned
764 in memory, if they don't pass the "same size and alignment as an
765 integer type" rule.
766
767 For example, in
768
769 struct s { char c[3]; } wibble;
770 struct s foo(void) { return wibble; }
771
772 the return value from foo() will be in memory, not
773 in R0, because there is no 3-byte integer type.
774
775 Similarly, in
776
777 struct s { char c[2]; } wibble;
778 struct s foo(void) { return wibble; }
779
780 because a struct containing two chars has alignment 1, that matches
781 type char, but size 2, that matches type short. There's no integer
782 type that has alignment 1 and size 2, so the struct is returned in
783 memory.
784
785 */
786
787 static int
788 sh_use_struct_convention (int gcc_p, struct type *type)
789 {
790 int len = TYPE_LENGTH (type);
791 int nelem = TYPE_NFIELDS (type);
792
793 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
794 fit in two registers anyway) use struct convention. */
795 if (len != 1 && len != 2 && len != 4 && len != 8)
796 return 1;
797
798 /* Scalar types and aggregate types with exactly one field are aligned
799 by definition. They are returned in registers. */
800 if (nelem <= 1)
801 return 0;
802
803 /* If the first field in the aggregate has the same length as the entire
804 aggregate type, the type is returned in registers. */
805 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
806 return 0;
807
808 /* If the size of the aggregate is 8 bytes and the first field is
809 of size 4 bytes its alignment is equal to long long's alignment,
810 so it's returned in registers. */
811 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
812 return 0;
813
814 /* Otherwise use struct convention. */
815 return 1;
816 }
817
818 /* Extract from an array REGBUF containing the (raw) register state
819 the address in which a function should return its structure value,
820 as a CORE_ADDR (or an expression that can be used as one). */
821 static CORE_ADDR
822 sh_extract_struct_value_address (struct regcache *regcache)
823 {
824 ULONGEST addr;
825
826 regcache_cooked_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &addr);
827 return addr;
828 }
829
830 static CORE_ADDR
831 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
832 {
833 return sp & ~3;
834 }
835
836 /* Function: push_dummy_call (formerly push_arguments)
837 Setup the function arguments for calling a function in the inferior.
838
839 On the Renesas SH architecture, there are four registers (R4 to R7)
840 which are dedicated for passing function arguments. Up to the first
841 four arguments (depending on size) may go into these registers.
842 The rest go on the stack.
843
844 MVS: Except on SH variants that have floating point registers.
845 In that case, float and double arguments are passed in the same
846 manner, but using FP registers instead of GP registers.
847
848 Arguments that are smaller than 4 bytes will still take up a whole
849 register or a whole 32-bit word on the stack, and will be
850 right-justified in the register or the stack word. This includes
851 chars, shorts, and small aggregate types.
852
853 Arguments that are larger than 4 bytes may be split between two or
854 more registers. If there are not enough registers free, an argument
855 may be passed partly in a register (or registers), and partly on the
856 stack. This includes doubles, long longs, and larger aggregates.
857 As far as I know, there is no upper limit to the size of aggregates
858 that will be passed in this way; in other words, the convention of
859 passing a pointer to a large aggregate instead of a copy is not used.
860
861 MVS: The above appears to be true for the SH variants that do not
862 have an FPU, however those that have an FPU appear to copy the
863 aggregate argument onto the stack (and not place it in registers)
864 if it is larger than 16 bytes (four GP registers).
865
866 An exceptional case exists for struct arguments (and possibly other
867 aggregates such as arrays) if the size is larger than 4 bytes but
868 not a multiple of 4 bytes. In this case the argument is never split
869 between the registers and the stack, but instead is copied in its
870 entirety onto the stack, AND also copied into as many registers as
871 there is room for. In other words, space in registers permitting,
872 two copies of the same argument are passed in. As far as I can tell,
873 only the one on the stack is used, although that may be a function
874 of the level of compiler optimization. I suspect this is a compiler
875 bug. Arguments of these odd sizes are left-justified within the
876 word (as opposed to arguments smaller than 4 bytes, which are
877 right-justified).
878
879 If the function is to return an aggregate type such as a struct, it
880 is either returned in the normal return value register R0 (if its
881 size is no greater than one byte), or else the caller must allocate
882 space into which the callee will copy the return value (if the size
883 is greater than one byte). In this case, a pointer to the return
884 value location is passed into the callee in register R2, which does
885 not displace any of the other arguments passed in via registers R4
886 to R7. */
887
888 /* Helper function to justify value in register according to endianess. */
889 static char *
890 sh_justify_value_in_reg (struct value *val, int len)
891 {
892 static char valbuf[4];
893
894 memset (valbuf, 0, sizeof (valbuf));
895 if (len < 4)
896 {
897 /* value gets right-justified in the register or stack word */
898 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
899 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
900 else
901 memcpy (valbuf, (char *) value_contents (val), len);
902 return valbuf;
903 }
904 return (char *) value_contents (val);
905 }
906
907 /* Helper function to eval number of bytes to allocate on stack. */
908 static CORE_ADDR
909 sh_stack_allocsize (int nargs, struct value **args)
910 {
911 int stack_alloc = 0;
912 while (nargs-- > 0)
913 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
914 return stack_alloc;
915 }
916
917 /* Helper functions for getting the float arguments right. Registers usage
918 depends on the ABI and the endianess. The comments should enlighten how
919 it's intended to work. */
920
921 /* This array stores which of the float arg registers are already in use. */
922 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
923
924 /* This function just resets the above array to "no reg used so far". */
925 static void
926 sh_init_flt_argreg (void)
927 {
928 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
929 }
930
931 /* This function returns the next register to use for float arg passing.
932 It returns either a valid value between FLOAT_ARG0_REGNUM and
933 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
934 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
935
936 Note that register number 0 in flt_argreg_array corresponds with the
937 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
938 29) the parity of the register number is preserved, which is important
939 for the double register passing test (see the "argreg & 1" test below). */
940 static int
941 sh_next_flt_argreg (int len)
942 {
943 int argreg;
944
945 /* First search for the next free register. */
946 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
947 ++argreg)
948 if (!flt_argreg_array[argreg])
949 break;
950
951 /* No register left? */
952 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
953 return FLOAT_ARGLAST_REGNUM + 1;
954
955 if (len == 8)
956 {
957 /* Doubles are always starting in a even register number. */
958 if (argreg & 1)
959 {
960 flt_argreg_array[argreg] = 1;
961
962 ++argreg;
963
964 /* No register left? */
965 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
966 return FLOAT_ARGLAST_REGNUM + 1;
967 }
968 /* Also mark the next register as used. */
969 flt_argreg_array[argreg + 1] = 1;
970 }
971 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
972 {
973 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
974 if (!flt_argreg_array[argreg + 1])
975 ++argreg;
976 }
977 flt_argreg_array[argreg] = 1;
978 return FLOAT_ARG0_REGNUM + argreg;
979 }
980
981 /* Helper function which figures out, if a type is treated like a float type.
982
983 The FPU ABIs have a special way how to treat types as float types.
984 Structures with exactly one member, which is of type float or double, are
985 treated exactly as the base types float or double:
986
987 struct sf {
988 float f;
989 };
990
991 struct sd {
992 double d;
993 };
994
995 are handled the same way as just
996
997 float f;
998
999 double d;
1000
1001 As a result, arguments of these struct types are pushed into floating point
1002 registers exactly as floats or doubles, using the same decision algorithm.
