bfd:
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "gdb_string.h"
36 #include "gdb_assert.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "osabi.h"
40 #include "valprint.h"
41
42 #include "elf-bfd.h"
43
44 /* sh flags */
45 #include "elf/sh.h"
46 /* Register numbers shared with the simulator. */
47 #include "gdb/sim-sh.h"
48 #include "language.h"
49
50 /* Information that is dependent on the processor variant. */
51 enum sh_abi
52 {
53 SH_ABI_UNKNOWN,
54 SH_ABI_32,
55 SH_ABI_64
56 };
57
58 struct gdbarch_tdep
59 {
60 enum sh_abi sh_abi;
61 };
62
63 struct sh64_frame_cache
64 {
65 /* Base address. */
66 CORE_ADDR base;
67 LONGEST sp_offset;
68 CORE_ADDR pc;
69
70 /* Flag showing that a frame has been created in the prologue code. */
71 int uses_fp;
72
73 int media_mode;
74
75 /* Saved registers. */
76 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
77 CORE_ADDR saved_sp;
78 };
79
80 /* Registers of SH5 */
81 enum
82 {
83 R0_REGNUM = 0,
84 DEFAULT_RETURN_REGNUM = 2,
85 STRUCT_RETURN_REGNUM = 2,
86 ARG0_REGNUM = 2,
87 ARGLAST_REGNUM = 9,
88 FLOAT_ARGLAST_REGNUM = 11,
89 MEDIA_FP_REGNUM = 14,
90 PR_REGNUM = 18,
91 SR_REGNUM = 65,
92 DR0_REGNUM = 141,
93 DR_LAST_REGNUM = 172,
94 /* FPP stands for Floating Point Pair, to avoid confusion with
95 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
96 point register. Unfortunately on the sh5, the floating point
97 registers are called FR, and the floating point pairs are called FP. */
98 FPP0_REGNUM = 173,
99 FPP_LAST_REGNUM = 204,
100 FV0_REGNUM = 205,
101 FV_LAST_REGNUM = 220,
102 R0_C_REGNUM = 221,
103 R_LAST_C_REGNUM = 236,
104 PC_C_REGNUM = 237,
105 GBR_C_REGNUM = 238,
106 MACH_C_REGNUM = 239,
107 MACL_C_REGNUM = 240,
108 PR_C_REGNUM = 241,
109 T_C_REGNUM = 242,
110 FPSCR_C_REGNUM = 243,
111 FPUL_C_REGNUM = 244,
112 FP0_C_REGNUM = 245,
113 FP_LAST_C_REGNUM = 260,
114 DR0_C_REGNUM = 261,
115 DR_LAST_C_REGNUM = 268,
116 FV0_C_REGNUM = 269,
117 FV_LAST_C_REGNUM = 272,
118 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
119 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
120 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
121 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
122 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
123 };
124
125 static const char *
126 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
127 {
128 static char *register_names[] =
129 {
130 /* SH MEDIA MODE (ISA 32) */
131 /* general registers (64-bit) 0-63 */
132 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
133 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
134 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
135 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
136 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
137 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
138 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
139 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
140
141 /* pc (64-bit) 64 */
142 "pc",
143
144 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
145 "sr", "ssr", "spc",
146
147 /* target registers (64-bit) 68-75 */
148 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
149
150 /* floating point state control register (32-bit) 76 */
151 "fpscr",
152
153 /* single precision floating point registers (32-bit) 77-140 */
154 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
155 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
156 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
157 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
158 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
159 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
160 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
161 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
162
163 /* double precision registers (pseudo) 141-172 */
164 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
165 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
166 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
167 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
168
169 /* floating point pairs (pseudo) 173-204 */
170 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
171 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
172 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
173 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
174
175 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
176 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
177 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
178
179 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
180 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
181 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
182 "pc_c",
183 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
184 "fpscr_c", "fpul_c",
185 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
186 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
187 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
188 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
190 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 32-bit function
212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213
214 #define MSYMBOL_IS_SPECIAL(msym) \
215 MSYMBOL_TARGET_FLAG_1 (msym)
216
217 static void
218 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219 {
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
225 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
226 SYMBOL_VALUE_ADDRESS (msym) |= 1;
227 }
228 }
229
230 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232 #define IS_ISA32_ADDR(addr) ((addr) & 1)
233 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236 static int
237 pc_is_isa32 (bfd_vma memaddr)
238 {
239 struct minimal_symbol *sym;
240
241 /* If bit 0 of the address is set, assume this is a
242 ISA32 (shmedia) address. */
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
