Correct shell compatibility issue detected with pkgsrc.
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "floatformat.h"
37 #include "regcache.h"
38 #include "doublest.h"
39 #include "osabi.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "objfiles.h"
43
44 #include "sh-tdep.h"
45 #include "sh64-tdep.h"
46
47 #include "elf-bfd.h"
48 #include "solib-svr4.h"
49
50 /* sh flags */
51 #include "elf/sh.h"
52 #include "dwarf2.h"
53 /* registers numbers shared with the simulator. */
54 #include "gdb/sim-sh.h"
55 #include <algorithm>
56
57 /* List of "set sh ..." and "show sh ..." commands. */
58 static struct cmd_list_element *setshcmdlist = NULL;
59 static struct cmd_list_element *showshcmdlist = NULL;
60
61 static const char sh_cc_gcc[] = "gcc";
62 static const char sh_cc_renesas[] = "renesas";
63 static const char *const sh_cc_enum[] = {
64 sh_cc_gcc,
65 sh_cc_renesas,
66 NULL
67 };
68
69 static const char *sh_active_calling_convention = sh_cc_gcc;
70
71 #define SH_NUM_REGS 67
72
73 struct sh_frame_cache
74 {
75 /* Base address. */
76 CORE_ADDR base;
77 LONGEST sp_offset;
78 CORE_ADDR pc;
79
80 /* Flag showing that a frame has been created in the prologue code. */
81 int uses_fp;
82
83 /* Saved registers. */
84 CORE_ADDR saved_regs[SH_NUM_REGS];
85 CORE_ADDR saved_sp;
86 };
87
88 static int
89 sh_is_renesas_calling_convention (struct type *func_type)
90 {
91 int val = 0;
92
93 if (func_type)
94 {
95 func_type = check_typedef (func_type);
96
97 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
98 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
99
100 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
101 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
102 val = 1;
103 }
104
105 if (sh_active_calling_convention == sh_cc_renesas)
106 val = 1;
107
108 return val;
109 }
110
111 static const char *
112 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
113 {
114 static const char *register_names[] = {
115 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
116 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
117 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
118 "", "",
119 "", "", "", "", "", "", "", "",
120 "", "", "", "", "", "", "", "",
121 "", "",
122 "", "", "", "", "", "", "", "",
123 "", "", "", "", "", "", "", "",
124 "", "", "", "", "", "", "", "",
125 };
126 if (reg_nr < 0)
127 return NULL;
128 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
129 return NULL;
130 return register_names[reg_nr];
131 }
132
133 static const char *
134 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
135 {
136 static const char *register_names[] = {
137 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
138 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
139 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
140 "", "",
141 "", "", "", "", "", "", "", "",
142 "", "", "", "", "", "", "", "",
143 "ssr", "spc",
144 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
145 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
146 "", "", "", "", "", "", "", "",
147 };
148 if (reg_nr < 0)
149 return NULL;
150 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
151 return NULL;
152 return register_names[reg_nr];
153 }
154
155 static const char *
156 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
157 {
158 static const char *register_names[] = {
159 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
160 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
161 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
162 "fpul", "fpscr",
163 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
164 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
165 "ssr", "spc",
166 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
167 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
168 "", "", "", "", "", "", "", "",
169 };
170 if (reg_nr < 0)
171 return NULL;
172 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
173 return NULL;
174 return register_names[reg_nr];
175 }
176
177 static const char *
178 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
179 {
180 static const char *register_names[] = {
181 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
182 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
183 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
184 "fpul", "fpscr",
185 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
186 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
187 "", "",
188 "", "", "", "", "", "", "", "",
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
191 };
192 if (reg_nr < 0)
193 return NULL;
194 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
195 return NULL;
196 return register_names[reg_nr];
197 }
198
199 static const char *
200 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
201 {
202 static const char *register_names[] = {
203 /* general registers 0-15 */
204 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
205 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
206 /* 16 - 22 */
207 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
208 /* 23, 24 */
209 "fpul", "fpscr",
210 /* floating point registers 25 - 40 */
211 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
212 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
213 /* 41, 42 */
214 "", "",
215 /* 43 - 62. Banked registers. The bank number used is determined by
216 the bank register (63). */
217 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
218 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
219 "machb", "ivnb", "prb", "gbrb", "maclb",
220 /* 63: register bank number, not a real register but used to
221 communicate the register bank currently get/set. This register
222 is hidden to the user, who manipulates it using the pseudo
223 register called "bank" (67). See below. */
224 "",
225 /* 64 - 66 */
226 "ibcr", "ibnr", "tbr",
227 /* 67: register bank number, the user visible pseudo register. */
228 "bank",
229 /* double precision (pseudo) 68 - 75 */
230 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
231 };
232 if (reg_nr < 0)
233 return NULL;
234 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
235 return NULL;
236 return register_names[reg_nr];
237 }
238
239 static const char *
240 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
241 {
242 static const char *register_names[] = {
243 /* general registers 0-15 */
244 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
245 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
246 /* 16 - 22 */
247 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
248 /* 23, 24 */
249 "", "",
250 /* floating point registers 25 - 40 */
251 "", "", "", "", "", "", "", "",
252 "", "", "", "", "", "", "", "",
253 /* 41, 42 */
254 "", "",
255 /* 43 - 62. Banked registers. The bank number used is determined by
256 the bank register (63). */
257 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
258 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
259 "machb", "ivnb", "prb", "gbrb", "maclb",
260 /* 63: register bank number, not a real register but used to
261 communicate the register bank currently get/set. This register
262 is hidden to the user, who manipulates it using the pseudo
263 register called "bank" (67). See below. */
264 "",
265 /* 64 - 66 */
266 "ibcr", "ibnr", "tbr",
267 /* 67: register bank number, the user visible pseudo register. */
268 "bank",
269 /* double precision (pseudo) 68 - 75 */
270 "", "", "", "", "", "", "", "",
271 };
272 if (reg_nr < 0)
273 return NULL;
274 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
275 return NULL;
276 return register_names[reg_nr];
277 }
278
279 static const char *
280 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
281 {
282 static const char *register_names[] = {
283 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
284 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
285 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
286 "", "dsr",
287 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
288 "y0", "y1", "", "", "", "", "", "mod",
289 "", "",
290 "rs", "re", "", "", "", "", "", "",
291 "", "", "", "", "", "", "", "",
292 "", "", "", "", "", "", "", "",
293 };
294 if (reg_nr < 0)
295 return NULL;
296 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
297 return NULL;
298 return register_names[reg_nr];
299 }
300
301 static const char *
302 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
303 {
304 static const char *register_names[] = {
305 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
306 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
307 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
308 "", "dsr",
309 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
310 "y0", "y1", "", "", "", "", "", "mod",
311 "ssr", "spc",
312 "rs", "re", "", "", "", "", "", "",
313 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
314 "", "", "", "", "", "", "", "",
315 "", "", "", "", "", "", "", "",
316 };
317 if (reg_nr < 0)
318 return NULL;
319 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
320 return NULL;
321 return register_names[reg_nr];
322 }
323
324 static const char *
325 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
326 {
327 static const char *register_names[] = {
328 /* general registers 0-15 */
329 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
330 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
331 /* 16 - 22 */
332 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
333 /* 23, 24 */
334 "fpul", "fpscr",
335 /* floating point registers 25 - 40 */
336 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
337 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
338 /* 41, 42 */
339 "ssr", "spc",
340 /* bank 0 43 - 50 */
341 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
342 /* bank 1 51 - 58 */
343 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
344 /* 59 - 66 */
345 "", "", "", "", "", "", "", "",
346 /* pseudo bank register. */
347 "",
348 /* double precision (pseudo) 68 - 75 */
349 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
350 /* vectors (pseudo) 76 - 79 */