1003
1004 The same is valid if these types are used as function return types. The
1005 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1006 or even using struct convention as it is for other structs. */
1007
1008 static int
1009 sh_treat_as_flt_p (struct type *type)
1010 {
1011 int len = TYPE_LENGTH (type);
1012
1013 /* Ordinary float types are obviously treated as float. */
1014 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1015 return 1;
1016 /* Otherwise non-struct types are not treated as float. */
1017 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1018 return 0;
1019 /* Otherwise structs with more than one memeber are not treated as float. */
1020 if (TYPE_NFIELDS (type) != 1)
1021 return 0;
1022 /* Otherwise if the type of that member is float, the whole type is
1023 treated as float. */
1024 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1025 return 1;
1026 /* Otherwise it's not treated as float. */
1027 return 0;
1028 }
1029
1030 static CORE_ADDR
1031 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1032 struct value *function,
1033 struct regcache *regcache,
1034 CORE_ADDR bp_addr, int nargs,
1035 struct value **args,
1036 CORE_ADDR sp, int struct_return,
1037 CORE_ADDR struct_addr)
1038 {
1039 int stack_offset = 0;
1040 int argreg = ARG0_REGNUM;
1041 int flt_argreg = 0;
1042 int argnum;
1043 struct type *type;
1044 CORE_ADDR regval;
1045 char *val;
1046 int len, reg_size = 0;
1047 int pass_on_stack = 0;
1048 int treat_as_flt;
1049
1050 /* first force sp to a 4-byte alignment */
1051 sp = sh_frame_align (gdbarch, sp);
1052
1053 if (struct_return)
1054 regcache_cooked_write_unsigned (regcache,
1055 STRUCT_RETURN_REGNUM, struct_addr);
1056
1057 /* make room on stack for args */
1058 sp -= sh_stack_allocsize (nargs, args);
1059
1060 /* Initialize float argument mechanism. */
1061 sh_init_flt_argreg ();
1062
1063 /* Now load as many as possible of the first arguments into
1064 registers, and push the rest onto the stack. There are 16 bytes
1065 in four registers available. Loop thru args from first to last. */
1066 for (argnum = 0; argnum < nargs; argnum++)
1067 {
1068 type = value_type (args[argnum]);
1069 len = TYPE_LENGTH (type);
1070 val = sh_justify_value_in_reg (args[argnum], len);
1071
1072 /* Some decisions have to be made how various types are handled.
1073 This also differs in different ABIs. */
1074 pass_on_stack = 0;
1075
1076 /* Find out the next register to use for a floating point value. */
1077 treat_as_flt = sh_treat_as_flt_p (type);
1078 if (treat_as_flt)
1079 flt_argreg = sh_next_flt_argreg (len);
1080 /* In contrast to non-FPU CPUs, arguments are never split between
1081 registers and stack. If an argument doesn't fit in the remaining
1082 registers it's always pushed entirely on the stack. */
1083 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1084 pass_on_stack = 1;
1085
1086 while (len > 0)
1087 {
1088 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1089 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1090 || pass_on_stack)))
1091 {
1092 /* The data goes entirely on the stack, 4-byte aligned. */
1093 reg_size = (len + 3) & ~3;
1094 write_memory (sp + stack_offset, val, reg_size);
1095 stack_offset += reg_size;
1096 }
1097 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1098 {
1099 /* Argument goes in a float argument register. */
1100 reg_size = register_size (gdbarch, flt_argreg);
1101 regval = extract_unsigned_integer (val, reg_size);
1102 /* In little endian mode, float types taking two registers
1103 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1104 be stored swapped in the argument registers. The below
1105 code first writes the first 32 bits in the next but one
1106 register, increments the val and len values accordingly
1107 and then proceeds as normal by writing the second 32 bits
1108 into the next register. */
1109 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE
1110 && TYPE_LENGTH (type) == 2 * reg_size)
1111 {
1112 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1113 regval);
1114 val += reg_size;
1115 len -= reg_size;
1116 regval = extract_unsigned_integer (val, reg_size);
1117 }
1118 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1119 }
1120 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1121 {
1122 /* there's room in a register */
1123 reg_size = register_size (gdbarch, argreg);
1124 regval = extract_unsigned_integer (val, reg_size);
1125 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1126 }
1127 /* Store the value one register at a time or in one step on stack. */
1128 len -= reg_size;
1129 val += reg_size;
1130 }
1131 }
1132
1133 /* Store return address. */
1134 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1135
1136 /* Update stack pointer. */
1137 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1138
1139 return sp;
1140 }
1141
1142 static CORE_ADDR
1143 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1144 struct value *function,
1145 struct regcache *regcache,
1146 CORE_ADDR bp_addr,
1147 int nargs, struct value **args,
1148 CORE_ADDR sp, int struct_return,
1149 CORE_ADDR struct_addr)
1150 {
1151 int stack_offset = 0;
1152 int argreg = ARG0_REGNUM;
1153 int argnum;
1154 struct type *type;
1155 CORE_ADDR regval;
1156 char *val;
1157 int len, reg_size;
1158
1159 /* first force sp to a 4-byte alignment */
1160 sp = sh_frame_align (gdbarch, sp);
1161
1162 if (struct_return)
1163 regcache_cooked_write_unsigned (regcache,
1164 STRUCT_RETURN_REGNUM, struct_addr);
1165
1166 /* make room on stack for args */
1167 sp -= sh_stack_allocsize (nargs, args);
1168
1169 /* Now load as many as possible of the first arguments into
1170 registers, and push the rest onto the stack. There are 16 bytes
1171 in four registers available. Loop thru args from first to last. */
1172 for (argnum = 0; argnum < nargs; argnum++)
1173 {
1174 type = value_type (args[argnum]);
1175 len = TYPE_LENGTH (type);
1176 val = sh_justify_value_in_reg (args[argnum], len);
1177
1178 while (len > 0)
1179 {
1180 if (argreg > ARGLAST_REGNUM)
1181 {
1182 /* The remainder of the data goes entirely on the stack,
1183 4-byte aligned. */
1184 reg_size = (len + 3) & ~3;
1185 write_memory (sp + stack_offset, val, reg_size);
1186 stack_offset += reg_size;
1187 }
1188 else if (argreg <= ARGLAST_REGNUM)
1189 {
1190 /* there's room in a register */
1191 reg_size = register_size (gdbarch, argreg);
1192 regval = extract_unsigned_integer (val, reg_size);
1193 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1194 }
1195 /* Store the value reg_size bytes at a time. This means that things
1196 larger than reg_size bytes may go partly in registers and partly
1197 on the stack. */
1198 len -= reg_size;
1199 val += reg_size;
1200 }
1201 }
1202
1203 /* Store return address. */
1204 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1205
1206 /* Update stack pointer. */
1207 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1208
1209 return sp;
1210 }
1211
1212 /* Find a function's return value in the appropriate registers (in
1213 regbuf), and copy it into valbuf. Extract from an array REGBUF
1214 containing the (raw) register state a function return value of type
1215 TYPE, and copy that, in virtual format, into VALBUF. */
1216 static void
1217 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1218 void *valbuf)
1219 {
1220 int len = TYPE_LENGTH (type);
1221 int return_register = R0_REGNUM;
1222 int offset;
1223
1224 if (len <= 4)
1225 {
1226 ULONGEST c;
1227
1228 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1229 store_unsigned_integer (valbuf, len, c);
1230 }
1231 else if (len == 8)
1232 {
1233 int i, regnum = R0_REGNUM;
1234 for (i = 0; i < len; i += 4)
1235 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1236 }
1237 else
1238 error (_("bad size for return value"));
1239 }
1240
1241 static void
1242 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1243 void *valbuf)
1244 {
1245 if (sh_treat_as_flt_p (type))
1246 {
1247 int len = TYPE_LENGTH (type);
1248 int i, regnum = FP0_REGNUM;
1249 for (i = 0; i < len; i += 4)
1250 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1251 regcache_raw_read (regcache, regnum++, (char *) valbuf + len - 4 - i);
1252 else
1253 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1254 }
1255 else
1256 sh_extract_return_value_nofpu (type, regcache, valbuf);
1257 }
1258
1259 /* Write into appropriate registers a function return value
1260 of type TYPE, given in virtual format.
