*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "dwarf2-frame.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "value.h"
38 #include "dis-asm.h"
39 #include "inferior.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "arch-utils.h"
43 #include "regcache.h"
44 #include "osabi.h"
45
46 #include "elf-bfd.h"
47
48 /* sh flags */
49 #include "elf/sh.h"
50 /* registers numbers shared with the simulator */
51 #include "gdb/sim-sh.h"
52
53 /* Information that is dependent on the processor variant. */
54 enum sh_abi
55 {
56 SH_ABI_UNKNOWN,
57 SH_ABI_32,
58 SH_ABI_64
59 };
60
61 struct gdbarch_tdep
62 {
63 enum sh_abi sh_abi;
64 };
65
66 struct sh64_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 LONGEST sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 int media_mode;
77
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
80 CORE_ADDR saved_sp;
81 };
82
83 /* Registers of SH5 */
84 enum
85 {
86 R0_REGNUM = 0,
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
89 ARG0_REGNUM = 2,
90 ARGLAST_REGNUM = 9,
91 FLOAT_ARGLAST_REGNUM = 11,
92 MEDIA_FP_REGNUM = 14,
93 PR_REGNUM = 18,
94 SR_REGNUM = 65,
95 DR0_REGNUM = 141,
96 DR_LAST_REGNUM = 172,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
98 GDB's FP0_REGNUM, which is the number of the first Floating
99 point register. Unfortunately on the sh5, the floating point
100 registers are called FR, and the floating point pairs are called FP. */
101 FPP0_REGNUM = 173,
102 FPP_LAST_REGNUM = 204,
103 FV0_REGNUM = 205,
104 FV_LAST_REGNUM = 220,
105 R0_C_REGNUM = 221,
106 R_LAST_C_REGNUM = 236,
107 PC_C_REGNUM = 237,
108 GBR_C_REGNUM = 238,
109 MACH_C_REGNUM = 239,
110 MACL_C_REGNUM = 240,
111 PR_C_REGNUM = 241,
112 T_C_REGNUM = 242,
113 FPSCR_C_REGNUM = 243,
114 FPUL_C_REGNUM = 244,
115 FP0_C_REGNUM = 245,
116 FP_LAST_C_REGNUM = 260,
117 DR0_C_REGNUM = 261,
118 DR_LAST_C_REGNUM = 268,
119 FV0_C_REGNUM = 269,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
126 };
127
128 static const char *
129 sh64_register_name (int reg_nr)
130 {
131 static char *register_names[] =
132 {
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143
144 /* pc (64-bit) 64 */
145 "pc",
146
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
148 "sr", "ssr", "spc",
149
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
152
153 /* floating point state control register (32-bit) 76 */
154 "fpscr",
155
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
165
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
171
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
177
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
181
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
185 "pc_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
187 "fpscr_c", "fpul_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 ELF_MAKE_MSYMBOL_SPECIAL
210 tests whether an ELF symbol is "special", i.e. refers
211 to a 32-bit function, and sets a "special" bit in a
212 minimal symbol to mark it as a 32-bit function
213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
214
215 #define MSYMBOL_IS_SPECIAL(msym) \
216 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
217
218 static void
219 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220 {
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
226 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
228 }
229 }
230
231 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233 #define IS_ISA32_ADDR(addr) ((addr) & 1)
234 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237 static int
238 pc_is_isa32 (bfd_vma memaddr)
239 {
240 struct minimal_symbol *sym;
241
242 /* If bit 0 of the address is set, assume this is a
243 ISA32 (shmedia) address. */
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
251 if (sym)
252 return MSYMBOL_IS_SPECIAL (sym);
253 else
254 return 0;
255 }
256
257 static const unsigned char *
258 sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
259 {
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264
265 /* The BRK instruction for shcompact is
266 00000000 00111011
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0*/
269
270 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
271 {
272 if (pc_is_isa32 (*pcptr))
273 {
274 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
275 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
276 *lenptr = sizeof (big_breakpoint_media);
277 return big_breakpoint_media;
278 }
279 else
280 {
281 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
282 *lenptr = sizeof (big_breakpoint_compact);
283 return big_breakpoint_compact;
284 }
285 }
286 else
287 {
288 if (pc_is_isa32 (*pcptr))
289 {
290 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
291 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
292 *lenptr = sizeof (little_breakpoint_media);
293 return little_breakpoint_media;
294 }
295 else
296 {
297 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
298 *lenptr = sizeof (little_breakpoint_compact);
299 return little_breakpoint_compact;
300 }
301 }
302 }
303
304 /* Prologue looks like
305 [mov.l <regs>,@-r15]...
306 [sts.l pr,@-r15]
307 [mov.l r14,@-r15]
308 [mov r15,r14]
309
310 Actually it can be more complicated than this. For instance, with
311 newer gcc's:
312
313 mov.l r14,@-r15
314 add #-12,r15
315 mov r15,r14
316 mov r4,r1
317 mov r5,r2
318 mov.l r6,@(4,r14)
319 mov.l r7,@(8,r14)
320 mov.b r1,@r14
321 mov r14,r1
322 mov r14,r1
323 add #2,r1
324 mov.w r2,@r1
325
326 */
327
328 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
329 with l=1 and n = 18 0110101111110001010010100aaa0000 */
330 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
331
332 /* STS.L PR,@-r0 0100000000100010
333 r0-4-->r0, PR-->(r0) */
334 #define IS_STS_R0(x) ((x) == 0x4022)
335
336 /* STS PR, Rm 0000mmmm00101010
337 PR-->Rm */
338 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
339
340 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
341 Rm-->(dispx4+r15) */
342 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
343
344 /* MOV.L R14,@(disp,r15) 000111111110dddd
345 R14-->(dispx4+r15) */
346 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
347
348 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
349 R18-->(dispx8+R14) */
350 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
351
352 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
353 R18-->(dispx8+R15) */
354 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
355
356 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
357 R18-->(dispx4+R15) */
358 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
359
360 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
361 R14-->(dispx8+R15) */
362 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
363
364 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx4+R15) */
366 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
367
368 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
369 R15 + imm --> R15 */
370 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
371
372 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
373 R15 + imm --> R15 */
374 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
375
376 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
377 R15 + R63 --> R14 */
378 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
379
380 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
381 R15 + R63 --> R14 */
382 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
383
384 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
385
386 /* MOV #imm, R0 1110 0000 ssss ssss
387 #imm-->R0 */
388 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
389
390 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
391 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
392
393 /* ADD r15,r0 0011 0000 1111 1100
394 r15+r0-->r0 */
395 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
396
397 /* MOV.L R14 @-R0 0010 0000 1110 0110
398 R14-->(R0-4), R0-4-->R0 */
399 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
400
401 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
402 where Rm is one of r2-r9 which are the argument registers. */
403 /* FIXME: Recognize the float and double register moves too! */
404 #define IS_MEDIA_IND_ARG_MOV(x) \
405 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
406
407 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
408 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
409 where Rm is one of r2-r9 which are the argument registers. */
410 #define IS_MEDIA_ARG_MOV(x) \
411 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
412 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
413
414 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
415 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
416 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
417 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
418 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
419 #define IS_MEDIA_MOV_TO_R14(x) \
420 ((((x) & 0xfffffc0f) == 0xa0e00000) \
421 || (((x) & 0xfffffc0f) == 0xa4e00000) \
422 || (((x) & 0xfffffc0f) == 0xa8e00000) \
423 || (((x) & 0xfffffc0f) == 0xb4e00000) \
424 || (((x) & 0xfffffc0f) == 0xbce00000))
425
426 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
427 where Rm is r2-r9 */
428 #define IS_COMPACT_IND_ARG_MOV(x) \
429 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
430
431 /* compact direct arg move!
