2012-03-08 Luis Machado <lgustavo@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "gdb_string.h"
36 #include "gdb_assert.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "osabi.h"
40 #include "valprint.h"
41
42 #include "elf-bfd.h"
43
44 /* sh flags */
45 #include "elf/sh.h"
46 /* Register numbers shared with the simulator. */
47 #include "gdb/sim-sh.h"
48 #include "language.h"
49 #include "sh64-tdep.h"
50
51 /* Information that is dependent on the processor variant. */
52 enum sh_abi
53 {
54 SH_ABI_UNKNOWN,
55 SH_ABI_32,
56 SH_ABI_64
57 };
58
59 struct gdbarch_tdep
60 {
61 enum sh_abi sh_abi;
62 };
63
64 struct sh64_frame_cache
65 {
66 /* Base address. */
67 CORE_ADDR base;
68 LONGEST sp_offset;
69 CORE_ADDR pc;
70
71 /* Flag showing that a frame has been created in the prologue code. */
72 int uses_fp;
73
74 int media_mode;
75
76 /* Saved registers. */
77 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
78 CORE_ADDR saved_sp;
79 };
80
81 /* Registers of SH5 */
82 enum
83 {
84 R0_REGNUM = 0,
85 DEFAULT_RETURN_REGNUM = 2,
86 STRUCT_RETURN_REGNUM = 2,
87 ARG0_REGNUM = 2,
88 ARGLAST_REGNUM = 9,
89 FLOAT_ARGLAST_REGNUM = 11,
90 MEDIA_FP_REGNUM = 14,
91 PR_REGNUM = 18,
92 SR_REGNUM = 65,
93 DR0_REGNUM = 141,
94 DR_LAST_REGNUM = 172,
95 /* FPP stands for Floating Point Pair, to avoid confusion with
96 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
97 point register. Unfortunately on the sh5, the floating point
98 registers are called FR, and the floating point pairs are called FP. */
99 FPP0_REGNUM = 173,
100 FPP_LAST_REGNUM = 204,
101 FV0_REGNUM = 205,
102 FV_LAST_REGNUM = 220,
103 R0_C_REGNUM = 221,
104 R_LAST_C_REGNUM = 236,
105 PC_C_REGNUM = 237,
106 GBR_C_REGNUM = 238,
107 MACH_C_REGNUM = 239,
108 MACL_C_REGNUM = 240,
109 PR_C_REGNUM = 241,
110 T_C_REGNUM = 242,
111 FPSCR_C_REGNUM = 243,
112 FPUL_C_REGNUM = 244,
113 FP0_C_REGNUM = 245,
114 FP_LAST_C_REGNUM = 260,
115 DR0_C_REGNUM = 261,
116 DR_LAST_C_REGNUM = 268,
117 FV0_C_REGNUM = 269,
118 FV_LAST_C_REGNUM = 272,
119 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
120 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
121 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
122 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
123 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
124 };
125
126 static const char *
127 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
128 {
129 static char *register_names[] =
130 {
131 /* SH MEDIA MODE (ISA 32) */
132 /* general registers (64-bit) 0-63 */
133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
135 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
136 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
137 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
138 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
139 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
140 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
141
142 /* pc (64-bit) 64 */
143 "pc",
144
145 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
146 "sr", "ssr", "spc",
147
148 /* target registers (64-bit) 68-75 */
149 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
150
151 /* floating point state control register (32-bit) 76 */
152 "fpscr",
153
154 /* single precision floating point registers (32-bit) 77-140 */
155 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
156 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
157 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
158 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
159 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
160 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
161 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
162 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
163
164 /* double precision registers (pseudo) 141-172 */
165 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
166 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
167 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
168 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
169
170 /* floating point pairs (pseudo) 173-204 */
171 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
172 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
173 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
174 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
175
176 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
177 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
178 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
179
180 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
181 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
182 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
183 "pc_c",
184 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
185 "fpscr_c", "fpul_c",
186 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
187 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
188 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
189 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
191 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
192 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
193 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
194 };
195
196 if (reg_nr < 0)
197 return NULL;
198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return NULL;
200 return register_names[reg_nr];
201 }
202
203 #define NUM_PSEUDO_REGS_SH_MEDIA 80
204 #define NUM_PSEUDO_REGS_SH_COMPACT 51
205
206 /* Macros and functions for setting and testing a bit in a minimal
207 symbol that marks it as 32-bit function. The MSB of the minimal
208 symbol's "info" field is used for this purpose.
209
210 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
211 i.e. refers to a 32-bit function, and sets a "special" bit in a
212 minimal symbol to mark it as a 32-bit function
213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
214
215 #define MSYMBOL_IS_SPECIAL(msym) \
216 MSYMBOL_TARGET_FLAG_1 (msym)
217
218 static void
219 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220 {
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
226 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
228 }
229 }
230
231 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233 #define IS_ISA32_ADDR(addr) ((addr) & 1)
234 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237 static int
238 pc_is_isa32 (bfd_vma memaddr)
239 {
240 struct minimal_symbol *sym;
241
242 /* If bit 0 of the address is set, assume this is a
243 ISA32 (shmedia) address. */
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
251 if (sym)
252 return MSYMBOL_IS_SPECIAL (sym);
253 else
254 return 0;
255 }
256
257 static const unsigned char *
258 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
259 CORE_ADDR *pcptr, int *lenptr)
260 {
261 /* The BRK instruction for shmedia is
262 01101111 11110101 11111111 11110000
263 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
264 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
265
266 /* The BRK instruction for shcompact is
267 00000000 00111011
268 which translates in big endian mode to 0x0, 0x3b
269 and in little endian mode to 0x3b, 0x0 */
270
271 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
272 {
273 if (pc_is_isa32 (*pcptr))
274 {
275 static unsigned char big_breakpoint_media[] = {
276 0x6f, 0xf5, 0xff, 0xf0
277 };
278 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
279 *lenptr = sizeof (big_breakpoint_media);
280 return big_breakpoint_media;
281 }
282 else
283 {
284 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
285 *lenptr = sizeof (big_breakpoint_compact);
286 return big_breakpoint_compact;
287 }
288 }
289 else
290 {
291 if (pc_is_isa32 (*pcptr))
292 {
293 static unsigned char little_breakpoint_media[] = {
294 0xf0, 0xff, 0xf5, 0x6f
295 };
296 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
297 *lenptr = sizeof (little_breakpoint_media);
298 return little_breakpoint_media;
299 }
300 else
301 {
302 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
303 *lenptr = sizeof (little_breakpoint_compact);
304 return little_breakpoint_compact;
305 }
306 }
307 }
308
309 /* Prologue looks like
310 [mov.l <regs>,@-r15]...
311 [sts.l pr,@-r15]
312 [mov.l r14,@-r15]
313 [mov r15,r14]
314
315 Actually it can be more complicated than this. For instance, with
316 newer gcc's:
317
318 mov.l r14,@-r15
319 add #-12,r15
320 mov r15,r14
321 mov r4,r1
322 mov r5,r2
323 mov.l r6,@(4,r14)
324 mov.l r7,@(8,r14)
325 mov.b r1,@r14
326 mov r14,r1
327 mov r14,r1
328 add #2,r1
329 mov.w r2,@r1
330
331 */
332
333 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
334 with l=1 and n = 18 0110101111110001010010100aaa0000 */
335 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
336
337 /* STS.L PR,@-r0 0100000000100010
338 r0-4-->r0, PR-->(r0) */
339 #define IS_STS_R0(x) ((x) == 0x4022)
340
341 /* STS PR, Rm 0000mmmm00101010
342 PR-->Rm */
343 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
344
345 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
346 Rm-->(dispx4+r15) */
347 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
348
349 /* MOV.L R14,@(disp,r15) 000111111110dddd
350 R14-->(dispx4+r15) */
351 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
352
353 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
354 R18-->(dispx8+R14) */
355 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
356
357 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
358 R18-->(dispx8+R15) */
359 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
360
361 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
362 R18-->(dispx4+R15) */
363 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
364
365 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
366 R14-->(dispx8+R15) */
367 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
368
369 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
370 R14-->(dispx4+R15) */
371 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
372
373 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
374 R15 + imm --> R15 */
375 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
376
377 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
378 R15 + imm --> R15 */
379 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
380
381 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
382 R15 + R63 --> R14 */
383 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
384
385 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
386 R15 + R63 --> R14 */
387 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
388
389 #define IS_MOV_SP_FP_MEDIA(x) \
390 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
391
392 /* MOV #imm, R0 1110 0000 ssss ssss
393 #imm-->R0 */
394 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
395
396 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
397 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
398
399 /* ADD r15,r0 0011 0000 1111 1100
400 r15+r0-->r0 */
401 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
402
403 /* MOV.L R14 @-R0 0010 0000 1110 0110
404 R14-->(R0-4), R0-4-->R0 */
405 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
406
407 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
408 where Rm is one of r2-r9 which are the argument registers. */
409 /* FIXME: Recognize the float and double register moves too! */
410 #define IS_MEDIA_IND_ARG_MOV(x) \
411 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
412 && (((x) & 0x03f00000) >= 0x00200000 \
413 && ((x) & 0x03f00000) <= 0x00900000))
414
415 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
416 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
417 where Rm is one of r2-r9 which are the argument registers. */
418 #define IS_MEDIA_ARG_MOV(x) \
419 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
420 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
421
422 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
423 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
424 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
425 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
426 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
427 #define IS_MEDIA_MOV_TO_R14(x) \
428 ((((x) & 0xfffffc0f) == 0xa0e00000) \
429 || (((x) & 0xfffffc0f) == 0xa4e00000) \
430 || (((x) & 0xfffffc0f) == 0xa8e00000) \
431 || (((x) & 0xfffffc0f) == 0xb4e00000) \
432 || (((x) & 0xfffffc0f) == 0xbce00000))
433
434 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
435 where Rm is r2-r9 */
436 #define IS_COMPACT_IND_ARG_MOV(x) \
437 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
438 && (((x) & 0x00f0) <= 0x0090))
439
440 /* compact direct arg move!
