* arm-tdep.c (arm_mode_strings, arm_fallback_mode_string)
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /*
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
24 */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "value.h"
36 #include "dis-asm.h"
37 #include "inferior.h"
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40 #include "arch-utils.h"
41 #include "floatformat.h"
42 #include "regcache.h"
43 #include "doublest.h"
44 #include "osabi.h"
45 #include "reggroups.h"
46
47 #include "sh-tdep.h"
48
49 #include "elf-bfd.h"
50 #include "solib-svr4.h"
51
52 /* sh flags */
53 #include "elf/sh.h"
54 #include "elf/dwarf2.h"
55 /* registers numbers shared with the simulator */
56 #include "gdb/sim-sh.h"
57
58 /* List of "set sh ..." and "show sh ..." commands. */
59 static struct cmd_list_element *setshcmdlist = NULL;
60 static struct cmd_list_element *showshcmdlist = NULL;
61
62 static const char sh_cc_gcc[] = "gcc";
63 static const char sh_cc_renesas[] = "renesas";
64 static const char *sh_cc_enum[] = {
65 sh_cc_gcc,
66 sh_cc_renesas,
67 NULL
68 };
69
70 static const char *sh_active_calling_convention = sh_cc_gcc;
71
72 static void (*sh_show_regs) (struct frame_info *);
73
74 #define SH_NUM_REGS 67
75
76 struct sh_frame_cache
77 {
78 /* Base address. */
79 CORE_ADDR base;
80 LONGEST sp_offset;
81 CORE_ADDR pc;
82
83 /* Flag showing that a frame has been created in the prologue code. */
84 int uses_fp;
85
86 /* Saved registers. */
87 CORE_ADDR saved_regs[SH_NUM_REGS];
88 CORE_ADDR saved_sp;
89 };
90
91 static int
92 sh_is_renesas_calling_convention (struct type *func_type)
93 {
94 return ((func_type
95 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
96 || sh_active_calling_convention == sh_cc_renesas);
97 }
98
99 static const char *
100 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
101 {
102 static char *register_names[] = {
103 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
104 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
105 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
106 "", "",
107 "", "", "", "", "", "", "", "",
108 "", "", "", "", "", "", "", "",
109 "", "",
110 "", "", "", "", "", "", "", "",
111 "", "", "", "", "", "", "", "",
112 "", "", "", "", "", "", "", "",
113 };
114 if (reg_nr < 0)
115 return NULL;
116 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
117 return NULL;
118 return register_names[reg_nr];
119 }
120
121 static const char *
122 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
123 {
124 static char *register_names[] = {
125 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
126 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
127 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
128 "", "",
129 "", "", "", "", "", "", "", "",
130 "", "", "", "", "", "", "", "",
131 "ssr", "spc",
132 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
133 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
134 "", "", "", "", "", "", "", "",
135 };
136 if (reg_nr < 0)
137 return NULL;
138 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
139 return NULL;
140 return register_names[reg_nr];
141 }
142
143 static const char *
144 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
145 {
146 static char *register_names[] = {
147 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
148 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
149 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
150 "fpul", "fpscr",
151 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
152 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
153 "ssr", "spc",
154 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
155 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
156 "", "", "", "", "", "", "", "",
157 };
158 if (reg_nr < 0)
159 return NULL;
160 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
161 return NULL;
162 return register_names[reg_nr];
163 }
164
165 static const char *
166 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
167 {
168 static char *register_names[] = {
169 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
170 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
171 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
172 "fpul", "fpscr",
173 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
174 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
175 "", "",
176 "", "", "", "", "", "", "", "",
177 "", "", "", "", "", "", "", "",
178 "", "", "", "", "", "", "", "",
179 };
180 if (reg_nr < 0)
181 return NULL;
182 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
183 return NULL;
184 return register_names[reg_nr];
185 }
186
187 static const char *
188 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
189 {
190 static char *register_names[] = {
191 /* general registers 0-15 */
192 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
193 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
194 /* 16 - 22 */
195 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
196 /* 23, 24 */
197 "fpul", "fpscr",
198 /* floating point registers 25 - 40 */
199 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
200 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
201 /* 41, 42 */
202 "", "",
203 /* 43 - 62. Banked registers. The bank number used is determined by
204 the bank register (63). */
205 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
206 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
207 "machb", "ivnb", "prb", "gbrb", "maclb",
208 /* 63: register bank number, not a real register but used to
209 communicate the register bank currently get/set. This register
210 is hidden to the user, who manipulates it using the pseudo
211 register called "bank" (67). See below. */
212 "",
213 /* 64 - 66 */
214 "ibcr", "ibnr", "tbr",
215 /* 67: register bank number, the user visible pseudo register. */
216 "bank",
217 /* double precision (pseudo) 68 - 75 */
218 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
219 };
220 if (reg_nr < 0)
221 return NULL;
222 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
223 return NULL;
224 return register_names[reg_nr];
225 }
226
227 static const char *
228 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
229 {
230 static char *register_names[] = {
231 /* general registers 0-15 */
232 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
233 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
234 /* 16 - 22 */
235 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
236 /* 23, 24 */
237 "", "",
238 /* floating point registers 25 - 40 */
239 "", "", "", "", "", "", "", "",
240 "", "", "", "", "", "", "", "",
241 /* 41, 42 */
242 "", "",
243 /* 43 - 62. Banked registers. The bank number used is determined by
244 the bank register (63). */
245 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
246 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
247 "machb", "ivnb", "prb", "gbrb", "maclb",
248 /* 63: register bank number, not a real register but used to
249 communicate the register bank currently get/set. This register
250 is hidden to the user, who manipulates it using the pseudo
251 register called "bank" (67). See below. */
252 "",
253 /* 64 - 66 */
254 "ibcr", "ibnr", "tbr",
255 /* 67: register bank number, the user visible pseudo register. */
256 "bank",
257 /* double precision (pseudo) 68 - 75 */
258 "", "", "", "", "", "", "", "",
259 };
260 if (reg_nr < 0)
261 return NULL;
262 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
263 return NULL;
264 return register_names[reg_nr];
265 }
266
267 static const char *
268 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
269 {
270 static char *register_names[] = {
271 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
272 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
273 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
274 "", "dsr",
275 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
276 "y0", "y1", "", "", "", "", "", "mod",
277 "", "",
278 "rs", "re", "", "", "", "", "", "",
279 "", "", "", "", "", "", "", "",
280 "", "", "", "", "", "", "", "",
281 };
282 if (reg_nr < 0)
283 return NULL;
284 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
285 return NULL;
286 return register_names[reg_nr];
287 }
288
289 static const char *
290 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
291 {
292 static char *register_names[] = {
293 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
294 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
295 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
296 "", "dsr",
297 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
298 "y0", "y1", "", "", "", "", "", "mod",
299 "ssr", "spc",
300 "rs", "re", "", "", "", "", "", "",
301 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
302 "", "", "", "", "", "", "", "",
303 "", "", "", "", "", "", "", "",
304 };
305 if (reg_nr < 0)
306 return NULL;
307 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
308 return NULL;
309 return register_names[reg_nr];
310 }
311
312 static const char *
313 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
314 {
315 static char *register_names[] = {
316 /* general registers 0-15 */
317 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
318 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
319 /* 16 - 22 */
320 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
321 /* 23, 24 */
322 "fpul", "fpscr",
323 /* floating point registers 25 - 40 */
324 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
325 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
326 /* 41, 42 */
327 "ssr", "spc",
328 /* bank 0 43 - 50 */
329 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
330 /* bank 1 51 - 58 */
331 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
332 "", "", "", "", "", "", "", "",
333 /* pseudo bank register. */
334 "",
335 /* double precision (pseudo) 59 - 66 */
336 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
337 /* vectors (pseudo) 67 - 70 */
338 "fv0", "fv4", "fv8", "fv12",
339 /* FIXME: missing XF 71 - 86 */
340 /* FIXME: missing XD 87 - 94 */
341 };
342 if (reg_nr < 0)
343 return NULL;
344 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
345 return NULL;
346 return register_names[reg_nr];
347 }
348
349 static const char *
350 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
351 {
352 static char *register_names[] = {
353 /* general registers 0-15 */
354 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
355 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
356 /* 16 - 22 */
357 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
358 /* 23, 24 */
359 "", "",
360 /* floating point registers 25 - 40 -- not for nofpu target */
361 "", "", "", "", "", "", "", "",
362 "", "", "", "", "", "", "", "",
363 /* 41, 42 */
364 "ssr", "spc",
365 /* bank 0 43 - 50 */
366 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
367 /* bank 1 51 - 58 */
368 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
369 "", "", "", "", "", "", "", "",
370 /* pseudo bank register. */
371 "",
372 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
373 "", "", "", "", "", "", "", "",
374 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
375 "", "", "", "",
376 };
377 if (reg_nr < 0)
378 return NULL;
379 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
380 return NULL;
381 return register_names[reg_nr];
382 }
383
384 static const char *
385 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
386 {
387 static char *register_names[] = {
388 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
389 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
390 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
391 "", "dsr",
392 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
393 "y0", "y1", "", "", "", "", "", "mod",
394 "ssr", "spc",
395 "rs", "re", "", "", "", "", "", "",
396 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
397 "", "", "", "", "", "", "", "",
398 "", "", "", "", "", "", "", "",
399 };
400 if (reg_nr < 0)
401 return NULL;
402 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
403 return NULL;
404 return register_names[reg_nr];
405 }
406
407 static const unsigned char *
408 sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
409 {
410 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
411 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
412
413 /* For remote stub targets, trapa #20 is used. */
414 if (strcmp (target_shortname, "remote") == 0)
415 {
416 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
417 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
418
419 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
420 {
421 *lenptr = sizeof (big_remote_breakpoint);
422 return big_remote_breakpoint;
423 }
424 else
425 {
426 *lenptr = sizeof (little_remote_breakpoint);
427 return little_remote_breakpoint;
428 }
429 }
430
431 *lenptr = sizeof (breakpoint);
432 return breakpoint;
