gdb
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /*
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
24 */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "value.h"
36 #include "dis-asm.h"
37 #include "inferior.h"
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43 #include "valprint.h"
44
45 #include "elf-bfd.h"
46
47 /* sh flags */
48 #include "elf/sh.h"
49 /* registers numbers shared with the simulator */
50 #include "gdb/sim-sh.h"
51 #include "language.h"
52
53 /* Information that is dependent on the processor variant. */
54 enum sh_abi
55 {
56 SH_ABI_UNKNOWN,
57 SH_ABI_32,
58 SH_ABI_64
59 };
60
61 struct gdbarch_tdep
62 {
63 enum sh_abi sh_abi;
64 };
65
66 struct sh64_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 LONGEST sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 int media_mode;
77
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
80 CORE_ADDR saved_sp;
81 };
82
83 /* Registers of SH5 */
84 enum
85 {
86 R0_REGNUM = 0,
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
89 ARG0_REGNUM = 2,
90 ARGLAST_REGNUM = 9,
91 FLOAT_ARGLAST_REGNUM = 11,
92 MEDIA_FP_REGNUM = 14,
93 PR_REGNUM = 18,
94 SR_REGNUM = 65,
95 DR0_REGNUM = 141,
96 DR_LAST_REGNUM = 172,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
98 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
99 point register. Unfortunately on the sh5, the floating point
100 registers are called FR, and the floating point pairs are called FP. */
101 FPP0_REGNUM = 173,
102 FPP_LAST_REGNUM = 204,
103 FV0_REGNUM = 205,
104 FV_LAST_REGNUM = 220,
105 R0_C_REGNUM = 221,
106 R_LAST_C_REGNUM = 236,
107 PC_C_REGNUM = 237,
108 GBR_C_REGNUM = 238,
109 MACH_C_REGNUM = 239,
110 MACL_C_REGNUM = 240,
111 PR_C_REGNUM = 241,
112 T_C_REGNUM = 242,
113 FPSCR_C_REGNUM = 243,
114 FPUL_C_REGNUM = 244,
115 FP0_C_REGNUM = 245,
116 FP_LAST_C_REGNUM = 260,
117 DR0_C_REGNUM = 261,
118 DR_LAST_C_REGNUM = 268,
119 FV0_C_REGNUM = 269,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
126 };
127
128 static const char *
129 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
130 {
131 static char *register_names[] =
132 {
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143
144 /* pc (64-bit) 64 */
145 "pc",
146
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
148 "sr", "ssr", "spc",
149
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
152
153 /* floating point state control register (32-bit) 76 */
154 "fpscr",
155
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
165
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
171
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
177
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
181
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
185 "pc_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
187 "fpscr_c", "fpul_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 32-bit function
212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213
214 #define MSYMBOL_IS_SPECIAL(msym) \
215 MSYMBOL_TARGET_FLAG_1 (msym)
216
217 static void
218 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219 {
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
225 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
226 SYMBOL_VALUE_ADDRESS (msym) |= 1;
227 }
228 }
229
230 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232 #define IS_ISA32_ADDR(addr) ((addr) & 1)
233 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236 static int
237 pc_is_isa32 (bfd_vma memaddr)
238 {
239 struct minimal_symbol *sym;
240
241 /* If bit 0 of the address is set, assume this is a
242 ISA32 (shmedia) address. */
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
250 if (sym)
251 return MSYMBOL_IS_SPECIAL (sym);
252 else
253 return 0;
254 }
255
256 static const unsigned char *
257 sh64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
258 {
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263
264 /* The BRK instruction for shcompact is
265 00000000 00111011
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0*/
268
269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
270 {
271 if (pc_is_isa32 (*pcptr))
272 {
273 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
274 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
275 *lenptr = sizeof (big_breakpoint_media);
276 return big_breakpoint_media;
277 }
278 else
279 {
280 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
281 *lenptr = sizeof (big_breakpoint_compact);
282 return big_breakpoint_compact;
283 }
284 }
285 else
286 {
287 if (pc_is_isa32 (*pcptr))
288 {
289 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
290 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
291 *lenptr = sizeof (little_breakpoint_media);
292 return little_breakpoint_media;
293 }
294 else
295 {
296 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
297 *lenptr = sizeof (little_breakpoint_compact);
298 return little_breakpoint_compact;
299 }
300 }
301 }
302
303 /* Prologue looks like
304 [mov.l <regs>,@-r15]...
305 [sts.l pr,@-r15]
306 [mov.l r14,@-r15]
307 [mov r15,r14]
308
309 Actually it can be more complicated than this. For instance, with
310 newer gcc's:
311
312 mov.l r14,@-r15
313 add #-12,r15
314 mov r15,r14
315 mov r4,r1
316 mov r5,r2
317 mov.l r6,@(4,r14)
318 mov.l r7,@(8,r14)
319 mov.b r1,@r14
320 mov r14,r1
321 mov r14,r1
322 add #2,r1
323 mov.w r2,@r1
324
325 */
326
327 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
328 with l=1 and n = 18 0110101111110001010010100aaa0000 */
329 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
330
331 /* STS.L PR,@-r0 0100000000100010
332 r0-4-->r0, PR-->(r0) */
333 #define IS_STS_R0(x) ((x) == 0x4022)
334
335 /* STS PR, Rm 0000mmmm00101010
336 PR-->Rm */
337 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
338
339 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
340 Rm-->(dispx4+r15) */
341 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
342
343 /* MOV.L R14,@(disp,r15) 000111111110dddd
344 R14-->(dispx4+r15) */
345 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
346
347 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
348 R18-->(dispx8+R14) */
349 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
350
351 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
352 R18-->(dispx8+R15) */
353 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
354
355 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
356 R18-->(dispx4+R15) */
357 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
358
359 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
360 R14-->(dispx8+R15) */
361 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
362
363 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx4+R15) */
365 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
366
367 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
368 R15 + imm --> R15 */
369 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
370
371 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
372 R15 + imm --> R15 */
373 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
374
375 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
376 R15 + R63 --> R14 */
377 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
378
379 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
380 R15 + R63 --> R14 */
381 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
382
383 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
384
385 /* MOV #imm, R0 1110 0000 ssss ssss
386 #imm-->R0 */
387 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
388
389 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
390 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
391
392 /* ADD r15,r0 0011 0000 1111 1100
393 r15+r0-->r0 */
394 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
395
396 /* MOV.L R14 @-R0 0010 0000 1110 0110
397 R14-->(R0-4), R0-4-->R0 */
398 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
399
400 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
401 where Rm is one of r2-r9 which are the argument registers. */
402 /* FIXME: Recognize the float and double register moves too! */
403 #define IS_MEDIA_IND_ARG_MOV(x) \
404 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
405
406 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
407 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
408 where Rm is one of r2-r9 which are the argument registers. */
409 #define IS_MEDIA_ARG_MOV(x) \
410 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
411 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
412
413 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
414 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
415 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
416 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
417 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
418 #define IS_MEDIA_MOV_TO_R14(x) \
419 ((((x) & 0xfffffc0f) == 0xa0e00000) \
420 || (((x) & 0xfffffc0f) == 0xa4e00000) \
421 || (((x) & 0xfffffc0f) == 0xa8e00000) \
422 || (((x) & 0xfffffc0f) == 0xb4e00000) \
423 || (((x) & 0xfffffc0f) == 0xbce00000))
424
425 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
426 where Rm is r2-r9 */
427 #define IS_COMPACT_IND_ARG_MOV(x) \
428 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
429
430 /* compact direct arg move!
