Add gdbarch callback to provide formats for debug info float types
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "floatformat.h"
37 #include "regcache.h"
38 #include "doublest.h"
39 #include "osabi.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "objfiles.h"
43
44 #include "sh-tdep.h"
45 #include "sh64-tdep.h"
46
47 #include "elf-bfd.h"
48 #include "solib-svr4.h"
49
50 /* sh flags */
51 #include "elf/sh.h"
52 #include "dwarf2.h"
53 /* registers numbers shared with the simulator. */
54 #include "gdb/sim-sh.h"
55
56 /* List of "set sh ..." and "show sh ..." commands. */
57 static struct cmd_list_element *setshcmdlist = NULL;
58 static struct cmd_list_element *showshcmdlist = NULL;
59
60 static const char sh_cc_gcc[] = "gcc";
61 static const char sh_cc_renesas[] = "renesas";
62 static const char *const sh_cc_enum[] = {
63 sh_cc_gcc,
64 sh_cc_renesas,
65 NULL
66 };
67
68 static const char *sh_active_calling_convention = sh_cc_gcc;
69
70 #define SH_NUM_REGS 67
71
72 struct sh_frame_cache
73 {
74 /* Base address. */
75 CORE_ADDR base;
76 LONGEST sp_offset;
77 CORE_ADDR pc;
78
79 /* Flag showing that a frame has been created in the prologue code. */
80 int uses_fp;
81
82 /* Saved registers. */
83 CORE_ADDR saved_regs[SH_NUM_REGS];
84 CORE_ADDR saved_sp;
85 };
86
87 static int
88 sh_is_renesas_calling_convention (struct type *func_type)
89 {
90 int val = 0;
91
92 if (func_type)
93 {
94 func_type = check_typedef (func_type);
95
96 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
97 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
98
99 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
100 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
101 val = 1;
102 }
103
104 if (sh_active_calling_convention == sh_cc_renesas)
105 val = 1;
106
107 return val;
108 }
109
110 static const char *
111 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
112 {
113 static char *register_names[] = {
114 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
115 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
116 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
117 "", "",
118 "", "", "", "", "", "", "", "",
119 "", "", "", "", "", "", "", "",
120 "", "",
121 "", "", "", "", "", "", "", "",
122 "", "", "", "", "", "", "", "",
123 "", "", "", "", "", "", "", "",
124 };
125 if (reg_nr < 0)
126 return NULL;
127 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
128 return NULL;
129 return register_names[reg_nr];
130 }
131
132 static const char *
133 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
134 {
135 static char *register_names[] = {
136 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
137 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
138 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
139 "", "",
140 "", "", "", "", "", "", "", "",
141 "", "", "", "", "", "", "", "",
142 "ssr", "spc",
143 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
144 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
145 "", "", "", "", "", "", "", "",
146 };
147 if (reg_nr < 0)
148 return NULL;
149 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
150 return NULL;
151 return register_names[reg_nr];
152 }
153
154 static const char *
155 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
156 {
157 static char *register_names[] = {
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
161 "fpul", "fpscr",
162 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
163 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
164 "ssr", "spc",
165 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
166 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
167 "", "", "", "", "", "", "", "",
168 };
169 if (reg_nr < 0)
170 return NULL;
171 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
172 return NULL;
173 return register_names[reg_nr];
174 }
175
176 static const char *
177 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
178 {
179 static char *register_names[] = {
180 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
181 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
182 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
183 "fpul", "fpscr",
184 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
185 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
186 "", "",
187 "", "", "", "", "", "", "", "",
188 "", "", "", "", "", "", "", "",
189 "", "", "", "", "", "", "", "",
190 };
191 if (reg_nr < 0)
192 return NULL;
193 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
194 return NULL;
195 return register_names[reg_nr];
196 }
197
198 static const char *
199 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
200 {
201 static char *register_names[] = {
202 /* general registers 0-15 */
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
205 /* 16 - 22 */
206 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
207 /* 23, 24 */
208 "fpul", "fpscr",
209 /* floating point registers 25 - 40 */
210 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
211 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
212 /* 41, 42 */
213 "", "",
214 /* 43 - 62. Banked registers. The bank number used is determined by
215 the bank register (63). */
216 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
217 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
218 "machb", "ivnb", "prb", "gbrb", "maclb",
219 /* 63: register bank number, not a real register but used to
220 communicate the register bank currently get/set. This register
221 is hidden to the user, who manipulates it using the pseudo
222 register called "bank" (67). See below. */
223 "",
224 /* 64 - 66 */
225 "ibcr", "ibnr", "tbr",
226 /* 67: register bank number, the user visible pseudo register. */
227 "bank",
228 /* double precision (pseudo) 68 - 75 */
229 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
230 };
231 if (reg_nr < 0)
232 return NULL;
233 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
234 return NULL;
235 return register_names[reg_nr];
236 }
237
238 static const char *
239 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
240 {
241 static char *register_names[] = {
242 /* general registers 0-15 */
243 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
244 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
245 /* 16 - 22 */
246 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
247 /* 23, 24 */
248 "", "",
249 /* floating point registers 25 - 40 */
250 "", "", "", "", "", "", "", "",
251 "", "", "", "", "", "", "", "",
252 /* 41, 42 */
253 "", "",
254 /* 43 - 62. Banked registers. The bank number used is determined by
255 the bank register (63). */
256 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
257 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
258 "machb", "ivnb", "prb", "gbrb", "maclb",
259 /* 63: register bank number, not a real register but used to
260 communicate the register bank currently get/set. This register
261 is hidden to the user, who manipulates it using the pseudo
262 register called "bank" (67). See below. */
263 "",
264 /* 64 - 66 */
265 "ibcr", "ibnr", "tbr",
266 /* 67: register bank number, the user visible pseudo register. */
267 "bank",
268 /* double precision (pseudo) 68 - 75 */
269 "", "", "", "", "", "", "", "",
270 };
271 if (reg_nr < 0)
272 return NULL;
273 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
274 return NULL;
275 return register_names[reg_nr];
276 }
277
278 static const char *
279 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
280 {
281 static char *register_names[] = {
282 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
283 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
284 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
285 "", "dsr",
286 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
287 "y0", "y1", "", "", "", "", "", "mod",
288 "", "",
289 "rs", "re", "", "", "", "", "", "",
290 "", "", "", "", "", "", "", "",
291 "", "", "", "", "", "", "", "",
292 };
293 if (reg_nr < 0)
294 return NULL;
295 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
296 return NULL;
297 return register_names[reg_nr];
298 }
299
300 static const char *
301 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
302 {
303 static char *register_names[] = {
304 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
305 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
306 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
307 "", "dsr",
308 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
309 "y0", "y1", "", "", "", "", "", "mod",
310 "ssr", "spc",
311 "rs", "re", "", "", "", "", "", "",
312 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
313 "", "", "", "", "", "", "", "",
314 "", "", "", "", "", "", "", "",
315 };
316 if (reg_nr < 0)
317 return NULL;
318 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
319 return NULL;
320 return register_names[reg_nr];
321 }
322
323 static const char *
324 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
325 {
326 static char *register_names[] = {
327 /* general registers 0-15 */
328 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
329 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
330 /* 16 - 22 */
331 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
332 /* 23, 24 */
333 "fpul", "fpscr",
334 /* floating point registers 25 - 40 */
335 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
336 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
337 /* 41, 42 */
338 "ssr", "spc",
339 /* bank 0 43 - 50 */
340 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
341 /* bank 1 51 - 58 */
342 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
343 /* 59 - 66 */
344 "", "", "", "", "", "", "", "",
345 /* pseudo bank register. */
346 "",
347 /* double precision (pseudo) 68 - 75 */
348 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
349 /* vectors (pseudo) 76 - 79 */
350 "fv0", "fv4", "fv8", "fv12",