441 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
442 #define IS_COMPACT_ARG_MOV(x) \
443 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
444 && ((x) & 0x00f0) <= 0x0090))
445
446 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
447 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
448 #define IS_COMPACT_MOV_TO_R14(x) \
449 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
450
451 #define IS_JSR_R0(x) ((x) == 0x400b)
452 #define IS_NOP(x) ((x) == 0x0009)
453
454
455 /* MOV r15,r14 0110111011110011
456 r15-->r14 */
457 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
458
459 /* ADD #imm,r15 01111111iiiiiiii
460 r15+imm-->r15 */
461 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
462
463 /* Skip any prologue before the guts of a function. */
464
465 /* Skip the prologue using the debug information. If this fails we'll
466 fall back on the 'guess' method below. */
467 static CORE_ADDR
468 after_prologue (CORE_ADDR pc)
469 {
470 struct symtab_and_line sal;
471 CORE_ADDR func_addr, func_end;
472
473 /* If we can not find the symbol in the partial symbol table, then
474 there is no hope we can determine the function's start address
475 with this code. */
476 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
477 return 0;
478
479
480 /* Get the line associated with FUNC_ADDR. */
481 sal = find_pc_line (func_addr, 0);
482
483 /* There are only two cases to consider. First, the end of the source line
484 is within the function bounds. In that case we return the end of the
485 source line. Second is the end of the source line extends beyond the
486 bounds of the current function. We need to use the slow code to
487 examine instructions in that case. */
488 if (sal.end < func_end)
489 return sal.end;
490 else
491 return 0;
492 }
493
494 static CORE_ADDR
495 look_for_args_moves (struct gdbarch *gdbarch,
496 CORE_ADDR start_pc, int media_mode)
497 {
498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
499 CORE_ADDR here, end;
500 int w;
501 int insn_size = (media_mode ? 4 : 2);
502
503 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
504 {
505 if (media_mode)
506 {
507 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
508 insn_size, byte_order);
509 here += insn_size;
510 if (IS_MEDIA_IND_ARG_MOV (w))
511 {
512 /* This must be followed by a store to r14, so the argument
513 is where the debug info says it is. This can happen after
514 the SP has been saved, unfortunately. */
515
516 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
517 insn_size, byte_order);
518 here += insn_size;
519 if (IS_MEDIA_MOV_TO_R14 (next_insn))
520 start_pc = here;
521 }
522 else if (IS_MEDIA_ARG_MOV (w))
523 {
524 /* These instructions store directly the argument in r14. */
525 start_pc = here;
526 }
527 else
528 break;
529 }
530 else
531 {
532 w = read_memory_integer (here, insn_size, byte_order);
533 w = w & 0xffff;
534 here += insn_size;
535 if (IS_COMPACT_IND_ARG_MOV (w))
536 {
537 /* This must be followed by a store to r14, so the argument
538 is where the debug info says it is. This can happen after
539 the SP has been saved, unfortunately. */
540
541 int next_insn = 0xffff & read_memory_integer (here, insn_size,
542 byte_order);
543 here += insn_size;
544 if (IS_COMPACT_MOV_TO_R14 (next_insn))
545 start_pc = here;
546 }
547 else if (IS_COMPACT_ARG_MOV (w))
548 {
549 /* These instructions store directly the argument in r14. */
550 start_pc = here;
551 }
552 else if (IS_MOVL_R0 (w))
553 {
554 /* There is a function that gcc calls to get the arguments
555 passed correctly to the function. Only after this
556 function call the arguments will be found at the place
557 where they are supposed to be. This happens in case the
558 argument has to be stored into a 64-bit register (for
559 instance doubles, long longs). SHcompact doesn't have
560 access to the full 64-bits, so we store the register in
561 stack slot and store the address of the stack slot in
562 the register, then do a call through a wrapper that
563 loads the memory value into the register. A SHcompact
564 callee calls an argument decoder
565 (GCC_shcompact_incoming_args) that stores the 64-bit
566 value in a stack slot and stores the address of the
567 stack slot in the register. GCC thinks the argument is
568 just passed by transparent reference, but this is only
569 true after the argument decoder is called. Such a call
570 needs to be considered part of the prologue. */
571
572 /* This must be followed by a JSR @r0 instruction and by
573 a NOP instruction. After these, the prologue is over! */
574
575 int next_insn = 0xffff & read_memory_integer (here, insn_size,
576 byte_order);
577 here += insn_size;
578 if (IS_JSR_R0 (next_insn))
579 {
580 next_insn = 0xffff & read_memory_integer (here, insn_size,
581 byte_order);
582 here += insn_size;
583
584 if (IS_NOP (next_insn))
585 start_pc = here;
586 }
587 }
588 else
589 break;
590 }
591 }
592
593 return start_pc;
594 }
595
596 static CORE_ADDR
597 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
598 {
599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
600 CORE_ADDR here, end;
601 int updated_fp = 0;
602 int insn_size = 4;
603 int media_mode = 1;
604
605 if (!start_pc)
606 return 0;
607
608 if (pc_is_isa32 (start_pc) == 0)
609 {
610 insn_size = 2;
611 media_mode = 0;
612 }
613
614 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
615 {
616
617 if (media_mode)
618 {
619 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
620 insn_size, byte_order);
621 here += insn_size;
622 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
623 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
624 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
625 || IS_PTABSL_R18 (w))
626 {
627 start_pc = here;
628 }
629 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
630 {
631 start_pc = here;
632 updated_fp = 1;
633 }
634 else
635 if (updated_fp)
636 {
637 /* Don't bail out yet, we may have arguments stored in
638 registers here, according to the debug info, so that
639 gdb can print the frames correctly. */
640 start_pc = look_for_args_moves (gdbarch,
641 here - insn_size, media_mode);
642 break;
643 }
644 }
645 else
646 {
647 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
648 here += insn_size;
649
650 if (IS_STS_R0 (w) || IS_STS_PR (w)
651 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
652 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
653 {
654 start_pc = here;
655 }
656 else if (IS_MOV_SP_FP (w))
657 {
658 start_pc = here;
659 updated_fp = 1;
660 }
661 else
662 if (updated_fp)
663 {
664 /* Don't bail out yet, we may have arguments stored in
665 registers here, according to the debug info, so that
666 gdb can print the frames correctly. */
667 start_pc = look_for_args_moves (gdbarch,
668 here - insn_size, media_mode);
669 break;
670 }
671 }
672 }
673
674 return start_pc;
675 }
676
677 static CORE_ADDR
678 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
679 {
680 CORE_ADDR post_prologue_pc;
681
682 /* See if we can determine the end of the prologue via the symbol table.
