1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
24 Contributed by Steve Chamberlain
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "dwarf2-frame.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "arch-utils.h"
43 #include "floatformat.h"
47 #include "reggroups.h"
52 #include "solib-svr4.h"
56 /* registers numbers shared with the simulator */
57 #include "gdb/sim-sh.h"
59 static void (*sh_show_regs
) (void);
61 #define SH_NUM_REGS 67
70 /* Flag showing that a frame has been created in the prologue code. */
73 /* Saved registers. */
74 CORE_ADDR saved_regs
[SH_NUM_REGS
];
79 sh_sh_register_name (int reg_nr
)
81 static char *register_names
[] = {
82 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
83 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
84 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
86 "", "", "", "", "", "", "", "",
87 "", "", "", "", "", "", "", "",
89 "", "", "", "", "", "", "", "",
90 "", "", "", "", "", "", "", "",
91 "", "", "", "", "", "", "", "",
95 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
97 return register_names
[reg_nr
];
101 sh_sh3_register_name (int reg_nr
)
103 static char *register_names
[] = {
104 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
105 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
106 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
108 "", "", "", "", "", "", "", "",
109 "", "", "", "", "", "", "", "",
111 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
112 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
113 "", "", "", "", "", "", "", "",
117 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
119 return register_names
[reg_nr
];
123 sh_sh3e_register_name (int reg_nr
)
125 static char *register_names
[] = {
126 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
127 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
128 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
130 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
131 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
133 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
134 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
135 "", "", "", "", "", "", "", "",
139 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
141 return register_names
[reg_nr
];
145 sh_sh2e_register_name (int reg_nr
)
147 static char *register_names
[] = {
148 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
149 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
150 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
152 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
153 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
157 "", "", "", "", "", "", "", "",
161 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
163 return register_names
[reg_nr
];
167 sh_sh2a_register_name (int reg_nr
)
169 static char *register_names
[] = {
170 /* general registers 0-15 */
171 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
172 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
174 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
177 /* floating point registers 25 - 40 */
178 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
179 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
182 /* 43 - 62. Banked registers. The bank number used is determined by
183 the bank register (63). */
184 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
185 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
186 "machb", "ivnb", "prb", "gbrb", "maclb",
187 /* 63: register bank number, not a real register but used to
188 communicate the register bank currently get/set. This register
189 is hidden to the user, who manipulates it using the pseudo
190 register called "bank" (67). See below. */
193 "ibcr", "ibnr", "tbr",
194 /* 67: register bank number, the user visible pseudo register. */
196 /* double precision (pseudo) 68 - 75 */
197 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
201 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
203 return register_names
[reg_nr
];
207 sh_sh2a_nofpu_register_name (int reg_nr
)
209 static char *register_names
[] = {
210 /* general registers 0-15 */
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
214 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
217 /* floating point registers 25 - 40 */
218 "", "", "", "", "", "", "", "",
219 "", "", "", "", "", "", "", "",
222 /* 43 - 62. Banked registers. The bank number used is determined by
223 the bank register (63). */
224 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
225 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
226 "machb", "ivnb", "prb", "gbrb", "maclb",
227 /* 63: register bank number, not a real register but used to
228 communicate the register bank currently get/set. This register
229 is hidden to the user, who manipulates it using the pseudo
230 register called "bank" (67). See below. */
233 "ibcr", "ibnr", "tbr",
234 /* 67: register bank number, the user visible pseudo register. */
236 /* double precision (pseudo) 68 - 75 */
237 "", "", "", "", "", "", "", "",
241 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
243 return register_names
[reg_nr
];
247 sh_sh_dsp_register_name (int reg_nr
)
249 static char *register_names
[] = {
250 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
251 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
252 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
254 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
255 "y0", "y1", "", "", "", "", "", "mod",
257 "rs", "re", "", "", "", "", "", "",
258 "", "", "", "", "", "", "", "",
259 "", "", "", "", "", "", "", "",
263 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
265 return register_names
[reg_nr
];
269 sh_sh3_dsp_register_name (int reg_nr
)
271 static char *register_names
[] = {
272 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
273 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
274 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
276 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
277 "y0", "y1", "", "", "", "", "", "mod",
279 "rs", "re", "", "", "", "", "", "",
280 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
281 "", "", "", "", "", "", "", "",
282 "", "", "", "", "", "", "", "",
286 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
288 return register_names
[reg_nr
];
292 sh_sh4_register_name (int reg_nr
)
294 static char *register_names
[] = {
295 /* general registers 0-15 */
296 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
297 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
299 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
302 /* floating point registers 25 - 40 */
303 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
304 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
308 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
310 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
311 "", "", "", "", "", "", "", "",
312 /* pseudo bank register. */
314 /* double precision (pseudo) 59 - 66 */
315 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
316 /* vectors (pseudo) 67 - 70 */
317 "fv0", "fv4", "fv8", "fv12",
318 /* FIXME: missing XF 71 - 86 */
319 /* FIXME: missing XD 87 - 94 */
323 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
325 return register_names
[reg_nr
];
329 sh_sh4_nofpu_register_name (int reg_nr
)
331 static char *register_names
[] = {
332 /* general registers 0-15 */
333 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
334 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
336 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
339 /* floating point registers 25 - 40 -- not for nofpu target */
340 "", "", "", "", "", "", "", "",
341 "", "", "", "", "", "", "", "",
345 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
347 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
348 "", "", "", "", "", "", "", "",
349 /* pseudo bank register. */
351 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
352 "", "", "", "", "", "", "", "",
353 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
358 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
360 return register_names
[reg_nr
];
364 sh_sh4al_dsp_register_name (int reg_nr
)
366 static char *register_names
[] = {
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
369 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
371 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
372 "y0", "y1", "", "", "", "", "", "mod",
374 "rs", "re", "", "", "", "", "", "",
375 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
376 "", "", "", "", "", "", "", "",
377 "", "", "", "", "", "", "", "",
381 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
383 return register_names
[reg_nr
];
386 static const unsigned char *
387 sh_breakpoint_from_pc (CORE_ADDR
*pcptr
, int *lenptr
)
389 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
390 static unsigned char breakpoint
[] = { 0xc3, 0xc3 };
392 /* For remote stub targets, trapa #20 is used. */
393 if (strcmp (target_shortname
, "remote") == 0)
395 static unsigned char big_remote_breakpoint
[] = { 0xc3, 0x20 };
396 static unsigned char little_remote_breakpoint
[] = { 0x20, 0xc3 };
398 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
400 *lenptr
= sizeof (big_remote_breakpoint
);
401 return big_remote_breakpoint
;
405 *lenptr
= sizeof (little_remote_breakpoint
);
406 return little_remote_breakpoint
;
410 *lenptr
= sizeof (breakpoint
);
414 /* Prologue looks like
418 sub <room_for_loca_vars>,r15
421 Actually it can be more complicated than this but that's it, basically.
424 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
425 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
427 /* JSR @Rm 0100mmmm00001011 */
428 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
430 /* STS.L PR,@-r15 0100111100100010
431 r15-4-->r15, PR-->(r15) */
432 #define IS_STS(x) ((x) == 0x4f22)
434 /* STS.L MACL,@-r15 0100111100010010
435 r15-4-->r15, MACL-->(r15) */
436 #define IS_MACL_STS(x) ((x) == 0x4f12)
438 /* MOV.L Rm,@-r15 00101111mmmm0110
439 r15-4-->r15, Rm-->(R15) */
440 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
442 /* MOV r15,r14 0110111011110011
444 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
446 /* ADD #imm,r15 01111111iiiiiiii
448 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
450 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
451 #define IS_SHLL_R3(x) ((x) == 0x4300)
453 /* ADD r3,r15 0011111100111100
455 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
457 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
458 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
459 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
460 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
461 make this entirely clear. */
462 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
463 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
465 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
466 #define IS_MOV_ARG_TO_REG(x) \
467 (((x) & 0xf00f) == 0x6003 && \
468 ((x) & 0x00f0) >= 0x0040 && \
469 ((x) & 0x00f0) <= 0x0070)
470 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
471 #define IS_MOV_ARG_TO_IND_R14(x) \
472 (((x) & 0xff0f) == 0x2e02 && \
473 ((x) & 0x00f0) >= 0x0040 && \
474 ((x) & 0x00f0) <= 0x0070)
475 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
476 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
477 (((x) & 0xff00) == 0x1e00 && \
478 ((x) & 0x00f0) >= 0x0040 && \
479 ((x) & 0x00f0) <= 0x0070)
481 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
482 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
483 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
484 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
485 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
486 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
487 /* SUB Rn,R15 00111111nnnn1000 */
488 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
490 #define FPSCR_SZ (1 << 20)
492 /* The following instructions are used for epilogue testing. */
493 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
494 #define IS_RTS(x) ((x) == 0x000b)
495 #define IS_LDS(x) ((x) == 0x4f26)
496 #define IS_MACL_LDS(x) ((x) == 0x4f16)
497 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
498 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
499 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
501 /* Disassemble an instruction. */
503 gdb_print_insn_sh (bfd_vma memaddr
, disassemble_info
* info
)
505 info
->endian
= TARGET_BYTE_ORDER
;
506 return print_insn_sh (memaddr
, info
);
510 sh_analyze_prologue (CORE_ADDR pc
, CORE_ADDR current_pc
,
511 struct sh_frame_cache
*cache
)
518 int reg
, sav_reg
= -1;
520 if (pc
>= current_pc
)
524 for (opc
= pc
+ (2 * 28); pc
< opc
; pc
+= 2)
526 inst
= read_memory_unsigned_integer (pc
, 2);
527 /* See where the registers will be saved to */
530 cache
->saved_regs
[GET_SOURCE_REG (inst
)] = cache
->sp_offset
;
531 cache
->sp_offset
+= 4;
533 else if (IS_STS (inst
))
535 cache
->saved_regs
[PR_REGNUM
] = cache
->sp_offset
;
536 cache
->sp_offset
+= 4;
538 else if (IS_MACL_STS (inst
))
540 cache
->saved_regs
[MACL_REGNUM
] = cache
->sp_offset
;
541 cache
->sp_offset
+= 4;
543 else if (IS_MOV_R3 (inst
))
545 r3_val
= ((inst
& 0xff) ^ 0x80) - 0x80;
547 else if (IS_SHLL_R3 (inst
))
551 else if (IS_ADD_R3SP (inst
))
553 cache
->sp_offset
+= -r3_val
;
555 else if (IS_ADD_IMM_SP (inst
))
557 offset
= ((inst
& 0xff) ^ 0x80) - 0x80;
558 cache
->sp_offset
-= offset
;
560 else if (IS_MOVW_PCREL_TO_REG (inst
))
564 reg
= GET_TARGET_REG (inst
);
568 offset
= (inst
& 0xff) << 1;
570 read_memory_integer ((pc
+ 4) + offset
, 2);
574 else if (IS_MOVL_PCREL_TO_REG (inst
))
578 reg
= GET_TARGET_REG (inst
);
582 offset
= (inst
& 0xff) << 2;
584 read_memory_integer (((pc
& 0xfffffffc) + 4) + offset
, 4);
588 else if (IS_MOVI20 (inst
))
592 reg
= GET_TARGET_REG (inst
);
596 sav_offset
= GET_SOURCE_REG (inst
) << 16;
597 /* MOVI20 is a 32 bit instruction! */
599 sav_offset
|= read_memory_unsigned_integer (pc
, 2);
600 /* Now sav_offset contains an unsigned 20 bit value.
