* alphafbsd-tdep.c: Update for unwinder changes.
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /*
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
24 */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "value.h"
36 #include "dis-asm.h"
37 #include "inferior.h"
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43
44 #include "elf-bfd.h"
45
46 /* sh flags */
47 #include "elf/sh.h"
48 /* registers numbers shared with the simulator */
49 #include "gdb/sim-sh.h"
50 #include "language.h"
51
52 /* Information that is dependent on the processor variant. */
53 enum sh_abi
54 {
55 SH_ABI_UNKNOWN,
56 SH_ABI_32,
57 SH_ABI_64
58 };
59
60 struct gdbarch_tdep
61 {
62 enum sh_abi sh_abi;
63 };
64
65 struct sh64_frame_cache
66 {
67 /* Base address. */
68 CORE_ADDR base;
69 LONGEST sp_offset;
70 CORE_ADDR pc;
71
72 /* Flag showing that a frame has been created in the prologue code. */
73 int uses_fp;
74
75 int media_mode;
76
77 /* Saved registers. */
78 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
79 CORE_ADDR saved_sp;
80 };
81
82 /* Registers of SH5 */
83 enum
84 {
85 R0_REGNUM = 0,
86 DEFAULT_RETURN_REGNUM = 2,
87 STRUCT_RETURN_REGNUM = 2,
88 ARG0_REGNUM = 2,
89 ARGLAST_REGNUM = 9,
90 FLOAT_ARGLAST_REGNUM = 11,
91 MEDIA_FP_REGNUM = 14,
92 PR_REGNUM = 18,
93 SR_REGNUM = 65,
94 DR0_REGNUM = 141,
95 DR_LAST_REGNUM = 172,
96 /* FPP stands for Floating Point Pair, to avoid confusion with
97 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
98 point register. Unfortunately on the sh5, the floating point
99 registers are called FR, and the floating point pairs are called FP. */
100 FPP0_REGNUM = 173,
101 FPP_LAST_REGNUM = 204,
102 FV0_REGNUM = 205,
103 FV_LAST_REGNUM = 220,
104 R0_C_REGNUM = 221,
105 R_LAST_C_REGNUM = 236,
106 PC_C_REGNUM = 237,
107 GBR_C_REGNUM = 238,
108 MACH_C_REGNUM = 239,
109 MACL_C_REGNUM = 240,
110 PR_C_REGNUM = 241,
111 T_C_REGNUM = 242,
112 FPSCR_C_REGNUM = 243,
113 FPUL_C_REGNUM = 244,
114 FP0_C_REGNUM = 245,
115 FP_LAST_C_REGNUM = 260,
116 DR0_C_REGNUM = 261,
117 DR_LAST_C_REGNUM = 268,
118 FV0_C_REGNUM = 269,
119 FV_LAST_C_REGNUM = 272,
120 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
121 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
122 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
123 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
124 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
125 };
126
127 static const char *
128 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
129 {
130 static char *register_names[] =
131 {
132 /* SH MEDIA MODE (ISA 32) */
133 /* general registers (64-bit) 0-63 */
134 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
135 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
136 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
137 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
138 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
139 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
140 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
141 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
142
143 /* pc (64-bit) 64 */
144 "pc",
145
146 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
147 "sr", "ssr", "spc",
148
149 /* target registers (64-bit) 68-75*/
150 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
151
152 /* floating point state control register (32-bit) 76 */
153 "fpscr",
154
155 /* single precision floating point registers (32-bit) 77-140*/
156 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
157 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
158 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
159 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
160 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
161 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
162 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
163 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
164
165 /* double precision registers (pseudo) 141-172 */
166 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
167 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
168 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
169 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
170
171 /* floating point pairs (pseudo) 173-204*/
172 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
173 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
174 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
175 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
176
177 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
178 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
179 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
180
181 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
182 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
183 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
184 "pc_c",
185 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
186 "fpscr_c", "fpul_c",
187 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
188 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
190 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
191 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
192 };
193
194 if (reg_nr < 0)
195 return NULL;
196 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
197 return NULL;
198 return register_names[reg_nr];
199 }
200
201 #define NUM_PSEUDO_REGS_SH_MEDIA 80
202 #define NUM_PSEUDO_REGS_SH_COMPACT 51
203
204 /* Macros and functions for setting and testing a bit in a minimal
205 symbol that marks it as 32-bit function. The MSB of the minimal
206 symbol's "info" field is used for this purpose.
207
208 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
209 i.e. refers to a 32-bit function, and sets a "special" bit in a
210 minimal symbol to mark it as a 32-bit function
211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
212
213 #define MSYMBOL_IS_SPECIAL(msym) \
214 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
215
216 static void
217 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
218 {
219 if (msym == NULL)
220 return;
221
222 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
223 {
224 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
225 SYMBOL_VALUE_ADDRESS (msym) |= 1;
226 }
227 }
228
229 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
230 are some macros to test, set, or clear bit 0 of addresses. */
231 #define IS_ISA32_ADDR(addr) ((addr) & 1)
232 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
233 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
234
235 static int
236 pc_is_isa32 (bfd_vma memaddr)
237 {
238 struct minimal_symbol *sym;
239
240 /* If bit 0 of the address is set, assume this is a
241 ISA32 (shmedia) address. */
242 if (IS_ISA32_ADDR (memaddr))
243 return 1;
244
245 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
246 the high bit of the info field. Use this to decide if the function is
247 ISA16 or ISA32. */
248 sym = lookup_minimal_symbol_by_pc (memaddr);
249 if (sym)
250 return MSYMBOL_IS_SPECIAL (sym);
251 else
252 return 0;
253 }
254
255 static const unsigned char *
256 sh64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
257 {
258 /* The BRK instruction for shmedia is
259 01101111 11110101 11111111 11110000
260 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
261 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
262
263 /* The BRK instruction for shcompact is
264 00000000 00111011
265 which translates in big endian mode to 0x0, 0x3b
266 and in little endian mode to 0x3b, 0x0*/
267
268 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
269 {
270 if (pc_is_isa32 (*pcptr))
271 {
272 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
273 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
274 *lenptr = sizeof (big_breakpoint_media);
275 return big_breakpoint_media;
276 }
277 else
278 {
279 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
280 *lenptr = sizeof (big_breakpoint_compact);
281 return big_breakpoint_compact;
282 }
283 }
284 else
285 {
286 if (pc_is_isa32 (*pcptr))
287 {
288 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
289 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
290 *lenptr = sizeof (little_breakpoint_media);
291 return little_breakpoint_media;
292 }
293 else
294 {
295 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
296 *lenptr = sizeof (little_breakpoint_compact);
297 return little_breakpoint_compact;
298 }
299 }
300 }
301
302 /* Prologue looks like
303 [mov.l <regs>,@-r15]...
304 [sts.l pr,@-r15]
305 [mov.l r14,@-r15]
306 [mov r15,r14]
307
308 Actually it can be more complicated than this. For instance, with
309 newer gcc's:
310
311 mov.l r14,@-r15
312 add #-12,r15
313 mov r15,r14
314 mov r4,r1
315 mov r5,r2
316 mov.l r6,@(4,r14)
317 mov.l r7,@(8,r14)
318 mov.b r1,@r14
319 mov r14,r1
320 mov r14,r1
321 add #2,r1
322 mov.w r2,@r1
323
324 */
325
326 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
327 with l=1 and n = 18 0110101111110001010010100aaa0000 */
328 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
329
330 /* STS.L PR,@-r0 0100000000100010
331 r0-4-->r0, PR-->(r0) */
332 #define IS_STS_R0(x) ((x) == 0x4022)
333
334 /* STS PR, Rm 0000mmmm00101010
335 PR-->Rm */
336 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
337
338 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
339 Rm-->(dispx4+r15) */
340 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
341
342 /* MOV.L R14,@(disp,r15) 000111111110dddd
343 R14-->(dispx4+r15) */
344 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
345
346 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
347 R18-->(dispx8+R14) */
348 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
349
350 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
351 R18-->(dispx8+R15) */
352 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
353
354 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
355 R18-->(dispx4+R15) */
356 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
357
358 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
359 R14-->(dispx8+R15) */
360 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
361
362 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
363 R14-->(dispx4+R15) */
364 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
365
366 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
367 R15 + imm --> R15 */
368 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
369
370 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
371 R15 + imm --> R15 */
372 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
373
374 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
375 R15 + R63 --> R14 */
376 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
377
378 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
379 R15 + R63 --> R14 */
380 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
381
382 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
383
384 /* MOV #imm, R0 1110 0000 ssss ssss
385 #imm-->R0 */
386 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
387
388 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
389 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
390
391 /* ADD r15,r0 0011 0000 1111 1100
392 r15+r0-->r0 */
393 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
394
395 /* MOV.L R14 @-R0 0010 0000 1110 0110
396 R14-->(R0-4), R0-4-->R0 */
397 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
398
399 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
400 where Rm is one of r2-r9 which are the argument registers. */
401 /* FIXME: Recognize the float and double register moves too! */
402 #define IS_MEDIA_IND_ARG_MOV(x) \
403 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
404
405 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
406 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
407 where Rm is one of r2-r9 which are the argument registers. */
408 #define IS_MEDIA_ARG_MOV(x) \
409 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
410 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
411
412 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
413 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
414 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
415 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
416 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
417 #define IS_MEDIA_MOV_TO_R14(x) \
418 ((((x) & 0xfffffc0f) == 0xa0e00000) \
419 || (((x) & 0xfffffc0f) == 0xa4e00000) \
420 || (((x) & 0xfffffc0f) == 0xa8e00000) \
421 || (((x) & 0xfffffc0f) == 0xb4e00000) \
422 || (((x) & 0xfffffc0f) == 0xbce00000))
423
424 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
425 where Rm is r2-r9 */
426 #define IS_COMPACT_IND_ARG_MOV(x) \
427 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
428
429 /* compact direct arg move!