1261 If the architecture is sh4 or sh3e, store a function's return value
1262 in the R0 general register or in the FP0 floating point register,
1263 depending on the type of the return value. In all the other cases
1264 the result is stored in r0, left-justified. */
1265 static void
1266 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1267 const void *valbuf)
1268 {
1269 ULONGEST val;
1270 int len = TYPE_LENGTH (type);
1271
1272 if (len <= 4)
1273 {
1274 val = extract_unsigned_integer (valbuf, len);
1275 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1276 }
1277 else
1278 {
1279 int i, regnum = R0_REGNUM;
1280 for (i = 0; i < len; i += 4)
1281 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1282 }
1283 }
1284
1285 static void
1286 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1287 const void *valbuf)
1288 {
1289 if (sh_treat_as_flt_p (type))
1290 {
1291 int len = TYPE_LENGTH (type);
1292 int i, regnum = FP0_REGNUM;
1293 for (i = 0; i < len; i += 4)
1294 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1295 regcache_raw_write (regcache, regnum++,
1296 (char *) valbuf + len - 4 - i);
1297 else
1298 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1299 }
1300 else
1301 sh_store_return_value_nofpu (type, regcache, valbuf);
1302 }
1303
1304 static enum return_value_convention
1305 sh_return_value_nofpu (struct gdbarch *gdbarch, struct type *type,
1306 struct regcache *regcache,
1307 gdb_byte *readbuf, const gdb_byte *writebuf)
1308 {
1309 if (sh_use_struct_convention (0, type))
1310 return RETURN_VALUE_STRUCT_CONVENTION;
1311 if (writebuf)
1312 sh_store_return_value_nofpu (type, regcache, writebuf);
1313 else if (readbuf)
1314 sh_extract_return_value_nofpu (type, regcache, readbuf);
1315 return RETURN_VALUE_REGISTER_CONVENTION;
1316 }
1317
1318 static enum return_value_convention
1319 sh_return_value_fpu (struct gdbarch *gdbarch, struct type *type,
1320 struct regcache *regcache,
1321 gdb_byte *readbuf, const gdb_byte *writebuf)
1322 {
1323 if (sh_use_struct_convention (0, type))
1324 return RETURN_VALUE_STRUCT_CONVENTION;
1325 if (writebuf)
1326 sh_store_return_value_fpu (type, regcache, writebuf);
1327 else if (readbuf)
1328 sh_extract_return_value_fpu (type, regcache, readbuf);
1329 return RETURN_VALUE_REGISTER_CONVENTION;
1330 }
1331
1332 /* Print the registers in a form similar to the E7000 */
1333
1334 static void
1335 sh_generic_show_regs (void)
1336 {
1337 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1338 paddr (read_register (PC_REGNUM)),
1339 (long) read_register (SR_REGNUM),
1340 (long) read_register (PR_REGNUM),
1341 (long) read_register (MACH_REGNUM));
1342
1343 printf_filtered (
1344 " GBR %08lx VBR %08lx MACL %08lx\n",
1345 (long) read_register (GBR_REGNUM),
1346 (long) read_register (VBR_REGNUM),
1347 (long) read_register (MACL_REGNUM));
1348
1349 printf_filtered
1350 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1351 (long) read_register (0), (long) read_register (1),
1352 (long) read_register (2), (long) read_register (3),
1353 (long) read_register (4), (long) read_register (5),
1354 (long) read_register (6), (long) read_register (7));
1355 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1356 (long) read_register (8), (long) read_register (9),
1357 (long) read_register (10), (long) read_register (11),
1358 (long) read_register (12), (long) read_register (13),
1359 (long) read_register (14), (long) read_register (15));
1360 }
1361
1362 static void
1363 sh3_show_regs (void)
1364 {
1365 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1366 paddr (read_register (PC_REGNUM)),
1367 (long) read_register (SR_REGNUM),
1368 (long) read_register (PR_REGNUM),
1369 (long) read_register (MACH_REGNUM));
1370
1371 printf_filtered (
1372 " GBR %08lx VBR %08lx MACL %08lx\n",
1373 (long) read_register (GBR_REGNUM),
1374 (long) read_register (VBR_REGNUM),
1375 (long) read_register (MACL_REGNUM));
1376 printf_filtered (" SSR %08lx SPC %08lx\n",
1377 (long) read_register (SSR_REGNUM),
1378 (long) read_register (SPC_REGNUM));
1379
1380 printf_filtered
1381 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1382 (long) read_register (0), (long) read_register (1),
1383 (long) read_register (2), (long) read_register (3),
1384 (long) read_register (4), (long) read_register (5),
1385 (long) read_register (6), (long) read_register (7));
1386 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1387 (long) read_register (8), (long) read_register (9),
1388 (long) read_register (10), (long) read_register (11),
1389 (long) read_register (12), (long) read_register (13),
1390 (long) read_register (14), (long) read_register (15));
1391 }
1392
1393
1394 static void
1395 sh2e_show_regs (void)
1396 {
1397 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1398 paddr (read_register (PC_REGNUM)),
1399 (long) read_register (SR_REGNUM),
1400 (long) read_register (PR_REGNUM),
1401 (long) read_register (MACH_REGNUM));
1402
1403 printf_filtered (
1404 " GBR %08lx VBR %08lx MACL %08lx\n",
1405 (long) read_register (GBR_REGNUM),
1406 (long) read_register (VBR_REGNUM),
1407 (long) read_register (MACL_REGNUM));
1408 printf_filtered (
1409 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1410 (long) read_register (SSR_REGNUM),
1411 (long) read_register (SPC_REGNUM),
1412 (long) read_register (FPUL_REGNUM),
1413 (long) read_register (FPSCR_REGNUM));
1414
1415 printf_filtered
1416 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1417 (long) read_register (0), (long) read_register (1),
1418 (long) read_register (2), (long) read_register (3),
1419 (long) read_register (4), (long) read_register (5),
1420 (long) read_register (6), (long) read_register (7));
1421 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1422 (long) read_register (8), (long) read_register (9),
1423 (long) read_register (10), (long) read_register (11),
1424 (long) read_register (12), (long) read_register (13),
1425 (long) read_register (14), (long) read_register (15));
1426
1427 printf_filtered ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1428 (long) read_register (FP0_REGNUM + 0),
1429 (long) read_register (FP0_REGNUM + 1),
1430 (long) read_register (FP0_REGNUM + 2),
1431 (long) read_register (FP0_REGNUM + 3),
1432 (long) read_register (FP0_REGNUM + 4),
1433 (long) read_register (FP0_REGNUM + 5),
1434 (long) read_register (FP0_REGNUM + 6),
1435 (long) read_register (FP0_REGNUM + 7));
1436 printf_filtered ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1437 (long) read_register (FP0_REGNUM + 8),
1438 (long) read_register (FP0_REGNUM + 9),
1439 (long) read_register (FP0_REGNUM + 10),
1440 (long) read_register (FP0_REGNUM + 11),
1441 (long) read_register (FP0_REGNUM + 12),
1442 (long) read_register (FP0_REGNUM + 13),
1443 (long) read_register (FP0_REGNUM + 14),
1444 (long) read_register (FP0_REGNUM + 15));
1445 }
1446
1447 static void
1448 sh2a_show_regs (void)
1449 {
1450 int pr = read_register (FPSCR_REGNUM) & 0x80000;
1451 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1452 paddr (read_register (PC_REGNUM)),
1453 (long) read_register (SR_REGNUM),
1454 (long) read_register (PR_REGNUM),
1455 (long) read_register (MACH_REGNUM));
1456
1457 printf_filtered (
1458 " GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1459 (long) read_register (GBR_REGNUM),
1460 (long) read_register (VBR_REGNUM),
1461 (long) read_register (TBR_REGNUM),
1462 (long) read_register (MACL_REGNUM));
1463 printf_filtered (
1464 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1465 (long) read_register (SSR_REGNUM),
1466 (long) read_register (SPC_REGNUM),
1467 (long) read_register (FPUL_REGNUM),
1468 (long) read_register (FPSCR_REGNUM));
1469
1470 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1471 (long) read_register (0), (long) read_register (1),
1472 (long) read_register (2), (long) read_register (3),
1473 (long) read_register (4), (long) read_register (5),
1474 (long) read_register (6), (long) read_register (7));
1475 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1476 (long) read_register (8), (long) read_register (9),
1477 (long) read_register (10), (long) read_register (11),