601 It must still get sign extended. */
602 if (sav_offset
& 0x00080000)
603 sav_offset
|= 0xfff00000;
607 else if (IS_SUB_REG_FROM_SP (inst
))
609 reg
= GET_SOURCE_REG (inst
);
610 if (sav_reg
> 0 && reg
== sav_reg
)
614 cache
->sp_offset
+= sav_offset
;
616 else if (IS_FPUSH (inst
))
618 if (read_register (FPSCR_REGNUM
) & FPSCR_SZ
)
620 cache
->sp_offset
+= 8;
624 cache
->sp_offset
+= 4;
627 else if (IS_MOV_SP_FP (inst
))
630 /* At this point, only allow argument register moves to other
631 registers or argument register moves to @(X,fp) which are
632 moving the register arguments onto the stack area allocated
633 by a former add somenumber to SP call. Don't allow moving
634 to an fp indirect address above fp + cache->sp_offset. */
636 for (opc
= pc
+ 12; pc
< opc
; pc
+= 2)
638 inst
= read_memory_integer (pc
, 2);
639 if (IS_MOV_ARG_TO_IND_R14 (inst
))
641 reg
= GET_SOURCE_REG (inst
);
642 if (cache
->sp_offset
> 0)
643 cache
->saved_regs
[reg
] = cache
->sp_offset
;
645 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst
))
647 reg
= GET_SOURCE_REG (inst
);
648 offset
= (inst
& 0xf) * 4;
649 if (cache
->sp_offset
> offset
)
650 cache
->saved_regs
[reg
] = cache
->sp_offset
- offset
;
652 else if (IS_MOV_ARG_TO_REG (inst
))
659 else if (IS_JSR (inst
))
661 /* We have found a jsr that has been scheduled into the prologue.
662 If we continue the scan and return a pc someplace after this,
663 then setting a breakpoint on this function will cause it to
664 appear to be called after the function it is calling via the
665 jsr, which will be very confusing. Most likely the next
666 instruction is going to be IS_MOV_SP_FP in the delay slot. If
667 so, note that before returning the current pc. */
668 inst
= read_memory_integer (pc
+ 2, 2);
669 if (IS_MOV_SP_FP (inst
))
673 #if 0 /* This used to just stop when it found an instruction that
674 was not considered part of the prologue. Now, we just
675 keep going looking for likely instructions. */
684 /* Skip any prologue before the guts of a function */
686 /* Skip the prologue using the debug information. If this fails we'll
687 fall back on the 'guess' method below. */
689 after_prologue (CORE_ADDR pc
)
691 struct symtab_and_line sal
;
692 CORE_ADDR func_addr
, func_end
;
694 /* If we can not find the symbol in the partial symbol table, then
695 there is no hope we can determine the function's start address
697 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
700 /* Get the line associated with FUNC_ADDR. */
701 sal
= find_pc_line (func_addr
, 0);
703 /* There are only two cases to consider. First, the end of the source line
704 is within the function bounds. In that case we return the end of the
705 source line. Second is the end of the source line extends beyond the
706 bounds of the current function. We need to use the slow code to
707 examine instructions in that case. */
708 if (sal
.end
< func_end
)
715 sh_skip_prologue (CORE_ADDR start_pc
)
718 struct sh_frame_cache cache
;
720 /* See if we can determine the end of the prologue via the symbol table.
721 If so, then return either PC, or the PC after the prologue, whichever
723 pc
= after_prologue (start_pc
);
725 /* If after_prologue returned a useful address, then use it. Else
726 fall back on the instruction skipping code. */
728 return max (pc
, start_pc
);
730 cache
.sp_offset
= -4;
731 pc
= sh_analyze_prologue (start_pc
, (CORE_ADDR
) -1, &cache
);
740 Aggregate types not bigger than 8 bytes that have the same size and
741 alignment as one of the integer scalar types are returned in the
742 same registers as the integer type they match.
744 For example, a 2-byte aligned structure with size 2 bytes has the
745 same size and alignment as a short int, and will be returned in R0.
746 A 4-byte aligned structure with size 8 bytes has the same size and
747 alignment as a long long int, and will be returned in R0 and R1.
749 When an aggregate type is returned in R0 and R1, R0 contains the
750 first four bytes of the aggregate, and R1 contains the
751 remainder. If the size of the aggregate type is not a multiple of 4
752 bytes, the aggregate is tail-padded up to a multiple of 4
753 bytes. The value of the padding is undefined. For little-endian
754 targets the padding will appear at the most significant end of the
755 last element, for big-endian targets the padding appears at the
756 least significant end of the last element.
758 All other aggregate types are returned by address. The caller
759 function passes the address of an area large enough to hold the
760 aggregate value in R2. The called function stores the result in
763 To reiterate, structs smaller than 8 bytes could also be returned
764 in memory, if they don't pass the "same size and alignment as an
769 struct s { char c[3]; } wibble;
770 struct s foo(void) { return wibble; }
772 the return value from foo() will be in memory, not
773 in R0, because there is no 3-byte integer type.
777 struct s { char c[2]; } wibble;
778 struct s foo(void) { return wibble; }
780 because a struct containing two chars has alignment 1, that matches
781 type char, but size 2, that matches type short. There's no integer
782 type that has alignment 1 and size 2, so the struct is returned in
788 sh_use_struct_convention (int gcc_p
, struct type
*type
)
790 int len
= TYPE_LENGTH (type
);
791 int nelem
= TYPE_NFIELDS (type
);
793 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
794 fit in two registers anyway) use struct convention. */
795 if (len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8)
798 /* Scalar types and aggregate types with exactly one field are aligned
799 by definition. They are returned in registers. */
803 /* If the first field in the aggregate has the same length as the entire
804 aggregate type, the type is returned in registers. */
805 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0)) == len
)
808 /* If the size of the aggregate is 8 bytes and the first field is
809 of size 4 bytes its alignment is equal to long long's alignment,
810 so it's returned in registers. */
811 if (len
== 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0)) == 4)
814 /* Otherwise use struct convention. */
818 /* Extract from an array REGBUF containing the (raw) register state
819 the address in which a function should return its structure value,
820 as a CORE_ADDR (or an expression that can be used as one). */
822 sh_extract_struct_value_address (struct regcache
*regcache
)
826 regcache_cooked_read_unsigned (regcache
, STRUCT_RETURN_REGNUM
, &addr
);
831 sh_frame_align (struct gdbarch
*ignore
, CORE_ADDR sp
)
836 /* Function: push_dummy_call (formerly push_arguments)
837 Setup the function arguments for calling a function in the inferior.
839 On the Renesas SH architecture, there are four registers (R4 to R7)
840 which are dedicated for passing function arguments. Up to the first
841 four arguments (depending on size) may go into these registers.
842 The rest go on the stack.
844 MVS: Except on SH variants that have floating point registers.
845 In that case, float and double arguments are passed in the same
846 manner, but using FP registers instead of GP registers.
848 Arguments that are smaller than 4 bytes will still take up a whole
849 register or a whole 32-bit word on the stack, and will be
850 right-justified in the register or the stack word. This includes
851 chars, shorts, and small aggregate types.
853 Arguments that are larger than 4 bytes may be split between two or
854 more registers. If there are not enough registers free, an argument
855 may be passed partly in a register (or registers), and partly on the
856 stack. This includes doubles, long longs, and larger aggregates.
857 As far as I know, there is no upper limit to the size of aggregates
858 that will be passed in this way; in other words, the convention of
859 passing a pointer to a large aggregate instead of a copy is not used.
861 MVS: The above appears to be true for the SH variants that do not
862 have an FPU, however those that have an FPU appear to copy the
863 aggregate argument onto the stack (and not place it in registers)
864 if it is larger than 16 bytes (four GP registers).
866 An exceptional case exists for struct arguments (and possibly other
867 aggregates such as arrays) if the size is larger than 4 bytes but
868 not a multiple of 4 bytes. In this case the argument is never split
869 between the registers and the stack, but instead is copied in its
870 entirety onto the stack, AND also copied into as many registers as
871 there is room for. In other words, space in registers permitting,
872 two copies of the same argument are passed in. As far as I can tell,
873 only the one on the stack is used, although that may be a function
874 of the level of compiler optimization. I suspect this is a compiler
875 bug. Arguments of these odd sizes are left-justified within the
876 word (as opposed to arguments smaller than 4 bytes, which are
879 If the function is to return an aggregate type such as a struct, it
880 is either returned in the normal return value register R0 (if its
881 size is no greater than one byte), or else the caller must allocate
882 space into which the callee will copy the return value (if the size
883 is greater than one byte). In this case, a pointer to the return
884 value location is passed into the callee in register R2, which does
885 not displace any of the other arguments passed in via registers R4
888 /* Helper function to justify value in register according to endianess. */
890 sh_justify_value_in_reg (struct value
*val
, int len
)
892 static char valbuf
[4];
894 memset (valbuf
, 0, sizeof (valbuf
));
897 /* value gets right-justified in the register or stack word */
898 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
899 memcpy (valbuf
+ (4 - len
), (char *) value_contents (val
), len
);
901 memcpy (valbuf
, (char *) value_contents (val
), len
);
904 return (char *) value_contents (val
);
907 /* Helper function to eval number of bytes to allocate on stack. */
909 sh_stack_allocsize (int nargs
, struct value
**args
)
913 stack_alloc
+= ((TYPE_LENGTH (value_type (args
[nargs
])) + 3) & ~3);
917 /* Helper functions for getting the float arguments right. Registers usage
918 depends on the ABI and the endianess. The comments should enlighten how
919 it's intended to work. */
921 /* This array stores which of the float arg registers are already in use. */
922 static int flt_argreg_array
[FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
+ 1];
924 /* This function just resets the above array to "no reg used so far". */
926 sh_init_flt_argreg (void)
928 memset (flt_argreg_array
, 0, sizeof flt_argreg_array
);
931 /* This function returns the next register to use for float arg passing.