432 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
433 #define IS_COMPACT_ARG_MOV(x) \
434 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
435
436 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
437 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
438 #define IS_COMPACT_MOV_TO_R14(x) \
439 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
440
441 #define IS_JSR_R0(x) ((x) == 0x400b)
442 #define IS_NOP(x) ((x) == 0x0009)
443
444
445 /* MOV r15,r14 0110111011110011
446 r15-->r14 */
447 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
448
449 /* ADD #imm,r15 01111111iiiiiiii
450 r15+imm-->r15 */
451 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
452
453 /* Skip any prologue before the guts of a function */
454
455 /* Skip the prologue using the debug information. If this fails we'll
456 fall back on the 'guess' method below. */
457 static CORE_ADDR
458 after_prologue (CORE_ADDR pc)
459 {
460 struct symtab_and_line sal;
461 CORE_ADDR func_addr, func_end;
462
463 /* If we can not find the symbol in the partial symbol table, then
464 there is no hope we can determine the function's start address
465 with this code. */
466 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
467 return 0;
468
469
470 /* Get the line associated with FUNC_ADDR. */
471 sal = find_pc_line (func_addr, 0);
472
473 /* There are only two cases to consider. First, the end of the source line
474 is within the function bounds. In that case we return the end of the
475 source line. Second is the end of the source line extends beyond the
476 bounds of the current function. We need to use the slow code to
477 examine instructions in that case. */
478 if (sal.end < func_end)
479 return sal.end;
480 else
481 return 0;
482 }
483
484 static CORE_ADDR
485 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
486 {
487 CORE_ADDR here, end;
488 int w;
489 int insn_size = (media_mode ? 4 : 2);
490
491 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
492 {
493 if (media_mode)
494 {
495 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
496 here += insn_size;
497 if (IS_MEDIA_IND_ARG_MOV (w))
498 {
499 /* This must be followed by a store to r14, so the argument
500 is where the debug info says it is. This can happen after
501 the SP has been saved, unfortunately. */
502
503 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
504 insn_size);
505 here += insn_size;
506 if (IS_MEDIA_MOV_TO_R14 (next_insn))
507 start_pc = here;
508 }
509 else if (IS_MEDIA_ARG_MOV (w))
510 {
511 /* These instructions store directly the argument in r14. */
512 start_pc = here;
513 }
514 else
515 break;
516 }
517 else
518 {
519 w = read_memory_integer (here, insn_size);
520 w = w & 0xffff;
521 here += insn_size;
522 if (IS_COMPACT_IND_ARG_MOV (w))
523 {
524 /* This must be followed by a store to r14, so the argument
525 is where the debug info says it is. This can happen after
526 the SP has been saved, unfortunately. */
527
528 int next_insn = 0xffff & read_memory_integer (here, insn_size);
529 here += insn_size;
530 if (IS_COMPACT_MOV_TO_R14 (next_insn))
531 start_pc = here;
532 }
533 else if (IS_COMPACT_ARG_MOV (w))
534 {
535 /* These instructions store directly the argument in r14. */
536 start_pc = here;
537 }
538 else if (IS_MOVL_R0 (w))
539 {
540 /* There is a function that gcc calls to get the arguments
541 passed correctly to the function. Only after this
542 function call the arguments will be found at the place
543 where they are supposed to be. This happens in case the
544 argument has to be stored into a 64-bit register (for
545 instance doubles, long longs). SHcompact doesn't have
546 access to the full 64-bits, so we store the register in
547 stack slot and store the address of the stack slot in
548 the register, then do a call through a wrapper that
549 loads the memory value into the register. A SHcompact
550 callee calls an argument decoder
551 (GCC_shcompact_incoming_args) that stores the 64-bit
552 value in a stack slot and stores the address of the
553 stack slot in the register. GCC thinks the argument is
554 just passed by transparent reference, but this is only
555 true after the argument decoder is called. Such a call
556 needs to be considered part of the prologue. */
557
558 /* This must be followed by a JSR @r0 instruction and by
559 a NOP instruction. After these, the prologue is over! */
560
561 int next_insn = 0xffff & read_memory_integer (here, insn_size);
562 here += insn_size;
563 if (IS_JSR_R0 (next_insn))
564 {
565 next_insn = 0xffff & read_memory_integer (here, insn_size);
566 here += insn_size;
567
568 if (IS_NOP (next_insn))
569 start_pc = here;
570 }
571 }
572 else
573 break;
574 }
575 }
576
577 return start_pc;
578 }
579
580 static CORE_ADDR
581 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
582 {
583 CORE_ADDR here, end;
584 int updated_fp = 0;
585 int insn_size = 4;
586 int media_mode = 1;
587
588 if (!start_pc)
589 return 0;
590
591 if (pc_is_isa32 (start_pc) == 0)
592 {
593 insn_size = 2;
594 media_mode = 0;
595 }
596
597 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
598 {
599
600 if (media_mode)
601 {
602 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
603 here += insn_size;
604 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
605 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
606 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
607 {
608 start_pc = here;
609 }
610 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
611 {
612 start_pc = here;
613 updated_fp = 1;
614 }
615 else
616 if (updated_fp)
617 {
618 /* Don't bail out yet, we may have arguments stored in
619 registers here, according to the debug info, so that
620 gdb can print the frames correctly. */
621 start_pc = look_for_args_moves (here - insn_size, media_mode);
622 break;
623 }
624 }
625 else
626 {
627 int w = 0xffff & read_memory_integer (here, insn_size);
628 here += insn_size;
629
630 if (IS_STS_R0 (w) || IS_STS_PR (w)
631 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
632 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
633 {
634 start_pc = here;
635 }
636 else if (IS_MOV_SP_FP (w))
637 {
638 start_pc = here;
639 updated_fp = 1;
640 }
641 else
642 if (updated_fp)
643 {
644 /* Don't bail out yet, we may have arguments stored in
645 registers here, according to the debug info, so that
646 gdb can print the frames correctly. */
647 start_pc = look_for_args_moves (here - insn_size, media_mode);
648 break;
649 }
650 }
651 }
652
653 return start_pc;
654 }
655
656 static CORE_ADDR
657 sh64_skip_prologue (CORE_ADDR pc)
658 {
659 CORE_ADDR post_prologue_pc;
660
661 /* See if we can determine the end of the prologue via the symbol table.
662 If so, then return either PC, or the PC after the prologue, whichever
663 is greater. */
664 post_prologue_pc = after_prologue (pc);
665
666 /* If after_prologue returned a useful address, then use it. Else
667 fall back on the instruction skipping code. */
668 if (post_prologue_pc != 0)
669 return max (pc, post_prologue_pc);
670 else
671 return sh64_skip_prologue_hard_way (pc);
672 }
673
674 /* Should call_function allocate stack space for a struct return? */
675 static int
676 sh64_use_struct_convention (struct type *type)
677 {
678 return (TYPE_LENGTH (type) > 8);
679 }
680
681 /* Disassemble an instruction. */
682 static int
683 gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
684 {
685 info->endian = TARGET_BYTE_ORDER;
686 return print_insn_sh (memaddr, info);
687 }
688
689 /* For vectors of 4 floating point registers. */
690 static int
691 sh64_fv_reg_base_num (int fv_regnum)
692 {
693 int fp_regnum;
694
695 fp_regnum = FP0_REGNUM +
696 (fv_regnum - FV0_REGNUM) * 4;
697 return fp_regnum;
698 }
699
700 /* For double precision floating point registers, i.e 2 fp regs.*/
701 static int
702 sh64_dr_reg_base_num (int dr_regnum)
703 {
704 int fp_regnum;
705
706 fp_regnum = FP0_REGNUM +
707 (dr_regnum - DR0_REGNUM) * 2;
708 return fp_regnum;
709 }
710
711 /* For pairs of floating point registers */
712 static int
713 sh64_fpp_reg_base_num (int fpp_regnum)
714 {
715 int fp_regnum;
716
717 fp_regnum = FP0_REGNUM +
718 (fpp_regnum - FPP0_REGNUM) * 2;
719 return fp_regnum;
720 }
721
722 /* *INDENT-OFF* */
723 /*
724 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
725 GDB_REGNUM BASE_REGNUM
726 r0_c 221 0
727 r1_c 222 1
728 r2_c 223 2
729 r3_c 224 3
730 r4_c 225 4
731 r5_c 226 5
732 r6_c 227 6
733 r7_c 228 7
734 r8_c 229 8
735 r9_c 230 9
736 r10_c 231 10
737 r11_c 232 11
738 r12_c 233 12
739 r13_c 234 13
740 r14_c 235 14
741 r15_c 236 15
742
743 pc_c 237 64
744 gbr_c 238 16
745 mach_c 239 17
746 macl_c 240 17
747 pr_c 241 18
748 t_c 242 19
749 fpscr_c 243 76
750 fpul_c 244 109
751
752 fr0_c 245 77
753 fr1_c 246 78
754 fr2_c 247 79
755 fr3_c 248 80
756 fr4_c 249 81
757 fr5_c 250 82
758 fr6_c 251 83
759 fr7_c 252 84
760 fr8_c 253 85
761 fr9_c 254 86
762 fr10_c 255 87