1478 (long) read_register (12), (long) read_register (13),
1479 (long) read_register (14), (long) read_register (15));
1480
1481 printf_filtered (
1482 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1483 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1484 (long) read_register (FP0_REGNUM + 0),
1485 (long) read_register (FP0_REGNUM + 1),
1486 (long) read_register (FP0_REGNUM + 2),
1487 (long) read_register (FP0_REGNUM + 3),
1488 (long) read_register (FP0_REGNUM + 4),
1489 (long) read_register (FP0_REGNUM + 5),
1490 (long) read_register (FP0_REGNUM + 6),
1491 (long) read_register (FP0_REGNUM + 7));
1492 printf_filtered (
1493 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1494 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1495 (long) read_register (FP0_REGNUM + 8),
1496 (long) read_register (FP0_REGNUM + 9),
1497 (long) read_register (FP0_REGNUM + 10),
1498 (long) read_register (FP0_REGNUM + 11),
1499 (long) read_register (FP0_REGNUM + 12),
1500 (long) read_register (FP0_REGNUM + 13),
1501 (long) read_register (FP0_REGNUM + 14),
1502 (long) read_register (FP0_REGNUM + 15));
1503 printf_filtered ("BANK=%-3d\n", (int) read_register (BANK_REGNUM));
1504 printf_filtered (
1505 "R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1506 (long) read_register (R0_BANK0_REGNUM + 0),
1507 (long) read_register (R0_BANK0_REGNUM + 1),
1508 (long) read_register (R0_BANK0_REGNUM + 2),
1509 (long) read_register (R0_BANK0_REGNUM + 3),
1510 (long) read_register (R0_BANK0_REGNUM + 4),
1511 (long) read_register (R0_BANK0_REGNUM + 5),
1512 (long) read_register (R0_BANK0_REGNUM + 6),
1513 (long) read_register (R0_BANK0_REGNUM + 7));
1514 printf_filtered ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1515 (long) read_register (R0_BANK0_REGNUM + 8),
1516 (long) read_register (R0_BANK0_REGNUM + 9),
1517 (long) read_register (R0_BANK0_REGNUM + 10),
1518 (long) read_register (R0_BANK0_REGNUM + 11),
1519 (long) read_register (R0_BANK0_REGNUM + 12),
1520 (long) read_register (R0_BANK0_REGNUM + 13),
1521 (long) read_register (R0_BANK0_REGNUM + 14));
1522 printf_filtered ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1523 (long) read_register (R0_BANK0_REGNUM + 15),
1524 (long) read_register (R0_BANK0_REGNUM + 16),
1525 (long) read_register (R0_BANK0_REGNUM + 17),
1526 (long) read_register (R0_BANK0_REGNUM + 18),
1527 (long) read_register (R0_BANK0_REGNUM + 19));
1528 }
1529
1530 static void
1531 sh2a_nofpu_show_regs (void)
1532 {
1533 int pr = read_register (FPSCR_REGNUM) & 0x80000;
1534 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1535 paddr (read_register (PC_REGNUM)),
1536 (long) read_register (SR_REGNUM),
1537 (long) read_register (PR_REGNUM),
1538 (long) read_register (MACH_REGNUM));
1539
1540 printf_filtered (
1541 " GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1542 (long) read_register (GBR_REGNUM),
1543 (long) read_register (VBR_REGNUM),
1544 (long) read_register (TBR_REGNUM),
1545 (long) read_register (MACL_REGNUM));
1546 printf_filtered (
1547 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1548 (long) read_register (SSR_REGNUM),
1549 (long) read_register (SPC_REGNUM),
1550 (long) read_register (FPUL_REGNUM),
1551 (long) read_register (FPSCR_REGNUM));
1552
1553 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1554 (long) read_register (0), (long) read_register (1),
1555 (long) read_register (2), (long) read_register (3),
1556 (long) read_register (4), (long) read_register (5),
1557 (long) read_register (6), (long) read_register (7));
1558 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1559 (long) read_register (8), (long) read_register (9),
1560 (long) read_register (10), (long) read_register (11),
1561 (long) read_register (12), (long) read_register (13),
1562 (long) read_register (14), (long) read_register (15));
1563
1564 printf_filtered ("BANK=%-3d\n", (int) read_register (BANK_REGNUM));
1565 printf_filtered (
1566 "R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1567 (long) read_register (R0_BANK0_REGNUM + 0),
1568 (long) read_register (R0_BANK0_REGNUM + 1),
1569 (long) read_register (R0_BANK0_REGNUM + 2),
1570 (long) read_register (R0_BANK0_REGNUM + 3),
1571 (long) read_register (R0_BANK0_REGNUM + 4),
1572 (long) read_register (R0_BANK0_REGNUM + 5),
1573 (long) read_register (R0_BANK0_REGNUM + 6),
1574 (long) read_register (R0_BANK0_REGNUM + 7));
1575 printf_filtered ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1576 (long) read_register (R0_BANK0_REGNUM + 8),
1577 (long) read_register (R0_BANK0_REGNUM + 9),
1578 (long) read_register (R0_BANK0_REGNUM + 10),
1579 (long) read_register (R0_BANK0_REGNUM + 11),
1580 (long) read_register (R0_BANK0_REGNUM + 12),
1581 (long) read_register (R0_BANK0_REGNUM + 13),
1582 (long) read_register (R0_BANK0_REGNUM + 14));
1583 printf_filtered ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1584 (long) read_register (R0_BANK0_REGNUM + 15),
1585 (long) read_register (R0_BANK0_REGNUM + 16),
1586 (long) read_register (R0_BANK0_REGNUM + 17),
1587 (long) read_register (R0_BANK0_REGNUM + 18),
1588 (long) read_register (R0_BANK0_REGNUM + 19));
1589 }
1590
1591 static void
1592 sh3e_show_regs (void)
1593 {
1594 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1595 paddr (read_register (PC_REGNUM)),
1596 (long) read_register (SR_REGNUM),
1597 (long) read_register (PR_REGNUM),
1598 (long) read_register (MACH_REGNUM));
1599
1600 printf_filtered (
1601 " GBR %08lx VBR %08lx MACL %08lx\n",
1602 (long) read_register (GBR_REGNUM),
1603 (long) read_register (VBR_REGNUM),
1604 (long) read_register (MACL_REGNUM));
1605 printf_filtered (
1606 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1607 (long) read_register (SSR_REGNUM),
1608 (long) read_register (SPC_REGNUM),
1609 (long) read_register (FPUL_REGNUM),
1610 (long) read_register (FPSCR_REGNUM));
1611
1612 printf_filtered
1613 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1614 (long) read_register (0), (long) read_register (1),
1615 (long) read_register (2), (long) read_register (3),
1616 (long) read_register (4), (long) read_register (5),
1617 (long) read_register (6), (long) read_register (7));
1618 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1619 (long) read_register (8), (long) read_register (9),
1620 (long) read_register (10), (long) read_register (11),
1621 (long) read_register (12), (long) read_register (13),
1622 (long) read_register (14), (long) read_register (15));
1623
1624 printf_filtered ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1625 (long) read_register (FP0_REGNUM + 0),
1626 (long) read_register (FP0_REGNUM + 1),
1627 (long) read_register (FP0_REGNUM + 2),
1628 (long) read_register (FP0_REGNUM + 3),
1629 (long) read_register (FP0_REGNUM + 4),
1630 (long) read_register (FP0_REGNUM + 5),
1631 (long) read_register (FP0_REGNUM + 6),
1632 (long) read_register (FP0_REGNUM + 7));
1633 printf_filtered ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1634 (long) read_register (FP0_REGNUM + 8),
1635 (long) read_register (FP0_REGNUM + 9),
1636 (long) read_register (FP0_REGNUM + 10),
1637 (long) read_register (FP0_REGNUM + 11),
1638 (long) read_register (FP0_REGNUM + 12),
1639 (long) read_register (FP0_REGNUM + 13),
1640 (long) read_register (FP0_REGNUM + 14),
1641 (long) read_register (FP0_REGNUM + 15));
1642 }
1643
1644 static void
1645 sh3_dsp_show_regs (void)
1646 {
1647 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1648 paddr (read_register (PC_REGNUM)),
1649 (long) read_register (SR_REGNUM),
1650 (long) read_register (PR_REGNUM),
1651 (long) read_register (MACH_REGNUM));
1652
1653 printf_filtered (
1654 " GBR %08lx VBR %08lx MACL %08lx\n",
1655 (long) read_register (GBR_REGNUM),
1656 (long) read_register (VBR_REGNUM),
1657 (long) read_register (MACL_REGNUM));
1658
1659 printf_filtered (" SSR %08lx SPC %08lx DSR %08lx\n",
1660 (long) read_register (SSR_REGNUM),
1661 (long) read_register (SPC_REGNUM),
1662 (long) read_register (DSR_REGNUM));
1663
1664 printf_filtered
1665 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1666 (long) read_register (0), (long) read_register (1),
1667 (long) read_register (2), (long) read_register (3),