430 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
431 #define IS_COMPACT_ARG_MOV(x) \
432 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
433
434 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
435 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
436 #define IS_COMPACT_MOV_TO_R14(x) \
437 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
438
439 #define IS_JSR_R0(x) ((x) == 0x400b)
440 #define IS_NOP(x) ((x) == 0x0009)
441
442
443 /* MOV r15,r14 0110111011110011
444 r15-->r14 */
445 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
446
447 /* ADD #imm,r15 01111111iiiiiiii
448 r15+imm-->r15 */
449 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
450
451 /* Skip any prologue before the guts of a function */
452
453 /* Skip the prologue using the debug information. If this fails we'll
454 fall back on the 'guess' method below. */
455 static CORE_ADDR
456 after_prologue (CORE_ADDR pc)
457 {
458 struct symtab_and_line sal;
459 CORE_ADDR func_addr, func_end;
460
461 /* If we can not find the symbol in the partial symbol table, then
462 there is no hope we can determine the function's start address
463 with this code. */
464 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
465 return 0;
466
467
468 /* Get the line associated with FUNC_ADDR. */
469 sal = find_pc_line (func_addr, 0);
470
471 /* There are only two cases to consider. First, the end of the source line
472 is within the function bounds. In that case we return the end of the
473 source line. Second is the end of the source line extends beyond the
474 bounds of the current function. We need to use the slow code to
475 examine instructions in that case. */
476 if (sal.end < func_end)
477 return sal.end;
478 else
479 return 0;
480 }
481
482 static CORE_ADDR
483 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
484 {
485 CORE_ADDR here, end;
486 int w;
487 int insn_size = (media_mode ? 4 : 2);
488
489 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
490 {
491 if (media_mode)
492 {
493 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
494 here += insn_size;
495 if (IS_MEDIA_IND_ARG_MOV (w))
496 {
497 /* This must be followed by a store to r14, so the argument
498 is where the debug info says it is. This can happen after
499 the SP has been saved, unfortunately. */
500
501 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
502 insn_size);
503 here += insn_size;
504 if (IS_MEDIA_MOV_TO_R14 (next_insn))
505 start_pc = here;
506 }
507 else if (IS_MEDIA_ARG_MOV (w))
508 {
509 /* These instructions store directly the argument in r14. */
510 start_pc = here;
511 }
512 else
513 break;
514 }
515 else
516 {
517 w = read_memory_integer (here, insn_size);
518 w = w & 0xffff;
519 here += insn_size;
520 if (IS_COMPACT_IND_ARG_MOV (w))
521 {
522 /* This must be followed by a store to r14, so the argument
523 is where the debug info says it is. This can happen after
524 the SP has been saved, unfortunately. */
525
526 int next_insn = 0xffff & read_memory_integer (here, insn_size);
527 here += insn_size;
528 if (IS_COMPACT_MOV_TO_R14 (next_insn))
529 start_pc = here;
530 }
531 else if (IS_COMPACT_ARG_MOV (w))
532 {
533 /* These instructions store directly the argument in r14. */
534 start_pc = here;
535 }
536 else if (IS_MOVL_R0 (w))
537 {
538 /* There is a function that gcc calls to get the arguments
539 passed correctly to the function. Only after this
540 function call the arguments will be found at the place
541 where they are supposed to be. This happens in case the
542 argument has to be stored into a 64-bit register (for
543 instance doubles, long longs). SHcompact doesn't have
544 access to the full 64-bits, so we store the register in
545 stack slot and store the address of the stack slot in
546 the register, then do a call through a wrapper that
547 loads the memory value into the register. A SHcompact
548 callee calls an argument decoder
549 (GCC_shcompact_incoming_args) that stores the 64-bit
550 value in a stack slot and stores the address of the
551 stack slot in the register. GCC thinks the argument is
552 just passed by transparent reference, but this is only
553 true after the argument decoder is called. Such a call
554 needs to be considered part of the prologue. */
555
556 /* This must be followed by a JSR @r0 instruction and by
557 a NOP instruction. After these, the prologue is over! */
558
559 int next_insn = 0xffff & read_memory_integer (here, insn_size);
560 here += insn_size;
561 if (IS_JSR_R0 (next_insn))
562 {
563 next_insn = 0xffff & read_memory_integer (here, insn_size);
564 here += insn_size;
565
566 if (IS_NOP (next_insn))
567 start_pc = here;
568 }
569 }
570 else
571 break;
572 }
573 }
574
575 return start_pc;
576 }
577
578 static CORE_ADDR
579 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
580 {
581 CORE_ADDR here, end;
582 int updated_fp = 0;
583 int insn_size = 4;
584 int media_mode = 1;
585
586 if (!start_pc)
587 return 0;
588
589 if (pc_is_isa32 (start_pc) == 0)
590 {
591 insn_size = 2;
592 media_mode = 0;
593 }
594
595 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
596 {
597
598 if (media_mode)
599 {
600 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
601 here += insn_size;
602 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
603 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
604 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
605 {
606 start_pc = here;
607 }
608 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
609 {
610 start_pc = here;
611 updated_fp = 1;
612 }
613 else
614 if (updated_fp)
615 {
616 /* Don't bail out yet, we may have arguments stored in
617 registers here, according to the debug info, so that
618 gdb can print the frames correctly. */
619 start_pc = look_for_args_moves (here - insn_size, media_mode);
620 break;
621 }
622 }
623 else
624 {
625 int w = 0xffff & read_memory_integer (here, insn_size);
626 here += insn_size;
627
628 if (IS_STS_R0 (w) || IS_STS_PR (w)
629 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
630 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
631 {
632 start_pc = here;
633 }
634 else if (IS_MOV_SP_FP (w))
635 {
636 start_pc = here;
637 updated_fp = 1;
638 }
639 else
640 if (updated_fp)
641 {
642 /* Don't bail out yet, we may have arguments stored in
643 registers here, according to the debug info, so that
644 gdb can print the frames correctly. */
645 start_pc = look_for_args_moves (here - insn_size, media_mode);
646 break;
647 }
648 }
649 }
650
651 return start_pc;
652 }
653
654 static CORE_ADDR
655 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
656 {
657 CORE_ADDR post_prologue_pc;
658
659 /* See if we can determine the end of the prologue via the symbol table.
