gdb/
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "gdb_string.h"
36 #include "gdb_assert.h"
37 #include "arch-utils.h"
38 #include "floatformat.h"
39 #include "regcache.h"
40 #include "doublest.h"
41 #include "osabi.h"
42 #include "reggroups.h"
43 #include "regset.h"
44 #include "objfiles.h"
45
46 #include "sh-tdep.h"
47 #include "sh64-tdep.h"
48
49 #include "elf-bfd.h"
50 #include "solib-svr4.h"
51
52 /* sh flags */
53 #include "elf/sh.h"
54 #include "dwarf2.h"
55 /* registers numbers shared with the simulator. */
56 #include "gdb/sim-sh.h"
57
58 /* List of "set sh ..." and "show sh ..." commands. */
59 static struct cmd_list_element *setshcmdlist = NULL;
60 static struct cmd_list_element *showshcmdlist = NULL;
61
62 static const char sh_cc_gcc[] = "gcc";
63 static const char sh_cc_renesas[] = "renesas";
64 static const char *const sh_cc_enum[] = {
65 sh_cc_gcc,
66 sh_cc_renesas,
67 NULL
68 };
69
70 static const char *sh_active_calling_convention = sh_cc_gcc;
71
72 #define SH_NUM_REGS 67
73
74 struct sh_frame_cache
75 {
76 /* Base address. */
77 CORE_ADDR base;
78 LONGEST sp_offset;
79 CORE_ADDR pc;
80
81 /* Flag showing that a frame has been created in the prologue code. */
82 int uses_fp;
83
84 /* Saved registers. */
85 CORE_ADDR saved_regs[SH_NUM_REGS];
86 CORE_ADDR saved_sp;
87 };
88
89 static int
90 sh_is_renesas_calling_convention (struct type *func_type)
91 {
92 int val = 0;
93
94 if (func_type)
95 {
96 func_type = check_typedef (func_type);
97
98 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
99 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
100
101 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
102 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
103 val = 1;
104 }
105
106 if (sh_active_calling_convention == sh_cc_renesas)
107 val = 1;
108
109 return val;
110 }
111
112 static const char *
113 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
114 {
115 static char *register_names[] = {
116 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
117 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
118 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
119 "", "",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
122 "", "",
123 "", "", "", "", "", "", "", "",
124 "", "", "", "", "", "", "", "",
125 "", "", "", "", "", "", "", "",
126 };
127 if (reg_nr < 0)
128 return NULL;
129 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
130 return NULL;
131 return register_names[reg_nr];
132 }
133
134 static const char *
135 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
136 {
137 static char *register_names[] = {
138 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
139 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
140 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
141 "", "",
142 "", "", "", "", "", "", "", "",
143 "", "", "", "", "", "", "", "",
144 "ssr", "spc",
145 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
146 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
147 "", "", "", "", "", "", "", "",
148 };
149 if (reg_nr < 0)
150 return NULL;
151 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
152 return NULL;
153 return register_names[reg_nr];
154 }
155
156 static const char *
157 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
158 {
159 static char *register_names[] = {
160 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
161 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
162 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
163 "fpul", "fpscr",
164 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
165 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
166 "ssr", "spc",
167 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
168 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
169 "", "", "", "", "", "", "", "",
170 };
171 if (reg_nr < 0)
172 return NULL;
173 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
174 return NULL;
175 return register_names[reg_nr];
176 }
177
178 static const char *
179 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
180 {
181 static char *register_names[] = {
182 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
183 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
184 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
185 "fpul", "fpscr",
186 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
187 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
188 "", "",
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
191 "", "", "", "", "", "", "", "",
192 };
193 if (reg_nr < 0)
194 return NULL;
195 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
196 return NULL;
197 return register_names[reg_nr];
198 }
199
200 static const char *
201 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
202 {
203 static char *register_names[] = {
204 /* general registers 0-15 */
205 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
206 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
207 /* 16 - 22 */
208 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
209 /* 23, 24 */
210 "fpul", "fpscr",
211 /* floating point registers 25 - 40 */
212 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
213 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
214 /* 41, 42 */
215 "", "",
216 /* 43 - 62. Banked registers. The bank number used is determined by
217 the bank register (63). */
218 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
219 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
220 "machb", "ivnb", "prb", "gbrb", "maclb",
221 /* 63: register bank number, not a real register but used to
222 communicate the register bank currently get/set. This register
223 is hidden to the user, who manipulates it using the pseudo
224 register called "bank" (67). See below. */
225 "",
226 /* 64 - 66 */
227 "ibcr", "ibnr", "tbr",
228 /* 67: register bank number, the user visible pseudo register. */
229 "bank",
230 /* double precision (pseudo) 68 - 75 */
231 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
232 };
233 if (reg_nr < 0)
234 return NULL;
235 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
236 return NULL;
237 return register_names[reg_nr];
238 }
239
240 static const char *
241 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
242 {
243 static char *register_names[] = {
244 /* general registers 0-15 */
245 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
246 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
247 /* 16 - 22 */
248 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
249 /* 23, 24 */
250 "", "",
251 /* floating point registers 25 - 40 */
252 "", "", "", "", "", "", "", "",
253 "", "", "", "", "", "", "", "",
254 /* 41, 42 */
255 "", "",
256 /* 43 - 62. Banked registers. The bank number used is determined by
257 the bank register (63). */
258 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
259 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
260 "machb", "ivnb", "prb", "gbrb", "maclb",
261 /* 63: register bank number, not a real register but used to
262 communicate the register bank currently get/set. This register
263 is hidden to the user, who manipulates it using the pseudo
264 register called "bank" (67). See below. */
265 "",
266 /* 64 - 66 */
267 "ibcr", "ibnr", "tbr",
268 /* 67: register bank number, the user visible pseudo register. */
269 "bank",
270 /* double precision (pseudo) 68 - 75 */
271 "", "", "", "", "", "", "", "",
272 };
273 if (reg_nr < 0)
274 return NULL;
275 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
276 return NULL;
277 return register_names[reg_nr];
278 }
279
280 static const char *
281 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
282 {
283 static char *register_names[] = {
284 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
285 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
286 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
287 "", "dsr",
288 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
289 "y0", "y1", "", "", "", "", "", "mod",
290 "", "",
291 "rs", "re", "", "", "", "", "", "",
292 "", "", "", "", "", "", "", "",
293 "", "", "", "", "", "", "", "",
294 };
295 if (reg_nr < 0)
296 return NULL;
297 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
298 return NULL;
299 return register_names[reg_nr];
300 }
301
302 static const char *
303 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
304 {
305 static char *register_names[] = {
306 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
309 "", "dsr",
310 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
311 "y0", "y1", "", "", "", "", "", "mod",
312 "ssr", "spc",
313 "rs", "re", "", "", "", "", "", "",
314 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
315 "", "", "", "", "", "", "", "",
316 "", "", "", "", "", "", "", "",
317 };
318 if (reg_nr < 0)
319 return NULL;
320 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
321 return NULL;
322 return register_names[reg_nr];
323 }
324
325 static const char *
326 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
327 {
328 static char *register_names[] = {
329 /* general registers 0-15 */
330 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
331 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
332 /* 16 - 22 */
333 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
334 /* 23, 24 */
335 "fpul", "fpscr",
336 /* floating point registers 25 - 40 */
337 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
338 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
339 /* 41, 42 */
340 "ssr", "spc",
341 /* bank 0 43 - 50 */
342 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
343 /* bank 1 51 - 58 */
344 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
345 "", "", "", "", "", "", "", "",
346 /* pseudo bank register. */
347 "",
348 /* double precision (pseudo) 59 - 66 */
349 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