431 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
432 #define IS_COMPACT_ARG_MOV(x) \
433 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
434
435 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
436 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
437 #define IS_COMPACT_MOV_TO_R14(x) \
438 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
439
440 #define IS_JSR_R0(x) ((x) == 0x400b)
441 #define IS_NOP(x) ((x) == 0x0009)
442
443
444 /* MOV r15,r14 0110111011110011
445 r15-->r14 */
446 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
447
448 /* ADD #imm,r15 01111111iiiiiiii
449 r15+imm-->r15 */
450 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
451
452 /* Skip any prologue before the guts of a function */
453
454 /* Skip the prologue using the debug information. If this fails we'll
455 fall back on the 'guess' method below. */
456 static CORE_ADDR
457 after_prologue (CORE_ADDR pc)
458 {
459 struct symtab_and_line sal;
460 CORE_ADDR func_addr, func_end;
461
462 /* If we can not find the symbol in the partial symbol table, then
463 there is no hope we can determine the function's start address
464 with this code. */
465 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
466 return 0;
467
468
469 /* Get the line associated with FUNC_ADDR. */
470 sal = find_pc_line (func_addr, 0);
471
472 /* There are only two cases to consider. First, the end of the source line
473 is within the function bounds. In that case we return the end of the
474 source line. Second is the end of the source line extends beyond the
475 bounds of the current function. We need to use the slow code to
476 examine instructions in that case. */
477 if (sal.end < func_end)
478 return sal.end;
479 else
480 return 0;
481 }
482
483 static CORE_ADDR
484 look_for_args_moves (struct gdbarch *gdbarch,
485 CORE_ADDR start_pc, int media_mode)
486 {
487 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
488 CORE_ADDR here, end;
489 int w;
490 int insn_size = (media_mode ? 4 : 2);
491
492 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
493 {
494 if (media_mode)
495 {
496 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
497 insn_size, byte_order);
498 here += insn_size;
499 if (IS_MEDIA_IND_ARG_MOV (w))
500 {
501 /* This must be followed by a store to r14, so the argument
502 is where the debug info says it is. This can happen after
503 the SP has been saved, unfortunately. */
504
505 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
506 insn_size, byte_order);
507 here += insn_size;
508 if (IS_MEDIA_MOV_TO_R14 (next_insn))
509 start_pc = here;
510 }
511 else if (IS_MEDIA_ARG_MOV (w))
512 {
513 /* These instructions store directly the argument in r14. */
514 start_pc = here;
515 }
516 else
517 break;
518 }
519 else
520 {
521 w = read_memory_integer (here, insn_size, byte_order);
522 w = w & 0xffff;
523 here += insn_size;
524 if (IS_COMPACT_IND_ARG_MOV (w))
525 {
526 /* This must be followed by a store to r14, so the argument
527 is where the debug info says it is. This can happen after
528 the SP has been saved, unfortunately. */
529
530 int next_insn = 0xffff & read_memory_integer (here, insn_size,
531 byte_order);
532 here += insn_size;
533 if (IS_COMPACT_MOV_TO_R14 (next_insn))
534 start_pc = here;
535 }
536 else if (IS_COMPACT_ARG_MOV (w))
537 {
538 /* These instructions store directly the argument in r14. */
539 start_pc = here;
540 }
541 else if (IS_MOVL_R0 (w))
542 {
543 /* There is a function that gcc calls to get the arguments
544 passed correctly to the function. Only after this
545 function call the arguments will be found at the place
546 where they are supposed to be. This happens in case the
547 argument has to be stored into a 64-bit register (for
548 instance doubles, long longs). SHcompact doesn't have
549 access to the full 64-bits, so we store the register in
550 stack slot and store the address of the stack slot in
551 the register, then do a call through a wrapper that
552 loads the memory value into the register. A SHcompact
553 callee calls an argument decoder
554 (GCC_shcompact_incoming_args) that stores the 64-bit
555 value in a stack slot and stores the address of the
556 stack slot in the register. GCC thinks the argument is
557 just passed by transparent reference, but this is only
558 true after the argument decoder is called. Such a call
559 needs to be considered part of the prologue. */
560
561 /* This must be followed by a JSR @r0 instruction and by
562 a NOP instruction. After these, the prologue is over! */
563
564 int next_insn = 0xffff & read_memory_integer (here, insn_size,
565 byte_order);
566 here += insn_size;
567 if (IS_JSR_R0 (next_insn))
568 {
569 next_insn = 0xffff & read_memory_integer (here, insn_size,
570 byte_order);
571 here += insn_size;
572
573 if (IS_NOP (next_insn))
574 start_pc = here;
575 }
576 }
577 else
578 break;
579 }
580 }
581
582 return start_pc;
583 }
584
585 static CORE_ADDR
586 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
587 {
588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
589 CORE_ADDR here, end;
590 int updated_fp = 0;
591 int insn_size = 4;
592 int media_mode = 1;
593
594 if (!start_pc)
595 return 0;
596
597 if (pc_is_isa32 (start_pc) == 0)
598 {
599 insn_size = 2;
600 media_mode = 0;
601 }
602
603 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
604 {
605
606 if (media_mode)
607 {
608 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
609 insn_size, byte_order);
610 here += insn_size;
611 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
612 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
613 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
614 {
615 start_pc = here;
616 }
617 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
618 {
619 start_pc = here;
620 updated_fp = 1;
621 }
622 else
623 if (updated_fp)
624 {
625 /* Don't bail out yet, we may have arguments stored in
626 registers here, according to the debug info, so that
627 gdb can print the frames correctly. */
628 start_pc = look_for_args_moves (gdbarch,
629 here - insn_size, media_mode);
630 break;
631 }
632 }
633 else
634 {
635 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
636 here += insn_size;
637
638 if (IS_STS_R0 (w) || IS_STS_PR (w)
639 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
640 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
641 {
642 start_pc = here;
643 }
644 else if (IS_MOV_SP_FP (w))
645 {
646 start_pc = here;
647 updated_fp = 1;
648 }
649 else
650 if (updated_fp)
651 {
652 /* Don't bail out yet, we may have arguments stored in
653 registers here, according to the debug info, so that
654 gdb can print the frames correctly. */
655 start_pc = look_for_args_moves (gdbarch,
656 here - insn_size, media_mode);
657 break;
658 }
659 }
660 }
661
662 return start_pc;
663 }
664
665 static CORE_ADDR
666 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
667 {
668 CORE_ADDR post_prologue_pc;
669
670 /* See if we can determine the end of the prologue via the symbol table.
671 If so, then return either PC, or the PC after the prologue, whichever
672 is greater. */
673 post_prologue_pc = after_prologue (pc);
674
675 /* If after_prologue returned a useful address, then use it. Else
676 fall back on the instruction skipping code. */
677 if (post_prologue_pc != 0)
678 return max (pc, post_prologue_pc);
679 else
680 return sh64_skip_prologue_hard_way (gdbarch, pc);
681 }
682
683 /* Should call_function allocate stack space for a struct return? */
684 static int
685 sh64_use_struct_convention (struct type *type)
686 {
687 return (TYPE_LENGTH (type) > 8);
688 }
689
690 /* For vectors of 4 floating point registers. */
691 static int
692 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
693 {
694 int fp_regnum;
695
696 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
697 return fp_regnum;
698 }
699
700 /* For double precision floating point registers, i.e 2 fp regs.*/
701 static int
702 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
703 {
704 int fp_regnum;
705
706 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
707 return fp_regnum;
708 }
709
710 /* For pairs of floating point registers */
711 static int
712 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
713 {
714 int fp_regnum;
715
716 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
717 return fp_regnum;
718 }
719
720 /* *INDENT-OFF* */
721 /*
722 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
723 GDB_REGNUM BASE_REGNUM
724 r0_c 221 0
725 r1_c 222 1
726 r2_c 223 2
727 r3_c 224 3
728 r4_c 225 4
729 r5_c 226 5
730 r6_c 227 6
731 r7_c 228 7
732 r8_c 229 8
733 r9_c 230 9
734 r10_c 231 10
735 r11_c 232 11
736 r12_c 233 12
737 r13_c 234 13
738 r14_c 235 14
739 r15_c 236 15
740
741 pc_c 237 64
742 gbr_c 238 16
743 mach_c 239 17
744 macl_c 240 17
745 pr_c 241 18
746 t_c 242 19
747 fpscr_c 243 76
748 fpul_c 244 109
749