763 fr11_c 256 88
764 fr12_c 257 89
765 fr13_c 258 90
766 fr14_c 259 91
767 fr15_c 260 92
768
769 dr0_c 261 77
770 dr2_c 262 79
771 dr4_c 263 81
772 dr6_c 264 83
773 dr8_c 265 85
774 dr10_c 266 87
775 dr12_c 267 89
776 dr14_c 268 91
777
778 fv0_c 269 77
779 fv4_c 270 81
780 fv8_c 271 85
781 fv12_c 272 91
782 */
783 /* *INDENT-ON* */
784 static int
785 sh64_compact_reg_base_num (int reg_nr)
786 {
787 int base_regnum = reg_nr;
788
789 /* general register N maps to general register N */
790 if (reg_nr >= R0_C_REGNUM
791 && reg_nr <= R_LAST_C_REGNUM)
792 base_regnum = reg_nr - R0_C_REGNUM;
793
794 /* floating point register N maps to floating point register N */
795 else if (reg_nr >= FP0_C_REGNUM
796 && reg_nr <= FP_LAST_C_REGNUM)
797 base_regnum = reg_nr - FP0_C_REGNUM + FP0_REGNUM;
798
799 /* double prec register N maps to base regnum for double prec register N */
800 else if (reg_nr >= DR0_C_REGNUM
801 && reg_nr <= DR_LAST_C_REGNUM)
802 base_regnum = sh64_dr_reg_base_num (DR0_REGNUM + reg_nr - DR0_C_REGNUM);
803
804 /* vector N maps to base regnum for vector register N */
805 else if (reg_nr >= FV0_C_REGNUM
806 && reg_nr <= FV_LAST_C_REGNUM)
807 base_regnum = sh64_fv_reg_base_num (FV0_REGNUM + reg_nr - FV0_C_REGNUM);
808
809 else if (reg_nr == PC_C_REGNUM)
810 base_regnum = PC_REGNUM;
811
812 else if (reg_nr == GBR_C_REGNUM)
813 base_regnum = 16;
814
815 else if (reg_nr == MACH_C_REGNUM
816 || reg_nr == MACL_C_REGNUM)
817 base_regnum = 17;
818
819 else if (reg_nr == PR_C_REGNUM)
820 base_regnum = PR_REGNUM;
821
822 else if (reg_nr == T_C_REGNUM)
823 base_regnum = 19;
824
825 else if (reg_nr == FPSCR_C_REGNUM)
826 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
827
828 else if (reg_nr == FPUL_C_REGNUM)
829 base_regnum = FP0_REGNUM + 32;
830
831 return base_regnum;
832 }
833
834 static int
835 sign_extend (int value, int bits)
836 {
837 value = value & ((1 << bits) - 1);
838 return (value & (1 << (bits - 1))
839 ? value | (~((1 << bits) - 1))
840 : value);
841 }
842
843 static void
844 sh64_analyze_prologue (struct gdbarch *gdbarch,
845 struct sh64_frame_cache *cache,
846 CORE_ADDR func_pc,
847 CORE_ADDR current_pc)
848 {
849 int reg_nr;
850 int pc;
851 int opc;
852 int insn;
853 int r0_val = 0;
854 int insn_size;
855 int gdb_register_number;
856 int register_number;
857 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
858
859 cache->sp_offset = 0;
860
861 /* Loop around examining the prologue insns until we find something
862 that does not appear to be part of the prologue. But give up
863 after 20 of them, since we're getting silly then. */
864
865 pc = func_pc;
866
867 if (cache->media_mode)
868 insn_size = 4;
869 else
870 insn_size = 2;
871
872 opc = pc + (insn_size * 28);
873 if (opc > current_pc)
874 opc = current_pc;
875 for ( ; pc <= opc; pc += insn_size)
876 {
877 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
878 : pc,
879 insn_size);
880
881 if (!cache->media_mode)
882 {
883 if (IS_STS_PR (insn))
884 {
885 int next_insn = read_memory_integer (pc + insn_size, insn_size);
886 if (IS_MOV_TO_R15 (next_insn))
887 {
888 cache->saved_regs[PR_REGNUM] =
889 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
890 pc += insn_size;
891 }
892 }
893
894 else if (IS_MOV_R14 (insn))
895 cache->saved_regs[MEDIA_FP_REGNUM] =
896 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
897
898 else if (IS_MOV_R0 (insn))
899 {
900 /* Put in R0 the offset from SP at which to store some
901 registers. We are interested in this value, because it
902 will tell us where the given registers are stored within
903 the frame. */
904 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
905 }
906
907 else if (IS_ADD_SP_R0 (insn))
908 {
909 /* This instruction still prepares r0, but we don't care.
910 We already have the offset in r0_val. */
911 }
912
913 else if (IS_STS_R0 (insn))
914 {
915 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
916 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
917 r0_val -= 4;
918 }
919
920 else if (IS_MOV_R14_R0 (insn))
921 {
922 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
923 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
924 - (r0_val - 4);
925 r0_val -= 4;
926 }
927
928 else if (IS_ADD_SP (insn))
929 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
930
931 else if (IS_MOV_SP_FP (insn))
932 break;
933 }
934 else
935 {
936 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
937 cache->sp_offset -=
938 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
939
940 else if (IS_STQ_R18_R15 (insn))
941 cache->saved_regs[PR_REGNUM] =
942 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
943
944 else if (IS_STL_R18_R15 (insn))
945 cache->saved_regs[PR_REGNUM] =
946 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
947
948 else if (IS_STQ_R14_R15 (insn))
949 cache->saved_regs[MEDIA_FP_REGNUM] =
950 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
951
952 else if (IS_STL_R14_R15 (insn))
953 cache->saved_regs[MEDIA_FP_REGNUM] =
954 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
955
956 else if (IS_MOV_SP_FP_MEDIA (insn))
957 break;
958 }
959 }
960
961 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
962 cache->uses_fp = 1;
963 }
964
965 static CORE_ADDR
966 sh64_extract_struct_value_address (struct regcache *regcache)
967 {
968 /* FIXME: cagney/2004-01-17: Does the ABI guarantee that the return
969 address regster is preserved across function calls? Probably
970 not, making this function wrong. */
971 ULONGEST val;
972 regcache_raw_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &val);
973 return val;
974 }
975
976 static CORE_ADDR
977 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
978 {
979 return sp & ~7;
980 }
981
982 /* Function: push_dummy_call
983 Setup the function arguments for calling a function in the inferior.
984
985 On the Renesas SH architecture, there are four registers (R4 to R7)
986 which are dedicated for passing function arguments. Up to the first
987 four arguments (depending on size) may go into these registers.
988 The rest go on the stack.
989
990 Arguments that are smaller than 4 bytes will still take up a whole
991 register or a whole 32-bit word on the stack, and will be
992 right-justified in the register or the stack word. This includes
993 chars, shorts, and small aggregate types.
994
995 Arguments that are larger than 4 bytes may be split between two or
996 more registers. If there are not enough registers free, an argument
997 may be passed partly in a register (or registers), and partly on the
998 stack. This includes doubles, long longs, and larger aggregates.
999 As far as I know, there is no upper limit to the size of aggregates
1000 that will be passed in this way; in other words, the convention of
1001 passing a pointer to a large aggregate instead of a copy is not used.
1002
1003 An exceptional case exists for struct arguments (and possibly other
1004 aggregates such as arrays) if the size is larger than 4 bytes but
1005 not a multiple of 4 bytes. In this case the argument is never split
1006 between the registers and the stack, but instead is copied in its
1007 entirety onto the stack, AND also copied into as many registers as
1008 there is room for. In other words, space in registers permitting,
1009 two copies of the same argument are passed in. As far as I can tell,
1010 only the one on the stack is used, although that may be a function
1011 of the level of compiler optimization. I suspect this is a compiler
1012 bug. Arguments of these odd sizes are left-justified within the
1013 word (as opposed to arguments smaller than 4 bytes, which are
1014 right-justified).
1015
1016 If the function is to return an aggregate type such as a struct, it
1017 is either returned in the normal return value register R0 (if its
1018 size is no greater than one byte), or else the caller must allocate
1019 space into which the callee will copy the return value (if the size
1020 is greater than one byte). In this case, a pointer to the return
1021 value location is passed into the callee in register R2, which does
1022 not displace any of the other arguments passed in via registers R4
1023 to R7. */
1024
1025 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1026 non-scalar (struct, union) elements (even if the elements are
1027 floats).
1028 FR0-FR11 for single precision floating point (float)
1029 DR0-DR10 for double precision floating point (double)
1030
1031 If a float is argument number 3 (for instance) and arguments number
1032 1,2, and 4 are integer, the mapping will be:
1033 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1034
1035 If a float is argument number 10 (for instance) and arguments number
1036 1 through 10 are integer, the mapping will be:
1037 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1038 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1039 I.e. there is hole in the stack.