932 It returns either a valid value between FLOAT_ARG0_REGNUM and
933 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
934 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
936 Note that register number 0 in flt_argreg_array corresponds with the
937 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
938 29) the parity of the register number is preserved, which is important
939 for the double register passing test (see the "argreg & 1" test below). */
941 sh_next_flt_argreg (int len
)
945 /* First search for the next free register. */
946 for (argreg
= 0; argreg
<= FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
;
948 if (!flt_argreg_array
[argreg
])
951 /* No register left? */
952 if (argreg
> FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
)
953 return FLOAT_ARGLAST_REGNUM
+ 1;
957 /* Doubles are always starting in a even register number. */
960 flt_argreg_array
[argreg
] = 1;
964 /* No register left? */
965 if (argreg
> FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
)
966 return FLOAT_ARGLAST_REGNUM
+ 1;
968 /* Also mark the next register as used. */
969 flt_argreg_array
[argreg
+ 1] = 1;
971 else if (TARGET_BYTE_ORDER
== BFD_ENDIAN_LITTLE
)
973 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
974 if (!flt_argreg_array
[argreg
+ 1])
977 flt_argreg_array
[argreg
] = 1;
978 return FLOAT_ARG0_REGNUM
+ argreg
;
981 /* Helper function which figures out, if a type is treated like a float type.
983 The FPU ABIs have a special way how to treat types as float types.
984 Structures with exactly one member, which is of type float or double, are
985 treated exactly as the base types float or double:
995 are handled the same way as just
1001 As a result, arguments of these struct types are pushed into floating point
1002 registers exactly as floats or doubles, using the same decision algorithm.
1004 The same is valid if these types are used as function return types. The
1005 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1006 or even using struct convention as it is for other structs. */
1009 sh_treat_as_flt_p (struct type
*type
)
1011 int len
= TYPE_LENGTH (type
);
1013 /* Ordinary float types are obviously treated as float. */
1014 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
1016 /* Otherwise non-struct types are not treated as float. */
1017 if (TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
1019 /* Otherwise structs with more than one memeber are not treated as float. */
1020 if (TYPE_NFIELDS (type
) != 1)
1022 /* Otherwise if the type of that member is float, the whole type is
1023 treated as float. */
1024 if (TYPE_CODE (TYPE_FIELD_TYPE (type
, 0)) == TYPE_CODE_FLT
)
1026 /* Otherwise it's not treated as float. */
1031 sh_push_dummy_call_fpu (struct gdbarch
*gdbarch
,
1032 struct value
*function
,
1033 struct regcache
*regcache
,
1034 CORE_ADDR bp_addr
, int nargs
,
1035 struct value
**args
,
1036 CORE_ADDR sp
, int struct_return
,
1037 CORE_ADDR struct_addr
)
1039 int stack_offset
= 0;
1040 int argreg
= ARG0_REGNUM
;
1046 int len
, reg_size
= 0;
1047 int pass_on_stack
= 0;
1050 /* first force sp to a 4-byte alignment */
1051 sp
= sh_frame_align (gdbarch
, sp
);
1054 regcache_cooked_write_unsigned (regcache
,
1055 STRUCT_RETURN_REGNUM
, struct_addr
);
1057 /* make room on stack for args */
1058 sp
-= sh_stack_allocsize (nargs
, args
);
1060 /* Initialize float argument mechanism. */
1061 sh_init_flt_argreg ();
1063 /* Now load as many as possible of the first arguments into
1064 registers, and push the rest onto the stack. There are 16 bytes
1065 in four registers available. Loop thru args from first to last. */
1066 for (argnum
= 0; argnum
< nargs
; argnum
++)
1068 type
= value_type (args
[argnum
]);
1069 len
= TYPE_LENGTH (type
);
1070 val
= sh_justify_value_in_reg (args
[argnum
], len
);
1072 /* Some decisions have to be made how various types are handled.
1073 This also differs in different ABIs. */
1076 /* Find out the next register to use for a floating point value. */
1077 treat_as_flt
= sh_treat_as_flt_p (type
);
1079 flt_argreg
= sh_next_flt_argreg (len
);
1080 /* In contrast to non-FPU CPUs, arguments are never split between
1081 registers and stack. If an argument doesn't fit in the remaining
1082 registers it's always pushed entirely on the stack. */
1083 else if (len
> ((ARGLAST_REGNUM
- argreg
+ 1) * 4))
1088 if ((treat_as_flt
&& flt_argreg
> FLOAT_ARGLAST_REGNUM
)
1089 || (!treat_as_flt
&& (argreg
> ARGLAST_REGNUM
1092 /* The data goes entirely on the stack, 4-byte aligned. */
1093 reg_size
= (len
+ 3) & ~3;
1094 write_memory (sp
+ stack_offset
, val
, reg_size
);
1095 stack_offset
+= reg_size
;
1097 else if (treat_as_flt
&& flt_argreg
<= FLOAT_ARGLAST_REGNUM
)
1099 /* Argument goes in a float argument register. */
1100 reg_size
= register_size (gdbarch
, flt_argreg
);
1101 regval
= extract_unsigned_integer (val
, reg_size
);
1102 /* In little endian mode, float types taking two registers
1103 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1104 be stored swapped in the argument registers. The below
1105 code first writes the first 32 bits in the next but one
1106 register, increments the val and len values accordingly
1107 and then proceeds as normal by writing the second 32 bits
1108 into the next register. */
1109 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_LITTLE
1110 && TYPE_LENGTH (type
) == 2 * reg_size
)
1112 regcache_cooked_write_unsigned (regcache
, flt_argreg
+ 1,
1116 regval
= extract_unsigned_integer (val
, reg_size
);
1118 regcache_cooked_write_unsigned (regcache
, flt_argreg
++, regval
);
1120 else if (!treat_as_flt
&& argreg
<= ARGLAST_REGNUM
)
1122 /* there's room in a register */
1123 reg_size
= register_size (gdbarch
, argreg
);
1124 regval
= extract_unsigned_integer (val
, reg_size
);
1125 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
1127 /* Store the value one register at a time or in one step on stack. */
1133 /* Store return address. */
1134 regcache_cooked_write_unsigned (regcache
, PR_REGNUM
, bp_addr
);
1136 /* Update stack pointer. */
1137 regcache_cooked_write_unsigned (regcache
, SP_REGNUM
, sp
);
1143 sh_push_dummy_call_nofpu (struct gdbarch
*gdbarch
,
1144 struct value
*function
,
1145 struct regcache
*regcache
,
1147 int nargs
, struct value
**args
,
1148 CORE_ADDR sp
, int struct_return
,
1149 CORE_ADDR struct_addr
)
1151 int stack_offset
= 0;
1152 int argreg
= ARG0_REGNUM
;
1159 /* first force sp to a 4-byte alignment */
1160 sp
= sh_frame_align (gdbarch
, sp
);
1163 regcache_cooked_write_unsigned (regcache
,
1164 STRUCT_RETURN_REGNUM
, struct_addr
);
1166 /* make room on stack for args */
1167 sp
-= sh_stack_allocsize (nargs
, args
);
1169 /* Now load as many as possible of the first arguments into
1170 registers, and push the rest onto the stack. There are 16 bytes
1171 in four registers available. Loop thru args from first to last. */
1172 for (argnum
= 0; argnum
< nargs
; argnum
++)
1174 type
= value_type (args
[argnum
]);
1175 len
= TYPE_LENGTH (type
);
1176 val
= sh_justify_value_in_reg (args
[argnum
], len
);
1180 if (argreg
> ARGLAST_REGNUM
)
1182 /* The remainder of the data goes entirely on the stack,
1184 reg_size
= (len
+ 3) & ~3;
1185 write_memory (sp
+ stack_offset
, val
, reg_size
);
1186 stack_offset
+= reg_size
;
1188 else if (argreg
<= ARGLAST_REGNUM
)
1190 /* there's room in a register */
1191 reg_size
= register_size (gdbarch
, argreg
);
1192 regval
= extract_unsigned_integer (val
, reg_size
);
1193 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
1195 /* Store the value reg_size bytes at a time. This means that things
1196 larger than reg_size bytes may go partly in registers and partly
1203 /* Store return address. */
1204 regcache_cooked_write_unsigned (regcache
, PR_REGNUM
, bp_addr
);
1206 /* Update stack pointer. */
1207 regcache_cooked_write_unsigned (regcache
, SP_REGNUM
, sp
);
1212 /* Find a function's return value in the appropriate registers (in
1213 regbuf), and copy it into valbuf. Extract from an array REGBUF
1214 containing the (raw) register state a function return value of type
1215 TYPE, and copy that, in virtual format, into VALBUF. */
1217 sh_extract_return_value_nofpu (struct type
*type
, struct regcache
*regcache
,
1220 int len
= TYPE_LENGTH (type
);
1221 int return_register
= R0_REGNUM
;
1228 regcache_cooked_read_unsigned (regcache
, R0_REGNUM
, &c
);
1229 store_unsigned_integer (valbuf
, len
, c
);
1233 int i
, regnum
= R0_REGNUM
;
1234 for (i
= 0; i
< len
; i
+= 4)
1235 regcache_raw_read (regcache
, regnum
++, (char *) valbuf
+ i
);
1238 error (_("bad size for return value"));
1242 sh_extract_return_value_fpu (struct type
*type
, struct regcache
*regcache
,
1245 if (sh_treat_as_flt_p (type
))
1247 int len
= TYPE_LENGTH (type
);
1248 int i
, regnum
= FP0_REGNUM
;
1249 for (i
= 0; i
< len
; i
+= 4)
1250 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_LITTLE
)
1251 regcache_raw_read (regcache
, regnum
++, (char *) valbuf
+ len
- 4 - i
);
1253 regcache_raw_read (regcache
, regnum
++, (char *) valbuf
+ i
);
1256 sh_extract_return_value_nofpu (type
, regcache
, valbuf
);
1259 /* Write into appropriate registers a function return value
1260 of type TYPE, given in virtual format.