350 /* vectors (pseudo) 67 - 70 */
351 "fv0", "fv4", "fv8", "fv12",
352 /* FIXME: missing XF 71 - 86 */
353 /* FIXME: missing XD 87 - 94 */
354 };
355 if (reg_nr < 0)
356 return NULL;
357 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
358 return NULL;
359 return register_names[reg_nr];
360 }
361
362 static const char *
363 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
364 {
365 static char *register_names[] = {
366 /* general registers 0-15 */
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
369 /* 16 - 22 */
370 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
371 /* 23, 24 */
372 "", "",
373 /* floating point registers 25 - 40 -- not for nofpu target */
374 "", "", "", "", "", "", "", "",
375 "", "", "", "", "", "", "", "",
376 /* 41, 42 */
377 "ssr", "spc",
378 /* bank 0 43 - 50 */
379 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
380 /* bank 1 51 - 58 */
381 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
382 "", "", "", "", "", "", "", "",
383 /* pseudo bank register. */
384 "",
385 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
386 "", "", "", "", "", "", "", "",
387 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
388 "", "", "", "",
389 };
390 if (reg_nr < 0)
391 return NULL;
392 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
393 return NULL;
394 return register_names[reg_nr];
395 }
396
397 static const char *
398 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
399 {
400 static char *register_names[] = {
401 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
402 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
403 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
404 "", "dsr",
405 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
406 "y0", "y1", "", "", "", "", "", "mod",
407 "ssr", "spc",
408 "rs", "re", "", "", "", "", "", "",
409 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
412 };
413 if (reg_nr < 0)
414 return NULL;
415 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
416 return NULL;
417 return register_names[reg_nr];
418 }
419
420 static const unsigned char *
421 sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
422 {
423 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
424 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
425
426 /* For remote stub targets, trapa #20 is used. */
427 if (strcmp (target_shortname, "remote") == 0)
428 {
429 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
430 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
431
432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
433 {
434 *lenptr = sizeof (big_remote_breakpoint);
435 return big_remote_breakpoint;
436 }
437 else
438 {
439 *lenptr = sizeof (little_remote_breakpoint);
440 return little_remote_breakpoint;
441 }
442 }
443
444 *lenptr = sizeof (breakpoint);
445 return breakpoint;
446 }
447
448 /* Prologue looks like
449 mov.l r14,@-r15
450 sts.l pr,@-r15
451 mov.l <regs>,@-r15
452 sub <room_for_loca_vars>,r15
453 mov r15,r14
454
455 Actually it can be more complicated than this but that's it, basically. */
456
457 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
458 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
459
460 /* JSR @Rm 0100mmmm00001011 */
461 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
462
463 /* STS.L PR,@-r15 0100111100100010
464 r15-4-->r15, PR-->(r15) */
465 #define IS_STS(x) ((x) == 0x4f22)
466
467 /* STS.L MACL,@-r15 0100111100010010
468 r15-4-->r15, MACL-->(r15) */
469 #define IS_MACL_STS(x) ((x) == 0x4f12)
470
471 /* MOV.L Rm,@-r15 00101111mmmm0110
472 r15-4-->r15, Rm-->(R15) */
473 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
474
475 /* MOV r15,r14 0110111011110011
476 r15-->r14 */
477 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
478
479 /* ADD #imm,r15 01111111iiiiiiii
480 r15+imm-->r15 */
481 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
482
483 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
484 #define IS_SHLL_R3(x) ((x) == 0x4300)
485
486 /* ADD r3,r15 0011111100111100
487 r15+r3-->r15 */
488 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
489
490 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
491 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
492 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
493 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
494 make this entirely clear. */
495 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
496 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
497
498 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
499 #define IS_MOV_ARG_TO_REG(x) \
500 (((x) & 0xf00f) == 0x6003 && \
501 ((x) & 0x00f0) >= 0x0040 && \
502 ((x) & 0x00f0) <= 0x0070)
503 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
504 #define IS_MOV_ARG_TO_IND_R14(x) \
505 (((x) & 0xff0f) == 0x2e02 && \
506 ((x) & 0x00f0) >= 0x0040 && \
507 ((x) & 0x00f0) <= 0x0070)
508 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
509 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
510 (((x) & 0xff00) == 0x1e00 && \
511 ((x) & 0x00f0) >= 0x0040 && \
512 ((x) & 0x00f0) <= 0x0070)
513
514 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
515 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
516 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
517 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
518 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
519 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
520 /* SUB Rn,R15 00111111nnnn1000 */
521 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
522
523 #define FPSCR_SZ (1 << 20)
524
525 /* The following instructions are used for epilogue testing. */
526 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
527 #define IS_RTS(x) ((x) == 0x000b)
528 #define IS_LDS(x) ((x) == 0x4f26)
529 #define IS_MACL_LDS(x) ((x) == 0x4f16)
530 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
531 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
532 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
533
534 static CORE_ADDR
535 sh_analyze_prologue (struct gdbarch *gdbarch,
536 CORE_ADDR pc, CORE_ADDR limit_pc,
537 struct sh_frame_cache *cache, ULONGEST fpscr)
538 {
539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
540 ULONGEST inst;
541 int offset;
542 int sav_offset = 0;
543 int r3_val = 0;
544 int reg, sav_reg = -1;
545
546 cache->uses_fp = 0;
547 for (; pc < limit_pc; pc += 2)
548 {
549 inst = read_memory_unsigned_integer (pc, 2, byte_order);
550 /* See where the registers will be saved to. */
551 if (IS_PUSH (inst))
552 {
553 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
554 cache->sp_offset += 4;
555 }
556 else if (IS_STS (inst))
557 {
558 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
559 cache->sp_offset += 4;
560 }
561 else if (IS_MACL_STS (inst))
562 {
563 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
564 cache->sp_offset += 4;
565 }
566 else if (IS_MOV_R3 (inst))
567 {
568 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
569 }
570 else if (IS_SHLL_R3 (inst))
571 {
572 r3_val <<= 1;
573 }
574 else if (IS_ADD_R3SP (inst))
575 {
576 cache->sp_offset += -r3_val;
577 }
578 else if (IS_ADD_IMM_SP (inst))
579 {
580 offset = ((inst & 0xff) ^ 0x80) - 0x80;
581 cache->sp_offset -= offset;
582 }
583 else if (IS_MOVW_PCREL_TO_REG (inst))
584 {
585 if (sav_reg < 0)
586 {
587 reg = GET_TARGET_REG (inst);
588 if (reg < 14)
589 {
590 sav_reg = reg;
591 offset = (inst & 0xff) << 1;
592 sav_offset =
593 read_memory_integer ((pc + 4) + offset, 2, byte_order);
594 }
595 }
596 }
597 else if (IS_MOVL_PCREL_TO_REG (inst))
598 {
599 if (sav_reg < 0)
600 {
601 reg = GET_TARGET_REG (inst);
602 if (reg < 14)
603 {
604 sav_reg = reg;
605 offset = (inst & 0xff) << 2;
606 sav_offset =
607 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
608 4, byte_order);
609 }
610 }
611 }
612 else if (IS_MOVI20 (inst)
613 && (pc + 2 < limit_pc))
614 {
615 if (sav_reg < 0)
616 {
617 reg = GET_TARGET_REG (inst);
618 if (reg < 14)
619 {
620 sav_reg = reg;
621 sav_offset = GET_SOURCE_REG (inst) << 16;
622 /* MOVI20 is a 32 bit instruction! */
623 pc += 2;
624 sav_offset
625 |= read_memory_unsigned_integer (pc, 2, byte_order);
626 /* Now sav_offset contains an unsigned 20 bit value.
627 It must still get sign extended. */
628 if (sav_offset & 0x00080000)
629 sav_offset |= 0xfff00000;
630 }
631 }
632 }
633 else if (IS_SUB_REG_FROM_SP (inst))
634 {
635 reg = GET_SOURCE_REG (inst);
636 if (sav_reg > 0 && reg == sav_reg)
637 {
638 sav_reg = -1;
639 }
640 cache->sp_offset += sav_offset;
641 }
642 else if (IS_FPUSH (inst))
643 {
644 if (fpscr & FPSCR_SZ)
645 {
646 cache->sp_offset += 8;
647 }
648 else
649 {
650 cache->sp_offset += 4;
651 }
652 }
653 else if (IS_MOV_SP_FP (inst))
654 {
655 pc += 2;
656 /* Don't go any further than six more instructions. */
657 limit_pc = min (limit_pc, pc + (2 * 6));
658
659 cache->uses_fp = 1;
660 /* At this point, only allow argument register moves to other
661 registers or argument register moves to @(X,fp) which are
662 moving the register arguments onto the stack area allocated
663 by a former add somenumber to SP call. Don't allow moving
664 to an fp indirect address above fp + cache->sp_offset. */
665 for (; pc < limit_pc; pc += 2)
666 {
667 inst = read_memory_integer (pc, 2, byte_order);
668 if (IS_MOV_ARG_TO_IND_R14 (inst))
669 {
670 reg = GET_SOURCE_REG (inst);
671 if (cache->sp_offset > 0)
672 cache->saved_regs[reg] = cache->sp_offset;
673 }
674 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
675 {
676 reg = GET_SOURCE_REG (inst);
677 offset = (inst & 0xf) * 4;
678 if (cache->sp_offset > offset)
679 cache->saved_regs[reg] = cache->sp_offset - offset;
680 }
681 else if (IS_MOV_ARG_TO_REG (inst))
682 continue;
683 else
684 break;
685 }
686 break;
687 }
688 else if (IS_JSR (inst))
689 {
690 /* We have found a jsr that has been scheduled into the prologue.