1668 (long) read_register (4), (long) read_register (5),
1669 (long) read_register (6), (long) read_register (7));
1670 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1671 (long) read_register (8), (long) read_register (9),
1672 (long) read_register (10), (long) read_register (11),
1673 (long) read_register (12), (long) read_register (13),
1674 (long) read_register (14), (long) read_register (15));
1675
1676 printf_filtered
1677 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1678 (long) read_register (A0G_REGNUM) & 0xff,
1679 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1680 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1681 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
1682 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1683 (long) read_register (A1G_REGNUM) & 0xff,
1684 (long) read_register (A1_REGNUM),
1685 (long) read_register (M1_REGNUM),
1686 (long) read_register (X1_REGNUM),
1687 (long) read_register (Y1_REGNUM),
1688 (long) read_register (RE_REGNUM));
1689 }
1690
1691 static void
1692 sh4_show_regs (void)
1693 {
1694 int pr = read_register (FPSCR_REGNUM) & 0x80000;
1695 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1696 paddr (read_register (PC_REGNUM)),
1697 (long) read_register (SR_REGNUM),
1698 (long) read_register (PR_REGNUM),
1699 (long) read_register (MACH_REGNUM));
1700
1701 printf_filtered (
1702 " GBR %08lx VBR %08lx MACL %08lx\n",
1703 (long) read_register (GBR_REGNUM),
1704 (long) read_register (VBR_REGNUM),
1705 (long) read_register (MACL_REGNUM));
1706 printf_filtered (
1707 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1708 (long) read_register (SSR_REGNUM),
1709 (long) read_register (SPC_REGNUM),
1710 (long) read_register (FPUL_REGNUM),
1711 (long) read_register (FPSCR_REGNUM));
1712
1713 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1714 (long) read_register (0), (long) read_register (1),
1715 (long) read_register (2), (long) read_register (3),
1716 (long) read_register (4), (long) read_register (5),
1717 (long) read_register (6), (long) read_register (7));
1718 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1719 (long) read_register (8), (long) read_register (9),
1720 (long) read_register (10), (long) read_register (11),
1721 (long) read_register (12), (long) read_register (13),
1722 (long) read_register (14), (long) read_register (15));
1723
1724 printf_filtered (
1725 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1726 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1727 (long) read_register (FP0_REGNUM + 0),
1728 (long) read_register (FP0_REGNUM + 1),
1729 (long) read_register (FP0_REGNUM + 2),
1730 (long) read_register (FP0_REGNUM + 3),
1731 (long) read_register (FP0_REGNUM + 4),
1732 (long) read_register (FP0_REGNUM + 5),
1733 (long) read_register (FP0_REGNUM + 6),
1734 (long) read_register (FP0_REGNUM + 7));
1735 printf_filtered (
1736 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1737 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1738 (long) read_register (FP0_REGNUM + 8),
1739 (long) read_register (FP0_REGNUM + 9),
1740 (long) read_register (FP0_REGNUM + 10),
1741 (long) read_register (FP0_REGNUM + 11),
1742 (long) read_register (FP0_REGNUM + 12),
1743 (long) read_register (FP0_REGNUM + 13),
1744 (long) read_register (FP0_REGNUM + 14),
1745 (long) read_register (FP0_REGNUM + 15));
1746 }
1747
1748 static void
1749 sh4_nofpu_show_regs (void)
1750 {
1751 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1752 paddr (read_register (PC_REGNUM)),
1753 (long) read_register (SR_REGNUM),
1754 (long) read_register (PR_REGNUM),
1755 (long) read_register (MACH_REGNUM));
1756
1757 printf_filtered (
1758 " GBR %08lx VBR %08lx MACL %08lx\n",
1759 (long) read_register (GBR_REGNUM),
1760 (long) read_register (VBR_REGNUM),
1761 (long) read_register (MACL_REGNUM));
1762 printf_filtered (
1763 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1764 (long) read_register (SSR_REGNUM),
1765 (long) read_register (SPC_REGNUM),
1766 (long) read_register (FPUL_REGNUM),
1767 (long) read_register (FPSCR_REGNUM));
1768
1769 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1770 (long) read_register (0), (long) read_register (1),
1771 (long) read_register (2), (long) read_register (3),
1772 (long) read_register (4), (long) read_register (5),
1773 (long) read_register (6), (long) read_register (7));
1774 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1775 (long) read_register (8), (long) read_register (9),
1776 (long) read_register (10), (long) read_register (11),
1777 (long) read_register (12), (long) read_register (13),
1778 (long) read_register (14), (long) read_register (15));
1779 }
1780
1781 static void
1782 sh_dsp_show_regs (void)
1783 {
1784
1785 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1786 paddr (read_register (PC_REGNUM)),
1787 (long) read_register (SR_REGNUM),
1788 (long) read_register (PR_REGNUM),
1789 (long) read_register (MACH_REGNUM));
1790
1791 printf_filtered (
1792 " GBR %08lx VBR %08lx DSR %08lx MACL %08lx\n",
1793 (long) read_register (GBR_REGNUM),
1794 (long) read_register (VBR_REGNUM),
1795 (long) read_register (DSR_REGNUM),
1796 (long) read_register (MACL_REGNUM));
1797
1798 printf_filtered
1799 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1800 (long) read_register (0), (long) read_register (1),
1801 (long) read_register (2), (long) read_register (3),
1802 (long) read_register (4), (long) read_register (5),
1803 (long) read_register (6), (long) read_register (7));
1804 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1805 (long) read_register (8), (long) read_register (9),
1806 (long) read_register (10), (long) read_register (11),
1807 (long) read_register (12), (long) read_register (13),
1808 (long) read_register (14), (long) read_register (15));
1809
1810 printf_filtered
1811 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1812 (long) read_register (A0G_REGNUM) & 0xff,
1813 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1814 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1815 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
1816 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1817 (long) read_register (A1G_REGNUM) & 0xff,
1818 (long) read_register (A1_REGNUM),
1819 (long) read_register (M1_REGNUM),
1820 (long) read_register (X1_REGNUM),
1821 (long) read_register (Y1_REGNUM),
1822 (long) read_register (RE_REGNUM));
1823 }
1824
1825 static void
1826 sh_show_regs_command (char *args, int from_tty)
1827 {
1828 if (sh_show_regs)
1829 (*sh_show_regs) ();
1830 }
1831
1832 static struct type *
1833 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1834 {
1835 if ((reg_nr >= FP0_REGNUM
1836 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1837 return builtin_type_float;
1838 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1839 return builtin_type_double;
1840 else
1841 return builtin_type_int;
1842 }
1843
1844 /* Return the GDB type object for the "standard" data type
1845 of data in register N. */
1846 static struct type *
1847 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1848 {
1849 if ((reg_nr >= FP0_REGNUM
1850 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1851 return builtin_type_float;
1852 else
1853 return builtin_type_int;
1854 }
1855
1856 static struct type *
1857 sh_sh4_build_float_register_type (int high)
1858 {
1859 struct type *temp;
1860
1861 temp = create_range_type (NULL, builtin_type_int, 0, high);
1862 return create_array_type (NULL, builtin_type_float, temp);
1863 }
1864
1865 static struct type *
1866 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1867 {
1868 if ((reg_nr >= FP0_REGNUM
1869 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1870 return builtin_type_float;
1871 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1872 return builtin_type_double;
1873 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1874 return sh_sh4_build_float_register_type (3);
1875 else
1876 return builtin_type_int;
1877 }
1878
1879 static struct type *
1880 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1881 {
1882 return builtin_type_int;
1883 }
1884
1885 /* Is a register in a reggroup?