351 /* FIXME: missing XF */
352 /* FIXME: missing XD */
353 };
354 if (reg_nr < 0)
355 return NULL;
356 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
357 return NULL;
358 return register_names[reg_nr];
359 }
360
361 static const char *
362 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
363 {
364 static char *register_names[] = {
365 /* general registers 0-15 */
366 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
367 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
368 /* 16 - 22 */
369 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
370 /* 23, 24 */
371 "", "",
372 /* floating point registers 25 - 40 -- not for nofpu target */
373 "", "", "", "", "", "", "", "",
374 "", "", "", "", "", "", "", "",
375 /* 41, 42 */
376 "ssr", "spc",
377 /* bank 0 43 - 50 */
378 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
379 /* bank 1 51 - 58 */
380 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
381 /* 59 - 66 */
382 "", "", "", "", "", "", "", "",
383 /* pseudo bank register. */
384 "",
385 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
386 "", "", "", "", "", "", "", "",
387 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
388 "", "", "", "",
389 };
390 if (reg_nr < 0)
391 return NULL;
392 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
393 return NULL;
394 return register_names[reg_nr];
395 }
396
397 static const char *
398 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
399 {
400 static char *register_names[] = {
401 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
402 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
403 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
404 "", "dsr",
405 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
406 "y0", "y1", "", "", "", "", "", "mod",
407 "ssr", "spc",
408 "rs", "re", "", "", "", "", "", "",
409 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
412 };
413 if (reg_nr < 0)
414 return NULL;
415 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
416 return NULL;
417 return register_names[reg_nr];
418 }
419
420 static const unsigned char *
421 sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
422 {
423 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
424 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
425
426 /* For remote stub targets, trapa #20 is used. */
427 if (strcmp (target_shortname, "remote") == 0)
428 {
429 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
430 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
431
432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
433 {
434 *lenptr = sizeof (big_remote_breakpoint);
435 return big_remote_breakpoint;
436 }
437 else
438 {
439 *lenptr = sizeof (little_remote_breakpoint);
440 return little_remote_breakpoint;
441 }
442 }
443
444 *lenptr = sizeof (breakpoint);
445 return breakpoint;
446 }
447
448 /* Prologue looks like
449 mov.l r14,@-r15
450 sts.l pr,@-r15
451 mov.l <regs>,@-r15
452 sub <room_for_loca_vars>,r15
453 mov r15,r14
454
455 Actually it can be more complicated than this but that's it, basically. */
456
457 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
458 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
459
460 /* JSR @Rm 0100mmmm00001011 */
461 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
462
463 /* STS.L PR,@-r15 0100111100100010
464 r15-4-->r15, PR-->(r15) */
465 #define IS_STS(x) ((x) == 0x4f22)
466
467 /* STS.L MACL,@-r15 0100111100010010
468 r15-4-->r15, MACL-->(r15) */
469 #define IS_MACL_STS(x) ((x) == 0x4f12)
470
471 /* MOV.L Rm,@-r15 00101111mmmm0110
472 r15-4-->r15, Rm-->(R15) */
473 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
474
475 /* MOV r15,r14 0110111011110011
476 r15-->r14 */
477 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
478
479 /* ADD #imm,r15 01111111iiiiiiii
480 r15+imm-->r15 */
481 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
482
483 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
484 #define IS_SHLL_R3(x) ((x) == 0x4300)
485
486 /* ADD r3,r15 0011111100111100
487 r15+r3-->r15 */
488 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
489
490 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
491 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
492 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
493 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
494 make this entirely clear. */
495 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
496 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
497
498 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
499 #define IS_MOV_ARG_TO_REG(x) \
500 (((x) & 0xf00f) == 0x6003 && \
501 ((x) & 0x00f0) >= 0x0040 && \
502 ((x) & 0x00f0) <= 0x0070)
503 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
504 #define IS_MOV_ARG_TO_IND_R14(x) \
505 (((x) & 0xff0f) == 0x2e02 && \
506 ((x) & 0x00f0) >= 0x0040 && \
507 ((x) & 0x00f0) <= 0x0070)
508 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
509 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
510 (((x) & 0xff00) == 0x1e00 && \
511 ((x) & 0x00f0) >= 0x0040 && \
512 ((x) & 0x00f0) <= 0x0070)
513
514 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
515 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
516 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
517 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
518 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
519 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
520 /* SUB Rn,R15 00111111nnnn1000 */
521 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
522
523 #define FPSCR_SZ (1 << 20)
524
525 /* The following instructions are used for epilogue testing. */
526 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
527 #define IS_RTS(x) ((x) == 0x000b)
528 #define IS_LDS(x) ((x) == 0x4f26)
529 #define IS_MACL_LDS(x) ((x) == 0x4f16)
530 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
531 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
532 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
533
534 static CORE_ADDR
535 sh_analyze_prologue (struct gdbarch *gdbarch,
536 CORE_ADDR pc, CORE_ADDR limit_pc,
537 struct sh_frame_cache *cache, ULONGEST fpscr)
538 {
539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
540 ULONGEST inst;
541 int offset;
542 int sav_offset = 0;
543 int r3_val = 0;
544 int reg, sav_reg = -1;
545
546 cache->uses_fp = 0;
547 for (; pc < limit_pc; pc += 2)
548 {
549 inst = read_memory_unsigned_integer (pc, 2, byte_order);
550 /* See where the registers will be saved to. */
551 if (IS_PUSH (inst))
552 {
553 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
554 cache->sp_offset += 4;
555 }
556 else if (IS_STS (inst))
557 {
558 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
559 cache->sp_offset += 4;
560 }
561 else if (IS_MACL_STS (inst))
562 {
563 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
564 cache->sp_offset += 4;
565 }
566 else if (IS_MOV_R3 (inst))
567 {
568 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
569 }
570 else if (IS_SHLL_R3 (inst))
571 {
572 r3_val <<= 1;
573 }
574 else if (IS_ADD_R3SP (inst))
575 {
576 cache->sp_offset += -r3_val;
577 }
578 else if (IS_ADD_IMM_SP (inst))
579 {
580 offset = ((inst & 0xff) ^ 0x80) - 0x80;
581 cache->sp_offset -= offset;
582 }
583 else if (IS_MOVW_PCREL_TO_REG (inst))
584 {
585 if (sav_reg < 0)
586 {
587 reg = GET_TARGET_REG (inst);
588 if (reg < 14)
589 {
590 sav_reg = reg;
591 offset = (inst & 0xff) << 1;
592 sav_offset =
593 read_memory_integer ((pc + 4) + offset, 2, byte_order);
594 }
595 }
596 }
597 else if (IS_MOVL_PCREL_TO_REG (inst))
598 {
599 if (sav_reg < 0)
600 {
601 reg = GET_TARGET_REG (inst);
602 if (reg < 14)
603 {
604 sav_reg = reg;
605 offset = (inst & 0xff) << 2;
606 sav_offset =
607 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
608 4, byte_order);
609 }
610 }
611 }
612 else if (IS_MOVI20 (inst)
613 && (pc + 2 < limit_pc))
614 {
615 if (sav_reg < 0)
616 {
617 reg = GET_TARGET_REG (inst);
618 if (reg < 14)
619 {
620 sav_reg = reg;
621 sav_offset = GET_SOURCE_REG (inst) << 16;
622 /* MOVI20 is a 32 bit instruction! */
623 pc += 2;
624 sav_offset
625 |= read_memory_unsigned_integer (pc, 2, byte_order);
626 /* Now sav_offset contains an unsigned 20 bit value.
627 It must still get sign extended. */
628 if (sav_offset & 0x00080000)
629 sav_offset |= 0xfff00000;
630 }
631 }
632 }
633 else if (IS_SUB_REG_FROM_SP (inst))
634 {
635 reg = GET_SOURCE_REG (inst);
636 if (sav_reg > 0 && reg == sav_reg)
637 {
638 sav_reg = -1;
639 }
640 cache->sp_offset += sav_offset;
641 }
642 else if (IS_FPUSH (inst))
643 {
644 if (fpscr & FPSCR_SZ)
645 {
646 cache->sp_offset += 8;
647 }
648 else
649 {
650 cache->sp_offset += 4;
651 }
652 }
653 else if (IS_MOV_SP_FP (inst))
654 {
655 pc += 2;
656 /* Don't go any further than six more instructions. */
657 limit_pc = min (limit_pc, pc + (2 * 6));
658
659 cache->uses_fp = 1;
660 /* At this point, only allow argument register moves to other
661 registers or argument register moves to @(X,fp) which are
662 moving the register arguments onto the stack area allocated
663 by a former add somenumber to SP call. Don't allow moving
664 to an fp indirect address above fp + cache->sp_offset. */
665 for (; pc < limit_pc; pc += 2)
666 {
667 inst = read_memory_integer (pc, 2, byte_order);
668 if (IS_MOV_ARG_TO_IND_R14 (inst))
669 {
670 reg = GET_SOURCE_REG (inst);
671 if (cache->sp_offset > 0)
672 cache->saved_regs[reg] = cache->sp_offset;
673 }
674 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
675 {
676 reg = GET_SOURCE_REG (inst);
677 offset = (inst & 0xf) * 4;
678 if (cache->sp_offset > offset)
679 cache->saved_regs[reg] = cache->sp_offset - offset;
680 }
681 else if (IS_MOV_ARG_TO_REG (inst))
682 continue;
683 else
684 break;
685 }
686 break;
687 }
688 else if (IS_JSR (inst))
689 {
690 /* We have found a jsr that has been scheduled into the prologue.