691 If we continue the scan and return a pc someplace after this,
692 then setting a breakpoint on this function will cause it to
693 appear to be called after the function it is calling via the
694 jsr, which will be very confusing. Most likely the next
695 instruction is going to be IS_MOV_SP_FP in the delay slot. If
696 so, note that before returning the current pc. */
697 if (pc + 2 < limit_pc)
698 {
699 inst = read_memory_integer (pc + 2, 2, byte_order);
700 if (IS_MOV_SP_FP (inst))
701 cache->uses_fp = 1;
702 }
703 break;
704 }
705 #if 0 /* This used to just stop when it found an instruction
706 that was not considered part of the prologue. Now,
707 we just keep going looking for likely
708 instructions. */
709 else
710 break;
711 #endif
712 }
713
714 return pc;
715 }
716
717 /* Skip any prologue before the guts of a function. */
718 static CORE_ADDR
719 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
720 {
721 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
722 struct sh_frame_cache cache;
723
724 /* See if we can determine the end of the prologue via the symbol table.
725 If so, then return either PC, or the PC after the prologue, whichever
726 is greater. */
727 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
728 {
729 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
730 if (post_prologue_pc != 0)
731 return max (pc, post_prologue_pc);
732 }
733
734 /* Can't determine prologue from the symbol table, need to examine
735 instructions. */
736
737 /* Find an upper limit on the function prologue using the debug
738 information. If the debug information could not be used to provide
739 that bound, then use an arbitrary large number as the upper bound. */
740 limit_pc = skip_prologue_using_sal (gdbarch, pc);
741 if (limit_pc == 0)
742 /* Don't go any further than 28 instructions. */
743 limit_pc = pc + (2 * 28);
744
745 /* Do not allow limit_pc to be past the function end, if we know
746 where that end is... */
747 if (func_end_addr != 0)
748 limit_pc = min (limit_pc, func_end_addr);
749
750 cache.sp_offset = -4;
751 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
752 if (cache.uses_fp)
753 pc = post_prologue_pc;
754
755 return pc;
756 }
757
758 /* The ABI says:
759
760 Aggregate types not bigger than 8 bytes that have the same size and
761 alignment as one of the integer scalar types are returned in the
762 same registers as the integer type they match.
763
764 For example, a 2-byte aligned structure with size 2 bytes has the
765 same size and alignment as a short int, and will be returned in R0.
766 A 4-byte aligned structure with size 8 bytes has the same size and
767 alignment as a long long int, and will be returned in R0 and R1.
768
769 When an aggregate type is returned in R0 and R1, R0 contains the
770 first four bytes of the aggregate, and R1 contains the
771 remainder. If the size of the aggregate type is not a multiple of 4
772 bytes, the aggregate is tail-padded up to a multiple of 4
773 bytes. The value of the padding is undefined. For little-endian
774 targets the padding will appear at the most significant end of the
775 last element, for big-endian targets the padding appears at the
776 least significant end of the last element.
777
778 All other aggregate types are returned by address. The caller
779 function passes the address of an area large enough to hold the
780 aggregate value in R2. The called function stores the result in
781 this location.
782
783 To reiterate, structs smaller than 8 bytes could also be returned
784 in memory, if they don't pass the "same size and alignment as an
785 integer type" rule.
786
787 For example, in
788
789 struct s { char c[3]; } wibble;
790 struct s foo(void) { return wibble; }
791
792 the return value from foo() will be in memory, not
793 in R0, because there is no 3-byte integer type.
794
795 Similarly, in
796
797 struct s { char c[2]; } wibble;
798 struct s foo(void) { return wibble; }
799
800 because a struct containing two chars has alignment 1, that matches
801 type char, but size 2, that matches type short. There's no integer
802 type that has alignment 1 and size 2, so the struct is returned in
803 memory. */
804
805 static int
806 sh_use_struct_convention (int renesas_abi, struct type *type)
807 {
808 int len = TYPE_LENGTH (type);
809 int nelem = TYPE_NFIELDS (type);
810
811 /* The Renesas ABI returns aggregate types always on stack. */
812 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
813 || TYPE_CODE (type) == TYPE_CODE_UNION))
814 return 1;
815
816 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
817 fit in two registers anyway) use struct convention. */
818 if (len != 1 && len != 2 && len != 4 && len != 8)
819 return 1;
820
821 /* Scalar types and aggregate types with exactly one field are aligned
822 by definition. They are returned in registers. */
823 if (nelem <= 1)
824 return 0;
825
826 /* If the first field in the aggregate has the same length as the entire
827 aggregate type, the type is returned in registers. */
828 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
829 return 0;
830
831 /* If the size of the aggregate is 8 bytes and the first field is
832 of size 4 bytes its alignment is equal to long long's alignment,
833 so it's returned in registers. */
834 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
835 return 0;
836
837 /* Otherwise use struct convention. */
838 return 1;
839 }
840
841 static int
842 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
843 {
844 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
845 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
846 return 1;
847 return sh_use_struct_convention (renesas_abi, type);
848 }
849
850 static CORE_ADDR
851 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
852 {
853 return sp & ~3;
854 }
855
856 /* Function: push_dummy_call (formerly push_arguments)
857 Setup the function arguments for calling a function in the inferior.
858
859 On the Renesas SH architecture, there are four registers (R4 to R7)
860 which are dedicated for passing function arguments. Up to the first
861 four arguments (depending on size) may go into these registers.
862 The rest go on the stack.
863
864 MVS: Except on SH variants that have floating point registers.
865 In that case, float and double arguments are passed in the same
866 manner, but using FP registers instead of GP registers.
867
868 Arguments that are smaller than 4 bytes will still take up a whole
869 register or a whole 32-bit word on the stack, and will be
870 right-justified in the register or the stack word. This includes
871 chars, shorts, and small aggregate types.
872
873 Arguments that are larger than 4 bytes may be split between two or
874 more registers. If there are not enough registers free, an argument
875 may be passed partly in a register (or registers), and partly on the
876 stack. This includes doubles, long longs, and larger aggregates.
877 As far as I know, there is no upper limit to the size of aggregates
878 that will be passed in this way; in other words, the convention of
879 passing a pointer to a large aggregate instead of a copy is not used.
880
881 MVS: The above appears to be true for the SH variants that do not
882 have an FPU, however those that have an FPU appear to copy the
883 aggregate argument onto the stack (and not place it in registers)
884 if it is larger than 16 bytes (four GP registers).
885
886 An exceptional case exists for struct arguments (and possibly other
887 aggregates such as arrays) if the size is larger than 4 bytes but
888 not a multiple of 4 bytes. In this case the argument is never split
889 between the registers and the stack, but instead is copied in its
890 entirety onto the stack, AND also copied into as many registers as
891 there is room for. In other words, space in registers permitting,
892 two copies of the same argument are passed in. As far as I can tell,
893 only the one on the stack is used, although that may be a function
894 of the level of compiler optimization. I suspect this is a compiler
895 bug. Arguments of these odd sizes are left-justified within the
896 word (as opposed to arguments smaller than 4 bytes, which are
897 right-justified).
898
899 If the function is to return an aggregate type such as a struct, it
900 is either returned in the normal return value register R0 (if its
901 size is no greater than one byte), or else the caller must allocate
902 space into which the callee will copy the return value (if the size
903 is greater than one byte). In this case, a pointer to the return
904 value location is passed into the callee in register R2, which does
905 not displace any of the other arguments passed in via registers R4
906 to R7. */
907
908 /* Helper function to justify value in register according to endianess. */
909 static char *
910 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
911 {
912 static char valbuf[4];
913
914 memset (valbuf, 0, sizeof (valbuf));
915 if (len < 4)
916 {
917 /* value gets right-justified in the register or stack word. */
918 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
919 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
920 else
921 memcpy (valbuf, (char *) value_contents (val), len);
922 return valbuf;
923 }
924 return (char *) value_contents (val);
925 }
926
927 /* Helper function to eval number of bytes to allocate on stack. */
928 static CORE_ADDR
929 sh_stack_allocsize (int nargs, struct value **args)
930 {
931 int stack_alloc = 0;
932 while (nargs-- > 0)
933 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
934 return stack_alloc;
935 }
936
937 /* Helper functions for getting the float arguments right. Registers usage
938 depends on the ABI and the endianess. The comments should enlighten how
939 it's intended to work. */
940
941 /* This array stores which of the float arg registers are already in use. */
942 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
943
944 /* This function just resets the above array to "no reg used so far". */
945 static void
946 sh_init_flt_argreg (void)
947 {
948 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
949 }
950
951 /* This function returns the next register to use for float arg passing.