1886 The default code in reggroup.c doesn't identify system registers, some
1887 float registers or any of the vector registers.
1888 TODO: sh2a and dsp registers. */
1889 int
1890 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1891 struct reggroup *reggroup)
1892 {
1893 if (REGISTER_NAME (regnum) == NULL
1894 || *REGISTER_NAME (regnum) == '\0')
1895 return 0;
1896
1897 if (reggroup == float_reggroup
1898 && (regnum == FPUL_REGNUM
1899 || regnum == FPSCR_REGNUM))
1900 return 1;
1901
1902 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1903 {
1904 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1905 return 1;
1906 if (reggroup == general_reggroup)
1907 return 0;
1908 }
1909
1910 if (regnum == VBR_REGNUM
1911 || regnum == SR_REGNUM
1912 || regnum == FPSCR_REGNUM
1913 || regnum == SSR_REGNUM
1914 || regnum == SPC_REGNUM)
1915 {
1916 if (reggroup == system_reggroup)
1917 return 1;
1918 if (reggroup == general_reggroup)
1919 return 0;
1920 }
1921
1922 /* The default code can cope with any other registers. */
1923 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1924 }
1925
1926 /* On the sh4, the DRi pseudo registers are problematic if the target
1927 is little endian. When the user writes one of those registers, for
1928 instance with 'ser var $dr0=1', we want the double to be stored
1929 like this:
1930 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1931 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1932
1933 This corresponds to little endian byte order & big endian word
1934 order. However if we let gdb write the register w/o conversion, it
1935 will write fr0 and fr1 this way:
1936 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1937 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1938 because it will consider fr0 and fr1 as a single LE stretch of memory.
1939
1940 To achieve what we want we must force gdb to store things in
1941 floatformat_ieee_double_littlebyte_bigword (which is defined in
1942 include/floatformat.h and libiberty/floatformat.c.
1943
1944 In case the target is big endian, there is no problem, the
1945 raw bytes will look like:
1946 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1947 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1948
1949 The other pseudo registers (the FVs) also don't pose a problem
1950 because they are stored as 4 individual FP elements. */
1951
1952 static void
1953 sh_register_convert_to_virtual (int regnum, struct type *type,
1954 char *from, char *to)
1955 {
1956 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1957 {
1958 DOUBLEST val;
1959 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1960 from, &val);
1961 store_typed_floating (to, type, val);
1962 }
1963 else
1964 error
1965 ("sh_register_convert_to_virtual called with non DR register number");
1966 }
1967
1968 static void
1969 sh_register_convert_to_raw (struct type *type, int regnum,
1970 const void *from, void *to)
1971 {
1972 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1973 {
1974 DOUBLEST val = extract_typed_floating (from, type);
1975 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1976 &val, to);
1977 }
1978 else
1979 error (_("sh_register_convert_to_raw called with non DR register number"));
1980 }
1981
1982 /* For vectors of 4 floating point registers. */
1983 static int
1984 fv_reg_base_num (int fv_regnum)
1985 {
1986 int fp_regnum;
1987
1988 fp_regnum = FP0_REGNUM + (fv_regnum - FV0_REGNUM) * 4;
1989 return fp_regnum;
1990 }
1991
1992 /* For double precision floating point registers, i.e 2 fp regs.*/
1993 static int
1994 dr_reg_base_num (int dr_regnum)
1995 {
1996 int fp_regnum;
1997
1998 fp_regnum = FP0_REGNUM + (dr_regnum - DR0_REGNUM) * 2;
1999 return fp_regnum;
2000 }
2001
2002 static void
2003 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2004 int reg_nr, gdb_byte *buffer)
2005 {
2006 int base_regnum, portion;
2007 char temp_buffer[MAX_REGISTER_SIZE];
2008
2009 if (reg_nr == PSEUDO_BANK_REGNUM)
2010 regcache_raw_read (regcache, BANK_REGNUM, buffer);
2011 else
2012 if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2013 {
2014 base_regnum = dr_reg_base_num (reg_nr);
2015
2016 /* Build the value in the provided buffer. */
2017 /* Read the real regs for which this one is an alias. */
2018 for (portion = 0; portion < 2; portion++)
2019 regcache_raw_read (regcache, base_regnum + portion,
2020 (temp_buffer
2021 + register_size (gdbarch,
2022 base_regnum) * portion));
2023 /* We must pay attention to the endiannes. */
2024 sh_register_convert_to_virtual (reg_nr,
2025 register_type (gdbarch, reg_nr),
2026 temp_buffer, buffer);
2027 }
2028 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2029 {
2030 base_regnum = fv_reg_base_num (reg_nr);
2031
2032 /* Read the real regs for which this one is an alias. */
2033 for (portion = 0; portion < 4; portion++)
2034 regcache_raw_read (regcache, base_regnum + portion,
2035 ((char *) buffer
2036 + register_size (gdbarch,
2037 base_regnum) * portion));
2038 }
2039 }
2040
2041 static void
2042 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2043 int reg_nr, const gdb_byte *buffer)
2044 {
2045 int base_regnum, portion;
2046 char temp_buffer[MAX_REGISTER_SIZE];
2047
2048 if (reg_nr == PSEUDO_BANK_REGNUM)
2049 {
2050 /* When the bank register is written to, the whole register bank
2051 is switched and all values in the bank registers must be read
2052 from the target/sim again. We're just invalidating the regcache
2053 so that a re-read happens next time it's necessary. */
2054 int bregnum;
2055
2056 regcache_raw_write (regcache, BANK_REGNUM, buffer);
2057 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
2058 set_register_cached (bregnum, 0);
2059 }
2060 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2061 {
2062 base_regnum = dr_reg_base_num (reg_nr);
2063
2064 /* We must pay attention to the endiannes. */
2065 sh_register_convert_to_raw (register_type (gdbarch, reg_nr),
2066 reg_nr, buffer, temp_buffer);
2067
2068 /* Write the real regs for which this one is an alias. */
2069 for (portion = 0; portion < 2; portion++)
2070 regcache_raw_write (regcache, base_regnum + portion,
2071 (temp_buffer
2072 + register_size (gdbarch,
2073 base_regnum) * portion));
2074 }
2075 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2076 {
2077 base_regnum = fv_reg_base_num (reg_nr);
2078
2079 /* Write the real regs for which this one is an alias. */
2080 for (portion = 0; portion < 4; portion++)
2081 regcache_raw_write (regcache, base_regnum + portion,
2082 ((char *) buffer
2083 + register_size (gdbarch,
2084 base_regnum) * portion));
2085 }
2086 }
2087
2088 static int
2089 sh_dsp_register_sim_regno (int nr)
2090 {
2091 if (legacy_register_sim_regno (nr) < 0)
2092 return legacy_register_sim_regno (nr);
2093 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
2094 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
2095 if (nr == MOD_REGNUM)
2096 return SIM_SH_MOD_REGNUM;
2097 if (nr == RS_REGNUM)
2098 return SIM_SH_RS_REGNUM;
2099 if (nr == RE_REGNUM)
2100 return SIM_SH_RE_REGNUM;
2101 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
2102 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2103 return nr;
2104 }
2105
2106 static int
2107 sh_sh2a_register_sim_regno (int nr)
2108 {
2109 switch (nr)
2110 {
2111 case TBR_REGNUM:
2112 return SIM_SH_TBR_REGNUM;
2113 case IBNR_REGNUM:
2114 return SIM_SH_IBNR_REGNUM;
2115 case IBCR_REGNUM:
2116 return SIM_SH_IBCR_REGNUM;
2117 case BANK_REGNUM:
2118 return SIM_SH_BANK_REGNUM;
2119 case MACLB_REGNUM:
2120 return SIM_SH_BANK_MACL_REGNUM;
2121 case GBRB_REGNUM:
2122 return SIM_SH_BANK_GBR_REGNUM;
2123 case PRB_REGNUM:
2124 return SIM_SH_BANK_PR_REGNUM;
2125 case IVNB_REGNUM:
2126 return SIM_SH_BANK_IVN_REGNUM;
2127 case MACHB_REGNUM:
2128 return SIM_SH_BANK_MACH_REGNUM;
2129 default:
2130 break;
2131 }
2132 return legacy_register_sim_regno (nr);
2133 }
2134
2135 /* Set up the register unwinding such that call-clobbered registers are
2136 not displayed in frames >0 because the true value is not certain.