660 If so, then return either PC, or the PC after the prologue, whichever
661 is greater. */
662 post_prologue_pc = after_prologue (pc);
663
664 /* If after_prologue returned a useful address, then use it. Else
665 fall back on the instruction skipping code. */
666 if (post_prologue_pc != 0)
667 return max (pc, post_prologue_pc);
668 else
669 return sh64_skip_prologue_hard_way (pc);
670 }
671
672 /* Should call_function allocate stack space for a struct return? */
673 static int
674 sh64_use_struct_convention (struct type *type)
675 {
676 return (TYPE_LENGTH (type) > 8);
677 }
678
679 /* Disassemble an instruction. */
680 static int
681 gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
682 {
683 info->endian = gdbarch_byte_order (current_gdbarch);
684 return print_insn_sh (memaddr, info);
685 }
686
687 /* For vectors of 4 floating point registers. */
688 static int
689 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
690 {
691 int fp_regnum;
692
693 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
694 return fp_regnum;
695 }
696
697 /* For double precision floating point registers, i.e 2 fp regs.*/
698 static int
699 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
700 {
701 int fp_regnum;
702
703 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
704 return fp_regnum;
705 }
706
707 /* For pairs of floating point registers */
708 static int
709 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
710 {
711 int fp_regnum;
712
713 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
714 return fp_regnum;
715 }
716
717 /* *INDENT-OFF* */
718 /*
719 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
720 GDB_REGNUM BASE_REGNUM
721 r0_c 221 0
722 r1_c 222 1
723 r2_c 223 2
724 r3_c 224 3
725 r4_c 225 4
726 r5_c 226 5
727 r6_c 227 6
728 r7_c 228 7
729 r8_c 229 8
730 r9_c 230 9
731 r10_c 231 10
732 r11_c 232 11
733 r12_c 233 12
734 r13_c 234 13
735 r14_c 235 14
736 r15_c 236 15
737
738 pc_c 237 64
739 gbr_c 238 16
740 mach_c 239 17
741 macl_c 240 17
742 pr_c 241 18
743 t_c 242 19
744 fpscr_c 243 76
745 fpul_c 244 109
746
747 fr0_c 245 77
748 fr1_c 246 78
749 fr2_c 247 79
750 fr3_c 248 80
751 fr4_c 249 81
752 fr5_c 250 82
753 fr6_c 251 83
754 fr7_c 252 84
755 fr8_c 253 85
756 fr9_c 254 86
757 fr10_c 255 87
758 fr11_c 256 88
759 fr12_c 257 89
760 fr13_c 258 90
761 fr14_c 259 91
762 fr15_c 260 92
763
764 dr0_c 261 77
765 dr2_c 262 79
766 dr4_c 263 81
767 dr6_c 264 83
768 dr8_c 265 85
769 dr10_c 266 87
770 dr12_c 267 89
771 dr14_c 268 91
772
773 fv0_c 269 77
774 fv4_c 270 81
775 fv8_c 271 85
776 fv12_c 272 91
777 */
778 /* *INDENT-ON* */
779 static int
780 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
781 {
782 int base_regnum = reg_nr;
783
784 /* general register N maps to general register N */
785 if (reg_nr >= R0_C_REGNUM
786 && reg_nr <= R_LAST_C_REGNUM)
787 base_regnum = reg_nr - R0_C_REGNUM;
788
789 /* floating point register N maps to floating point register N */
790 else if (reg_nr >= FP0_C_REGNUM
791 && reg_nr <= FP_LAST_C_REGNUM)
792 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
793
794 /* double prec register N maps to base regnum for double prec register N */
795 else if (reg_nr >= DR0_C_REGNUM
796 && reg_nr <= DR_LAST_C_REGNUM)
797 base_regnum = sh64_dr_reg_base_num (gdbarch,
798 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
799
800 /* vector N maps to base regnum for vector register N */
801 else if (reg_nr >= FV0_C_REGNUM
802 && reg_nr <= FV_LAST_C_REGNUM)
803 base_regnum = sh64_fv_reg_base_num (gdbarch,
804 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
805
806 else if (reg_nr == PC_C_REGNUM)
807 base_regnum = gdbarch_pc_regnum (gdbarch);
808
809 else if (reg_nr == GBR_C_REGNUM)
810 base_regnum = 16;
811
812 else if (reg_nr == MACH_C_REGNUM
813 || reg_nr == MACL_C_REGNUM)
814 base_regnum = 17;
815
816 else if (reg_nr == PR_C_REGNUM)
817 base_regnum = PR_REGNUM;
818
819 else if (reg_nr == T_C_REGNUM)
820 base_regnum = 19;
821
822 else if (reg_nr == FPSCR_C_REGNUM)
823 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
824
825 else if (reg_nr == FPUL_C_REGNUM)
826 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
827
828 return base_regnum;
829 }
830
831 static int
832 sign_extend (int value, int bits)
833 {
834 value = value & ((1 << bits) - 1);
835 return (value & (1 << (bits - 1))
836 ? value | (~((1 << bits) - 1))
837 : value);
838 }
839
840 static void
841 sh64_analyze_prologue (struct gdbarch *gdbarch,
842 struct sh64_frame_cache *cache,
843 CORE_ADDR func_pc,
844 CORE_ADDR current_pc)
845 {
846 int reg_nr;
847 int pc;
848 int opc;
849 int insn;
850 int r0_val = 0;
851 int insn_size;
852 int gdb_register_number;
853 int register_number;
854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
855
856 cache->sp_offset = 0;
857
858 /* Loop around examining the prologue insns until we find something
859 that does not appear to be part of the prologue. But give up
860 after 20 of them, since we're getting silly then. */
861
862 pc = func_pc;
863
864 if (cache->media_mode)
865 insn_size = 4;
866 else
867 insn_size = 2;
868
869 opc = pc + (insn_size * 28);
870 if (opc > current_pc)
871 opc = current_pc;
872 for ( ; pc <= opc; pc += insn_size)
873 {
874 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
875 : pc,
876 insn_size);
877
878 if (!cache->media_mode)
879 {
880 if (IS_STS_PR (insn))
881 {
882 int next_insn = read_memory_integer (pc + insn_size, insn_size);
883 if (IS_MOV_TO_R15 (next_insn))
884 {
885 cache->saved_regs[PR_REGNUM] =
886 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
887 pc += insn_size;
888 }
889 }
890
891 else if (IS_MOV_R14 (insn))
892 cache->saved_regs[MEDIA_FP_REGNUM] =
893 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
894
895 else if (IS_MOV_R0 (insn))
896 {
897 /* Put in R0 the offset from SP at which to store some
898 registers. We are interested in this value, because it
899 will tell us where the given registers are stored within
900 the frame. */
901 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
902 }
903
904 else if (IS_ADD_SP_R0 (insn))
905 {
906 /* This instruction still prepares r0, but we don't care.
907 We already have the offset in r0_val. */
908 }
909
910 else if (IS_STS_R0 (insn))
911 {
912 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
913 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
914 r0_val -= 4;
915 }
916
917 else if (IS_MOV_R14_R0 (insn))
918 {
919 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
920 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
921 - (r0_val - 4);
922 r0_val -= 4;
923 }
924
925 else if (IS_ADD_SP (insn))
926 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
927
928 else if (IS_MOV_SP_FP (insn))
929 break;
930 }
931 else
932 {
933 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
934 cache->sp_offset -=
935 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
936
937 else if (IS_STQ_R18_R15 (insn))
938 cache->saved_regs[PR_REGNUM] =
939 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
940
941 else if (IS_STL_R18_R15 (insn))
942 cache->saved_regs[PR_REGNUM] =
943 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
944
945 else if (IS_STQ_R14_R15 (insn))
946 cache->saved_regs[MEDIA_FP_REGNUM] =
947 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
948
949 else if (IS_STL_R14_R15 (insn))
950 cache->saved_regs[MEDIA_FP_REGNUM] =
951 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
952
953 else if (IS_MOV_SP_FP_MEDIA (insn))
954 break;
955 }
956 }
957
958 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
959 cache->uses_fp = 1;
960 }
961
962 static CORE_ADDR
963 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
964 {
965 return sp & ~7;
966 }
967
968 /* Function: push_dummy_call
969 Setup the function arguments for calling a function in the inferior.
970
971 On the Renesas SH architecture, there are four registers (R4 to R7)
972 which are dedicated for passing function arguments. Up to the first
973 four arguments (depending on size) may go into these registers.
974 The rest go on the stack.
975
976 Arguments that are smaller than 4 bytes will still take up a whole
977 register or a whole 32-bit word on the stack, and will be
978 right-justified in the register or the stack word. This includes
979 chars, shorts, and small aggregate types.
980
981 Arguments that are larger than 4 bytes may be split between two or
982 more registers. If there are not enough registers free, an argument
983 may be passed partly in a register (or registers), and partly on the
984 stack. This includes doubles, long longs, and larger aggregates.
985 As far as I know, there is no upper limit to the size of aggregates
986 that will be passed in this way; in other words, the convention of
987 passing a pointer to a large aggregate instead of a copy is not used.
988
989 An exceptional case exists for struct arguments (and possibly other
990 aggregates such as arrays) if the size is larger than 4 bytes but
991 not a multiple of 4 bytes. In this case the argument is never split
992 between the registers and the stack, but instead is copied in its
993 entirety onto the stack, AND also copied into as many registers as
994 there is room for. In other words, space in registers permitting,
995 two copies of the same argument are passed in. As far as I can tell,
996 only the one on the stack is used, although that may be a function
997 of the level of compiler optimization. I suspect this is a compiler
998 bug. Arguments of these odd sizes are left-justified within the
999 word (as opposed to arguments smaller than 4 bytes, which are
1000 right-justified).
1001
1002 If the function is to return an aggregate type such as a struct, it
1003 is either returned in the normal return value register R0 (if its
1004 size is no greater than one byte), or else the caller must allocate
1005 space into which the callee will copy the return value (if the size
1006 is greater than one byte). In this case, a pointer to the return
1007 value location is passed into the callee in register R2, which does
1008 not displace any of the other arguments passed in via registers R4
1009 to R7. */
1010
1011 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1012 non-scalar (struct, union) elements (even if the elements are
1013 floats).
1014 FR0-FR11 for single precision floating point (float)
1015 DR0-DR10 for double precision floating point (double)
1016
1017 If a float is argument number 3 (for instance) and arguments number
1018 1,2, and 4 are integer, the mapping will be:
1019 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1020
1021 If a float is argument number 10 (for instance) and arguments number
1022 1 through 10 are integer, the mapping will be:
1023 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1024 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1025 I.e. there is hole in the stack.