1040
1041 Different rules apply for variable arguments functions, and for functions
1042 for which the prototype is not known. */
1043
1044 static CORE_ADDR
1045 sh64_push_dummy_call (struct gdbarch *gdbarch,
1046 struct value *function,
1047 struct regcache *regcache,
1048 CORE_ADDR bp_addr,
1049 int nargs, struct value **args,
1050 CORE_ADDR sp, int struct_return,
1051 CORE_ADDR struct_addr)
1052 {
1053 int stack_offset, stack_alloc;
1054 int int_argreg;
1055 int float_argreg;
1056 int double_argreg;
1057 int float_arg_index = 0;
1058 int double_arg_index = 0;
1059 int argnum;
1060 struct type *type;
1061 CORE_ADDR regval;
1062 char *val;
1063 char valbuf[8];
1064 char valbuf_tmp[8];
1065 int len;
1066 int argreg_size;
1067 int fp_args[12];
1068
1069 memset (fp_args, 0, sizeof (fp_args));
1070
1071 /* first force sp to a 8-byte alignment */
1072 sp = sh64_frame_align (gdbarch, sp);
1073
1074 /* The "struct return pointer" pseudo-argument has its own dedicated
1075 register */
1076
1077 if (struct_return)
1078 regcache_cooked_write_unsigned (regcache,
1079 STRUCT_RETURN_REGNUM, struct_addr);
1080
1081 /* Now make sure there's space on the stack */
1082 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1083 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1084 sp -= stack_alloc; /* make room on stack for args */
1085
1086 /* Now load as many as possible of the first arguments into
1087 registers, and push the rest onto the stack. There are 64 bytes
1088 in eight registers available. Loop thru args from first to last. */
1089
1090 int_argreg = ARG0_REGNUM;
1091 float_argreg = FP0_REGNUM;
1092 double_argreg = DR0_REGNUM;
1093
1094 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1095 {
1096 type = value_type (args[argnum]);
1097 len = TYPE_LENGTH (type);
1098 memset (valbuf, 0, sizeof (valbuf));
1099
1100 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1101 {
1102 argreg_size = register_size (current_gdbarch, int_argreg);
1103
1104 if (len < argreg_size)
1105 {
1106 /* value gets right-justified in the register or stack word */
1107 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1108 memcpy (valbuf + argreg_size - len,
1109 (char *) value_contents (args[argnum]), len);
1110 else
1111 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1112
1113 val = valbuf;
1114 }
1115 else
1116 val = (char *) value_contents (args[argnum]);
1117
1118 while (len > 0)
1119 {
1120 if (int_argreg > ARGLAST_REGNUM)
1121 {
1122 /* must go on the stack */
1123 write_memory (sp + stack_offset, (const bfd_byte *) val,
1124 argreg_size);
1125 stack_offset += 8;/*argreg_size;*/
1126 }
1127 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1128 That's because some *&^%$ things get passed on the stack
1129 AND in the registers! */
1130 if (int_argreg <= ARGLAST_REGNUM)
1131 {
1132 /* there's room in a register */
1133 regval = extract_unsigned_integer (val, argreg_size);
1134 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1135 }
1136 /* Store the value 8 bytes at a time. This means that
1137 things larger than 8 bytes may go partly in registers
1138 and partly on the stack. FIXME: argreg is incremented
1139 before we use its size. */
1140 len -= argreg_size;
1141 val += argreg_size;
1142 int_argreg++;
1143 }
1144 }
1145 else
1146 {
1147 val = (char *) value_contents (args[argnum]);
1148 if (len == 4)
1149 {
1150 /* Where is it going to be stored? */
1151 while (fp_args[float_arg_index])
1152 float_arg_index ++;
1153
1154 /* Now float_argreg points to the register where it
1155 should be stored. Are we still within the allowed
1156 register set? */
1157 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1158 {
1159 /* Goes in FR0...FR11 */
1160 regcache_cooked_write (regcache,
1161 FP0_REGNUM + float_arg_index,
1162 val);
1163 fp_args[float_arg_index] = 1;
1164 /* Skip the corresponding general argument register. */
1165 int_argreg ++;
1166 }
1167 else
1168 ;
1169 /* Store it as the integers, 8 bytes at the time, if
1170 necessary spilling on the stack. */
1171
1172 }
1173 else if (len == 8)
1174 {
1175 /* Where is it going to be stored? */
1176 while (fp_args[double_arg_index])
1177 double_arg_index += 2;
1178 /* Now double_argreg points to the register
1179 where it should be stored.
1180 Are we still within the allowed register set? */
1181 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1182 {
1183 /* Goes in DR0...DR10 */
1184 /* The numbering of the DRi registers is consecutive,
1185 i.e. includes odd numbers. */
1186 int double_register_offset = double_arg_index / 2;
1187 int regnum = DR0_REGNUM + double_register_offset;
1188 regcache_cooked_write (regcache, regnum, val);
1189 fp_args[double_arg_index] = 1;
1190 fp_args[double_arg_index + 1] = 1;
1191 /* Skip the corresponding general argument register. */
1192 int_argreg ++;
1193 }
1194 else
1195 ;
1196 /* Store it as the integers, 8 bytes at the time, if
1197 necessary spilling on the stack. */
1198 }
1199 }
1200 }
1201 /* Store return address. */
1202 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1203
1204 /* Update stack pointer. */
1205 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1206
1207 return sp;
1208 }
1209
1210 /* Find a function's return value in the appropriate registers (in
1211 regbuf), and copy it into valbuf. Extract from an array REGBUF
1212 containing the (raw) register state a function return value of type
1213 TYPE, and copy that, in virtual format, into VALBUF. */
1214 static void
1215 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1216 void *valbuf)
1217 {
1218 int len = TYPE_LENGTH (type);
1219
1220 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1221 {
1222 if (len == 4)
1223 {
1224 /* Return value stored in FP0_REGNUM */
1225 regcache_raw_read (regcache, FP0_REGNUM, valbuf);
1226 }
1227 else if (len == 8)
1228 {
1229 /* return value stored in DR0_REGNUM */
1230 DOUBLEST val;
1231 gdb_byte buf[8];
1232
1233 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1234
1235 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1236 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1237 buf, &val);
1238 else
1239 floatformat_to_doublest (&floatformat_ieee_double_big,
1240 buf, &val);
1241 store_typed_floating (valbuf, type, val);
1242 }
1243 }
1244 else
1245 {
1246 if (len <= 8)
1247 {
1248 int offset;
1249 char buf[8];
1250 /* Result is in register 2. If smaller than 8 bytes, it is padded
1251 at the most significant end. */
1252 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1253
1254 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1255 offset = register_size (current_gdbarch, DEFAULT_RETURN_REGNUM)
1256 - len;
1257 else
1258 offset = 0;
1259 memcpy (valbuf, buf + offset, len);
1260 }
1261 else
1262 error ("bad size for return value");
1263 }
1264 }
1265
1266 /* Write into appropriate registers a function return value
1267 of type TYPE, given in virtual format.
1268 If the architecture is sh4 or sh3e, store a function's return value
1269 in the R0 general register or in the FP0 floating point register,
1270 depending on the type of the return value. In all the other cases
1271 the result is stored in r0, left-justified. */
1272
1273 static void
1274 sh64_store_return_value (struct type *type, struct regcache *regcache,
1275 const void *valbuf)
1276 {
1277 char buf[64]; /* more than enough... */
1278 int len = TYPE_LENGTH (type);
1279
1280 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1281 {
1282 int i, regnum = FP0_REGNUM;
1283 for (i = 0; i < len; i += 4)
1284 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1285 regcache_raw_write (regcache, regnum++,
1286 (char *) valbuf + len - 4 - i);
1287 else
1288 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1289 }
1290 else
1291 {
1292 int return_register = DEFAULT_RETURN_REGNUM;
1293 int offset = 0;
1294
1295 if (len <= register_size (current_gdbarch, return_register))
1296 {
1297 /* Pad with zeros. */
1298 memset (buf, 0, register_size (current_gdbarch, return_register));
1299 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1300 offset = 0; /*register_size (current_gdbarch,
1301 return_register) - len;*/
1302 else
1303 offset = register_size (current_gdbarch, return_register) - len;
1304
1305 memcpy (buf + offset, valbuf, len);
1306 regcache_raw_write (regcache, return_register, buf);
1307 }
1308 else
1309 regcache_raw_write (regcache, return_register, valbuf);
1310 }
1311 }
1312
1313 static enum return_value_convention
1314 sh64_return_value (struct gdbarch *gdbarch, struct type *type,
1315 struct regcache *regcache,
1316 gdb_byte *readbuf, const gdb_byte *writebuf)
1317 {
1318 if (sh64_use_struct_convention (type))
1319 return RETURN_VALUE_STRUCT_CONVENTION;
1320 if (writebuf)
1321 sh64_store_return_value (type, regcache, writebuf);
1322 else if (readbuf)
1323 sh64_extract_return_value (type, regcache, readbuf);
1324 return RETURN_VALUE_REGISTER_CONVENTION;
1325 }
1326
1327 static void
1328 sh64_show_media_regs (void)
1329 {
1330 int i;
1331