1261 If the architecture is sh4 or sh3e, store a function's return value
1262 in the R0 general register or in the FP0 floating point register,
1263 depending on the type of the return value. In all the other cases
1264 the result is stored in r0, left-justified. */
1266 sh_store_return_value_nofpu (struct type
*type
, struct regcache
*regcache
,
1270 int len
= TYPE_LENGTH (type
);
1274 val
= extract_unsigned_integer (valbuf
, len
);
1275 regcache_cooked_write_unsigned (regcache
, R0_REGNUM
, val
);
1279 int i
, regnum
= R0_REGNUM
;
1280 for (i
= 0; i
< len
; i
+= 4)
1281 regcache_raw_write (regcache
, regnum
++, (char *) valbuf
+ i
);
1286 sh_store_return_value_fpu (struct type
*type
, struct regcache
*regcache
,
1289 if (sh_treat_as_flt_p (type
))
1291 int len
= TYPE_LENGTH (type
);
1292 int i
, regnum
= FP0_REGNUM
;
1293 for (i
= 0; i
< len
; i
+= 4)
1294 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_LITTLE
)
1295 regcache_raw_write (regcache
, regnum
++,
1296 (char *) valbuf
+ len
- 4 - i
);
1298 regcache_raw_write (regcache
, regnum
++, (char *) valbuf
+ i
);
1301 sh_store_return_value_nofpu (type
, regcache
, valbuf
);
1304 static enum return_value_convention
1305 sh_return_value_nofpu (struct gdbarch
*gdbarch
, struct type
*type
,
1306 struct regcache
*regcache
,
1307 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1309 if (sh_use_struct_convention (0, type
))
1310 return RETURN_VALUE_STRUCT_CONVENTION
;
1312 sh_store_return_value_nofpu (type
, regcache
, writebuf
);
1314 sh_extract_return_value_nofpu (type
, regcache
, readbuf
);
1315 return RETURN_VALUE_REGISTER_CONVENTION
;
1318 static enum return_value_convention
1319 sh_return_value_fpu (struct gdbarch
*gdbarch
, struct type
*type
,
1320 struct regcache
*regcache
,
1321 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1323 if (sh_use_struct_convention (0, type
))
1324 return RETURN_VALUE_STRUCT_CONVENTION
;
1326 sh_store_return_value_fpu (type
, regcache
, writebuf
);
1328 sh_extract_return_value_fpu (type
, regcache
, readbuf
);
1329 return RETURN_VALUE_REGISTER_CONVENTION
;
1332 /* Print the registers in a form similar to the E7000 */
1335 sh_generic_show_regs (void)
1337 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1338 paddr (read_register (PC_REGNUM
)),
1339 (long) read_register (SR_REGNUM
),
1340 (long) read_register (PR_REGNUM
),
1341 (long) read_register (MACH_REGNUM
));
1344 " GBR %08lx VBR %08lx MACL %08lx\n",
1345 (long) read_register (GBR_REGNUM
),
1346 (long) read_register (VBR_REGNUM
),
1347 (long) read_register (MACL_REGNUM
));
1350 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1351 (long) read_register (0), (long) read_register (1),
1352 (long) read_register (2), (long) read_register (3),
1353 (long) read_register (4), (long) read_register (5),
1354 (long) read_register (6), (long) read_register (7));
1355 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1356 (long) read_register (8), (long) read_register (9),
1357 (long) read_register (10), (long) read_register (11),
1358 (long) read_register (12), (long) read_register (13),
1359 (long) read_register (14), (long) read_register (15));
1363 sh3_show_regs (void)
1365 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1366 paddr (read_register (PC_REGNUM
)),
1367 (long) read_register (SR_REGNUM
),
1368 (long) read_register (PR_REGNUM
),
1369 (long) read_register (MACH_REGNUM
));
1372 " GBR %08lx VBR %08lx MACL %08lx\n",
1373 (long) read_register (GBR_REGNUM
),
1374 (long) read_register (VBR_REGNUM
),
1375 (long) read_register (MACL_REGNUM
));
1376 printf_filtered (" SSR %08lx SPC %08lx\n",
1377 (long) read_register (SSR_REGNUM
),
1378 (long) read_register (SPC_REGNUM
));
1381 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1382 (long) read_register (0), (long) read_register (1),
1383 (long) read_register (2), (long) read_register (3),
1384 (long) read_register (4), (long) read_register (5),
1385 (long) read_register (6), (long) read_register (7));
1386 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1387 (long) read_register (8), (long) read_register (9),
1388 (long) read_register (10), (long) read_register (11),
1389 (long) read_register (12), (long) read_register (13),
1390 (long) read_register (14), (long) read_register (15));
1395 sh2e_show_regs (void)
1397 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1398 paddr (read_register (PC_REGNUM
)),
1399 (long) read_register (SR_REGNUM
),
1400 (long) read_register (PR_REGNUM
),
1401 (long) read_register (MACH_REGNUM
));
1404 " GBR %08lx VBR %08lx MACL %08lx\n",
1405 (long) read_register (GBR_REGNUM
),
1406 (long) read_register (VBR_REGNUM
),
1407 (long) read_register (MACL_REGNUM
));
1409 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1410 (long) read_register (SSR_REGNUM
),
1411 (long) read_register (SPC_REGNUM
),
1412 (long) read_register (FPUL_REGNUM
),
1413 (long) read_register (FPSCR_REGNUM
));
1416 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1417 (long) read_register (0), (long) read_register (1),
1418 (long) read_register (2), (long) read_register (3),
1419 (long) read_register (4), (long) read_register (5),
1420 (long) read_register (6), (long) read_register (7));
1421 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1422 (long) read_register (8), (long) read_register (9),
1423 (long) read_register (10), (long) read_register (11),
1424 (long) read_register (12), (long) read_register (13),
1425 (long) read_register (14), (long) read_register (15));
1427 printf_filtered ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1428 (long) read_register (FP0_REGNUM
+ 0),
1429 (long) read_register (FP0_REGNUM
+ 1),
1430 (long) read_register (FP0_REGNUM
+ 2),
1431 (long) read_register (FP0_REGNUM
+ 3),
1432 (long) read_register (FP0_REGNUM
+ 4),
1433 (long) read_register (FP0_REGNUM
+ 5),
1434 (long) read_register (FP0_REGNUM
+ 6),
1435 (long) read_register (FP0_REGNUM
+ 7));
1436 printf_filtered ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1437 (long) read_register (FP0_REGNUM
+ 8),
1438 (long) read_register (FP0_REGNUM
+ 9),
1439 (long) read_register (FP0_REGNUM
+ 10),
1440 (long) read_register (FP0_REGNUM
+ 11),
1441 (long) read_register (FP0_REGNUM
+ 12),
1442 (long) read_register (FP0_REGNUM
+ 13),
1443 (long) read_register (FP0_REGNUM
+ 14),
1444 (long) read_register (FP0_REGNUM
+ 15));
1448 sh2a_show_regs (void)
1450 int pr
= read_register (FPSCR_REGNUM
) & 0x80000;
1451 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1452 paddr (read_register (PC_REGNUM
)),
1453 (long) read_register (SR_REGNUM
),
1454 (long) read_register (PR_REGNUM
),
1455 (long) read_register (MACH_REGNUM
));
1458 " GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1459 (long) read_register (GBR_REGNUM
),
1460 (long) read_register (VBR_REGNUM
),
1461 (long) read_register (TBR_REGNUM
),
1462 (long) read_register (MACL_REGNUM
));
1464 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1465 (long) read_register (SSR_REGNUM
),
1466 (long) read_register (SPC_REGNUM
),
1467 (long) read_register (FPUL_REGNUM
),
1468 (long) read_register (FPSCR_REGNUM
));
1470 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1471 (long) read_register (0), (long) read_register (1),
1472 (long) read_register (2), (long) read_register (3),
1473 (long) read_register (4), (long) read_register (5),
1474 (long) read_register (6), (long) read_register (7));
1475 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1476 (long) read_register (8), (long) read_register (9),
1477 (long) read_register (10), (long) read_register (11),
1478 (long) read_register (12), (long) read_register (13),
1479 (long) read_register (14), (long) read_register (15));
1482 (pr
? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1483 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1484 (long) read_register (FP0_REGNUM
+ 0),
1485 (long) read_register (FP0_REGNUM
+ 1),
1486 (long) read_register (FP0_REGNUM
+ 2),
1487 (long) read_register (FP0_REGNUM
+ 3),
1488 (long) read_register (FP0_REGNUM
+ 4),
1489 (long) read_register (FP0_REGNUM
+ 5),
1490 (long) read_register (FP0_REGNUM
+ 6),
1491 (long) read_register (FP0_REGNUM
+ 7));
1493 (pr
? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1494 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1495 (long) read_register (FP0_REGNUM
+ 8),
1496 (long) read_register (FP0_REGNUM
+ 9),
1497 (long) read_register (FP0_REGNUM
+ 10),
1498 (long) read_register (FP0_REGNUM
+ 11),
1499 (long) read_register (FP0_REGNUM
+ 12),
1500 (long) read_register (FP0_REGNUM
+ 13),
1501 (long) read_register (FP0_REGNUM
+ 14),
1502 (long) read_register (FP0_REGNUM
+ 15));
1503 printf_filtered ("BANK=%-3d\n", (int) read_register (BANK_REGNUM
));
1505 "R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1506 (long) read_register (R0_BANK0_REGNUM
+ 0),
1507 (long) read_register (R0_BANK0_REGNUM
+ 1),
1508 (long) read_register (R0_BANK0_REGNUM
+ 2),
1509 (long) read_register (R0_BANK0_REGNUM
+ 3),
1510 (long) read_register (R0_BANK0_REGNUM
+ 4),
1511 (long) read_register (R0_BANK0_REGNUM
+ 5),
1512 (long) read_register (R0_BANK0_REGNUM
+ 6),
1513 (long) read_register (R0_BANK0_REGNUM
+ 7));
1514 printf_filtered ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1515 (long) read_register (R0_BANK0_REGNUM
+ 8),
1516 (long) read_register (R0_BANK0_REGNUM
+ 9),
1517 (long) read_register (R0_BANK0_REGNUM
+ 10),
1518 (long) read_register (R0_BANK0_REGNUM
+ 11),
1519 (long) read_register (R0_BANK0_REGNUM
+ 12),
1520 (long) read_register (R0_BANK0_REGNUM
+ 13),
1521 (long) read_register (R0_BANK0_REGNUM
+ 14));
1522 printf_filtered ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1523 (long) read_register (R0_BANK0_REGNUM
+ 15),
1524 (long) read_register (R0_BANK0_REGNUM
+ 16),
1525 (long) read_register (R0_BANK0_REGNUM
+ 17),
1526 (long) read_register (R0_BANK0_REGNUM
+ 18),
1527 (long) read_register (R0_BANK0_REGNUM
+ 19));
1531 sh2a_nofpu_show_regs (void)
1533 int pr
= read_register (FPSCR_REGNUM
) & 0x80000;