1026
1027 Different rules apply for variable arguments functions, and for functions
1028 for which the prototype is not known. */
1029
1030 static CORE_ADDR
1031 sh64_push_dummy_call (struct gdbarch *gdbarch,
1032 struct value *function,
1033 struct regcache *regcache,
1034 CORE_ADDR bp_addr,
1035 int nargs, struct value **args,
1036 CORE_ADDR sp, int struct_return,
1037 CORE_ADDR struct_addr)
1038 {
1039 int stack_offset, stack_alloc;
1040 int int_argreg;
1041 int float_argreg;
1042 int double_argreg;
1043 int float_arg_index = 0;
1044 int double_arg_index = 0;
1045 int argnum;
1046 struct type *type;
1047 CORE_ADDR regval;
1048 char *val;
1049 char valbuf[8];
1050 char valbuf_tmp[8];
1051 int len;
1052 int argreg_size;
1053 int fp_args[12];
1054
1055 memset (fp_args, 0, sizeof (fp_args));
1056
1057 /* first force sp to a 8-byte alignment */
1058 sp = sh64_frame_align (gdbarch, sp);
1059
1060 /* The "struct return pointer" pseudo-argument has its own dedicated
1061 register */
1062
1063 if (struct_return)
1064 regcache_cooked_write_unsigned (regcache,
1065 STRUCT_RETURN_REGNUM, struct_addr);
1066
1067 /* Now make sure there's space on the stack */
1068 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1069 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1070 sp -= stack_alloc; /* make room on stack for args */
1071
1072 /* Now load as many as possible of the first arguments into
1073 registers, and push the rest onto the stack. There are 64 bytes
1074 in eight registers available. Loop thru args from first to last. */
1075
1076 int_argreg = ARG0_REGNUM;
1077 float_argreg = gdbarch_fp0_regnum (gdbarch);
1078 double_argreg = DR0_REGNUM;
1079
1080 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1081 {
1082 type = value_type (args[argnum]);
1083 len = TYPE_LENGTH (type);
1084 memset (valbuf, 0, sizeof (valbuf));
1085
1086 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1087 {
1088 argreg_size = register_size (gdbarch, int_argreg);
1089
1090 if (len < argreg_size)
1091 {
1092 /* value gets right-justified in the register or stack word */
1093 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1094 memcpy (valbuf + argreg_size - len,
1095 (char *) value_contents (args[argnum]), len);
1096 else
1097 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1098
1099 val = valbuf;
1100 }
1101 else
1102 val = (char *) value_contents (args[argnum]);
1103
1104 while (len > 0)
1105 {
1106 if (int_argreg > ARGLAST_REGNUM)
1107 {
1108 /* must go on the stack */
1109 write_memory (sp + stack_offset, (const bfd_byte *) val,
1110 argreg_size);
1111 stack_offset += 8;/*argreg_size;*/
1112 }
1113 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1114 That's because some *&^%$ things get passed on the stack
1115 AND in the registers! */
1116 if (int_argreg <= ARGLAST_REGNUM)
1117 {
1118 /* there's room in a register */
1119 regval = extract_unsigned_integer (val, argreg_size);
1120 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1121 }
1122 /* Store the value 8 bytes at a time. This means that
1123 things larger than 8 bytes may go partly in registers
1124 and partly on the stack. FIXME: argreg is incremented
1125 before we use its size. */
1126 len -= argreg_size;
1127 val += argreg_size;
1128 int_argreg++;
1129 }
1130 }
1131 else
1132 {
1133 val = (char *) value_contents (args[argnum]);
1134 if (len == 4)
1135 {
1136 /* Where is it going to be stored? */
1137 while (fp_args[float_arg_index])
1138 float_arg_index ++;
1139
1140 /* Now float_argreg points to the register where it
1141 should be stored. Are we still within the allowed
1142 register set? */
1143 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1144 {
1145 /* Goes in FR0...FR11 */
1146 regcache_cooked_write (regcache,
1147 gdbarch_fp0_regnum (gdbarch)
1148 + float_arg_index,
1149 val);
1150 fp_args[float_arg_index] = 1;
1151 /* Skip the corresponding general argument register. */
1152 int_argreg ++;
1153 }
1154 else
1155 ;
1156 /* Store it as the integers, 8 bytes at the time, if
1157 necessary spilling on the stack. */
1158
1159 }
1160 else if (len == 8)
1161 {
1162 /* Where is it going to be stored? */
1163 while (fp_args[double_arg_index])
1164 double_arg_index += 2;
1165 /* Now double_argreg points to the register
1166 where it should be stored.
1167 Are we still within the allowed register set? */
1168 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1169 {
1170 /* Goes in DR0...DR10 */
1171 /* The numbering of the DRi registers is consecutive,
1172 i.e. includes odd numbers. */
1173 int double_register_offset = double_arg_index / 2;
1174 int regnum = DR0_REGNUM + double_register_offset;
1175 regcache_cooked_write (regcache, regnum, val);
1176 fp_args[double_arg_index] = 1;
1177 fp_args[double_arg_index + 1] = 1;
1178 /* Skip the corresponding general argument register. */
1179 int_argreg ++;
1180 }
1181 else
1182 ;
1183 /* Store it as the integers, 8 bytes at the time, if
1184 necessary spilling on the stack. */
1185 }
1186 }
1187 }
1188 /* Store return address. */
1189 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1190
1191 /* Update stack pointer. */
1192 regcache_cooked_write_unsigned (regcache,
1193 gdbarch_sp_regnum (gdbarch), sp);
1194
1195 return sp;
1196 }
1197
1198 /* Find a function's return value in the appropriate registers (in
1199 regbuf), and copy it into valbuf. Extract from an array REGBUF
1200 containing the (raw) register state a function return value of type
1201 TYPE, and copy that, in virtual format, into VALBUF. */
1202 static void
1203 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1204 void *valbuf)
1205 {
1206 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1207 int len = TYPE_LENGTH (type);
1208
1209 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1210 {
1211 if (len == 4)
1212 {
1213 /* Return value stored in gdbarch_fp0_regnum */
1214 regcache_raw_read (regcache,
1215 gdbarch_fp0_regnum (gdbarch), valbuf);
1216 }
1217 else if (len == 8)
1218 {
1219 /* return value stored in DR0_REGNUM */
1220 DOUBLEST val;
1221 gdb_byte buf[8];
1222
1223 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1224
1225 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1226 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1227 buf, &val);
1228 else
1229 floatformat_to_doublest (&floatformat_ieee_double_big,
1230 buf, &val);
1231 store_typed_floating (valbuf, type, val);
1232 }
1233 }
1234 else
1235 {
1236 if (len <= 8)
1237 {
1238 int offset;
1239 char buf[8];
1240 /* Result is in register 2. If smaller than 8 bytes, it is padded
1241 at the most significant end. */
1242 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1243
1244 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1245 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1246 - len;
1247 else
1248 offset = 0;
1249 memcpy (valbuf, buf + offset, len);
1250 }
1251 else
1252 error ("bad size for return value");
1253 }
1254 }
1255
1256 /* Write into appropriate registers a function return value
1257 of type TYPE, given in virtual format.