952 It returns either a valid value between FLOAT_ARG0_REGNUM and
953 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
954 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
955
956 Note that register number 0 in flt_argreg_array corresponds with the
957 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
958 29) the parity of the register number is preserved, which is important
959 for the double register passing test (see the "argreg & 1" test below). */
960 static int
961 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
962 {
963 int argreg;
964
965 /* First search for the next free register. */
966 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
967 ++argreg)
968 if (!flt_argreg_array[argreg])
969 break;
970
971 /* No register left? */
972 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
973 return FLOAT_ARGLAST_REGNUM + 1;
974
975 if (len == 8)
976 {
977 /* Doubles are always starting in a even register number. */
978 if (argreg & 1)
979 {
980 /* In gcc ABI, the skipped register is lost for further argument
981 passing now. Not so in Renesas ABI. */
982 if (!sh_is_renesas_calling_convention (func_type))
983 flt_argreg_array[argreg] = 1;
984
985 ++argreg;
986
987 /* No register left? */
988 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
989 return FLOAT_ARGLAST_REGNUM + 1;
990 }
991 /* Also mark the next register as used. */
992 flt_argreg_array[argreg + 1] = 1;
993 }
994 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
995 && !sh_is_renesas_calling_convention (func_type))
996 {
997 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
998 if (!flt_argreg_array[argreg + 1])
999 ++argreg;
1000 }
1001 flt_argreg_array[argreg] = 1;
1002 return FLOAT_ARG0_REGNUM + argreg;
1003 }
1004
1005 /* Helper function which figures out, if a type is treated like a float type.
1006
1007 The FPU ABIs have a special way how to treat types as float types.
1008 Structures with exactly one member, which is of type float or double, are
1009 treated exactly as the base types float or double:
1010
1011 struct sf {
1012 float f;
1013 };
1014
1015 struct sd {
1016 double d;
1017 };
1018
1019 are handled the same way as just
1020
1021 float f;
1022
1023 double d;
1024
1025 As a result, arguments of these struct types are pushed into floating point
1026 registers exactly as floats or doubles, using the same decision algorithm.
1027
1028 The same is valid if these types are used as function return types. The
1029 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1030 or even using struct convention as it is for other structs. */
1031
1032 static int
1033 sh_treat_as_flt_p (struct type *type)
1034 {
1035 int len = TYPE_LENGTH (type);
1036
1037 /* Ordinary float types are obviously treated as float. */
1038 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1039 return 1;
1040 /* Otherwise non-struct types are not treated as float. */
1041 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1042 return 0;
1043 /* Otherwise structs with more than one memeber are not treated as float. */
1044 if (TYPE_NFIELDS (type) != 1)
1045 return 0;
1046 /* Otherwise if the type of that member is float, the whole type is
1047 treated as float. */
1048 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1049 return 1;
1050 /* Otherwise it's not treated as float. */
1051 return 0;
1052 }
1053
1054 static CORE_ADDR
1055 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1056 struct value *function,
1057 struct regcache *regcache,
1058 CORE_ADDR bp_addr, int nargs,
1059 struct value **args,
1060 CORE_ADDR sp, int struct_return,
1061 CORE_ADDR struct_addr)
1062 {
1063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1064 int stack_offset = 0;
1065 int argreg = ARG0_REGNUM;
1066 int flt_argreg = 0;
1067 int argnum;
1068 struct type *func_type = value_type (function);
1069 struct type *type;
1070 CORE_ADDR regval;
1071 char *val;
1072 int len, reg_size = 0;
1073 int pass_on_stack = 0;
1074 int treat_as_flt;
1075 int last_reg_arg = INT_MAX;
1076
1077 /* The Renesas ABI expects all varargs arguments, plus the last
1078 non-vararg argument to be on the stack, no matter how many
1079 registers have been used so far. */
1080 if (sh_is_renesas_calling_convention (func_type)
1081 && TYPE_VARARGS (func_type))
1082 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1083
1084 /* First force sp to a 4-byte alignment. */
1085 sp = sh_frame_align (gdbarch, sp);
1086
1087 /* Make room on stack for args. */
1088 sp -= sh_stack_allocsize (nargs, args);
1089
1090 /* Initialize float argument mechanism. */
1091 sh_init_flt_argreg ();
1092
1093 /* Now load as many as possible of the first arguments into
1094 registers, and push the rest onto the stack. There are 16 bytes
1095 in four registers available. Loop thru args from first to last. */
1096 for (argnum = 0; argnum < nargs; argnum++)
1097 {
1098 type = value_type (args[argnum]);
1099 len = TYPE_LENGTH (type);
1100 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1101
1102 /* Some decisions have to be made how various types are handled.
1103 This also differs in different ABIs. */
1104 pass_on_stack = 0;
1105
1106 /* Find out the next register to use for a floating point value. */
1107 treat_as_flt = sh_treat_as_flt_p (type);
1108 if (treat_as_flt)
1109 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1110 /* In Renesas ABI, long longs and aggregate types are always passed
1111 on stack. */
1112 else if (sh_is_renesas_calling_convention (func_type)
1113 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1114 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1115 || TYPE_CODE (type) == TYPE_CODE_UNION))
1116 pass_on_stack = 1;
1117 /* In contrast to non-FPU CPUs, arguments are never split between
1118 registers and stack. If an argument doesn't fit in the remaining
1119 registers it's always pushed entirely on the stack. */
1120 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1121 pass_on_stack = 1;
1122
1123 while (len > 0)
1124 {
1125 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1126 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1127 || pass_on_stack))
1128 || argnum > last_reg_arg)
1129 {
1130 /* The data goes entirely on the stack, 4-byte aligned. */
1131 reg_size = (len + 3) & ~3;
1132 write_memory (sp + stack_offset, val, reg_size);
1133 stack_offset += reg_size;
1134 }
1135 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1136 {
1137 /* Argument goes in a float argument register. */
1138 reg_size = register_size (gdbarch, flt_argreg);
1139 regval = extract_unsigned_integer (val, reg_size, byte_order);
1140 /* In little endian mode, float types taking two registers
1141 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1142 be stored swapped in the argument registers. The below
1143 code first writes the first 32 bits in the next but one
1144 register, increments the val and len values accordingly
1145 and then proceeds as normal by writing the second 32 bits
1146 into the next register. */
1147 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1148 && TYPE_LENGTH (type) == 2 * reg_size)
1149 {
1150 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1151 regval);
1152 val += reg_size;
1153 len -= reg_size;
1154 regval = extract_unsigned_integer (val, reg_size,
1155 byte_order);
1156 }
1157 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1158 }
1159 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1160 {
1161 /* there's room in a register */
1162 reg_size = register_size (gdbarch, argreg);
1163 regval = extract_unsigned_integer (val, reg_size, byte_order);
1164 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1165 }
1166 /* Store the value one register at a time or in one step on
1167 stack. */
1168 len -= reg_size;
1169 val += reg_size;
1170 }
1171 }
1172
1173 if (struct_return)
1174 {
1175 if (sh_is_renesas_calling_convention (func_type))
1176 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1177 the stack and store the struct return address there. */
1178 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1179 else
1180 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1181 its own dedicated register. */
1182 regcache_cooked_write_unsigned (regcache,
1183 STRUCT_RETURN_REGNUM, struct_addr);
1184 }
1185
1186 /* Store return address. */
1187 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1188
1189 /* Update stack pointer. */
1190 regcache_cooked_write_unsigned (regcache,
1191 gdbarch_sp_regnum (gdbarch), sp);
1192
1193 return sp;
1194 }
1195
1196 static CORE_ADDR
1197 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1198 struct value *function,
1199 struct regcache *regcache,
1200 CORE_ADDR bp_addr,
1201 int nargs, struct value **args,
1202 CORE_ADDR sp, int struct_return,
1203 CORE_ADDR struct_addr)
1204 {
1205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1206 int stack_offset = 0;
1207 int argreg = ARG0_REGNUM;
1208 int argnum;
1209 struct type *func_type = value_type (function);
1210 struct type *type;
1211 CORE_ADDR regval;
1212 char *val;
1213 int len, reg_size = 0;
1214 int pass_on_stack = 0;
1215 int last_reg_arg = INT_MAX;
1216
1217 /* The Renesas ABI expects all varargs arguments, plus the last
1218 non-vararg argument to be on the stack, no matter how many
1219 registers have been used so far. */
1220 if (sh_is_renesas_calling_convention (func_type)
1221 && TYPE_VARARGS (func_type))
1222 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1223
1224 /* First force sp to a 4-byte alignment. */
1225 sp = sh_frame_align (gdbarch, sp);
1226
1227 /* Make room on stack for args. */
1228 sp -= sh_stack_allocsize (nargs, args);
1229
1230 /* Now load as many as possible of the first arguments into
1231 registers, and push the rest onto the stack. There are 16 bytes
1232 in four registers available. Loop thru args from first to last. */
1233 for (argnum = 0; argnum < nargs; argnum++)
1234 {
1235 type = value_type (args[argnum]);
1236 len = TYPE_LENGTH (type);
1237 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1238
1239 /* Some decisions have to be made how various types are handled.