691 If we continue the scan and return a pc someplace after this,
692 then setting a breakpoint on this function will cause it to
693 appear to be called after the function it is calling via the
694 jsr, which will be very confusing. Most likely the next
695 instruction is going to be IS_MOV_SP_FP in the delay slot. If
696 so, note that before returning the current pc. */
697 if (pc + 2 < limit_pc)
698 {
699 inst = read_memory_integer (pc + 2, 2, byte_order);
700 if (IS_MOV_SP_FP (inst))
701 cache->uses_fp = 1;
702 }
703 break;
704 }
705 #if 0 /* This used to just stop when it found an instruction
706 that was not considered part of the prologue. Now,
707 we just keep going looking for likely
708 instructions. */
709 else
710 break;
711 #endif
712 }
713
714 return pc;
715 }
716
717 /* Skip any prologue before the guts of a function. */
718 static CORE_ADDR
719 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
720 {
721 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
722 struct sh_frame_cache cache;
723
724 /* See if we can determine the end of the prologue via the symbol table.
725 If so, then return either PC, or the PC after the prologue, whichever
726 is greater. */
727 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
728 {
729 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
730 if (post_prologue_pc != 0)
731 return max (pc, post_prologue_pc);
732 }
733
734 /* Can't determine prologue from the symbol table, need to examine
735 instructions. */
736
737 /* Find an upper limit on the function prologue using the debug
738 information. If the debug information could not be used to provide
739 that bound, then use an arbitrary large number as the upper bound. */
740 limit_pc = skip_prologue_using_sal (gdbarch, pc);
741 if (limit_pc == 0)
742 /* Don't go any further than 28 instructions. */
743 limit_pc = pc + (2 * 28);
744
745 /* Do not allow limit_pc to be past the function end, if we know
746 where that end is... */
747 if (func_end_addr != 0)
748 limit_pc = min (limit_pc, func_end_addr);
749
750 cache.sp_offset = -4;
751 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
752 if (cache.uses_fp)
753 pc = post_prologue_pc;
754
755 return pc;
756 }
757
758 /* The ABI says:
759
760 Aggregate types not bigger than 8 bytes that have the same size and
761 alignment as one of the integer scalar types are returned in the
762 same registers as the integer type they match.
763
764 For example, a 2-byte aligned structure with size 2 bytes has the
765 same size and alignment as a short int, and will be returned in R0.
766 A 4-byte aligned structure with size 8 bytes has the same size and
767 alignment as a long long int, and will be returned in R0 and R1.
768
769 When an aggregate type is returned in R0 and R1, R0 contains the
770 first four bytes of the aggregate, and R1 contains the
771 remainder. If the size of the aggregate type is not a multiple of 4
772 bytes, the aggregate is tail-padded up to a multiple of 4
773 bytes. The value of the padding is undefined. For little-endian
774 targets the padding will appear at the most significant end of the
775 last element, for big-endian targets the padding appears at the
776 least significant end of the last element.
777
778 All other aggregate types are returned by address. The caller
779 function passes the address of an area large enough to hold the
780 aggregate value in R2. The called function stores the result in
781 this location.
782
783 To reiterate, structs smaller than 8 bytes could also be returned
784 in memory, if they don't pass the "same size and alignment as an
785 integer type" rule.
786
787 For example, in
788
789 struct s { char c[3]; } wibble;
790 struct s foo(void) { return wibble; }
791
792 the return value from foo() will be in memory, not
793 in R0, because there is no 3-byte integer type.
794
795 Similarly, in
796
797 struct s { char c[2]; } wibble;
798 struct s foo(void) { return wibble; }
799
800 because a struct containing two chars has alignment 1, that matches
801 type char, but size 2, that matches type short. There's no integer
802 type that has alignment 1 and size 2, so the struct is returned in
803 memory. */
804
805 static int
806 sh_use_struct_convention (int renesas_abi, struct type *type)
807 {
808 int len = TYPE_LENGTH (type);
809 int nelem = TYPE_NFIELDS (type);
810
811 /* The Renesas ABI returns aggregate types always on stack. */
812 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
813 || TYPE_CODE (type) == TYPE_CODE_UNION))
814 return 1;
815
816 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
817 fit in two registers anyway) use struct convention. */
818 if (len != 1 && len != 2 && len != 4 && len != 8)
819 return 1;
820
821 /* Scalar types and aggregate types with exactly one field are aligned
822 by definition. They are returned in registers. */
823 if (nelem <= 1)
824 return 0;
825
826 /* If the first field in the aggregate has the same length as the entire
827 aggregate type, the type is returned in registers. */
828 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
829 return 0;
830
831 /* If the size of the aggregate is 8 bytes and the first field is
832 of size 4 bytes its alignment is equal to long long's alignment,
833 so it's returned in registers. */
834 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
835 return 0;
836
837 /* Otherwise use struct convention. */
838 return 1;
839 }
840
841 static int
842 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
843 {
844 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
845 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
846 return 1;
847 return sh_use_struct_convention (renesas_abi, type);
848 }
849
850 static CORE_ADDR
851 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
852 {
853 return sp & ~3;
854 }
855
856 /* Function: push_dummy_call (formerly push_arguments)
857 Setup the function arguments for calling a function in the inferior.
858
859 On the Renesas SH architecture, there are four registers (R4 to R7)
860 which are dedicated for passing function arguments. Up to the first
861 four arguments (depending on size) may go into these registers.
862 The rest go on the stack.
863
864 MVS: Except on SH variants that have floating point registers.
865 In that case, float and double arguments are passed in the same
866 manner, but using FP registers instead of GP registers.
867
868 Arguments that are smaller than 4 bytes will still take up a whole
869 register or a whole 32-bit word on the stack, and will be
870 right-justified in the register or the stack word. This includes
871 chars, shorts, and small aggregate types.
872
873 Arguments that are larger than 4 bytes may be split between two or
874 more registers. If there are not enough registers free, an argument
875 may be passed partly in a register (or registers), and partly on the
876 stack. This includes doubles, long longs, and larger aggregates.
877 As far as I know, there is no upper limit to the size of aggregates
878 that will be passed in this way; in other words, the convention of
879 passing a pointer to a large aggregate instead of a copy is not used.
880
881 MVS: The above appears to be true for the SH variants that do not
882 have an FPU, however those that have an FPU appear to copy the
883 aggregate argument onto the stack (and not place it in registers)
884 if it is larger than 16 bytes (four GP registers).
885
886 An exceptional case exists for struct arguments (and possibly other
887 aggregates such as arrays) if the size is larger than 4 bytes but
888 not a multiple of 4 bytes. In this case the argument is never split
889 between the registers and the stack, but instead is copied in its
890 entirety onto the stack, AND also copied into as many registers as
891 there is room for. In other words, space in registers permitting,
892 two copies of the same argument are passed in. As far as I can tell,
893 only the one on the stack is used, although that may be a function
894 of the level of compiler optimization. I suspect this is a compiler
895 bug. Arguments of these odd sizes are left-justified within the
896 word (as opposed to arguments smaller than 4 bytes, which are
897 right-justified).
898
899 If the function is to return an aggregate type such as a struct, it
900 is either returned in the normal return value register R0 (if its
901 size is no greater than one byte), or else the caller must allocate
902 space into which the callee will copy the return value (if the size
903 is greater than one byte). In this case, a pointer to the return
904 value location is passed into the callee in register R2, which does
905 not displace any of the other arguments passed in via registers R4
906 to R7. */
907
908 /* Helper function to justify value in register according to endianess. */
909 static const gdb_byte *
910 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
911 {
912 static gdb_byte valbuf[4];
913
914 memset (valbuf, 0, sizeof (valbuf));
915 if (len < 4)
916 {
917 /* value gets right-justified in the register or stack word. */
918 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
919 memcpy (valbuf + (4 - len), value_contents (val), len);
920 else
921 memcpy (valbuf, value_contents (val), len);
922 return valbuf;
923 }
924 return value_contents (val);
925 }
926
927 /* Helper function to eval number of bytes to allocate on stack. */
928 static CORE_ADDR
929 sh_stack_allocsize (int nargs, struct value **args)
930 {
931 int stack_alloc = 0;
932 while (nargs-- > 0)
933 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
934 return stack_alloc;
935 }
936
937 /* Helper functions for getting the float arguments right. Registers usage
938 depends on the ABI and the endianess. The comments should enlighten how
939 it's intended to work. */
940
941 /* This array stores which of the float arg registers are already in use. */
942 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
943
944 /* This function just resets the above array to "no reg used so far". */
945 static void
946 sh_init_flt_argreg (void)
947 {
948 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
949 }
950
951 /* This function returns the next register to use for float arg passing.