433 }
434
435 /* Prologue looks like
436 mov.l r14,@-r15
437 sts.l pr,@-r15
438 mov.l <regs>,@-r15
439 sub <room_for_loca_vars>,r15
440 mov r15,r14
441
442 Actually it can be more complicated than this but that's it, basically.
443 */
444
445 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
446 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
447
448 /* JSR @Rm 0100mmmm00001011 */
449 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
450
451 /* STS.L PR,@-r15 0100111100100010
452 r15-4-->r15, PR-->(r15) */
453 #define IS_STS(x) ((x) == 0x4f22)
454
455 /* STS.L MACL,@-r15 0100111100010010
456 r15-4-->r15, MACL-->(r15) */
457 #define IS_MACL_STS(x) ((x) == 0x4f12)
458
459 /* MOV.L Rm,@-r15 00101111mmmm0110
460 r15-4-->r15, Rm-->(R15) */
461 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
462
463 /* MOV r15,r14 0110111011110011
464 r15-->r14 */
465 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
466
467 /* ADD #imm,r15 01111111iiiiiiii
468 r15+imm-->r15 */
469 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
470
471 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
472 #define IS_SHLL_R3(x) ((x) == 0x4300)
473
474 /* ADD r3,r15 0011111100111100
475 r15+r3-->r15 */
476 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
477
478 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
479 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
480 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
481 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
482 make this entirely clear. */
483 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
484 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
485
486 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
487 #define IS_MOV_ARG_TO_REG(x) \
488 (((x) & 0xf00f) == 0x6003 && \
489 ((x) & 0x00f0) >= 0x0040 && \
490 ((x) & 0x00f0) <= 0x0070)
491 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
492 #define IS_MOV_ARG_TO_IND_R14(x) \
493 (((x) & 0xff0f) == 0x2e02 && \
494 ((x) & 0x00f0) >= 0x0040 && \
495 ((x) & 0x00f0) <= 0x0070)
496 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
497 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
498 (((x) & 0xff00) == 0x1e00 && \
499 ((x) & 0x00f0) >= 0x0040 && \
500 ((x) & 0x00f0) <= 0x0070)
501
502 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
503 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
504 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
505 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
506 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
507 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
508 /* SUB Rn,R15 00111111nnnn1000 */
509 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
510
511 #define FPSCR_SZ (1 << 20)
512
513 /* The following instructions are used for epilogue testing. */
514 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
515 #define IS_RTS(x) ((x) == 0x000b)
516 #define IS_LDS(x) ((x) == 0x4f26)
517 #define IS_MACL_LDS(x) ((x) == 0x4f16)
518 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
519 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
520 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
521
522 /* Disassemble an instruction. */
523 static int
524 gdb_print_insn_sh (bfd_vma memaddr, disassemble_info * info)
525 {
526 info->endian = gdbarch_byte_order (current_gdbarch);
527 return print_insn_sh (memaddr, info);
528 }
529
530 static CORE_ADDR
531 sh_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
532 struct sh_frame_cache *cache, ULONGEST fpscr)
533 {
534 ULONGEST inst;
535 CORE_ADDR opc;
536 int offset;
537 int sav_offset = 0;
538 int r3_val = 0;
539 int reg, sav_reg = -1;
540
541 if (pc >= current_pc)
542 return current_pc;
543
544 cache->uses_fp = 0;
545 for (opc = pc + (2 * 28); pc < opc; pc += 2)
546 {
547 inst = read_memory_unsigned_integer (pc, 2);
548 /* See where the registers will be saved to */
549 if (IS_PUSH (inst))
550 {
551 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
552 cache->sp_offset += 4;
553 }
554 else if (IS_STS (inst))
555 {
556 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
557 cache->sp_offset += 4;
558 }
559 else if (IS_MACL_STS (inst))
560 {
561 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
562 cache->sp_offset += 4;
563 }
564 else if (IS_MOV_R3 (inst))
565 {
566 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
567 }
568 else if (IS_SHLL_R3 (inst))
569 {
570 r3_val <<= 1;
571 }
572 else if (IS_ADD_R3SP (inst))
573 {
574 cache->sp_offset += -r3_val;
575 }
576 else if (IS_ADD_IMM_SP (inst))
577 {
578 offset = ((inst & 0xff) ^ 0x80) - 0x80;
579 cache->sp_offset -= offset;
580 }
581 else if (IS_MOVW_PCREL_TO_REG (inst))
582 {
583 if (sav_reg < 0)
584 {
585 reg = GET_TARGET_REG (inst);
586 if (reg < 14)
587 {
588 sav_reg = reg;
589 offset = (inst & 0xff) << 1;
590 sav_offset =
591 read_memory_integer ((pc + 4) + offset, 2);
592 }
593 }
594 }
595 else if (IS_MOVL_PCREL_TO_REG (inst))
596 {
597 if (sav_reg < 0)
598 {
599 reg = GET_TARGET_REG (inst);
600 if (reg < 14)
601 {
602 sav_reg = reg;
603 offset = (inst & 0xff) << 2;
604 sav_offset =
605 read_memory_integer (((pc & 0xfffffffc) + 4) + offset, 4);
606 }
607 }
608 }
609 else if (IS_MOVI20 (inst))
610 {
611 if (sav_reg < 0)
612 {
613 reg = GET_TARGET_REG (inst);
614 if (reg < 14)
615 {
616 sav_reg = reg;
617 sav_offset = GET_SOURCE_REG (inst) << 16;
618 /* MOVI20 is a 32 bit instruction! */
619 pc += 2;
620 sav_offset |= read_memory_unsigned_integer (pc, 2);
621 /* Now sav_offset contains an unsigned 20 bit value.
622 It must still get sign extended. */
623 if (sav_offset & 0x00080000)
624 sav_offset |= 0xfff00000;
625 }
626 }
627 }
628 else if (IS_SUB_REG_FROM_SP (inst))
629 {
630 reg = GET_SOURCE_REG (inst);
631 if (sav_reg > 0 && reg == sav_reg)
632 {
633 sav_reg = -1;
634 }
635 cache->sp_offset += sav_offset;
636 }
637 else if (IS_FPUSH (inst))
638 {
639 if (fpscr & FPSCR_SZ)
640 {
641 cache->sp_offset += 8;
642 }
643 else
644 {
645 cache->sp_offset += 4;
646 }
647 }
648 else if (IS_MOV_SP_FP (inst))
649 {
650 cache->uses_fp = 1;
651 /* At this point, only allow argument register moves to other
652 registers or argument register moves to @(X,fp) which are
653 moving the register arguments onto the stack area allocated
654 by a former add somenumber to SP call. Don't allow moving
655 to an fp indirect address above fp + cache->sp_offset. */
656 pc += 2;
657 for (opc = pc + 12; pc < opc; pc += 2)
658 {
659 inst = read_memory_integer (pc, 2);
660 if (IS_MOV_ARG_TO_IND_R14 (inst))
661 {
662 reg = GET_SOURCE_REG (inst);
663 if (cache->sp_offset > 0)
664 cache->saved_regs[reg] = cache->sp_offset;
665 }
666 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
667 {
668 reg = GET_SOURCE_REG (inst);
669 offset = (inst & 0xf) * 4;
670 if (cache->sp_offset > offset)
671 cache->saved_regs[reg] = cache->sp_offset - offset;
672 }
673 else if (IS_MOV_ARG_TO_REG (inst))
674 continue;
675 else
676 break;
677 }
678 break;
679 }
680 else if (IS_JSR (inst))
681 {
682 /* We have found a jsr that has been scheduled into the prologue.
683 If we continue the scan and return a pc someplace after this,
684 then setting a breakpoint on this function will cause it to
685 appear to be called after the function it is calling via the
686 jsr, which will be very confusing. Most likely the next
687 instruction is going to be IS_MOV_SP_FP in the delay slot. If
688 so, note that before returning the current pc. */
689 inst = read_memory_integer (pc + 2, 2);
690 if (IS_MOV_SP_FP (inst))
691 cache->uses_fp = 1;
692 break;
693 }
694 #if 0 /* This used to just stop when it found an instruction that
695 was not considered part of the prologue. Now, we just
696 keep going looking for likely instructions. */
697 else
698 break;
699 #endif
700 }
701
702 return pc;
703 }
704
705 /* Skip any prologue before the guts of a function */
706
707 /* Skip the prologue using the debug information. If this fails we'll
708 fall back on the 'guess' method below. */
709 static CORE_ADDR
710 after_prologue (CORE_ADDR pc)
711 {
712 struct symtab_and_line sal;
713 CORE_ADDR func_addr, func_end;
714
715 /* If we can not find the symbol in the partial symbol table, then
716 there is no hope we can determine the function's start address
717 with this code. */
718 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
719 return 0;
720
721 /* Get the line associated with FUNC_ADDR. */
722 sal = find_pc_line (func_addr, 0);
723
724 /* There are only two cases to consider. First, the end of the source line
725 is within the function bounds. In that case we return the end of the
726 source line. Second is the end of the source line extends beyond the
727 bounds of the current function. We need to use the slow code to
728 examine instructions in that case. */
729 if (sal.end < func_end)
730 return sal.end;
731 else
732 return 0;
733 }
734
735 static CORE_ADDR
736 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
737 {
738 CORE_ADDR pc;
739 struct sh_frame_cache cache;
740
741 /* See if we can determine the end of the prologue via the symbol table.
742 If so, then return either PC, or the PC after the prologue, whichever
743 is greater. */
744 pc = after_prologue (start_pc);
745
746 /* If after_prologue returned a useful address, then use it. Else
747 fall back on the instruction skipping code. */
748 if (pc)
749 return max (pc, start_pc);
750
751 cache.sp_offset = -4;
752 pc = sh_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache, 0);
753 if (!cache.uses_fp)
754 return start_pc;
755
756 return pc;
757 }
758
759 /* The ABI says:
760
761 Aggregate types not bigger than 8 bytes that have the same size and
762 alignment as one of the integer scalar types are returned in the
763 same registers as the integer type they match.
764
765 For example, a 2-byte aligned structure with size 2 bytes has the
766 same size and alignment as a short int, and will be returned in R0.
767 A 4-byte aligned structure with size 8 bytes has the same size and
768 alignment as a long long int, and will be returned in R0 and R1.
769
770 When an aggregate type is returned in R0 and R1, R0 contains the
771 first four bytes of the aggregate, and R1 contains the
772 remainder. If the size of the aggregate type is not a multiple of 4
773 bytes, the aggregate is tail-padded up to a multiple of 4
774 bytes. The value of the padding is undefined. For little-endian
775 targets the padding will appear at the most significant end of the
776 last element, for big-endian targets the padding appears at the
777 least significant end of the last element.
778
779 All other aggregate types are returned by address. The caller
780 function passes the address of an area large enough to hold the
781 aggregate value in R2. The called function stores the result in
782 this location.
783
784 To reiterate, structs smaller than 8 bytes could also be returned
785 in memory, if they don't pass the "same size and alignment as an
786 integer type" rule.
787
788 For example, in
789
790 struct s { char c[3]; } wibble;
791 struct s foo(void) { return wibble; }
792
793 the return value from foo() will be in memory, not
794 in R0, because there is no 3-byte integer type.
795
796 Similarly, in
797
798 struct s { char c[2]; } wibble;
799 struct s foo(void) { return wibble; }
800
801 because a struct containing two chars has alignment 1, that matches
802 type char, but size 2, that matches type short. There's no integer
803 type that has alignment 1 and size 2, so the struct is returned in
804 memory.
805
806 */
807
808 static int
809 sh_use_struct_convention (int renesas_abi, struct type *type)
810 {
811 int len = TYPE_LENGTH (type);
812 int nelem = TYPE_NFIELDS (type);
813
814 /* The Renesas ABI returns aggregate types always on stack. */
815 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
816 || TYPE_CODE (type) == TYPE_CODE_UNION))
817 return 1;
818
819 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
820 fit in two registers anyway) use struct convention. */
821 if (len != 1 && len != 2 && len != 4 && len != 8)
822 return 1;
823
824 /* Scalar types and aggregate types with exactly one field are aligned
825 by definition. They are returned in registers. */
826 if (nelem <= 1)
827 return 0;
828
829 /* If the first field in the aggregate has the same length as the entire
830 aggregate type, the type is returned in registers. */
831 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
832 return 0;
833
834 /* If the size of the aggregate is 8 bytes and the first field is
835 of size 4 bytes its alignment is equal to long long's alignment,
836 so it's returned in registers. */
837 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
838 return 0;
839
840 /* Otherwise use struct convention. */
841 return 1;
842 }
843
844 static int
845 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
846 {
847 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
848 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
849 return 1;
850 return sh_use_struct_convention (renesas_abi, type);
851 }
852
853 static CORE_ADDR
854 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
855 {
856 return sp & ~3;
857 }
858
859 /* Function: push_dummy_call (formerly push_arguments)
860 Setup the function arguments for calling a function in the inferior.
861
862 On the Renesas SH architecture, there are four registers (R4 to R7)
863 which are dedicated for passing function arguments. Up to the first
864 four arguments (depending on size) may go into these registers.