683 If so, then return either PC, or the PC after the prologue, whichever
684 is greater. */
685 post_prologue_pc = after_prologue (pc);
686
687 /* If after_prologue returned a useful address, then use it. Else
688 fall back on the instruction skipping code. */
689 if (post_prologue_pc != 0)
690 return max (pc, post_prologue_pc);
691 else
692 return sh64_skip_prologue_hard_way (gdbarch, pc);
693 }
694
695 /* Should call_function allocate stack space for a struct return? */
696 static int
697 sh64_use_struct_convention (struct type *type)
698 {
699 return (TYPE_LENGTH (type) > 8);
700 }
701
702 /* For vectors of 4 floating point registers. */
703 static int
704 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
705 {
706 int fp_regnum;
707
708 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
709 return fp_regnum;
710 }
711
712 /* For double precision floating point registers, i.e 2 fp regs. */
713 static int
714 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
715 {
716 int fp_regnum;
717
718 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
719 return fp_regnum;
720 }
721
722 /* For pairs of floating point registers. */
723 static int
724 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
725 {
726 int fp_regnum;
727
728 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
729 return fp_regnum;
730 }
731
732 /* *INDENT-OFF* */
733 /*
734 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
735 GDB_REGNUM BASE_REGNUM
736 r0_c 221 0
737 r1_c 222 1
738 r2_c 223 2
739 r3_c 224 3
740 r4_c 225 4
741 r5_c 226 5
742 r6_c 227 6
743 r7_c 228 7
744 r8_c 229 8
745 r9_c 230 9
746 r10_c 231 10
747 r11_c 232 11
748 r12_c 233 12
749 r13_c 234 13
750 r14_c 235 14
751 r15_c 236 15
752
753 pc_c 237 64
754 gbr_c 238 16
755 mach_c 239 17
756 macl_c 240 17
757 pr_c 241 18
758 t_c 242 19
759 fpscr_c 243 76
760 fpul_c 244 109
761
762 fr0_c 245 77
763 fr1_c 246 78
764 fr2_c 247 79
765 fr3_c 248 80
766 fr4_c 249 81
767 fr5_c 250 82
768 fr6_c 251 83
769 fr7_c 252 84
770 fr8_c 253 85
771 fr9_c 254 86
772 fr10_c 255 87
773 fr11_c 256 88
774 fr12_c 257 89
775 fr13_c 258 90
776 fr14_c 259 91
777 fr15_c 260 92
778
779 dr0_c 261 77
780 dr2_c 262 79
781 dr4_c 263 81
782 dr6_c 264 83
783 dr8_c 265 85
784 dr10_c 266 87
785 dr12_c 267 89
786 dr14_c 268 91
787
788 fv0_c 269 77
789 fv4_c 270 81
790 fv8_c 271 85
791 fv12_c 272 91
792 */
793 /* *INDENT-ON* */
794 static int
795 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
796 {
797 int base_regnum = reg_nr;
798
799 /* general register N maps to general register N */
800 if (reg_nr >= R0_C_REGNUM
801 && reg_nr <= R_LAST_C_REGNUM)
802 base_regnum = reg_nr - R0_C_REGNUM;
803
804 /* floating point register N maps to floating point register N */
805 else if (reg_nr >= FP0_C_REGNUM
806 && reg_nr <= FP_LAST_C_REGNUM)
807 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
808
809 /* double prec register N maps to base regnum for double prec register N */
810 else if (reg_nr >= DR0_C_REGNUM
811 && reg_nr <= DR_LAST_C_REGNUM)
812 base_regnum = sh64_dr_reg_base_num (gdbarch,
813 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
814
815 /* vector N maps to base regnum for vector register N */
816 else if (reg_nr >= FV0_C_REGNUM
817 && reg_nr <= FV_LAST_C_REGNUM)
818 base_regnum = sh64_fv_reg_base_num (gdbarch,
819 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
820
821 else if (reg_nr == PC_C_REGNUM)
822 base_regnum = gdbarch_pc_regnum (gdbarch);
823
824 else if (reg_nr == GBR_C_REGNUM)
825 base_regnum = 16;
826
827 else if (reg_nr == MACH_C_REGNUM
828 || reg_nr == MACL_C_REGNUM)
829 base_regnum = 17;
830
831 else if (reg_nr == PR_C_REGNUM)
832 base_regnum = PR_REGNUM;
833
834 else if (reg_nr == T_C_REGNUM)
835 base_regnum = 19;
836
837 else if (reg_nr == FPSCR_C_REGNUM)
838 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
839
840 else if (reg_nr == FPUL_C_REGNUM)
841 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
842
843 return base_regnum;
844 }
845
846 static int
847 sign_extend (int value, int bits)
848 {
849 value = value & ((1 << bits) - 1);
850 return (value & (1 << (bits - 1))
851 ? value | (~((1 << bits) - 1))
852 : value);
853 }
854
855 static void
856 sh64_analyze_prologue (struct gdbarch *gdbarch,
857 struct sh64_frame_cache *cache,
858 CORE_ADDR func_pc,
859 CORE_ADDR current_pc)
860 {
861 int reg_nr;
862 int pc;
863 int opc;
864 int insn;
865 int r0_val = 0;
866 int insn_size;
867 int gdb_register_number;
868 int register_number;
869 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871
872 cache->sp_offset = 0;
873
874 /* Loop around examining the prologue insns until we find something
875 that does not appear to be part of the prologue. But give up
876 after 20 of them, since we're getting silly then. */
877
878 pc = func_pc;
879
880 if (cache->media_mode)
881 insn_size = 4;
882 else
883 insn_size = 2;
884
885 opc = pc + (insn_size * 28);
886 if (opc > current_pc)
887 opc = current_pc;
888 for ( ; pc <= opc; pc += insn_size)
889 {
890 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
891 : pc,
892 insn_size, byte_order);
893
894 if (!cache->media_mode)
895 {
896 if (IS_STS_PR (insn))
897 {
898 int next_insn = read_memory_integer (pc + insn_size,
899 insn_size, byte_order);
900 if (IS_MOV_TO_R15 (next_insn))
901 {
902 cache->saved_regs[PR_REGNUM]
903 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
904 - 0x8) << 2);
905 pc += insn_size;
906 }
907 }
908
909 else if (IS_MOV_R14 (insn))
910 cache->saved_regs[MEDIA_FP_REGNUM] =
911 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
912
913 else if (IS_MOV_R0 (insn))
914 {
915 /* Put in R0 the offset from SP at which to store some
916 registers. We are interested in this value, because it
917 will tell us where the given registers are stored within
918 the frame. */
919 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
920 }
921
922 else if (IS_ADD_SP_R0 (insn))
923 {
924 /* This instruction still prepares r0, but we don't care.
925 We already have the offset in r0_val. */
926 }
927
928 else if (IS_STS_R0 (insn))
929 {
930 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
931 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
932 r0_val -= 4;
933 }
934
935 else if (IS_MOV_R14_R0 (insn))
936 {
937 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
938 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
939 - (r0_val - 4);
940 r0_val -= 4;
941 }
942
943 else if (IS_ADD_SP (insn))
944 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
945
946 else if (IS_MOV_SP_FP (insn))
947 break;
948 }
949 else
950 {
951 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
952 cache->sp_offset -=
953 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
954
955 else if (IS_STQ_R18_R15 (insn))
956 cache->saved_regs[PR_REGNUM]
957 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
958 9) << 3);
959
960 else if (IS_STL_R18_R15 (insn))
961 cache->saved_regs[PR_REGNUM]
962 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
963 9) << 2);
964
965 else if (IS_STQ_R14_R15 (insn))
966 cache->saved_regs[MEDIA_FP_REGNUM]
967 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
968 9) << 3);
969
970 else if (IS_STL_R14_R15 (insn))
971 cache->saved_regs[MEDIA_FP_REGNUM]
972 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
973 9) << 2);
974
975 else if (IS_MOV_SP_FP_MEDIA (insn))
976 break;
977 }
978 }
979
980 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
981 cache->uses_fp = 1;
982 }
983
984 static CORE_ADDR
985 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
986 {
987 return sp & ~7;
988 }
989
990 /* Function: push_dummy_call
991 Setup the function arguments for calling a function in the inferior.
992
993 On the Renesas SH architecture, there are four registers (R4 to R7)
994 which are dedicated for passing function arguments. Up to the first
995 four arguments (depending on size) may go into these registers.
996 The rest go on the stack.
997
998 Arguments that are smaller than 4 bytes will still take up a whole
999 register or a whole 32-bit word on the stack, and will be
1000 right-justified in the register or the stack word. This includes
1001 chars, shorts, and small aggregate types.
1002
1003 Arguments that are larger than 4 bytes may be split between two or
1004 more registers. If there are not enough registers free, an argument
1005 may be passed partly in a register (or registers), and partly on the
1006 stack. This includes doubles, long longs, and larger aggregates.
1007 As far as I know, there is no upper limit to the size of aggregates
1008 that will be passed in this way; in other words, the convention of
1009 passing a pointer to a large aggregate instead of a copy is not used.
1010
1011 An exceptional case exists for struct arguments (and possibly other
1012 aggregates such as arrays) if the size is larger than 4 bytes but
1013 not a multiple of 4 bytes. In this case the argument is never split
1014 between the registers and the stack, but instead is copied in its
1015 entirety onto the stack, AND also copied into as many registers as
1016 there is room for. In other words, space in registers permitting,
1017 two copies of the same argument are passed in. As far as I can tell,
1018 only the one on the stack is used, although that may be a function
1019 of the level of compiler optimization. I suspect this is a compiler
1020 bug. Arguments of these odd sizes are left-justified within the
1021 word (as opposed to arguments smaller than 4 bytes, which are
1022 right-justified).
1023
1024 If the function is to return an aggregate type such as a struct, it
1025 is either returned in the normal return value register R0 (if its
1026 size is no greater than one byte), or else the caller must allocate
1027 space into which the callee will copy the return value (if the size
1028 is greater than one byte). In this case, a pointer to the return
1029 value location is passed into the callee in register R2, which does
1030 not displace any of the other arguments passed in via registers R4
1031 to R7. */
1032
1033 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1034 non-scalar (struct, union) elements (even if the elements are
1035 floats).
1036 FR0-FR11 for single precision floating point (float)
1037 DR0-DR10 for double precision floating point (double)
1038
1039 If a float is argument number 3 (for instance) and arguments number
1040 1,2, and 4 are integer, the mapping will be:
1041 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1042
1043 If a float is argument number 10 (for instance) and arguments number
1044 1 through 10 are integer, the mapping will be:
1045 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1046 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1047 arg11->stack(16,SP). I.e. there is hole in the stack.