1258 If the architecture is sh4 or sh3e, store a function's return value
1259 in the R0 general register or in the FP0 floating point register,
1260 depending on the type of the return value. In all the other cases
1261 the result is stored in r0, left-justified. */
1262
1263 static void
1264 sh64_store_return_value (struct type *type, struct regcache *regcache,
1265 const void *valbuf)
1266 {
1267 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1268 char buf[64]; /* more than enough... */
1269 int len = TYPE_LENGTH (type);
1270
1271 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1272 {
1273 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1274 for (i = 0; i < len; i += 4)
1275 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1276 regcache_raw_write (regcache, regnum++,
1277 (char *) valbuf + len - 4 - i);
1278 else
1279 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1280 }
1281 else
1282 {
1283 int return_register = DEFAULT_RETURN_REGNUM;
1284 int offset = 0;
1285
1286 if (len <= register_size (gdbarch, return_register))
1287 {
1288 /* Pad with zeros. */
1289 memset (buf, 0, register_size (gdbarch, return_register));
1290 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1291 offset = 0; /*register_size (gdbarch,
1292 return_register) - len;*/
1293 else
1294 offset = register_size (gdbarch, return_register) - len;
1295
1296 memcpy (buf + offset, valbuf, len);
1297 regcache_raw_write (regcache, return_register, buf);
1298 }
1299 else
1300 regcache_raw_write (regcache, return_register, valbuf);
1301 }
1302 }
1303
1304 static enum return_value_convention
1305 sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1306 struct type *type, struct regcache *regcache,
1307 gdb_byte *readbuf, const gdb_byte *writebuf)
1308 {
1309 if (sh64_use_struct_convention (type))
1310 return RETURN_VALUE_STRUCT_CONVENTION;
1311 if (writebuf)
1312 sh64_store_return_value (type, regcache, writebuf);
1313 else if (readbuf)
1314 sh64_extract_return_value (type, regcache, readbuf);
1315 return RETURN_VALUE_REGISTER_CONVENTION;
1316 }
1317
1318 static void
1319 sh64_show_media_regs (struct frame_info *frame)
1320 {
1321 struct gdbarch *gdbarch = get_frame_arch (frame);
1322 int i;
1323
1324 printf_filtered
1325 ("PC=%s SR=%016llx \n",
1326 paddr (get_frame_register_unsigned (frame,
1327 gdbarch_pc_regnum (gdbarch))),
1328 (long long) get_frame_register_unsigned (frame, SR_REGNUM));
1329
1330 printf_filtered
1331 ("SSR=%016llx SPC=%016llx \n",
1332 (long long) get_frame_register_unsigned (frame, SSR_REGNUM),
1333 (long long) get_frame_register_unsigned (frame, SPC_REGNUM));
1334 printf_filtered
1335 ("FPSCR=%016lx\n ",
1336 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1337
1338 for (i = 0; i < 64; i = i + 4)
1339 printf_filtered
1340 ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1341 i, i + 3,
1342 (long long) get_frame_register_unsigned (frame, i + 0),
1343 (long long) get_frame_register_unsigned (frame, i + 1),
1344 (long long) get_frame_register_unsigned (frame, i + 2),
1345 (long long) get_frame_register_unsigned (frame, i + 3));
1346
1347 printf_filtered ("\n");
1348
1349 for (i = 0; i < 64; i = i + 8)
1350 printf_filtered
1351 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1352 i, i + 7,
1353 (long) get_frame_register_unsigned
1354 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1355 (long) get_frame_register_unsigned
1356 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1357 (long) get_frame_register_unsigned
1358 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1359 (long) get_frame_register_unsigned
1360 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1361 (long) get_frame_register_unsigned
1362 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1363 (long) get_frame_register_unsigned
1364 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1365 (long) get_frame_register_unsigned
1366 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1367 (long) get_frame_register_unsigned
1368 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1369 }
1370
1371 static void
1372 sh64_show_compact_regs (struct frame_info *frame)
1373 {
1374 struct gdbarch *gdbarch = get_frame_arch (frame);
1375 int i;
1376
1377 printf_filtered
1378 ("PC=%s \n",
1379 paddr (get_frame_register_unsigned (frame, PC_C_REGNUM)));
1380
1381 printf_filtered
1382 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1383 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1384 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1385 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1386 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1387 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1388 printf_filtered
1389 ("FPSCR=%08lx FPUL=%08lx\n",
1390 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1391 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1392
1393 for (i = 0; i < 16; i = i + 4)
1394 printf_filtered
1395 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1396 i, i + 3,
1397 (long) get_frame_register_unsigned (frame, i + 0),
1398 (long) get_frame_register_unsigned (frame, i + 1),
1399 (long) get_frame_register_unsigned (frame, i + 2),
1400 (long) get_frame_register_unsigned (frame, i + 3));
1401
1402 printf_filtered ("\n");
1403
1404 for (i = 0; i < 16; i = i + 8)
1405 printf_filtered
1406 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1407 i, i + 7,
1408 (long) get_frame_register_unsigned
1409 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1410 (long) get_frame_register_unsigned
1411 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1412 (long) get_frame_register_unsigned
1413 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1414 (long) get_frame_register_unsigned
1415 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1416 (long) get_frame_register_unsigned
1417 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1418 (long) get_frame_register_unsigned
1419 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1420 (long) get_frame_register_unsigned
1421 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1422 (long) get_frame_register_unsigned
1423 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1424 }
1425
1426 /* FIXME!!! This only shows the registers for shmedia, excluding the
1427 pseudo registers. */
1428 void
1429 sh64_show_regs (struct frame_info *frame)
1430 {
1431 if (pc_is_isa32 (get_frame_pc (frame)))
1432 sh64_show_media_regs (frame);
1433 else
1434 sh64_show_compact_regs (frame);
1435 }
1436
1437 /* *INDENT-OFF* */
1438 /*
1439 SH MEDIA MODE (ISA 32)
1440 general registers (64-bit) 0-63
1441 0 r0, r1, r2, r3, r4, r5, r6, r7,
1442 64 r8, r9, r10, r11, r12, r13, r14, r15,
1443 128 r16, r17, r18, r19, r20, r21, r22, r23,
1444 192 r24, r25, r26, r27, r28, r29, r30, r31,
1445 256 r32, r33, r34, r35, r36, r37, r38, r39,
1446 320 r40, r41, r42, r43, r44, r45, r46, r47,
1447 384 r48, r49, r50, r51, r52, r53, r54, r55,
1448 448 r56, r57, r58, r59, r60, r61, r62, r63,
1449
1450 pc (64-bit) 64
1451 512 pc,
1452
1453 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1454 520 sr, ssr, spc,
1455
1456 target registers (64-bit) 68-75
1457 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1458
1459 floating point state control register (32-bit) 76
1460 608 fpscr,
1461
1462 single precision floating point registers (32-bit) 77-140
1463 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1464 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1465 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1466 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1467 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1468 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1469 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1470 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1471
1472 TOTAL SPACE FOR REGISTERS: 868 bytes
1473
1474 From here on they are all pseudo registers: no memory allocated.
1475 REGISTER_BYTE returns the register byte for the base register.
1476
1477 double precision registers (pseudo) 141-172
1478 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1479 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1480 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1481 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1482
1483 floating point pairs (pseudo) 173-204
1484 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1485 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1486 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1487 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1488
1489 floating point vectors (4 floating point regs) (pseudo) 205-220
1490 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1491 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1492
1493 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1494 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1495 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1496 pc_c,
1497 gbr_c, mach_c, macl_c, pr_c, t_c,
1498 fpscr_c, fpul_c,
1499 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1500 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1501 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1502 fv0_c, fv4_c, fv8_c, fv12_c
1503 */
1504
1505 static struct type *
1506 sh64_build_float_register_type (int high)
1507 {
1508 struct type *temp;
1509
1510 temp = create_range_type (NULL, builtin_type_int, 0, high);
1511 return create_array_type (NULL, builtin_type_float, temp);
1512 }
1513
1514 /* Return the GDB type object for the "standard" data type
1515 of data in register REG_NR. */
1516 static struct type *
1517 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1518 {
1519 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1520 && reg_nr <= FP_LAST_REGNUM)
1521 || (reg_nr >= FP0_C_REGNUM
1522 && reg_nr <= FP_LAST_C_REGNUM))
1523 return builtin_type_float;
1524 else if ((reg_nr >= DR0_REGNUM
1525 && reg_nr <= DR_LAST_REGNUM)
1526 || (reg_nr >= DR0_C_REGNUM
1527 && reg_nr <= DR_LAST_C_REGNUM))
1528 return builtin_type_double;
1529 else if (reg_nr >= FPP0_REGNUM
1530 && reg_nr <= FPP_LAST_REGNUM)
1531 return sh64_build_float_register_type (1);
1532 else if ((reg_nr >= FV0_REGNUM
1533 && reg_nr <= FV_LAST_REGNUM)
1534 ||(reg_nr >= FV0_C_REGNUM
1535 && reg_nr <= FV_LAST_C_REGNUM))
1536 return sh64_build_float_register_type (3);
1537 else if (reg_nr == FPSCR_REGNUM)
1538 return builtin_type_int;
1539 else if (reg_nr >= R0_C_REGNUM
1540 && reg_nr < FP0_C_REGNUM)
1541 return builtin_type_int;
1542 else
1543 return builtin_type_long_long;
1544 }
1545
1546 static void
1547 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1548 struct type *type, char *from, char *to)
1549 {
1550 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1551 {
1552 /* It is a no-op. */
1553 memcpy (to, from, register_size (gdbarch, regnum));
1554 return;
1555 }
1556