865 The rest go on the stack.
866
867 MVS: Except on SH variants that have floating point registers.
868 In that case, float and double arguments are passed in the same
869 manner, but using FP registers instead of GP registers.
870
871 Arguments that are smaller than 4 bytes will still take up a whole
872 register or a whole 32-bit word on the stack, and will be
873 right-justified in the register or the stack word. This includes
874 chars, shorts, and small aggregate types.
875
876 Arguments that are larger than 4 bytes may be split between two or
877 more registers. If there are not enough registers free, an argument
878 may be passed partly in a register (or registers), and partly on the
879 stack. This includes doubles, long longs, and larger aggregates.
880 As far as I know, there is no upper limit to the size of aggregates
881 that will be passed in this way; in other words, the convention of
882 passing a pointer to a large aggregate instead of a copy is not used.
883
884 MVS: The above appears to be true for the SH variants that do not
885 have an FPU, however those that have an FPU appear to copy the
886 aggregate argument onto the stack (and not place it in registers)
887 if it is larger than 16 bytes (four GP registers).
888
889 An exceptional case exists for struct arguments (and possibly other
890 aggregates such as arrays) if the size is larger than 4 bytes but
891 not a multiple of 4 bytes. In this case the argument is never split
892 between the registers and the stack, but instead is copied in its
893 entirety onto the stack, AND also copied into as many registers as
894 there is room for. In other words, space in registers permitting,
895 two copies of the same argument are passed in. As far as I can tell,
896 only the one on the stack is used, although that may be a function
897 of the level of compiler optimization. I suspect this is a compiler
898 bug. Arguments of these odd sizes are left-justified within the
899 word (as opposed to arguments smaller than 4 bytes, which are
900 right-justified).
901
902 If the function is to return an aggregate type such as a struct, it
903 is either returned in the normal return value register R0 (if its
904 size is no greater than one byte), or else the caller must allocate
905 space into which the callee will copy the return value (if the size
906 is greater than one byte). In this case, a pointer to the return
907 value location is passed into the callee in register R2, which does
908 not displace any of the other arguments passed in via registers R4
909 to R7. */
910
911 /* Helper function to justify value in register according to endianess. */
912 static char *
913 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
914 {
915 static char valbuf[4];
916
917 memset (valbuf, 0, sizeof (valbuf));
918 if (len < 4)
919 {
920 /* value gets right-justified in the register or stack word */
921 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
922 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
923 else
924 memcpy (valbuf, (char *) value_contents (val), len);
925 return valbuf;
926 }
927 return (char *) value_contents (val);
928 }
929
930 /* Helper function to eval number of bytes to allocate on stack. */
931 static CORE_ADDR
932 sh_stack_allocsize (int nargs, struct value **args)
933 {
934 int stack_alloc = 0;
935 while (nargs-- > 0)
936 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
937 return stack_alloc;
938 }
939
940 /* Helper functions for getting the float arguments right. Registers usage
941 depends on the ABI and the endianess. The comments should enlighten how
942 it's intended to work. */
943
944 /* This array stores which of the float arg registers are already in use. */
945 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
946
947 /* This function just resets the above array to "no reg used so far". */
948 static void
949 sh_init_flt_argreg (void)
950 {
951 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
952 }
953
954 /* This function returns the next register to use for float arg passing.
955 It returns either a valid value between FLOAT_ARG0_REGNUM and
956 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
957 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
958
959 Note that register number 0 in flt_argreg_array corresponds with the
960 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
961 29) the parity of the register number is preserved, which is important
962 for the double register passing test (see the "argreg & 1" test below). */
963 static int
964 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
965 {
966 int argreg;
967
968 /* First search for the next free register. */
969 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
970 ++argreg)
971 if (!flt_argreg_array[argreg])
972 break;
973
974 /* No register left? */
975 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
976 return FLOAT_ARGLAST_REGNUM + 1;
977
978 if (len == 8)
979 {
980 /* Doubles are always starting in a even register number. */
981 if (argreg & 1)
982 {
983 /* In gcc ABI, the skipped register is lost for further argument
984 passing now. Not so in Renesas ABI. */
985 if (!sh_is_renesas_calling_convention (func_type))
986 flt_argreg_array[argreg] = 1;
987
988 ++argreg;
989
990 /* No register left? */
991 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
992 return FLOAT_ARGLAST_REGNUM + 1;
993 }
994 /* Also mark the next register as used. */
995 flt_argreg_array[argreg + 1] = 1;
996 }
997 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
998 && !sh_is_renesas_calling_convention (func_type))
999 {
1000 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
1001 if (!flt_argreg_array[argreg + 1])
1002 ++argreg;
1003 }
1004 flt_argreg_array[argreg] = 1;
1005 return FLOAT_ARG0_REGNUM + argreg;
1006 }
1007
1008 /* Helper function which figures out, if a type is treated like a float type.
1009
1010 The FPU ABIs have a special way how to treat types as float types.
1011 Structures with exactly one member, which is of type float or double, are
1012 treated exactly as the base types float or double:
1013
1014 struct sf {
1015 float f;
1016 };
1017
1018 struct sd {
1019 double d;
1020 };
1021
1022 are handled the same way as just
1023
1024 float f;
1025
1026 double d;
1027
1028 As a result, arguments of these struct types are pushed into floating point
1029 registers exactly as floats or doubles, using the same decision algorithm.
1030
1031 The same is valid if these types are used as function return types. The
1032 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1033 or even using struct convention as it is for other structs. */
1034
1035 static int
1036 sh_treat_as_flt_p (struct type *type)
1037 {
1038 int len = TYPE_LENGTH (type);
1039
1040 /* Ordinary float types are obviously treated as float. */
1041 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1042 return 1;
1043 /* Otherwise non-struct types are not treated as float. */
1044 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1045 return 0;
1046 /* Otherwise structs with more than one memeber are not treated as float. */
1047 if (TYPE_NFIELDS (type) != 1)
1048 return 0;
1049 /* Otherwise if the type of that member is float, the whole type is
1050 treated as float. */
1051 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1052 return 1;
1053 /* Otherwise it's not treated as float. */
1054 return 0;
1055 }
1056
1057 static CORE_ADDR
1058 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1059 struct value *function,
1060 struct regcache *regcache,
1061 CORE_ADDR bp_addr, int nargs,
1062 struct value **args,
1063 CORE_ADDR sp, int struct_return,
1064 CORE_ADDR struct_addr)
1065 {
1066 int stack_offset = 0;
1067 int argreg = ARG0_REGNUM;
1068 int flt_argreg = 0;
1069 int argnum;
1070 struct type *func_type = value_type (function);
1071 struct type *type;
1072 CORE_ADDR regval;
1073 char *val;
1074 int len, reg_size = 0;
1075 int pass_on_stack = 0;
1076 int treat_as_flt;
1077 int last_reg_arg = INT_MAX;
1078
1079 /* The Renesas ABI expects all varargs arguments, plus the last
1080 non-vararg argument to be on the stack, no matter how many
1081 registers have been used so far. */
1082 if (sh_is_renesas_calling_convention (func_type)
1083 && (TYPE_FLAGS (func_type) & TYPE_FLAG_VARARGS))
1084 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1085
1086 /* first force sp to a 4-byte alignment */
1087 sp = sh_frame_align (gdbarch, sp);
1088
1089 /* make room on stack for args */
1090 sp -= sh_stack_allocsize (nargs, args);
1091
1092 /* Initialize float argument mechanism. */
1093 sh_init_flt_argreg ();
1094
1095 /* Now load as many as possible of the first arguments into
1096 registers, and push the rest onto the stack. There are 16 bytes
1097 in four registers available. Loop thru args from first to last. */
1098 for (argnum = 0; argnum < nargs; argnum++)
1099 {
1100 type = value_type (args[argnum]);
1101 len = TYPE_LENGTH (type);
1102 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1103
1104 /* Some decisions have to be made how various types are handled.
1105 This also differs in different ABIs. */
1106 pass_on_stack = 0;
1107
1108 /* Find out the next register to use for a floating point value. */
1109 treat_as_flt = sh_treat_as_flt_p (type);
1110 if (treat_as_flt)
1111 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1112 /* In Renesas ABI, long longs and aggregate types are always passed
1113 on stack. */
1114 else if (sh_is_renesas_calling_convention (func_type)
1115 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1116 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1117 || TYPE_CODE (type) == TYPE_CODE_UNION))
1118 pass_on_stack = 1;
1119 /* In contrast to non-FPU CPUs, arguments are never split between
1120 registers and stack. If an argument doesn't fit in the remaining
1121 registers it's always pushed entirely on the stack. */
1122 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1123 pass_on_stack = 1;
1124
1125 while (len > 0)
1126 {
1127 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1128 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1129 || pass_on_stack))
1130 || argnum > last_reg_arg)
1131 {
1132 /* The data goes entirely on the stack, 4-byte aligned. */
1133 reg_size = (len + 3) & ~3;
1134 write_memory (sp + stack_offset, val, reg_size);
1135 stack_offset += reg_size;
1136 }
1137 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1138 {
1139 /* Argument goes in a float argument register. */
1140 reg_size = register_size (gdbarch, flt_argreg);
1141 regval = extract_unsigned_integer (val, reg_size);
1142 /* In little endian mode, float types taking two registers
1143 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1144 be stored swapped in the argument registers. The below
1145 code first writes the first 32 bits in the next but one
1146 register, increments the val and len values accordingly
1147 and then proceeds as normal by writing the second 32 bits
1148 into the next register. */
1149 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1150 && TYPE_LENGTH (type) == 2 * reg_size)
1151 {
1152 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1153 regval);
1154 val += reg_size;
1155 len -= reg_size;
1156 regval = extract_unsigned_integer (val, reg_size);
1157 }
1158 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1159 }
1160 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1161 {
1162 /* there's room in a register */
1163 reg_size = register_size (gdbarch, argreg);
1164 regval = extract_unsigned_integer (val, reg_size);
1165 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1166 }
1167 /* Store the value one register at a time or in one step on stack. */
1168 len -= reg_size;
1169 val += reg_size;
1170 }
1171 }
1172
1173 if (struct_return)
1174 {
1175 if (sh_is_renesas_calling_convention (func_type))
1176 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1177 the stack and store the struct return address there. */
1178 write_memory_unsigned_integer (sp -= 4, 4, struct_addr);
1179 else
1180 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1181 its own dedicated register. */
1182 regcache_cooked_write_unsigned (regcache,
1183 STRUCT_RETURN_REGNUM, struct_addr);
1184 }
1185
1186 /* Store return address. */
1187 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1188
1189 /* Update stack pointer. */
1190 regcache_cooked_write_unsigned (regcache,
1191 gdbarch_sp_regnum (gdbarch), sp);
1192
1193 return sp;
1194 }
1195
1196 static CORE_ADDR
1197 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1198 struct value *function,
1199 struct regcache *regcache,
1200 CORE_ADDR bp_addr,
1201 int nargs, struct value **args,
1202 CORE_ADDR sp, int struct_return,
1203 CORE_ADDR struct_addr)
1204 {
1205 int stack_offset = 0;
1206 int argreg = ARG0_REGNUM;
1207 int argnum;
1208 struct type *func_type = value_type (function);
1209 struct type *type;
1210 CORE_ADDR regval;
1211 char *val;
1212 int len, reg_size = 0;
1213 int pass_on_stack = 0;
1214 int last_reg_arg = INT_MAX;
1215
1216 /* The Renesas ABI expects all varargs arguments, plus the last
1217 non-vararg argument to be on the stack, no matter how many
1218 registers have been used so far. */
1219 if (sh_is_renesas_calling_convention (func_type)
1220 && (TYPE_FLAGS (func_type) & TYPE_FLAG_VARARGS))
1221 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1222
1223 /* first force sp to a 4-byte alignment */
1224 sp = sh_frame_align (gdbarch, sp);
1225
1226 /* make room on stack for args */
1227 sp -= sh_stack_allocsize (nargs, args);
1228
1229 /* Now load as many as possible of the first arguments into
1230 registers, and push the rest onto the stack. There are 16 bytes
1231 in four registers available. Loop thru args from first to last. */
1232 for (argnum = 0; argnum < nargs; argnum++)
1233 {
1234 type = value_type (args[argnum]);
1235 len = TYPE_LENGTH (type);
1236 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1237
1238 /* Some decisions have to be made how various types are handled.