952 It returns either a valid value between FLOAT_ARG0_REGNUM and
953 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
954 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
955
956 Note that register number 0 in flt_argreg_array corresponds with the
957 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
958 29) the parity of the register number is preserved, which is important
959 for the double register passing test (see the "argreg & 1" test below). */
960 static int
961 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
962 {
963 int argreg;
964
965 /* First search for the next free register. */
966 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
967 ++argreg)
968 if (!flt_argreg_array[argreg])
969 break;
970
971 /* No register left? */
972 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
973 return FLOAT_ARGLAST_REGNUM + 1;
974
975 if (len == 8)
976 {
977 /* Doubles are always starting in a even register number. */
978 if (argreg & 1)
979 {
980 /* In gcc ABI, the skipped register is lost for further argument
981 passing now. Not so in Renesas ABI. */
982 if (!sh_is_renesas_calling_convention (func_type))
983 flt_argreg_array[argreg] = 1;
984
985 ++argreg;
986
987 /* No register left? */
988 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
989 return FLOAT_ARGLAST_REGNUM + 1;
990 }
991 /* Also mark the next register as used. */
992 flt_argreg_array[argreg + 1] = 1;
993 }
994 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
995 && !sh_is_renesas_calling_convention (func_type))
996 {
997 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
998 if (!flt_argreg_array[argreg + 1])
999 ++argreg;
1000 }
1001 flt_argreg_array[argreg] = 1;
1002 return FLOAT_ARG0_REGNUM + argreg;
1003 }
1004
1005 /* Helper function which figures out, if a type is treated like a float type.
1006
1007 The FPU ABIs have a special way how to treat types as float types.
1008 Structures with exactly one member, which is of type float or double, are
1009 treated exactly as the base types float or double:
1010
1011 struct sf {
1012 float f;
1013 };
1014
1015 struct sd {
1016 double d;
1017 };
1018
1019 are handled the same way as just
1020
1021 float f;
1022
1023 double d;
1024
1025 As a result, arguments of these struct types are pushed into floating point
1026 registers exactly as floats or doubles, using the same decision algorithm.
1027
1028 The same is valid if these types are used as function return types. The
1029 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1030 or even using struct convention as it is for other structs. */
1031
1032 static int
1033 sh_treat_as_flt_p (struct type *type)
1034 {
1035 /* Ordinary float types are obviously treated as float. */
1036 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1037 return 1;
1038 /* Otherwise non-struct types are not treated as float. */
1039 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1040 return 0;
1041 /* Otherwise structs with more than one memeber are not treated as float. */
1042 if (TYPE_NFIELDS (type) != 1)
1043 return 0;
1044 /* Otherwise if the type of that member is float, the whole type is
1045 treated as float. */
1046 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1047 return 1;
1048 /* Otherwise it's not treated as float. */
1049 return 0;
1050 }
1051
1052 static CORE_ADDR
1053 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1054 struct value *function,
1055 struct regcache *regcache,
1056 CORE_ADDR bp_addr, int nargs,
1057 struct value **args,
1058 CORE_ADDR sp, int struct_return,
1059 CORE_ADDR struct_addr)
1060 {
1061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1062 int stack_offset = 0;
1063 int argreg = ARG0_REGNUM;
1064 int flt_argreg = 0;
1065 int argnum;
1066 struct type *func_type = value_type (function);
1067 struct type *type;
1068 CORE_ADDR regval;
1069 const gdb_byte *val;
1070 int len, reg_size = 0;
1071 int pass_on_stack = 0;
1072 int treat_as_flt;
1073 int last_reg_arg = INT_MAX;
1074
1075 /* The Renesas ABI expects all varargs arguments, plus the last
1076 non-vararg argument to be on the stack, no matter how many
1077 registers have been used so far. */
1078 if (sh_is_renesas_calling_convention (func_type)
1079 && TYPE_VARARGS (func_type))
1080 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1081
1082 /* First force sp to a 4-byte alignment. */
1083 sp = sh_frame_align (gdbarch, sp);
1084
1085 /* Make room on stack for args. */
1086 sp -= sh_stack_allocsize (nargs, args);
1087
1088 /* Initialize float argument mechanism. */
1089 sh_init_flt_argreg ();
1090
1091 /* Now load as many as possible of the first arguments into
1092 registers, and push the rest onto the stack. There are 16 bytes
1093 in four registers available. Loop thru args from first to last. */
1094 for (argnum = 0; argnum < nargs; argnum++)
1095 {
1096 type = value_type (args[argnum]);
1097 len = TYPE_LENGTH (type);
1098 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1099
1100 /* Some decisions have to be made how various types are handled.
1101 This also differs in different ABIs. */
1102 pass_on_stack = 0;
1103
1104 /* Find out the next register to use for a floating point value. */
1105 treat_as_flt = sh_treat_as_flt_p (type);
1106 if (treat_as_flt)
1107 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1108 /* In Renesas ABI, long longs and aggregate types are always passed
1109 on stack. */
1110 else if (sh_is_renesas_calling_convention (func_type)
1111 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1112 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1113 || TYPE_CODE (type) == TYPE_CODE_UNION))
1114 pass_on_stack = 1;
1115 /* In contrast to non-FPU CPUs, arguments are never split between
1116 registers and stack. If an argument doesn't fit in the remaining
1117 registers it's always pushed entirely on the stack. */
1118 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1119 pass_on_stack = 1;
1120
1121 while (len > 0)
1122 {
1123 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1124 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1125 || pass_on_stack))
1126 || argnum > last_reg_arg)
1127 {
1128 /* The data goes entirely on the stack, 4-byte aligned. */
1129 reg_size = (len + 3) & ~3;
1130 write_memory (sp + stack_offset, val, reg_size);
1131 stack_offset += reg_size;
1132 }
1133 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1134 {
1135 /* Argument goes in a float argument register. */
1136 reg_size = register_size (gdbarch, flt_argreg);
1137 regval = extract_unsigned_integer (val, reg_size, byte_order);
1138 /* In little endian mode, float types taking two registers
1139 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1140 be stored swapped in the argument registers. The below
1141 code first writes the first 32 bits in the next but one
1142 register, increments the val and len values accordingly
1143 and then proceeds as normal by writing the second 32 bits
1144 into the next register. */
1145 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1146 && TYPE_LENGTH (type) == 2 * reg_size)
1147 {
1148 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1149 regval);
1150 val += reg_size;
1151 len -= reg_size;
1152 regval = extract_unsigned_integer (val, reg_size,
1153 byte_order);
1154 }
1155 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1156 }
1157 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1158 {
1159 /* there's room in a register */
1160 reg_size = register_size (gdbarch, argreg);
1161 regval = extract_unsigned_integer (val, reg_size, byte_order);
1162 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1163 }
1164 /* Store the value one register at a time or in one step on
1165 stack. */
1166 len -= reg_size;
1167 val += reg_size;
1168 }
1169 }
1170
1171 if (struct_return)
1172 {
1173 if (sh_is_renesas_calling_convention (func_type))
1174 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1175 the stack and store the struct return address there. */
1176 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1177 else
1178 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1179 its own dedicated register. */
1180 regcache_cooked_write_unsigned (regcache,
1181 STRUCT_RETURN_REGNUM, struct_addr);
1182 }
1183
1184 /* Store return address. */
1185 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1186
1187 /* Update stack pointer. */
1188 regcache_cooked_write_unsigned (regcache,
1189 gdbarch_sp_regnum (gdbarch), sp);
1190
1191 return sp;
1192 }
1193
1194 static CORE_ADDR
1195 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1196 struct value *function,
1197 struct regcache *regcache,
1198 CORE_ADDR bp_addr,
1199 int nargs, struct value **args,
1200 CORE_ADDR sp, int struct_return,
1201 CORE_ADDR struct_addr)
1202 {
1203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1204 int stack_offset = 0;
1205 int argreg = ARG0_REGNUM;
1206 int argnum;
1207 struct type *func_type = value_type (function);
1208 struct type *type;
1209 CORE_ADDR regval;
1210 const gdb_byte *val;
1211 int len, reg_size = 0;
1212 int pass_on_stack = 0;
1213 int last_reg_arg = INT_MAX;
1214
1215 /* The Renesas ABI expects all varargs arguments, plus the last
1216 non-vararg argument to be on the stack, no matter how many
1217 registers have been used so far. */
1218 if (sh_is_renesas_calling_convention (func_type)
1219 && TYPE_VARARGS (func_type))
1220 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1221
1222 /* First force sp to a 4-byte alignment. */
1223 sp = sh_frame_align (gdbarch, sp);
1224
1225 /* Make room on stack for args. */
1226 sp -= sh_stack_allocsize (nargs, args);
1227
1228 /* Now load as many as possible of the first arguments into
1229 registers, and push the rest onto the stack. There are 16 bytes
1230 in four registers available. Loop thru args from first to last. */
1231 for (argnum = 0; argnum < nargs; argnum++)
1232 {
1233 type = value_type (args[argnum]);
1234 len = TYPE_LENGTH (type);
1235 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1236
1237 /* Some decisions have to be made how various types are handled.