750 fr0_c 245 77
751 fr1_c 246 78
752 fr2_c 247 79
753 fr3_c 248 80
754 fr4_c 249 81
755 fr5_c 250 82
756 fr6_c 251 83
757 fr7_c 252 84
758 fr8_c 253 85
759 fr9_c 254 86
760 fr10_c 255 87
761 fr11_c 256 88
762 fr12_c 257 89
763 fr13_c 258 90
764 fr14_c 259 91
765 fr15_c 260 92
766
767 dr0_c 261 77
768 dr2_c 262 79
769 dr4_c 263 81
770 dr6_c 264 83
771 dr8_c 265 85
772 dr10_c 266 87
773 dr12_c 267 89
774 dr14_c 268 91
775
776 fv0_c 269 77
777 fv4_c 270 81
778 fv8_c 271 85
779 fv12_c 272 91
780 */
781 /* *INDENT-ON* */
782 static int
783 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
784 {
785 int base_regnum = reg_nr;
786
787 /* general register N maps to general register N */
788 if (reg_nr >= R0_C_REGNUM
789 && reg_nr <= R_LAST_C_REGNUM)
790 base_regnum = reg_nr - R0_C_REGNUM;
791
792 /* floating point register N maps to floating point register N */
793 else if (reg_nr >= FP0_C_REGNUM
794 && reg_nr <= FP_LAST_C_REGNUM)
795 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
796
797 /* double prec register N maps to base regnum for double prec register N */
798 else if (reg_nr >= DR0_C_REGNUM
799 && reg_nr <= DR_LAST_C_REGNUM)
800 base_regnum = sh64_dr_reg_base_num (gdbarch,
801 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
802
803 /* vector N maps to base regnum for vector register N */
804 else if (reg_nr >= FV0_C_REGNUM
805 && reg_nr <= FV_LAST_C_REGNUM)
806 base_regnum = sh64_fv_reg_base_num (gdbarch,
807 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
808
809 else if (reg_nr == PC_C_REGNUM)
810 base_regnum = gdbarch_pc_regnum (gdbarch);
811
812 else if (reg_nr == GBR_C_REGNUM)
813 base_regnum = 16;
814
815 else if (reg_nr == MACH_C_REGNUM
816 || reg_nr == MACL_C_REGNUM)
817 base_regnum = 17;
818
819 else if (reg_nr == PR_C_REGNUM)
820 base_regnum = PR_REGNUM;
821
822 else if (reg_nr == T_C_REGNUM)
823 base_regnum = 19;
824
825 else if (reg_nr == FPSCR_C_REGNUM)
826 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
827
828 else if (reg_nr == FPUL_C_REGNUM)
829 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
830
831 return base_regnum;
832 }
833
834 static int
835 sign_extend (int value, int bits)
836 {
837 value = value & ((1 << bits) - 1);
838 return (value & (1 << (bits - 1))
839 ? value | (~((1 << bits) - 1))
840 : value);
841 }
842
843 static void
844 sh64_analyze_prologue (struct gdbarch *gdbarch,
845 struct sh64_frame_cache *cache,
846 CORE_ADDR func_pc,
847 CORE_ADDR current_pc)
848 {
849 int reg_nr;
850 int pc;
851 int opc;
852 int insn;
853 int r0_val = 0;
854 int insn_size;
855 int gdb_register_number;
856 int register_number;
857 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
858 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
859
860 cache->sp_offset = 0;
861
862 /* Loop around examining the prologue insns until we find something
863 that does not appear to be part of the prologue. But give up
864 after 20 of them, since we're getting silly then. */
865
866 pc = func_pc;
867
868 if (cache->media_mode)
869 insn_size = 4;
870 else
871 insn_size = 2;
872
873 opc = pc + (insn_size * 28);
874 if (opc > current_pc)
875 opc = current_pc;
876 for ( ; pc <= opc; pc += insn_size)
877 {
878 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
879 : pc,
880 insn_size, byte_order);
881
882 if (!cache->media_mode)
883 {
884 if (IS_STS_PR (insn))
885 {
886 int next_insn = read_memory_integer (pc + insn_size,
887 insn_size, byte_order);
888 if (IS_MOV_TO_R15 (next_insn))
889 {
890 cache->saved_regs[PR_REGNUM] =
891 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
892 pc += insn_size;
893 }
894 }
895
896 else if (IS_MOV_R14 (insn))
897 cache->saved_regs[MEDIA_FP_REGNUM] =
898 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
899
900 else if (IS_MOV_R0 (insn))
901 {
902 /* Put in R0 the offset from SP at which to store some
903 registers. We are interested in this value, because it
904 will tell us where the given registers are stored within
905 the frame. */
906 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
907 }
908
909 else if (IS_ADD_SP_R0 (insn))
910 {
911 /* This instruction still prepares r0, but we don't care.
912 We already have the offset in r0_val. */
913 }
914
915 else if (IS_STS_R0 (insn))
916 {
917 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
918 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
919 r0_val -= 4;
920 }
921
922 else if (IS_MOV_R14_R0 (insn))
923 {
924 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
925 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
926 - (r0_val - 4);
927 r0_val -= 4;
928 }
929
930 else if (IS_ADD_SP (insn))
931 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
932
933 else if (IS_MOV_SP_FP (insn))
934 break;
935 }
936 else
937 {
938 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
939 cache->sp_offset -=
940 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
941
942 else if (IS_STQ_R18_R15 (insn))
943 cache->saved_regs[PR_REGNUM] =
944 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
945
946 else if (IS_STL_R18_R15 (insn))
947 cache->saved_regs[PR_REGNUM] =
948 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
949
950 else if (IS_STQ_R14_R15 (insn))
951 cache->saved_regs[MEDIA_FP_REGNUM] =
952 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
953
954 else if (IS_STL_R14_R15 (insn))
955 cache->saved_regs[MEDIA_FP_REGNUM] =
956 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
957
958 else if (IS_MOV_SP_FP_MEDIA (insn))
959 break;
960 }
961 }
962
963 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
964 cache->uses_fp = 1;
965 }
966
967 static CORE_ADDR
968 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
969 {
970 return sp & ~7;
971 }
972
973 /* Function: push_dummy_call
974 Setup the function arguments for calling a function in the inferior.
975
976 On the Renesas SH architecture, there are four registers (R4 to R7)
977 which are dedicated for passing function arguments. Up to the first
978 four arguments (depending on size) may go into these registers.
979 The rest go on the stack.
980
981 Arguments that are smaller than 4 bytes will still take up a whole
982 register or a whole 32-bit word on the stack, and will be
983 right-justified in the register or the stack word. This includes
984 chars, shorts, and small aggregate types.
985
986 Arguments that are larger than 4 bytes may be split between two or
987 more registers. If there are not enough registers free, an argument
988 may be passed partly in a register (or registers), and partly on the
989 stack. This includes doubles, long longs, and larger aggregates.
990 As far as I know, there is no upper limit to the size of aggregates
991 that will be passed in this way; in other words, the convention of
992 passing a pointer to a large aggregate instead of a copy is not used.
993
994 An exceptional case exists for struct arguments (and possibly other
995 aggregates such as arrays) if the size is larger than 4 bytes but
996 not a multiple of 4 bytes. In this case the argument is never split
997 between the registers and the stack, but instead is copied in its
998 entirety onto the stack, AND also copied into as many registers as
999 there is room for. In other words, space in registers permitting,
1000 two copies of the same argument are passed in. As far as I can tell,
1001 only the one on the stack is used, although that may be a function
1002 of the level of compiler optimization. I suspect this is a compiler
1003 bug. Arguments of these odd sizes are left-justified within the
1004 word (as opposed to arguments smaller than 4 bytes, which are
1005 right-justified).
1006
1007 If the function is to return an aggregate type such as a struct, it
1008 is either returned in the normal return value register R0 (if its
1009 size is no greater than one byte), or else the caller must allocate
1010 space into which the callee will copy the return value (if the size
1011 is greater than one byte). In this case, a pointer to the return
1012 value location is passed into the callee in register R2, which does
1013 not displace any of the other arguments passed in via registers R4
1014 to R7. */
1015
1016 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1017 non-scalar (struct, union) elements (even if the elements are
1018 floats).
1019 FR0-FR11 for single precision floating point (float)
1020 DR0-DR10 for double precision floating point (double)
1021
1022 If a float is argument number 3 (for instance) and arguments number
1023 1,2, and 4 are integer, the mapping will be:
1024 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1025
1026 If a float is argument number 10 (for instance) and arguments number
1027 1 through 10 are integer, the mapping will be:
1028 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1029 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1030 I.e. there is hole in the stack.