1239 This also differs in different ABIs. */
1240 pass_on_stack = 0;
1241 /* Renesas ABI pushes doubles and long longs entirely on stack.
1242 Same goes for aggregate types. */
1243 if (sh_is_renesas_calling_convention (func_type)
1244 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1245 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1246 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1247 || TYPE_CODE (type) == TYPE_CODE_UNION))
1248 pass_on_stack = 1;
1249 while (len > 0)
1250 {
1251 if (argreg > ARGLAST_REGNUM || pass_on_stack
1252 || argnum > last_reg_arg)
1253 {
1254 /* The remainder of the data goes entirely on the stack,
1255 4-byte aligned. */
1256 reg_size = (len + 3) & ~3;
1257 write_memory (sp + stack_offset, val, reg_size);
1258 stack_offset += reg_size;
1259 }
1260 else if (argreg <= ARGLAST_REGNUM)
1261 {
1262 /* there's room in a register */
1263 reg_size = register_size (gdbarch, argreg);
1264 regval = extract_unsigned_integer (val, reg_size);
1265 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1266 }
1267 /* Store the value reg_size bytes at a time. This means that things
1268 larger than reg_size bytes may go partly in registers and partly
1269 on the stack. */
1270 len -= reg_size;
1271 val += reg_size;
1272 }
1273 }
1274
1275 if (struct_return)
1276 {
1277 if (sh_is_renesas_calling_convention (func_type))
1278 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1279 the stack and store the struct return address there. */
1280 write_memory_unsigned_integer (sp -= 4, 4, struct_addr);
1281 else
1282 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1283 its own dedicated register. */
1284 regcache_cooked_write_unsigned (regcache,
1285 STRUCT_RETURN_REGNUM, struct_addr);
1286 }
1287
1288 /* Store return address. */
1289 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1290
1291 /* Update stack pointer. */
1292 regcache_cooked_write_unsigned (regcache,
1293 gdbarch_sp_regnum (gdbarch), sp);
1294
1295 return sp;
1296 }
1297
1298 /* Find a function's return value in the appropriate registers (in
1299 regbuf), and copy it into valbuf. Extract from an array REGBUF
1300 containing the (raw) register state a function return value of type
1301 TYPE, and copy that, in virtual format, into VALBUF. */
1302 static void
1303 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1304 void *valbuf)
1305 {
1306 int len = TYPE_LENGTH (type);
1307 int return_register = R0_REGNUM;
1308 int offset;
1309
1310 if (len <= 4)
1311 {
1312 ULONGEST c;
1313
1314 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1315 store_unsigned_integer (valbuf, len, c);
1316 }
1317 else if (len == 8)
1318 {
1319 int i, regnum = R0_REGNUM;
1320 for (i = 0; i < len; i += 4)
1321 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1322 }
1323 else
1324 error (_("bad size for return value"));
1325 }
1326
1327 static void
1328 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1329 void *valbuf)
1330 {
1331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1332 if (sh_treat_as_flt_p (type))
1333 {
1334 int len = TYPE_LENGTH (type);
1335 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1336 for (i = 0; i < len; i += 4)
1337 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1338 regcache_raw_read (regcache, regnum++, (char *) valbuf + len - 4 - i);
1339 else
1340 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1341 }
1342 else
1343 sh_extract_return_value_nofpu (type, regcache, valbuf);
1344 }
1345
1346 /* Write into appropriate registers a function return value
1347 of type TYPE, given in virtual format.
1348 If the architecture is sh4 or sh3e, store a function's return value
1349 in the R0 general register or in the FP0 floating point register,
1350 depending on the type of the return value. In all the other cases
1351 the result is stored in r0, left-justified. */
1352 static void
1353 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1354 const void *valbuf)
1355 {
1356 ULONGEST val;
1357 int len = TYPE_LENGTH (type);
1358
1359 if (len <= 4)
1360 {
1361 val = extract_unsigned_integer (valbuf, len);
1362 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1363 }
1364 else
1365 {
1366 int i, regnum = R0_REGNUM;
1367 for (i = 0; i < len; i += 4)
1368 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1369 }
1370 }
1371
1372 static void
1373 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1374 const void *valbuf)
1375 {
1376 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1377 if (sh_treat_as_flt_p (type))
1378 {
1379 int len = TYPE_LENGTH (type);
1380 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1381 for (i = 0; i < len; i += 4)
1382 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1383 regcache_raw_write (regcache, regnum++,
1384 (char *) valbuf + len - 4 - i);
1385 else
1386 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1387 }
1388 else
1389 sh_store_return_value_nofpu (type, regcache, valbuf);
1390 }
1391
1392 static enum return_value_convention
1393 sh_return_value_nofpu (struct gdbarch *gdbarch, struct type *func_type,
1394 struct type *type, struct regcache *regcache,
1395 gdb_byte *readbuf, const gdb_byte *writebuf)
1396 {
1397 if (sh_use_struct_convention_nofpu (
1398 sh_is_renesas_calling_convention (func_type), type))
1399 return RETURN_VALUE_STRUCT_CONVENTION;
1400 if (writebuf)
1401 sh_store_return_value_nofpu (type, regcache, writebuf);
1402 else if (readbuf)
1403 sh_extract_return_value_nofpu (type, regcache, readbuf);
1404 return RETURN_VALUE_REGISTER_CONVENTION;
1405 }
1406
1407 static enum return_value_convention
1408 sh_return_value_fpu (struct gdbarch *gdbarch, struct type *func_type,
1409 struct type *type, struct regcache *regcache,
1410 gdb_byte *readbuf, const gdb_byte *writebuf)
1411 {
1412 if (sh_use_struct_convention (
1413 sh_is_renesas_calling_convention (func_type), type))
1414 return RETURN_VALUE_STRUCT_CONVENTION;
1415 if (writebuf)
1416 sh_store_return_value_fpu (type, regcache, writebuf);
1417 else if (readbuf)
1418 sh_extract_return_value_fpu (type, regcache, readbuf);
1419 return RETURN_VALUE_REGISTER_CONVENTION;
1420 }
1421
1422 /* Print the registers in a form similar to the E7000 */
1423
1424 static void
1425 sh_generic_show_regs (struct frame_info *frame)
1426 {
1427 printf_filtered
1428 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1429 paddr (get_frame_register_unsigned (frame,
1430 gdbarch_pc_regnum
1431 (get_frame_arch (frame)))),
1432 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1433 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1434 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1435
1436 printf_filtered
1437 (" GBR %08lx VBR %08lx MACL %08lx\n",
1438 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1439 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1440 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1441
1442 printf_filtered
1443 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1444 (long) get_frame_register_unsigned (frame, 0),
1445 (long) get_frame_register_unsigned (frame, 1),
1446 (long) get_frame_register_unsigned (frame, 2),
1447 (long) get_frame_register_unsigned (frame, 3),
1448 (long) get_frame_register_unsigned (frame, 4),
1449 (long) get_frame_register_unsigned (frame, 5),
1450 (long) get_frame_register_unsigned (frame, 6),
1451 (long) get_frame_register_unsigned (frame, 7));
1452 printf_filtered
1453 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1454 (long) get_frame_register_unsigned (frame, 8),
1455 (long) get_frame_register_unsigned (frame, 9),
1456 (long) get_frame_register_unsigned (frame, 10),
1457 (long) get_frame_register_unsigned (frame, 11),
1458 (long) get_frame_register_unsigned (frame, 12),
1459 (long) get_frame_register_unsigned (frame, 13),
1460 (long) get_frame_register_unsigned (frame, 14),
1461 (long) get_frame_register_unsigned (frame, 15));
1462 }
1463
1464 static void
1465 sh3_show_regs (struct frame_info *frame)
1466 {
1467 printf_filtered
1468 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1469 paddr (get_frame_register_unsigned (frame,
1470 gdbarch_pc_regnum
1471 (get_frame_arch (frame)))),
1472 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1473 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1474 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1475
1476 printf_filtered
1477 (" GBR %08lx VBR %08lx MACL %08lx\n",
1478 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1479 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1480 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1481 printf_filtered
1482 (" SSR %08lx SPC %08lx\n",
1483 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1484 (long) get_frame_register_unsigned (frame, SPC_REGNUM));
1485
1486 printf_filtered
1487 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1488 (long) get_frame_register_unsigned (frame, 0),
1489 (long) get_frame_register_unsigned (frame, 1),
1490 (long) get_frame_register_unsigned (frame, 2),
1491 (long) get_frame_register_unsigned (frame, 3),
1492 (long) get_frame_register_unsigned (frame, 4),
1493 (long) get_frame_register_unsigned (frame, 5),
1494 (long) get_frame_register_unsigned (frame, 6),
1495 (long) get_frame_register_unsigned (frame, 7));
1496 printf_filtered
1497 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1498 (long) get_frame_register_unsigned (frame, 8),
1499 (long) get_frame_register_unsigned (frame, 9),
1500 (long) get_frame_register_unsigned (frame, 10),
1501 (long) get_frame_register_unsigned (frame, 11),
1502 (long) get_frame_register_unsigned (frame, 12),
1503 (long) get_frame_register_unsigned (frame, 13),
1504 (long) get_frame_register_unsigned (frame, 14),
1505 (long) get_frame_register_unsigned (frame, 15));
1506 }
1507
1508 static void
1509 sh2e_show_regs (struct frame_info *frame)
1510 {
1511 struct gdbarch *gdbarch = get_frame_arch (frame);
1512 printf_filtered
1513 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1514 paddr (get_frame_register_unsigned (frame,
1515 gdbarch_pc_regnum (gdbarch))),
1516 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1517 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1518 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1519
1520 printf_filtered
1521 (" GBR %08lx VBR %08lx MACL %08lx\n",
1522 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1523 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1524 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1525 printf_filtered
1526 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1527 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1528 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1529 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1530 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1531
1532 printf_filtered
1533 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1534 (long) get_frame_register_unsigned (frame, 0),
1535 (long) get_frame_register_unsigned (frame, 1),
1536 (long) get_frame_register_unsigned (frame, 2),
1537 (long) get_frame_register_unsigned (frame, 3),
1538 (long) get_frame_register_unsigned (frame, 4),
1539 (long) get_frame_register_unsigned (frame, 5),
1540 (long) get_frame_register_unsigned (frame, 6),
1541 (long) get_frame_register_unsigned (frame, 7));
1542 printf_filtered
1543 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1544 (long) get_frame_register_unsigned (frame, 8),
1545 (long) get_frame_register_unsigned (frame, 9),
1546 (long) get_frame_register_unsigned (frame, 10),
1547 (long) get_frame_register_unsigned (frame, 11),
1548 (long) get_frame_register_unsigned (frame, 12),
1549 (long) get_frame_register_unsigned (frame, 13),
1550 (long) get_frame_register_unsigned (frame, 14),
1551 (long) get_frame_register_unsigned (frame, 15));
1552
1553 printf_filtered
1554 ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1555 (long) get_frame_register_unsigned
1556 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1557 (long) get_frame_register_unsigned
1558 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1559 (long) get_frame_register_unsigned
1560 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1561 (long) get_frame_register_unsigned
1562 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1563 (long) get_frame_register_unsigned
1564 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1565 (long) get_frame_register_unsigned
1566 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1567 (long) get_frame_register_unsigned
1568 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1569 (long) get_frame_register_unsigned
1570 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
1571 printf_filtered
1572 ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1573 (long) get_frame_register_unsigned
1574 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
1575 (long) get_frame_register_unsigned
1576 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
1577 (long) get_frame_register_unsigned
1578 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
1579 (long) get_frame_register_unsigned
1580 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
1581 (long) get_frame_register_unsigned
1582 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
1583 (long) get_frame_register_unsigned
1584 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
1585 (long) get_frame_register_unsigned
1586 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
1587 (long) get_frame_register_unsigned
1588 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
1589 }
1590
1591 static void
1592 sh2a_show_regs (struct frame_info *frame)
1593 {
1594 struct gdbarch *gdbarch = get_frame_arch (frame);
1595 int pr = get_frame_register_unsigned (frame, FPSCR_REGNUM) & 0x80000;
1596
1597 printf_filtered
1598 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1599 paddr (get_frame_register_unsigned (frame,
1600 gdbarch_pc_regnum (gdbarch))),
1601 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1602 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1603 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1604