351 "fv0", "fv4", "fv8", "fv12",
352 /* FIXME: missing XF */
353 /* FIXME: missing XD */
354 };
355 if (reg_nr < 0)
356 return NULL;
357 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
358 return NULL;
359 return register_names[reg_nr];
360 }
361
362 static const char *
363 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
364 {
365 static const char *register_names[] = {
366 /* general registers 0-15 */
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
369 /* 16 - 22 */
370 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
371 /* 23, 24 */
372 "", "",
373 /* floating point registers 25 - 40 -- not for nofpu target */
374 "", "", "", "", "", "", "", "",
375 "", "", "", "", "", "", "", "",
376 /* 41, 42 */
377 "ssr", "spc",
378 /* bank 0 43 - 50 */
379 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
380 /* bank 1 51 - 58 */
381 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
382 /* 59 - 66 */
383 "", "", "", "", "", "", "", "",
384 /* pseudo bank register. */
385 "",
386 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
387 "", "", "", "", "", "", "", "",
388 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
389 "", "", "", "",
390 };
391 if (reg_nr < 0)
392 return NULL;
393 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
394 return NULL;
395 return register_names[reg_nr];
396 }
397
398 static const char *
399 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
400 {
401 static const char *register_names[] = {
402 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
403 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
404 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
405 "", "dsr",
406 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
407 "y0", "y1", "", "", "", "", "", "mod",
408 "ssr", "spc",
409 "rs", "re", "", "", "", "", "", "",
410 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
411 "", "", "", "", "", "", "", "",
412 "", "", "", "", "", "", "", "",
413 };
414 if (reg_nr < 0)
415 return NULL;
416 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
417 return NULL;
418 return register_names[reg_nr];
419 }
420
421 /* Implement the breakpoint_kind_from_pc gdbarch method. */
422
423 static int
424 sh_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
425 {
426 return 2;
427 }
428
429 /* Implement the sw_breakpoint_from_kind gdbarch method. */
430
431 static const gdb_byte *
432 sh_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
433 {
434 *size = kind;
435
436 /* For remote stub targets, trapa #20 is used. */
437 if (strcmp (target_shortname, "remote") == 0)
438 {
439 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
440 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
441
442 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
443 return big_remote_breakpoint;
444 else
445 return little_remote_breakpoint;
446 }
447 else
448 {
449 /* 0xc3c3 is trapa #c3, and it works in big and little endian
450 modes. */
451 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
452
453 return breakpoint;
454 }
455 }
456
457 /* Prologue looks like
458 mov.l r14,@-r15
459 sts.l pr,@-r15
460 mov.l <regs>,@-r15
461 sub <room_for_loca_vars>,r15
462 mov r15,r14
463
464 Actually it can be more complicated than this but that's it, basically. */
465
466 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
467 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
468
469 /* JSR @Rm 0100mmmm00001011 */
470 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
471
472 /* STS.L PR,@-r15 0100111100100010
473 r15-4-->r15, PR-->(r15) */
474 #define IS_STS(x) ((x) == 0x4f22)
475
476 /* STS.L MACL,@-r15 0100111100010010
477 r15-4-->r15, MACL-->(r15) */
478 #define IS_MACL_STS(x) ((x) == 0x4f12)
479
480 /* MOV.L Rm,@-r15 00101111mmmm0110
481 r15-4-->r15, Rm-->(R15) */
482 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
483
484 /* MOV r15,r14 0110111011110011
485 r15-->r14 */
486 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
487
488 /* ADD #imm,r15 01111111iiiiiiii
489 r15+imm-->r15 */
490 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
491
492 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
493 #define IS_SHLL_R3(x) ((x) == 0x4300)
494
495 /* ADD r3,r15 0011111100111100
496 r15+r3-->r15 */
497 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
498
499 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
500 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
501 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
502 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
503 make this entirely clear. */
504 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
505 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
506
507 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
508 #define IS_MOV_ARG_TO_REG(x) \
509 (((x) & 0xf00f) == 0x6003 && \
510 ((x) & 0x00f0) >= 0x0040 && \
511 ((x) & 0x00f0) <= 0x0070)
512 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
513 #define IS_MOV_ARG_TO_IND_R14(x) \
514 (((x) & 0xff0f) == 0x2e02 && \
515 ((x) & 0x00f0) >= 0x0040 && \
516 ((x) & 0x00f0) <= 0x0070)
517 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
518 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
519 (((x) & 0xff00) == 0x1e00 && \
520 ((x) & 0x00f0) >= 0x0040 && \
521 ((x) & 0x00f0) <= 0x0070)
522
523 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
524 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
525 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
526 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
527 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
528 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
529 /* SUB Rn,R15 00111111nnnn1000 */
530 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
531
532 #define FPSCR_SZ (1 << 20)
533
534 /* The following instructions are used for epilogue testing. */
535 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
536 #define IS_RTS(x) ((x) == 0x000b)
537 #define IS_LDS(x) ((x) == 0x4f26)
538 #define IS_MACL_LDS(x) ((x) == 0x4f16)
539 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
540 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
541 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
542
543 static CORE_ADDR
544 sh_analyze_prologue (struct gdbarch *gdbarch,
545 CORE_ADDR pc, CORE_ADDR limit_pc,
546 struct sh_frame_cache *cache, ULONGEST fpscr)
547 {
548 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
549 ULONGEST inst;
550 int offset;
551 int sav_offset = 0;
552 int r3_val = 0;
553 int reg, sav_reg = -1;
554
555 cache->uses_fp = 0;
556 for (; pc < limit_pc; pc += 2)
557 {
558 inst = read_memory_unsigned_integer (pc, 2, byte_order);
559 /* See where the registers will be saved to. */
560 if (IS_PUSH (inst))
561 {
562 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
563 cache->sp_offset += 4;
564 }
565 else if (IS_STS (inst))
566 {
567 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
568 cache->sp_offset += 4;
569 }
570 else if (IS_MACL_STS (inst))
571 {
572 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
573 cache->sp_offset += 4;
574 }
575 else if (IS_MOV_R3 (inst))
576 {
577 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
578 }
579 else if (IS_SHLL_R3 (inst))
580 {
581 r3_val <<= 1;
582 }
583 else if (IS_ADD_R3SP (inst))
584 {
585 cache->sp_offset += -r3_val;
586 }
587 else if (IS_ADD_IMM_SP (inst))
588 {
589 offset = ((inst & 0xff) ^ 0x80) - 0x80;
590 cache->sp_offset -= offset;
591 }
592 else if (IS_MOVW_PCREL_TO_REG (inst))
593 {
594 if (sav_reg < 0)
595 {
596 reg = GET_TARGET_REG (inst);
597 if (reg < 14)
598 {
599 sav_reg = reg;
600 offset = (inst & 0xff) << 1;
601 sav_offset =
602 read_memory_integer ((pc + 4) + offset, 2, byte_order);
603 }
604 }
605 }
606 else if (IS_MOVL_PCREL_TO_REG (inst))
607 {
608 if (sav_reg < 0)
609 {
610 reg = GET_TARGET_REG (inst);
611 if (reg < 14)
612 {
613 sav_reg = reg;
614 offset = (inst & 0xff) << 2;
615 sav_offset =
616 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
617 4, byte_order);
618 }
619 }
620 }
621 else if (IS_MOVI20 (inst)
622 && (pc + 2 < limit_pc))
623 {
624 if (sav_reg < 0)
625 {
626 reg = GET_TARGET_REG (inst);
627 if (reg < 14)
628 {
629 sav_reg = reg;
630 sav_offset = GET_SOURCE_REG (inst) << 16;
631 /* MOVI20 is a 32 bit instruction! */
632 pc += 2;
633 sav_offset
634 |= read_memory_unsigned_integer (pc, 2, byte_order);
635 /* Now sav_offset contains an unsigned 20 bit value.
636 It must still get sign extended. */
637 if (sav_offset & 0x00080000)
638 sav_offset |= 0xfff00000;
639 }
640 }
641 }
642 else if (IS_SUB_REG_FROM_SP (inst))
643 {
644 reg = GET_SOURCE_REG (inst);
645 if (sav_reg > 0 && reg == sav_reg)
646 {
647 sav_reg = -1;
648 }
649 cache->sp_offset += sav_offset;
650 }
651 else if (IS_FPUSH (inst))
652 {
653 if (fpscr & FPSCR_SZ)
654 {
655 cache->sp_offset += 8;
656 }
657 else
658 {
659 cache->sp_offset += 4;
660 }
661 }
662 else if (IS_MOV_SP_FP (inst))
663 {
664 pc += 2;
665 /* Don't go any further than six more instructions. */
666 limit_pc = std::min (limit_pc, pc + (2 * 6));
667
668 cache->uses_fp = 1;
669 /* At this point, only allow argument register moves to other
670 registers or argument register moves to @(X,fp) which are
671 moving the register arguments onto the stack area allocated
672 by a former add somenumber to SP call. Don't allow moving
673 to an fp indirect address above fp + cache->sp_offset. */
674 for (; pc < limit_pc; pc += 2)
675 {
676 inst = read_memory_integer (pc, 2, byte_order);
677 if (IS_MOV_ARG_TO_IND_R14 (inst))
678 {
679 reg = GET_SOURCE_REG (inst);
680 if (cache->sp_offset > 0)
681 cache->saved_regs[reg] = cache->sp_offset;
682 }
683 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
684 {
685 reg = GET_SOURCE_REG (inst);
686 offset = (inst & 0xf) * 4;
687 if (cache->sp_offset > offset)
688 cache->saved_regs[reg] = cache->sp_offset - offset;
689 }
690 else if (IS_MOV_ARG_TO_REG (inst))
691 continue;
692 else
693 break;
694 }
695 break;
696 }
697 else if (IS_JSR (inst))
698 {
699 /* We have found a jsr that has been scheduled into the prologue.