1534 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1535 paddr (read_register (PC_REGNUM
)),
1536 (long) read_register (SR_REGNUM
),
1537 (long) read_register (PR_REGNUM
),
1538 (long) read_register (MACH_REGNUM
));
1541 " GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1542 (long) read_register (GBR_REGNUM
),
1543 (long) read_register (VBR_REGNUM
),
1544 (long) read_register (TBR_REGNUM
),
1545 (long) read_register (MACL_REGNUM
));
1547 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1548 (long) read_register (SSR_REGNUM
),
1549 (long) read_register (SPC_REGNUM
),
1550 (long) read_register (FPUL_REGNUM
),
1551 (long) read_register (FPSCR_REGNUM
));
1553 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1554 (long) read_register (0), (long) read_register (1),
1555 (long) read_register (2), (long) read_register (3),
1556 (long) read_register (4), (long) read_register (5),
1557 (long) read_register (6), (long) read_register (7));
1558 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1559 (long) read_register (8), (long) read_register (9),
1560 (long) read_register (10), (long) read_register (11),
1561 (long) read_register (12), (long) read_register (13),
1562 (long) read_register (14), (long) read_register (15));
1564 printf_filtered ("BANK=%-3d\n", (int) read_register (BANK_REGNUM
));
1566 "R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1567 (long) read_register (R0_BANK0_REGNUM
+ 0),
1568 (long) read_register (R0_BANK0_REGNUM
+ 1),
1569 (long) read_register (R0_BANK0_REGNUM
+ 2),
1570 (long) read_register (R0_BANK0_REGNUM
+ 3),
1571 (long) read_register (R0_BANK0_REGNUM
+ 4),
1572 (long) read_register (R0_BANK0_REGNUM
+ 5),
1573 (long) read_register (R0_BANK0_REGNUM
+ 6),
1574 (long) read_register (R0_BANK0_REGNUM
+ 7));
1575 printf_filtered ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1576 (long) read_register (R0_BANK0_REGNUM
+ 8),
1577 (long) read_register (R0_BANK0_REGNUM
+ 9),
1578 (long) read_register (R0_BANK0_REGNUM
+ 10),
1579 (long) read_register (R0_BANK0_REGNUM
+ 11),
1580 (long) read_register (R0_BANK0_REGNUM
+ 12),
1581 (long) read_register (R0_BANK0_REGNUM
+ 13),
1582 (long) read_register (R0_BANK0_REGNUM
+ 14));
1583 printf_filtered ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1584 (long) read_register (R0_BANK0_REGNUM
+ 15),
1585 (long) read_register (R0_BANK0_REGNUM
+ 16),
1586 (long) read_register (R0_BANK0_REGNUM
+ 17),
1587 (long) read_register (R0_BANK0_REGNUM
+ 18),
1588 (long) read_register (R0_BANK0_REGNUM
+ 19));
1592 sh3e_show_regs (void)
1594 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1595 paddr (read_register (PC_REGNUM
)),
1596 (long) read_register (SR_REGNUM
),
1597 (long) read_register (PR_REGNUM
),
1598 (long) read_register (MACH_REGNUM
));
1601 " GBR %08lx VBR %08lx MACL %08lx\n",
1602 (long) read_register (GBR_REGNUM
),
1603 (long) read_register (VBR_REGNUM
),
1604 (long) read_register (MACL_REGNUM
));
1606 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1607 (long) read_register (SSR_REGNUM
),
1608 (long) read_register (SPC_REGNUM
),
1609 (long) read_register (FPUL_REGNUM
),
1610 (long) read_register (FPSCR_REGNUM
));
1613 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1614 (long) read_register (0), (long) read_register (1),
1615 (long) read_register (2), (long) read_register (3),
1616 (long) read_register (4), (long) read_register (5),
1617 (long) read_register (6), (long) read_register (7));
1618 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1619 (long) read_register (8), (long) read_register (9),
1620 (long) read_register (10), (long) read_register (11),
1621 (long) read_register (12), (long) read_register (13),
1622 (long) read_register (14), (long) read_register (15));
1624 printf_filtered ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1625 (long) read_register (FP0_REGNUM
+ 0),
1626 (long) read_register (FP0_REGNUM
+ 1),
1627 (long) read_register (FP0_REGNUM
+ 2),
1628 (long) read_register (FP0_REGNUM
+ 3),
1629 (long) read_register (FP0_REGNUM
+ 4),
1630 (long) read_register (FP0_REGNUM
+ 5),
1631 (long) read_register (FP0_REGNUM
+ 6),
1632 (long) read_register (FP0_REGNUM
+ 7));
1633 printf_filtered ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1634 (long) read_register (FP0_REGNUM
+ 8),
1635 (long) read_register (FP0_REGNUM
+ 9),
1636 (long) read_register (FP0_REGNUM
+ 10),
1637 (long) read_register (FP0_REGNUM
+ 11),
1638 (long) read_register (FP0_REGNUM
+ 12),
1639 (long) read_register (FP0_REGNUM
+ 13),
1640 (long) read_register (FP0_REGNUM
+ 14),
1641 (long) read_register (FP0_REGNUM
+ 15));
1645 sh3_dsp_show_regs (void)
1647 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1648 paddr (read_register (PC_REGNUM
)),
1649 (long) read_register (SR_REGNUM
),
1650 (long) read_register (PR_REGNUM
),
1651 (long) read_register (MACH_REGNUM
));
1654 " GBR %08lx VBR %08lx MACL %08lx\n",
1655 (long) read_register (GBR_REGNUM
),
1656 (long) read_register (VBR_REGNUM
),
1657 (long) read_register (MACL_REGNUM
));
1659 printf_filtered (" SSR %08lx SPC %08lx DSR %08lx\n",
1660 (long) read_register (SSR_REGNUM
),
1661 (long) read_register (SPC_REGNUM
),
1662 (long) read_register (DSR_REGNUM
));
1665 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1666 (long) read_register (0), (long) read_register (1),
1667 (long) read_register (2), (long) read_register (3),
1668 (long) read_register (4), (long) read_register (5),
1669 (long) read_register (6), (long) read_register (7));
1670 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1671 (long) read_register (8), (long) read_register (9),
1672 (long) read_register (10), (long) read_register (11),
1673 (long) read_register (12), (long) read_register (13),
1674 (long) read_register (14), (long) read_register (15));
1677 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1678 (long) read_register (A0G_REGNUM
) & 0xff,
1679 (long) read_register (A0_REGNUM
), (long) read_register (M0_REGNUM
),
1680 (long) read_register (X0_REGNUM
), (long) read_register (Y0_REGNUM
),
1681 (long) read_register (RS_REGNUM
), (long) read_register (MOD_REGNUM
));
1682 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1683 (long) read_register (A1G_REGNUM
) & 0xff,
1684 (long) read_register (A1_REGNUM
),
1685 (long) read_register (M1_REGNUM
),
1686 (long) read_register (X1_REGNUM
),
1687 (long) read_register (Y1_REGNUM
),
1688 (long) read_register (RE_REGNUM
));
1692 sh4_show_regs (void)
1694 int pr
= read_register (FPSCR_REGNUM
) & 0x80000;
1695 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1696 paddr (read_register (PC_REGNUM
)),
1697 (long) read_register (SR_REGNUM
),
1698 (long) read_register (PR_REGNUM
),
1699 (long) read_register (MACH_REGNUM
));
1702 " GBR %08lx VBR %08lx MACL %08lx\n",
1703 (long) read_register (GBR_REGNUM
),
1704 (long) read_register (VBR_REGNUM
),
1705 (long) read_register (MACL_REGNUM
));
1707 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1708 (long) read_register (SSR_REGNUM
),
1709 (long) read_register (SPC_REGNUM
),
1710 (long) read_register (FPUL_REGNUM
),
1711 (long) read_register (FPSCR_REGNUM
));
1713 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1714 (long) read_register (0), (long) read_register (1),
1715 (long) read_register (2), (long) read_register (3),
1716 (long) read_register (4), (long) read_register (5),
1717 (long) read_register (6), (long) read_register (7));
1718 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1719 (long) read_register (8), (long) read_register (9),
1720 (long) read_register (10), (long) read_register (11),
1721 (long) read_register (12), (long) read_register (13),
1722 (long) read_register (14), (long) read_register (15));
1725 (pr
? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1726 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1727 (long) read_register (FP0_REGNUM
+ 0),
1728 (long) read_register (FP0_REGNUM
+ 1),
1729 (long) read_register (FP0_REGNUM
+ 2),
1730 (long) read_register (FP0_REGNUM
+ 3),
1731 (long) read_register (FP0_REGNUM
+ 4),
1732 (long) read_register (FP0_REGNUM
+ 5),
1733 (long) read_register (FP0_REGNUM
+ 6),
1734 (long) read_register (FP0_REGNUM
+ 7));
1736 (pr
? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1737 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1738 (long) read_register (FP0_REGNUM
+ 8),
1739 (long) read_register (FP0_REGNUM
+ 9),
1740 (long) read_register (FP0_REGNUM
+ 10),
1741 (long) read_register (FP0_REGNUM
+ 11),
1742 (long) read_register (FP0_REGNUM
+ 12),
1743 (long) read_register (FP0_REGNUM
+ 13),
1744 (long) read_register (FP0_REGNUM
+ 14),
1745 (long) read_register (FP0_REGNUM
+ 15));
1749 sh4_nofpu_show_regs (void)
1751 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1752 paddr (read_register (PC_REGNUM
)),
1753 (long) read_register (SR_REGNUM
),
1754 (long) read_register (PR_REGNUM
),
1755 (long) read_register (MACH_REGNUM
));
1758 " GBR %08lx VBR %08lx MACL %08lx\n",
1759 (long) read_register (GBR_REGNUM
),
1760 (long) read_register (VBR_REGNUM
),
1761 (long) read_register (MACL_REGNUM
));
1763 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1764 (long) read_register (SSR_REGNUM
),
1765 (long) read_register (SPC_REGNUM
),
1766 (long) read_register (FPUL_REGNUM
),
1767 (long) read_register (FPSCR_REGNUM
));
1769 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1770 (long) read_register (0), (long) read_register (1),
1771 (long) read_register (2), (long) read_register (3),
1772 (long) read_register (4), (long) read_register (5),
1773 (long) read_register (6), (long) read_register (7));
1774 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1775 (long) read_register (8), (long) read_register (9),
1776 (long) read_register (10), (long) read_register (11),
1777 (long) read_register (12), (long) read_register (13),
1778 (long) read_register (14), (long) read_register (15));
1782 sh_dsp_show_regs (void)
1785 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1786 paddr (read_register (PC_REGNUM
)),
1787 (long) read_register (SR_REGNUM
),
1788 (long) read_register (PR_REGNUM
),