1605 printf_filtered
1606 (" GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1607 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1608 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1609 (long) get_frame_register_unsigned (frame, TBR_REGNUM),
1610 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1611 printf_filtered
1612 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1613 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1614 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1615 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1616 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1617
1618 printf_filtered
1619 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1620 (long) get_frame_register_unsigned (frame, 0),
1621 (long) get_frame_register_unsigned (frame, 1),
1622 (long) get_frame_register_unsigned (frame, 2),
1623 (long) get_frame_register_unsigned (frame, 3),
1624 (long) get_frame_register_unsigned (frame, 4),
1625 (long) get_frame_register_unsigned (frame, 5),
1626 (long) get_frame_register_unsigned (frame, 6),
1627 (long) get_frame_register_unsigned (frame, 7));
1628 printf_filtered
1629 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1630 (long) get_frame_register_unsigned (frame, 8),
1631 (long) get_frame_register_unsigned (frame, 9),
1632 (long) get_frame_register_unsigned (frame, 10),
1633 (long) get_frame_register_unsigned (frame, 11),
1634 (long) get_frame_register_unsigned (frame, 12),
1635 (long) get_frame_register_unsigned (frame, 13),
1636 (long) get_frame_register_unsigned (frame, 14),
1637 (long) get_frame_register_unsigned (frame, 15));
1638
1639 printf_filtered
1640 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1641 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1642 (long) get_frame_register_unsigned
1643 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1644 (long) get_frame_register_unsigned
1645 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1646 (long) get_frame_register_unsigned
1647 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1648 (long) get_frame_register_unsigned
1649 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1650 (long) get_frame_register_unsigned
1651 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1652 (long) get_frame_register_unsigned
1653 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1654 (long) get_frame_register_unsigned
1655 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1656 (long) get_frame_register_unsigned
1657 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
1658 printf_filtered
1659 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1660 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1661 (long) get_frame_register_unsigned
1662 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
1663 (long) get_frame_register_unsigned
1664 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
1665 (long) get_frame_register_unsigned
1666 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
1667 (long) get_frame_register_unsigned
1668 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
1669 (long) get_frame_register_unsigned
1670 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
1671 (long) get_frame_register_unsigned
1672 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
1673 (long) get_frame_register_unsigned
1674 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
1675 (long) get_frame_register_unsigned
1676 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
1677 printf_filtered
1678 ("BANK=%-3d\n", (int) get_frame_register_unsigned (frame, BANK_REGNUM));
1679 printf_filtered
1680 ("R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1681 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 0),
1682 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 1),
1683 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 2),
1684 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 3),
1685 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 4),
1686 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 5),
1687 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 6),
1688 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 7));
1689 printf_filtered
1690 ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1691 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 8),
1692 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 9),
1693 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 10),
1694 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 11),
1695 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 12),
1696 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 13),
1697 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 14));
1698 printf_filtered
1699 ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1700 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 15),
1701 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 16),
1702 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 17),
1703 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 18),
1704 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 19));
1705 }
1706
1707 static void
1708 sh2a_nofpu_show_regs (struct frame_info *frame)
1709 {
1710 int pr = get_frame_register_unsigned (frame, FPSCR_REGNUM) & 0x80000;
1711
1712 printf_filtered
1713 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1714 paddr (get_frame_register_unsigned (frame,
1715 gdbarch_pc_regnum
1716 (get_frame_arch (frame)))),
1717 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1718 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1719 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1720
1721 printf_filtered
1722 (" GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1723 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1724 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1725 (long) get_frame_register_unsigned (frame, TBR_REGNUM),
1726 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1727 printf_filtered
1728 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1729 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1730 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1731 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1732 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1733
1734 printf_filtered
1735 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1736 (long) get_frame_register_unsigned (frame, 0),
1737 (long) get_frame_register_unsigned (frame, 1),
1738 (long) get_frame_register_unsigned (frame, 2),
1739 (long) get_frame_register_unsigned (frame, 3),
1740 (long) get_frame_register_unsigned (frame, 4),
1741 (long) get_frame_register_unsigned (frame, 5),
1742 (long) get_frame_register_unsigned (frame, 6),
1743 (long) get_frame_register_unsigned (frame, 7));
1744 printf_filtered
1745 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1746 (long) get_frame_register_unsigned (frame, 8),
1747 (long) get_frame_register_unsigned (frame, 9),
1748 (long) get_frame_register_unsigned (frame, 10),
1749 (long) get_frame_register_unsigned (frame, 11),
1750 (long) get_frame_register_unsigned (frame, 12),
1751 (long) get_frame_register_unsigned (frame, 13),
1752 (long) get_frame_register_unsigned (frame, 14),
1753 (long) get_frame_register_unsigned (frame, 15));
1754
1755 printf_filtered
1756 ("BANK=%-3d\n", (int) get_frame_register_unsigned (frame, BANK_REGNUM));
1757 printf_filtered
1758 ("R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1759 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 0),
1760 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 1),
1761 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 2),
1762 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 3),
1763 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 4),
1764 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 5),
1765 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 6),
1766 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 7));
1767 printf_filtered
1768 ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1769 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 8),
1770 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 9),
1771 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 10),
1772 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 11),
1773 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 12),
1774 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 13),
1775 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 14));
1776 printf_filtered
1777 ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1778 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 15),
1779 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 16),
1780 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 17),
1781 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 18),
1782 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 19));
1783 }
1784
1785 static void
1786 sh3e_show_regs (struct frame_info *frame)
1787 {
1788 struct gdbarch *gdbarch = get_frame_arch (frame);
1789 printf_filtered
1790 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1791 paddr (get_frame_register_unsigned (frame,
1792 gdbarch_pc_regnum (gdbarch))),
1793 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1794 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1795 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1796
1797 printf_filtered
1798 (" GBR %08lx VBR %08lx MACL %08lx\n",
1799 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1800 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1801 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1802 printf_filtered
1803 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1804 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1805 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1806 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1807 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1808
1809 printf_filtered
1810 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1811 (long) get_frame_register_unsigned (frame, 0),
1812 (long) get_frame_register_unsigned (frame, 1),
1813 (long) get_frame_register_unsigned (frame, 2),
1814 (long) get_frame_register_unsigned (frame, 3),
1815 (long) get_frame_register_unsigned (frame, 4),
1816 (long) get_frame_register_unsigned (frame, 5),
1817 (long) get_frame_register_unsigned (frame, 6),
1818 (long) get_frame_register_unsigned (frame, 7));
1819 printf_filtered
1820 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1821 (long) get_frame_register_unsigned (frame, 8),
1822 (long) get_frame_register_unsigned (frame, 9),
1823 (long) get_frame_register_unsigned (frame, 10),
1824 (long) get_frame_register_unsigned (frame, 11),
1825 (long) get_frame_register_unsigned (frame, 12),
1826 (long) get_frame_register_unsigned (frame, 13),
1827 (long) get_frame_register_unsigned (frame, 14),
1828 (long) get_frame_register_unsigned (frame, 15));
1829
1830 printf_filtered
1831 ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1832 (long) get_frame_register_unsigned
1833 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1834 (long) get_frame_register_unsigned
1835 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1836 (long) get_frame_register_unsigned
1837 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1838 (long) get_frame_register_unsigned
1839 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1840 (long) get_frame_register_unsigned
1841 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1842 (long) get_frame_register_unsigned
1843 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1844 (long) get_frame_register_unsigned
1845 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1846 (long) get_frame_register_unsigned
1847 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
1848 printf_filtered
1849 ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1850 (long) get_frame_register_unsigned
1851 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
1852 (long) get_frame_register_unsigned
1853 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
1854 (long) get_frame_register_unsigned
1855 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
1856 (long) get_frame_register_unsigned
1857 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
1858 (long) get_frame_register_unsigned
1859 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
1860 (long) get_frame_register_unsigned
1861 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
1862 (long) get_frame_register_unsigned
1863 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
1864 (long) get_frame_register_unsigned
1865 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
1866 }
1867
1868 static void
1869 sh3_dsp_show_regs (struct frame_info *frame)
1870 {
1871 printf_filtered
1872 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1873 paddr (get_frame_register_unsigned (frame,
1874 gdbarch_pc_regnum
1875 (get_frame_arch (frame)))),
1876 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1877 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1878 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1879
1880 printf_filtered
1881 (" GBR %08lx VBR %08lx MACL %08lx\n",
1882 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1883 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1884 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1885
1886 printf_filtered
1887 (" SSR %08lx SPC %08lx DSR %08lx\n",
1888 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1889 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1890 (long) get_frame_register_unsigned (frame, DSR_REGNUM));
1891
1892 printf_filtered
1893 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1894 (long) get_frame_register_unsigned (frame, 0),
1895 (long) get_frame_register_unsigned (frame, 1),
1896 (long) get_frame_register_unsigned (frame, 2),
1897 (long) get_frame_register_unsigned (frame, 3),
1898 (long) get_frame_register_unsigned (frame, 4),
1899 (long) get_frame_register_unsigned (frame, 5),