1048
1049 Different rules apply for variable arguments functions, and for functions
1050 for which the prototype is not known. */
1051
1052 static CORE_ADDR
1053 sh64_push_dummy_call (struct gdbarch *gdbarch,
1054 struct value *function,
1055 struct regcache *regcache,
1056 CORE_ADDR bp_addr,
1057 int nargs, struct value **args,
1058 CORE_ADDR sp, int struct_return,
1059 CORE_ADDR struct_addr)
1060 {
1061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1062 int stack_offset, stack_alloc;
1063 int int_argreg;
1064 int float_argreg;
1065 int double_argreg;
1066 int float_arg_index = 0;
1067 int double_arg_index = 0;
1068 int argnum;
1069 struct type *type;
1070 CORE_ADDR regval;
1071 char *val;
1072 char valbuf[8];
1073 char valbuf_tmp[8];
1074 int len;
1075 int argreg_size;
1076 int fp_args[12];
1077
1078 memset (fp_args, 0, sizeof (fp_args));
1079
1080 /* First force sp to a 8-byte alignment. */
1081 sp = sh64_frame_align (gdbarch, sp);
1082
1083 /* The "struct return pointer" pseudo-argument has its own dedicated
1084 register. */
1085
1086 if (struct_return)
1087 regcache_cooked_write_unsigned (regcache,
1088 STRUCT_RETURN_REGNUM, struct_addr);
1089
1090 /* Now make sure there's space on the stack. */
1091 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1092 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1093 sp -= stack_alloc; /* Make room on stack for args. */
1094
1095 /* Now load as many as possible of the first arguments into
1096 registers, and push the rest onto the stack. There are 64 bytes
1097 in eight registers available. Loop thru args from first to last. */
1098
1099 int_argreg = ARG0_REGNUM;
1100 float_argreg = gdbarch_fp0_regnum (gdbarch);
1101 double_argreg = DR0_REGNUM;
1102
1103 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1104 {
1105 type = value_type (args[argnum]);
1106 len = TYPE_LENGTH (type);
1107 memset (valbuf, 0, sizeof (valbuf));
1108
1109 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1110 {
1111 argreg_size = register_size (gdbarch, int_argreg);
1112
1113 if (len < argreg_size)
1114 {
1115 /* value gets right-justified in the register or stack word. */
1116 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1117 memcpy (valbuf + argreg_size - len,
1118 (char *) value_contents (args[argnum]), len);
1119 else
1120 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1121
1122 val = valbuf;
1123 }
1124 else
1125 val = (char *) value_contents (args[argnum]);
1126
1127 while (len > 0)
1128 {
1129 if (int_argreg > ARGLAST_REGNUM)
1130 {
1131 /* Must go on the stack. */
1132 write_memory (sp + stack_offset, (const bfd_byte *) val,
1133 argreg_size);
1134 stack_offset += 8;/*argreg_size;*/
1135 }
1136 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1137 That's because some *&^%$ things get passed on the stack
1138 AND in the registers! */
1139 if (int_argreg <= ARGLAST_REGNUM)
1140 {
1141 /* There's room in a register. */
1142 regval = extract_unsigned_integer (val, argreg_size,
1143 byte_order);
1144 regcache_cooked_write_unsigned (regcache,
1145 int_argreg, regval);
1146 }
1147 /* Store the value 8 bytes at a time. This means that
1148 things larger than 8 bytes may go partly in registers
1149 and partly on the stack. FIXME: argreg is incremented
1150 before we use its size. */
1151 len -= argreg_size;
1152 val += argreg_size;
1153 int_argreg++;
1154 }
1155 }
1156 else
1157 {
1158 val = (char *) value_contents (args[argnum]);
1159 if (len == 4)
1160 {
1161 /* Where is it going to be stored? */
1162 while (fp_args[float_arg_index])
1163 float_arg_index ++;
1164
1165 /* Now float_argreg points to the register where it
1166 should be stored. Are we still within the allowed
1167 register set? */
1168 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1169 {
1170 /* Goes in FR0...FR11 */
1171 regcache_cooked_write (regcache,
1172 gdbarch_fp0_regnum (gdbarch)
1173 + float_arg_index,
1174 val);
1175 fp_args[float_arg_index] = 1;
1176 /* Skip the corresponding general argument register. */
1177 int_argreg ++;
1178 }
1179 else
1180 ;
1181 /* Store it as the integers, 8 bytes at the time, if
1182 necessary spilling on the stack. */
1183
1184 }
1185 else if (len == 8)
1186 {
1187 /* Where is it going to be stored? */
1188 while (fp_args[double_arg_index])
1189 double_arg_index += 2;
1190 /* Now double_argreg points to the register
1191 where it should be stored.
1192 Are we still within the allowed register set? */
1193 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1194 {
1195 /* Goes in DR0...DR10 */
1196 /* The numbering of the DRi registers is consecutive,
1197 i.e. includes odd numbers. */
1198 int double_register_offset = double_arg_index / 2;
1199 int regnum = DR0_REGNUM + double_register_offset;
1200 regcache_cooked_write (regcache, regnum, val);
1201 fp_args[double_arg_index] = 1;
1202 fp_args[double_arg_index + 1] = 1;
1203 /* Skip the corresponding general argument register. */
1204 int_argreg ++;
1205 }
1206 else
1207 ;
1208 /* Store it as the integers, 8 bytes at the time, if
1209 necessary spilling on the stack. */
1210 }
1211 }
1212 }
1213 /* Store return address. */
1214 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1215
1216 /* Update stack pointer. */
1217 regcache_cooked_write_unsigned (regcache,
1218 gdbarch_sp_regnum (gdbarch), sp);
1219
1220 return sp;
1221 }
1222
1223 /* Find a function's return value in the appropriate registers (in
1224 regbuf), and copy it into valbuf. Extract from an array REGBUF
1225 containing the (raw) register state a function return value of type
1226 TYPE, and copy that, in virtual format, into VALBUF. */
1227 static void
1228 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1229 void *valbuf)
1230 {
1231 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1232 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1233 int len = TYPE_LENGTH (type);
1234
1235 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1236 {
1237 if (len == 4)
1238 {
1239 /* Return value stored in gdbarch_fp0_regnum. */
1240 regcache_raw_read (regcache,
1241 gdbarch_fp0_regnum (gdbarch), valbuf);
1242 }
1243 else if (len == 8)
1244 {
1245 /* return value stored in DR0_REGNUM. */
1246 DOUBLEST val;
1247 gdb_byte buf[8];
1248
1249 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1250
1251 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1252 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1253 buf, &val);
1254 else
1255 floatformat_to_doublest (&floatformat_ieee_double_big,
1256 buf, &val);
1257 store_typed_floating (valbuf, type, val);
1258 }
1259 }
1260 else
1261 {
1262 if (len <= 8)
1263 {
1264 int offset;
1265 char buf[8];
1266 /* Result is in register 2. If smaller than 8 bytes, it is padded
1267 at the most significant end. */
1268 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1269
1270 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1271 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1272 - len;
1273 else
1274 offset = 0;
1275 memcpy (valbuf, buf + offset, len);
1276 }
1277 else
1278 error (_("bad size for return value"));
1279 }
1280 }
1281
1282 /* Write into appropriate registers a function return value
1283 of type TYPE, given in virtual format.