1557 if ((regnum >= DR0_REGNUM
1558 && regnum <= DR_LAST_REGNUM)
1559 || (regnum >= DR0_C_REGNUM
1560 && regnum <= DR_LAST_C_REGNUM))
1561 {
1562 DOUBLEST val;
1563 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1564 from, &val);
1565 store_typed_floating (to, type, val);
1566 }
1567 else
1568 error ("sh64_register_convert_to_virtual called with non DR register number");
1569 }
1570
1571 static void
1572 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1573 int regnum, const void *from, void *to)
1574 {
1575 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1576 {
1577 /* It is a no-op. */
1578 memcpy (to, from, register_size (gdbarch, regnum));
1579 return;
1580 }
1581
1582 if ((regnum >= DR0_REGNUM
1583 && regnum <= DR_LAST_REGNUM)
1584 || (regnum >= DR0_C_REGNUM
1585 && regnum <= DR_LAST_C_REGNUM))
1586 {
1587 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
1588 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1589 &val, to);
1590 }
1591 else
1592 error ("sh64_register_convert_to_raw called with non DR register number");
1593 }
1594
1595 static void
1596 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1597 int reg_nr, gdb_byte *buffer)
1598 {
1599 int base_regnum;
1600 int portion;
1601 int offset = 0;
1602 char temp_buffer[MAX_REGISTER_SIZE];
1603
1604 if (reg_nr >= DR0_REGNUM
1605 && reg_nr <= DR_LAST_REGNUM)
1606 {
1607 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1608
1609 /* Build the value in the provided buffer. */
1610 /* DR regs are double precision registers obtained by
1611 concatenating 2 single precision floating point registers. */
1612 for (portion = 0; portion < 2; portion++)
1613 regcache_raw_read (regcache, base_regnum + portion,
1614 (temp_buffer
1615 + register_size (gdbarch, base_regnum) * portion));
1616
1617 /* We must pay attention to the endianness. */
1618 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1619 register_type (gdbarch, reg_nr),
1620 temp_buffer, buffer);
1621
1622 }
1623
1624 else if (reg_nr >= FPP0_REGNUM
1625 && reg_nr <= FPP_LAST_REGNUM)
1626 {
1627 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1628
1629 /* Build the value in the provided buffer. */
1630 /* FPP regs are pairs of single precision registers obtained by
1631 concatenating 2 single precision floating point registers. */
1632 for (portion = 0; portion < 2; portion++)
1633 regcache_raw_read (regcache, base_regnum + portion,
1634 ((char *) buffer
1635 + register_size (gdbarch, base_regnum) * portion));
1636 }
1637
1638 else if (reg_nr >= FV0_REGNUM
1639 && reg_nr <= FV_LAST_REGNUM)
1640 {
1641 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1642
1643 /* Build the value in the provided buffer. */
1644 /* FV regs are vectors of single precision registers obtained by
1645 concatenating 4 single precision floating point registers. */
1646 for (portion = 0; portion < 4; portion++)
1647 regcache_raw_read (regcache, base_regnum + portion,
1648 ((char *) buffer
1649 + register_size (gdbarch, base_regnum) * portion));
1650 }
1651
1652 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1653 else if (reg_nr >= R0_C_REGNUM
1654 && reg_nr <= T_C_REGNUM)
1655 {
1656 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1657
1658 /* Build the value in the provided buffer. */
1659 regcache_raw_read (regcache, base_regnum, temp_buffer);
1660 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1661 offset = 4;
1662 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1663 }
1664
1665 else if (reg_nr >= FP0_C_REGNUM
1666 && reg_nr <= FP_LAST_C_REGNUM)
1667 {
1668 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1669
1670 /* Build the value in the provided buffer. */
1671 /* Floating point registers map 1-1 to the media fp regs,
1672 they have the same size and endianness. */
1673 regcache_raw_read (regcache, base_regnum, buffer);
1674 }
1675
1676 else if (reg_nr >= DR0_C_REGNUM
1677 && reg_nr <= DR_LAST_C_REGNUM)
1678 {
1679 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1680
1681 /* DR_C regs are double precision registers obtained by
1682 concatenating 2 single precision floating point registers. */
1683 for (portion = 0; portion < 2; portion++)
1684 regcache_raw_read (regcache, base_regnum + portion,
1685 (temp_buffer
1686 + register_size (gdbarch, base_regnum) * portion));
1687
1688 /* We must pay attention to the endianness. */
1689 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1690 register_type (gdbarch, reg_nr),
1691 temp_buffer, buffer);
1692 }
1693
1694 else if (reg_nr >= FV0_C_REGNUM
1695 && reg_nr <= FV_LAST_C_REGNUM)
1696 {
1697 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1698
1699 /* Build the value in the provided buffer. */
1700 /* FV_C regs are vectors of single precision registers obtained by
1701 concatenating 4 single precision floating point registers. */
1702 for (portion = 0; portion < 4; portion++)
1703 regcache_raw_read (regcache, base_regnum + portion,
1704 ((char *) buffer
1705 + register_size (gdbarch, base_regnum) * portion));
1706 }
1707
1708 else if (reg_nr == FPSCR_C_REGNUM)
1709 {
1710 int fpscr_base_regnum;
1711 int sr_base_regnum;
1712 unsigned int fpscr_value;
1713 unsigned int sr_value;
1714 unsigned int fpscr_c_value;
1715 unsigned int fpscr_c_part1_value;
1716 unsigned int fpscr_c_part2_value;
1717
1718 fpscr_base_regnum = FPSCR_REGNUM;
1719 sr_base_regnum = SR_REGNUM;
1720
1721 /* Build the value in the provided buffer. */
1722 /* FPSCR_C is a very weird register that contains sparse bits
1723 from the FPSCR and the SR architectural registers.
1724 Specifically: */
1725 /* *INDENT-OFF* */
1726 /*
1727 FPSRC_C bit
1728 0 Bit 0 of FPSCR
1729 1 reserved
1730 2-17 Bit 2-18 of FPSCR
1731 18-20 Bits 12,13,14 of SR
1732 21-31 reserved
1733 */
1734 /* *INDENT-ON* */
1735 /* Get FPSCR into a local buffer */
1736 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1737 /* Get value as an int. */
1738 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1739 /* Get SR into a local buffer */
1740 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1741 /* Get value as an int. */
1742 sr_value = extract_unsigned_integer (temp_buffer, 4);
1743 /* Build the new value. */
1744 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1745 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1746 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1747 /* Store that in out buffer!!! */
1748 store_unsigned_integer (buffer, 4, fpscr_c_value);
1749 /* FIXME There is surely an endianness gotcha here. */
1750 }
1751
1752 else if (reg_nr == FPUL_C_REGNUM)
1753 {
1754 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1755
1756 /* FPUL_C register is floating point register 32,
1757 same size, same endianness. */
1758 regcache_raw_read (regcache, base_regnum, buffer);
1759 }
1760 }
1761
1762 static void
1763 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1764 int reg_nr, const gdb_byte *buffer)
1765 {
1766 int base_regnum, portion;
1767 int offset;
1768 char temp_buffer[MAX_REGISTER_SIZE];
1769
1770 if (reg_nr >= DR0_REGNUM
1771 && reg_nr <= DR_LAST_REGNUM)
1772 {
1773 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1774 /* We must pay attention to the endianness. */
1775 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1776 reg_nr,
1777 buffer, temp_buffer);
1778
1779 /* Write the real regs for which this one is an alias. */
1780 for (portion = 0; portion < 2; portion++)
1781 regcache_raw_write (regcache, base_regnum + portion,
1782 (temp_buffer
1783 + register_size (gdbarch,
1784 base_regnum) * portion));
1785 }
1786
1787 else if (reg_nr >= FPP0_REGNUM
1788 && reg_nr <= FPP_LAST_REGNUM)
1789 {
1790 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1791
1792 /* Write the real regs for which this one is an alias. */
1793 for (portion = 0; portion < 2; portion++)
1794 regcache_raw_write (regcache, base_regnum + portion,
1795 ((char *) buffer
1796 + register_size (gdbarch,
1797 base_regnum) * portion));
1798 }
1799
1800 else if (reg_nr >= FV0_REGNUM
1801 && reg_nr <= FV_LAST_REGNUM)
1802 {
1803 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1804
1805 /* Write the real regs for which this one is an alias. */
1806 for (portion = 0; portion < 4; portion++)
1807 regcache_raw_write (regcache, base_regnum + portion,
1808 ((char *) buffer
1809 + register_size (gdbarch,
1810 base_regnum) * portion));
1811 }
1812
1813 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1814 register but only 4 bytes of it. */
1815 else if (reg_nr >= R0_C_REGNUM
1816 && reg_nr <= T_C_REGNUM)
1817 {
1818 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1819 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1820 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1821 offset = 4;
1822 else
1823 offset = 0;
1824 /* Let's read the value of the base register into a temporary
1825 buffer, so that overwriting the last four bytes with the new
1826 value of the pseudo will leave the upper 4 bytes unchanged. */
1827 regcache_raw_read (regcache, base_regnum, temp_buffer);
1828 /* Write as an 8 byte quantity */
1829 memcpy (temp_buffer + offset, buffer, 4);
1830 regcache_raw_write (regcache, base_regnum, temp_buffer);
1831 }
1832
1833 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1834 registers. Both are 4 bytes. */
1835 else if (reg_nr >= FP0_C_REGNUM
1836 && reg_nr <= FP_LAST_C_REGNUM)
1837 {
1838 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1839 regcache_raw_write (regcache, base_regnum, buffer);
1840 }
1841
1842 else if (reg_nr >= DR0_C_REGNUM
1843 && reg_nr <= DR_LAST_C_REGNUM)
1844 {
1845 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1846 for (portion = 0; portion < 2; portion++)
1847 {
1848 /* We must pay attention to the endianness. */
1849 sh64_register_convert_to_raw (gdbarch,
1850 register_type (gdbarch, reg_nr),
1851 reg_nr,
1852 buffer, temp_buffer);
1853
1854 regcache_raw_write (regcache, base_regnum + portion,
1855 (temp_buffer
1856 + register_size (gdbarch,
1857 base_regnum) * portion));
1858 }
1859 }
1860
1861 else if (reg_nr >= FV0_C_REGNUM
1862 && reg_nr <= FV_LAST_C_REGNUM)
1863 {
1864 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1865
1866 for (portion = 0; portion < 4; portion++)
1867 {
1868 regcache_raw_write (regcache, base_regnum + portion,
1869 ((char *) buffer
1870 + register_size (gdbarch,
1871 base_regnum) * portion));
1872 }
1873 }
1874
1875 else if (reg_nr == FPSCR_C_REGNUM)
1876 {
1877 int fpscr_base_regnum;
1878 int sr_base_regnum;
1879 unsigned int fpscr_value;
1880 unsigned int sr_value;
1881 unsigned int old_fpscr_value;
1882 unsigned int old_sr_value;
1883 unsigned int fpscr_c_value;
1884 unsigned int fpscr_mask;
1885 unsigned int sr_mask;
1886
1887 fpscr_base_regnum = FPSCR_REGNUM;
1888 sr_base_regnum = SR_REGNUM;
1889
1890 /* FPSCR_C is a very weird register that contains sparse bits
1891 from the FPSCR and the SR architectural registers.