1240 This also differs in different ABIs. */
1241 pass_on_stack = 0;
1242 /* Renesas ABI pushes doubles and long longs entirely on stack.
1243 Same goes for aggregate types. */
1244 if (sh_is_renesas_calling_convention (func_type)
1245 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1246 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1247 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (type) == TYPE_CODE_UNION))
1249 pass_on_stack = 1;
1250 while (len > 0)
1251 {
1252 if (argreg > ARGLAST_REGNUM || pass_on_stack
1253 || argnum > last_reg_arg)
1254 {
1255 /* The remainder of the data goes entirely on the stack,
1256 4-byte aligned. */
1257 reg_size = (len + 3) & ~3;
1258 write_memory (sp + stack_offset, val, reg_size);
1259 stack_offset += reg_size;
1260 }
1261 else if (argreg <= ARGLAST_REGNUM)
1262 {
1263 /* There's room in a register. */
1264 reg_size = register_size (gdbarch, argreg);
1265 regval = extract_unsigned_integer (val, reg_size, byte_order);
1266 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1267 }
1268 /* Store the value reg_size bytes at a time. This means that things
1269 larger than reg_size bytes may go partly in registers and partly
1270 on the stack. */
1271 len -= reg_size;
1272 val += reg_size;
1273 }
1274 }
1275
1276 if (struct_return)
1277 {
1278 if (sh_is_renesas_calling_convention (func_type))
1279 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1280 the stack and store the struct return address there. */
1281 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1282 else
1283 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1284 its own dedicated register. */
1285 regcache_cooked_write_unsigned (regcache,
1286 STRUCT_RETURN_REGNUM, struct_addr);
1287 }
1288
1289 /* Store return address. */
1290 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1291
1292 /* Update stack pointer. */
1293 regcache_cooked_write_unsigned (regcache,
1294 gdbarch_sp_regnum (gdbarch), sp);
1295
1296 return sp;
1297 }
1298
1299 /* Find a function's return value in the appropriate registers (in
1300 regbuf), and copy it into valbuf. Extract from an array REGBUF
1301 containing the (raw) register state a function return value of type
1302 TYPE, and copy that, in virtual format, into VALBUF. */
1303 static void
1304 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1305 void *valbuf)
1306 {
1307 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1309 int len = TYPE_LENGTH (type);
1310 int return_register = R0_REGNUM;
1311 int offset;
1312
1313 if (len <= 4)
1314 {
1315 ULONGEST c;
1316
1317 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1318 store_unsigned_integer (valbuf, len, byte_order, c);
1319 }
1320 else if (len == 8)
1321 {
1322 int i, regnum = R0_REGNUM;
1323 for (i = 0; i < len; i += 4)
1324 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1325 }
1326 else
1327 error (_("bad size for return value"));
1328 }
1329
1330 static void
1331 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1332 void *valbuf)
1333 {
1334 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1335 if (sh_treat_as_flt_p (type))
1336 {
1337 int len = TYPE_LENGTH (type);
1338 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1339 for (i = 0; i < len; i += 4)
1340 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1341 regcache_raw_read (regcache, regnum++,
1342 (char *) valbuf + len - 4 - i);
1343 else
1344 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1345 }
1346 else
1347 sh_extract_return_value_nofpu (type, regcache, valbuf);
1348 }
1349
1350 /* Write into appropriate registers a function return value
1351 of type TYPE, given in virtual format.
1352 If the architecture is sh4 or sh3e, store a function's return value
1353 in the R0 general register or in the FP0 floating point register,
1354 depending on the type of the return value. In all the other cases
1355 the result is stored in r0, left-justified. */
1356 static void
1357 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1358 const void *valbuf)
1359 {
1360 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1362 ULONGEST val;
1363 int len = TYPE_LENGTH (type);
1364
1365 if (len <= 4)
1366 {
1367 val = extract_unsigned_integer (valbuf, len, byte_order);
1368 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1369 }
1370 else
1371 {
1372 int i, regnum = R0_REGNUM;
1373 for (i = 0; i < len; i += 4)
1374 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1375 }
1376 }
1377
1378 static void
1379 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1380 const void *valbuf)
1381 {
1382 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1383 if (sh_treat_as_flt_p (type))
1384 {
1385 int len = TYPE_LENGTH (type);
1386 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1387 for (i = 0; i < len; i += 4)
1388 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1389 regcache_raw_write (regcache, regnum++,
1390 (char *) valbuf + len - 4 - i);
1391 else
1392 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1393 }
1394 else
1395 sh_store_return_value_nofpu (type, regcache, valbuf);
1396 }
1397
1398 static enum return_value_convention
1399 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1400 struct type *type, struct regcache *regcache,
1401 gdb_byte *readbuf, const gdb_byte *writebuf)
1402 {
1403 struct type *func_type = function ? value_type (function) : NULL;
1404
1405 if (sh_use_struct_convention_nofpu (
1406 sh_is_renesas_calling_convention (func_type), type))
1407 return RETURN_VALUE_STRUCT_CONVENTION;
1408 if (writebuf)
1409 sh_store_return_value_nofpu (type, regcache, writebuf);
1410 else if (readbuf)
1411 sh_extract_return_value_nofpu (type, regcache, readbuf);
1412 return RETURN_VALUE_REGISTER_CONVENTION;
1413 }
1414
1415 static enum return_value_convention
1416 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1417 struct type *type, struct regcache *regcache,
1418 gdb_byte *readbuf, const gdb_byte *writebuf)
1419 {
1420 struct type *func_type = function ? value_type (function) : NULL;
1421
1422 if (sh_use_struct_convention (
1423 sh_is_renesas_calling_convention (func_type), type))
1424 return RETURN_VALUE_STRUCT_CONVENTION;
1425 if (writebuf)
1426 sh_store_return_value_fpu (type, regcache, writebuf);
1427 else if (readbuf)
1428 sh_extract_return_value_fpu (type, regcache, readbuf);
1429 return RETURN_VALUE_REGISTER_CONVENTION;
1430 }
1431
1432 static struct type *
1433 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1434 {
1435 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1436 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1437 return builtin_type (gdbarch)->builtin_float;
1438 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1439 return builtin_type (gdbarch)->builtin_double;
1440 else
1441 return builtin_type (gdbarch)->builtin_int;
1442 }
1443
1444 /* Return the GDB type object for the "standard" data type
1445 of data in register N. */
1446 static struct type *
1447 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1448 {
1449 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1450 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1451 return builtin_type (gdbarch)->builtin_float;
1452 else
1453 return builtin_type (gdbarch)->builtin_int;
1454 }
1455
1456 static struct type *
1457 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1458 {
1459 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1460 0, high);
1461 }
1462
1463 static struct type *
1464 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1465 {
1466 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1467 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1468 return builtin_type (gdbarch)->builtin_float;
1469 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1470 return builtin_type (gdbarch)->builtin_double;
1471 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1472 return sh_sh4_build_float_register_type (gdbarch, 3);
1473 else
1474 return builtin_type (gdbarch)->builtin_int;
1475 }
1476
1477 static struct type *
1478 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1479 {
1480 return builtin_type (gdbarch)->builtin_int;
1481 }
1482
1483 /* Is a register in a reggroup?
1484 The default code in reggroup.c doesn't identify system registers, some
1485 float registers or any of the vector registers.