1031
1032 Different rules apply for variable arguments functions, and for functions
1033 for which the prototype is not known. */
1034
1035 static CORE_ADDR
1036 sh64_push_dummy_call (struct gdbarch *gdbarch,
1037 struct value *function,
1038 struct regcache *regcache,
1039 CORE_ADDR bp_addr,
1040 int nargs, struct value **args,
1041 CORE_ADDR sp, int struct_return,
1042 CORE_ADDR struct_addr)
1043 {
1044 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1045 int stack_offset, stack_alloc;
1046 int int_argreg;
1047 int float_argreg;
1048 int double_argreg;
1049 int float_arg_index = 0;
1050 int double_arg_index = 0;
1051 int argnum;
1052 struct type *type;
1053 CORE_ADDR regval;
1054 char *val;
1055 char valbuf[8];
1056 char valbuf_tmp[8];
1057 int len;
1058 int argreg_size;
1059 int fp_args[12];
1060
1061 memset (fp_args, 0, sizeof (fp_args));
1062
1063 /* first force sp to a 8-byte alignment */
1064 sp = sh64_frame_align (gdbarch, sp);
1065
1066 /* The "struct return pointer" pseudo-argument has its own dedicated
1067 register */
1068
1069 if (struct_return)
1070 regcache_cooked_write_unsigned (regcache,
1071 STRUCT_RETURN_REGNUM, struct_addr);
1072
1073 /* Now make sure there's space on the stack */
1074 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1075 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1076 sp -= stack_alloc; /* make room on stack for args */
1077
1078 /* Now load as many as possible of the first arguments into
1079 registers, and push the rest onto the stack. There are 64 bytes
1080 in eight registers available. Loop thru args from first to last. */
1081
1082 int_argreg = ARG0_REGNUM;
1083 float_argreg = gdbarch_fp0_regnum (gdbarch);
1084 double_argreg = DR0_REGNUM;
1085
1086 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1087 {
1088 type = value_type (args[argnum]);
1089 len = TYPE_LENGTH (type);
1090 memset (valbuf, 0, sizeof (valbuf));
1091
1092 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1093 {
1094 argreg_size = register_size (gdbarch, int_argreg);
1095
1096 if (len < argreg_size)
1097 {
1098 /* value gets right-justified in the register or stack word */
1099 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1100 memcpy (valbuf + argreg_size - len,
1101 (char *) value_contents (args[argnum]), len);
1102 else
1103 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1104
1105 val = valbuf;
1106 }
1107 else
1108 val = (char *) value_contents (args[argnum]);
1109
1110 while (len > 0)
1111 {
1112 if (int_argreg > ARGLAST_REGNUM)
1113 {
1114 /* must go on the stack */
1115 write_memory (sp + stack_offset, (const bfd_byte *) val,
1116 argreg_size);
1117 stack_offset += 8;/*argreg_size;*/
1118 }
1119 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1120 That's because some *&^%$ things get passed on the stack
1121 AND in the registers! */
1122 if (int_argreg <= ARGLAST_REGNUM)
1123 {
1124 /* there's room in a register */
1125 regval = extract_unsigned_integer (val, argreg_size,
1126 byte_order);
1127 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1128 }
1129 /* Store the value 8 bytes at a time. This means that
1130 things larger than 8 bytes may go partly in registers
1131 and partly on the stack. FIXME: argreg is incremented
1132 before we use its size. */
1133 len -= argreg_size;
1134 val += argreg_size;
1135 int_argreg++;
1136 }
1137 }
1138 else
1139 {
1140 val = (char *) value_contents (args[argnum]);
1141 if (len == 4)
1142 {
1143 /* Where is it going to be stored? */
1144 while (fp_args[float_arg_index])
1145 float_arg_index ++;
1146
1147 /* Now float_argreg points to the register where it
1148 should be stored. Are we still within the allowed
1149 register set? */
1150 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1151 {
1152 /* Goes in FR0...FR11 */
1153 regcache_cooked_write (regcache,
1154 gdbarch_fp0_regnum (gdbarch)
1155 + float_arg_index,
1156 val);
1157 fp_args[float_arg_index] = 1;
1158 /* Skip the corresponding general argument register. */
1159 int_argreg ++;
1160 }
1161 else
1162 ;
1163 /* Store it as the integers, 8 bytes at the time, if
1164 necessary spilling on the stack. */
1165
1166 }
1167 else if (len == 8)
1168 {
1169 /* Where is it going to be stored? */
1170 while (fp_args[double_arg_index])
1171 double_arg_index += 2;
1172 /* Now double_argreg points to the register
1173 where it should be stored.
1174 Are we still within the allowed register set? */
1175 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1176 {
1177 /* Goes in DR0...DR10 */
1178 /* The numbering of the DRi registers is consecutive,
1179 i.e. includes odd numbers. */
1180 int double_register_offset = double_arg_index / 2;
1181 int regnum = DR0_REGNUM + double_register_offset;
1182 regcache_cooked_write (regcache, regnum, val);
1183 fp_args[double_arg_index] = 1;
1184 fp_args[double_arg_index + 1] = 1;
1185 /* Skip the corresponding general argument register. */
1186 int_argreg ++;
1187 }
1188 else
1189 ;
1190 /* Store it as the integers, 8 bytes at the time, if
1191 necessary spilling on the stack. */
1192 }
1193 }
1194 }
1195 /* Store return address. */
1196 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1197
1198 /* Update stack pointer. */
1199 regcache_cooked_write_unsigned (regcache,
1200 gdbarch_sp_regnum (gdbarch), sp);
1201
1202 return sp;
1203 }
1204
1205 /* Find a function's return value in the appropriate registers (in
1206 regbuf), and copy it into valbuf. Extract from an array REGBUF
1207 containing the (raw) register state a function return value of type
1208 TYPE, and copy that, in virtual format, into VALBUF. */
1209 static void
1210 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1211 void *valbuf)
1212 {
1213 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1214 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1215 int len = TYPE_LENGTH (type);
1216
1217 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1218 {
1219 if (len == 4)
1220 {
1221 /* Return value stored in gdbarch_fp0_regnum */
1222 regcache_raw_read (regcache,
1223 gdbarch_fp0_regnum (gdbarch), valbuf);
1224 }
1225 else if (len == 8)
1226 {
1227 /* return value stored in DR0_REGNUM */
1228 DOUBLEST val;
1229 gdb_byte buf[8];
1230
1231 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1232
1233 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1234 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1235 buf, &val);
1236 else
1237 floatformat_to_doublest (&floatformat_ieee_double_big,
1238 buf, &val);
1239 store_typed_floating (valbuf, type, val);
1240 }
1241 }
1242 else
1243 {
1244 if (len <= 8)
1245 {
1246 int offset;
1247 char buf[8];
1248 /* Result is in register 2. If smaller than 8 bytes, it is padded
1249 at the most significant end. */
1250 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1251
1252 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1253 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1254 - len;
1255 else
1256 offset = 0;
1257 memcpy (valbuf, buf + offset, len);
1258 }
1259 else
1260 error ("bad size for return value");
1261 }
1262 }
1263
1264 /* Write into appropriate registers a function return value
1265 of type TYPE, given in virtual format.
1266 If the architecture is sh4 or sh3e, store a function's return value
1267 in the R0 general register or in the FP0 floating point register,
1268 depending on the type of the return value. In all the other cases
1269 the result is stored in r0, left-justified. */
1270
1271 static void
1272 sh64_store_return_value (struct type *type, struct regcache *regcache,
1273 const void *valbuf)
1274 {
1275 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1276 char buf[64]; /* more than enough... */
1277 int len = TYPE_LENGTH (type);
1278
1279 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1280 {
1281 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1282 for (i = 0; i < len; i += 4)
1283 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1284 regcache_raw_write (regcache, regnum++,
1285 (char *) valbuf + len - 4 - i);
1286 else
1287 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1288 }
1289 else
1290 {
1291 int return_register = DEFAULT_RETURN_REGNUM;
1292 int offset = 0;
1293
1294 if (len <= register_size (gdbarch, return_register))
1295 {
1296 /* Pad with zeros. */
1297 memset (buf, 0, register_size (gdbarch, return_register));
1298 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1299 offset = 0; /*register_size (gdbarch,
1300 return_register) - len;*/
1301 else
1302 offset = register_size (gdbarch, return_register) - len;
1303
1304 memcpy (buf + offset, valbuf, len);
1305 regcache_raw_write (regcache, return_register, buf);
1306 }
1307 else
1308 regcache_raw_write (regcache, return_register, valbuf);
1309 }
1310 }
1311
1312 static enum return_value_convention
1313 sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1314 struct type *type, struct regcache *regcache,
1315 gdb_byte *readbuf, const gdb_byte *writebuf)
1316 {
1317 if (sh64_use_struct_convention (type))
1318 return RETURN_VALUE_STRUCT_CONVENTION;
1319 if (writebuf)
1320 sh64_store_return_value (type, regcache, writebuf);
1321 else if (readbuf)
1322 sh64_extract_return_value (type, regcache, readbuf);
1323 return RETURN_VALUE_REGISTER_CONVENTION;
1324 }
1325
1326 static void
1327 sh64_show_media_regs (struct frame_info *frame)
1328 {
1329 struct gdbarch *gdbarch = get_frame_arch (frame);
1330 int i;
1331
1332 printf_filtered
1333 ("PC=%s SR=%s \n",
1334 phex (get_frame_register_unsigned (frame,
1335 gdbarch_pc_regnum (gdbarch)), 8),
1336 phex (get_frame_register_unsigned (frame, SR_REGNUM), 8));
1337
1338 printf_filtered
1339 ("SSR=%s SPC=%s \n",