1900 (long) get_frame_register_unsigned (frame, 6),
1901 (long) get_frame_register_unsigned (frame, 7));
1902 printf_filtered
1903 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1904 (long) get_frame_register_unsigned (frame, 8),
1905 (long) get_frame_register_unsigned (frame, 9),
1906 (long) get_frame_register_unsigned (frame, 10),
1907 (long) get_frame_register_unsigned (frame, 11),
1908 (long) get_frame_register_unsigned (frame, 12),
1909 (long) get_frame_register_unsigned (frame, 13),
1910 (long) get_frame_register_unsigned (frame, 14),
1911 (long) get_frame_register_unsigned (frame, 15));
1912
1913 printf_filtered
1914 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1915 (long) get_frame_register_unsigned (frame, A0G_REGNUM) & 0xff,
1916 (long) get_frame_register_unsigned (frame, A0_REGNUM),
1917 (long) get_frame_register_unsigned (frame, M0_REGNUM),
1918 (long) get_frame_register_unsigned (frame, X0_REGNUM),
1919 (long) get_frame_register_unsigned (frame, Y0_REGNUM),
1920 (long) get_frame_register_unsigned (frame, RS_REGNUM),
1921 (long) get_frame_register_unsigned (frame, MOD_REGNUM));
1922 printf_filtered
1923 ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1924 (long) get_frame_register_unsigned (frame, A1G_REGNUM) & 0xff,
1925 (long) get_frame_register_unsigned (frame, A1_REGNUM),
1926 (long) get_frame_register_unsigned (frame, M1_REGNUM),
1927 (long) get_frame_register_unsigned (frame, X1_REGNUM),
1928 (long) get_frame_register_unsigned (frame, Y1_REGNUM),
1929 (long) get_frame_register_unsigned (frame, RE_REGNUM));
1930 }
1931
1932 static void
1933 sh4_show_regs (struct frame_info *frame)
1934 {
1935 struct gdbarch *gdbarch = get_frame_arch (frame);
1936 int pr = get_frame_register_unsigned (frame, FPSCR_REGNUM) & 0x80000;
1937
1938 printf_filtered
1939 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1940 paddr (get_frame_register_unsigned (frame,
1941 gdbarch_pc_regnum (gdbarch))),
1942 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1943 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1944 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1945
1946 printf_filtered
1947 (" GBR %08lx VBR %08lx MACL %08lx\n",
1948 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1949 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1950 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1951 printf_filtered
1952 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1953 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1954 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1955 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1956 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1957
1958 printf_filtered
1959 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1960 (long) get_frame_register_unsigned (frame, 0),
1961 (long) get_frame_register_unsigned (frame, 1),
1962 (long) get_frame_register_unsigned (frame, 2),
1963 (long) get_frame_register_unsigned (frame, 3),
1964 (long) get_frame_register_unsigned (frame, 4),
1965 (long) get_frame_register_unsigned (frame, 5),
1966 (long) get_frame_register_unsigned (frame, 6),
1967 (long) get_frame_register_unsigned (frame, 7));
1968 printf_filtered
1969 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1970 (long) get_frame_register_unsigned (frame, 8),
1971 (long) get_frame_register_unsigned (frame, 9),
1972 (long) get_frame_register_unsigned (frame, 10),
1973 (long) get_frame_register_unsigned (frame, 11),
1974 (long) get_frame_register_unsigned (frame, 12),
1975 (long) get_frame_register_unsigned (frame, 13),
1976 (long) get_frame_register_unsigned (frame, 14),
1977 (long) get_frame_register_unsigned (frame, 15));
1978
1979 printf_filtered
1980 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1981 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1982 (long) get_frame_register_unsigned
1983 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1984 (long) get_frame_register_unsigned
1985 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1986 (long) get_frame_register_unsigned
1987 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1988 (long) get_frame_register_unsigned
1989 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1990 (long) get_frame_register_unsigned
1991 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1992 (long) get_frame_register_unsigned
1993 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1994 (long) get_frame_register_unsigned
1995 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1996 (long) get_frame_register_unsigned
1997 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
1998 printf_filtered
1999 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
2000 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2001 (long) get_frame_register_unsigned
2002 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
2003 (long) get_frame_register_unsigned
2004 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
2005 (long) get_frame_register_unsigned
2006 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
2007 (long) get_frame_register_unsigned
2008 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
2009 (long) get_frame_register_unsigned
2010 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
2011 (long) get_frame_register_unsigned
2012 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
2013 (long) get_frame_register_unsigned
2014 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
2015 (long) get_frame_register_unsigned
2016 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
2017 }
2018
2019 static void
2020 sh4_nofpu_show_regs (struct frame_info *frame)
2021 {
2022 printf_filtered
2023 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
2024 paddr (get_frame_register_unsigned (frame,
2025 gdbarch_pc_regnum
2026 (get_frame_arch (frame)))),
2027 (long) get_frame_register_unsigned (frame, SR_REGNUM),
2028 (long) get_frame_register_unsigned (frame, PR_REGNUM),
2029 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
2030
2031 printf_filtered
2032 (" GBR %08lx VBR %08lx MACL %08lx\n",
2033 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
2034 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
2035 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
2036 printf_filtered
2037 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
2038 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
2039 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
2040 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
2041 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
2042
2043 printf_filtered
2044 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2045 (long) get_frame_register_unsigned (frame, 0),
2046 (long) get_frame_register_unsigned (frame, 1),
2047 (long) get_frame_register_unsigned (frame, 2),
2048 (long) get_frame_register_unsigned (frame, 3),
2049 (long) get_frame_register_unsigned (frame, 4),
2050 (long) get_frame_register_unsigned (frame, 5),
2051 (long) get_frame_register_unsigned (frame, 6),
2052 (long) get_frame_register_unsigned (frame, 7));
2053 printf_filtered
2054 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2055 (long) get_frame_register_unsigned (frame, 8),
2056 (long) get_frame_register_unsigned (frame, 9),
2057 (long) get_frame_register_unsigned (frame, 10),
2058 (long) get_frame_register_unsigned (frame, 11),
2059 (long) get_frame_register_unsigned (frame, 12),
2060 (long) get_frame_register_unsigned (frame, 13),
2061 (long) get_frame_register_unsigned (frame, 14),
2062 (long) get_frame_register_unsigned (frame, 15));
2063 }
2064
2065 static void
2066 sh_dsp_show_regs (struct frame_info *frame)
2067 {
2068 printf_filtered
2069 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
2070 paddr (get_frame_register_unsigned (frame,
2071 gdbarch_pc_regnum
2072 (get_frame_arch (frame)))),
2073 (long) get_frame_register_unsigned (frame, SR_REGNUM),
2074 (long) get_frame_register_unsigned (frame, PR_REGNUM),
2075 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
2076
2077 printf_filtered
2078 (" GBR %08lx VBR %08lx DSR %08lx MACL %08lx\n",
2079 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
2080 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
2081 (long) get_frame_register_unsigned (frame, DSR_REGNUM),
2082 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
2083
2084 printf_filtered
2085 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2086 (long) get_frame_register_unsigned (frame, 0),
2087 (long) get_frame_register_unsigned (frame, 1),
2088 (long) get_frame_register_unsigned (frame, 2),
2089 (long) get_frame_register_unsigned (frame, 3),
2090 (long) get_frame_register_unsigned (frame, 4),
2091 (long) get_frame_register_unsigned (frame, 5),
2092 (long) get_frame_register_unsigned (frame, 6),
2093 (long) get_frame_register_unsigned (frame, 7));
2094 printf_filtered
2095 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2096 (long) get_frame_register_unsigned (frame, 8),
2097 (long) get_frame_register_unsigned (frame, 9),
2098 (long) get_frame_register_unsigned (frame, 10),
2099 (long) get_frame_register_unsigned (frame, 11),
2100 (long) get_frame_register_unsigned (frame, 12),
2101 (long) get_frame_register_unsigned (frame, 13),
2102 (long) get_frame_register_unsigned (frame, 14),
2103 (long) get_frame_register_unsigned (frame, 15));
2104
2105 printf_filtered
2106 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
2107 (long) get_frame_register_unsigned (frame, A0G_REGNUM) & 0xff,
2108 (long) get_frame_register_unsigned (frame, A0_REGNUM),
2109 (long) get_frame_register_unsigned (frame, M0_REGNUM),
2110 (long) get_frame_register_unsigned (frame, X0_REGNUM),
2111 (long) get_frame_register_unsigned (frame, Y0_REGNUM),
2112 (long) get_frame_register_unsigned (frame, RS_REGNUM),
2113 (long) get_frame_register_unsigned (frame, MOD_REGNUM));
2114 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
2115 (long) get_frame_register_unsigned (frame, A1G_REGNUM) & 0xff,
2116 (long) get_frame_register_unsigned (frame, A1_REGNUM),
2117 (long) get_frame_register_unsigned (frame, M1_REGNUM),
2118 (long) get_frame_register_unsigned (frame, X1_REGNUM),
2119 (long) get_frame_register_unsigned (frame, Y1_REGNUM),
2120 (long) get_frame_register_unsigned (frame, RE_REGNUM));
2121 }
2122
2123 static void
2124 sh_show_regs_command (char *args, int from_tty)
2125 {
2126 if (sh_show_regs)
2127 (*sh_show_regs) (get_current_frame ());
2128 }
2129
2130 static struct type *
2131 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
2132 {
2133 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
2134 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
2135 return builtin_type_float;
2136 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2137 return builtin_type_double;
2138 else
2139 return builtin_type_int;
2140 }
2141
2142 /* Return the GDB type object for the "standard" data type
2143 of data in register N. */
2144 static struct type *
2145 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
2146 {
2147 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
2148 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
2149 return builtin_type_float;
2150 else
2151 return builtin_type_int;
2152 }
2153
2154 static struct type *
2155 sh_sh4_build_float_register_type (int high)
2156 {
2157 struct type *temp;
2158
2159 temp = create_range_type (NULL, builtin_type_int, 0, high);
2160 return create_array_type (NULL, builtin_type_float, temp);
2161 }
2162
2163 static struct type *
2164 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
2165 {
2166 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
2167 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
2168 return builtin_type_float;
2169 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2170 return builtin_type_double;
2171 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2172 return sh_sh4_build_float_register_type (3);
2173 else
2174 return builtin_type_int;
2175 }
2176
2177 static struct type *
2178 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
2179 {
2180 return builtin_type_int;
2181 }
2182
2183 /* Is a register in a reggroup?
2184 The default code in reggroup.c doesn't identify system registers, some
2185 float registers or any of the vector registers.
2186 TODO: sh2a and dsp registers. */
2187 int
2188 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2189 struct reggroup *reggroup)
2190 {
2191 if (gdbarch_register_name (gdbarch, regnum) == NULL
2192 || *gdbarch_register_name (gdbarch, regnum) == '\0')
2193 return 0;
2194
2195 if (reggroup == float_reggroup
2196 && (regnum == FPUL_REGNUM
2197 || regnum == FPSCR_REGNUM))
2198 return 1;
2199
2200 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
2201 {
2202 if (reggroup == vector_reggroup || reggroup == float_reggroup)
2203 return 1;
2204 if (reggroup == general_reggroup)
2205 return 0;
2206 }
2207
2208 if (regnum == VBR_REGNUM
2209 || regnum == SR_REGNUM
2210 || regnum == FPSCR_REGNUM
2211 || regnum == SSR_REGNUM
2212 || regnum == SPC_REGNUM)
2213 {
2214 if (reggroup == system_reggroup)
2215 return 1;
2216 if (reggroup == general_reggroup)
2217 return 0;
2218 }
2219
2220 /* The default code can cope with any other registers. */
2221 return default_register_reggroup_p (gdbarch, regnum, reggroup);
2222 }
2223
2224 /* On the sh4, the DRi pseudo registers are problematic if the target
2225 is little endian. When the user writes one of those registers, for
2226 instance with 'ser var $dr0=1', we want the double to be stored
2227 like this:
2228 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
2229 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
2230
2231 This corresponds to little endian byte order & big endian word
2232 order. However if we let gdb write the register w/o conversion, it
2233 will write fr0 and fr1 this way:
2234 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
2235 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
2236 because it will consider fr0 and fr1 as a single LE stretch of memory.