700 If we continue the scan and return a pc someplace after this,
701 then setting a breakpoint on this function will cause it to
702 appear to be called after the function it is calling via the
703 jsr, which will be very confusing. Most likely the next
704 instruction is going to be IS_MOV_SP_FP in the delay slot. If
705 so, note that before returning the current pc. */
706 if (pc + 2 < limit_pc)
707 {
708 inst = read_memory_integer (pc + 2, 2, byte_order);
709 if (IS_MOV_SP_FP (inst))
710 cache->uses_fp = 1;
711 }
712 break;
713 }
714 #if 0 /* This used to just stop when it found an instruction
715 that was not considered part of the prologue. Now,
716 we just keep going looking for likely
717 instructions. */
718 else
719 break;
720 #endif
721 }
722
723 return pc;
724 }
725
726 /* Skip any prologue before the guts of a function. */
727 static CORE_ADDR
728 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
729 {
730 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
731 struct sh_frame_cache cache;
732
733 /* See if we can determine the end of the prologue via the symbol table.
734 If so, then return either PC, or the PC after the prologue, whichever
735 is greater. */
736 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
737 {
738 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
739 if (post_prologue_pc != 0)
740 return std::max (pc, post_prologue_pc);
741 }
742
743 /* Can't determine prologue from the symbol table, need to examine
744 instructions. */
745
746 /* Find an upper limit on the function prologue using the debug
747 information. If the debug information could not be used to provide
748 that bound, then use an arbitrary large number as the upper bound. */
749 limit_pc = skip_prologue_using_sal (gdbarch, pc);
750 if (limit_pc == 0)
751 /* Don't go any further than 28 instructions. */
752 limit_pc = pc + (2 * 28);
753
754 /* Do not allow limit_pc to be past the function end, if we know
755 where that end is... */
756 if (func_end_addr != 0)
757 limit_pc = std::min (limit_pc, func_end_addr);
758
759 cache.sp_offset = -4;
760 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
761 if (cache.uses_fp)
762 pc = post_prologue_pc;
763
764 return pc;
765 }
766
767 /* The ABI says:
768
769 Aggregate types not bigger than 8 bytes that have the same size and
770 alignment as one of the integer scalar types are returned in the
771 same registers as the integer type they match.
772
773 For example, a 2-byte aligned structure with size 2 bytes has the
774 same size and alignment as a short int, and will be returned in R0.
775 A 4-byte aligned structure with size 8 bytes has the same size and
776 alignment as a long long int, and will be returned in R0 and R1.
777
778 When an aggregate type is returned in R0 and R1, R0 contains the
779 first four bytes of the aggregate, and R1 contains the
780 remainder. If the size of the aggregate type is not a multiple of 4
781 bytes, the aggregate is tail-padded up to a multiple of 4
782 bytes. The value of the padding is undefined. For little-endian
783 targets the padding will appear at the most significant end of the
784 last element, for big-endian targets the padding appears at the
785 least significant end of the last element.
786
787 All other aggregate types are returned by address. The caller
788 function passes the address of an area large enough to hold the
789 aggregate value in R2. The called function stores the result in
790 this location.
791
792 To reiterate, structs smaller than 8 bytes could also be returned
793 in memory, if they don't pass the "same size and alignment as an
794 integer type" rule.
795
796 For example, in
797
798 struct s { char c[3]; } wibble;
799 struct s foo(void) { return wibble; }
800
801 the return value from foo() will be in memory, not
802 in R0, because there is no 3-byte integer type.
803
804 Similarly, in
805
806 struct s { char c[2]; } wibble;
807 struct s foo(void) { return wibble; }
808
809 because a struct containing two chars has alignment 1, that matches
810 type char, but size 2, that matches type short. There's no integer
811 type that has alignment 1 and size 2, so the struct is returned in
812 memory. */
813
814 static int
815 sh_use_struct_convention (int renesas_abi, struct type *type)
816 {
817 int len = TYPE_LENGTH (type);
818 int nelem = TYPE_NFIELDS (type);
819
820 /* The Renesas ABI returns aggregate types always on stack. */
821 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
822 || TYPE_CODE (type) == TYPE_CODE_UNION))
823 return 1;
824
825 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
826 fit in two registers anyway) use struct convention. */
827 if (len != 1 && len != 2 && len != 4 && len != 8)
828 return 1;
829
830 /* Scalar types and aggregate types with exactly one field are aligned
831 by definition. They are returned in registers. */
832 if (nelem <= 1)
833 return 0;
834
835 /* If the first field in the aggregate has the same length as the entire
836 aggregate type, the type is returned in registers. */
837 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
838 return 0;
839
840 /* If the size of the aggregate is 8 bytes and the first field is
841 of size 4 bytes its alignment is equal to long long's alignment,
842 so it's returned in registers. */
843 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
844 return 0;
845
846 /* Otherwise use struct convention. */
847 return 1;
848 }
849
850 static int
851 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
852 {
853 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
854 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
855 return 1;
856 return sh_use_struct_convention (renesas_abi, type);
857 }
858
859 static CORE_ADDR
860 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
861 {
862 return sp & ~3;
863 }
864
865 /* Function: push_dummy_call (formerly push_arguments)
866 Setup the function arguments for calling a function in the inferior.
867
868 On the Renesas SH architecture, there are four registers (R4 to R7)
869 which are dedicated for passing function arguments. Up to the first
870 four arguments (depending on size) may go into these registers.
871 The rest go on the stack.
872
873 MVS: Except on SH variants that have floating point registers.
874 In that case, float and double arguments are passed in the same
875 manner, but using FP registers instead of GP registers.
876
877 Arguments that are smaller than 4 bytes will still take up a whole
878 register or a whole 32-bit word on the stack, and will be
879 right-justified in the register or the stack word. This includes
880 chars, shorts, and small aggregate types.
881
882 Arguments that are larger than 4 bytes may be split between two or
883 more registers. If there are not enough registers free, an argument
884 may be passed partly in a register (or registers), and partly on the
885 stack. This includes doubles, long longs, and larger aggregates.
886 As far as I know, there is no upper limit to the size of aggregates
887 that will be passed in this way; in other words, the convention of
888 passing a pointer to a large aggregate instead of a copy is not used.
889
890 MVS: The above appears to be true for the SH variants that do not
891 have an FPU, however those that have an FPU appear to copy the
892 aggregate argument onto the stack (and not place it in registers)
893 if it is larger than 16 bytes (four GP registers).
894
895 An exceptional case exists for struct arguments (and possibly other
896 aggregates such as arrays) if the size is larger than 4 bytes but
897 not a multiple of 4 bytes. In this case the argument is never split
898 between the registers and the stack, but instead is copied in its
899 entirety onto the stack, AND also copied into as many registers as
900 there is room for. In other words, space in registers permitting,
901 two copies of the same argument are passed in. As far as I can tell,
902 only the one on the stack is used, although that may be a function
903 of the level of compiler optimization. I suspect this is a compiler
904 bug. Arguments of these odd sizes are left-justified within the
905 word (as opposed to arguments smaller than 4 bytes, which are
906 right-justified).
907
908 If the function is to return an aggregate type such as a struct, it
909 is either returned in the normal return value register R0 (if its
910 size is no greater than one byte), or else the caller must allocate
911 space into which the callee will copy the return value (if the size
912 is greater than one byte). In this case, a pointer to the return
913 value location is passed into the callee in register R2, which does
914 not displace any of the other arguments passed in via registers R4
915 to R7. */
916
917 /* Helper function to justify value in register according to endianess. */
918 static const gdb_byte *
919 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
920 {
921 static gdb_byte valbuf[4];
922
923 memset (valbuf, 0, sizeof (valbuf));
924 if (len < 4)
925 {
926 /* value gets right-justified in the register or stack word. */
927 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
928 memcpy (valbuf + (4 - len), value_contents (val), len);
929 else
930 memcpy (valbuf, value_contents (val), len);
931 return valbuf;
932 }
933 return value_contents (val);
934 }
935
936 /* Helper function to eval number of bytes to allocate on stack. */
937 static CORE_ADDR
938 sh_stack_allocsize (int nargs, struct value **args)
939 {
940 int stack_alloc = 0;
941 while (nargs-- > 0)
942 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
943 return stack_alloc;
944 }
945
946 /* Helper functions for getting the float arguments right. Registers usage
947 depends on the ABI and the endianess. The comments should enlighten how
948 it's intended to work. */
949
950 /* This array stores which of the float arg registers are already in use. */
951 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
952
953 /* This function just resets the above array to "no reg used so far". */
954 static void
955 sh_init_flt_argreg (void)
956 {
957 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
958 }
959
960 /* This function returns the next register to use for float arg passing.