1332 printf_filtered ("PC=%s SR=%016llx \n",
1333 paddr (read_register (PC_REGNUM)),
1334 (long long) read_register (SR_REGNUM));
1335
1336 printf_filtered ("SSR=%016llx SPC=%016llx \n",
1337 (long long) read_register (SSR_REGNUM),
1338 (long long) read_register (SPC_REGNUM));
1339 printf_filtered ("FPSCR=%016lx\n ",
1340 (long) read_register (FPSCR_REGNUM));
1341
1342 for (i = 0; i < 64; i = i + 4)
1343 printf_filtered ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1344 i, i + 3,
1345 (long long) read_register (i + 0),
1346 (long long) read_register (i + 1),
1347 (long long) read_register (i + 2),
1348 (long long) read_register (i + 3));
1349
1350 printf_filtered ("\n");
1351
1352 for (i = 0; i < 64; i = i + 8)
1353 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1354 i, i + 7,
1355 (long) read_register (FP0_REGNUM + i + 0),
1356 (long) read_register (FP0_REGNUM + i + 1),
1357 (long) read_register (FP0_REGNUM + i + 2),
1358 (long) read_register (FP0_REGNUM + i + 3),
1359 (long) read_register (FP0_REGNUM + i + 4),
1360 (long) read_register (FP0_REGNUM + i + 5),
1361 (long) read_register (FP0_REGNUM + i + 6),
1362 (long) read_register (FP0_REGNUM + i + 7));
1363 }
1364
1365 static void
1366 sh64_show_compact_regs (void)
1367 {
1368 int i;
1369
1370 printf_filtered ("PC=%s \n",
1371 paddr (read_register (PC_C_REGNUM)));
1372
1373 printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1374 (long) read_register (GBR_C_REGNUM),
1375 (long) read_register (MACH_C_REGNUM),
1376 (long) read_register (MACL_C_REGNUM),
1377 (long) read_register (PR_C_REGNUM),
1378 (long) read_register (T_C_REGNUM));
1379 printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
1380 (long) read_register (FPSCR_C_REGNUM),
1381 (long) read_register (FPUL_C_REGNUM));
1382
1383 for (i = 0; i < 16; i = i + 4)
1384 printf_filtered ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1385 i, i + 3,
1386 (long) read_register (i + 0),
1387 (long) read_register (i + 1),
1388 (long) read_register (i + 2),
1389 (long) read_register (i + 3));
1390
1391 printf_filtered ("\n");
1392
1393 for (i = 0; i < 16; i = i + 8)
1394 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1395 i, i + 7,
1396 (long) read_register (FP0_REGNUM + i + 0),
1397 (long) read_register (FP0_REGNUM + i + 1),
1398 (long) read_register (FP0_REGNUM + i + 2),
1399 (long) read_register (FP0_REGNUM + i + 3),
1400 (long) read_register (FP0_REGNUM + i + 4),
1401 (long) read_register (FP0_REGNUM + i + 5),
1402 (long) read_register (FP0_REGNUM + i + 6),
1403 (long) read_register (FP0_REGNUM + i + 7));
1404 }
1405
1406 /* FIXME!!! This only shows the registers for shmedia, excluding the
1407 pseudo registers. */
1408 void
1409 sh64_show_regs (void)
1410 {
1411 if (pc_is_isa32 (get_frame_pc (get_selected_frame (NULL))))
1412 sh64_show_media_regs ();
1413 else
1414 sh64_show_compact_regs ();
1415 }
1416
1417 /* *INDENT-OFF* */
1418 /*
1419 SH MEDIA MODE (ISA 32)
1420 general registers (64-bit) 0-63
1421 0 r0, r1, r2, r3, r4, r5, r6, r7,
1422 64 r8, r9, r10, r11, r12, r13, r14, r15,
1423 128 r16, r17, r18, r19, r20, r21, r22, r23,
1424 192 r24, r25, r26, r27, r28, r29, r30, r31,
1425 256 r32, r33, r34, r35, r36, r37, r38, r39,
1426 320 r40, r41, r42, r43, r44, r45, r46, r47,
1427 384 r48, r49, r50, r51, r52, r53, r54, r55,
1428 448 r56, r57, r58, r59, r60, r61, r62, r63,
1429
1430 pc (64-bit) 64
1431 512 pc,
1432
1433 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1434 520 sr, ssr, spc,
1435
1436 target registers (64-bit) 68-75
1437 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1438
1439 floating point state control register (32-bit) 76
1440 608 fpscr,
1441
1442 single precision floating point registers (32-bit) 77-140
1443 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1444 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1445 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1446 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1447 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1448 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1449 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1450 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1451
1452 TOTAL SPACE FOR REGISTERS: 868 bytes
1453
1454 From here on they are all pseudo registers: no memory allocated.
1455 REGISTER_BYTE returns the register byte for the base register.
1456
1457 double precision registers (pseudo) 141-172
1458 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1459 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1460 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1461 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1462
1463 floating point pairs (pseudo) 173-204
1464 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1465 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1466 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1467 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1468
1469 floating point vectors (4 floating point regs) (pseudo) 205-220
1470 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1471 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1472
1473 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1474 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1475 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1476 pc_c,
1477 gbr_c, mach_c, macl_c, pr_c, t_c,
1478 fpscr_c, fpul_c,
1479 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1480 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1481 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1482 fv0_c, fv4_c, fv8_c, fv12_c
1483 */
1484
1485 static struct type *
1486 sh64_build_float_register_type (int high)
1487 {
1488 struct type *temp;
1489
1490 temp = create_range_type (NULL, builtin_type_int, 0, high);
1491 return create_array_type (NULL, builtin_type_float, temp);
1492 }
1493
1494 /* Return the GDB type object for the "standard" data type
1495 of data in register REG_NR. */
1496 static struct type *
1497 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1498 {
1499 if ((reg_nr >= FP0_REGNUM
1500 && reg_nr <= FP_LAST_REGNUM)
1501 || (reg_nr >= FP0_C_REGNUM
1502 && reg_nr <= FP_LAST_C_REGNUM))
1503 return builtin_type_float;
1504 else if ((reg_nr >= DR0_REGNUM
1505 && reg_nr <= DR_LAST_REGNUM)
1506 || (reg_nr >= DR0_C_REGNUM
1507 && reg_nr <= DR_LAST_C_REGNUM))
1508 return builtin_type_double;
1509 else if (reg_nr >= FPP0_REGNUM
1510 && reg_nr <= FPP_LAST_REGNUM)
1511 return sh64_build_float_register_type (1);
1512 else if ((reg_nr >= FV0_REGNUM
1513 && reg_nr <= FV_LAST_REGNUM)
1514 ||(reg_nr >= FV0_C_REGNUM
1515 && reg_nr <= FV_LAST_C_REGNUM))
1516 return sh64_build_float_register_type (3);
1517 else if (reg_nr == FPSCR_REGNUM)
1518 return builtin_type_int;
1519 else if (reg_nr >= R0_C_REGNUM
1520 && reg_nr < FP0_C_REGNUM)
1521 return builtin_type_int;
1522 else
1523 return builtin_type_long_long;
1524 }
1525
1526 static void
1527 sh64_register_convert_to_virtual (int regnum, struct type *type,
1528 char *from, char *to)
1529 {
1530 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
1531 {
1532 /* It is a no-op. */
1533 memcpy (to, from, register_size (current_gdbarch, regnum));
1534 return;
1535 }
1536
1537 if ((regnum >= DR0_REGNUM
1538 && regnum <= DR_LAST_REGNUM)
1539 || (regnum >= DR0_C_REGNUM
1540 && regnum <= DR_LAST_C_REGNUM))
1541 {
1542 DOUBLEST val;
1543 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1544 from, &val);
1545 store_typed_floating (to, type, val);
1546 }
1547 else
1548 error ("sh64_register_convert_to_virtual called with non DR register number");
1549 }
1550
1551 static void
1552 sh64_register_convert_to_raw (struct type *type, int regnum,
1553 const void *from, void *to)
1554 {
1555 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
1556 {
1557 /* It is a no-op. */
1558 memcpy (to, from, register_size (current_gdbarch, regnum));
1559 return;
1560 }
1561
1562 if ((regnum >= DR0_REGNUM
1563 && regnum <= DR_LAST_REGNUM)
1564 || (regnum >= DR0_C_REGNUM
1565 && regnum <= DR_LAST_C_REGNUM))
1566 {
1567 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
1568 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1569 &val, to);
1570 }
1571 else
1572 error ("sh64_register_convert_to_raw called with non DR register number");
1573 }
1574
1575 static void
1576 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1577 int reg_nr, gdb_byte *buffer)
1578 {
1579 int base_regnum;
1580 int portion;
1581 int offset = 0;
1582 char temp_buffer[MAX_REGISTER_SIZE];
1583
1584 if (reg_nr >= DR0_REGNUM
1585 && reg_nr <= DR_LAST_REGNUM)
1586 {
1587 base_regnum = sh64_dr_reg_base_num (reg_nr);
1588
1589 /* Build the value in the provided buffer. */
1590 /* DR regs are double precision registers obtained by
1591 concatenating 2 single precision floating point registers. */
1592 for (portion = 0; portion < 2; portion++)
1593 regcache_raw_read (regcache, base_regnum + portion,
1594 (temp_buffer
1595 + register_size (gdbarch, base_regnum) * portion));