1789 (long) read_register (MACH_REGNUM
));
1792 " GBR %08lx VBR %08lx DSR %08lx MACL %08lx\n",
1793 (long) read_register (GBR_REGNUM
),
1794 (long) read_register (VBR_REGNUM
),
1795 (long) read_register (DSR_REGNUM
),
1796 (long) read_register (MACL_REGNUM
));
1799 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1800 (long) read_register (0), (long) read_register (1),
1801 (long) read_register (2), (long) read_register (3),
1802 (long) read_register (4), (long) read_register (5),
1803 (long) read_register (6), (long) read_register (7));
1804 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1805 (long) read_register (8), (long) read_register (9),
1806 (long) read_register (10), (long) read_register (11),
1807 (long) read_register (12), (long) read_register (13),
1808 (long) read_register (14), (long) read_register (15));
1811 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1812 (long) read_register (A0G_REGNUM
) & 0xff,
1813 (long) read_register (A0_REGNUM
), (long) read_register (M0_REGNUM
),
1814 (long) read_register (X0_REGNUM
), (long) read_register (Y0_REGNUM
),
1815 (long) read_register (RS_REGNUM
), (long) read_register (MOD_REGNUM
));
1816 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1817 (long) read_register (A1G_REGNUM
) & 0xff,
1818 (long) read_register (A1_REGNUM
),
1819 (long) read_register (M1_REGNUM
),
1820 (long) read_register (X1_REGNUM
),
1821 (long) read_register (Y1_REGNUM
),
1822 (long) read_register (RE_REGNUM
));
1826 sh_show_regs_command (char *args
, int from_tty
)
1832 static struct type
*
1833 sh_sh2a_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1835 if ((reg_nr
>= FP0_REGNUM
1836 && (reg_nr
<= FP_LAST_REGNUM
)) || (reg_nr
== FPUL_REGNUM
))
1837 return builtin_type_float
;
1838 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
1839 return builtin_type_double
;
1841 return builtin_type_int
;
1844 /* Return the GDB type object for the "standard" data type
1845 of data in register N. */
1846 static struct type
*
1847 sh_sh3e_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1849 if ((reg_nr
>= FP0_REGNUM
1850 && (reg_nr
<= FP_LAST_REGNUM
)) || (reg_nr
== FPUL_REGNUM
))
1851 return builtin_type_float
;
1853 return builtin_type_int
;
1856 static struct type
*
1857 sh_sh4_build_float_register_type (int high
)
1861 temp
= create_range_type (NULL
, builtin_type_int
, 0, high
);
1862 return create_array_type (NULL
, builtin_type_float
, temp
);
1865 static struct type
*
1866 sh_sh4_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1868 if ((reg_nr
>= FP0_REGNUM
1869 && (reg_nr
<= FP_LAST_REGNUM
)) || (reg_nr
== FPUL_REGNUM
))
1870 return builtin_type_float
;
1871 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
1872 return builtin_type_double
;
1873 else if (reg_nr
>= FV0_REGNUM
&& reg_nr
<= FV_LAST_REGNUM
)
1874 return sh_sh4_build_float_register_type (3);
1876 return builtin_type_int
;
1879 static struct type
*
1880 sh_default_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1882 return builtin_type_int
;
1885 /* Is a register in a reggroup?
1886 The default code in reggroup.c doesn't identify system registers, some
1887 float registers or any of the vector registers.
1888 TODO: sh2a and dsp registers. */
1890 sh_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
1891 struct reggroup
*reggroup
)
1893 if (REGISTER_NAME (regnum
) == NULL
1894 || *REGISTER_NAME (regnum
) == '\0')
1897 if (reggroup
== float_reggroup
1898 && (regnum
== FPUL_REGNUM
1899 || regnum
== FPSCR_REGNUM
))
1902 if (regnum
>= FV0_REGNUM
&& regnum
<= FV_LAST_REGNUM
)
1904 if (reggroup
== vector_reggroup
|| reggroup
== float_reggroup
)
1906 if (reggroup
== general_reggroup
)
1910 if (regnum
== VBR_REGNUM
1911 || regnum
== SR_REGNUM
1912 || regnum
== FPSCR_REGNUM
1913 || regnum
== SSR_REGNUM
1914 || regnum
== SPC_REGNUM
)
1916 if (reggroup
== system_reggroup
)
1918 if (reggroup
== general_reggroup
)
1922 /* The default code can cope with any other registers. */
1923 return default_register_reggroup_p (gdbarch
, regnum
, reggroup
);
1926 /* On the sh4, the DRi pseudo registers are problematic if the target
1927 is little endian. When the user writes one of those registers, for
1928 instance with 'ser var $dr0=1', we want the double to be stored
1930 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1931 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1933 This corresponds to little endian byte order & big endian word
1934 order. However if we let gdb write the register w/o conversion, it
1935 will write fr0 and fr1 this way:
1936 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1937 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1938 because it will consider fr0 and fr1 as a single LE stretch of memory.
1940 To achieve what we want we must force gdb to store things in
1941 floatformat_ieee_double_littlebyte_bigword (which is defined in
1942 include/floatformat.h and libiberty/floatformat.c.
1944 In case the target is big endian, there is no problem, the
1945 raw bytes will look like:
1946 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1947 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1949 The other pseudo registers (the FVs) also don't pose a problem
1950 because they are stored as 4 individual FP elements. */
1953 sh_register_convert_to_virtual (int regnum
, struct type
*type
,
1954 char *from
, char *to
)
1956 if (regnum
>= DR0_REGNUM
&& regnum
<= DR_LAST_REGNUM
)
1959 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1961 store_typed_floating (to
, type
, val
);
1965 ("sh_register_convert_to_virtual called with non DR register number");
1969 sh_register_convert_to_raw (struct type
*type
, int regnum
,
1970 const void *from
, void *to
)
1972 if (regnum
>= DR0_REGNUM
&& regnum
<= DR_LAST_REGNUM
)
1974 DOUBLEST val
= extract_typed_floating (from
, type
);
1975 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1979 error (_("sh_register_convert_to_raw called with non DR register number"));
1982 /* For vectors of 4 floating point registers. */
1984 fv_reg_base_num (int fv_regnum
)
1988 fp_regnum
= FP0_REGNUM
+ (fv_regnum
- FV0_REGNUM
) * 4;
1992 /* For double precision floating point registers, i.e 2 fp regs.*/
1994 dr_reg_base_num (int dr_regnum
)
1998 fp_regnum
= FP0_REGNUM
+ (dr_regnum
- DR0_REGNUM
) * 2;
2003 sh_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2004 int reg_nr
, gdb_byte
*buffer
)
2006 int base_regnum
, portion
;
2007 char temp_buffer
[MAX_REGISTER_SIZE
];
2009 if (reg_nr
== PSEUDO_BANK_REGNUM
)
2010 regcache_raw_read (regcache
, BANK_REGNUM
, buffer
);
2012 if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
2014 base_regnum
= dr_reg_base_num (reg_nr
);
2016 /* Build the value in the provided buffer. */
2017 /* Read the real regs for which this one is an alias. */
2018 for (portion
= 0; portion
< 2; portion
++)
2019 regcache_raw_read (regcache
, base_regnum
+ portion
,
2021 + register_size (gdbarch
,
2022 base_regnum
) * portion
));
2023 /* We must pay attention to the endiannes. */
2024 sh_register_convert_to_virtual (reg_nr
,
2025 register_type (gdbarch
, reg_nr
),
2026 temp_buffer
, buffer
);
2028 else if (reg_nr
>= FV0_REGNUM
&& reg_nr
<= FV_LAST_REGNUM
)
2030 base_regnum
= fv_reg_base_num (reg_nr
);
2032 /* Read the real regs for which this one is an alias. */
2033 for (portion
= 0; portion
< 4; portion
++)
2034 regcache_raw_read (regcache
, base_regnum
+ portion
,
2036 + register_size (gdbarch
,
2037 base_regnum
) * portion
));
2042 sh_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2043 int reg_nr
, const gdb_byte
*buffer
)
2045 int base_regnum
, portion
;
2046 char temp_buffer
[MAX_REGISTER_SIZE
];
2048 if (reg_nr
== PSEUDO_BANK_REGNUM
)
2050 /* When the bank register is written to, the whole register bank
2051 is switched and all values in the bank registers must be read
2052 from the target/sim again. We're just invalidating the regcache
2053 so that a re-read happens next time it's necessary. */
2056 regcache_raw_write (regcache
, BANK_REGNUM
, buffer
);
2057 for (bregnum
= R0_BANK0_REGNUM
; bregnum
< MACLB_REGNUM
; ++bregnum
)
2058 set_register_cached (bregnum
, 0);
2060 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
2062 base_regnum
= dr_reg_base_num (reg_nr
);
2064 /* We must pay attention to the endiannes. */
2065 sh_register_convert_to_raw (register_type (gdbarch
, reg_nr
),
2066 reg_nr
, buffer
, temp_buffer
);
2068 /* Write the real regs for which this one is an alias. */
2069 for (portion
= 0; portion
< 2; portion
++)
2070 regcache_raw_write (regcache
, base_regnum
+ portion
,
2072 + register_size (gdbarch
,
2073 base_regnum
) * portion
));
2075 else if (reg_nr
>= FV0_REGNUM
&& reg_nr
<= FV_LAST_REGNUM
)
2077 base_regnum
= fv_reg_base_num (reg_nr
);
2079 /* Write the real regs for which this one is an alias. */
2080 for (portion
= 0; portion
< 4; portion
++)
2081 regcache_raw_write (regcache
, base_regnum
+ portion
,
2083 + register_size (gdbarch
,
2084 base_regnum
) * portion
));
2089 sh_dsp_register_sim_regno (int nr
)
2091 if (legacy_register_sim_regno (nr
) < 0)
2092 return legacy_register_sim_regno (nr
);
2093 if (nr
>= DSR_REGNUM
&& nr
<= Y1_REGNUM
)
2094 return nr
- DSR_REGNUM
+ SIM_SH_DSR_REGNUM
;
2095 if (nr
== MOD_REGNUM
)
2096 return SIM_SH_MOD_REGNUM
;
2097 if (nr
== RS_REGNUM
)
2098 return SIM_SH_RS_REGNUM
;
2099 if (nr
== RE_REGNUM
)
2100 return SIM_SH_RE_REGNUM
;
2101 if (nr
>= DSP_R0_BANK_REGNUM
&& nr
<= DSP_R7_BANK_REGNUM
)
2102 return nr
- DSP_R0_BANK_REGNUM
+ SIM_SH_R0_BANK_REGNUM
;
2107 sh_sh2a_register_sim_regno (int nr
)
2112 return SIM_SH_TBR_REGNUM
;
2114 return SIM_SH_IBNR_REGNUM
;
2116 return SIM_SH_IBCR_REGNUM
;
2118 return SIM_SH_BANK_REGNUM
;
2120 return SIM_SH_BANK_MACL_REGNUM
;
2122 return SIM_SH_BANK_GBR_REGNUM
;
2124 return SIM_SH_BANK_PR_REGNUM
;
2126 return SIM_SH_BANK_IVN_REGNUM
;
2128 return SIM_SH_BANK_MACH_REGNUM
;
2132 return legacy_register_sim_regno (nr
);
2135 /* Set up the register unwinding such that call-clobbered registers are
2136 not displayed in frames >0 because the true value is not certain.