1284 If the architecture is sh4 or sh3e, store a function's return value
1285 in the R0 general register or in the FP0 floating point register,
1286 depending on the type of the return value. In all the other cases
1287 the result is stored in r0, left-justified. */
1288
1289 static void
1290 sh64_store_return_value (struct type *type, struct regcache *regcache,
1291 const void *valbuf)
1292 {
1293 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1294 char buf[64]; /* more than enough... */
1295 int len = TYPE_LENGTH (type);
1296
1297 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1298 {
1299 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1300 for (i = 0; i < len; i += 4)
1301 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1302 regcache_raw_write (regcache, regnum++,
1303 (char *) valbuf + len - 4 - i);
1304 else
1305 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1306 }
1307 else
1308 {
1309 int return_register = DEFAULT_RETURN_REGNUM;
1310 int offset = 0;
1311
1312 if (len <= register_size (gdbarch, return_register))
1313 {
1314 /* Pad with zeros. */
1315 memset (buf, 0, register_size (gdbarch, return_register));
1316 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1317 offset = 0; /*register_size (gdbarch,
1318 return_register) - len;*/
1319 else
1320 offset = register_size (gdbarch, return_register) - len;
1321
1322 memcpy (buf + offset, valbuf, len);
1323 regcache_raw_write (regcache, return_register, buf);
1324 }
1325 else
1326 regcache_raw_write (regcache, return_register, valbuf);
1327 }
1328 }
1329
1330 static enum return_value_convention
1331 sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1332 struct type *type, struct regcache *regcache,
1333 gdb_byte *readbuf, const gdb_byte *writebuf)
1334 {
1335 if (sh64_use_struct_convention (type))
1336 return RETURN_VALUE_STRUCT_CONVENTION;
1337 if (writebuf)
1338 sh64_store_return_value (type, regcache, writebuf);
1339 else if (readbuf)
1340 sh64_extract_return_value (type, regcache, readbuf);
1341 return RETURN_VALUE_REGISTER_CONVENTION;
1342 }
1343
1344 static void
1345 sh64_show_media_regs (struct frame_info *frame)
1346 {
1347 struct gdbarch *gdbarch = get_frame_arch (frame);
1348 int i;
1349
1350 printf_filtered
1351 ("PC=%s SR=%s\n",
1352 phex (get_frame_register_unsigned (frame,
1353 gdbarch_pc_regnum (gdbarch)), 8),
1354 phex (get_frame_register_unsigned (frame, SR_REGNUM), 8));
1355
1356 printf_filtered
1357 ("SSR=%s SPC=%s\n",
1358 phex (get_frame_register_unsigned (frame, SSR_REGNUM), 8),
1359 phex (get_frame_register_unsigned (frame, SPC_REGNUM), 8));
1360 printf_filtered
1361 ("FPSCR=%s\n ",
1362 phex (get_frame_register_unsigned (frame, FPSCR_REGNUM), 8));
1363
1364 for (i = 0; i < 64; i = i + 4)
1365 printf_filtered
1366 ("\nR%d-R%d %s %s %s %s\n",
1367 i, i + 3,
1368 phex (get_frame_register_unsigned (frame, i + 0), 8),
1369 phex (get_frame_register_unsigned (frame, i + 1), 8),
1370 phex (get_frame_register_unsigned (frame, i + 2), 8),
1371 phex (get_frame_register_unsigned (frame, i + 3), 8));
1372
1373 printf_filtered ("\n");
1374
1375 for (i = 0; i < 64; i = i + 8)
1376 printf_filtered
1377 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1378 i, i + 7,
1379 (long) get_frame_register_unsigned
1380 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1381 (long) get_frame_register_unsigned
1382 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1383 (long) get_frame_register_unsigned
1384 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1385 (long) get_frame_register_unsigned
1386 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1387 (long) get_frame_register_unsigned
1388 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1389 (long) get_frame_register_unsigned
1390 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1391 (long) get_frame_register_unsigned
1392 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1393 (long) get_frame_register_unsigned
1394 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1395 }
1396
1397 static void
1398 sh64_show_compact_regs (struct frame_info *frame)
1399 {
1400 struct gdbarch *gdbarch = get_frame_arch (frame);
1401 int i;
1402
1403 printf_filtered
1404 ("PC=%s\n",
1405 phex (get_frame_register_unsigned (frame, PC_C_REGNUM), 8));
1406
1407 printf_filtered
1408 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1409 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1410 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1411 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1412 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1413 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1414 printf_filtered
1415 ("FPSCR=%08lx FPUL=%08lx\n",
1416 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1417 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1418
1419 for (i = 0; i < 16; i = i + 4)
1420 printf_filtered
1421 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1422 i, i + 3,
1423 (long) get_frame_register_unsigned (frame, i + 0),
1424 (long) get_frame_register_unsigned (frame, i + 1),
1425 (long) get_frame_register_unsigned (frame, i + 2),
1426 (long) get_frame_register_unsigned (frame, i + 3));
1427
1428 printf_filtered ("\n");
1429
1430 for (i = 0; i < 16; i = i + 8)
1431 printf_filtered
1432 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1433 i, i + 7,
1434 (long) get_frame_register_unsigned
1435 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1436 (long) get_frame_register_unsigned
1437 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1438 (long) get_frame_register_unsigned
1439 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1440 (long) get_frame_register_unsigned
1441 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1442 (long) get_frame_register_unsigned
1443 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1444 (long) get_frame_register_unsigned
1445 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1446 (long) get_frame_register_unsigned
1447 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1448 (long) get_frame_register_unsigned
1449 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1450 }
1451
1452 /* FIXME!!! This only shows the registers for shmedia, excluding the
1453 pseudo registers. */
1454 void
1455 sh64_show_regs (struct frame_info *frame)
1456 {
1457 if (pc_is_isa32 (get_frame_pc (frame)))
1458 sh64_show_media_regs (frame);
1459 else
1460 sh64_show_compact_regs (frame);
1461 }
1462
1463 /* *INDENT-OFF* */
1464 /*
1465 SH MEDIA MODE (ISA 32)
1466 general registers (64-bit) 0-63
1467 0 r0, r1, r2, r3, r4, r5, r6, r7,
1468 64 r8, r9, r10, r11, r12, r13, r14, r15,
1469 128 r16, r17, r18, r19, r20, r21, r22, r23,
1470 192 r24, r25, r26, r27, r28, r29, r30, r31,
1471 256 r32, r33, r34, r35, r36, r37, r38, r39,
1472 320 r40, r41, r42, r43, r44, r45, r46, r47,
1473 384 r48, r49, r50, r51, r52, r53, r54, r55,
1474 448 r56, r57, r58, r59, r60, r61, r62, r63,
1475
1476 pc (64-bit) 64
1477 512 pc,
1478
1479 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1480 520 sr, ssr, spc,
1481
1482 target registers (64-bit) 68-75
1483 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1484
1485 floating point state control register (32-bit) 76
1486 608 fpscr,
1487
1488 single precision floating point registers (32-bit) 77-140
1489 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1490 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1491 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1492 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1493 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1494 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1495 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1496 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1497
1498 TOTAL SPACE FOR REGISTERS: 868 bytes
1499
1500 From here on they are all pseudo registers: no memory allocated.
1501 REGISTER_BYTE returns the register byte for the base register.
1502
1503 double precision registers (pseudo) 141-172
1504 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1505 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1506 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1507 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1508
1509 floating point pairs (pseudo) 173-204
1510 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1511 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1512 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1513 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1514
1515 floating point vectors (4 floating point regs) (pseudo) 205-220
1516 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1517 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1518
1519 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1520 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1521 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1522 pc_c,
1523 gbr_c, mach_c, macl_c, pr_c, t_c,
1524 fpscr_c, fpul_c,
1525 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1526 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1527 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1528 fv0_c, fv4_c, fv8_c, fv12_c
1529 */
1530
1531 static struct type *
1532 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1533 {
1534 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1535 0, high);
1536 }
1537
1538 /* Return the GDB type object for the "standard" data type
1539 of data in register REG_NR. */
1540 static struct type *
1541 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1542 {
1543 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1544 && reg_nr <= FP_LAST_REGNUM)
1545 || (reg_nr >= FP0_C_REGNUM
1546 && reg_nr <= FP_LAST_C_REGNUM))
1547 return builtin_type (gdbarch)->builtin_float;
1548 else if ((reg_nr >= DR0_REGNUM
1549 && reg_nr <= DR_LAST_REGNUM)
1550 || (reg_nr >= DR0_C_REGNUM
1551 && reg_nr <= DR_LAST_C_REGNUM))
1552 return builtin_type (gdbarch)->builtin_double;
1553 else if (reg_nr >= FPP0_REGNUM
1554 && reg_nr <= FPP_LAST_REGNUM)
1555 return sh64_build_float_register_type (gdbarch, 1);
1556 else if ((reg_nr >= FV0_REGNUM
1557 && reg_nr <= FV_LAST_REGNUM)
1558 ||(reg_nr >= FV0_C_REGNUM
1559 && reg_nr <= FV_LAST_C_REGNUM))
1560 return sh64_build_float_register_type (gdbarch, 3);
1561 else if (reg_nr == FPSCR_REGNUM)
1562 return builtin_type (gdbarch)->builtin_int;
1563 else if (reg_nr >= R0_C_REGNUM
1564 && reg_nr < FP0_C_REGNUM)
1565 return builtin_type (gdbarch)->builtin_int;
1566 else
1567 return builtin_type (gdbarch)->builtin_long_long;
1568 }
1569
1570 static void
1571 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1572 struct type *type, char *from, char *to)
1573 {
1574 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1575 {
1576 /* It is a no-op. */
1577 memcpy (to, from, register_size (gdbarch, regnum));
1578 return;
1579 }
1580
1581 if ((regnum >= DR0_REGNUM
1582 && regnum <= DR_LAST_REGNUM)
1583 || (regnum >= DR0_C_REGNUM
1584 && regnum <= DR_LAST_C_REGNUM))
1585 {
1586 DOUBLEST val;
1587 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1588 from, &val);
1589 store_typed_floating (to, type, val);
1590 }
1591 else
1592 error (_("sh64_register_convert_to_virtual "
1593 "called with non DR register number"));
1594 }
1595
1596 static void