1596
1597 /* We must pay attention to the endianness. */
1598 sh64_register_convert_to_virtual (reg_nr,
1599 register_type (gdbarch, reg_nr),
1600 temp_buffer, buffer);
1601
1602 }
1603
1604 else if (reg_nr >= FPP0_REGNUM
1605 && reg_nr <= FPP_LAST_REGNUM)
1606 {
1607 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1608
1609 /* Build the value in the provided buffer. */
1610 /* FPP regs are pairs of single precision registers obtained by
1611 concatenating 2 single precision floating point registers. */
1612 for (portion = 0; portion < 2; portion++)
1613 regcache_raw_read (regcache, base_regnum + portion,
1614 ((char *) buffer
1615 + register_size (gdbarch, base_regnum) * portion));
1616 }
1617
1618 else if (reg_nr >= FV0_REGNUM
1619 && reg_nr <= FV_LAST_REGNUM)
1620 {
1621 base_regnum = sh64_fv_reg_base_num (reg_nr);
1622
1623 /* Build the value in the provided buffer. */
1624 /* FV regs are vectors of single precision registers obtained by
1625 concatenating 4 single precision floating point registers. */
1626 for (portion = 0; portion < 4; portion++)
1627 regcache_raw_read (regcache, base_regnum + portion,
1628 ((char *) buffer
1629 + register_size (gdbarch, base_regnum) * portion));
1630 }
1631
1632 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1633 else if (reg_nr >= R0_C_REGNUM
1634 && reg_nr <= T_C_REGNUM)
1635 {
1636 base_regnum = sh64_compact_reg_base_num (reg_nr);
1637
1638 /* Build the value in the provided buffer. */
1639 regcache_raw_read (regcache, base_regnum, temp_buffer);
1640 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1641 offset = 4;
1642 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1643 }
1644
1645 else if (reg_nr >= FP0_C_REGNUM
1646 && reg_nr <= FP_LAST_C_REGNUM)
1647 {
1648 base_regnum = sh64_compact_reg_base_num (reg_nr);
1649
1650 /* Build the value in the provided buffer. */
1651 /* Floating point registers map 1-1 to the media fp regs,
1652 they have the same size and endianness. */
1653 regcache_raw_read (regcache, base_regnum, buffer);
1654 }
1655
1656 else if (reg_nr >= DR0_C_REGNUM
1657 && reg_nr <= DR_LAST_C_REGNUM)
1658 {
1659 base_regnum = sh64_compact_reg_base_num (reg_nr);
1660
1661 /* DR_C regs are double precision registers obtained by
1662 concatenating 2 single precision floating point registers. */
1663 for (portion = 0; portion < 2; portion++)
1664 regcache_raw_read (regcache, base_regnum + portion,
1665 (temp_buffer
1666 + register_size (gdbarch, base_regnum) * portion));
1667
1668 /* We must pay attention to the endianness. */
1669 sh64_register_convert_to_virtual (reg_nr,
1670 register_type (gdbarch, reg_nr),
1671 temp_buffer, buffer);
1672 }
1673
1674 else if (reg_nr >= FV0_C_REGNUM
1675 && reg_nr <= FV_LAST_C_REGNUM)
1676 {
1677 base_regnum = sh64_compact_reg_base_num (reg_nr);
1678
1679 /* Build the value in the provided buffer. */
1680 /* FV_C regs are vectors of single precision registers obtained by
1681 concatenating 4 single precision floating point registers. */
1682 for (portion = 0; portion < 4; portion++)
1683 regcache_raw_read (regcache, base_regnum + portion,
1684 ((char *) buffer
1685 + register_size (gdbarch, base_regnum) * portion));
1686 }
1687
1688 else if (reg_nr == FPSCR_C_REGNUM)
1689 {
1690 int fpscr_base_regnum;
1691 int sr_base_regnum;
1692 unsigned int fpscr_value;
1693 unsigned int sr_value;
1694 unsigned int fpscr_c_value;
1695 unsigned int fpscr_c_part1_value;
1696 unsigned int fpscr_c_part2_value;
1697
1698 fpscr_base_regnum = FPSCR_REGNUM;
1699 sr_base_regnum = SR_REGNUM;
1700
1701 /* Build the value in the provided buffer. */
1702 /* FPSCR_C is a very weird register that contains sparse bits
1703 from the FPSCR and the SR architectural registers.
1704 Specifically: */
1705 /* *INDENT-OFF* */
1706 /*
1707 FPSRC_C bit
1708 0 Bit 0 of FPSCR
1709 1 reserved
1710 2-17 Bit 2-18 of FPSCR
1711 18-20 Bits 12,13,14 of SR
1712 21-31 reserved
1713 */
1714 /* *INDENT-ON* */
1715 /* Get FPSCR into a local buffer */
1716 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1717 /* Get value as an int. */
1718 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1719 /* Get SR into a local buffer */
1720 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1721 /* Get value as an int. */
1722 sr_value = extract_unsigned_integer (temp_buffer, 4);
1723 /* Build the new value. */
1724 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1725 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1726 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1727 /* Store that in out buffer!!! */
1728 store_unsigned_integer (buffer, 4, fpscr_c_value);
1729 /* FIXME There is surely an endianness gotcha here. */
1730 }
1731
1732 else if (reg_nr == FPUL_C_REGNUM)
1733 {
1734 base_regnum = sh64_compact_reg_base_num (reg_nr);
1735
1736 /* FPUL_C register is floating point register 32,
1737 same size, same endianness. */
1738 regcache_raw_read (regcache, base_regnum, buffer);
1739 }
1740 }
1741
1742 static void
1743 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1744 int reg_nr, const gdb_byte *buffer)
1745 {
1746 int base_regnum, portion;
1747 int offset;
1748 char temp_buffer[MAX_REGISTER_SIZE];
1749
1750 if (reg_nr >= DR0_REGNUM
1751 && reg_nr <= DR_LAST_REGNUM)
1752 {
1753 base_regnum = sh64_dr_reg_base_num (reg_nr);
1754 /* We must pay attention to the endianness. */
1755 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1756 reg_nr,
1757 buffer, temp_buffer);
1758
1759 /* Write the real regs for which this one is an alias. */
1760 for (portion = 0; portion < 2; portion++)
1761 regcache_raw_write (regcache, base_regnum + portion,
1762 (temp_buffer
1763 + register_size (gdbarch,
1764 base_regnum) * portion));
1765 }
1766
1767 else if (reg_nr >= FPP0_REGNUM
1768 && reg_nr <= FPP_LAST_REGNUM)
1769 {
1770 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1771
1772 /* Write the real regs for which this one is an alias. */
1773 for (portion = 0; portion < 2; portion++)
1774 regcache_raw_write (regcache, base_regnum + portion,
1775 ((char *) buffer
1776 + register_size (gdbarch,
1777 base_regnum) * portion));
1778 }
1779
1780 else if (reg_nr >= FV0_REGNUM
1781 && reg_nr <= FV_LAST_REGNUM)
1782 {
1783 base_regnum = sh64_fv_reg_base_num (reg_nr);
1784
1785 /* Write the real regs for which this one is an alias. */
1786 for (portion = 0; portion < 4; portion++)
1787 regcache_raw_write (regcache, base_regnum + portion,
1788 ((char *) buffer
1789 + register_size (gdbarch,
1790 base_regnum) * portion));
1791 }
1792
1793 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1794 register but only 4 bytes of it. */
1795 else if (reg_nr >= R0_C_REGNUM
1796 && reg_nr <= T_C_REGNUM)
1797 {
1798 base_regnum = sh64_compact_reg_base_num (reg_nr);
1799 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1800 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1801 offset = 4;
1802 else
1803 offset = 0;
1804 /* Let's read the value of the base register into a temporary
1805 buffer, so that overwriting the last four bytes with the new
1806 value of the pseudo will leave the upper 4 bytes unchanged. */
1807 regcache_raw_read (regcache, base_regnum, temp_buffer);
1808 /* Write as an 8 byte quantity */
1809 memcpy (temp_buffer + offset, buffer, 4);
1810 regcache_raw_write (regcache, base_regnum, temp_buffer);
1811 }
1812
1813 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1814 registers. Both are 4 bytes. */
1815 else if (reg_nr >= FP0_C_REGNUM
1816 && reg_nr <= FP_LAST_C_REGNUM)
1817 {
1818 base_regnum = sh64_compact_reg_base_num (reg_nr);
1819 regcache_raw_write (regcache, base_regnum, buffer);
1820 }
1821
1822 else if (reg_nr >= DR0_C_REGNUM
1823 && reg_nr <= DR_LAST_C_REGNUM)
1824 {
1825 base_regnum = sh64_compact_reg_base_num (reg_nr);
1826 for (portion = 0; portion < 2; portion++)
1827 {
1828 /* We must pay attention to the endianness. */
1829 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1830 reg_nr,
1831 buffer, temp_buffer);
1832
1833 regcache_raw_write (regcache, base_regnum + portion,
1834 (temp_buffer
1835 + register_size (gdbarch,
1836 base_regnum) * portion));
1837 }
1838 }
1839
1840 else if (reg_nr >= FV0_C_REGNUM
1841 && reg_nr <= FV_LAST_C_REGNUM)
1842 {
1843 base_regnum = sh64_compact_reg_base_num (reg_nr);
1844
1845 for (portion = 0; portion < 4; portion++)
1846 {
1847 regcache_raw_write (regcache, base_regnum + portion,
1848 ((char *) buffer
1849 + register_size (gdbarch,
1850 base_regnum) * portion));
1851 }
1852 }
1853
1854 else if (reg_nr == FPSCR_C_REGNUM)
1855 {
1856 int fpscr_base_regnum;
1857 int sr_base_regnum;
1858 unsigned int fpscr_value;
1859 unsigned int sr_value;
1860 unsigned int old_fpscr_value;
1861 unsigned int old_sr_value;
1862 unsigned int fpscr_c_value;
1863 unsigned int fpscr_mask;
1864 unsigned int sr_mask;
1865
1866 fpscr_base_regnum = FPSCR_REGNUM;
1867 sr_base_regnum = SR_REGNUM;
1868
1869 /* FPSCR_C is a very weird register that contains sparse bits
1870 from the FPSCR and the SR architectural registers.