1340 phex (get_frame_register_unsigned (frame, SSR_REGNUM), 8),
1341 phex (get_frame_register_unsigned (frame, SPC_REGNUM), 8));
1342 printf_filtered
1343 ("FPSCR=%s\n ",
1344 phex (get_frame_register_unsigned (frame, FPSCR_REGNUM), 8));
1345
1346 for (i = 0; i < 64; i = i + 4)
1347 printf_filtered
1348 ("\nR%d-R%d %s %s %s %s\n",
1349 i, i + 3,
1350 phex (get_frame_register_unsigned (frame, i + 0), 8),
1351 phex (get_frame_register_unsigned (frame, i + 1), 8),
1352 phex (get_frame_register_unsigned (frame, i + 2), 8),
1353 phex (get_frame_register_unsigned (frame, i + 3), 8));
1354
1355 printf_filtered ("\n");
1356
1357 for (i = 0; i < 64; i = i + 8)
1358 printf_filtered
1359 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1360 i, i + 7,
1361 (long) get_frame_register_unsigned
1362 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1363 (long) get_frame_register_unsigned
1364 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1365 (long) get_frame_register_unsigned
1366 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1367 (long) get_frame_register_unsigned
1368 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1369 (long) get_frame_register_unsigned
1370 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1371 (long) get_frame_register_unsigned
1372 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1373 (long) get_frame_register_unsigned
1374 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1375 (long) get_frame_register_unsigned
1376 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1377 }
1378
1379 static void
1380 sh64_show_compact_regs (struct frame_info *frame)
1381 {
1382 struct gdbarch *gdbarch = get_frame_arch (frame);
1383 int i;
1384
1385 printf_filtered
1386 ("PC=%s \n",
1387 phex (get_frame_register_unsigned (frame, PC_C_REGNUM), 8));
1388
1389 printf_filtered
1390 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1391 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1392 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1393 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1394 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1395 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1396 printf_filtered
1397 ("FPSCR=%08lx FPUL=%08lx\n",
1398 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1399 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1400
1401 for (i = 0; i < 16; i = i + 4)
1402 printf_filtered
1403 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1404 i, i + 3,
1405 (long) get_frame_register_unsigned (frame, i + 0),
1406 (long) get_frame_register_unsigned (frame, i + 1),
1407 (long) get_frame_register_unsigned (frame, i + 2),
1408 (long) get_frame_register_unsigned (frame, i + 3));
1409
1410 printf_filtered ("\n");
1411
1412 for (i = 0; i < 16; i = i + 8)
1413 printf_filtered
1414 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1415 i, i + 7,
1416 (long) get_frame_register_unsigned
1417 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1418 (long) get_frame_register_unsigned
1419 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1420 (long) get_frame_register_unsigned
1421 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1422 (long) get_frame_register_unsigned
1423 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1424 (long) get_frame_register_unsigned
1425 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1426 (long) get_frame_register_unsigned
1427 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1428 (long) get_frame_register_unsigned
1429 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1430 (long) get_frame_register_unsigned
1431 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1432 }
1433
1434 /* FIXME!!! This only shows the registers for shmedia, excluding the
1435 pseudo registers. */
1436 void
1437 sh64_show_regs (struct frame_info *frame)
1438 {
1439 if (pc_is_isa32 (get_frame_pc (frame)))
1440 sh64_show_media_regs (frame);
1441 else
1442 sh64_show_compact_regs (frame);
1443 }
1444
1445 /* *INDENT-OFF* */
1446 /*
1447 SH MEDIA MODE (ISA 32)
1448 general registers (64-bit) 0-63
1449 0 r0, r1, r2, r3, r4, r5, r6, r7,
1450 64 r8, r9, r10, r11, r12, r13, r14, r15,
1451 128 r16, r17, r18, r19, r20, r21, r22, r23,
1452 192 r24, r25, r26, r27, r28, r29, r30, r31,
1453 256 r32, r33, r34, r35, r36, r37, r38, r39,
1454 320 r40, r41, r42, r43, r44, r45, r46, r47,
1455 384 r48, r49, r50, r51, r52, r53, r54, r55,
1456 448 r56, r57, r58, r59, r60, r61, r62, r63,
1457
1458 pc (64-bit) 64
1459 512 pc,
1460
1461 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1462 520 sr, ssr, spc,
1463
1464 target registers (64-bit) 68-75
1465 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1466
1467 floating point state control register (32-bit) 76
1468 608 fpscr,
1469
1470 single precision floating point registers (32-bit) 77-140
1471 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1472 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1473 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1474 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1475 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1476 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1477 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1478 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1479
1480 TOTAL SPACE FOR REGISTERS: 868 bytes
1481
1482 From here on they are all pseudo registers: no memory allocated.
1483 REGISTER_BYTE returns the register byte for the base register.
1484
1485 double precision registers (pseudo) 141-172
1486 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1487 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1488 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1489 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1490
1491 floating point pairs (pseudo) 173-204
1492 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1493 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1494 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1495 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1496
1497 floating point vectors (4 floating point regs) (pseudo) 205-220
1498 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1499 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1500
1501 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1502 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1503 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1504 pc_c,
1505 gbr_c, mach_c, macl_c, pr_c, t_c,
1506 fpscr_c, fpul_c,
1507 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1508 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1509 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1510 fv0_c, fv4_c, fv8_c, fv12_c
1511 */
1512
1513 static struct type *
1514 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1515 {
1516 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1517 0, high);
1518 }
1519
1520 /* Return the GDB type object for the "standard" data type
1521 of data in register REG_NR. */
1522 static struct type *
1523 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1524 {
1525 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1526 && reg_nr <= FP_LAST_REGNUM)
1527 || (reg_nr >= FP0_C_REGNUM
1528 && reg_nr <= FP_LAST_C_REGNUM))
1529 return builtin_type (gdbarch)->builtin_float;
1530 else if ((reg_nr >= DR0_REGNUM
1531 && reg_nr <= DR_LAST_REGNUM)
1532 || (reg_nr >= DR0_C_REGNUM
1533 && reg_nr <= DR_LAST_C_REGNUM))
1534 return builtin_type (gdbarch)->builtin_double;
1535 else if (reg_nr >= FPP0_REGNUM
1536 && reg_nr <= FPP_LAST_REGNUM)
1537 return sh64_build_float_register_type (gdbarch, 1);
1538 else if ((reg_nr >= FV0_REGNUM
1539 && reg_nr <= FV_LAST_REGNUM)
1540 ||(reg_nr >= FV0_C_REGNUM
1541 && reg_nr <= FV_LAST_C_REGNUM))
1542 return sh64_build_float_register_type (gdbarch, 3);
1543 else if (reg_nr == FPSCR_REGNUM)
1544 return builtin_type (gdbarch)->builtin_int;
1545 else if (reg_nr >= R0_C_REGNUM
1546 && reg_nr < FP0_C_REGNUM)
1547 return builtin_type (gdbarch)->builtin_int;
1548 else
1549 return builtin_type (gdbarch)->builtin_long_long;
1550 }
1551
1552 static void
1553 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1554 struct type *type, char *from, char *to)
1555 {
1556 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1557 {
1558 /* It is a no-op. */
1559 memcpy (to, from, register_size (gdbarch, regnum));
1560 return;
1561 }
1562
1563 if ((regnum >= DR0_REGNUM
1564 && regnum <= DR_LAST_REGNUM)
1565 || (regnum >= DR0_C_REGNUM
1566 && regnum <= DR_LAST_C_REGNUM))
1567 {
1568 DOUBLEST val;
1569 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1570 from, &val);
1571 store_typed_floating (to, type, val);
1572 }
1573 else
1574 error ("sh64_register_convert_to_virtual called with non DR register number");
1575 }
1576
1577 static void
1578 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1579 int regnum, const void *from, void *to)
1580 {
1581 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1582 {
1583 /* It is a no-op. */
1584 memcpy (to, from, register_size (gdbarch, regnum));
1585 return;
1586 }
1587
1588 if ((regnum >= DR0_REGNUM
1589 && regnum <= DR_LAST_REGNUM)
1590 || (regnum >= DR0_C_REGNUM
1591 && regnum <= DR_LAST_C_REGNUM))
1592 {
1593 DOUBLEST val = extract_typed_floating (from, type);
1594 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1595 &val, to);
1596 }
1597 else
1598 error ("sh64_register_convert_to_raw called with non DR register number");
1599 }
1600
1601 static void
1602 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1603 int reg_nr, gdb_byte *buffer)
1604 {
1605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1606 int base_regnum;
1607 int portion;
1608 int offset = 0;