1238 This also differs in different ABIs. */
1239 pass_on_stack = 0;
1240 /* Renesas ABI pushes doubles and long longs entirely on stack.
1241 Same goes for aggregate types. */
1242 if (sh_is_renesas_calling_convention (func_type)
1243 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1244 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1245 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1246 || TYPE_CODE (type) == TYPE_CODE_UNION))
1247 pass_on_stack = 1;
1248 while (len > 0)
1249 {
1250 if (argreg > ARGLAST_REGNUM || pass_on_stack
1251 || argnum > last_reg_arg)
1252 {
1253 /* The remainder of the data goes entirely on the stack,
1254 4-byte aligned. */
1255 reg_size = (len + 3) & ~3;
1256 write_memory (sp + stack_offset, val, reg_size);
1257 stack_offset += reg_size;
1258 }
1259 else if (argreg <= ARGLAST_REGNUM)
1260 {
1261 /* There's room in a register. */
1262 reg_size = register_size (gdbarch, argreg);
1263 regval = extract_unsigned_integer (val, reg_size, byte_order);
1264 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1265 }
1266 /* Store the value reg_size bytes at a time. This means that things
1267 larger than reg_size bytes may go partly in registers and partly
1268 on the stack. */
1269 len -= reg_size;
1270 val += reg_size;
1271 }
1272 }
1273
1274 if (struct_return)
1275 {
1276 if (sh_is_renesas_calling_convention (func_type))
1277 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1278 the stack and store the struct return address there. */
1279 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1280 else
1281 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1282 its own dedicated register. */
1283 regcache_cooked_write_unsigned (regcache,
1284 STRUCT_RETURN_REGNUM, struct_addr);
1285 }
1286
1287 /* Store return address. */
1288 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1289
1290 /* Update stack pointer. */
1291 regcache_cooked_write_unsigned (regcache,
1292 gdbarch_sp_regnum (gdbarch), sp);
1293
1294 return sp;
1295 }
1296
1297 /* Find a function's return value in the appropriate registers (in
1298 regbuf), and copy it into valbuf. Extract from an array REGBUF
1299 containing the (raw) register state a function return value of type
1300 TYPE, and copy that, in virtual format, into VALBUF. */
1301 static void
1302 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1303 gdb_byte *valbuf)
1304 {
1305 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1307 int len = TYPE_LENGTH (type);
1308
1309 if (len <= 4)
1310 {
1311 ULONGEST c;
1312
1313 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1314 store_unsigned_integer (valbuf, len, byte_order, c);
1315 }
1316 else if (len == 8)
1317 {
1318 int i, regnum = R0_REGNUM;
1319 for (i = 0; i < len; i += 4)
1320 regcache_raw_read (regcache, regnum++, valbuf + i);
1321 }
1322 else
1323 error (_("bad size for return value"));
1324 }
1325
1326 static void
1327 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1328 gdb_byte *valbuf)
1329 {
1330 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1331 if (sh_treat_as_flt_p (type))
1332 {
1333 int len = TYPE_LENGTH (type);
1334 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1335 for (i = 0; i < len; i += 4)
1336 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1337 regcache_raw_read (regcache, regnum++,
1338 valbuf + len - 4 - i);
1339 else
1340 regcache_raw_read (regcache, regnum++, valbuf + i);
1341 }
1342 else
1343 sh_extract_return_value_nofpu (type, regcache, valbuf);
1344 }
1345
1346 /* Write into appropriate registers a function return value
1347 of type TYPE, given in virtual format.
1348 If the architecture is sh4 or sh3e, store a function's return value
1349 in the R0 general register or in the FP0 floating point register,
1350 depending on the type of the return value. In all the other cases
1351 the result is stored in r0, left-justified. */
1352 static void
1353 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1354 const gdb_byte *valbuf)
1355 {
1356 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1358 ULONGEST val;
1359 int len = TYPE_LENGTH (type);
1360
1361 if (len <= 4)
1362 {
1363 val = extract_unsigned_integer (valbuf, len, byte_order);
1364 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1365 }
1366 else
1367 {
1368 int i, regnum = R0_REGNUM;
1369 for (i = 0; i < len; i += 4)
1370 regcache_raw_write (regcache, regnum++, valbuf + i);
1371 }
1372 }
1373
1374 static void
1375 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1376 const gdb_byte *valbuf)
1377 {
1378 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1379 if (sh_treat_as_flt_p (type))
1380 {
1381 int len = TYPE_LENGTH (type);
1382 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1383 for (i = 0; i < len; i += 4)
1384 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1385 regcache_raw_write (regcache, regnum++,
1386 valbuf + len - 4 - i);
1387 else
1388 regcache_raw_write (regcache, regnum++, valbuf + i);
1389 }
1390 else
1391 sh_store_return_value_nofpu (type, regcache, valbuf);
1392 }
1393
1394 static enum return_value_convention
1395 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1396 struct type *type, struct regcache *regcache,
1397 gdb_byte *readbuf, const gdb_byte *writebuf)
1398 {
1399 struct type *func_type = function ? value_type (function) : NULL;
1400
1401 if (sh_use_struct_convention_nofpu (
1402 sh_is_renesas_calling_convention (func_type), type))
1403 return RETURN_VALUE_STRUCT_CONVENTION;
1404 if (writebuf)
1405 sh_store_return_value_nofpu (type, regcache, writebuf);
1406 else if (readbuf)
1407 sh_extract_return_value_nofpu (type, regcache, readbuf);
1408 return RETURN_VALUE_REGISTER_CONVENTION;
1409 }
1410
1411 static enum return_value_convention
1412 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1413 struct type *type, struct regcache *regcache,
1414 gdb_byte *readbuf, const gdb_byte *writebuf)
1415 {
1416 struct type *func_type = function ? value_type (function) : NULL;
1417
1418 if (sh_use_struct_convention (
1419 sh_is_renesas_calling_convention (func_type), type))
1420 return RETURN_VALUE_STRUCT_CONVENTION;
1421 if (writebuf)
1422 sh_store_return_value_fpu (type, regcache, writebuf);
1423 else if (readbuf)
1424 sh_extract_return_value_fpu (type, regcache, readbuf);
1425 return RETURN_VALUE_REGISTER_CONVENTION;
1426 }
1427
1428 static struct type *
1429 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1430 {
1431 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1432 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1433 return builtin_type (gdbarch)->builtin_float;
1434 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1435 return builtin_type (gdbarch)->builtin_double;
1436 else
1437 return builtin_type (gdbarch)->builtin_int;
1438 }
1439
1440 /* Return the GDB type object for the "standard" data type
1441 of data in register N. */
1442 static struct type *
1443 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1444 {
1445 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1446 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1447 return builtin_type (gdbarch)->builtin_float;
1448 else
1449 return builtin_type (gdbarch)->builtin_int;
1450 }
1451
1452 static struct type *
1453 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1454 {
1455 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1456 0, high);
1457 }
1458
1459 static struct type *
1460 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1461 {
1462 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1463 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1464 return builtin_type (gdbarch)->builtin_float;
1465 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1466 return builtin_type (gdbarch)->builtin_double;
1467 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1468 return sh_sh4_build_float_register_type (gdbarch, 3);
1469 else
1470 return builtin_type (gdbarch)->builtin_int;
1471 }
1472
1473 static struct type *
1474 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1475 {
1476 return builtin_type (gdbarch)->builtin_int;
1477 }
1478
1479 /* Is a register in a reggroup?
1480 The default code in reggroup.c doesn't identify system registers, some
1481 float registers or any of the vector registers.
1482 TODO: sh2a and dsp registers. */
1483 static int
1484 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1485 struct reggroup *reggroup)
1486 {
1487 if (gdbarch_register_name (gdbarch, regnum) == NULL
1488 || *gdbarch_register_name (gdbarch, regnum) == '\0')
1489 return 0;
1490
1491 if (reggroup == float_reggroup
1492 && (regnum == FPUL_REGNUM
1493 || regnum == FPSCR_REGNUM))
1494 return 1;
1495
1496 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1497 {
1498 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1499 return 1;
1500 if (reggroup == general_reggroup)
1501 return 0;
1502 }
1503
1504 if (regnum == VBR_REGNUM
1505 || regnum == SR_REGNUM
1506 || regnum == FPSCR_REGNUM
1507 || regnum == SSR_REGNUM
1508 || regnum == SPC_REGNUM)
1509 {
1510 if (reggroup == system_reggroup)
1511 return 1;
1512 if (reggroup == general_reggroup)
1513 return 0;
1514 }
1515
1516 /* The default code can cope with any other registers. */
1517 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1518 }
1519
1520 /* On the sh4, the DRi pseudo registers are problematic if the target
1521 is little endian. When the user writes one of those registers, for
1522 instance with 'set var $dr0=1', we want the double to be stored
1523 like this:
1524 fr0 = 0x00 0x00 0xf0 0x3f
1525 fr1 = 0x00 0x00 0x00 0x00
1526
1527 This corresponds to little endian byte order & big endian word
1528 order. However if we let gdb write the register w/o conversion, it
1529 will write fr0 and fr1 this way:
1530 fr0 = 0x00 0x00 0x00 0x00
1531 fr1 = 0x00 0x00 0xf0 0x3f
1532 because it will consider fr0 and fr1 as a single LE stretch of memory.