1486 TODO: sh2a and dsp registers. */
1487 static int
1488 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1489 struct reggroup *reggroup)
1490 {
1491 if (gdbarch_register_name (gdbarch, regnum) == NULL
1492 || *gdbarch_register_name (gdbarch, regnum) == '\0')
1493 return 0;
1494
1495 if (reggroup == float_reggroup
1496 && (regnum == FPUL_REGNUM
1497 || regnum == FPSCR_REGNUM))
1498 return 1;
1499
1500 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1501 {
1502 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1503 return 1;
1504 if (reggroup == general_reggroup)
1505 return 0;
1506 }
1507
1508 if (regnum == VBR_REGNUM
1509 || regnum == SR_REGNUM
1510 || regnum == FPSCR_REGNUM
1511 || regnum == SSR_REGNUM
1512 || regnum == SPC_REGNUM)
1513 {
1514 if (reggroup == system_reggroup)
1515 return 1;
1516 if (reggroup == general_reggroup)
1517 return 0;
1518 }
1519
1520 /* The default code can cope with any other registers. */
1521 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1522 }
1523
1524 /* On the sh4, the DRi pseudo registers are problematic if the target
1525 is little endian. When the user writes one of those registers, for
1526 instance with 'ser var $dr0=1', we want the double to be stored
1527 like this:
1528 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1529 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1530
1531 This corresponds to little endian byte order & big endian word
1532 order. However if we let gdb write the register w/o conversion, it
1533 will write fr0 and fr1 this way:
1534 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1535 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1536 because it will consider fr0 and fr1 as a single LE stretch of memory.
1537
1538 To achieve what we want we must force gdb to store things in
1539 floatformat_ieee_double_littlebyte_bigword (which is defined in
1540 include/floatformat.h and libiberty/floatformat.c.
1541
1542 In case the target is big endian, there is no problem, the
1543 raw bytes will look like:
1544 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1545 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1546
1547 The other pseudo registers (the FVs) also don't pose a problem
1548 because they are stored as 4 individual FP elements. */
1549
1550 static void
1551 sh_register_convert_to_virtual (int regnum, struct type *type,
1552 char *from, char *to)
1553 {
1554 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1555 {
1556 DOUBLEST val;
1557 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1558 from, &val);
1559 store_typed_floating (to, type, val);
1560 }
1561 else
1562 error
1563 ("sh_register_convert_to_virtual called with non DR register number");
1564 }
1565
1566 static void
1567 sh_register_convert_to_raw (struct type *type, int regnum,
1568 const void *from, void *to)
1569 {
1570 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1571 {
1572 DOUBLEST val = extract_typed_floating (from, type);
1573 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1574 &val, to);
1575 }
1576 else
1577 error (_("sh_register_convert_to_raw called with non DR register number"));
1578 }
1579
1580 /* For vectors of 4 floating point registers. */
1581 static int
1582 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1583 {
1584 int fp_regnum;
1585
1586 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1587 + (fv_regnum - FV0_REGNUM) * 4;
1588 return fp_regnum;
1589 }
1590
1591 /* For double precision floating point registers, i.e 2 fp regs. */
1592 static int
1593 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1594 {
1595 int fp_regnum;
1596
1597 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1598 + (dr_regnum - DR0_REGNUM) * 2;
1599 return fp_regnum;
1600 }
1601
1602 /* Concatenate PORTIONS contiguous raw registers starting at
1603 BASE_REGNUM into BUFFER. */
1604
1605 static enum register_status
1606 pseudo_register_read_portions (struct gdbarch *gdbarch,
1607 struct regcache *regcache,
1608 int portions,
1609 int base_regnum, gdb_byte *buffer)
1610 {
1611 int portion;
1612
1613 for (portion = 0; portion < portions; portion++)
1614 {
1615 enum register_status status;
1616 gdb_byte *b;
1617
1618 b = buffer + register_size (gdbarch, base_regnum) * portion;
1619 status = regcache_raw_read (regcache, base_regnum + portion, b);
1620 if (status != REG_VALID)
1621 return status;
1622 }
1623
1624 return REG_VALID;
1625 }
1626
1627 static enum register_status
1628 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1629 int reg_nr, gdb_byte *buffer)
1630 {
1631 int base_regnum;
1632 char temp_buffer[MAX_REGISTER_SIZE];
1633 enum register_status status;
1634
1635 if (reg_nr == PSEUDO_BANK_REGNUM)
1636 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1637 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1638 {
1639 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1640
1641 /* Build the value in the provided buffer. */
1642 /* Read the real regs for which this one is an alias. */
1643 status = pseudo_register_read_portions (gdbarch, regcache,
1644 2, base_regnum, temp_buffer);
1645 if (status == REG_VALID)
1646 {
1647 /* We must pay attention to the endiannes. */
1648 sh_register_convert_to_virtual (reg_nr,
1649 register_type (gdbarch, reg_nr),
1650 temp_buffer, buffer);
1651 }
1652 return status;
1653 }
1654 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1655 {
1656 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1657
1658 /* Read the real regs for which this one is an alias. */
1659 return pseudo_register_read_portions (gdbarch, regcache,
1660 4, base_regnum, buffer);
1661 }
1662 else
1663 gdb_assert_not_reached ("invalid pseudo register number");
1664 }
1665
1666 static void
1667 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1668 int reg_nr, const gdb_byte *buffer)
1669 {
1670 int base_regnum, portion;
1671 char temp_buffer[MAX_REGISTER_SIZE];
1672
1673 if (reg_nr == PSEUDO_BANK_REGNUM)
1674 {
1675 /* When the bank register is written to, the whole register bank
1676 is switched and all values in the bank registers must be read
1677 from the target/sim again. We're just invalidating the regcache
1678 so that a re-read happens next time it's necessary. */
1679 int bregnum;
1680
1681 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1682 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1683 regcache_invalidate (regcache, bregnum);
1684 }
1685 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1686 {
1687 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1688
1689 /* We must pay attention to the endiannes. */
1690 sh_register_convert_to_raw (register_type (gdbarch, reg_nr),
1691 reg_nr, buffer, temp_buffer);
1692
1693 /* Write the real regs for which this one is an alias. */
1694 for (portion = 0; portion < 2; portion++)
1695 regcache_raw_write (regcache, base_regnum + portion,
1696 (temp_buffer
1697 + register_size (gdbarch,
1698 base_regnum) * portion));
1699 }
1700 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1701 {
1702 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1703
1704 /* Write the real regs for which this one is an alias. */
1705 for (portion = 0; portion < 4; portion++)
1706 regcache_raw_write (regcache, base_regnum + portion,
1707 ((char *) buffer
1708 + register_size (gdbarch,
1709 base_regnum) * portion));
1710 }
1711 }
1712
1713 static int
1714 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1715 {
1716 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1717 return legacy_register_sim_regno (gdbarch, nr);
1718 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1719 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1720 if (nr == MOD_REGNUM)
1721 return SIM_SH_MOD_REGNUM;
1722 if (nr == RS_REGNUM)
1723 return SIM_SH_RS_REGNUM;
1724 if (nr == RE_REGNUM)
1725 return SIM_SH_RE_REGNUM;
1726 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1727 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1728 return nr;
1729 }
1730
1731 static int
1732 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1733 {
1734 switch (nr)
1735 {
1736 case TBR_REGNUM:
1737 return SIM_SH_TBR_REGNUM;
1738 case IBNR_REGNUM:
1739 return SIM_SH_IBNR_REGNUM;
1740 case IBCR_REGNUM:
1741 return SIM_SH_IBCR_REGNUM;
1742 case BANK_REGNUM:
1743 return SIM_SH_BANK_REGNUM;
1744 case MACLB_REGNUM:
1745 return SIM_SH_BANK_MACL_REGNUM;
1746 case GBRB_REGNUM:
1747 return SIM_SH_BANK_GBR_REGNUM;
1748 case PRB_REGNUM:
1749 return SIM_SH_BANK_PR_REGNUM;
1750 case IVNB_REGNUM:
1751 return SIM_SH_BANK_IVN_REGNUM;
1752 case MACHB_REGNUM:
1753 return SIM_SH_BANK_MACH_REGNUM;
1754 default:
1755 break;
1756 }
1757 return legacy_register_sim_regno (gdbarch, nr);
1758 }
1759
1760 /* Set up the register unwinding such that call-clobbered registers are
1761 not displayed in frames >0 because the true value is not certain.