961 It returns either a valid value between FLOAT_ARG0_REGNUM and
962 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
963 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
964
965 Note that register number 0 in flt_argreg_array corresponds with the
966 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
967 29) the parity of the register number is preserved, which is important
968 for the double register passing test (see the "argreg & 1" test below). */
969 static int
970 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
971 {
972 int argreg;
973
974 /* First search for the next free register. */
975 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
976 ++argreg)
977 if (!flt_argreg_array[argreg])
978 break;
979
980 /* No register left? */
981 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
982 return FLOAT_ARGLAST_REGNUM + 1;
983
984 if (len == 8)
985 {
986 /* Doubles are always starting in a even register number. */
987 if (argreg & 1)
988 {
989 /* In gcc ABI, the skipped register is lost for further argument
990 passing now. Not so in Renesas ABI. */
991 if (!sh_is_renesas_calling_convention (func_type))
992 flt_argreg_array[argreg] = 1;
993
994 ++argreg;
995
996 /* No register left? */
997 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
998 return FLOAT_ARGLAST_REGNUM + 1;
999 }
1000 /* Also mark the next register as used. */
1001 flt_argreg_array[argreg + 1] = 1;
1002 }
1003 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1004 && !sh_is_renesas_calling_convention (func_type))
1005 {
1006 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
1007 if (!flt_argreg_array[argreg + 1])
1008 ++argreg;
1009 }
1010 flt_argreg_array[argreg] = 1;
1011 return FLOAT_ARG0_REGNUM + argreg;
1012 }
1013
1014 /* Helper function which figures out, if a type is treated like a float type.
1015
1016 The FPU ABIs have a special way how to treat types as float types.
1017 Structures with exactly one member, which is of type float or double, are
1018 treated exactly as the base types float or double:
1019
1020 struct sf {
1021 float f;
1022 };
1023
1024 struct sd {
1025 double d;
1026 };
1027
1028 are handled the same way as just
1029
1030 float f;
1031
1032 double d;
1033
1034 As a result, arguments of these struct types are pushed into floating point
1035 registers exactly as floats or doubles, using the same decision algorithm.
1036
1037 The same is valid if these types are used as function return types. The
1038 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1039 or even using struct convention as it is for other structs. */
1040
1041 static int
1042 sh_treat_as_flt_p (struct type *type)
1043 {
1044 /* Ordinary float types are obviously treated as float. */
1045 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1046 return 1;
1047 /* Otherwise non-struct types are not treated as float. */
1048 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1049 return 0;
1050 /* Otherwise structs with more than one memeber are not treated as float. */
1051 if (TYPE_NFIELDS (type) != 1)
1052 return 0;
1053 /* Otherwise if the type of that member is float, the whole type is
1054 treated as float. */
1055 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1056 return 1;
1057 /* Otherwise it's not treated as float. */
1058 return 0;
1059 }
1060
1061 static CORE_ADDR
1062 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1063 struct value *function,
1064 struct regcache *regcache,
1065 CORE_ADDR bp_addr, int nargs,
1066 struct value **args,
1067 CORE_ADDR sp, int struct_return,
1068 CORE_ADDR struct_addr)
1069 {
1070 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1071 int stack_offset = 0;
1072 int argreg = ARG0_REGNUM;
1073 int flt_argreg = 0;
1074 int argnum;
1075 struct type *func_type = value_type (function);
1076 struct type *type;
1077 CORE_ADDR regval;
1078 const gdb_byte *val;
1079 int len, reg_size = 0;
1080 int pass_on_stack = 0;
1081 int treat_as_flt;
1082 int last_reg_arg = INT_MAX;
1083
1084 /* The Renesas ABI expects all varargs arguments, plus the last
1085 non-vararg argument to be on the stack, no matter how many
1086 registers have been used so far. */
1087 if (sh_is_renesas_calling_convention (func_type)
1088 && TYPE_VARARGS (func_type))
1089 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1090
1091 /* First force sp to a 4-byte alignment. */
1092 sp = sh_frame_align (gdbarch, sp);
1093
1094 /* Make room on stack for args. */
1095 sp -= sh_stack_allocsize (nargs, args);
1096
1097 /* Initialize float argument mechanism. */
1098 sh_init_flt_argreg ();
1099
1100 /* Now load as many as possible of the first arguments into
1101 registers, and push the rest onto the stack. There are 16 bytes
1102 in four registers available. Loop thru args from first to last. */
1103 for (argnum = 0; argnum < nargs; argnum++)
1104 {
1105 type = value_type (args[argnum]);
1106 len = TYPE_LENGTH (type);
1107 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1108
1109 /* Some decisions have to be made how various types are handled.
1110 This also differs in different ABIs. */
1111 pass_on_stack = 0;
1112
1113 /* Find out the next register to use for a floating point value. */
1114 treat_as_flt = sh_treat_as_flt_p (type);
1115 if (treat_as_flt)
1116 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1117 /* In Renesas ABI, long longs and aggregate types are always passed
1118 on stack. */
1119 else if (sh_is_renesas_calling_convention (func_type)
1120 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1121 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1122 || TYPE_CODE (type) == TYPE_CODE_UNION))
1123 pass_on_stack = 1;
1124 /* In contrast to non-FPU CPUs, arguments are never split between
1125 registers and stack. If an argument doesn't fit in the remaining
1126 registers it's always pushed entirely on the stack. */
1127 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1128 pass_on_stack = 1;
1129
1130 while (len > 0)
1131 {
1132 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1133 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1134 || pass_on_stack))
1135 || argnum > last_reg_arg)
1136 {
1137 /* The data goes entirely on the stack, 4-byte aligned. */
1138 reg_size = (len + 3) & ~3;
1139 write_memory (sp + stack_offset, val, reg_size);
1140 stack_offset += reg_size;
1141 }
1142 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1143 {
1144 /* Argument goes in a float argument register. */
1145 reg_size = register_size (gdbarch, flt_argreg);
1146 regval = extract_unsigned_integer (val, reg_size, byte_order);
1147 /* In little endian mode, float types taking two registers
1148 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1149 be stored swapped in the argument registers. The below
1150 code first writes the first 32 bits in the next but one
1151 register, increments the val and len values accordingly
1152 and then proceeds as normal by writing the second 32 bits
1153 into the next register. */
1154 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1155 && TYPE_LENGTH (type) == 2 * reg_size)
1156 {
1157 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1158 regval);
1159 val += reg_size;
1160 len -= reg_size;
1161 regval = extract_unsigned_integer (val, reg_size,
1162 byte_order);
1163 }
1164 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1165 }
1166 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1167 {
1168 /* there's room in a register */
1169 reg_size = register_size (gdbarch, argreg);
1170 regval = extract_unsigned_integer (val, reg_size, byte_order);
1171 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1172 }
1173 /* Store the value one register at a time or in one step on
1174 stack. */
1175 len -= reg_size;
1176 val += reg_size;
1177 }
1178 }
1179
1180 if (struct_return)
1181 {
1182 if (sh_is_renesas_calling_convention (func_type))
1183 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1184 the stack and store the struct return address there. */
1185 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1186 else
1187 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1188 its own dedicated register. */
1189 regcache_cooked_write_unsigned (regcache,
1190 STRUCT_RETURN_REGNUM, struct_addr);
1191 }
1192
1193 /* Store return address. */
1194 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1195
1196 /* Update stack pointer. */
1197 regcache_cooked_write_unsigned (regcache,
1198 gdbarch_sp_regnum (gdbarch), sp);
1199
1200 return sp;
1201 }
1202
1203 static CORE_ADDR
1204 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1205 struct value *function,
1206 struct regcache *regcache,
1207 CORE_ADDR bp_addr,
1208 int nargs, struct value **args,
1209 CORE_ADDR sp, int struct_return,
1210 CORE_ADDR struct_addr)
1211 {
1212 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1213 int stack_offset = 0;
1214 int argreg = ARG0_REGNUM;
1215 int argnum;
1216 struct type *func_type = value_type (function);
1217 struct type *type;
1218 CORE_ADDR regval;
1219 const gdb_byte *val;
1220 int len, reg_size = 0;
1221 int pass_on_stack = 0;
1222 int last_reg_arg = INT_MAX;
1223
1224 /* The Renesas ABI expects all varargs arguments, plus the last
1225 non-vararg argument to be on the stack, no matter how many
1226 registers have been used so far. */
1227 if (sh_is_renesas_calling_convention (func_type)
1228 && TYPE_VARARGS (func_type))
1229 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1230
1231 /* First force sp to a 4-byte alignment. */
1232 sp = sh_frame_align (gdbarch, sp);
1233
1234 /* Make room on stack for args. */
1235 sp -= sh_stack_allocsize (nargs, args);
1236
1237 /* Now load as many as possible of the first arguments into
1238 registers, and push the rest onto the stack. There are 16 bytes
1239 in four registers available. Loop thru args from first to last. */
1240 for (argnum = 0; argnum < nargs; argnum++)
1241 {
1242 type = value_type (args[argnum]);
1243 len = TYPE_LENGTH (type);
1244 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1245
1246 /* Some decisions have to be made how various types are handled.