1597 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1598 int regnum, const void *from, void *to)
1599 {
1600 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1601 {
1602 /* It is a no-op. */
1603 memcpy (to, from, register_size (gdbarch, regnum));
1604 return;
1605 }
1606
1607 if ((regnum >= DR0_REGNUM
1608 && regnum <= DR_LAST_REGNUM)
1609 || (regnum >= DR0_C_REGNUM
1610 && regnum <= DR_LAST_C_REGNUM))
1611 {
1612 DOUBLEST val = extract_typed_floating (from, type);
1613 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1614 &val, to);
1615 }
1616 else
1617 error (_("sh64_register_convert_to_raw called "
1618 "with non DR register number"));
1619 }
1620
1621 /* Concatenate PORTIONS contiguous raw registers starting at
1622 BASE_REGNUM into BUFFER. */
1623
1624 static enum register_status
1625 pseudo_register_read_portions (struct gdbarch *gdbarch,
1626 struct regcache *regcache,
1627 int portions,
1628 int base_regnum, gdb_byte *buffer)
1629 {
1630 int portion;
1631
1632 for (portion = 0; portion < portions; portion++)
1633 {
1634 enum register_status status;
1635 gdb_byte *b;
1636
1637 b = buffer + register_size (gdbarch, base_regnum) * portion;
1638 status = regcache_raw_read (regcache, base_regnum + portion, b);
1639 if (status != REG_VALID)
1640 return status;
1641 }
1642
1643 return REG_VALID;
1644 }
1645
1646 static enum register_status
1647 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1648 int reg_nr, gdb_byte *buffer)
1649 {
1650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1651 int base_regnum;
1652 int offset = 0;
1653 char temp_buffer[MAX_REGISTER_SIZE];
1654 enum register_status status;
1655
1656 if (reg_nr >= DR0_REGNUM
1657 && reg_nr <= DR_LAST_REGNUM)
1658 {
1659 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1660
1661 /* Build the value in the provided buffer. */
1662 /* DR regs are double precision registers obtained by
1663 concatenating 2 single precision floating point registers. */
1664 status = pseudo_register_read_portions (gdbarch, regcache,
1665 2, base_regnum, temp_buffer);
1666 if (status == REG_VALID)
1667 {
1668 /* We must pay attention to the endianness. */
1669 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1670 register_type (gdbarch, reg_nr),
1671 temp_buffer, buffer);
1672 }
1673
1674 return status;
1675 }
1676
1677 else if (reg_nr >= FPP0_REGNUM
1678 && reg_nr <= FPP_LAST_REGNUM)
1679 {
1680 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1681
1682 /* Build the value in the provided buffer. */
1683 /* FPP regs are pairs of single precision registers obtained by
1684 concatenating 2 single precision floating point registers. */
1685 return pseudo_register_read_portions (gdbarch, regcache,
1686 2, base_regnum, buffer);
1687 }
1688
1689 else if (reg_nr >= FV0_REGNUM
1690 && reg_nr <= FV_LAST_REGNUM)
1691 {
1692 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1693
1694 /* Build the value in the provided buffer. */
1695 /* FV regs are vectors of single precision registers obtained by
1696 concatenating 4 single precision floating point registers. */
1697 return pseudo_register_read_portions (gdbarch, regcache,
1698 4, base_regnum, buffer);
1699 }
1700
1701 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1702 else if (reg_nr >= R0_C_REGNUM
1703 && reg_nr <= T_C_REGNUM)
1704 {
1705 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1706
1707 /* Build the value in the provided buffer. */
1708 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1709 if (status != REG_VALID)
1710 return status;
1711 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1712 offset = 4;
1713 memcpy (buffer,
1714 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1715 return REG_VALID;
1716 }
1717
1718 else if (reg_nr >= FP0_C_REGNUM
1719 && reg_nr <= FP_LAST_C_REGNUM)
1720 {
1721 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1722
1723 /* Build the value in the provided buffer. */
1724 /* Floating point registers map 1-1 to the media fp regs,
1725 they have the same size and endianness. */
1726 return regcache_raw_read (regcache, base_regnum, buffer);
1727 }
1728
1729 else if (reg_nr >= DR0_C_REGNUM
1730 && reg_nr <= DR_LAST_C_REGNUM)
1731 {
1732 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1733
1734 /* DR_C regs are double precision registers obtained by
1735 concatenating 2 single precision floating point registers. */
1736 status = pseudo_register_read_portions (gdbarch, regcache,
1737 2, base_regnum, temp_buffer);
1738 if (status == REG_VALID)
1739 {
1740 /* We must pay attention to the endianness. */
1741 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1742 register_type (gdbarch, reg_nr),
1743 temp_buffer, buffer);
1744 }
1745 return status;
1746 }
1747
1748 else if (reg_nr >= FV0_C_REGNUM
1749 && reg_nr <= FV_LAST_C_REGNUM)
1750 {
1751 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1752
1753 /* Build the value in the provided buffer. */
1754 /* FV_C regs are vectors of single precision registers obtained by
1755 concatenating 4 single precision floating point registers. */
1756 return pseudo_register_read_portions (gdbarch, regcache,
1757 4, base_regnum, buffer);
1758 }
1759
1760 else if (reg_nr == FPSCR_C_REGNUM)
1761 {
1762 int fpscr_base_regnum;
1763 int sr_base_regnum;
1764 unsigned int fpscr_value;
1765 unsigned int sr_value;
1766 unsigned int fpscr_c_value;
1767 unsigned int fpscr_c_part1_value;
1768 unsigned int fpscr_c_part2_value;
1769
1770 fpscr_base_regnum = FPSCR_REGNUM;
1771 sr_base_regnum = SR_REGNUM;
1772
1773 /* Build the value in the provided buffer. */
1774 /* FPSCR_C is a very weird register that contains sparse bits
1775 from the FPSCR and the SR architectural registers.
1776 Specifically: */
1777 /* *INDENT-OFF* */
1778 /*
1779 FPSRC_C bit
1780 0 Bit 0 of FPSCR
1781 1 reserved
1782 2-17 Bit 2-18 of FPSCR
1783 18-20 Bits 12,13,14 of SR
1784 21-31 reserved
1785 */
1786 /* *INDENT-ON* */
1787 /* Get FPSCR into a local buffer. */
1788 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1789 if (status != REG_VALID)
1790 return status;
1791 /* Get value as an int. */
1792 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1793 /* Get SR into a local buffer */
1794 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1795 if (status != REG_VALID)
1796 return status;
1797 /* Get value as an int. */
1798 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1799 /* Build the new value. */
1800 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1801 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1802 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1803 /* Store that in out buffer!!! */
1804 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1805 /* FIXME There is surely an endianness gotcha here. */
1806
1807 return REG_VALID;
1808 }
1809
1810 else if (reg_nr == FPUL_C_REGNUM)
1811 {
1812 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1813
1814 /* FPUL_C register is floating point register 32,
1815 same size, same endianness. */
1816 return regcache_raw_read (regcache, base_regnum, buffer);
1817 }
1818 else
1819 gdb_assert_not_reached ("invalid pseudo register number");
1820 }
1821
1822 static void
1823 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1824 int reg_nr, const gdb_byte *buffer)
1825 {
1826 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1827 int base_regnum, portion;
1828 int offset;
1829 char temp_buffer[MAX_REGISTER_SIZE];
1830
1831 if (reg_nr >= DR0_REGNUM
1832 && reg_nr <= DR_LAST_REGNUM)
1833 {
1834 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1835 /* We must pay attention to the endianness. */
1836 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1837 reg_nr,
1838 buffer, temp_buffer);
1839
1840 /* Write the real regs for which this one is an alias. */
1841 for (portion = 0; portion < 2; portion++)
1842 regcache_raw_write (regcache, base_regnum + portion,
1843 (temp_buffer
1844 + register_size (gdbarch,
1845 base_regnum) * portion));
1846 }
1847
1848 else if (reg_nr >= FPP0_REGNUM
1849 && reg_nr <= FPP_LAST_REGNUM)
1850 {
1851 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1852
1853 /* Write the real regs for which this one is an alias. */
1854 for (portion = 0; portion < 2; portion++)
1855 regcache_raw_write (regcache, base_regnum + portion,
1856 ((char *) buffer
1857 + register_size (gdbarch,
1858 base_regnum) * portion));
1859 }
1860
1861 else if (reg_nr >= FV0_REGNUM
1862 && reg_nr <= FV_LAST_REGNUM)
1863 {
1864 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1865
1866 /* Write the real regs for which this one is an alias. */
1867 for (portion = 0; portion < 4; portion++)
1868 regcache_raw_write (regcache, base_regnum + portion,
1869 ((char *) buffer
1870 + register_size (gdbarch,
1871 base_regnum) * portion));
1872 }
1873
1874 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1875 register but only 4 bytes of it. */
1876 else if (reg_nr >= R0_C_REGNUM
1877 && reg_nr <= T_C_REGNUM)
1878 {
1879 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1880 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1881 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1882 offset = 4;
1883 else
1884 offset = 0;
1885 /* Let's read the value of the base register into a temporary
1886 buffer, so that overwriting the last four bytes with the new
1887 value of the pseudo will leave the upper 4 bytes unchanged. */
1888 regcache_raw_read (regcache, base_regnum, temp_buffer);
1889 /* Write as an 8 byte quantity. */
1890 memcpy (temp_buffer + offset, buffer, 4);
1891 regcache_raw_write (regcache, base_regnum, temp_buffer);
1892 }
1893
1894 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1895 registers. Both are 4 bytes. */
1896 else if (reg_nr >= FP0_C_REGNUM
1897 && reg_nr <= FP_LAST_C_REGNUM)
1898 {
1899 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1900 regcache_raw_write (regcache, base_regnum, buffer);
1901 }
1902
1903 else if (reg_nr >= DR0_C_REGNUM
1904 && reg_nr <= DR_LAST_C_REGNUM)
1905 {
1906 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1907 for (portion = 0; portion < 2; portion++)
1908 {
1909 /* We must pay attention to the endianness. */
1910 sh64_register_convert_to_raw (gdbarch,
1911 register_type (gdbarch, reg_nr),
1912 reg_nr,
1913 buffer, temp_buffer);
1914
1915 regcache_raw_write (regcache, base_regnum + portion,
1916 (temp_buffer
1917 + register_size (gdbarch,
1918 base_regnum) * portion));
1919 }
1920 }
1921
1922 else if (reg_nr >= FV0_C_REGNUM
1923 && reg_nr <= FV_LAST_C_REGNUM)
1924 {
1925 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1926
1927 for (portion = 0; portion < 4; portion++)
1928 {
1929 regcache_raw_write (regcache, base_regnum + portion,
1930 ((char *) buffer
1931 + register_size (gdbarch,
1932 base_regnum) * portion));
1933 }
1934 }
1935
1936 else if (reg_nr == FPSCR_C_REGNUM)
1937 {
1938 int fpscr_base_regnum;
1939 int sr_base_regnum;
1940 unsigned int fpscr_value;
1941 unsigned int sr_value;
1942 unsigned int old_fpscr_value;
1943 unsigned int old_sr_value;
1944 unsigned int fpscr_c_value;
1945 unsigned int fpscr_mask;
1946 unsigned int sr_mask;
1947
1948 fpscr_base_regnum = FPSCR_REGNUM;
1949 sr_base_regnum = SR_REGNUM;
1950
1951 /* FPSCR_C is a very weird register that contains sparse bits
1952 from the FPSCR and the SR architectural registers.