2137 The 'undefined' registers will show up as 'not available' unless the
2140 This function is currently set up for SH4 and compatible only. */
2143 sh_dwarf2_frame_init_reg (struct gdbarch
*gdbarch
, int regnum
,
2144 struct dwarf2_frame_state_reg
*reg
,
2145 struct frame_info
*next_frame
)
2147 /* Mark the PC as the destination for the return address. */
2148 if (regnum
== PC_REGNUM
)
2149 reg
->how
= DWARF2_FRAME_REG_RA
;
2151 /* Mark the stack pointer as the call frame address. */
2152 else if (regnum
== SP_REGNUM
)
2153 reg
->how
= DWARF2_FRAME_REG_CFA
;
2155 /* The above was taken from the default init_reg in dwarf2-frame.c
2156 while the below is SH specific. */
2158 /* Caller save registers. */
2159 else if ((regnum
>= R0_REGNUM
&& regnum
<= R0_REGNUM
+7)
2160 || (regnum
>= FR0_REGNUM
&& regnum
<= FR0_REGNUM
+11)
2161 || (regnum
>= DR0_REGNUM
&& regnum
<= DR0_REGNUM
+5)
2162 || (regnum
>= FV0_REGNUM
&& regnum
<= FV0_REGNUM
+2)
2163 || (regnum
== MACH_REGNUM
)
2164 || (regnum
== MACL_REGNUM
)
2165 || (regnum
== FPUL_REGNUM
)
2166 || (regnum
== SR_REGNUM
))
2167 reg
->how
= DWARF2_FRAME_REG_UNDEFINED
;
2169 /* Callee save registers. */
2170 else if ((regnum
>= R0_REGNUM
+8 && regnum
<= R0_REGNUM
+15)
2171 || (regnum
>= FR0_REGNUM
+12 && regnum
<= FR0_REGNUM
+15)
2172 || (regnum
>= DR0_REGNUM
+6 && regnum
<= DR0_REGNUM
+8)
2173 || (regnum
== FV0_REGNUM
+3))
2174 reg
->how
= DWARF2_FRAME_REG_SAME_VALUE
;
2176 /* Other registers. These are not in the ABI and may or may not
2177 mean anything in frames >0 so don't show them. */
2178 else if ((regnum
>= R0_BANK0_REGNUM
&& regnum
<= R0_BANK0_REGNUM
+15)
2179 || (regnum
== GBR_REGNUM
)
2180 || (regnum
== VBR_REGNUM
)
2181 || (regnum
== FPSCR_REGNUM
)
2182 || (regnum
== SSR_REGNUM
)
2183 || (regnum
== SPC_REGNUM
))
2184 reg
->how
= DWARF2_FRAME_REG_UNDEFINED
;
2187 static struct sh_frame_cache
*
2188 sh_alloc_frame_cache (void)
2190 struct sh_frame_cache
*cache
;
2193 cache
= FRAME_OBSTACK_ZALLOC (struct sh_frame_cache
);
2197 cache
->saved_sp
= 0;
2198 cache
->sp_offset
= 0;
2201 /* Frameless until proven otherwise. */
2204 /* Saved registers. We initialize these to -1 since zero is a valid
2205 offset (that's where fp is supposed to be stored). */
2206 for (i
= 0; i
< SH_NUM_REGS
; i
++)
2208 cache
->saved_regs
[i
] = -1;
2214 static struct sh_frame_cache
*
2215 sh_frame_cache (struct frame_info
*next_frame
, void **this_cache
)
2217 struct sh_frame_cache
*cache
;
2218 CORE_ADDR current_pc
;
2224 cache
= sh_alloc_frame_cache ();
2225 *this_cache
= cache
;
2227 /* In principle, for normal frames, fp holds the frame pointer,
2228 which holds the base address for the current stack frame.
2229 However, for functions that don't need it, the frame pointer is
2230 optional. For these "frameless" functions the frame pointer is
2231 actually the frame pointer of the calling frame. */
2232 cache
->base
= frame_unwind_register_unsigned (next_frame
, FP_REGNUM
);
2233 if (cache
->base
== 0)
2236 cache
->pc
= frame_func_unwind (next_frame
, NORMAL_FRAME
);
2237 current_pc
= frame_pc_unwind (next_frame
);
2239 sh_analyze_prologue (cache
->pc
, current_pc
, cache
);
2241 if (!cache
->uses_fp
)
2243 /* We didn't find a valid frame, which means that CACHE->base
2244 currently holds the frame pointer for our calling frame. If
2245 we're at the start of a function, or somewhere half-way its
2246 prologue, the function's frame probably hasn't been fully
2247 setup yet. Try to reconstruct the base address for the stack
2248 frame by looking at the stack pointer. For truly "frameless"
2249 functions this might work too. */
2250 cache
->base
= frame_unwind_register_unsigned (next_frame
, SP_REGNUM
);
2253 /* Now that we have the base address for the stack frame we can
2254 calculate the value of sp in the calling frame. */
2255 cache
->saved_sp
= cache
->base
+ cache
->sp_offset
;
2257 /* Adjust all the saved registers such that they contain addresses
2258 instead of offsets. */
2259 for (i
= 0; i
< SH_NUM_REGS
; i
++)
2260 if (cache
->saved_regs
[i
] != -1)
2261 cache
->saved_regs
[i
] = cache
->saved_sp
- cache
->saved_regs
[i
] - 4;
2267 sh_frame_prev_register (struct frame_info
*next_frame
, void **this_cache
,
2268 int regnum
, int *optimizedp
,
2269 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
2270 int *realnump
, gdb_byte
*valuep
)
2272 struct sh_frame_cache
*cache
= sh_frame_cache (next_frame
, this_cache
);
2274 gdb_assert (regnum
>= 0);
2276 if (regnum
== SP_REGNUM
&& cache
->saved_sp
)
2284 /* Store the value. */
2285 store_unsigned_integer (valuep
, 4, cache
->saved_sp
);
2290 /* The PC of the previous frame is stored in the PR register of
2291 the current frame. Frob regnum so that we pull the value from
2292 the correct place. */
2293 if (regnum
== PC_REGNUM
)
2296 if (regnum
< SH_NUM_REGS
&& cache
->saved_regs
[regnum
] != -1)
2299 *lvalp
= lval_memory
;
2300 *addrp
= cache
->saved_regs
[regnum
];
2304 /* Read the value in from memory. */
2305 read_memory (*addrp
, valuep
,
2306 register_size (current_gdbarch
, regnum
));
2312 *lvalp
= lval_register
;
2316 frame_unwind_register (next_frame
, (*realnump
), valuep
);
2320 sh_frame_this_id (struct frame_info
*next_frame
, void **this_cache
,
2321 struct frame_id
*this_id
)
2323 struct sh_frame_cache
*cache
= sh_frame_cache (next_frame
, this_cache
);
2325 /* This marks the outermost frame. */
2326 if (cache
->base
== 0)
2329 *this_id
= frame_id_build (cache
->saved_sp
, cache
->pc
);
2332 static const struct frame_unwind sh_frame_unwind
= {
2335 sh_frame_prev_register
2338 static const struct frame_unwind
*
2339 sh_frame_sniffer (struct frame_info
*next_frame
)
2341 return &sh_frame_unwind
;
2345 sh_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2347 return frame_unwind_register_unsigned (next_frame
, SP_REGNUM
);
2351 sh_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2353 return frame_unwind_register_unsigned (next_frame
, PC_REGNUM
);
2356 static struct frame_id
2357 sh_unwind_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2359 return frame_id_build (sh_unwind_sp (gdbarch
, next_frame
),
2360 frame_pc_unwind (next_frame
));
2364 sh_frame_base_address (struct frame_info
*next_frame
, void **this_cache
)
2366 struct sh_frame_cache
*cache
= sh_frame_cache (next_frame
, this_cache
);
2371 static const struct frame_base sh_frame_base
= {
2373 sh_frame_base_address
,
2374 sh_frame_base_address
,
2375 sh_frame_base_address
2378 /* The epilogue is defined here as the area at the end of a function,
2379 either on the `ret' instruction itself or after an instruction which
2380 destroys the function's stack frame. */
2382 sh_in_function_epilogue_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2384 CORE_ADDR func_addr
= 0, func_end
= 0;
2386 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
2389 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2390 for a nop and some fixed data (e.g. big offsets) which are
2391 unfortunately also treated as part of the function (which
2392 means, they are below func_end. */
2393 CORE_ADDR addr
= func_end
- 28;
2394 if (addr
< func_addr
+ 4)
2395 addr
= func_addr
+ 4;
2399 /* First search forward until hitting an rts. */
2400 while (addr
< func_end
2401 && !IS_RTS (read_memory_unsigned_integer (addr
, 2)))
2403 if (addr
>= func_end
)
2406 /* At this point we should find a mov.l @r15+,r14 instruction,
2407 either before or after the rts. If not, then the function has
2408 probably no "normal" epilogue and we bail out here. */
2409 inst
= read_memory_unsigned_integer (addr
- 2, 2);
2410 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr
- 2, 2)))
2412 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr
+ 2, 2)))
2415 inst
= read_memory_unsigned_integer (addr
- 2, 2);
2417 /* Step over possible lds.l @r15+,macl. */
2418 if (IS_MACL_LDS (inst
))
2421 inst
= read_memory_unsigned_integer (addr
- 2, 2);
2424 /* Step over possible lds.l @r15+,pr. */
2428 inst
= read_memory_unsigned_integer (addr