250 if (sym)
251 return MSYMBOL_IS_SPECIAL (sym);
252 else
253 return 0;
254 }
255
256 static const unsigned char *
257 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
258 CORE_ADDR *pcptr, int *lenptr)
259 {
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264
265 /* The BRK instruction for shcompact is
266 00000000 00111011
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0 */
269
270 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
271 {
272 if (pc_is_isa32 (*pcptr))
273 {
274 static unsigned char big_breakpoint_media[] = {
275 0x6f, 0xf5, 0xff, 0xf0
276 };
277 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
278 *lenptr = sizeof (big_breakpoint_media);
279 return big_breakpoint_media;
280 }
281 else
282 {
283 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
284 *lenptr = sizeof (big_breakpoint_compact);
285 return big_breakpoint_compact;
286 }
287 }
288 else
289 {
290 if (pc_is_isa32 (*pcptr))
291 {
292 static unsigned char little_breakpoint_media[] = {
293 0xf0, 0xff, 0xf5, 0x6f
294 };
295 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
296 *lenptr = sizeof (little_breakpoint_media);
297 return little_breakpoint_media;
298 }
299 else
300 {
301 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
302 *lenptr = sizeof (little_breakpoint_compact);
303 return little_breakpoint_compact;
304 }
305 }
306 }
307
308 /* Prologue looks like
309 [mov.l <regs>,@-r15]...
310 [sts.l pr,@-r15]
311 [mov.l r14,@-r15]
312 [mov r15,r14]
313
314 Actually it can be more complicated than this. For instance, with
315 newer gcc's:
316
317 mov.l r14,@-r15
318 add #-12,r15
319 mov r15,r14
320 mov r4,r1
321 mov r5,r2
322 mov.l r6,@(4,r14)
323 mov.l r7,@(8,r14)
324 mov.b r1,@r14
325 mov r14,r1
326 mov r14,r1
327 add #2,r1
328 mov.w r2,@r1
329
330 */
331
332 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
333 with l=1 and n = 18 0110101111110001010010100aaa0000 */
334 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
335
336 /* STS.L PR,@-r0 0100000000100010
337 r0-4-->r0, PR-->(r0) */
338 #define IS_STS_R0(x) ((x) == 0x4022)
339
340 /* STS PR, Rm 0000mmmm00101010
341 PR-->Rm */
342 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
343
344 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
345 Rm-->(dispx4+r15) */
346 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
347
348 /* MOV.L R14,@(disp,r15) 000111111110dddd
349 R14-->(dispx4+r15) */
350 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
351
352 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
353 R18-->(dispx8+R14) */
354 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
355
356 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
357 R18-->(dispx8+R15) */
358 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
359
360 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
361 R18-->(dispx4+R15) */
362 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
363
364 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx8+R15) */
366 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
367
368 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
369 R14-->(dispx4+R15) */
370 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
371
372 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
373 R15 + imm --> R15 */
374 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
375
376 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
377 R15 + imm --> R15 */
378 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
379
380 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
381 R15 + R63 --> R14 */
382 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
383
384 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
385 R15 + R63 --> R14 */
386 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
387
388 #define IS_MOV_SP_FP_MEDIA(x) \
389 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
390
391 /* MOV #imm, R0 1110 0000 ssss ssss
392 #imm-->R0 */
393 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
394
395 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
396 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
397
398 /* ADD r15,r0 0011 0000 1111 1100
399 r15+r0-->r0 */
400 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
401
402 /* MOV.L R14 @-R0 0010 0000 1110 0110
403 R14-->(R0-4), R0-4-->R0 */
404 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
405
406 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
407 where Rm is one of r2-r9 which are the argument registers. */
408 /* FIXME: Recognize the float and double register moves too! */
409 #define IS_MEDIA_IND_ARG_MOV(x) \
410 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
411 && (((x) & 0x03f00000) >= 0x00200000 \
412 && ((x) & 0x03f00000) <= 0x00900000))
413
414 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
415 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
416 where Rm is one of r2-r9 which are the argument registers. */
417 #define IS_MEDIA_ARG_MOV(x) \
418 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
419 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
420
421 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
422 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
423 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
424 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
425 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
426 #define IS_MEDIA_MOV_TO_R14(x) \
427 ((((x) & 0xfffffc0f) == 0xa0e00000) \
428 || (((x) & 0xfffffc0f) == 0xa4e00000) \
429 || (((x) & 0xfffffc0f) == 0xa8e00000) \
430 || (((x) & 0xfffffc0f) == 0xb4e00000) \
431 || (((x) & 0xfffffc0f) == 0xbce00000))
432
433 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
434 where Rm is r2-r9 */
435 #define IS_COMPACT_IND_ARG_MOV(x) \
436 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
437 && (((x) & 0x00f0) <= 0x0090))
438
439 /* compact direct arg move!