1247 This also differs in different ABIs. */
1248 pass_on_stack = 0;
1249 /* Renesas ABI pushes doubles and long longs entirely on stack.
1250 Same goes for aggregate types. */
1251 if (sh_is_renesas_calling_convention (func_type)
1252 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1253 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1254 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1255 || TYPE_CODE (type) == TYPE_CODE_UNION))
1256 pass_on_stack = 1;
1257 while (len > 0)
1258 {
1259 if (argreg > ARGLAST_REGNUM || pass_on_stack
1260 || argnum > last_reg_arg)
1261 {
1262 /* The remainder of the data goes entirely on the stack,
1263 4-byte aligned. */
1264 reg_size = (len + 3) & ~3;
1265 write_memory (sp + stack_offset, val, reg_size);
1266 stack_offset += reg_size;
1267 }
1268 else if (argreg <= ARGLAST_REGNUM)
1269 {
1270 /* There's room in a register. */
1271 reg_size = register_size (gdbarch, argreg);
1272 regval = extract_unsigned_integer (val, reg_size, byte_order);
1273 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1274 }
1275 /* Store the value reg_size bytes at a time. This means that things
1276 larger than reg_size bytes may go partly in registers and partly
1277 on the stack. */
1278 len -= reg_size;
1279 val += reg_size;
1280 }
1281 }
1282
1283 if (struct_return)
1284 {
1285 if (sh_is_renesas_calling_convention (func_type))
1286 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1287 the stack and store the struct return address there. */
1288 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1289 else
1290 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1291 its own dedicated register. */
1292 regcache_cooked_write_unsigned (regcache,
1293 STRUCT_RETURN_REGNUM, struct_addr);
1294 }
1295
1296 /* Store return address. */
1297 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1298
1299 /* Update stack pointer. */
1300 regcache_cooked_write_unsigned (regcache,
1301 gdbarch_sp_regnum (gdbarch), sp);
1302
1303 return sp;
1304 }
1305
1306 /* Find a function's return value in the appropriate registers (in
1307 regbuf), and copy it into valbuf. Extract from an array REGBUF
1308 containing the (raw) register state a function return value of type
1309 TYPE, and copy that, in virtual format, into VALBUF. */
1310 static void
1311 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1312 gdb_byte *valbuf)
1313 {
1314 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1315 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1316 int len = TYPE_LENGTH (type);
1317
1318 if (len <= 4)
1319 {
1320 ULONGEST c;
1321
1322 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1323 store_unsigned_integer (valbuf, len, byte_order, c);
1324 }
1325 else if (len == 8)
1326 {
1327 int i, regnum = R0_REGNUM;
1328 for (i = 0; i < len; i += 4)
1329 regcache_raw_read (regcache, regnum++, valbuf + i);
1330 }
1331 else
1332 error (_("bad size for return value"));
1333 }
1334
1335 static void
1336 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1337 gdb_byte *valbuf)
1338 {
1339 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1340 if (sh_treat_as_flt_p (type))
1341 {
1342 int len = TYPE_LENGTH (type);
1343 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1344 for (i = 0; i < len; i += 4)
1345 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1346 regcache_raw_read (regcache, regnum++,
1347 valbuf + len - 4 - i);
1348 else
1349 regcache_raw_read (regcache, regnum++, valbuf + i);
1350 }
1351 else
1352 sh_extract_return_value_nofpu (type, regcache, valbuf);
1353 }
1354
1355 /* Write into appropriate registers a function return value
1356 of type TYPE, given in virtual format.
1357 If the architecture is sh4 or sh3e, store a function's return value
1358 in the R0 general register or in the FP0 floating point register,
1359 depending on the type of the return value. In all the other cases
1360 the result is stored in r0, left-justified. */
1361 static void
1362 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1363 const gdb_byte *valbuf)
1364 {
1365 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1366 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1367 ULONGEST val;
1368 int len = TYPE_LENGTH (type);
1369
1370 if (len <= 4)
1371 {
1372 val = extract_unsigned_integer (valbuf, len, byte_order);
1373 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1374 }
1375 else
1376 {
1377 int i, regnum = R0_REGNUM;
1378 for (i = 0; i < len; i += 4)
1379 regcache_raw_write (regcache, regnum++, valbuf + i);
1380 }
1381 }
1382
1383 static void
1384 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1385 const gdb_byte *valbuf)
1386 {
1387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1388 if (sh_treat_as_flt_p (type))
1389 {
1390 int len = TYPE_LENGTH (type);
1391 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1392 for (i = 0; i < len; i += 4)
1393 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1394 regcache_raw_write (regcache, regnum++,
1395 valbuf + len - 4 - i);
1396 else
1397 regcache_raw_write (regcache, regnum++, valbuf + i);
1398 }
1399 else
1400 sh_store_return_value_nofpu (type, regcache, valbuf);
1401 }
1402
1403 static enum return_value_convention
1404 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1405 struct type *type, struct regcache *regcache,
1406 gdb_byte *readbuf, const gdb_byte *writebuf)
1407 {
1408 struct type *func_type = function ? value_type (function) : NULL;
1409
1410 if (sh_use_struct_convention_nofpu (
1411 sh_is_renesas_calling_convention (func_type), type))
1412 return RETURN_VALUE_STRUCT_CONVENTION;
1413 if (writebuf)
1414 sh_store_return_value_nofpu (type, regcache, writebuf);
1415 else if (readbuf)
1416 sh_extract_return_value_nofpu (type, regcache, readbuf);
1417 return RETURN_VALUE_REGISTER_CONVENTION;
1418 }
1419
1420 static enum return_value_convention
1421 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1422 struct type *type, struct regcache *regcache,
1423 gdb_byte *readbuf, const gdb_byte *writebuf)
1424 {
1425 struct type *func_type = function ? value_type (function) : NULL;
1426
1427 if (sh_use_struct_convention (
1428 sh_is_renesas_calling_convention (func_type), type))
1429 return RETURN_VALUE_STRUCT_CONVENTION;
1430 if (writebuf)
1431 sh_store_return_value_fpu (type, regcache, writebuf);
1432 else if (readbuf)
1433 sh_extract_return_value_fpu (type, regcache, readbuf);
1434 return RETURN_VALUE_REGISTER_CONVENTION;
1435 }
1436
1437 static struct type *
1438 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1439 {
1440 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1441 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1442 return builtin_type (gdbarch)->builtin_float;
1443 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1444 return builtin_type (gdbarch)->builtin_double;
1445 else
1446 return builtin_type (gdbarch)->builtin_int;
1447 }
1448
1449 /* Return the GDB type object for the "standard" data type
1450 of data in register N. */
1451 static struct type *
1452 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1453 {
1454 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1455 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1456 return builtin_type (gdbarch)->builtin_float;
1457 else
1458 return builtin_type (gdbarch)->builtin_int;
1459 }
1460
1461 static struct type *
1462 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1463 {
1464 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1465 0, high);
1466 }
1467
1468 static struct type *
1469 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1470 {
1471 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1472 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1473 return builtin_type (gdbarch)->builtin_float;
1474 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1475 return builtin_type (gdbarch)->builtin_double;
1476 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1477 return sh_sh4_build_float_register_type (gdbarch, 3);
1478 else
1479 return builtin_type (gdbarch)->builtin_int;
1480 }
1481
1482 static struct type *
1483 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1484 {
1485 return builtin_type (gdbarch)->builtin_int;
1486 }
1487
1488 /* Is a register in a reggroup?
1489 The default code in reggroup.c doesn't identify system registers, some
1490 float registers or any of the vector registers.
1491 TODO: sh2a and dsp registers. */
1492 static int
1493 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1494 struct reggroup *reggroup)
1495 {
1496 if (gdbarch_register_name (gdbarch, regnum) == NULL
1497 || *gdbarch_register_name (gdbarch, regnum) == '\0')
1498 return 0;
1499
1500 if (reggroup == float_reggroup
1501 && (regnum == FPUL_REGNUM
1502 || regnum == FPSCR_REGNUM))
1503 return 1;
1504
1505 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1506 {
1507 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1508 return 1;
1509 if (reggroup == general_reggroup)
1510 return 0;
1511 }
1512
1513 if (regnum == VBR_REGNUM
1514 || regnum == SR_REGNUM
1515 || regnum == FPSCR_REGNUM
1516 || regnum == SSR_REGNUM
1517 || regnum == SPC_REGNUM)
1518 {
1519 if (reggroup == system_reggroup)
1520 return 1;
1521 if (reggroup == general_reggroup)
1522 return 0;
1523 }
1524
1525 /* The default code can cope with any other registers. */
1526 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1527 }
1528
1529 /* On the sh4, the DRi pseudo registers are problematic if the target
1530 is little endian. When the user writes one of those registers, for
1531 instance with 'set var $dr0=1', we want the double to be stored
1532 like this:
1533 fr0 = 0x00 0x00 0xf0 0x3f
1534 fr1 = 0x00 0x00 0x00 0x00
1535
1536 This corresponds to little endian byte order & big endian word
1537 order. However if we let gdb write the register w/o conversion, it
1538 will write fr0 and fr1 this way:
1539 fr0 = 0x00 0x00 0x00 0x00
1540 fr1 = 0x00 0x00 0xf0 0x3f
1541 because it will consider fr0 and fr1 as a single LE stretch of memory.