1871 Specifically: */
1872 /* *INDENT-OFF* */
1873 /*
1874 FPSRC_C bit
1875 0 Bit 0 of FPSCR
1876 1 reserved
1877 2-17 Bit 2-18 of FPSCR
1878 18-20 Bits 12,13,14 of SR
1879 21-31 reserved
1880 */
1881 /* *INDENT-ON* */
1882 /* Get value as an int. */
1883 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1884
1885 /* Build the new values. */
1886 fpscr_mask = 0x0003fffd;
1887 sr_mask = 0x001c0000;
1888
1889 fpscr_value = fpscr_c_value & fpscr_mask;
1890 sr_value = (fpscr_value & sr_mask) >> 6;
1891
1892 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1893 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1894 old_fpscr_value &= 0xfffc0002;
1895 fpscr_value |= old_fpscr_value;
1896 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1897 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1898
1899 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1900 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1901 old_sr_value &= 0xffff8fff;
1902 sr_value |= old_sr_value;
1903 store_unsigned_integer (temp_buffer, 4, sr_value);
1904 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1905 }
1906
1907 else if (reg_nr == FPUL_C_REGNUM)
1908 {
1909 base_regnum = sh64_compact_reg_base_num (reg_nr);
1910 regcache_raw_write (regcache, base_regnum, buffer);
1911 }
1912 }
1913
1914 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1915 shmedia REGISTERS. */
1916 /* Control registers, compact mode. */
1917 static void
1918 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1919 int cr_c_regnum)
1920 {
1921 switch (cr_c_regnum)
1922 {
1923 case PC_C_REGNUM:
1924 fprintf_filtered (file, "pc_c\t0x%08x\n",
1925 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1926 break;
1927 case GBR_C_REGNUM:
1928 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1929 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1930 break;
1931 case MACH_C_REGNUM:
1932 fprintf_filtered (file, "mach_c\t0x%08x\n",
1933 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1934 break;
1935 case MACL_C_REGNUM:
1936 fprintf_filtered (file, "macl_c\t0x%08x\n",
1937 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1938 break;
1939 case PR_C_REGNUM:
1940 fprintf_filtered (file, "pr_c\t0x%08x\n",
1941 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1942 break;
1943 case T_C_REGNUM:
1944 fprintf_filtered (file, "t_c\t0x%08x\n",
1945 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1946 break;
1947 case FPSCR_C_REGNUM:
1948 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1949 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1950 break;
1951 case FPUL_C_REGNUM:
1952 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1953 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1954 break;
1955 }
1956 }
1957
1958 static void
1959 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1960 struct frame_info *frame, int regnum)
1961 { /* do values for FP (float) regs */
1962 unsigned char *raw_buffer;
1963 double flt; /* double extracted from raw hex data */
1964 int inv;
1965 int j;
1966
1967 /* Allocate space for the float. */
1968 raw_buffer = (unsigned char *) alloca (register_size (gdbarch, FP0_REGNUM));
1969
1970 /* Get the data in raw format. */
1971 if (!frame_register_read (frame, regnum, raw_buffer))
1972 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
1973
1974 /* Get the register as a number */
1975 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1976
1977 /* Print the name and some spaces. */
1978 fputs_filtered (REGISTER_NAME (regnum), file);
1979 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
1980
1981 /* Print the value. */
1982 if (inv)
1983 fprintf_filtered (file, "<invalid float>");
1984 else
1985 fprintf_filtered (file, "%-10.9g", flt);
1986
1987 /* Print the fp register as hex. */
1988 fprintf_filtered (file, "\t(raw 0x");
1989 for (j = 0; j < register_size (gdbarch, regnum); j++)
1990 {
1991 int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1992 : register_size (gdbarch, regnum) - 1 - j;
1993 fprintf_filtered (file, "%02x", raw_buffer[idx]);
1994 }
1995 fprintf_filtered (file, ")");
1996 fprintf_filtered (file, "\n");
1997 }
1998
1999 static void
2000 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2001 struct frame_info *frame, int regnum)
2002 {
2003 /* All the sh64-compact mode registers are pseudo registers. */
2004
2005 if (regnum < NUM_REGS
2006 || regnum >= NUM_REGS + NUM_PSEUDO_REGS_SH_MEDIA
2007 + NUM_PSEUDO_REGS_SH_COMPACT)
2008 internal_error (__FILE__, __LINE__,
2009 _("Invalid pseudo register number %d\n"), regnum);
2010
2011 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2012 {
2013 int fp_regnum = sh64_dr_reg_base_num (regnum);
2014 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2015 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2016 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2017 }
2018
2019 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2020 {
2021 int fp_regnum = sh64_compact_reg_base_num (regnum);
2022 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2023 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2024 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2025 }
2026
2027 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2028 {
2029 int fp_regnum = sh64_fv_reg_base_num (regnum);
2030 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2031 regnum - FV0_REGNUM,
2032 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2033 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2034 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2035 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2036 }
2037
2038 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2039 {
2040 int fp_regnum = sh64_compact_reg_base_num (regnum);
2041 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2042 regnum - FV0_C_REGNUM,
2043 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2044 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2045 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2046 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2047 }
2048
2049 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2050 {
2051 int fp_regnum = sh64_fpp_reg_base_num (regnum);
2052 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2053 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2054 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2055 }
2056
2057 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2058 {
2059 int c_regnum = sh64_compact_reg_base_num (regnum);
2060 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2061 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2062 }
2063 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2064 /* This should work also for pseudoregs. */
2065 sh64_do_fp_register (gdbarch, file, frame, regnum);
2066 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2067 sh64_do_cr_c_register_info (file, frame, regnum);
2068 }
2069
2070 static void
2071 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2072 struct frame_info *frame, int regnum)
2073 {
2074 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2075
2076 fputs_filtered (REGISTER_NAME (regnum), file);
2077 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
2078
2079 /* Get the data in raw format. */
2080 if (!frame_register_read (frame, regnum, raw_buffer))
2081 fprintf_filtered (file, "*value not available*\n");
2082
2083 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2084 file, 'x', 1, 0, Val_pretty_default);
2085 fprintf_filtered (file, "\t");
2086 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2087 file, 0, 1, 0, Val_pretty_default);
2088 fprintf_filtered (file, "\n");
2089 }
2090
2091 static void
2092 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2093 struct frame_info *frame, int regnum)
2094 {
2095 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
2096 internal_error (__FILE__, __LINE__,
2097 _("Invalid register number %d\n"), regnum);
2098
2099 else if (regnum >= 0 && regnum < NUM_REGS)
2100 {
2101 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2102 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2103 else
2104 sh64_do_register (gdbarch, file, frame, regnum);
2105 }
2106
2107 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2108 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2109 }
2110
2111 static void
2112 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2113 struct frame_info *frame, int regnum,
2114 int fpregs)
2115 {
2116 if (regnum != -1) /* do one specified register */
2117 {
2118 if (*(REGISTER_NAME (regnum)) == '\0')
2119 error ("Not a valid register for the current processor type");
2120
2121 sh64_print_register (gdbarch, file, frame, regnum);
2122 }
2123 else
2124 /* do all (or most) registers */
2125 {
2126 regnum = 0;
2127 while (regnum < NUM_REGS)
2128 {
2129 /* If the register name is empty, it is undefined for this
2130 processor, so don't display anything. */
2131 if (REGISTER_NAME (regnum) == NULL
2132 || *(REGISTER_NAME (regnum)) == '\0')
2133 {
2134 regnum++;
2135 continue;
2136 }
2137
2138 if (TYPE_CODE (register_type (gdbarch, regnum))
2139 == TYPE_CODE_FLT)
2140 {
2141 if (fpregs)
2142 {
2143 /* true for "INFO ALL-REGISTERS" command */
2144 sh64_do_fp_register (gdbarch, file, frame, regnum);
2145 regnum ++;
2146 }
2147 else
2148 regnum += FP_LAST_REGNUM - FP0_REGNUM; /* skip FP regs */
2149 }
2150 else
2151 {
2152 sh64_do_register (gdbarch, file, frame, regnum);
2153 regnum++;
2154 }
2155 }
2156
2157 if (fpregs)
2158 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2159 {
2160 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2161 regnum++;
2162 }
2163 }
2164 }
2165
2166 static void
2167 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2168 struct ui_file *file,
2169 struct frame_info *frame, int regnum,
2170 int fpregs)
2171 {
2172 if (regnum != -1) /* do one specified register */
2173 {
2174 if (*(REGISTER_NAME (regnum)) == '\0')
2175 error ("Not a valid register for the current processor type");
2176
2177 if (regnum >= 0 && regnum < R0_C_REGNUM)
2178 error ("Not a valid register for the current processor mode.");
2179
2180 sh64_print_register (gdbarch, file, frame, regnum);
2181 }
2182 else
2183 /* do all compact registers */
2184 {
2185 regnum = R0_C_REGNUM;
2186 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2187 {
2188 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2189 regnum++;
2190 }
2191 }
2192 }
2193
2194 static void
2195 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2196 struct frame_info *frame, int regnum, int fpregs)
2197 {
2198 if (pc_is_isa32 (get_frame_pc (frame)))
2199 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2200 else
2201 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2202 }
2203
2204 static struct sh64_frame_cache *
2205 sh64_alloc_frame_cache (void)
2206 {
2207 struct sh64_frame_cache *cache;
2208 int i;
2209
2210 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2211
2212 /* Base address. */
2213 cache->base = 0;
2214 cache->saved_sp = 0;
2215 cache->sp_offset = 0;
2216 cache->pc = 0;
2217
2218 /* Frameless until proven otherwise. */
2219 cache->uses_fp = 0;
2220
2221 /* Saved registers. We initialize these to -1 since zero is a valid
2222 offset (that's where fp is supposed to be stored). */
2223 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2224 {
2225 cache->saved_regs[i] = -1;
2226 }
2227
2228 return cache;
2229 }
2230
2231 static struct sh64_frame_cache *
2232 sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
2233 {
2234 struct sh64_frame_cache *cache;
2235 CORE_ADDR current_pc;
2236 int i;
2237
2238 if (*this_cache)
2239 return *this_cache;
2240
2241 cache = sh64_alloc_frame_cache ();
2242 *this_cache = cache;
2243
2244 current_pc = frame_pc_unwind (next_frame);
2245 cache->media_mode = pc_is_isa32 (current_pc);
2246
2247 /* In principle, for normal frames, fp holds the frame pointer,
2248 which holds the base address for the current stack frame.