1892 Specifically: */
1893 /* *INDENT-OFF* */
1894 /*
1895 FPSRC_C bit
1896 0 Bit 0 of FPSCR
1897 1 reserved
1898 2-17 Bit 2-18 of FPSCR
1899 18-20 Bits 12,13,14 of SR
1900 21-31 reserved
1901 */
1902 /* *INDENT-ON* */
1903 /* Get value as an int. */
1904 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1905
1906 /* Build the new values. */
1907 fpscr_mask = 0x0003fffd;
1908 sr_mask = 0x001c0000;
1909
1910 fpscr_value = fpscr_c_value & fpscr_mask;
1911 sr_value = (fpscr_value & sr_mask) >> 6;
1912
1913 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1914 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1915 old_fpscr_value &= 0xfffc0002;
1916 fpscr_value |= old_fpscr_value;
1917 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1918 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1919
1920 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1921 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1922 old_sr_value &= 0xffff8fff;
1923 sr_value |= old_sr_value;
1924 store_unsigned_integer (temp_buffer, 4, sr_value);
1925 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1926 }
1927
1928 else if (reg_nr == FPUL_C_REGNUM)
1929 {
1930 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1931 regcache_raw_write (regcache, base_regnum, buffer);
1932 }
1933 }
1934
1935 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1936 shmedia REGISTERS. */
1937 /* Control registers, compact mode. */
1938 static void
1939 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1940 int cr_c_regnum)
1941 {
1942 switch (cr_c_regnum)
1943 {
1944 case PC_C_REGNUM:
1945 fprintf_filtered (file, "pc_c\t0x%08x\n",
1946 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1947 break;
1948 case GBR_C_REGNUM:
1949 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1950 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1951 break;
1952 case MACH_C_REGNUM:
1953 fprintf_filtered (file, "mach_c\t0x%08x\n",
1954 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1955 break;
1956 case MACL_C_REGNUM:
1957 fprintf_filtered (file, "macl_c\t0x%08x\n",
1958 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1959 break;
1960 case PR_C_REGNUM:
1961 fprintf_filtered (file, "pr_c\t0x%08x\n",
1962 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1963 break;
1964 case T_C_REGNUM:
1965 fprintf_filtered (file, "t_c\t0x%08x\n",
1966 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1967 break;
1968 case FPSCR_C_REGNUM:
1969 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1970 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1971 break;
1972 case FPUL_C_REGNUM:
1973 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1974 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1975 break;
1976 }
1977 }
1978
1979 static void
1980 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1981 struct frame_info *frame, int regnum)
1982 { /* do values for FP (float) regs */
1983 unsigned char *raw_buffer;
1984 double flt; /* double extracted from raw hex data */
1985 int inv;
1986 int j;
1987
1988 /* Allocate space for the float. */
1989 raw_buffer = (unsigned char *) alloca
1990 (register_size (gdbarch,
1991 gdbarch_fp0_regnum
1992 (gdbarch)));
1993
1994 /* Get the data in raw format. */
1995 if (!frame_register_read (frame, regnum, raw_buffer))
1996 error ("can't read register %d (%s)",
1997 regnum, gdbarch_register_name (gdbarch, regnum));
1998
1999 /* Get the register as a number */
2000 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
2001
2002 /* Print the name and some spaces. */
2003 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2004 print_spaces_filtered (15 - strlen (gdbarch_register_name
2005 (gdbarch, regnum)), file);
2006
2007 /* Print the value. */
2008 if (inv)
2009 fprintf_filtered (file, "<invalid float>");
2010 else
2011 fprintf_filtered (file, "%-10.9g", flt);
2012
2013 /* Print the fp register as hex. */
2014 fprintf_filtered (file, "\t(raw 0x");
2015 for (j = 0; j < register_size (gdbarch, regnum); j++)
2016 {
2017 int idx = gdbarch_byte_order (gdbarch)
2018 == BFD_ENDIAN_BIG ? j : register_size
2019 (gdbarch, regnum) - 1 - j;
2020 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2021 }
2022 fprintf_filtered (file, ")");
2023 fprintf_filtered (file, "\n");
2024 }
2025
2026 static void
2027 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2028 struct frame_info *frame, int regnum)
2029 {
2030 /* All the sh64-compact mode registers are pseudo registers. */
2031
2032 if (regnum < gdbarch_num_regs (gdbarch)
2033 || regnum >= gdbarch_num_regs (gdbarch)
2034 + NUM_PSEUDO_REGS_SH_MEDIA
2035 + NUM_PSEUDO_REGS_SH_COMPACT)
2036 internal_error (__FILE__, __LINE__,
2037 _("Invalid pseudo register number %d\n"), regnum);
2038
2039 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2040 {
2041 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
2042 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2043 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2044 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2045 }
2046
2047 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2048 {
2049 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2050 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2051 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2052 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2053 }
2054
2055 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2056 {
2057 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
2058 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2059 regnum - FV0_REGNUM,
2060 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2061 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2062 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2063 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2064 }
2065
2066 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2067 {
2068 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2069 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2070 regnum - FV0_C_REGNUM,
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2072 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2073 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2074 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2075 }
2076
2077 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2078 {
2079 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2080 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2082 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2083 }
2084
2085 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2086 {
2087 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2088 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2089 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2090 }
2091 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2092 /* This should work also for pseudoregs. */
2093 sh64_do_fp_register (gdbarch, file, frame, regnum);
2094 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2095 sh64_do_cr_c_register_info (file, frame, regnum);
2096 }
2097
2098 static void
2099 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2100 struct frame_info *frame, int regnum)
2101 {
2102 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2103
2104 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2105 print_spaces_filtered (15 - strlen (gdbarch_register_name
2106 (gdbarch, regnum)), file);
2107
2108 /* Get the data in raw format. */
2109 if (!frame_register_read (frame, regnum, raw_buffer))
2110 fprintf_filtered (file, "*value not available*\n");
2111
2112 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2113 file, 'x', 1, 0, Val_pretty_default, current_language);
2114 fprintf_filtered (file, "\t");
2115 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2116 file, 0, 1, 0, Val_pretty_default, current_language);
2117 fprintf_filtered (file, "\n");
2118 }
2119
2120 static void
2121 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2122 struct frame_info *frame, int regnum)
2123 {
2124 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2125 + gdbarch_num_pseudo_regs (gdbarch))
2126 internal_error (__FILE__, __LINE__,
2127 _("Invalid register number %d\n"), regnum);
2128
2129 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2130 {
2131 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2132 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2133 else
2134 sh64_do_register (gdbarch, file, frame, regnum);
2135 }
2136
2137 else if (regnum < gdbarch_num_regs (gdbarch)
2138 + gdbarch_num_pseudo_regs (gdbarch))
2139 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2140 }
2141
2142 static void
2143 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2144 struct frame_info *frame, int regnum,
2145 int fpregs)
2146 {
2147 if (regnum != -1) /* do one specified register */
2148 {
2149 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2150 error ("Not a valid register for the current processor type");
2151
2152 sh64_print_register (gdbarch, file, frame, regnum);
2153 }
2154 else
2155 /* do all (or most) registers */
2156 {
2157 regnum = 0;
2158 while (regnum < gdbarch_num_regs (gdbarch))
2159 {
2160 /* If the register name is empty, it is undefined for this
2161 processor, so don't display anything. */
2162 if (gdbarch_register_name (gdbarch, regnum) == NULL
2163 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2164 {
2165 regnum++;
2166 continue;
2167 }
2168
2169 if (TYPE_CODE (register_type (gdbarch, regnum))
2170 == TYPE_CODE_FLT)
2171 {
2172 if (fpregs)
2173 {
2174 /* true for "INFO ALL-REGISTERS" command */
2175 sh64_do_fp_register (gdbarch, file, frame, regnum);
2176 regnum ++;
2177 }
2178 else
2179 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2180 /* skip FP regs */
2181 }
2182 else
2183 {
2184 sh64_do_register (gdbarch, file, frame, regnum);
2185 regnum++;
2186 }
2187 }
2188
2189 if (fpregs)
2190 while (regnum < gdbarch_num_regs (gdbarch)
2191 + gdbarch_num_pseudo_regs (gdbarch))
2192 {
2193 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2194 regnum++;
2195 }
2196 }