1953 Specifically: */
1954 /* *INDENT-OFF* */
1955 /*
1956 FPSRC_C bit
1957 0 Bit 0 of FPSCR
1958 1 reserved
1959 2-17 Bit 2-18 of FPSCR
1960 18-20 Bits 12,13,14 of SR
1961 21-31 reserved
1962 */
1963 /* *INDENT-ON* */
1964 /* Get value as an int. */
1965 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1966
1967 /* Build the new values. */
1968 fpscr_mask = 0x0003fffd;
1969 sr_mask = 0x001c0000;
1970
1971 fpscr_value = fpscr_c_value & fpscr_mask;
1972 sr_value = (fpscr_value & sr_mask) >> 6;
1973
1974 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1975 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1976 old_fpscr_value &= 0xfffc0002;
1977 fpscr_value |= old_fpscr_value;
1978 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1979 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1980
1981 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1982 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1983 old_sr_value &= 0xffff8fff;
1984 sr_value |= old_sr_value;
1985 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1986 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1987 }
1988
1989 else if (reg_nr == FPUL_C_REGNUM)
1990 {
1991 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1992 regcache_raw_write (regcache, base_regnum, buffer);
1993 }
1994 }
1995
1996 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1997 shmedia REGISTERS. */
1998 /* Control registers, compact mode. */
1999 static void
2000 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
2001 int cr_c_regnum)
2002 {
2003 switch (cr_c_regnum)
2004 {
2005 case PC_C_REGNUM:
2006 fprintf_filtered (file, "pc_c\t0x%08x\n",
2007 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2008 break;
2009 case GBR_C_REGNUM:
2010 fprintf_filtered (file, "gbr_c\t0x%08x\n",
2011 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2012 break;
2013 case MACH_C_REGNUM:
2014 fprintf_filtered (file, "mach_c\t0x%08x\n",
2015 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2016 break;
2017 case MACL_C_REGNUM:
2018 fprintf_filtered (file, "macl_c\t0x%08x\n",
2019 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2020 break;
2021 case PR_C_REGNUM:
2022 fprintf_filtered (file, "pr_c\t0x%08x\n",
2023 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2024 break;
2025 case T_C_REGNUM:
2026 fprintf_filtered (file, "t_c\t0x%08x\n",
2027 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2028 break;
2029 case FPSCR_C_REGNUM:
2030 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
2031 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2032 break;
2033 case FPUL_C_REGNUM:
2034 fprintf_filtered (file, "fpul_c\t0x%08x\n",
2035 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2036 break;
2037 }
2038 }
2039
2040 static void
2041 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
2042 struct frame_info *frame, int regnum)
2043 { /* Do values for FP (float) regs. */
2044 unsigned char *raw_buffer;
2045 double flt; /* Double extracted from raw hex data. */
2046 int inv;
2047 int j;
2048
2049 /* Allocate space for the float. */
2050 raw_buffer = (unsigned char *)
2051 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
2052
2053 /* Get the data in raw format. */
2054 if (!frame_register_read (frame, regnum, raw_buffer))
2055 error (_("can't read register %d (%s)"),
2056 regnum, gdbarch_register_name (gdbarch, regnum));
2057
2058 /* Get the register as a number. */
2059 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
2060 raw_buffer, &inv);
2061
2062 /* Print the name and some spaces. */
2063 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2064 print_spaces_filtered (15 - strlen (gdbarch_register_name
2065 (gdbarch, regnum)), file);
2066
2067 /* Print the value. */
2068 if (inv)
2069 fprintf_filtered (file, "<invalid float>");
2070 else
2071 fprintf_filtered (file, "%-10.9g", flt);
2072
2073 /* Print the fp register as hex. */
2074 fprintf_filtered (file, "\t(raw 0x");
2075 for (j = 0; j < register_size (gdbarch, regnum); j++)
2076 {
2077 int idx = gdbarch_byte_order (gdbarch)
2078 == BFD_ENDIAN_BIG ? j : register_size
2079 (gdbarch, regnum) - 1 - j;
2080 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2081 }
2082 fprintf_filtered (file, ")");
2083 fprintf_filtered (file, "\n");
2084 }
2085
2086 static void
2087 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2088 struct frame_info *frame, int regnum)
2089 {
2090 /* All the sh64-compact mode registers are pseudo registers. */
2091
2092 if (regnum < gdbarch_num_regs (gdbarch)
2093 || regnum >= gdbarch_num_regs (gdbarch)
2094 + NUM_PSEUDO_REGS_SH_MEDIA
2095 + NUM_PSEUDO_REGS_SH_COMPACT)
2096 internal_error (__FILE__, __LINE__,
2097 _("Invalid pseudo register number %d\n"), regnum);
2098
2099 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2100 {
2101 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
2102 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2103 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2104 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2105 }
2106
2107 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2108 {
2109 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2110 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2111 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2112 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2113 }
2114
2115 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2116 {
2117 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
2118 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2119 regnum - FV0_REGNUM,
2120 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2121 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2122 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2123 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2124 }
2125
2126 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2127 {
2128 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2129 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2130 regnum - FV0_C_REGNUM,
2131 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2132 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2133 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2134 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2135 }
2136
2137 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2138 {
2139 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2140 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2141 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2142 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2143 }
2144
2145 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2146 {
2147 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2148 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2149 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2150 }
2151 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2152 /* This should work also for pseudoregs. */
2153 sh64_do_fp_register (gdbarch, file, frame, regnum);
2154 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2155 sh64_do_cr_c_register_info (file, frame, regnum);
2156 }
2157
2158 static void
2159 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2160 struct frame_info *frame, int regnum)
2161 {
2162 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2163 struct value_print_options opts;
2164
2165 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2166 print_spaces_filtered (15 - strlen (gdbarch_register_name
2167 (gdbarch, regnum)), file);
2168
2169 /* Get the data in raw format. */
2170 if (!frame_register_read (frame, regnum, raw_buffer))
2171 fprintf_filtered (file, "*value not available*\n");
2172
2173 get_formatted_print_options (&opts, 'x');
2174 opts.deref_ref = 1;
2175 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2176 file, 0, NULL, &opts, current_language);
2177 fprintf_filtered (file, "\t");
2178 get_formatted_print_options (&opts, 0);
2179 opts.deref_ref = 1;
2180 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2181 file, 0, NULL, &opts, current_language);
2182 fprintf_filtered (file, "\n");
2183 }
2184
2185 static void
2186 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2187 struct frame_info *frame, int regnum)
2188 {
2189 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2190 + gdbarch_num_pseudo_regs (gdbarch))
2191 internal_error (__FILE__, __LINE__,
2192 _("Invalid register number %d\n"), regnum);
2193
2194 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2195 {
2196 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2197 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2198 else
2199 sh64_do_register (gdbarch, file, frame, regnum);
2200 }
2201
2202 else if (regnum < gdbarch_num_regs (gdbarch)
2203 + gdbarch_num_pseudo_regs (gdbarch))
2204 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2205 }
2206
2207 static void
2208 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2209 struct frame_info *frame, int regnum,
2210 int fpregs)
2211 {
2212 if (regnum != -1) /* Do one specified register. */
2213 {
2214 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2215 error (_("Not a valid register for the current processor type"));
2216
2217 sh64_print_register (gdbarch, file, frame, regnum);
2218 }
2219 else
2220 /* Do all (or most) registers. */
2221 {
2222 regnum = 0;
2223 while (regnum < gdbarch_num_regs (gdbarch))
2224 {
2225 /* If the register name is empty, it is undefined for this
2226 processor, so don't display anything. */
2227 if (gdbarch_register_name (gdbarch, regnum) == NULL
2228 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2229 {
2230 regnum++;
2231 continue;
2232 }
2233
2234 if (TYPE_CODE (register_type (gdbarch, regnum))
2235 == TYPE_CODE_FLT)
2236 {
2237 if (fpregs)
2238 {
2239 /* true for "INFO ALL-REGISTERS" command. */
2240 sh64_do_fp_register (gdbarch, file, frame, regnum);
2241 regnum ++;
2242 }
2243 else
2244 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2245 /* skip FP regs */
2246 }
2247 else
2248 {
2249 sh64_do_register (gdbarch, file, frame, regnum);
2250 regnum++;
2251 }
2252 }
2253
2254 if (fpregs)
2255 while (regnum < gdbarch_num_regs (gdbarch)
2256 + gdbarch_num_pseudo_regs (gdbarch))
2257 {