440 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
441 #define IS_COMPACT_ARG_MOV(x) \
442 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
443 && ((x) & 0x00f0) <= 0x0090))
444
445 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
446 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
447 #define IS_COMPACT_MOV_TO_R14(x) \
448 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
449
450 #define IS_JSR_R0(x) ((x) == 0x400b)
451 #define IS_NOP(x) ((x) == 0x0009)
452
453
454 /* MOV r15,r14 0110111011110011
455 r15-->r14 */
456 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
457
458 /* ADD #imm,r15 01111111iiiiiiii
459 r15+imm-->r15 */
460 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
461
462 /* Skip any prologue before the guts of a function. */
463
464 /* Skip the prologue using the debug information. If this fails we'll
465 fall back on the 'guess' method below. */
466 static CORE_ADDR
467 after_prologue (CORE_ADDR pc)
468 {
469 struct symtab_and_line sal;
470 CORE_ADDR func_addr, func_end;
471
472 /* If we can not find the symbol in the partial symbol table, then
473 there is no hope we can determine the function's start address
474 with this code. */
475 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
476 return 0;
477
478
479 /* Get the line associated with FUNC_ADDR. */
480 sal = find_pc_line (func_addr, 0);
481
482 /* There are only two cases to consider. First, the end of the source line
483 is within the function bounds. In that case we return the end of the
484 source line. Second is the end of the source line extends beyond the
485 bounds of the current function. We need to use the slow code to
486 examine instructions in that case. */
487 if (sal.end < func_end)
488 return sal.end;
489 else
490 return 0;
491 }
492
493 static CORE_ADDR
494 look_for_args_moves (struct gdbarch *gdbarch,
495 CORE_ADDR start_pc, int media_mode)
496 {
497 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
498 CORE_ADDR here, end;
499 int w;
500 int insn_size = (media_mode ? 4 : 2);
501
502 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
503 {
504 if (media_mode)
505 {
506 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
507 insn_size, byte_order);
508 here += insn_size;
509 if (IS_MEDIA_IND_ARG_MOV (w))
510 {
511 /* This must be followed by a store to r14, so the argument
512 is where the debug info says it is. This can happen after
513 the SP has been saved, unfortunately. */
514
515 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
516 insn_size, byte_order);
517 here += insn_size;
518 if (IS_MEDIA_MOV_TO_R14 (next_insn))
519 start_pc = here;
520 }
521 else if (IS_MEDIA_ARG_MOV (w))
522 {
523 /* These instructions store directly the argument in r14. */
524 start_pc = here;
525 }
526 else
527 break;
528 }
529 else
530 {
531 w = read_memory_integer (here, insn_size, byte_order);
532 w = w & 0xffff;
533 here += insn_size;
534 if (IS_COMPACT_IND_ARG_MOV (w))
535 {
536 /* This must be followed by a store to r14, so the argument
537 is where the debug info says it is. This can happen after
538 the SP has been saved, unfortunately. */
539
540 int next_insn = 0xffff & read_memory_integer (here, insn_size,
541 byte_order);
542 here += insn_size;
543 if (IS_COMPACT_MOV_TO_R14 (next_insn))
544 start_pc = here;
545 }
546 else if (IS_COMPACT_ARG_MOV (w))
547 {
548 /* These instructions store directly the argument in r14. */
549 start_pc = here;
550 }
551 else if (IS_MOVL_R0 (w))
552 {
553 /* There is a function that gcc calls to get the arguments