1762 The 'undefined' registers will show up as 'not available' unless the
1763 CFI says otherwise.
1764
1765 This function is currently set up for SH4 and compatible only. */
1766
1767 static void
1768 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1769 struct dwarf2_frame_state_reg *reg,
1770 struct frame_info *this_frame)
1771 {
1772 /* Mark the PC as the destination for the return address. */
1773 if (regnum == gdbarch_pc_regnum (gdbarch))
1774 reg->how = DWARF2_FRAME_REG_RA;
1775
1776 /* Mark the stack pointer as the call frame address. */
1777 else if (regnum == gdbarch_sp_regnum (gdbarch))
1778 reg->how = DWARF2_FRAME_REG_CFA;
1779
1780 /* The above was taken from the default init_reg in dwarf2-frame.c
1781 while the below is SH specific. */
1782
1783 /* Caller save registers. */
1784 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1785 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1786 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1787 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1788 || (regnum == MACH_REGNUM)
1789 || (regnum == MACL_REGNUM)
1790 || (regnum == FPUL_REGNUM)
1791 || (regnum == SR_REGNUM))
1792 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1793
1794 /* Callee save registers. */
1795 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1796 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1797 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1798 || (regnum == FV0_REGNUM+3))
1799 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1800
1801 /* Other registers. These are not in the ABI and may or may not
1802 mean anything in frames >0 so don't show them. */
1803 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1804 || (regnum == GBR_REGNUM)
1805 || (regnum == VBR_REGNUM)
1806 || (regnum == FPSCR_REGNUM)
1807 || (regnum == SSR_REGNUM)
1808 || (regnum == SPC_REGNUM))
1809 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1810 }
1811
1812 static struct sh_frame_cache *
1813 sh_alloc_frame_cache (void)
1814 {
1815 struct sh_frame_cache *cache;
1816 int i;
1817
1818 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1819
1820 /* Base address. */
1821 cache->base = 0;
1822 cache->saved_sp = 0;
1823 cache->sp_offset = 0;
1824 cache->pc = 0;
1825
1826 /* Frameless until proven otherwise. */
1827 cache->uses_fp = 0;
1828
1829 /* Saved registers. We initialize these to -1 since zero is a valid
1830 offset (that's where fp is supposed to be stored). */
1831 for (i = 0; i < SH_NUM_REGS; i++)
1832 {
1833 cache->saved_regs[i] = -1;
1834 }
1835
1836 return cache;
1837 }
1838
1839 static struct sh_frame_cache *
1840 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1841 {
1842 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1843 struct sh_frame_cache *cache;
1844 CORE_ADDR current_pc;
1845 int i;
1846
1847 if (*this_cache)
1848 return *this_cache;
1849
1850 cache = sh_alloc_frame_cache ();
1851 *this_cache = cache;
1852
1853 /* In principle, for normal frames, fp holds the frame pointer,
1854 which holds the base address for the current stack frame.
1855 However, for functions that don't need it, the frame pointer is
1856 optional. For these "frameless" functions the frame pointer is
1857 actually the frame pointer of the calling frame. */
1858 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1859 if (cache->base == 0)
1860 return cache;
1861
1862 cache->pc = get_frame_func (this_frame);
1863 current_pc = get_frame_pc (this_frame);
1864 if (cache->pc != 0)
1865 {
1866 ULONGEST fpscr;
1867
1868 /* Check for the existence of the FPSCR register. If it exists,
1869 fetch its value for use in prologue analysis. Passing a zero
1870 value is the best choice for architecture variants upon which
1871 there's no FPSCR register. */
1872 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1873 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1874 else
1875 fpscr = 0;
1876
1877 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1878 }
1879
1880 if (!cache->uses_fp)
1881 {
1882 /* We didn't find a valid frame, which means that CACHE->base
1883 currently holds the frame pointer for our calling frame. If
1884 we're at the start of a function, or somewhere half-way its
1885 prologue, the function's frame probably hasn't been fully
1886 setup yet. Try to reconstruct the base address for the stack
1887 frame by looking at the stack pointer. For truly "frameless"
1888 functions this might work too. */
1889 cache->base = get_frame_register_unsigned
1890 (this_frame, gdbarch_sp_regnum (gdbarch));
1891 }
1892
1893 /* Now that we have the base address for the stack frame we can
1894 calculate the value of sp in the calling frame. */
1895 cache->saved_sp = cache->base + cache->sp_offset;
1896
1897 /* Adjust all the saved registers such that they contain addresses
1898 instead of offsets. */
1899 for (i = 0; i < SH_NUM_REGS; i++)
1900 if (cache->saved_regs[i] != -1)
1901 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1902
1903 return cache;
1904 }
1905
1906 static struct value *
1907 sh_frame_prev_register (struct frame_info *this_frame,
1908 void **this_cache, int regnum)
1909 {
1910 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1911 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1912
1913 gdb_assert (regnum >= 0);
1914
1915 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1916 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1917
1918 /* The PC of the previous frame is stored in the PR register of
1919 the current frame. Frob regnum so that we pull the value from
1920 the correct place. */
1921 if (regnum == gdbarch_pc_regnum (gdbarch))
1922 regnum = PR_REGNUM;
1923
1924 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1925 return frame_unwind_got_memory (this_frame, regnum,
1926 cache->saved_regs[regnum]);
1927
1928 return frame_unwind_got_register (this_frame, regnum, regnum);
1929 }
1930
1931 static void
1932 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1933 struct frame_id *this_id)
1934 {
1935 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1936
1937 /* This marks the outermost frame. */
1938 if (cache->base == 0)
1939 return;
1940
1941 *this_id = frame_id_build (cache->saved_sp, cache->pc);
1942 }
1943
1944 static const struct frame_unwind sh_frame_unwind = {
1945 NORMAL_FRAME,
1946 default_frame_unwind_stop_reason,
1947 sh_frame_this_id,
1948 sh_frame_prev_register,
1949 NULL,
1950 default_frame_sniffer
1951 };
1952
1953 static CORE_ADDR
1954 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1955 {
1956 return frame_unwind_register_unsigned (next_frame,
1957 gdbarch_sp_regnum (gdbarch));
1958 }
1959
1960 static CORE_ADDR
1961 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1962 {
1963 return frame_unwind_register_unsigned (next_frame,
1964 gdbarch_pc_regnum (gdbarch));
1965 }
1966
1967 static struct frame_id
1968 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1969 {
1970 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1971 gdbarch_sp_regnum (gdbarch));
1972 return frame_id_build (sp, get_frame_pc (this_frame));
1973 }
1974
1975 static CORE_ADDR
1976 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
1977 {
1978 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1979
1980 return cache->base;
1981 }
1982
1983 static const struct frame_base sh_frame_base = {
1984 &sh_frame_unwind,
1985 sh_frame_base_address,
1986 sh_frame_base_address,
1987 sh_frame_base_address
1988 };
1989
1990 static struct sh_frame_cache *
1991 sh_make_stub_cache (struct frame_info *this_frame)
1992 {
1993 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1994 struct sh_frame_cache *cache;
1995
1996 cache = sh_alloc_frame_cache ();
1997
1998 cache->saved_sp
1999 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2000
2001 return cache;
2002 }
2003
2004 static void
2005 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2006 struct frame_id *this_id)
2007 {
2008 struct sh_frame_cache *cache;
2009
2010 if (*this_cache == NULL)
2011 *this_cache = sh_make_stub_cache (this_frame);
2012 cache = *this_cache;
2013
2014 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2015 }
2016
2017 static int
2018 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2019 struct frame_info *this_frame,
2020 void **this_prologue_cache)
2021 {
2022 CORE_ADDR addr_in_block;
2023
2024 addr_in_block = get_frame_address_in_block (this_frame);
2025 if (in_plt_section (addr_in_block, NULL))
2026 return 1;
2027
2028 return 0;
2029 }
2030
2031 static const struct frame_unwind sh_stub_unwind =
2032 {
2033 NORMAL_FRAME,
2034 default_frame_unwind_stop_reason,
2035 sh_stub_this_id,
2036 sh_frame_prev_register,
2037 NULL,
2038 sh_stub_unwind_sniffer
2039 };
2040
2041 /* The epilogue is defined here as the area at the end of a function,
2042 either on the `ret' instruction itself or after an instruction which
2043 destroys the function's stack frame. */
2044 static int
2045 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2046 {
2047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2048 CORE_ADDR func_addr = 0, func_end = 0;
2049
2050 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2051 {
2052 ULONGEST inst;
2053 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2054 for a nop and some fixed data (e.g. big offsets) which are
2055 unfortunately also treated as part of the function (which
2056 means, they are below func_end. */
2057 CORE_ADDR addr = func_end - 28;
2058 if (addr < func_addr + 4)
2059 addr = func_addr + 4;
2060 if (pc < addr)
2061 return 0;
2062
2063 /* First search forward until hitting an rts. */
2064 while (addr < func_end
2065 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2066 addr += 2;
2067 if (addr >= func_end)
2068 return 0;
2069
2070 /* At this point we should find a mov.l @r15+,r14 instruction,
2071 either before or after the rts. If not, then the function has
2072 probably no "normal" epilogue and we bail out here. */
2073 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2074 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2075 byte_order)))
2076 addr -= 2;
2077 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2078 byte_order)))
2079 return 0;
2080
2081 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2082
2083 /* Step over possible lds.l @r15+,macl. */
2084 if (IS_MACL_LDS (inst))
2085 {
2086 addr -= 2;
2087 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2088 }
2089
2090 /* Step over possible lds.l @r15+,pr. */
2091 if (IS_LDS (inst))
2092 {
2093 addr -= 2;
2094 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2095 }
2096
2097 /* Step over possible mov r14,r15. */
2098 if (IS_MOV_FP_SP (inst))
2099 {
2100 addr -= 2;
2101 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2102 }
2103
2104 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2105 instructions. */
2106 while (addr > func_addr + 4
2107 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2108 {
2109 addr -= 2;
2110 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2111 }
2112
2113 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2114 That's allowed for the epilogue. */
2115 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2116 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2117 && addr > func_addr + 6
2118 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2119 byte_order)))
2120 addr -= 4;
2121
2122 if (pc >= addr)
2123 return 1;
2124 }
2125 return 0;
2126 }
2127
2128
2129 /* Supply register REGNUM from the buffer specified by REGS and LEN
2130 in the register set REGSET to register cache REGCACHE.