2137 The 'undefined' registers will show up as 'not available' unless the
2138 CFI says otherwise.
2139
2140 This function is currently set up for SH4 and compatible only. */
2141
2142 static void
2143 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2144 struct dwarf2_frame_state_reg *reg,
2145 struct frame_info *next_frame)
2146 {
2147 /* Mark the PC as the destination for the return address. */
2148 if (regnum == PC_REGNUM)
2149 reg->how = DWARF2_FRAME_REG_RA;
2150
2151 /* Mark the stack pointer as the call frame address. */
2152 else if (regnum == SP_REGNUM)
2153 reg->how = DWARF2_FRAME_REG_CFA;
2154
2155 /* The above was taken from the default init_reg in dwarf2-frame.c
2156 while the below is SH specific. */
2157
2158 /* Caller save registers. */
2159 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
2160 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
2161 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
2162 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
2163 || (regnum == MACH_REGNUM)
2164 || (regnum == MACL_REGNUM)
2165 || (regnum == FPUL_REGNUM)
2166 || (regnum == SR_REGNUM))
2167 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2168
2169 /* Callee save registers. */
2170 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
2171 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
2172 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
2173 || (regnum == FV0_REGNUM+3))
2174 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2175
2176 /* Other registers. These are not in the ABI and may or may not
2177 mean anything in frames >0 so don't show them. */
2178 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
2179 || (regnum == GBR_REGNUM)
2180 || (regnum == VBR_REGNUM)
2181 || (regnum == FPSCR_REGNUM)
2182 || (regnum == SSR_REGNUM)
2183 || (regnum == SPC_REGNUM))
2184 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2185 }
2186
2187 static struct sh_frame_cache *
2188 sh_alloc_frame_cache (void)
2189 {
2190 struct sh_frame_cache *cache;
2191 int i;
2192
2193 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
2194
2195 /* Base address. */
2196 cache->base = 0;
2197 cache->saved_sp = 0;
2198 cache->sp_offset = 0;
2199 cache->pc = 0;
2200
2201 /* Frameless until proven otherwise. */
2202 cache->uses_fp = 0;
2203
2204 /* Saved registers. We initialize these to -1 since zero is a valid
2205 offset (that's where fp is supposed to be stored). */
2206 for (i = 0; i < SH_NUM_REGS; i++)
2207 {
2208 cache->saved_regs[i] = -1;
2209 }
2210
2211 return cache;
2212 }
2213
2214 static struct sh_frame_cache *
2215 sh_frame_cache (struct frame_info *next_frame, void **this_cache)
2216 {
2217 struct sh_frame_cache *cache;
2218 CORE_ADDR current_pc;
2219 int i;
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = sh_alloc_frame_cache ();
2225 *this_cache = cache;
2226
2227 /* In principle, for normal frames, fp holds the frame pointer,
2228 which holds the base address for the current stack frame.
2229 However, for functions that don't need it, the frame pointer is
2230 optional. For these "frameless" functions the frame pointer is
2231 actually the frame pointer of the calling frame. */
2232 cache->base = frame_unwind_register_unsigned (next_frame, FP_REGNUM);
2233 if (cache->base == 0)
2234 return cache;
2235
2236 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2237 current_pc = frame_pc_unwind (next_frame);
2238 if (cache->pc != 0)
2239 sh_analyze_prologue (cache->pc, current_pc, cache);
2240
2241 if (!cache->uses_fp)
2242 {
2243 /* We didn't find a valid frame, which means that CACHE->base
2244 currently holds the frame pointer for our calling frame. If
2245 we're at the start of a function, or somewhere half-way its
2246 prologue, the function's frame probably hasn't been fully
2247 setup yet. Try to reconstruct the base address for the stack
2248 frame by looking at the stack pointer. For truly "frameless"
2249 functions this might work too. */
2250 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2251 }
2252
2253 /* Now that we have the base address for the stack frame we can
2254 calculate the value of sp in the calling frame. */
2255 cache->saved_sp = cache->base + cache->sp_offset;
2256
2257 /* Adjust all the saved registers such that they contain addresses
2258 instead of offsets. */
2259 for (i = 0; i < SH_NUM_REGS; i++)
2260 if (cache->saved_regs[i] != -1)
2261 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
2262
2263 return cache;
2264 }
2265
2266 static void
2267 sh_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2268 int regnum, int *optimizedp,
2269 enum lval_type *lvalp, CORE_ADDR *addrp,
2270 int *realnump, gdb_byte *valuep)
2271 {
2272 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2273
2274 gdb_assert (regnum >= 0);
2275
2276 if (regnum == SP_REGNUM && cache->saved_sp)
2277 {
2278 *optimizedp = 0;
2279 *lvalp = not_lval;
2280 *addrp = 0;
2281 *realnump = -1;
2282 if (valuep)
2283 {
2284 /* Store the value. */
2285 store_unsigned_integer (valuep, 4, cache->saved_sp);
2286 }
2287 return;
2288 }
2289
2290 /* The PC of the previous frame is stored in the PR register of
2291 the current frame. Frob regnum so that we pull the value from
2292 the correct place. */
2293 if (regnum == PC_REGNUM)
2294 regnum = PR_REGNUM;
2295
2296 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
2297 {
2298 *optimizedp = 0;
2299 *lvalp = lval_memory;
2300 *addrp = cache->saved_regs[regnum];
2301 *realnump = -1;
2302 if (valuep)
2303 {
2304 /* Read the value in from memory. */
2305 read_memory (*addrp, valuep,
2306 register_size (current_gdbarch, regnum));
2307 }
2308 return;
2309 }
2310
2311 *optimizedp = 0;
2312 *lvalp = lval_register;
2313 *addrp = 0;
2314 *realnump = regnum;
2315 if (valuep)
2316 frame_unwind_register (next_frame, (*realnump), valuep);
2317 }
2318
2319 static void
2320 sh_frame_this_id (struct frame_info *next_frame, void **this_cache,
2321 struct frame_id *this_id)
2322 {
2323 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2324
2325 /* This marks the outermost frame. */
2326 if (cache->base == 0)
2327 return;
2328
2329 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2330 }
2331
2332 static const struct frame_unwind sh_frame_unwind = {
2333 NORMAL_FRAME,
2334 sh_frame_this_id,
2335 sh_frame_prev_register
2336 };
2337
2338 static const struct frame_unwind *
2339 sh_frame_sniffer (struct frame_info *next_frame)
2340 {
2341 return &sh_frame_unwind;
2342 }
2343
2344 static CORE_ADDR
2345 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2346 {
2347 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2348 }
2349
2350 static CORE_ADDR
2351 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2352 {
2353 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2354 }
2355
2356 static struct frame_id
2357 sh_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2358 {
2359 return frame_id_build (sh_unwind_sp (gdbarch, next_frame),
2360 frame_pc_unwind (next_frame));
2361 }
2362
2363 static CORE_ADDR
2364 sh_frame_base_address (struct frame_info *next_frame, void **this_cache)
2365 {
2366 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2367
2368 return cache->base;
2369 }
2370
2371 static const struct frame_base sh_frame_base = {
2372 &sh_frame_unwind,
2373 sh_frame_base_address,
2374 sh_frame_base_address,
2375 sh_frame_base_address
2376 };
2377
2378 /* The epilogue is defined here as the area at the end of a function,
2379 either on the `ret' instruction itself or after an instruction which
2380 destroys the function's stack frame. */
2381 static int
2382 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2383 {
2384 CORE_ADDR func_addr = 0, func_end = 0;
2385
2386 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2387 {
2388 ULONGEST inst;
2389 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2390 for a nop and some fixed data (e.g. big offsets) which are
2391 unfortunately also treated as part of the function (which
2392 means, they are below func_end. */
2393 CORE_ADDR addr = func_end - 28;
2394 if (addr < func_addr + 4)
2395 addr = func_addr + 4;
2396 if (pc < addr)
2397 return 0;
2398
2399 /* First search forward until hitting an rts. */
2400 while (addr < func_end
2401 && !IS_RTS (read_memory_unsigned_integer (addr, 2)))
2402 addr += 2;
2403 if (addr >= func_end)
2404 return 0;
2405
2406 /* At this point we should find a mov.l @r15+,r14 instruction,
2407 either before or after the rts. If not, then the function has
2408 probably no "normal" epilogue and we bail out here. */
2409 inst = read_memory_unsigned_integer (addr - 2, 2);
2410 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2)))
2411 addr -= 2;
2412 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2)))
2413 return 0;
2414
2415 inst = read_memory_unsigned_integer (addr - 2, 2);