1609 char temp_buffer[MAX_REGISTER_SIZE];
1610
1611 if (reg_nr >= DR0_REGNUM
1612 && reg_nr <= DR_LAST_REGNUM)
1613 {
1614 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1615
1616 /* Build the value in the provided buffer. */
1617 /* DR regs are double precision registers obtained by
1618 concatenating 2 single precision floating point registers. */
1619 for (portion = 0; portion < 2; portion++)
1620 regcache_raw_read (regcache, base_regnum + portion,
1621 (temp_buffer
1622 + register_size (gdbarch, base_regnum) * portion));
1623
1624 /* We must pay attention to the endianness. */
1625 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1626 register_type (gdbarch, reg_nr),
1627 temp_buffer, buffer);
1628
1629 }
1630
1631 else if (reg_nr >= FPP0_REGNUM
1632 && reg_nr <= FPP_LAST_REGNUM)
1633 {
1634 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1635
1636 /* Build the value in the provided buffer. */
1637 /* FPP regs are pairs of single precision registers obtained by
1638 concatenating 2 single precision floating point registers. */
1639 for (portion = 0; portion < 2; portion++)
1640 regcache_raw_read (regcache, base_regnum + portion,
1641 ((char *) buffer
1642 + register_size (gdbarch, base_regnum) * portion));
1643 }
1644
1645 else if (reg_nr >= FV0_REGNUM
1646 && reg_nr <= FV_LAST_REGNUM)
1647 {
1648 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1649
1650 /* Build the value in the provided buffer. */
1651 /* FV regs are vectors of single precision registers obtained by
1652 concatenating 4 single precision floating point registers. */
1653 for (portion = 0; portion < 4; portion++)
1654 regcache_raw_read (regcache, base_regnum + portion,
1655 ((char *) buffer
1656 + register_size (gdbarch, base_regnum) * portion));
1657 }
1658
1659 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1660 else if (reg_nr >= R0_C_REGNUM
1661 && reg_nr <= T_C_REGNUM)
1662 {
1663 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1664
1665 /* Build the value in the provided buffer. */
1666 regcache_raw_read (regcache, base_regnum, temp_buffer);
1667 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1668 offset = 4;
1669 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1670 }
1671
1672 else if (reg_nr >= FP0_C_REGNUM
1673 && reg_nr <= FP_LAST_C_REGNUM)
1674 {
1675 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1676
1677 /* Build the value in the provided buffer. */
1678 /* Floating point registers map 1-1 to the media fp regs,
1679 they have the same size and endianness. */
1680 regcache_raw_read (regcache, base_regnum, buffer);
1681 }
1682
1683 else if (reg_nr >= DR0_C_REGNUM
1684 && reg_nr <= DR_LAST_C_REGNUM)
1685 {
1686 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1687
1688 /* DR_C regs are double precision registers obtained by
1689 concatenating 2 single precision floating point registers. */
1690 for (portion = 0; portion < 2; portion++)
1691 regcache_raw_read (regcache, base_regnum + portion,
1692 (temp_buffer
1693 + register_size (gdbarch, base_regnum) * portion));
1694
1695 /* We must pay attention to the endianness. */
1696 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1697 register_type (gdbarch, reg_nr),
1698 temp_buffer, buffer);
1699 }
1700
1701 else if (reg_nr >= FV0_C_REGNUM
1702 && reg_nr <= FV_LAST_C_REGNUM)
1703 {
1704 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1705
1706 /* Build the value in the provided buffer. */
1707 /* FV_C regs are vectors of single precision registers obtained by
1708 concatenating 4 single precision floating point registers. */
1709 for (portion = 0; portion < 4; portion++)
1710 regcache_raw_read (regcache, base_regnum + portion,
1711 ((char *) buffer
1712 + register_size (gdbarch, base_regnum) * portion));
1713 }
1714
1715 else if (reg_nr == FPSCR_C_REGNUM)
1716 {
1717 int fpscr_base_regnum;
1718 int sr_base_regnum;
1719 unsigned int fpscr_value;
1720 unsigned int sr_value;
1721 unsigned int fpscr_c_value;
1722 unsigned int fpscr_c_part1_value;
1723 unsigned int fpscr_c_part2_value;
1724
1725 fpscr_base_regnum = FPSCR_REGNUM;
1726 sr_base_regnum = SR_REGNUM;
1727
1728 /* Build the value in the provided buffer. */
1729 /* FPSCR_C is a very weird register that contains sparse bits
1730 from the FPSCR and the SR architectural registers.
1731 Specifically: */
1732 /* *INDENT-OFF* */
1733 /*
1734 FPSRC_C bit
1735 0 Bit 0 of FPSCR
1736 1 reserved
1737 2-17 Bit 2-18 of FPSCR
1738 18-20 Bits 12,13,14 of SR
1739 21-31 reserved
1740 */
1741 /* *INDENT-ON* */
1742 /* Get FPSCR into a local buffer */
1743 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1744 /* Get value as an int. */
1745 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1746 /* Get SR into a local buffer */
1747 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1748 /* Get value as an int. */
1749 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1750 /* Build the new value. */
1751 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1752 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1753 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1754 /* Store that in out buffer!!! */
1755 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1756 /* FIXME There is surely an endianness gotcha here. */
1757 }
1758
1759 else if (reg_nr == FPUL_C_REGNUM)
1760 {
1761 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1762
1763 /* FPUL_C register is floating point register 32,
1764 same size, same endianness. */
1765 regcache_raw_read (regcache, base_regnum, buffer);
1766 }
1767 }
1768
1769 static void
1770 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1771 int reg_nr, const gdb_byte *buffer)
1772 {
1773 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1774 int base_regnum, portion;
1775 int offset;
1776 char temp_buffer[MAX_REGISTER_SIZE];
1777
1778 if (reg_nr >= DR0_REGNUM
1779 && reg_nr <= DR_LAST_REGNUM)
1780 {
1781 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1782 /* We must pay attention to the endianness. */
1783 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1784 reg_nr,
1785 buffer, temp_buffer);
1786
1787 /* Write the real regs for which this one is an alias. */
1788 for (portion = 0; portion < 2; portion++)
1789 regcache_raw_write (regcache, base_regnum + portion,
1790 (temp_buffer
1791 + register_size (gdbarch,
1792 base_regnum) * portion));
1793 }
1794
1795 else if (reg_nr >= FPP0_REGNUM
1796 && reg_nr <= FPP_LAST_REGNUM)
1797 {
1798 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1799
1800 /* Write the real regs for which this one is an alias. */
1801 for (portion = 0; portion < 2; portion++)
1802 regcache_raw_write (regcache, base_regnum + portion,
1803 ((char *) buffer
1804 + register_size (gdbarch,
1805 base_regnum) * portion));
1806 }
1807
1808 else if (reg_nr >= FV0_REGNUM
1809 && reg_nr <= FV_LAST_REGNUM)
1810 {
1811 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1812
1813 /* Write the real regs for which this one is an alias. */
1814 for (portion = 0; portion < 4; portion++)
1815 regcache_raw_write (regcache, base_regnum + portion,
1816 ((char *) buffer
1817 + register_size (gdbarch,
1818 base_regnum) * portion));
1819 }
1820
1821 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1822 register but only 4 bytes of it. */
1823 else if (reg_nr >= R0_C_REGNUM
1824 && reg_nr <= T_C_REGNUM)
1825 {
1826 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1827 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1828 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1829 offset = 4;
1830 else
1831 offset = 0;
1832 /* Let's read the value of the base register into a temporary
1833 buffer, so that overwriting the last four bytes with the new
1834 value of the pseudo will leave the upper 4 bytes unchanged. */
1835 regcache_raw_read (regcache, base_regnum, temp_buffer);
1836 /* Write as an 8 byte quantity */
1837 memcpy (temp_buffer + offset, buffer, 4);
1838 regcache_raw_write (regcache, base_regnum, temp_buffer);
1839 }
1840
1841 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1842 registers. Both are 4 bytes. */
1843 else if (reg_nr >= FP0_C_REGNUM
1844 && reg_nr <= FP_LAST_C_REGNUM)
1845 {
1846 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1847 regcache_raw_write (regcache, base_regnum, buffer);
1848 }
1849
1850 else if (reg_nr >= DR0_C_REGNUM
1851 && reg_nr <= DR_LAST_C_REGNUM)
1852 {
1853 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1854 for (portion = 0; portion < 2; portion++)
1855 {
1856 /* We must pay attention to the endianness. */
1857 sh64_register_convert_to_raw (gdbarch,
1858 register_type (gdbarch, reg_nr),
1859 reg_nr,
1860 buffer, temp_buffer);
1861
1862 regcache_raw_write (regcache, base_regnum + portion,
1863 (temp_buffer
1864 + register_size (gdbarch,
1865 base_regnum) * portion));
1866 }
1867 }
1868
1869 else if (reg_nr >= FV0_C_REGNUM
1870 && reg_nr <= FV_LAST_C_REGNUM)
1871 {
1872 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1873
1874 for (portion = 0; portion < 4; portion++)
1875 {
1876 regcache_raw_write (regcache, base_regnum + portion,
1877 ((char *) buffer
1878 + register_size (gdbarch,
1879 base_regnum) * portion));
1880 }
1881 }
1882
1883 else if (reg_nr == FPSCR_C_REGNUM)
1884 {
1885 int fpscr_base_regnum;
1886 int sr_base_regnum;
1887 unsigned int fpscr_value;
1888 unsigned int sr_value;
1889 unsigned int old_fpscr_value;
1890 unsigned int old_sr_value;
1891 unsigned int fpscr_c_value;
1892 unsigned int fpscr_mask;
1893 unsigned int sr_mask;
1894
1895 fpscr_base_regnum = FPSCR_REGNUM;
1896 sr_base_regnum = SR_REGNUM;
1897
1898 /* FPSCR_C is a very weird register that contains sparse bits
1899 from the FPSCR and the SR architectural registers.