1542
1543 To achieve what we want we must force gdb to store things in
1544 floatformat_ieee_double_littlebyte_bigword (which is defined in
1545 include/floatformat.h and libiberty/floatformat.c.
1546
1547 In case the target is big endian, there is no problem, the
1548 raw bytes will look like:
1549 fr0 = 0x3f 0xf0 0x00 0x00
1550 fr1 = 0x00 0x00 0x00 0x00
1551
1552 The other pseudo registers (the FVs) also don't pose a problem
1553 because they are stored as 4 individual FP elements. */
1554
1555 static void
1556 sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1557 struct type *type, gdb_byte *from, gdb_byte *to)
1558 {
1559 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1560 {
1561 /* It is a no-op. */
1562 memcpy (to, from, register_size (gdbarch, regnum));
1563 return;
1564 }
1565
1566 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1567 {
1568 DOUBLEST val;
1569 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1570 from, &val);
1571 store_typed_floating (to, type, val);
1572 }
1573 else
1574 error
1575 ("sh_register_convert_to_virtual called with non DR register number");
1576 }
1577
1578 static void
1579 sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1580 int regnum, const gdb_byte *from, gdb_byte *to)
1581 {
1582 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1583 {
1584 /* It is a no-op. */
1585 memcpy (to, from, register_size (gdbarch, regnum));
1586 return;
1587 }
1588
1589 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1590 {
1591 DOUBLEST val = extract_typed_floating (from, type);
1592 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1593 &val, to);
1594 }
1595 else
1596 error (_("sh_register_convert_to_raw called with non DR register number"));
1597 }
1598
1599 /* For vectors of 4 floating point registers. */
1600 static int
1601 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1602 {
1603 int fp_regnum;
1604
1605 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1606 + (fv_regnum - FV0_REGNUM) * 4;
1607 return fp_regnum;
1608 }
1609
1610 /* For double precision floating point registers, i.e 2 fp regs. */
1611 static int
1612 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1613 {
1614 int fp_regnum;
1615
1616 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1617 + (dr_regnum - DR0_REGNUM) * 2;
1618 return fp_regnum;
1619 }
1620
1621 /* Concatenate PORTIONS contiguous raw registers starting at
1622 BASE_REGNUM into BUFFER. */
1623
1624 static enum register_status
1625 pseudo_register_read_portions (struct gdbarch *gdbarch,
1626 struct regcache *regcache,
1627 int portions,
1628 int base_regnum, gdb_byte *buffer)
1629 {
1630 int portion;
1631
1632 for (portion = 0; portion < portions; portion++)
1633 {
1634 enum register_status status;
1635 gdb_byte *b;
1636
1637 b = buffer + register_size (gdbarch, base_regnum) * portion;
1638 status = regcache_raw_read (regcache, base_regnum + portion, b);
1639 if (status != REG_VALID)
1640 return status;
1641 }
1642
1643 return REG_VALID;
1644 }
1645
1646 static enum register_status
1647 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1648 int reg_nr, gdb_byte *buffer)
1649 {
1650 int base_regnum;
1651 enum register_status status;
1652
1653 if (reg_nr == PSEUDO_BANK_REGNUM)
1654 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1655 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1656 {
1657 /* Enough space for two float registers. */
1658 gdb_byte temp_buffer[4 * 2];
1659 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1660
1661 /* Build the value in the provided buffer. */
1662 /* Read the real regs for which this one is an alias. */
1663 status = pseudo_register_read_portions (gdbarch, regcache,
1664 2, base_regnum, temp_buffer);
1665 if (status == REG_VALID)
1666 {
1667 /* We must pay attention to the endiannes. */
1668 sh_register_convert_to_virtual (gdbarch, reg_nr,
1669 register_type (gdbarch, reg_nr),
1670 temp_buffer, buffer);
1671 }
1672 return status;
1673 }
1674 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1675 {
1676 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1677
1678 /* Read the real regs for which this one is an alias. */
1679 return pseudo_register_read_portions (gdbarch, regcache,
1680 4, base_regnum, buffer);
1681 }
1682 else
1683 gdb_assert_not_reached ("invalid pseudo register number");
1684 }
1685
1686 static void
1687 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1688 int reg_nr, const gdb_byte *buffer)
1689 {
1690 int base_regnum, portion;
1691
1692 if (reg_nr == PSEUDO_BANK_REGNUM)
1693 {
1694 /* When the bank register is written to, the whole register bank
1695 is switched and all values in the bank registers must be read
1696 from the target/sim again. We're just invalidating the regcache
1697 so that a re-read happens next time it's necessary. */
1698 int bregnum;
1699
1700 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1701 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1702 regcache_invalidate (regcache, bregnum);
1703 }
1704 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1705 {
1706 /* Enough space for two float registers. */
1707 gdb_byte temp_buffer[4 * 2];
1708 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1709
1710 /* We must pay attention to the endiannes. */
1711 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1712 reg_nr, buffer, temp_buffer);
1713
1714 /* Write the real regs for which this one is an alias. */
1715 for (portion = 0; portion < 2; portion++)
1716 regcache_raw_write (regcache, base_regnum + portion,
1717 (temp_buffer
1718 + register_size (gdbarch,
1719 base_regnum) * portion));
1720 }
1721 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1722 {
1723 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1724
1725 /* Write the real regs for which this one is an alias. */
1726 for (portion = 0; portion < 4; portion++)
1727 regcache_raw_write (regcache, base_regnum + portion,
1728 (buffer
1729 + register_size (gdbarch,
1730 base_regnum) * portion));
1731 }
1732 }
1733
1734 static int
1735 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1736 {
1737 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1738 return legacy_register_sim_regno (gdbarch, nr);
1739 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1740 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1741 if (nr == MOD_REGNUM)
1742 return SIM_SH_MOD_REGNUM;
1743 if (nr == RS_REGNUM)
1744 return SIM_SH_RS_REGNUM;
1745 if (nr == RE_REGNUM)
1746 return SIM_SH_RE_REGNUM;
1747 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1748 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1749 return nr;
1750 }
1751
1752 static int
1753 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1754 {
1755 switch (nr)
1756 {
1757 case TBR_REGNUM:
1758 return SIM_SH_TBR_REGNUM;
1759 case IBNR_REGNUM:
1760 return SIM_SH_IBNR_REGNUM;
1761 case IBCR_REGNUM:
1762 return SIM_SH_IBCR_REGNUM;
1763 case BANK_REGNUM:
1764 return SIM_SH_BANK_REGNUM;
1765 case MACLB_REGNUM:
1766 return SIM_SH_BANK_MACL_REGNUM;
1767 case GBRB_REGNUM:
1768 return SIM_SH_BANK_GBR_REGNUM;
1769 case PRB_REGNUM:
1770 return SIM_SH_BANK_PR_REGNUM;
1771 case IVNB_REGNUM:
1772 return SIM_SH_BANK_IVN_REGNUM;
1773 case MACHB_REGNUM:
1774 return SIM_SH_BANK_MACH_REGNUM;
1775 default:
1776 break;
1777 }
1778 return legacy_register_sim_regno (gdbarch, nr);
1779 }
1780
1781 /* Set up the register unwinding such that call-clobbered registers are
1782 not displayed in frames >0 because the true value is not certain.