1533
1534 To achieve what we want we must force gdb to store things in
1535 floatformat_ieee_double_littlebyte_bigword (which is defined in
1536 include/floatformat.h and libiberty/floatformat.c.
1537
1538 In case the target is big endian, there is no problem, the
1539 raw bytes will look like:
1540 fr0 = 0x3f 0xf0 0x00 0x00
1541 fr1 = 0x00 0x00 0x00 0x00
1542
1543 The other pseudo registers (the FVs) also don't pose a problem
1544 because they are stored as 4 individual FP elements. */
1545
1546 static void
1547 sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1548 struct type *type, gdb_byte *from, gdb_byte *to)
1549 {
1550 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1551 {
1552 /* It is a no-op. */
1553 memcpy (to, from, register_size (gdbarch, regnum));
1554 return;
1555 }
1556
1557 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1558 {
1559 DOUBLEST val;
1560 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1561 from, &val);
1562 store_typed_floating (to, type, val);
1563 }
1564 else
1565 error
1566 ("sh_register_convert_to_virtual called with non DR register number");
1567 }
1568
1569 static void
1570 sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1571 int regnum, const gdb_byte *from, gdb_byte *to)
1572 {
1573 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1574 {
1575 /* It is a no-op. */
1576 memcpy (to, from, register_size (gdbarch, regnum));
1577 return;
1578 }
1579
1580 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1581 {
1582 DOUBLEST val = extract_typed_floating (from, type);
1583 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1584 &val, to);
1585 }
1586 else
1587 error (_("sh_register_convert_to_raw called with non DR register number"));
1588 }
1589
1590 /* For vectors of 4 floating point registers. */
1591 static int
1592 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1593 {
1594 int fp_regnum;
1595
1596 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1597 + (fv_regnum - FV0_REGNUM) * 4;
1598 return fp_regnum;
1599 }
1600
1601 /* For double precision floating point registers, i.e 2 fp regs. */
1602 static int
1603 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1604 {
1605 int fp_regnum;
1606
1607 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1608 + (dr_regnum - DR0_REGNUM) * 2;
1609 return fp_regnum;
1610 }
1611
1612 /* Concatenate PORTIONS contiguous raw registers starting at
1613 BASE_REGNUM into BUFFER. */
1614
1615 static enum register_status
1616 pseudo_register_read_portions (struct gdbarch *gdbarch,
1617 struct regcache *regcache,
1618 int portions,
1619 int base_regnum, gdb_byte *buffer)
1620 {
1621 int portion;
1622
1623 for (portion = 0; portion < portions; portion++)
1624 {
1625 enum register_status status;
1626 gdb_byte *b;
1627
1628 b = buffer + register_size (gdbarch, base_regnum) * portion;
1629 status = regcache_raw_read (regcache, base_regnum + portion, b);
1630 if (status != REG_VALID)
1631 return status;
1632 }
1633
1634 return REG_VALID;
1635 }
1636
1637 static enum register_status
1638 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1639 int reg_nr, gdb_byte *buffer)
1640 {
1641 int base_regnum;
1642 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1643 enum register_status status;
1644
1645 if (reg_nr == PSEUDO_BANK_REGNUM)
1646 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1647 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1648 {
1649 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1650
1651 /* Build the value in the provided buffer. */
1652 /* Read the real regs for which this one is an alias. */
1653 status = pseudo_register_read_portions (gdbarch, regcache,
1654 2, base_regnum, temp_buffer);
1655 if (status == REG_VALID)
1656 {
1657 /* We must pay attention to the endiannes. */
1658 sh_register_convert_to_virtual (gdbarch, reg_nr,
1659 register_type (gdbarch, reg_nr),
1660 temp_buffer, buffer);
1661 }
1662 return status;
1663 }
1664 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1665 {
1666 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1667
1668 /* Read the real regs for which this one is an alias. */
1669 return pseudo_register_read_portions (gdbarch, regcache,
1670 4, base_regnum, buffer);
1671 }
1672 else
1673 gdb_assert_not_reached ("invalid pseudo register number");
1674 }
1675
1676 static void
1677 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1678 int reg_nr, const gdb_byte *buffer)
1679 {
1680 int base_regnum, portion;
1681 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1682
1683 if (reg_nr == PSEUDO_BANK_REGNUM)
1684 {
1685 /* When the bank register is written to, the whole register bank
1686 is switched and all values in the bank registers must be read
1687 from the target/sim again. We're just invalidating the regcache
1688 so that a re-read happens next time it's necessary. */
1689 int bregnum;
1690
1691 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1692 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1693 regcache_invalidate (regcache, bregnum);
1694 }
1695 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1696 {
1697 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1698
1699 /* We must pay attention to the endiannes. */
1700 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1701 reg_nr, buffer, temp_buffer);
1702
1703 /* Write the real regs for which this one is an alias. */
1704 for (portion = 0; portion < 2; portion++)
1705 regcache_raw_write (regcache, base_regnum + portion,
1706 (temp_buffer
1707 + register_size (gdbarch,
1708 base_regnum) * portion));
1709 }
1710 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1711 {
1712 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1713
1714 /* Write the real regs for which this one is an alias. */
1715 for (portion = 0; portion < 4; portion++)
1716 regcache_raw_write (regcache, base_regnum + portion,
1717 (buffer
1718 + register_size (gdbarch,
1719 base_regnum) * portion));
1720 }
1721 }
1722
1723 static int
1724 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1725 {
1726 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1727 return legacy_register_sim_regno (gdbarch, nr);
1728 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1729 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1730 if (nr == MOD_REGNUM)
1731 return SIM_SH_MOD_REGNUM;
1732 if (nr == RS_REGNUM)
1733 return SIM_SH_RS_REGNUM;
1734 if (nr == RE_REGNUM)
1735 return SIM_SH_RE_REGNUM;
1736 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1737 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1738 return nr;
1739 }
1740
1741 static int
1742 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1743 {
1744 switch (nr)
1745 {
1746 case TBR_REGNUM:
1747 return SIM_SH_TBR_REGNUM;
1748 case IBNR_REGNUM:
1749 return SIM_SH_IBNR_REGNUM;
1750 case IBCR_REGNUM:
1751 return SIM_SH_IBCR_REGNUM;
1752 case BANK_REGNUM:
1753 return SIM_SH_BANK_REGNUM;
1754 case MACLB_REGNUM:
1755 return SIM_SH_BANK_MACL_REGNUM;
1756 case GBRB_REGNUM:
1757 return SIM_SH_BANK_GBR_REGNUM;
1758 case PRB_REGNUM:
1759 return SIM_SH_BANK_PR_REGNUM;
1760 case IVNB_REGNUM:
1761 return SIM_SH_BANK_IVN_REGNUM;
1762 case MACHB_REGNUM:
1763 return SIM_SH_BANK_MACH_REGNUM;
1764 default:
1765 break;
1766 }
1767 return legacy_register_sim_regno (gdbarch, nr);
1768 }
1769
1770 /* Set up the register unwinding such that call-clobbered registers are
1771 not displayed in frames >0 because the true value is not certain.