554 passed correctly to the function. Only after this
555 function call the arguments will be found at the place
556 where they are supposed to be. This happens in case the
557 argument has to be stored into a 64-bit register (for
558 instance doubles, long longs). SHcompact doesn't have
559 access to the full 64-bits, so we store the register in
560 stack slot and store the address of the stack slot in
561 the register, then do a call through a wrapper that
562 loads the memory value into the register. A SHcompact
563 callee calls an argument decoder
564 (GCC_shcompact_incoming_args) that stores the 64-bit
565 value in a stack slot and stores the address of the
566 stack slot in the register. GCC thinks the argument is
567 just passed by transparent reference, but this is only
568 true after the argument decoder is called. Such a call
569 needs to be considered part of the prologue. */
570
571 /* This must be followed by a JSR @r0 instruction and by
572 a NOP instruction. After these, the prologue is over! */
573
574 int next_insn = 0xffff & read_memory_integer (here, insn_size,
575 byte_order);
576 here += insn_size;
577 if (IS_JSR_R0 (next_insn))
578 {
579 next_insn = 0xffff & read_memory_integer (here, insn_size,
580 byte_order);
581 here += insn_size;
582
583 if (IS_NOP (next_insn))
584 start_pc = here;
585 }
586 }
587 else
588 break;
589 }
590 }
591
592 return start_pc;
593 }
594
595 static CORE_ADDR
596 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
597 {
598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
599 CORE_ADDR here, end;
600 int updated_fp = 0;
601 int insn_size = 4;
602 int media_mode = 1;
603
604 if (!start_pc)
605 return 0;
606
607 if (pc_is_isa32 (start_pc) == 0)
608 {
609 insn_size = 2;
610 media_mode = 0;
611 }
612
613 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
614 {
615
616 if (media_mode)
617 {
618 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
619 insn_size, byte_order);
620 here += insn_size;
621 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
622 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
623 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
624 || IS_PTABSL_R18 (w))
625 {
626 start_pc = here;
627 }
628 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
629 {
630 start_pc = here;
631 updated_fp = 1;
632 }
633 else
634 if (updated_fp)
635 {
636 /* Don't bail out yet, we may have arguments stored in
637 registers here, according to the debug info, so that
638 gdb can print the frames correctly. */
639 start_pc = look_for_args_moves (gdbarch,
640 here - insn_size, media_mode);
641 break;
642 }
643 }
644 else
645 {
646 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
647 here += insn_size;
648
649 if (IS_STS_R0 (w) || IS_STS_PR (w)
650 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
651 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
652 {
653 start_pc = here;
654 }
655 else if (IS_MOV_SP_FP (w))
656 {
657 start_pc = here;
658 updated_fp = 1;
659 }
660 else
661 if (updated_fp)
662 {
663 /* Don't bail out yet, we may have arguments stored in
664 registers here, according to the debug info, so that
665 gdb can print the frames correctly. */
666 start_pc = look_for_args_moves (gdbarch,
667 here - insn_size, media_mode);
668 break;
669 }
670 }
671 }
672
673 return start_pc;
674 }
675
676 static CORE_ADDR
677 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
678 {
679 CORE_ADDR post_prologue_pc;
680
681 /* See if we can determine the end of the prologue via the symbol table.