1783 The 'undefined' registers will show up as 'not available' unless the
1784 CFI says otherwise.
1785
1786 This function is currently set up for SH4 and compatible only. */
1787
1788 static void
1789 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1790 struct dwarf2_frame_state_reg *reg,
1791 struct frame_info *this_frame)
1792 {
1793 /* Mark the PC as the destination for the return address. */
1794 if (regnum == gdbarch_pc_regnum (gdbarch))
1795 reg->how = DWARF2_FRAME_REG_RA;
1796
1797 /* Mark the stack pointer as the call frame address. */
1798 else if (regnum == gdbarch_sp_regnum (gdbarch))
1799 reg->how = DWARF2_FRAME_REG_CFA;
1800
1801 /* The above was taken from the default init_reg in dwarf2-frame.c
1802 while the below is SH specific. */
1803
1804 /* Caller save registers. */
1805 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1806 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1807 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1808 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1809 || (regnum == MACH_REGNUM)
1810 || (regnum == MACL_REGNUM)
1811 || (regnum == FPUL_REGNUM)
1812 || (regnum == SR_REGNUM))
1813 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1814
1815 /* Callee save registers. */
1816 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1817 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1818 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1819 || (regnum == FV0_REGNUM+3))
1820 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1821
1822 /* Other registers. These are not in the ABI and may or may not
1823 mean anything in frames >0 so don't show them. */
1824 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1825 || (regnum == GBR_REGNUM)
1826 || (regnum == VBR_REGNUM)
1827 || (regnum == FPSCR_REGNUM)
1828 || (regnum == SSR_REGNUM)
1829 || (regnum == SPC_REGNUM))
1830 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1831 }
1832
1833 static struct sh_frame_cache *
1834 sh_alloc_frame_cache (void)
1835 {
1836 struct sh_frame_cache *cache;
1837 int i;
1838
1839 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1840
1841 /* Base address. */
1842 cache->base = 0;
1843 cache->saved_sp = 0;
1844 cache->sp_offset = 0;
1845 cache->pc = 0;
1846
1847 /* Frameless until proven otherwise. */
1848 cache->uses_fp = 0;
1849
1850 /* Saved registers. We initialize these to -1 since zero is a valid
1851 offset (that's where fp is supposed to be stored). */
1852 for (i = 0; i < SH_NUM_REGS; i++)
1853 {
1854 cache->saved_regs[i] = -1;
1855 }
1856
1857 return cache;
1858 }
1859
1860 static struct sh_frame_cache *
1861 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1862 {
1863 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1864 struct sh_frame_cache *cache;
1865 CORE_ADDR current_pc;
1866 int i;
1867
1868 if (*this_cache)
1869 return (struct sh_frame_cache *) *this_cache;
1870
1871 cache = sh_alloc_frame_cache ();
1872 *this_cache = cache;
1873
1874 /* In principle, for normal frames, fp holds the frame pointer,
1875 which holds the base address for the current stack frame.
1876 However, for functions that don't need it, the frame pointer is
1877 optional. For these "frameless" functions the frame pointer is
1878 actually the frame pointer of the calling frame. */
1879 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1880 if (cache->base == 0)
1881 return cache;
1882
1883 cache->pc = get_frame_func (this_frame);
1884 current_pc = get_frame_pc (this_frame);
1885 if (cache->pc != 0)
1886 {
1887 ULONGEST fpscr;
1888
1889 /* Check for the existence of the FPSCR register. If it exists,
1890 fetch its value for use in prologue analysis. Passing a zero
1891 value is the best choice for architecture variants upon which
1892 there's no FPSCR register. */
1893 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1894 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1895 else
1896 fpscr = 0;
1897
1898 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1899 }
1900
1901 if (!cache->uses_fp)
1902 {
1903 /* We didn't find a valid frame, which means that CACHE->base
1904 currently holds the frame pointer for our calling frame. If
1905 we're at the start of a function, or somewhere half-way its
1906 prologue, the function's frame probably hasn't been fully
1907 setup yet. Try to reconstruct the base address for the stack
1908 frame by looking at the stack pointer. For truly "frameless"
1909 functions this might work too. */
1910 cache->base = get_frame_register_unsigned
1911 (this_frame, gdbarch_sp_regnum (gdbarch));
1912 }
1913
1914 /* Now that we have the base address for the stack frame we can
1915 calculate the value of sp in the calling frame. */
1916 cache->saved_sp = cache->base + cache->sp_offset;
1917
1918 /* Adjust all the saved registers such that they contain addresses
1919 instead of offsets. */
1920 for (i = 0; i < SH_NUM_REGS; i++)
1921 if (cache->saved_regs[i] != -1)
1922 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1923
1924 return cache;
1925 }
1926
1927 static struct value *
1928 sh_frame_prev_register (struct frame_info *this_frame,
1929 void **this_cache, int regnum)
1930 {
1931 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1932 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1933
1934 gdb_assert (regnum >= 0);
1935
1936 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1937 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1938
1939 /* The PC of the previous frame is stored in the PR register of
1940 the current frame. Frob regnum so that we pull the value from
1941 the correct place. */
1942 if (regnum == gdbarch_pc_regnum (gdbarch))
1943 regnum = PR_REGNUM;
1944
1945 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1946 return frame_unwind_got_memory (this_frame, regnum,
1947 cache->saved_regs[regnum]);
1948
1949 return frame_unwind_got_register (this_frame, regnum, regnum);
1950 }
1951
1952 static void
1953 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1954 struct frame_id *this_id)
1955 {
1956 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1957
1958 /* This marks the outermost frame. */
1959 if (cache->base == 0)
1960 return;
1961
1962 *this_id = frame_id_build (cache->saved_sp, cache->pc);
1963 }
1964
1965 static const struct frame_unwind sh_frame_unwind = {
1966 NORMAL_FRAME,
1967 default_frame_unwind_stop_reason,
1968 sh_frame_this_id,
1969 sh_frame_prev_register,
1970 NULL,
1971 default_frame_sniffer
1972 };
1973
1974 static CORE_ADDR
1975 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1976 {
1977 return frame_unwind_register_unsigned (next_frame,
1978 gdbarch_sp_regnum (gdbarch));
1979 }
1980
1981 static CORE_ADDR
1982 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1983 {
1984 return frame_unwind_register_unsigned (next_frame,
1985 gdbarch_pc_regnum (gdbarch));
1986 }
1987
1988 static struct frame_id
1989 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1990 {
1991 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1992 gdbarch_sp_regnum (gdbarch));
1993 return frame_id_build (sp, get_frame_pc (this_frame));
1994 }
1995
1996 static CORE_ADDR
1997 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
1998 {
1999 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
2000
2001 return cache->base;
2002 }
2003
2004 static const struct frame_base sh_frame_base = {
2005 &sh_frame_unwind,
2006 sh_frame_base_address,
2007 sh_frame_base_address,
2008 sh_frame_base_address
2009 };
2010
2011 static struct sh_frame_cache *
2012 sh_make_stub_cache (struct frame_info *this_frame)
2013 {
2014 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2015 struct sh_frame_cache *cache;
2016
2017 cache = sh_alloc_frame_cache ();
2018
2019 cache->saved_sp
2020 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2021
2022 return cache;
2023 }
2024
2025 static void
2026 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2027 struct frame_id *this_id)
2028 {
2029 struct sh_frame_cache *cache;
2030
2031 if (*this_cache == NULL)
2032 *this_cache = sh_make_stub_cache (this_frame);
2033 cache = (struct sh_frame_cache *) *this_cache;
2034
2035 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2036 }
2037
2038 static int
2039 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2040 struct frame_info *this_frame,
2041 void **this_prologue_cache)
2042 {
2043 CORE_ADDR addr_in_block;
2044
2045 addr_in_block = get_frame_address_in_block (this_frame);
2046 if (in_plt_section (addr_in_block))
2047 return 1;
2048
2049 return 0;
2050 }
2051
2052 static const struct frame_unwind sh_stub_unwind =
2053 {
2054 NORMAL_FRAME,
2055 default_frame_unwind_stop_reason,
2056 sh_stub_this_id,
2057 sh_frame_prev_register,
2058 NULL,
2059 sh_stub_unwind_sniffer
2060 };
2061
2062 /* Implement the stack_frame_destroyed_p gdbarch method.
2063
2064 The epilogue is defined here as the area at the end of a function,
2065 either on the `ret' instruction itself or after an instruction which
2066 destroys the function's stack frame. */
2067
2068 static int
2069 sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2070 {
2071 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2072 CORE_ADDR func_addr = 0, func_end = 0;
2073
2074 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2075 {
2076 ULONGEST inst;
2077 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2078 for a nop and some fixed data (e.g. big offsets) which are
2079 unfortunately also treated as part of the function (which
2080 means, they are below func_end. */
2081 CORE_ADDR addr = func_end - 28;
2082 if (addr < func_addr + 4)
2083 addr = func_addr + 4;
2084 if (pc < addr)
2085 return 0;
2086
2087 /* First search forward until hitting an rts. */
2088 while (addr < func_end
2089 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2090 addr += 2;
2091 if (addr >= func_end)
2092 return 0;
2093
2094 /* At this point we should find a mov.l @r15+,r14 instruction,
2095 either before or after the rts. If not, then the function has
2096 probably no "normal" epilogue and we bail out here. */
2097 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2098 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2099 byte_order)))
2100 addr -= 2;
2101 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2102 byte_order)))
2103 return 0;
2104
2105 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2106
2107 /* Step over possible lds.l @r15+,macl. */
2108 if (IS_MACL_LDS (inst))
2109 {
2110 addr -= 2;
2111 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2112 }
2113
2114 /* Step over possible lds.l @r15+,pr. */
2115 if (IS_LDS (inst))
2116 {
2117 addr -= 2;
2118 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2119 }
2120
2121 /* Step over possible mov r14,r15. */
2122 if (IS_MOV_FP_SP (inst))
2123 {
2124 addr -= 2;
2125 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2126 }
2127
2128 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2129 instructions. */
2130 while (addr > func_addr + 4
2131 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2132 {
2133 addr -= 2;
2134 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2135 }
2136
2137 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2138 That's allowed for the epilogue. */
2139 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2140 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2141 && addr > func_addr + 6
2142 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2143 byte_order)))
2144 addr -= 4;
2145
2146 if (pc >= addr)
2147 return 1;
2148 }
2149 return 0;
2150 }
2151
2152
2153 /* Supply register REGNUM from the buffer specified by REGS and LEN
2154 in the register set REGSET to register cache REGCACHE.