2258 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2259 regnum++;
2260 }
2261 }
2262 }
2263
2264 static void
2265 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2266 struct ui_file *file,
2267 struct frame_info *frame, int regnum,
2268 int fpregs)
2269 {
2270 if (regnum != -1) /* Do one specified register. */
2271 {
2272 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2273 error (_("Not a valid register for the current processor type"));
2274
2275 if (regnum >= 0 && regnum < R0_C_REGNUM)
2276 error (_("Not a valid register for the current processor mode."));
2277
2278 sh64_print_register (gdbarch, file, frame, regnum);
2279 }
2280 else
2281 /* Do all compact registers. */
2282 {
2283 regnum = R0_C_REGNUM;
2284 while (regnum < gdbarch_num_regs (gdbarch)
2285 + gdbarch_num_pseudo_regs (gdbarch))
2286 {
2287 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2288 regnum++;
2289 }
2290 }
2291 }
2292
2293 static void
2294 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2295 struct frame_info *frame, int regnum, int fpregs)
2296 {
2297 if (pc_is_isa32 (get_frame_pc (frame)))
2298 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2299 else
2300 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2301 }
2302
2303 static struct sh64_frame_cache *
2304 sh64_alloc_frame_cache (void)
2305 {
2306 struct sh64_frame_cache *cache;
2307 int i;
2308
2309 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2310
2311 /* Base address. */
2312 cache->base = 0;
2313 cache->saved_sp = 0;
2314 cache->sp_offset = 0;
2315 cache->pc = 0;
2316
2317 /* Frameless until proven otherwise. */
2318 cache->uses_fp = 0;
2319
2320 /* Saved registers. We initialize these to -1 since zero is a valid
2321 offset (that's where fp is supposed to be stored). */
2322 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2323 {
2324 cache->saved_regs[i] = -1;
2325 }
2326
2327 return cache;
2328 }
2329
2330 static struct sh64_frame_cache *
2331 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2332 {
2333 struct gdbarch *gdbarch;
2334 struct sh64_frame_cache *cache;
2335 CORE_ADDR current_pc;
2336 int i;
2337
2338 if (*this_cache)
2339 return *this_cache;
2340
2341 gdbarch = get_frame_arch (this_frame);
2342 cache = sh64_alloc_frame_cache ();
2343 *this_cache = cache;
2344
2345 current_pc = get_frame_pc (this_frame);
2346 cache->media_mode = pc_is_isa32 (current_pc);
2347
2348 /* In principle, for normal frames, fp holds the frame pointer,
2349 which holds the base address for the current stack frame.
2350 However, for functions that don't need it, the frame pointer is
2351 optional. For these "frameless" functions the frame pointer is
2352 actually the frame pointer of the calling frame. */
2353 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2354 if (cache->base == 0)
2355 return cache;
2356
2357 cache->pc = get_frame_func (this_frame);
2358 if (cache->pc != 0)
2359 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2360
2361 if (!cache->uses_fp)
2362 {
2363 /* We didn't find a valid frame, which means that CACHE->base
2364 currently holds the frame pointer for our calling frame. If
2365 we're at the start of a function, or somewhere half-way its
2366 prologue, the function's frame probably hasn't been fully
2367 setup yet. Try to reconstruct the base address for the stack
2368 frame by looking at the stack pointer. For truly "frameless"
2369 functions this might work too. */
2370 cache->base = get_frame_register_unsigned
2371 (this_frame, gdbarch_sp_regnum (gdbarch));
2372 }
2373
2374 /* Now that we have the base address for the stack frame we can
2375 calculate the value of sp in the calling frame. */
2376 cache->saved_sp = cache->base + cache->sp_offset;
2377
2378 /* Adjust all the saved registers such that they contain addresses
2379 instead of offsets. */
2380 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2381 if (cache->saved_regs[i] != -1)
2382 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2383
2384 return cache;
2385 }
2386
2387 static struct value *
2388 sh64_frame_prev_register (struct frame_info *this_frame,
2389 void **this_cache, int regnum)
2390 {
2391 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2392 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2393 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2394
2395 gdb_assert (regnum >= 0);
2396
2397 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2398 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2399
2400 /* The PC of the previous frame is stored in the PR register of
2401 the current frame. Frob regnum so that we pull the value from
2402 the correct place. */
2403 if (regnum == gdbarch_pc_regnum (gdbarch))
2404 regnum = PR_REGNUM;
2405
2406 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2407 {
2408 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2409 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2410 {
2411 CORE_ADDR val;
2412 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2413 4, byte_order);
2414 return frame_unwind_got_constant (this_frame, regnum, val);
2415 }
2416
2417 return frame_unwind_got_memory (this_frame, regnum,
2418 cache->saved_regs[regnum]);
2419 }
2420
2421 return frame_unwind_got_register (this_frame, regnum, regnum);
2422 }
2423
2424 static void
2425 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2426 struct frame_id *this_id)
2427 {
2428 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2429
2430 /* This marks the outermost frame. */
2431 if (cache->base == 0)
2432 return;
2433
2434 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2435 }
2436
2437 static const struct frame_unwind sh64_frame_unwind = {
2438 NORMAL_FRAME,
2439 default_frame_unwind_stop_reason,
2440 sh64_frame_this_id,
2441 sh64_frame_prev_register,
2442 NULL,
2443 default_frame_sniffer
2444 };
2445
2446 static CORE_ADDR
2447 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2448 {
2449 return frame_unwind_register_unsigned (next_frame,
2450 gdbarch_sp_regnum (gdbarch));
2451 }
2452
2453 static CORE_ADDR
2454 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2455 {
2456 return frame_unwind_register_unsigned (next_frame,
2457 gdbarch_pc_regnum (gdbarch));
2458 }
2459
2460 static struct frame_id
2461 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2462 {
2463 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2464 gdbarch_sp_regnum (gdbarch));
2465 return frame_id_build (sp, get_frame_pc (this_frame));
2466 }
2467
2468 static CORE_ADDR
2469 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2470 {
2471 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2472
2473 return cache->base;
2474 }
2475
2476 static const struct frame_base sh64_frame_base = {
2477 &sh64_frame_unwind,
2478 sh64_frame_base_address,
2479 sh64_frame_base_address,
2480 sh64_frame_base_address
2481 };
2482
2483
2484 struct gdbarch *
2485 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2486 {
2487 struct gdbarch *gdbarch;
2488 struct gdbarch_tdep *tdep;
2489
2490 /* If there is already a candidate, use it. */
2491 arches = gdbarch_list_lookup_by_info (arches, &info);
2492 if (arches != NULL)
2493 return arches->gdbarch;
2494
2495 /* None found, create a new architecture from the information
2496 provided. */
2497 tdep = XMALLOC (struct gdbarch_tdep);
2498 gdbarch = gdbarch_alloc (&info, tdep);
2499
2500 /* Determine the ABI */
2501 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2502 {
2503 /* If the ABI is the 64-bit one, it can only be sh-media. */
2504 tdep->sh_abi = SH_ABI_64;
2505 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2506 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2507 }
2508 else
2509 {
2510 /* If the ABI is the 32-bit one it could be either media or
2511 compact. */
2512 tdep->sh_abi = SH_ABI_32;
2513 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2514 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2515 }
2516
2517 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2518 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2519 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2520 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2521 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2522 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2523 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2524
2525 /* The number of real registers is the same whether we are in
2526 ISA16(compact) or ISA32(media). */
2527 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2528 set_gdbarch_sp_regnum (gdbarch, 15);
2529 set_gdbarch_pc_regnum (gdbarch, 64);
2530 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2531 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2532 + NUM_PSEUDO_REGS_SH_COMPACT);
2533
2534 set_gdbarch_register_name (gdbarch, sh64_register_name);
2535 set_gdbarch_register_type (gdbarch, sh64_register_type);
2536
2537 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2538 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2539
2540 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2541
2542 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2543 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2544
2545 set_gdbarch_return_value (gdbarch, sh64_return_value);
2546
2547 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2548 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2549
2550 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2551
2552 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2553
2554 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2555 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2556 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2557 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2558 frame_base_set_default (gdbarch, &sh64_frame_base);
2559
2560 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2561
2562 set_gdbarch_elf_make_msymbol_special (gdbarch,
2563 sh64_elf_make_msymbol_special);
2564
2565 /* Hook in ABI-specific overrides, if they have been registered. */
2566 gdbarch_init_osabi (info, gdbarch);
2567
2568 dwarf2_append_unwinders (gdbarch);
2569 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2570
2571 return gdbarch;
2572 }
This page took 0.089492 seconds and 4 git commands to generate.