1772 The 'undefined' registers will show up as 'not available' unless the
1773 CFI says otherwise.
1774
1775 This function is currently set up for SH4 and compatible only. */
1776
1777 static void
1778 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1779 struct dwarf2_frame_state_reg *reg,
1780 struct frame_info *this_frame)
1781 {
1782 /* Mark the PC as the destination for the return address. */
1783 if (regnum == gdbarch_pc_regnum (gdbarch))
1784 reg->how = DWARF2_FRAME_REG_RA;
1785
1786 /* Mark the stack pointer as the call frame address. */
1787 else if (regnum == gdbarch_sp_regnum (gdbarch))
1788 reg->how = DWARF2_FRAME_REG_CFA;
1789
1790 /* The above was taken from the default init_reg in dwarf2-frame.c
1791 while the below is SH specific. */
1792
1793 /* Caller save registers. */
1794 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1795 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1796 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1797 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1798 || (regnum == MACH_REGNUM)
1799 || (regnum == MACL_REGNUM)
1800 || (regnum == FPUL_REGNUM)
1801 || (regnum == SR_REGNUM))
1802 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1803
1804 /* Callee save registers. */
1805 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1806 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1807 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1808 || (regnum == FV0_REGNUM+3))
1809 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1810
1811 /* Other registers. These are not in the ABI and may or may not
1812 mean anything in frames >0 so don't show them. */
1813 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1814 || (regnum == GBR_REGNUM)
1815 || (regnum == VBR_REGNUM)
1816 || (regnum == FPSCR_REGNUM)
1817 || (regnum == SSR_REGNUM)
1818 || (regnum == SPC_REGNUM))
1819 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1820 }
1821
1822 static struct sh_frame_cache *
1823 sh_alloc_frame_cache (void)
1824 {
1825 struct sh_frame_cache *cache;
1826 int i;
1827
1828 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1829
1830 /* Base address. */
1831 cache->base = 0;
1832 cache->saved_sp = 0;
1833 cache->sp_offset = 0;
1834 cache->pc = 0;
1835
1836 /* Frameless until proven otherwise. */
1837 cache->uses_fp = 0;
1838
1839 /* Saved registers. We initialize these to -1 since zero is a valid
1840 offset (that's where fp is supposed to be stored). */
1841 for (i = 0; i < SH_NUM_REGS; i++)
1842 {
1843 cache->saved_regs[i] = -1;
1844 }
1845
1846 return cache;
1847 }
1848
1849 static struct sh_frame_cache *
1850 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1851 {
1852 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1853 struct sh_frame_cache *cache;
1854 CORE_ADDR current_pc;
1855 int i;
1856
1857 if (*this_cache)
1858 return (struct sh_frame_cache *) *this_cache;
1859
1860 cache = sh_alloc_frame_cache ();
1861 *this_cache = cache;
1862
1863 /* In principle, for normal frames, fp holds the frame pointer,
1864 which holds the base address for the current stack frame.
1865 However, for functions that don't need it, the frame pointer is
1866 optional. For these "frameless" functions the frame pointer is
1867 actually the frame pointer of the calling frame. */
1868 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1869 if (cache->base == 0)
1870 return cache;
1871
1872 cache->pc = get_frame_func (this_frame);
1873 current_pc = get_frame_pc (this_frame);
1874 if (cache->pc != 0)
1875 {
1876 ULONGEST fpscr;
1877
1878 /* Check for the existence of the FPSCR register. If it exists,
1879 fetch its value for use in prologue analysis. Passing a zero
1880 value is the best choice for architecture variants upon which
1881 there's no FPSCR register. */
1882 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1883 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1884 else
1885 fpscr = 0;
1886
1887 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1888 }
1889
1890 if (!cache->uses_fp)
1891 {
1892 /* We didn't find a valid frame, which means that CACHE->base
1893 currently holds the frame pointer for our calling frame. If
1894 we're at the start of a function, or somewhere half-way its
1895 prologue, the function's frame probably hasn't been fully
1896 setup yet. Try to reconstruct the base address for the stack
1897 frame by looking at the stack pointer. For truly "frameless"
1898 functions this might work too. */
1899 cache->base = get_frame_register_unsigned
1900 (this_frame, gdbarch_sp_regnum (gdbarch));
1901 }
1902
1903 /* Now that we have the base address for the stack frame we can
1904 calculate the value of sp in the calling frame. */
1905 cache->saved_sp = cache->base + cache->sp_offset;
1906
1907 /* Adjust all the saved registers such that they contain addresses
1908 instead of offsets. */
1909 for (i = 0; i < SH_NUM_REGS; i++)
1910 if (cache->saved_regs[i] != -1)
1911 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1912
1913 return cache;
1914 }
1915
1916 static struct value *
1917 sh_frame_prev_register (struct frame_info *this_frame,
1918 void **this_cache, int regnum)
1919 {
1920 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1921 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1922
1923 gdb_assert (regnum >= 0);
1924
1925 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1926 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1927
1928 /* The PC of the previous frame is stored in the PR register of
1929 the current frame. Frob regnum so that we pull the value from
1930 the correct place. */
1931 if (regnum == gdbarch_pc_regnum (gdbarch))
1932 regnum = PR_REGNUM;
1933
1934 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1935 return frame_unwind_got_memory (this_frame, regnum,
1936 cache->saved_regs[regnum]);
1937
1938 return frame_unwind_got_register (this_frame, regnum, regnum);
1939 }
1940
1941 static void
1942 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1943 struct frame_id *this_id)
1944 {
1945 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1946
1947 /* This marks the outermost frame. */
1948 if (cache->base == 0)
1949 return;
1950
1951 *this_id = frame_id_build (cache->saved_sp, cache->pc);
1952 }
1953
1954 static const struct frame_unwind sh_frame_unwind = {
1955 NORMAL_FRAME,
1956 default_frame_unwind_stop_reason,
1957 sh_frame_this_id,
1958 sh_frame_prev_register,
1959 NULL,
1960 default_frame_sniffer
1961 };
1962
1963 static CORE_ADDR
1964 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1965 {
1966 return frame_unwind_register_unsigned (next_frame,
1967 gdbarch_sp_regnum (gdbarch));
1968 }
1969
1970 static CORE_ADDR
1971 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1972 {
1973 return frame_unwind_register_unsigned (next_frame,
1974 gdbarch_pc_regnum (gdbarch));
1975 }
1976
1977 static struct frame_id
1978 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1979 {
1980 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1981 gdbarch_sp_regnum (gdbarch));
1982 return frame_id_build (sp, get_frame_pc (this_frame));
1983 }
1984
1985 static CORE_ADDR
1986 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
1987 {
1988 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1989
1990 return cache->base;
1991 }
1992
1993 static const struct frame_base sh_frame_base = {
1994 &sh_frame_unwind,
1995 sh_frame_base_address,
1996 sh_frame_base_address,
1997 sh_frame_base_address
1998 };
1999
2000 static struct sh_frame_cache *
2001 sh_make_stub_cache (struct frame_info *this_frame)
2002 {
2003 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2004 struct sh_frame_cache *cache;
2005
2006 cache = sh_alloc_frame_cache ();
2007
2008 cache->saved_sp
2009 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2010
2011 return cache;
2012 }
2013
2014 static void
2015 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2016 struct frame_id *this_id)
2017 {
2018 struct sh_frame_cache *cache;
2019
2020 if (*this_cache == NULL)
2021 *this_cache = sh_make_stub_cache (this_frame);
2022 cache = (struct sh_frame_cache *) *this_cache;
2023
2024 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2025 }
2026
2027 static int
2028 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2029 struct frame_info *this_frame,
2030 void **this_prologue_cache)
2031 {
2032 CORE_ADDR addr_in_block;
2033
2034 addr_in_block = get_frame_address_in_block (this_frame);
2035 if (in_plt_section (addr_in_block))
2036 return 1;
2037
2038 return 0;
2039 }
2040
2041 static const struct frame_unwind sh_stub_unwind =
2042 {
2043 NORMAL_FRAME,
2044 default_frame_unwind_stop_reason,
2045 sh_stub_this_id,
2046 sh_frame_prev_register,
2047 NULL,
2048 sh_stub_unwind_sniffer
2049 };
2050
2051 /* Implement the stack_frame_destroyed_p gdbarch method.
2052
2053 The epilogue is defined here as the area at the end of a function,
2054 either on the `ret' instruction itself or after an instruction which
2055 destroys the function's stack frame. */
2056
2057 static int
2058 sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2059 {
2060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2061 CORE_ADDR func_addr = 0, func_end = 0;
2062
2063 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2064 {
2065 ULONGEST inst;
2066 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2067 for a nop and some fixed data (e.g. big offsets) which are
2068 unfortunately also treated as part of the function (which
2069 means, they are below func_end. */
2070 CORE_ADDR addr = func_end - 28;
2071 if (addr < func_addr + 4)
2072 addr = func_addr + 4;
2073 if (pc < addr)
2074 return 0;
2075
2076 /* First search forward until hitting an rts. */
2077 while (addr < func_end
2078 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2079 addr += 2;
2080 if (addr >= func_end)
2081 return 0;
2082
2083 /* At this point we should find a mov.l @r15+,r14 instruction,
2084 either before or after the rts. If not, then the function has
2085 probably no "normal" epilogue and we bail out here. */
2086 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2087 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2088 byte_order)))
2089 addr -= 2;
2090 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2091 byte_order)))
2092 return 0;
2093
2094 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2095
2096 /* Step over possible lds.l @r15+,macl. */
2097 if (IS_MACL_LDS (inst))
2098 {
2099 addr -= 2;
2100 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2101 }
2102
2103 /* Step over possible lds.l @r15+,pr. */
2104 if (IS_LDS (inst))
2105 {
2106 addr -= 2;
2107 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2108 }
2109
2110 /* Step over possible mov r14,r15. */
2111 if (IS_MOV_FP_SP (inst))
2112 {
2113 addr -= 2;
2114 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2115 }
2116
2117 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2118 instructions. */
2119 while (addr > func_addr + 4
2120 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2121 {
2122 addr -= 2;
2123 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2124 }
2125
2126 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2127 That's allowed for the epilogue. */
2128 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2129 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2130 && addr > func_addr + 6
2131 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2132 byte_order)))
2133 addr -= 4;
2134
2135 if (pc >= addr)
2136 return 1;
2137 }
2138 return 0;
2139 }
2140
2141
2142 /* Supply register REGNUM from the buffer specified by REGS and LEN
2143 in the register set REGSET to register cache REGCACHE.