- 2, 2);
2431 /* Step over possible mov r14,r15. */
2432 if (IS_MOV_FP_SP (inst
))
2435 inst
= read_memory_unsigned_integer (addr
- 2, 2);
2438 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2440 while (addr
> func_addr
+ 4
2441 && (IS_ADD_REG_TO_FP (inst
) || IS_ADD_IMM_FP (inst
)))
2444 inst
= read_memory_unsigned_integer (addr
- 2, 2);
2447 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2448 That's allowed for the epilogue. */
2449 if ((gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_sh2a
2450 || gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_sh2a_nofpu
)
2451 && addr
> func_addr
+ 6
2452 && IS_MOVI20 (read_memory_unsigned_integer (addr
- 4, 2)))
2462 static struct gdbarch
*
2463 sh_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2465 struct gdbarch
*gdbarch
;
2467 sh_show_regs
= sh_generic_show_regs
;
2468 switch (info
.bfd_arch_info
->mach
)
2471 sh_show_regs
= sh2e_show_regs
;
2474 sh_show_regs
= sh2a_show_regs
;
2476 case bfd_mach_sh2a_nofpu
:
2477 sh_show_regs
= sh2a_nofpu_show_regs
;
2479 case bfd_mach_sh_dsp
:
2480 sh_show_regs
= sh_dsp_show_regs
;
2484 sh_show_regs
= sh3_show_regs
;
2488 sh_show_regs
= sh3e_show_regs
;
2491 case bfd_mach_sh3_dsp
:
2492 case bfd_mach_sh4al_dsp
:
2493 sh_show_regs
= sh3_dsp_show_regs
;
2498 sh_show_regs
= sh4_show_regs
;
2501 case bfd_mach_sh4_nofpu
:
2502 case bfd_mach_sh4a_nofpu
:
2503 sh_show_regs
= sh4_nofpu_show_regs
;
2507 sh_show_regs
= sh64_show_regs
;
2508 /* SH5 is handled entirely in sh64-tdep.c */
2509 return sh64_gdbarch_init (info
, arches
);
2512 /* If there is already a candidate, use it. */
2513 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
2515 return arches
->gdbarch
;
2517 /* None found, create a new architecture from the information
2519 gdbarch
= gdbarch_alloc (&info
, NULL
);
2521 set_gdbarch_short_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
2522 set_gdbarch_int_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2523 set_gdbarch_long_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2524 set_gdbarch_long_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2525 set_gdbarch_float_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2526 set_gdbarch_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2527 set_gdbarch_long_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2528 set_gdbarch_ptr_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2530 set_gdbarch_num_regs (gdbarch
, SH_NUM_REGS
);
2531 set_gdbarch_sp_regnum (gdbarch
, 15);
2532 set_gdbarch_pc_regnum (gdbarch
, 16);
2533 set_gdbarch_fp0_regnum (gdbarch
, -1);
2534 set_gdbarch_num_pseudo_regs (gdbarch
, 0);
2536 set_gdbarch_register_type (gdbarch
, sh_default_register_type
);
2537 set_gdbarch_register_reggroup_p (gdbarch
, sh_register_reggroup_p
);
2539 set_gdbarch_breakpoint_from_pc (gdbarch
, sh_breakpoint_from_pc
);
2541 set_gdbarch_print_insn (gdbarch
, gdb_print_insn_sh
);
2542 set_gdbarch_register_sim_regno (gdbarch
, legacy_register_sim_regno
);
2544 set_gdbarch_write_pc (gdbarch
, generic_target_write_pc
);
2546 set_gdbarch_return_value (gdbarch
, sh_return_value_nofpu
);
2547 set_gdbarch_deprecated_extract_struct_value_address (gdbarch
,
2548 sh_extract_struct_value_address
);
2550 set_gdbarch_skip_prologue (gdbarch
, sh_skip_prologue
);
2551 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
2553 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_nofpu
);
2555 set_gdbarch_believe_pcc_promotion (gdbarch
, 1);
2557 set_gdbarch_frame_align (gdbarch
, sh_frame_align
);
2558 set_gdbarch_unwind_sp (gdbarch
, sh_unwind_sp
);
2559 set_gdbarch_unwind_pc (gdbarch
, sh_unwind_pc
);
2560 set_gdbarch_unwind_dummy_id (gdbarch
, sh_unwind_dummy_id
);
2561 frame_base_set_default (gdbarch
, &sh_frame_base
);
2563 set_gdbarch_in_function_epilogue_p (gdbarch
, sh_in_function_epilogue_p
);
2565 dwarf2_frame_set_init_reg (gdbarch
, sh_dwarf2_frame_init_reg
);
2567 switch (info
.bfd_arch_info
->mach
)
2570 set_gdbarch_register_name (gdbarch
, sh_sh_register_name
);
2574 set_gdbarch_register_name (gdbarch
, sh_sh_register_name
);
2578 /* doubles on sh2e and sh3e are actually 4 byte. */
2579 set_gdbarch_double_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2581 set_gdbarch_register_name (gdbarch
, sh_sh2e_register_name
);
2582 set_gdbarch_register_type (gdbarch
, sh_sh3e_register_type
);
2583 set_gdbarch_fp0_regnum (gdbarch
, 25);
2584 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2585 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2589 set_gdbarch_register_name (gdbarch
, sh_sh2a_register_name
);
2590 set_gdbarch_register_type (gdbarch
, sh_sh2a_register_type
);
2591 set_gdbarch_register_sim_regno (gdbarch
, sh_sh2a_register_sim_regno
);
2593 set_gdbarch_fp0_regnum (gdbarch
, 25);
2594 set_gdbarch_num_pseudo_regs (gdbarch
, 9);
2595 set_gdbarch_pseudo_register_read (gdbarch
, sh_pseudo_register_read
);
2596 set_gdbarch_pseudo_register_write (gdbarch
, sh_pseudo_register_write
);
2597 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2598 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2601 case bfd_mach_sh2a_nofpu
:
2602 set_gdbarch_register_name (gdbarch
, sh_sh2a_nofpu_register_name
);
2603 set_gdbarch_register_sim_regno (gdbarch
, sh_sh2a_register_sim_regno
);
2605 set_gdbarch_num_pseudo_regs (gdbarch
, 1);
2606 set_gdbarch_pseudo_register_read (gdbarch
, sh_pseudo_register_read
);
2607 set_gdbarch_pseudo_register_write (gdbarch
, sh_pseudo_register_write
);
2610 case bfd_mach_sh_dsp
:
2611 set_gdbarch_register_name (gdbarch
, sh_sh_dsp_register_name
);
2612 set_gdbarch_register_sim_regno (gdbarch
, sh_dsp_register_sim_regno
);
2616 case bfd_mach_sh3_nommu
:
2617 case bfd_mach_sh2a_nofpu_or_sh3_nommu
:
2618 set_gdbarch_register_name (gdbarch
, sh_sh3_register_name
);
2622 case bfd_mach_sh2a_or_sh3e
:
2623 /* doubles on sh2e and sh3e are actually 4 byte. */
2624 set_gdbarch_double_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2626 set_gdbarch_register_name (gdbarch
, sh_sh3e_register_name
);
2627 set_gdbarch_register_type (gdbarch
, sh_sh3e_register_type
);
2628 set_gdbarch_fp0_regnum (gdbarch
, 25);
2629 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2630 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2633 case bfd_mach_sh3_dsp
:
2634 set_gdbarch_register_name (gdbarch
, sh_sh3_dsp_register_name
);
2635 set_gdbarch_register_sim_regno (gdbarch
, sh_dsp_register_sim_regno
);
2640 set_gdbarch_register_name (gdbarch
, sh_sh4_register_name
);
2641 set_gdbarch_register_type (gdbarch
, sh_sh4_register_type
);
2642 set_gdbarch_fp0_regnum (gdbarch
, 25);
2643 set_gdbarch_num_pseudo_regs (gdbarch
, 13);
2644 set_gdbarch_pseudo_register_read (gdbarch
, sh_pseudo_register_read
);
2645 set_gdbarch_pseudo_register_write (gdbarch
, sh_pseudo_register_write
);
2646 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2647 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2650 case bfd_mach_sh4_nofpu
:
2651 case bfd_mach_sh4a_nofpu
:
2652 case bfd_mach_sh4_nommu_nofpu
:
2653 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu
:
2654 case bfd_mach_sh2a_or_sh4
:
2655 set_gdbarch_register_name (gdbarch
, sh_sh4_nofpu_register_name
);
2658 case bfd_mach_sh4al_dsp
:
2659 set_gdbarch_register_name (gdbarch
, sh_sh4al_dsp_register_name
);
2660 set_gdbarch_register_sim_regno (gdbarch
, sh_dsp_register_sim_regno
);
2664 set_gdbarch_register_name (gdbarch
, sh_sh_register_name
);
2668 /* Hook in ABI-specific overrides, if they have been registered. */
2669 gdbarch_init_osabi (info
, gdbarch
);
2671 frame_unwind_append_sniffer (gdbarch
, dwarf2_frame_sniffer
);
2672 frame_unwind_append_sniffer (gdbarch
, sh_frame_sniffer
);
2677 extern initialize_file_ftype _initialize_sh_tdep
; /* -Wmissing-prototypes */
2680 _initialize_sh_tdep (void)
2682 struct cmd_list_element
*c
;
2684 gdbarch_register (bfd_arch_sh
, sh_gdbarch_init
, NULL
);
2686 add_com ("regs", class_vars
, sh_show_regs_command
, _("Print all registers"));