2155 REGTABLE specifies where each register can be found in REGS.
2156 If REGNUM is -1, do this for all registers in REGSET. */
2157
2158 void
2159 sh_corefile_supply_regset (const struct regset *regset,
2160 struct regcache *regcache,
2161 int regnum, const void *regs, size_t len)
2162 {
2163 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2165 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2166 ? tdep->core_gregmap
2167 : tdep->core_fpregmap);
2168 int i;
2169
2170 for (i = 0; regmap[i].regnum != -1; i++)
2171 {
2172 if ((regnum == -1 || regnum == regmap[i].regnum)
2173 && regmap[i].offset + 4 <= len)
2174 regcache_raw_supply (regcache, regmap[i].regnum,
2175 (char *)regs + regmap[i].offset);
2176 }
2177 }
2178
2179 /* Collect register REGNUM in the register set REGSET from register cache
2180 REGCACHE into the buffer specified by REGS and LEN.
2181 REGTABLE specifies where each register can be found in REGS.
2182 If REGNUM is -1, do this for all registers in REGSET. */
2183
2184 void
2185 sh_corefile_collect_regset (const struct regset *regset,
2186 const struct regcache *regcache,
2187 int regnum, void *regs, size_t len)
2188 {
2189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2190 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2191 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2192 ? tdep->core_gregmap
2193 : tdep->core_fpregmap);
2194 int i;
2195
2196 for (i = 0; regmap[i].regnum != -1; i++)
2197 {
2198 if ((regnum == -1 || regnum == regmap[i].regnum)
2199 && regmap[i].offset + 4 <= len)
2200 regcache_raw_collect (regcache, regmap[i].regnum,
2201 (char *)regs + regmap[i].offset);
2202 }
2203 }
2204
2205 /* The following two regsets have the same contents, so it is tempting to
2206 unify them, but they are distiguished by their address, so don't. */
2207
2208 const struct regset sh_corefile_gregset =
2209 {
2210 NULL,
2211 sh_corefile_supply_regset,
2212 sh_corefile_collect_regset
2213 };
2214
2215 static const struct regset sh_corefile_fpregset =
2216 {
2217 NULL,
2218 sh_corefile_supply_regset,
2219 sh_corefile_collect_regset
2220 };
2221
2222 static void
2223 sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2224 iterate_over_regset_sections_cb *cb,
2225 void *cb_data,
2226 const struct regcache *regcache)
2227 {
2228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2229
2230 if (tdep->core_gregmap != NULL)
2231 cb (".reg", tdep->sizeof_gregset, &sh_corefile_gregset, NULL, cb_data);
2232
2233 if (tdep->core_fpregmap != NULL)
2234 cb (".reg2", tdep->sizeof_fpregset, &sh_corefile_fpregset, NULL, cb_data);
2235 }
2236
2237 /* This is the implementation of gdbarch method
2238 return_in_first_hidden_param_p. */
2239
2240 static int
2241 sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2242 struct type *type)
2243 {
2244 return 0;
2245 }
2246
2247 \f
2248
2249 static struct gdbarch *
2250 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2251 {
2252 struct gdbarch *gdbarch;
2253 struct gdbarch_tdep *tdep;
2254
2255 /* SH5 is handled entirely in sh64-tdep.c. */
2256 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2257 return sh64_gdbarch_init (info, arches);
2258
2259 /* If there is already a candidate, use it. */
2260 arches = gdbarch_list_lookup_by_info (arches, &info);
2261 if (arches != NULL)
2262 return arches->gdbarch;
2263
2264 /* None found, create a new architecture from the information
2265 provided. */
2266 tdep = XCNEW (struct gdbarch_tdep);
2267 gdbarch = gdbarch_alloc (&info, tdep);
2268
2269 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2270 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2271 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2272 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2273
2274 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2275 set_gdbarch_wchar_signed (gdbarch, 0);
2276
2277 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2278 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2279 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2280 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2281
2282 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2283 set_gdbarch_sp_regnum (gdbarch, 15);
2284 set_gdbarch_pc_regnum (gdbarch, 16);
2285 set_gdbarch_fp0_regnum (gdbarch, -1);
2286 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2287
2288 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2289 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2290
2291 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh_breakpoint_kind_from_pc);
2292 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh_sw_breakpoint_from_kind);
2293
2294 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2295
2296 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2297
2298 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2299 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2300
2301 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2302 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2303 sh_return_in_first_hidden_param_p);
2304
2305 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2306
2307 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2308 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2309 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2310 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
2311 frame_base_set_default (gdbarch, &sh_frame_base);
2312
2313 set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
2314
2315 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2316
2317 set_gdbarch_iterate_over_regset_sections
2318 (gdbarch, sh_iterate_over_regset_sections);
2319
2320 switch (info.bfd_arch_info->mach)
2321 {
2322 case bfd_mach_sh:
2323 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2324 break;
2325
2326 case bfd_mach_sh2:
2327 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2328 break;
2329
2330 case bfd_mach_sh2e:
2331 /* doubles on sh2e and sh3e are actually 4 byte. */
2332 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2333 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2334
2335 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2336 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2337 set_gdbarch_fp0_regnum (gdbarch, 25);
2338 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2339 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2340 break;
2341
2342 case bfd_mach_sh2a:
2343 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2344 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2345 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2346
2347 set_gdbarch_fp0_regnum (gdbarch, 25);
2348 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2349 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2350 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2351 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2352 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2353 break;
2354
2355 case bfd_mach_sh2a_nofpu:
2356 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2357 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2358
2359 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2360 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2361 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2362 break;
2363
2364 case bfd_mach_sh_dsp:
2365 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2366 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2367 break;
2368
2369 case bfd_mach_sh3:
2370 case bfd_mach_sh3_nommu:
2371 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2372 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2373 break;
2374
2375 case bfd_mach_sh3e:
2376 case bfd_mach_sh2a_or_sh3e:
2377 /* doubles on sh2e and sh3e are actually 4 byte. */
2378 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2379 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2380
2381 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2382 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2383 set_gdbarch_fp0_regnum (gdbarch, 25);
2384 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2385 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2386 break;
2387
2388 case bfd_mach_sh3_dsp:
2389 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2390 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2391 break;
2392
2393 case bfd_mach_sh4:
2394 case bfd_mach_sh4a:
2395 case bfd_mach_sh2a_or_sh4:
2396 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2397 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2398 set_gdbarch_fp0_regnum (gdbarch, 25);
2399 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2400 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2401 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2402 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2403 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2404 break;
2405
2406 case bfd_mach_sh4_nofpu:
2407 case bfd_mach_sh4a_nofpu:
2408 case bfd_mach_sh4_nommu_nofpu:
2409 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2410 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2411 break;
2412
2413 case bfd_mach_sh4al_dsp:
2414 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2415 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2416 break;
2417
2418 default:
2419 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2420 break;
2421 }
2422
2423 /* Hook in ABI-specific overrides, if they have been registered. */
2424 gdbarch_init_osabi (info, gdbarch);
2425
2426 dwarf2_append_unwinders (gdbarch);
2427 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2428 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2429
2430 return gdbarch;
2431 }
2432
2433 static void
2434 show_sh_command (char *args, int from_tty)
2435 {
2436 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2437 }
2438
2439 static void
2440 set_sh_command (char *args, int from_tty)
2441 {
2442 printf_unfiltered
2443 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2444 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2445 }
2446
2447 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2448
2449 void
2450 _initialize_sh_tdep (void)
2451 {
2452 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2453
2454 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2455 &setshcmdlist, "set sh ", 0, &setlist);
2456 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2457 &showshcmdlist, "show sh ", 0, &showlist);
2458
2459 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2460 &sh_active_calling_convention,
2461 _("Set calling convention used when calling target "
2462 "functions from GDB."),
2463 _("Show calling convention used when calling target "
2464 "functions from GDB."),
2465 _("gcc - Use GCC calling convention (default).\n"
2466 "renesas - Enforce Renesas calling convention."),
2467 NULL, NULL,
2468 &setshcmdlist, &showshcmdlist);
2469 }
This page took 0.124491 seconds and 4 git commands to generate.