2237
2238 To achieve what we want we must force gdb to store things in
2239 floatformat_ieee_double_littlebyte_bigword (which is defined in
2240 include/floatformat.h and libiberty/floatformat.c.
2241
2242 In case the target is big endian, there is no problem, the
2243 raw bytes will look like:
2244 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
2245 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
2246
2247 The other pseudo registers (the FVs) also don't pose a problem
2248 because they are stored as 4 individual FP elements. */
2249
2250 static void
2251 sh_register_convert_to_virtual (int regnum, struct type *type,
2252 char *from, char *to)
2253 {
2254 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
2255 {
2256 DOUBLEST val;
2257 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
2258 from, &val);
2259 store_typed_floating (to, type, val);
2260 }
2261 else
2262 error
2263 ("sh_register_convert_to_virtual called with non DR register number");
2264 }
2265
2266 static void
2267 sh_register_convert_to_raw (struct type *type, int regnum,
2268 const void *from, void *to)
2269 {
2270 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
2271 {
2272 DOUBLEST val = extract_typed_floating (from, type);
2273 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
2274 &val, to);
2275 }
2276 else
2277 error (_("sh_register_convert_to_raw called with non DR register number"));
2278 }
2279
2280 /* For vectors of 4 floating point registers. */
2281 static int
2282 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
2283 {
2284 int fp_regnum;
2285
2286 fp_regnum = gdbarch_fp0_regnum (gdbarch)
2287 + (fv_regnum - FV0_REGNUM) * 4;
2288 return fp_regnum;
2289 }
2290
2291 /* For double precision floating point registers, i.e 2 fp regs.*/
2292 static int
2293 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
2294 {
2295 int fp_regnum;
2296
2297 fp_regnum = gdbarch_fp0_regnum (gdbarch)
2298 + (dr_regnum - DR0_REGNUM) * 2;
2299 return fp_regnum;
2300 }
2301
2302 static void
2303 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2304 int reg_nr, gdb_byte *buffer)
2305 {
2306 int base_regnum, portion;
2307 char temp_buffer[MAX_REGISTER_SIZE];
2308
2309 if (reg_nr == PSEUDO_BANK_REGNUM)
2310 regcache_raw_read (regcache, BANK_REGNUM, buffer);
2311 else
2312 if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2313 {
2314 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
2315
2316 /* Build the value in the provided buffer. */
2317 /* Read the real regs for which this one is an alias. */
2318 for (portion = 0; portion < 2; portion++)
2319 regcache_raw_read (regcache, base_regnum + portion,
2320 (temp_buffer
2321 + register_size (gdbarch,
2322 base_regnum) * portion));
2323 /* We must pay attention to the endiannes. */
2324 sh_register_convert_to_virtual (reg_nr,
2325 register_type (gdbarch, reg_nr),
2326 temp_buffer, buffer);
2327 }
2328 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2329 {
2330 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
2331
2332 /* Read the real regs for which this one is an alias. */
2333 for (portion = 0; portion < 4; portion++)
2334 regcache_raw_read (regcache, base_regnum + portion,
2335 ((char *) buffer
2336 + register_size (gdbarch,
2337 base_regnum) * portion));
2338 }
2339 }
2340
2341 static void
2342 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2343 int reg_nr, const gdb_byte *buffer)
2344 {
2345 int base_regnum, portion;
2346 char temp_buffer[MAX_REGISTER_SIZE];
2347
2348 if (reg_nr == PSEUDO_BANK_REGNUM)
2349 {
2350 /* When the bank register is written to, the whole register bank
2351 is switched and all values in the bank registers must be read
2352 from the target/sim again. We're just invalidating the regcache
2353 so that a re-read happens next time it's necessary. */
2354 int bregnum;
2355
2356 regcache_raw_write (regcache, BANK_REGNUM, buffer);
2357 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
2358 regcache_invalidate (regcache, bregnum);
2359 }
2360 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2361 {
2362 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
2363
2364 /* We must pay attention to the endiannes. */
2365 sh_register_convert_to_raw (register_type (gdbarch, reg_nr),
2366 reg_nr, buffer, temp_buffer);
2367
2368 /* Write the real regs for which this one is an alias. */
2369 for (portion = 0; portion < 2; portion++)
2370 regcache_raw_write (regcache, base_regnum + portion,
2371 (temp_buffer
2372 + register_size (gdbarch,
2373 base_regnum) * portion));
2374 }
2375 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2376 {
2377 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
2378
2379 /* Write the real regs for which this one is an alias. */
2380 for (portion = 0; portion < 4; portion++)
2381 regcache_raw_write (regcache, base_regnum + portion,
2382 ((char *) buffer
2383 + register_size (gdbarch,
2384 base_regnum) * portion));
2385 }
2386 }
2387
2388 static int
2389 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
2390 {
2391 if (legacy_register_sim_regno (gdbarch, nr) < 0)
2392 return legacy_register_sim_regno (gdbarch, nr);
2393 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
2394 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
2395 if (nr == MOD_REGNUM)
2396 return SIM_SH_MOD_REGNUM;
2397 if (nr == RS_REGNUM)
2398 return SIM_SH_RS_REGNUM;
2399 if (nr == RE_REGNUM)
2400 return SIM_SH_RE_REGNUM;
2401 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
2402 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2403 return nr;
2404 }
2405
2406 static int
2407 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
2408 {
2409 switch (nr)
2410 {
2411 case TBR_REGNUM:
2412 return SIM_SH_TBR_REGNUM;
2413 case IBNR_REGNUM:
2414 return SIM_SH_IBNR_REGNUM;
2415 case IBCR_REGNUM:
2416 return SIM_SH_IBCR_REGNUM;
2417 case BANK_REGNUM:
2418 return SIM_SH_BANK_REGNUM;
2419 case MACLB_REGNUM:
2420 return SIM_SH_BANK_MACL_REGNUM;
2421 case GBRB_REGNUM:
2422 return SIM_SH_BANK_GBR_REGNUM;
2423 case PRB_REGNUM:
2424 return SIM_SH_BANK_PR_REGNUM;
2425 case IVNB_REGNUM:
2426 return SIM_SH_BANK_IVN_REGNUM;
2427 case MACHB_REGNUM:
2428 return SIM_SH_BANK_MACH_REGNUM;
2429 default:
2430 break;
2431 }
2432 return legacy_register_sim_regno (gdbarch, nr);
2433 }
2434
2435 /* Set up the register unwinding such that call-clobbered registers are
2436 not displayed in frames >0 because the true value is not certain.
2437 The 'undefined' registers will show up as 'not available' unless the
2438 CFI says otherwise.
2439
2440 This function is currently set up for SH4 and compatible only. */
2441
2442 static void
2443 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2444 struct dwarf2_frame_state_reg *reg,
2445 struct frame_info *this_frame)
2446 {
2447 /* Mark the PC as the destination for the return address. */
2448 if (regnum == gdbarch_pc_regnum (gdbarch))
2449 reg->how = DWARF2_FRAME_REG_RA;
2450
2451 /* Mark the stack pointer as the call frame address. */
2452 else if (regnum == gdbarch_sp_regnum (gdbarch))
2453 reg->how = DWARF2_FRAME_REG_CFA;
2454
2455 /* The above was taken from the default init_reg in dwarf2-frame.c
2456 while the below is SH specific. */
2457
2458 /* Caller save registers. */
2459 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
2460 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
2461 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
2462 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
2463 || (regnum == MACH_REGNUM)
2464 || (regnum == MACL_REGNUM)
2465 || (regnum == FPUL_REGNUM)
2466 || (regnum == SR_REGNUM))
2467 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2468
2469 /* Callee save registers. */
2470 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
2471 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
2472 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
2473 || (regnum == FV0_REGNUM+3))
2474 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2475
2476 /* Other registers. These are not in the ABI and may or may not
2477 mean anything in frames >0 so don't show them. */
2478 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
2479 || (regnum == GBR_REGNUM)
2480 || (regnum == VBR_REGNUM)
2481 || (regnum == FPSCR_REGNUM)
2482 || (regnum == SSR_REGNUM)
2483 || (regnum == SPC_REGNUM))
2484 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2485 }
2486
2487 static struct sh_frame_cache *
2488 sh_alloc_frame_cache (void)
2489 {
2490 struct sh_frame_cache *cache;
2491 int i;
2492
2493 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
2494
2495 /* Base address. */
2496 cache->base = 0;
2497 cache->saved_sp = 0;
2498 cache->sp_offset = 0;
2499 cache->pc = 0;
2500
2501 /* Frameless until proven otherwise. */
2502 cache->uses_fp = 0;
2503
2504 /* Saved registers. We initialize these to -1 since zero is a valid
2505 offset (that's where fp is supposed to be stored). */
2506 for (i = 0; i < SH_NUM_REGS; i++)
2507 {
2508 cache->saved_regs[i] = -1;
2509 }
2510
2511 return cache;
2512 }
2513
2514 static struct sh_frame_cache *
2515 sh_frame_cache (struct frame_info *next_frame, void **this_cache)
2516 {
2517 struct sh_frame_cache *cache;
2518 CORE_ADDR current_pc;
2519 int i;
2520
2521 if (*this_cache)
2522 return *this_cache;
2523
2524 cache = sh_alloc_frame_cache ();
2525 *this_cache = cache;
2526
2527 /* In principle, for normal frames, fp holds the frame pointer,
2528 which holds the base address for the current stack frame.