2249 However, for functions that don't need it, the frame pointer is
2250 optional. For these "frameless" functions the frame pointer is
2251 actually the frame pointer of the calling frame. */
2252 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2253 if (cache->base == 0)
2254 return cache;
2255
2256 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2257 if (cache->pc != 0)
2258 sh64_analyze_prologue (current_gdbarch, cache, cache->pc, current_pc);
2259
2260 if (!cache->uses_fp)
2261 {
2262 /* We didn't find a valid frame, which means that CACHE->base
2263 currently holds the frame pointer for our calling frame. If
2264 we're at the start of a function, or somewhere half-way its
2265 prologue, the function's frame probably hasn't been fully
2266 setup yet. Try to reconstruct the base address for the stack
2267 frame by looking at the stack pointer. For truly "frameless"
2268 functions this might work too. */
2269 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2270 }
2271
2272 /* Now that we have the base address for the stack frame we can
2273 calculate the value of sp in the calling frame. */
2274 cache->saved_sp = cache->base + cache->sp_offset;
2275
2276 /* Adjust all the saved registers such that they contain addresses
2277 instead of offsets. */
2278 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2279 if (cache->saved_regs[i] != -1)
2280 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2281
2282 return cache;
2283 }
2284
2285 static void
2286 sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2287 int regnum, int *optimizedp,
2288 enum lval_type *lvalp, CORE_ADDR *addrp,
2289 int *realnump, gdb_byte *valuep)
2290 {
2291 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2292
2293 gdb_assert (regnum >= 0);
2294
2295 if (regnum == SP_REGNUM && cache->saved_sp)
2296 {
2297 *optimizedp = 0;
2298 *lvalp = not_lval;
2299 *addrp = 0;
2300 *realnump = -1;
2301 if (valuep)
2302 {
2303 /* Store the value. */
2304 store_unsigned_integer (valuep,
2305 register_size (current_gdbarch, SP_REGNUM),
2306 cache->saved_sp);
2307 }
2308 return;
2309 }
2310
2311 /* The PC of the previous frame is stored in the PR register of
2312 the current frame. Frob regnum so that we pull the value from
2313 the correct place. */
2314 if (regnum == PC_REGNUM)
2315 regnum = PR_REGNUM;
2316
2317 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2318 {
2319 int reg_size = register_size (current_gdbarch, regnum);
2320 int size;
2321
2322 *optimizedp = 0;
2323 *lvalp = lval_memory;
2324 *addrp = cache->saved_regs[regnum];
2325 *realnump = -1;
2326 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32
2327 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2328 size = 4;
2329 else
2330 size = reg_size;
2331 if (valuep)
2332 {
2333 memset (valuep, 0, reg_size);
2334 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
2335 read_memory (*addrp, valuep, size);
2336 else
2337 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2338 }
2339 return;
2340 }
2341
2342 *optimizedp = 0;
2343 *lvalp = lval_register;
2344 *addrp = 0;
2345 *realnump = regnum;
2346 if (valuep)
2347 frame_unwind_register (next_frame, (*realnump), valuep);
2348 }
2349
2350 static void
2351 sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2352 struct frame_id *this_id)
2353 {
2354 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2355
2356 /* This marks the outermost frame. */
2357 if (cache->base == 0)
2358 return;
2359
2360 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2361 }
2362
2363 static const struct frame_unwind sh64_frame_unwind = {
2364 NORMAL_FRAME,
2365 sh64_frame_this_id,
2366 sh64_frame_prev_register
2367 };
2368
2369 static const struct frame_unwind *
2370 sh64_frame_sniffer (struct frame_info *next_frame)
2371 {
2372 return &sh64_frame_unwind;
2373 }
2374
2375 static CORE_ADDR
2376 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2377 {
2378 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2379 }
2380
2381 static CORE_ADDR
2382 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2383 {
2384 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2385 }
2386
2387 static struct frame_id
2388 sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2389 {
2390 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2391 frame_pc_unwind (next_frame));
2392 }
2393
2394 static CORE_ADDR
2395 sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2396 {
2397 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2398
2399 return cache->base;
2400 }
2401
2402 static const struct frame_base sh64_frame_base = {
2403 &sh64_frame_unwind,
2404 sh64_frame_base_address,
2405 sh64_frame_base_address,
2406 sh64_frame_base_address
2407 };
2408
2409
2410 struct gdbarch *
2411 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2412 {
2413 struct gdbarch *gdbarch;
2414 struct gdbarch_tdep *tdep;
2415
2416 /* If there is already a candidate, use it. */
2417 arches = gdbarch_list_lookup_by_info (arches, &info);
2418 if (arches != NULL)
2419 return arches->gdbarch;
2420
2421 /* None found, create a new architecture from the information
2422 provided. */
2423 tdep = XMALLOC (struct gdbarch_tdep);
2424 gdbarch = gdbarch_alloc (&info, tdep);
2425
2426 /* Determine the ABI */
2427 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2428 {
2429 /* If the ABI is the 64-bit one, it can only be sh-media. */
2430 tdep->sh_abi = SH_ABI_64;
2431 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2432 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2433 }
2434 else
2435 {
2436 /* If the ABI is the 32-bit one it could be either media or
2437 compact. */
2438 tdep->sh_abi = SH_ABI_32;
2439 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2440 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2441 }
2442
2443 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2444 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2445 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2446 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2447 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2448 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2449 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2450
2451 /* The number of real registers is the same whether we are in
2452 ISA16(compact) or ISA32(media). */
2453 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2454 set_gdbarch_sp_regnum (gdbarch, 15);
2455 set_gdbarch_pc_regnum (gdbarch, 64);
2456 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2457 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2458 + NUM_PSEUDO_REGS_SH_COMPACT);
2459
2460 set_gdbarch_register_name (gdbarch, sh64_register_name);
2461 set_gdbarch_register_type (gdbarch, sh64_register_type);
2462
2463 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2464 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2465
2466 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2467
2468 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
2469 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2470
2471 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2472
2473 set_gdbarch_return_value (gdbarch, sh64_return_value);
2474 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2475 sh64_extract_struct_value_address);
2476
2477 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2478 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2479
2480 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2481
2482 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2483
2484 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2485 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2486 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2487 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2488 frame_base_set_default (gdbarch, &sh64_frame_base);
2489
2490 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2491
2492 set_gdbarch_elf_make_msymbol_special (gdbarch,
2493 sh64_elf_make_msymbol_special);
2494
2495 /* Hook in ABI-specific overrides, if they have been registered. */
2496 gdbarch_init_osabi (info, gdbarch);
2497
2498 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2499 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);
2500
2501 return gdbarch;
2502 }
This page took 0.080398 seconds and 4 git commands to generate.