682 If so, then return either PC, or the PC after the prologue, whichever
683 is greater. */
684 post_prologue_pc = after_prologue (pc);
685
686 /* If after_prologue returned a useful address, then use it. Else
687 fall back on the instruction skipping code. */
688 if (post_prologue_pc != 0)
689 return max (pc, post_prologue_pc);
690 else
691 return sh64_skip_prologue_hard_way (gdbarch, pc);
692 }
693
694 /* Should call_function allocate stack space for a struct return? */
695 static int
696 sh64_use_struct_convention (struct type *type)
697 {
698 return (TYPE_LENGTH (type) > 8);
699 }
700
701 /* For vectors of 4 floating point registers. */
702 static int
703 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
704 {
705 int fp_regnum;
706
707 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
708 return fp_regnum;
709 }
710
711 /* For double precision floating point registers, i.e 2 fp regs. */
712 static int
713 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
714 {
715 int fp_regnum;
716
717 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
718 return fp_regnum;
719 }
720
721 /* For pairs of floating point registers. */
722 static int
723 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
724 {
725 int fp_regnum;
726
727 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
728 return fp_regnum;
729 }
730
731 /* *INDENT-OFF* */
732 /*
733 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
734 GDB_REGNUM BASE_REGNUM
735 r0_c 221 0
736 r1_c 222 1
737 r2_c 223 2
738 r3_c 224 3
739 r4_c 225 4
740 r5_c 226 5
741 r6_c 227 6
742 r7_c 228 7
743 r8_c 229 8
744 r9_c 230 9
745 r10_c 231 10
746 r11_c 232 11
747 r12_c 233 12
748 r13_c 234 13
749 r14_c 235 14
750 r15_c 236 15
751
752 pc_c 237 64
753 gbr_c 238 16
754 mach_c 239 17
755 macl_c 240 17
756 pr_c 241 18
757 t_c 242 19
758 fpscr_c 243 76
759 fpul_c 244 109
760
761 fr0_c 245 77
762 fr1_c 246 78
763 fr2_c 247 79
764 fr3_c 248 80
765 fr4_c 249 81
766 fr5_c 250 82
767 fr6_c 251 83
768 fr7_c 252 84
769 fr8_c 253 85
770 fr9_c 254 86
771 fr10_c 255 87
772 fr11_c 256 88
773 fr12_c 257 89
774 fr13_c 258 90
775 fr14_c 259 91
776 fr15_c 260 92
777
778 dr0_c 261 77
779 dr2_c 262 79
780 dr4_c 263 81
781 dr6_c 264 83
782 dr8_c 265 85
783 dr10_c 266 87
784 dr12_c 267 89
785 dr14_c 268 91
786
787 fv0_c 269 77
788 fv4_c 270 81
789 fv8_c 271 85
790 fv12_c 272 91
791 */
792 /* *INDENT-ON* */
793 static int
794 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
795 {
796 int base_regnum = reg_nr;
797
798 /* general register N maps to general register N */
799 if (reg_nr >= R0_C_REGNUM
800 && reg_nr <= R_LAST_C_REGNUM)
801 base_regnum = reg_nr - R0_C_REGNUM;
802
803 /* floating point register N maps to floating point register N */
804 else if (reg_nr >= FP0_C_REGNUM
805 && reg_nr <= FP_LAST_C_REGNUM)
806 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
807
808 /* double prec register N maps to base regnum for double prec register N */
809 else if (reg_nr >= DR0_C_REGNUM
810 && reg_nr <= DR_LAST_C_REGNUM)
811 base_regnum = sh64_dr_reg_base_num (gdbarch,
812 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
813
814 /* vector N maps to base regnum for vector register N */
815 else if (reg_nr >= FV0_C_REGNUM
816 && reg_nr <= FV_LAST_C_REGNUM)
817 base_regnum = sh64_fv_reg_base_num (gdbarch,
818 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
819
820 else if (reg_nr == PC_C_REGNUM)
821 base_regnum = gdbarch_pc_regnum (gdbarch);
822
823 else if (reg_nr == GBR_C_REGNUM)
824 base_regnum = 16;
825
826 else if (reg_nr == MACH_C_REGNUM
827 || reg_nr == MACL_C_REGNUM)
828 base_regnum = 17;
829
830 else if (reg_nr == PR_C_REGNUM)
831 base_regnum = PR_REGNUM;
832
833 else if (reg_nr == T_C_REGNUM)
834 base_regnum = 19;
835
836 else if (reg_nr == FPSCR_C_REGNUM)
837 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
838
839 else if (reg_nr == FPUL_C_REGNUM)
840 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
841
842 return base_regnum;
843 }
844
845 static int
846 sign_extend (int value, int bits)
847 {
848 value = value & ((1 << bits) - 1);
849 return (value & (1 << (bits - 1))
850 ? value | (~((1 << bits) - 1))
851 : value);
852 }
853
854 static void
855 sh64_analyze_prologue (struct gdbarch *gdbarch,
856 struct sh64_frame_cache *cache,
857 CORE_ADDR func_pc,