1900 Specifically: */
1901 /* *INDENT-OFF* */
1902 /*
1903 FPSRC_C bit
1904 0 Bit 0 of FPSCR
1905 1 reserved
1906 2-17 Bit 2-18 of FPSCR
1907 18-20 Bits 12,13,14 of SR
1908 21-31 reserved
1909 */
1910 /* *INDENT-ON* */
1911 /* Get value as an int. */
1912 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1913
1914 /* Build the new values. */
1915 fpscr_mask = 0x0003fffd;
1916 sr_mask = 0x001c0000;
1917
1918 fpscr_value = fpscr_c_value & fpscr_mask;
1919 sr_value = (fpscr_value & sr_mask) >> 6;
1920
1921 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1922 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1923 old_fpscr_value &= 0xfffc0002;
1924 fpscr_value |= old_fpscr_value;
1925 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1926 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1927
1928 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1929 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1930 old_sr_value &= 0xffff8fff;
1931 sr_value |= old_sr_value;
1932 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1933 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1934 }
1935
1936 else if (reg_nr == FPUL_C_REGNUM)
1937 {
1938 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1939 regcache_raw_write (regcache, base_regnum, buffer);
1940 }
1941 }
1942
1943 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1944 shmedia REGISTERS. */
1945 /* Control registers, compact mode. */
1946 static void
1947 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1948 int cr_c_regnum)
1949 {
1950 switch (cr_c_regnum)
1951 {
1952 case PC_C_REGNUM:
1953 fprintf_filtered (file, "pc_c\t0x%08x\n",
1954 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1955 break;
1956 case GBR_C_REGNUM:
1957 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1958 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1959 break;
1960 case MACH_C_REGNUM:
1961 fprintf_filtered (file, "mach_c\t0x%08x\n",
1962 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1963 break;
1964 case MACL_C_REGNUM:
1965 fprintf_filtered (file, "macl_c\t0x%08x\n",
1966 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1967 break;
1968 case PR_C_REGNUM:
1969 fprintf_filtered (file, "pr_c\t0x%08x\n",
1970 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1971 break;
1972 case T_C_REGNUM:
1973 fprintf_filtered (file, "t_c\t0x%08x\n",
1974 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1975 break;
1976 case FPSCR_C_REGNUM:
1977 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1978 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1979 break;
1980 case FPUL_C_REGNUM:
1981 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1982 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1983 break;
1984 }
1985 }
1986
1987 static void
1988 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1989 struct frame_info *frame, int regnum)
1990 { /* do values for FP (float) regs */
1991 unsigned char *raw_buffer;
1992 double flt; /* double extracted from raw hex data */
1993 int inv;
1994 int j;
1995
1996 /* Allocate space for the float. */
1997 raw_buffer = (unsigned char *) alloca
1998 (register_size (gdbarch,
1999 gdbarch_fp0_regnum
2000 (gdbarch)));
2001
2002 /* Get the data in raw format. */
2003 if (!frame_register_read (frame, regnum, raw_buffer))
2004 error ("can't read register %d (%s)",
2005 regnum, gdbarch_register_name (gdbarch, regnum));
2006
2007 /* Get the register as a number */
2008 flt = unpack_double (builtin_type (gdbarch)->builtin_float, raw_buffer, &inv);
2009
2010 /* Print the name and some spaces. */
2011 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2012 print_spaces_filtered (15 - strlen (gdbarch_register_name
2013 (gdbarch, regnum)), file);
2014
2015 /* Print the value. */
2016 if (inv)
2017 fprintf_filtered (file, "<invalid float>");
2018 else
2019 fprintf_filtered (file, "%-10.9g", flt);
2020
2021 /* Print the fp register as hex. */
2022 fprintf_filtered (file, "\t(raw 0x");
2023 for (j = 0; j < register_size (gdbarch, regnum); j++)
2024 {
2025 int idx = gdbarch_byte_order (gdbarch)
2026 == BFD_ENDIAN_BIG ? j : register_size
2027 (gdbarch, regnum) - 1 - j;
2028 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2029 }
2030 fprintf_filtered (file, ")");
2031 fprintf_filtered (file, "\n");
2032 }
2033
2034 static void
2035 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2036 struct frame_info *frame, int regnum)
2037 {
2038 /* All the sh64-compact mode registers are pseudo registers. */
2039
2040 if (regnum < gdbarch_num_regs (gdbarch)
2041 || regnum >= gdbarch_num_regs (gdbarch)
2042 + NUM_PSEUDO_REGS_SH_MEDIA
2043 + NUM_PSEUDO_REGS_SH_COMPACT)
2044 internal_error (__FILE__, __LINE__,
2045 _("Invalid pseudo register number %d\n"), regnum);
2046
2047 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2048 {
2049 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
2050 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2051 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2052 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2053 }
2054
2055 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2056 {
2057 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2058 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2059 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2060 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2061 }
2062
2063 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2064 {
2065 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
2066 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2067 regnum - FV0_REGNUM,
2068 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2069 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2070 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2072 }
2073
2074 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2075 {
2076 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2077 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2078 regnum - FV0_C_REGNUM,
2079 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2080 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2082 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2083 }
2084
2085 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2086 {
2087 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2088 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2089 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2090 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2091 }
2092
2093 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2094 {
2095 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2096 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2097 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2098 }
2099 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2100 /* This should work also for pseudoregs. */
2101 sh64_do_fp_register (gdbarch, file, frame, regnum);
2102 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2103 sh64_do_cr_c_register_info (file, frame, regnum);
2104 }
2105
2106 static void
2107 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2108 struct frame_info *frame, int regnum)
2109 {
2110 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2111 struct value_print_options opts;
2112
2113 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2114 print_spaces_filtered (15 - strlen (gdbarch_register_name
2115 (gdbarch, regnum)), file);
2116
2117 /* Get the data in raw format. */
2118 if (!frame_register_read (frame, regnum, raw_buffer))
2119 fprintf_filtered (file, "*value not available*\n");
2120
2121 get_formatted_print_options (&opts, 'x');
2122 opts.deref_ref = 1;
2123 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2124 file, 0, NULL, &opts, current_language);
2125 fprintf_filtered (file, "\t");
2126 get_formatted_print_options (&opts, 0);
2127 opts.deref_ref = 1;
2128 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2129 file, 0, NULL, &opts, current_language);
2130 fprintf_filtered (file, "\n");
2131 }
2132
2133 static void
2134 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2135 struct frame_info *frame, int regnum)
2136 {
2137 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2138 + gdbarch_num_pseudo_regs (gdbarch))
2139 internal_error (__FILE__, __LINE__,
2140 _("Invalid register number %d\n"), regnum);
2141
2142 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2143 {
2144 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2145 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2146 else
2147 sh64_do_register (gdbarch, file, frame, regnum);
2148 }
2149
2150 else if (regnum < gdbarch_num_regs (gdbarch)
2151 + gdbarch_num_pseudo_regs (gdbarch))
2152 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2153 }
2154
2155 static void
2156 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2157 struct frame_info *frame, int regnum,
2158 int fpregs)
2159 {
2160 if (regnum != -1) /* do one specified register */
2161 {
2162 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2163 error ("Not a valid register for the current processor type");
2164
2165 sh64_print_register (gdbarch, file, frame, regnum);
2166 }
2167 else
2168 /* do all (or most) registers */
2169 {
2170 regnum = 0;
2171 while (regnum < gdbarch_num_regs (gdbarch))
2172 {
2173 /* If the register name is empty, it is undefined for this
2174 processor, so don't display anything. */
2175 if (gdbarch_register_name (gdbarch, regnum) == NULL
2176 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2177 {
2178 regnum++;
2179 continue;
2180 }
2181
2182 if (TYPE_CODE (register_type (gdbarch, regnum))
2183 == TYPE_CODE_FLT)
2184 {
2185 if (fpregs)
2186 {
2187 /* true for "INFO ALL-REGISTERS" command */
2188 sh64_do_fp_register (gdbarch, file, frame, regnum);
2189 regnum ++;
2190 }
2191 else
2192 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2193 /* skip FP regs */
2194 }
2195 else
2196 {
2197 sh64_do_register (gdbarch, file, frame, regnum);
2198 regnum++;
2199 }
2200 }
2201
2202 if (fpregs)
2203 while (regnum < gdbarch_num_regs (gdbarch)
2204 + gdbarch_num_pseudo_regs (gdbarch))
2205 {