2131 REGTABLE specifies where each register can be found in REGS.
2132 If REGNUM is -1, do this for all registers in REGSET. */
2133
2134 void
2135 sh_corefile_supply_regset (const struct regset *regset,
2136 struct regcache *regcache,
2137 int regnum, const void *regs, size_t len)
2138 {
2139 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2141 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2142 ? tdep->core_gregmap
2143 : tdep->core_fpregmap);
2144 int i;
2145
2146 for (i = 0; regmap[i].regnum != -1; i++)
2147 {
2148 if ((regnum == -1 || regnum == regmap[i].regnum)
2149 && regmap[i].offset + 4 <= len)
2150 regcache_raw_supply (regcache, regmap[i].regnum,
2151 (char *)regs + regmap[i].offset);
2152 }
2153 }
2154
2155 /* Collect register REGNUM in the register set REGSET from register cache
2156 REGCACHE into the buffer specified by REGS and LEN.
2157 REGTABLE specifies where each register can be found in REGS.
2158 If REGNUM is -1, do this for all registers in REGSET. */
2159
2160 void
2161 sh_corefile_collect_regset (const struct regset *regset,
2162 const struct regcache *regcache,
2163 int regnum, void *regs, size_t len)
2164 {
2165 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2167 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2168 ? tdep->core_gregmap
2169 : tdep->core_fpregmap);
2170 int i;
2171
2172 for (i = 0; regmap[i].regnum != -1; i++)
2173 {
2174 if ((regnum == -1 || regnum == regmap[i].regnum)
2175 && regmap[i].offset + 4 <= len)
2176 regcache_raw_collect (regcache, regmap[i].regnum,
2177 (char *)regs + regmap[i].offset);
2178 }
2179 }
2180
2181 /* The following two regsets have the same contents, so it is tempting to
2182 unify them, but they are distiguished by their address, so don't. */
2183
2184 struct regset sh_corefile_gregset =
2185 {
2186 NULL,
2187 sh_corefile_supply_regset,
2188 sh_corefile_collect_regset
2189 };
2190
2191 static struct regset sh_corefile_fpregset =
2192 {
2193 NULL,
2194 sh_corefile_supply_regset,
2195 sh_corefile_collect_regset
2196 };
2197
2198 static const struct regset *
2199 sh_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name,
2200 size_t sect_size)
2201 {
2202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2203
2204 if (tdep->core_gregmap && strcmp (sect_name, ".reg") == 0)
2205 return &sh_corefile_gregset;
2206
2207 if (tdep->core_fpregmap && strcmp (sect_name, ".reg2") == 0)
2208 return &sh_corefile_fpregset;
2209
2210 return NULL;
2211 }
2212 \f
2213
2214 static struct gdbarch *
2215 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2216 {
2217 struct gdbarch *gdbarch;
2218 struct gdbarch_tdep *tdep;
2219
2220 /* SH5 is handled entirely in sh64-tdep.c. */
2221 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2222 return sh64_gdbarch_init (info, arches);
2223
2224 /* If there is already a candidate, use it. */
2225 arches = gdbarch_list_lookup_by_info (arches, &info);
2226 if (arches != NULL)
2227 return arches->gdbarch;
2228
2229 /* None found, create a new architecture from the information
2230 provided. */
2231 tdep = XZALLOC (struct gdbarch_tdep);
2232 gdbarch = gdbarch_alloc (&info, tdep);
2233
2234 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2235 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2236 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2237 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2238 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2239 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2240 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2241 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2242
2243 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2244 set_gdbarch_sp_regnum (gdbarch, 15);
2245 set_gdbarch_pc_regnum (gdbarch, 16);
2246 set_gdbarch_fp0_regnum (gdbarch, -1);
2247 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2248
2249 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2250 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2251
2252 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2253
2254 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2255 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2256
2257 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2258
2259 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2260 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2261
2262 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2263
2264 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2265
2266 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2267 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2268 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2269 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
2270 frame_base_set_default (gdbarch, &sh_frame_base);
2271
2272 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
2273
2274 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2275
2276 set_gdbarch_regset_from_core_section (gdbarch, sh_regset_from_core_section);
2277
2278 switch (info.bfd_arch_info->mach)
2279 {
2280 case bfd_mach_sh:
2281 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2282 break;
2283
2284 case bfd_mach_sh2:
2285 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2286 break;
2287
2288 case bfd_mach_sh2e:
2289 /* doubles on sh2e and sh3e are actually 4 byte. */
2290 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2291
2292 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2293 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2294 set_gdbarch_fp0_regnum (gdbarch, 25);
2295 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2296 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2297 break;
2298
2299 case bfd_mach_sh2a:
2300 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2301 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2302 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2303
2304 set_gdbarch_fp0_regnum (gdbarch, 25);
2305 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2306 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2307 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2308 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2309 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2310 break;
2311
2312 case bfd_mach_sh2a_nofpu:
2313 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2314 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2315
2316 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2317 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2318 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2319 break;
2320
2321 case bfd_mach_sh_dsp:
2322 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2323 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2324 break;
2325
2326 case bfd_mach_sh3:
2327 case bfd_mach_sh3_nommu:
2328 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2329 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2330 break;
2331
2332 case bfd_mach_sh3e:
2333 case bfd_mach_sh2a_or_sh3e:
2334 /* doubles on sh2e and sh3e are actually 4 byte. */
2335 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2336
2337 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2338 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2339 set_gdbarch_fp0_regnum (gdbarch, 25);
2340 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2341 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2342 break;
2343
2344 case bfd_mach_sh3_dsp:
2345 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2346 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2347 break;
2348
2349 case bfd_mach_sh4:
2350 case bfd_mach_sh4a:
2351 case bfd_mach_sh2a_or_sh4:
2352 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2353 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2354 set_gdbarch_fp0_regnum (gdbarch, 25);
2355 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2356 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2357 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2358 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2359 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2360 break;
2361
2362 case bfd_mach_sh4_nofpu:
2363 case bfd_mach_sh4a_nofpu:
2364 case bfd_mach_sh4_nommu_nofpu:
2365 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2366 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2367 break;
2368
2369 case bfd_mach_sh4al_dsp:
2370 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2371 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2372 break;
2373
2374 default:
2375 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2376 break;
2377 }
2378
2379 /* Hook in ABI-specific overrides, if they have been registered. */
2380 gdbarch_init_osabi (info, gdbarch);
2381
2382 dwarf2_append_unwinders (gdbarch);
2383 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2384 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2385
2386 return gdbarch;
2387 }
2388
2389 static void
2390 show_sh_command (char *args, int from_tty)
2391 {
2392 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2393 }
2394
2395 static void
2396 set_sh_command (char *args, int from_tty)
2397 {
2398 printf_unfiltered
2399 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2400 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2401 }
2402
2403 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2404
2405 void
2406 _initialize_sh_tdep (void)
2407 {
2408 struct cmd_list_element *c;
2409
2410 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2411
2412 /* We can't use an alias here because 'info registers' has not yet been
2413 registered. */
2414 c = add_com ("regs", class_vars, all_registers_info,
2415 _("Print all registers"));
2416 deprecate_cmd (c, "info all-registers");
2417
2418 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2419 &setshcmdlist, "set sh ", 0, &setlist);
2420 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2421 &showshcmdlist, "show sh ", 0, &showlist);
2422
2423 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2424 &sh_active_calling_convention,
2425 _("Set calling convention used when calling target "
2426 "functions from GDB."),
2427 _("Show calling convention used when calling target "
2428 "functions from GDB."),
2429 _("gcc - Use GCC calling convention (default).\n"
2430 "renesas - Enforce Renesas calling convention."),
2431 NULL, NULL,
2432 &setshcmdlist, &showshcmdlist);
2433 }
This page took 0.08376 seconds and 5 git commands to generate.