2529 However, for functions that don't need it, the frame pointer is
2530 optional. For these "frameless" functions the frame pointer is
2531 actually the frame pointer of the calling frame. */
2532 cache->base = frame_unwind_register_unsigned (next_frame, FP_REGNUM);
2533 if (cache->base == 0)
2534 return cache;
2535
2536 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2537 current_pc = frame_pc_unwind (next_frame);
2538 if (cache->pc != 0)
2539 {
2540 ULONGEST fpscr;
2541 fpscr = frame_unwind_register_unsigned (next_frame, FPSCR_REGNUM);
2542 sh_analyze_prologue (cache->pc, current_pc, cache, fpscr);
2543 }
2544
2545 if (!cache->uses_fp)
2546 {
2547 /* We didn't find a valid frame, which means that CACHE->base
2548 currently holds the frame pointer for our calling frame. If
2549 we're at the start of a function, or somewhere half-way its
2550 prologue, the function's frame probably hasn't been fully
2551 setup yet. Try to reconstruct the base address for the stack
2552 frame by looking at the stack pointer. For truly "frameless"
2553 functions this might work too. */
2554 cache->base = frame_unwind_register_unsigned
2555 (next_frame,
2556 gdbarch_sp_regnum (get_frame_arch (next_frame)));
2557 }
2558
2559 /* Now that we have the base address for the stack frame we can
2560 calculate the value of sp in the calling frame. */
2561 cache->saved_sp = cache->base + cache->sp_offset;
2562
2563 /* Adjust all the saved registers such that they contain addresses
2564 instead of offsets. */
2565 for (i = 0; i < SH_NUM_REGS; i++)
2566 if (cache->saved_regs[i] != -1)
2567 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
2568
2569 return cache;
2570 }
2571
2572 static void
2573 sh_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2574 int regnum, int *optimizedp,
2575 enum lval_type *lvalp, CORE_ADDR *addrp,
2576 int *realnump, gdb_byte *valuep)
2577 {
2578 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2579 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2580
2581 gdb_assert (regnum >= 0);
2582
2583 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2584 {
2585 *optimizedp = 0;
2586 *lvalp = not_lval;
2587 *addrp = 0;
2588 *realnump = -1;
2589 if (valuep)
2590 {
2591 /* Store the value. */
2592 store_unsigned_integer (valuep, 4, cache->saved_sp);
2593 }
2594 return;
2595 }
2596
2597 /* The PC of the previous frame is stored in the PR register of
2598 the current frame. Frob regnum so that we pull the value from
2599 the correct place. */
2600 if (regnum == gdbarch_pc_regnum (gdbarch))
2601 regnum = PR_REGNUM;
2602
2603 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
2604 {
2605 *optimizedp = 0;
2606 *lvalp = lval_memory;
2607 *addrp = cache->saved_regs[regnum];
2608 *realnump = -1;
2609 if (valuep)
2610 {
2611 /* Read the value in from memory. */
2612 read_memory (*addrp, valuep,
2613 register_size (gdbarch, regnum));
2614 }
2615 return;
2616 }
2617
2618 *optimizedp = 0;
2619 *lvalp = lval_register;
2620 *addrp = 0;
2621 *realnump = regnum;
2622 if (valuep)
2623 frame_unwind_register (next_frame, (*realnump), valuep);
2624 }
2625
2626 static void
2627 sh_frame_this_id (struct frame_info *next_frame, void **this_cache,
2628 struct frame_id *this_id)
2629 {
2630 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2631
2632 /* This marks the outermost frame. */
2633 if (cache->base == 0)
2634 return;
2635
2636 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2637 }
2638
2639 static const struct frame_unwind sh_frame_unwind = {
2640 NORMAL_FRAME,
2641 sh_frame_this_id,
2642 sh_frame_prev_register
2643 };
2644
2645 static const struct frame_unwind *
2646 sh_frame_sniffer (struct frame_info *next_frame)
2647 {
2648 return &sh_frame_unwind;
2649 }
2650
2651 static CORE_ADDR
2652 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2653 {
2654 return frame_unwind_register_unsigned (next_frame,
2655 gdbarch_sp_regnum (gdbarch));
2656 }
2657
2658 static CORE_ADDR
2659 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2660 {
2661 return frame_unwind_register_unsigned (next_frame,
2662 gdbarch_pc_regnum (gdbarch));
2663 }
2664
2665 static struct frame_id
2666 sh_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2667 {
2668 return frame_id_build (sh_unwind_sp (gdbarch, next_frame),
2669 frame_pc_unwind (next_frame));
2670 }
2671
2672 static CORE_ADDR
2673 sh_frame_base_address (struct frame_info *next_frame, void **this_cache)
2674 {
2675 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2676
2677 return cache->base;
2678 }
2679
2680 static const struct frame_base sh_frame_base = {
2681 &sh_frame_unwind,
2682 sh_frame_base_address,
2683 sh_frame_base_address,
2684 sh_frame_base_address
2685 };
2686
2687 /* The epilogue is defined here as the area at the end of a function,
2688 either on the `ret' instruction itself or after an instruction which
2689 destroys the function's stack frame. */
2690 static int
2691 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2692 {
2693 CORE_ADDR func_addr = 0, func_end = 0;
2694
2695 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2696 {
2697 ULONGEST inst;
2698 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2699 for a nop and some fixed data (e.g. big offsets) which are
2700 unfortunately also treated as part of the function (which
2701 means, they are below func_end. */
2702 CORE_ADDR addr = func_end - 28;
2703 if (addr < func_addr + 4)
2704 addr = func_addr + 4;
2705 if (pc < addr)
2706 return 0;
2707
2708 /* First search forward until hitting an rts. */
2709 while (addr < func_end
2710 && !IS_RTS (read_memory_unsigned_integer (addr, 2)))
2711 addr += 2;
2712 if (addr >= func_end)
2713 return 0;
2714
2715 /* At this point we should find a mov.l @r15+,r14 instruction,
2716 either before or after the rts. If not, then the function has
2717 probably no "normal" epilogue and we bail out here. */
2718 inst = read_memory_unsigned_integer (addr - 2, 2);
2719 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2)))
2720 addr -= 2;
2721 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2)))
2722 return 0;
2723
2724 inst = read_memory_unsigned_integer (addr - 2, 2);
2725
2726 /* Step over possible lds.l @r15+,macl. */
2727 if (IS_MACL_LDS (inst))
2728 {
2729 addr -= 2;
2730 inst = read_memory_unsigned_integer (addr - 2, 2);
2731 }
2732
2733 /* Step over possible lds.l @r15+,pr. */
2734 if (IS_LDS (inst))
2735 {
2736 addr -= 2;
2737 inst = read_memory_unsigned_integer (addr - 2, 2);
2738 }
2739
2740 /* Step over possible mov r14,r15. */
2741 if (IS_MOV_FP_SP (inst))
2742 {
2743 addr -= 2;
2744 inst = read_memory_unsigned_integer (addr - 2, 2);
2745 }
2746
2747 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2748 instructions. */
2749 while (addr > func_addr + 4
2750 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2751 {
2752 addr -= 2;
2753 inst = read_memory_unsigned_integer (addr - 2, 2);
2754 }
2755
2756 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2757 That's allowed for the epilogue. */
2758 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2759 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2760 && addr > func_addr + 6
2761 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2)))
2762 addr -= 4;
2763
2764 if (pc >= addr)
2765 return 1;
2766 }
2767 return 0;
2768 }
2769 \f
2770
2771 static struct gdbarch *
2772 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2773 {
2774 struct gdbarch *gdbarch;
2775
2776 sh_show_regs = sh_generic_show_regs;
2777 switch (info.bfd_arch_info->mach)
2778 {
2779 case bfd_mach_sh2e:
2780 sh_show_regs = sh2e_show_regs;
2781 break;
2782 case bfd_mach_sh2a:
2783 sh_show_regs = sh2a_show_regs;
2784 break;
2785 case bfd_mach_sh2a_nofpu:
2786 sh_show_regs = sh2a_nofpu_show_regs;
2787 break;
2788 case bfd_mach_sh_dsp:
2789 sh_show_regs = sh_dsp_show_regs;
2790 break;
2791
2792 case bfd_mach_sh3:
2793 sh_show_regs = sh3_show_regs;
2794 break;
2795
2796 case bfd_mach_sh3e:
2797 sh_show_regs = sh3e_show_regs;
2798 break;
2799
2800 case bfd_mach_sh3_dsp:
2801 case bfd_mach_sh4al_dsp:
2802 sh_show_regs = sh3_dsp_show_regs;
2803 break;
2804
2805 case bfd_mach_sh4:
2806 case bfd_mach_sh4a:
2807 sh_show_regs = sh4_show_regs;
2808 break;
2809
2810 case bfd_mach_sh4_nofpu:
2811 case bfd_mach_sh4a_nofpu:
2812 sh_show_regs = sh4_nofpu_show_regs;
2813 break;
2814
2815 case bfd_mach_sh5:
2816 sh_show_regs = sh64_show_regs;
2817 /* SH5 is handled entirely in sh64-tdep.c */
2818 return sh64_gdbarch_init (info, arches);
2819 }
2820
2821 /* If there is already a candidate, use it. */
2822 arches = gdbarch_list_lookup_by_info (arches, &info);
2823 if (arches != NULL)
2824 return arches->gdbarch;
2825
2826 /* None found, create a new architecture from the information
2827 provided. */
2828 gdbarch = gdbarch_alloc (&info, NULL);
2829
2830 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2831 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2832 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2833 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2834 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2835 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2836 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2837 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2838
2839 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2840 set_gdbarch_sp_regnum (gdbarch, 15);
2841 set_gdbarch_pc_regnum (gdbarch, 16);
2842 set_gdbarch_fp0_regnum (gdbarch, -1);
2843 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2844
2845 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2846 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2847
2848 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2849
2850 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
2851 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2852
2853 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2854
2855 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2856 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2857
2858 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2859
2860 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2861
2862 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2863 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2864 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2865 set_gdbarch_unwind_dummy_id (gdbarch, sh_unwind_dummy_id);
2866 frame_base_set_default (gdbarch, &sh_frame_base);
2867
2868 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
2869
2870 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2871
2872 switch (info.bfd_arch_info->mach)
2873 {
2874 case bfd_mach_sh:
2875 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2876 break;
2877
2878 case bfd_mach_sh2:
2879 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2880 break;
2881
2882 case bfd_mach_sh2e:
2883 /* doubles on sh2e and sh3e are actually 4 byte. */
2884 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2885
2886 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2887 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2888 set_gdbarch_fp0_regnum (gdbarch, 25);
2889 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2890 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2891 break;
2892
2893 case bfd_mach_sh2a:
2894 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2895 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2896 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2897
2898 set_gdbarch_fp0_regnum (gdbarch, 25);
2899 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2900 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2901 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2902 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2903 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2904 break;
2905
2906 case bfd_mach_sh2a_nofpu:
2907 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2908 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2909
2910 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2911 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2912 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2913 break;
2914
2915 case bfd_mach_sh_dsp:
2916 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2917 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2918 break;
2919
2920 case bfd_mach_sh3:
2921 case bfd_mach_sh3_nommu:
2922 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2923 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2924 break;
2925
2926 case bfd_mach_sh3e:
2927 case bfd_mach_sh2a_or_sh3e:
2928 /* doubles on sh2e and sh3e are actually 4 byte. */
2929 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2930
2931 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2932 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2933 set_gdbarch_fp0_regnum (gdbarch, 25);
2934 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2935 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2936 break;
2937
2938 case bfd_mach_sh3_dsp:
2939 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2940 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2941 break;
2942
2943 case bfd_mach_sh4:
2944 case bfd_mach_sh4a:
2945 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2946 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2947 set_gdbarch_fp0_regnum (gdbarch, 25);
2948 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2949 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2950 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2951 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2952 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2953 break;
2954
2955 case bfd_mach_sh4_nofpu:
2956 case bfd_mach_sh4a_nofpu:
2957 case bfd_mach_sh4_nommu_nofpu:
2958 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2959 case bfd_mach_sh2a_or_sh4:
2960 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2961 break;
2962
2963 case bfd_mach_sh4al_dsp:
2964 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2965 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2966 break;
2967
2968 default:
2969 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2970 break;
2971 }
2972
2973 /* Hook in ABI-specific overrides, if they have been registered. */
2974 gdbarch_init_osabi (info, gdbarch);
2975
2976 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2977 frame_unwind_append_sniffer (gdbarch, sh_frame_sniffer);
2978
2979 return gdbarch;
2980 }
2981
2982 static void
2983 show_sh_command (char *args, int from_tty)
2984 {
2985 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2986 }
2987
2988 static void
2989 set_sh_command (char *args, int from_tty)
2990 {
2991 printf_unfiltered
2992 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2993 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2994 }
2995
2996 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2997
2998 void
2999 _initialize_sh_tdep (void)
3000 {
3001 struct cmd_list_element *c;
3002
3003 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
3004
3005 add_com ("regs", class_vars, sh_show_regs_command, _("Print all registers"));
3006
3007 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
3008 &setshcmdlist, "set sh ", 0, &setlist);
3009 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
3010 &showshcmdlist, "show sh ", 0, &showlist);
3011
3012 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
3013 &sh_active_calling_convention,
3014 _("Set calling convention used when calling target "
3015 "functions from GDB."),
3016 _("Show calling convention used when calling target "
3017 "functions from GDB."),
3018 _("gcc - Use GCC calling convention (default).\n"
3019 "renesas - Enforce Renesas calling convention."),
3020 NULL, NULL,
3021 &setshcmdlist, &showshcmdlist);
3022 }
This page took 0.110439 seconds and 4 git commands to generate.