2197 }
2198
2199 static void
2200 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2201 struct ui_file *file,
2202 struct frame_info *frame, int regnum,
2203 int fpregs)
2204 {
2205 if (regnum != -1) /* do one specified register */
2206 {
2207 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2208 error ("Not a valid register for the current processor type");
2209
2210 if (regnum >= 0 && regnum < R0_C_REGNUM)
2211 error ("Not a valid register for the current processor mode.");
2212
2213 sh64_print_register (gdbarch, file, frame, regnum);
2214 }
2215 else
2216 /* do all compact registers */
2217 {
2218 regnum = R0_C_REGNUM;
2219 while (regnum < gdbarch_num_regs (gdbarch)
2220 + gdbarch_num_pseudo_regs (gdbarch))
2221 {
2222 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2223 regnum++;
2224 }
2225 }
2226 }
2227
2228 static void
2229 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2230 struct frame_info *frame, int regnum, int fpregs)
2231 {
2232 if (pc_is_isa32 (get_frame_pc (frame)))
2233 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2234 else
2235 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2236 }
2237
2238 static struct sh64_frame_cache *
2239 sh64_alloc_frame_cache (void)
2240 {
2241 struct sh64_frame_cache *cache;
2242 int i;
2243
2244 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2245
2246 /* Base address. */
2247 cache->base = 0;
2248 cache->saved_sp = 0;
2249 cache->sp_offset = 0;
2250 cache->pc = 0;
2251
2252 /* Frameless until proven otherwise. */
2253 cache->uses_fp = 0;
2254
2255 /* Saved registers. We initialize these to -1 since zero is a valid
2256 offset (that's where fp is supposed to be stored). */
2257 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2258 {
2259 cache->saved_regs[i] = -1;
2260 }
2261
2262 return cache;
2263 }
2264
2265 static struct sh64_frame_cache *
2266 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2267 {
2268 struct gdbarch *gdbarch;
2269 struct sh64_frame_cache *cache;
2270 CORE_ADDR current_pc;
2271 int i;
2272
2273 if (*this_cache)
2274 return *this_cache;
2275
2276 gdbarch = get_frame_arch (this_frame);
2277 cache = sh64_alloc_frame_cache ();
2278 *this_cache = cache;
2279
2280 current_pc = get_frame_pc (this_frame);
2281 cache->media_mode = pc_is_isa32 (current_pc);
2282
2283 /* In principle, for normal frames, fp holds the frame pointer,
2284 which holds the base address for the current stack frame.
2285 However, for functions that don't need it, the frame pointer is
2286 optional. For these "frameless" functions the frame pointer is
2287 actually the frame pointer of the calling frame. */
2288 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2289 if (cache->base == 0)
2290 return cache;
2291
2292 cache->pc = get_frame_func (this_frame);
2293 if (cache->pc != 0)
2294 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2295
2296 if (!cache->uses_fp)
2297 {
2298 /* We didn't find a valid frame, which means that CACHE->base
2299 currently holds the frame pointer for our calling frame. If
2300 we're at the start of a function, or somewhere half-way its
2301 prologue, the function's frame probably hasn't been fully
2302 setup yet. Try to reconstruct the base address for the stack
2303 frame by looking at the stack pointer. For truly "frameless"
2304 functions this might work too. */
2305 cache->base = get_frame_register_unsigned
2306 (this_frame, gdbarch_sp_regnum (gdbarch));
2307 }
2308
2309 /* Now that we have the base address for the stack frame we can
2310 calculate the value of sp in the calling frame. */
2311 cache->saved_sp = cache->base + cache->sp_offset;
2312
2313 /* Adjust all the saved registers such that they contain addresses
2314 instead of offsets. */
2315 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2316 if (cache->saved_regs[i] != -1)
2317 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2318
2319 return cache;
2320 }
2321
2322 static struct value *
2323 sh64_frame_prev_register (struct frame_info *this_frame,
2324 void **this_cache, int regnum)
2325 {
2326 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2327 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2328
2329 gdb_assert (regnum >= 0);
2330
2331 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2332 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2333
2334 /* The PC of the previous frame is stored in the PR register of
2335 the current frame. Frob regnum so that we pull the value from
2336 the correct place. */
2337 if (regnum == gdbarch_pc_regnum (gdbarch))
2338 regnum = PR_REGNUM;
2339
2340 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2341 {
2342 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2343 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2344 {
2345 CORE_ADDR val;
2346 val = read_memory_unsigned_integer (cache->saved_regs[regnum], 4);
2347 return frame_unwind_got_constant (this_frame, regnum, val);
2348 }
2349
2350 return frame_unwind_got_memory (this_frame, regnum,
2351 cache->saved_regs[regnum]);
2352 }
2353
2354 return frame_unwind_got_register (this_frame, regnum, regnum);
2355 }
2356
2357 static void
2358 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2359 struct frame_id *this_id)
2360 {
2361 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2362
2363 /* This marks the outermost frame. */
2364 if (cache->base == 0)
2365 return;
2366
2367 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2368 }
2369
2370 static const struct frame_unwind sh64_frame_unwind = {
2371 NORMAL_FRAME,
2372 sh64_frame_this_id,
2373 sh64_frame_prev_register,
2374 NULL,
2375 default_frame_sniffer
2376 };
2377
2378 static CORE_ADDR
2379 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2380 {
2381 return frame_unwind_register_unsigned (next_frame,
2382 gdbarch_sp_regnum (gdbarch));
2383 }
2384
2385 static CORE_ADDR
2386 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2387 {
2388 return frame_unwind_register_unsigned (next_frame,
2389 gdbarch_pc_regnum (gdbarch));
2390 }
2391
2392 static struct frame_id
2393 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2394 {
2395 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2396 gdbarch_sp_regnum (gdbarch));
2397 return frame_id_build (sp, get_frame_pc (this_frame));
2398 }
2399
2400 static CORE_ADDR
2401 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2402 {
2403 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2404
2405 return cache->base;
2406 }
2407
2408 static const struct frame_base sh64_frame_base = {
2409 &sh64_frame_unwind,
2410 sh64_frame_base_address,
2411 sh64_frame_base_address,
2412 sh64_frame_base_address
2413 };
2414
2415
2416 struct gdbarch *
2417 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2418 {
2419 struct gdbarch *gdbarch;
2420 struct gdbarch_tdep *tdep;
2421
2422 /* If there is already a candidate, use it. */
2423 arches = gdbarch_list_lookup_by_info (arches, &info);
2424 if (arches != NULL)
2425 return arches->gdbarch;
2426
2427 /* None found, create a new architecture from the information
2428 provided. */
2429 tdep = XMALLOC (struct gdbarch_tdep);
2430 gdbarch = gdbarch_alloc (&info, tdep);
2431
2432 /* Determine the ABI */
2433 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2434 {
2435 /* If the ABI is the 64-bit one, it can only be sh-media. */
2436 tdep->sh_abi = SH_ABI_64;
2437 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2438 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2439 }
2440 else
2441 {
2442 /* If the ABI is the 32-bit one it could be either media or
2443 compact. */
2444 tdep->sh_abi = SH_ABI_32;
2445 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2446 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2447 }
2448
2449 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2450 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2451 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2452 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2453 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2454 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2455 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2456
2457 /* The number of real registers is the same whether we are in
2458 ISA16(compact) or ISA32(media). */
2459 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2460 set_gdbarch_sp_regnum (gdbarch, 15);
2461 set_gdbarch_pc_regnum (gdbarch, 64);
2462 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2463 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2464 + NUM_PSEUDO_REGS_SH_COMPACT);
2465
2466 set_gdbarch_register_name (gdbarch, sh64_register_name);
2467 set_gdbarch_register_type (gdbarch, sh64_register_type);
2468
2469 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2470 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2471
2472 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2473
2474 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
2475 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2476
2477 set_gdbarch_return_value (gdbarch, sh64_return_value);
2478
2479 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2480 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2481
2482 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2483
2484 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2485
2486 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2487 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2488 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2489 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2490 frame_base_set_default (gdbarch, &sh64_frame_base);
2491
2492 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2493
2494 set_gdbarch_elf_make_msymbol_special (gdbarch,
2495 sh64_elf_make_msymbol_special);
2496
2497 /* Hook in ABI-specific overrides, if they have been registered. */
2498 gdbarch_init_osabi (info, gdbarch);
2499
2500 dwarf2_append_unwinders (gdbarch);
2501 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2502
2503 return gdbarch;
2504 }
This page took 0.085342 seconds and 4 git commands to generate.