2206 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2207 regnum++;
2208 }
2209 }
2210 }
2211
2212 static void
2213 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2214 struct ui_file *file,
2215 struct frame_info *frame, int regnum,
2216 int fpregs)
2217 {
2218 if (regnum != -1) /* do one specified register */
2219 {
2220 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2221 error ("Not a valid register for the current processor type");
2222
2223 if (regnum >= 0 && regnum < R0_C_REGNUM)
2224 error ("Not a valid register for the current processor mode.");
2225
2226 sh64_print_register (gdbarch, file, frame, regnum);
2227 }
2228 else
2229 /* do all compact registers */
2230 {
2231 regnum = R0_C_REGNUM;
2232 while (regnum < gdbarch_num_regs (gdbarch)
2233 + gdbarch_num_pseudo_regs (gdbarch))
2234 {
2235 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2236 regnum++;
2237 }
2238 }
2239 }
2240
2241 static void
2242 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2243 struct frame_info *frame, int regnum, int fpregs)
2244 {
2245 if (pc_is_isa32 (get_frame_pc (frame)))
2246 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2247 else
2248 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2249 }
2250
2251 static struct sh64_frame_cache *
2252 sh64_alloc_frame_cache (void)
2253 {
2254 struct sh64_frame_cache *cache;
2255 int i;
2256
2257 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2258
2259 /* Base address. */
2260 cache->base = 0;
2261 cache->saved_sp = 0;
2262 cache->sp_offset = 0;
2263 cache->pc = 0;
2264
2265 /* Frameless until proven otherwise. */
2266 cache->uses_fp = 0;
2267
2268 /* Saved registers. We initialize these to -1 since zero is a valid
2269 offset (that's where fp is supposed to be stored). */
2270 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2271 {
2272 cache->saved_regs[i] = -1;
2273 }
2274
2275 return cache;
2276 }
2277
2278 static struct sh64_frame_cache *
2279 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2280 {
2281 struct gdbarch *gdbarch;
2282 struct sh64_frame_cache *cache;
2283 CORE_ADDR current_pc;
2284 int i;
2285
2286 if (*this_cache)
2287 return *this_cache;
2288
2289 gdbarch = get_frame_arch (this_frame);
2290 cache = sh64_alloc_frame_cache ();
2291 *this_cache = cache;
2292
2293 current_pc = get_frame_pc (this_frame);
2294 cache->media_mode = pc_is_isa32 (current_pc);
2295
2296 /* In principle, for normal frames, fp holds the frame pointer,
2297 which holds the base address for the current stack frame.
2298 However, for functions that don't need it, the frame pointer is
2299 optional. For these "frameless" functions the frame pointer is
2300 actually the frame pointer of the calling frame. */
2301 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2302 if (cache->base == 0)
2303 return cache;
2304
2305 cache->pc = get_frame_func (this_frame);
2306 if (cache->pc != 0)
2307 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2308
2309 if (!cache->uses_fp)
2310 {
2311 /* We didn't find a valid frame, which means that CACHE->base
2312 currently holds the frame pointer for our calling frame. If
2313 we're at the start of a function, or somewhere half-way its
2314 prologue, the function's frame probably hasn't been fully
2315 setup yet. Try to reconstruct the base address for the stack
2316 frame by looking at the stack pointer. For truly "frameless"
2317 functions this might work too. */
2318 cache->base = get_frame_register_unsigned
2319 (this_frame, gdbarch_sp_regnum (gdbarch));
2320 }
2321
2322 /* Now that we have the base address for the stack frame we can
2323 calculate the value of sp in the calling frame. */
2324 cache->saved_sp = cache->base + cache->sp_offset;
2325
2326 /* Adjust all the saved registers such that they contain addresses
2327 instead of offsets. */
2328 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2329 if (cache->saved_regs[i] != -1)
2330 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2331
2332 return cache;
2333 }
2334
2335 static struct value *
2336 sh64_frame_prev_register (struct frame_info *this_frame,
2337 void **this_cache, int regnum)
2338 {
2339 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2340 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2342
2343 gdb_assert (regnum >= 0);
2344
2345 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2346 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2347
2348 /* The PC of the previous frame is stored in the PR register of
2349 the current frame. Frob regnum so that we pull the value from
2350 the correct place. */
2351 if (regnum == gdbarch_pc_regnum (gdbarch))
2352 regnum = PR_REGNUM;
2353
2354 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2355 {
2356 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2357 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2358 {
2359 CORE_ADDR val;
2360 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2361 4, byte_order);
2362 return frame_unwind_got_constant (this_frame, regnum, val);
2363 }
2364
2365 return frame_unwind_got_memory (this_frame, regnum,
2366 cache->saved_regs[regnum]);
2367 }
2368
2369 return frame_unwind_got_register (this_frame, regnum, regnum);
2370 }
2371
2372 static void
2373 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2374 struct frame_id *this_id)
2375 {
2376 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2377
2378 /* This marks the outermost frame. */
2379 if (cache->base == 0)
2380 return;
2381
2382 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2383 }
2384
2385 static const struct frame_unwind sh64_frame_unwind = {
2386 NORMAL_FRAME,
2387 sh64_frame_this_id,
2388 sh64_frame_prev_register,
2389 NULL,
2390 default_frame_sniffer
2391 };
2392
2393 static CORE_ADDR
2394 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2395 {
2396 return frame_unwind_register_unsigned (next_frame,
2397 gdbarch_sp_regnum (gdbarch));
2398 }
2399
2400 static CORE_ADDR
2401 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2402 {
2403 return frame_unwind_register_unsigned (next_frame,
2404 gdbarch_pc_regnum (gdbarch));
2405 }
2406
2407 static struct frame_id
2408 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2409 {
2410 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2411 gdbarch_sp_regnum (gdbarch));
2412 return frame_id_build (sp, get_frame_pc (this_frame));
2413 }
2414
2415 static CORE_ADDR
2416 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2417 {
2418 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2419
2420 return cache->base;
2421 }
2422
2423 static const struct frame_base sh64_frame_base = {
2424 &sh64_frame_unwind,
2425 sh64_frame_base_address,
2426 sh64_frame_base_address,
2427 sh64_frame_base_address
2428 };
2429
2430
2431 struct gdbarch *
2432 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2433 {
2434 struct gdbarch *gdbarch;
2435 struct gdbarch_tdep *tdep;
2436
2437 /* If there is already a candidate, use it. */
2438 arches = gdbarch_list_lookup_by_info (arches, &info);
2439 if (arches != NULL)
2440 return arches->gdbarch;
2441
2442 /* None found, create a new architecture from the information
2443 provided. */
2444 tdep = XMALLOC (struct gdbarch_tdep);
2445 gdbarch = gdbarch_alloc (&info, tdep);
2446
2447 /* Determine the ABI */
2448 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2449 {
2450 /* If the ABI is the 64-bit one, it can only be sh-media. */
2451 tdep->sh_abi = SH_ABI_64;
2452 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2453 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2454 }
2455 else
2456 {
2457 /* If the ABI is the 32-bit one it could be either media or
2458 compact. */
2459 tdep->sh_abi = SH_ABI_32;
2460 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2461 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2462 }
2463
2464 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2465 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2466 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2467 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2468 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2469 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2470 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2471
2472 /* The number of real registers is the same whether we are in
2473 ISA16(compact) or ISA32(media). */
2474 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2475 set_gdbarch_sp_regnum (gdbarch, 15);
2476 set_gdbarch_pc_regnum (gdbarch, 64);
2477 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2478 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2479 + NUM_PSEUDO_REGS_SH_COMPACT);
2480
2481 set_gdbarch_register_name (gdbarch, sh64_register_name);
2482 set_gdbarch_register_type (gdbarch, sh64_register_type);
2483
2484 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2485 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2486
2487 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2488
2489 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2490 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2491
2492 set_gdbarch_return_value (gdbarch, sh64_return_value);
2493
2494 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2495 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2496
2497 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2498
2499 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2500
2501 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2502 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2503 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2504 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2505 frame_base_set_default (gdbarch, &sh64_frame_base);
2506
2507 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2508
2509 set_gdbarch_elf_make_msymbol_special (gdbarch,
2510 sh64_elf_make_msymbol_special);
2511
2512 /* Hook in ABI-specific overrides, if they have been registered. */
2513 gdbarch_init_osabi (info, gdbarch);
2514
2515 dwarf2_append_unwinders (gdbarch);
2516 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2517
2518 return gdbarch;
2519 }
This page took 0.081686 seconds and 4 git commands to generate.