2416
2417 /* Step over possible lds.l @r15+,macl. */
2418 if (IS_MACL_LDS (inst))
2419 {
2420 addr -= 2;
2421 inst = read_memory_unsigned_integer (addr - 2, 2);
2422 }
2423
2424 /* Step over possible lds.l @r15+,pr. */
2425 if (IS_LDS (inst))
2426 {
2427 addr -= 2;
2428 inst = read_memory_unsigned_integer (addr - 2, 2);
2429 }
2430
2431 /* Step over possible mov r14,r15. */
2432 if (IS_MOV_FP_SP (inst))
2433 {
2434 addr -= 2;
2435 inst = read_memory_unsigned_integer (addr - 2, 2);
2436 }
2437
2438 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2439 instructions. */
2440 while (addr > func_addr + 4
2441 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2442 {
2443 addr -= 2;
2444 inst = read_memory_unsigned_integer (addr - 2, 2);
2445 }
2446
2447 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2448 That's allowed for the epilogue. */
2449 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2450 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2451 && addr > func_addr + 6
2452 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2)))
2453 addr -= 4;
2454
2455 if (pc >= addr)
2456 return 1;
2457 }
2458 return 0;
2459 }
2460 \f
2461
2462 static struct gdbarch *
2463 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2464 {
2465 struct gdbarch *gdbarch;
2466
2467 sh_show_regs = sh_generic_show_regs;
2468 switch (info.bfd_arch_info->mach)
2469 {
2470 case bfd_mach_sh2e:
2471 sh_show_regs = sh2e_show_regs;
2472 break;
2473 case bfd_mach_sh2a:
2474 sh_show_regs = sh2a_show_regs;
2475 break;
2476 case bfd_mach_sh2a_nofpu:
2477 sh_show_regs = sh2a_nofpu_show_regs;
2478 break;
2479 case bfd_mach_sh_dsp:
2480 sh_show_regs = sh_dsp_show_regs;
2481 break;
2482
2483 case bfd_mach_sh3:
2484 sh_show_regs = sh3_show_regs;
2485 break;
2486
2487 case bfd_mach_sh3e:
2488 sh_show_regs = sh3e_show_regs;
2489 break;
2490
2491 case bfd_mach_sh3_dsp:
2492 case bfd_mach_sh4al_dsp:
2493 sh_show_regs = sh3_dsp_show_regs;
2494 break;
2495
2496 case bfd_mach_sh4:
2497 case bfd_mach_sh4a:
2498 sh_show_regs = sh4_show_regs;
2499 break;
2500
2501 case bfd_mach_sh4_nofpu:
2502 case bfd_mach_sh4a_nofpu:
2503 sh_show_regs = sh4_nofpu_show_regs;
2504 break;
2505
2506 case bfd_mach_sh5:
2507 sh_show_regs = sh64_show_regs;
2508 /* SH5 is handled entirely in sh64-tdep.c */
2509 return sh64_gdbarch_init (info, arches);
2510 }
2511
2512 /* If there is already a candidate, use it. */
2513 arches = gdbarch_list_lookup_by_info (arches, &info);
2514 if (arches != NULL)
2515 return arches->gdbarch;
2516
2517 /* None found, create a new architecture from the information
2518 provided. */
2519 gdbarch = gdbarch_alloc (&info, NULL);
2520
2521 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2522 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2523 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2524 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2525 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2526 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2527 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2528 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2529
2530 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2531 set_gdbarch_sp_regnum (gdbarch, 15);
2532 set_gdbarch_pc_regnum (gdbarch, 16);
2533 set_gdbarch_fp0_regnum (gdbarch, -1);
2534 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2535
2536 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2537 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2538
2539 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2540
2541 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
2542 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2543
2544 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2545
2546 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2547 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2548 sh_extract_struct_value_address);
2549
2550 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2551 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2552
2553 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2554
2555 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2556
2557 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2558 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2559 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2560 set_gdbarch_unwind_dummy_id (gdbarch, sh_unwind_dummy_id);
2561 frame_base_set_default (gdbarch, &sh_frame_base);
2562
2563 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
2564
2565 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2566
2567 switch (info.bfd_arch_info->mach)
2568 {
2569 case bfd_mach_sh:
2570 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2571 break;
2572
2573 case bfd_mach_sh2:
2574 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2575 break;
2576
2577 case bfd_mach_sh2e:
2578 /* doubles on sh2e and sh3e are actually 4 byte. */
2579 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2580
2581 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2582 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2583 set_gdbarch_fp0_regnum (gdbarch, 25);
2584 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2585 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2586 break;
2587
2588 case bfd_mach_sh2a:
2589 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2590 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2591 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2592
2593 set_gdbarch_fp0_regnum (gdbarch, 25);
2594 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2595 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2596 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2597 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2598 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2599 break;
2600
2601 case bfd_mach_sh2a_nofpu:
2602 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2603 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2604
2605 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2606 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2607 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2608 break;
2609
2610 case bfd_mach_sh_dsp:
2611 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2612 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2613 break;
2614
2615 case bfd_mach_sh3:
2616 case bfd_mach_sh3_nommu:
2617 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2618 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2619 break;
2620
2621 case bfd_mach_sh3e:
2622 case bfd_mach_sh2a_or_sh3e:
2623 /* doubles on sh2e and sh3e are actually 4 byte. */
2624 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2625
2626 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2627 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2628 set_gdbarch_fp0_regnum (gdbarch, 25);
2629 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2630 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2631 break;
2632
2633 case bfd_mach_sh3_dsp:
2634 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2635 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2636 break;
2637
2638 case bfd_mach_sh4:
2639 case bfd_mach_sh4a:
2640 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2641 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2642 set_gdbarch_fp0_regnum (gdbarch, 25);
2643 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2644 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2645 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2646 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2647 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2648 break;
2649
2650 case bfd_mach_sh4_nofpu:
2651 case bfd_mach_sh4a_nofpu:
2652 case bfd_mach_sh4_nommu_nofpu:
2653 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2654 case bfd_mach_sh2a_or_sh4:
2655 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2656 break;
2657
2658 case bfd_mach_sh4al_dsp:
2659 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2660 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2661 break;
2662
2663 default:
2664 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2665 break;
2666 }
2667
2668 /* Hook in ABI-specific overrides, if they have been registered. */
2669 gdbarch_init_osabi (info, gdbarch);
2670
2671 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2672 frame_unwind_append_sniffer (gdbarch, sh_frame_sniffer);
2673
2674 return gdbarch;
2675 }
2676
2677 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2678
2679 void
2680 _initialize_sh_tdep (void)
2681 {
2682 struct cmd_list_element *c;
2683
2684 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2685
2686 add_com ("regs", class_vars, sh_show_regs_command, _("Print all registers"));
2687 }
This page took 0.093 seconds and 4 git commands to generate.