2144 REGTABLE specifies where each register can be found in REGS.
2145 If REGNUM is -1, do this for all registers in REGSET. */
2146
2147 void
2148 sh_corefile_supply_regset (const struct regset *regset,
2149 struct regcache *regcache,
2150 int regnum, const void *regs, size_t len)
2151 {
2152 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2154 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2155 ? tdep->core_gregmap
2156 : tdep->core_fpregmap);
2157 int i;
2158
2159 for (i = 0; regmap[i].regnum != -1; i++)
2160 {
2161 if ((regnum == -1 || regnum == regmap[i].regnum)
2162 && regmap[i].offset + 4 <= len)
2163 regcache_raw_supply (regcache, regmap[i].regnum,
2164 (char *)regs + regmap[i].offset);
2165 }
2166 }
2167
2168 /* Collect register REGNUM in the register set REGSET from register cache
2169 REGCACHE into the buffer specified by REGS and LEN.
2170 REGTABLE specifies where each register can be found in REGS.
2171 If REGNUM is -1, do this for all registers in REGSET. */
2172
2173 void
2174 sh_corefile_collect_regset (const struct regset *regset,
2175 const struct regcache *regcache,
2176 int regnum, void *regs, size_t len)
2177 {
2178 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2180 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2181 ? tdep->core_gregmap
2182 : tdep->core_fpregmap);
2183 int i;
2184
2185 for (i = 0; regmap[i].regnum != -1; i++)
2186 {
2187 if ((regnum == -1 || regnum == regmap[i].regnum)
2188 && regmap[i].offset + 4 <= len)
2189 regcache_raw_collect (regcache, regmap[i].regnum,
2190 (char *)regs + regmap[i].offset);
2191 }
2192 }
2193
2194 /* The following two regsets have the same contents, so it is tempting to
2195 unify them, but they are distiguished by their address, so don't. */
2196
2197 const struct regset sh_corefile_gregset =
2198 {
2199 NULL,
2200 sh_corefile_supply_regset,
2201 sh_corefile_collect_regset
2202 };
2203
2204 static const struct regset sh_corefile_fpregset =
2205 {
2206 NULL,
2207 sh_corefile_supply_regset,
2208 sh_corefile_collect_regset
2209 };
2210
2211 static void
2212 sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2213 iterate_over_regset_sections_cb *cb,
2214 void *cb_data,
2215 const struct regcache *regcache)
2216 {
2217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2218
2219 if (tdep->core_gregmap != NULL)
2220 cb (".reg", tdep->sizeof_gregset, &sh_corefile_gregset, NULL, cb_data);
2221
2222 if (tdep->core_fpregmap != NULL)
2223 cb (".reg2", tdep->sizeof_fpregset, &sh_corefile_fpregset, NULL, cb_data);
2224 }
2225
2226 /* This is the implementation of gdbarch method
2227 return_in_first_hidden_param_p. */
2228
2229 static int
2230 sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2231 struct type *type)
2232 {
2233 return 0;
2234 }
2235
2236 \f
2237
2238 static struct gdbarch *
2239 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2240 {
2241 struct gdbarch *gdbarch;
2242 struct gdbarch_tdep *tdep;
2243
2244 /* SH5 is handled entirely in sh64-tdep.c. */
2245 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2246 return sh64_gdbarch_init (info, arches);
2247
2248 /* If there is already a candidate, use it. */
2249 arches = gdbarch_list_lookup_by_info (arches, &info);
2250 if (arches != NULL)
2251 return arches->gdbarch;
2252
2253 /* None found, create a new architecture from the information
2254 provided. */
2255 tdep = XCNEW (struct gdbarch_tdep);
2256 gdbarch = gdbarch_alloc (&info, tdep);
2257
2258 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2259 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2260 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2261 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2262 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2263 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2264 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2265 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2266
2267 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2268 set_gdbarch_sp_regnum (gdbarch, 15);
2269 set_gdbarch_pc_regnum (gdbarch, 16);
2270 set_gdbarch_fp0_regnum (gdbarch, -1);
2271 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2272
2273 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2274 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2275
2276 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2277
2278 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2279 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2280
2281 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2282
2283 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2284 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2285
2286 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2287 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2288 sh_return_in_first_hidden_param_p);
2289
2290 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2291
2292 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2293 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2294 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2295 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
2296 frame_base_set_default (gdbarch, &sh_frame_base);
2297
2298 set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
2299
2300 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2301
2302 set_gdbarch_iterate_over_regset_sections
2303 (gdbarch, sh_iterate_over_regset_sections);
2304
2305 switch (info.bfd_arch_info->mach)
2306 {
2307 case bfd_mach_sh:
2308 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2309 break;
2310
2311 case bfd_mach_sh2:
2312 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2313 break;
2314
2315 case bfd_mach_sh2e:
2316 /* doubles on sh2e and sh3e are actually 4 byte. */
2317 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2318 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2319
2320 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2321 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2322 set_gdbarch_fp0_regnum (gdbarch, 25);
2323 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2324 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2325 break;
2326
2327 case bfd_mach_sh2a:
2328 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2329 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2330 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2331
2332 set_gdbarch_fp0_regnum (gdbarch, 25);
2333 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2334 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2335 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2336 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2337 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2338 break;
2339
2340 case bfd_mach_sh2a_nofpu:
2341 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2342 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2343
2344 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2345 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2346 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2347 break;
2348
2349 case bfd_mach_sh_dsp:
2350 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2351 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2352 break;
2353
2354 case bfd_mach_sh3:
2355 case bfd_mach_sh3_nommu:
2356 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2357 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2358 break;
2359
2360 case bfd_mach_sh3e:
2361 case bfd_mach_sh2a_or_sh3e:
2362 /* doubles on sh2e and sh3e are actually 4 byte. */
2363 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2364 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2365
2366 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2367 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2368 set_gdbarch_fp0_regnum (gdbarch, 25);
2369 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2370 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2371 break;
2372
2373 case bfd_mach_sh3_dsp:
2374 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2375 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2376 break;
2377
2378 case bfd_mach_sh4:
2379 case bfd_mach_sh4a:
2380 case bfd_mach_sh2a_or_sh4:
2381 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2382 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2383 set_gdbarch_fp0_regnum (gdbarch, 25);
2384 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2385 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2386 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2387 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2388 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2389 break;
2390
2391 case bfd_mach_sh4_nofpu:
2392 case bfd_mach_sh4a_nofpu:
2393 case bfd_mach_sh4_nommu_nofpu:
2394 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2395 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2396 break;
2397
2398 case bfd_mach_sh4al_dsp:
2399 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2400 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2401 break;
2402
2403 default:
2404 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2405 break;
2406 }
2407
2408 /* Hook in ABI-specific overrides, if they have been registered. */
2409 gdbarch_init_osabi (info, gdbarch);
2410
2411 dwarf2_append_unwinders (gdbarch);
2412 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2413 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2414
2415 return gdbarch;
2416 }
2417
2418 static void
2419 show_sh_command (char *args, int from_tty)
2420 {
2421 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2422 }
2423
2424 static void
2425 set_sh_command (char *args, int from_tty)
2426 {
2427 printf_unfiltered
2428 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2429 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2430 }
2431
2432 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2433
2434 void
2435 _initialize_sh_tdep (void)
2436 {
2437 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2438
2439 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2440 &setshcmdlist, "set sh ", 0, &setlist);
2441 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2442 &showshcmdlist, "show sh ", 0, &showlist);
2443
2444 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2445 &sh_active_calling_convention,
2446 _("Set calling convention used when calling target "
2447 "functions from GDB."),
2448 _("Show calling convention used when calling target "
2449 "functions from GDB."),
2450 _("gcc - Use GCC calling convention (default).\n"
2451 "renesas - Enforce Renesas calling convention."),
2452 NULL, NULL,
2453 &setshcmdlist, &showshcmdlist);
2454 }
This page took 0.087756 seconds and 4 git commands to generate.