858 CORE_ADDR current_pc)
859 {
860 int reg_nr;
861 int pc;
862 int opc;
863 int insn;
864 int r0_val = 0;
865 int insn_size;
866 int gdb_register_number;
867 int register_number;
868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
870
871 cache->sp_offset = 0;
872
873 /* Loop around examining the prologue insns until we find something
874 that does not appear to be part of the prologue. But give up
875 after 20 of them, since we're getting silly then. */
876
877 pc = func_pc;
878
879 if (cache->media_mode)
880 insn_size = 4;
881 else
882 insn_size = 2;
883
884 opc = pc + (insn_size * 28);
885 if (opc > current_pc)
886 opc = current_pc;
887 for ( ; pc <= opc; pc += insn_size)
888 {
889 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
890 : pc,
891 insn_size, byte_order);
892
893 if (!cache->media_mode)
894 {
895 if (IS_STS_PR (insn))
896 {
897 int next_insn = read_memory_integer (pc + insn_size,
898 insn_size, byte_order);
899 if (IS_MOV_TO_R15 (next_insn))
900 {
901 cache->saved_regs[PR_REGNUM]
902 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
903 - 0x8) << 2);
904 pc += insn_size;
905 }
906 }
907
908 else if (IS_MOV_R14 (insn))
909 cache->saved_regs[MEDIA_FP_REGNUM] =
910 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
911
912 else if (IS_MOV_R0 (insn))
913 {
914 /* Put in R0 the offset from SP at which to store some
915 registers. We are interested in this value, because it
916 will tell us where the given registers are stored within
917 the frame. */
918 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
919 }
920
921 else if (IS_ADD_SP_R0 (insn))
922 {
923 /* This instruction still prepares r0, but we don't care.
924 We already have the offset in r0_val. */
925 }
926
927 else if (IS_STS_R0 (insn))
928 {
929 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
930 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
931 r0_val -= 4;
932 }
933
934 else if (IS_MOV_R14_R0 (insn))
935 {
936 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
937 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
938 - (r0_val - 4);
939 r0_val -= 4;
940 }
941
942 else if (IS_ADD_SP (insn))
943 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
944
945 else if (IS_MOV_SP_FP (insn))
946 break;
947 }
948 else
949 {
950 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
951 cache->sp_offset -=
952 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
953
954 else if (IS_STQ_R18_R15 (insn))
955 cache->saved_regs[PR_REGNUM]
956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
957 9) << 3);
958
959 else if (IS_STL_R18_R15 (insn))
960 cache->saved_regs[PR_REGNUM]
961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
962 9) << 2);
963
964 else if (IS_STQ_R14_R15 (insn))
965 cache->saved_regs[MEDIA_FP_REGNUM]
966 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
967 9) << 3);
968
969 else if (IS_STL_R14_R15 (insn))
970 cache->saved_regs[MEDIA_FP_REGNUM]
971 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
972 9) << 2);
973
974 else if (IS_MOV_SP_FP_MEDIA (insn))
975 break;
976 }
977 }
978
979 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
980 cache->uses_fp = 1;
981 }
982
983 static CORE_ADDR
984 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
985 {
986 return sp & ~7;
987 }
988
989 /* Function: push_dummy_call
990 Setup the function arguments for calling a function in the inferior.
991
992 On the Renesas SH architecture, there are four registers (R4 to R7)
993 which are dedicated for passing function arguments. Up to the first
994 four arguments (depending on size) may go into these registers.
995 The rest go on the stack.
996
997 Arguments that are smaller than 4 bytes will still take up a whole
998 register or a whole 32-bit word on the stack, and will be
999 right-justified in the register or the stack word. This includes
1000 chars, shorts, and small aggregate types.
1001
1002 Arguments that are larger than 4 bytes may be split between two or
1003 more registers. If there are not enough registers free, an argument
1004 may be passed partly in a register (or registers), and partly on the
1005 stack. This includes doubles, long longs, and larger aggregates.
1006 As far as I know, there is no upper limit to the size of aggregates
1007 that will be passed in this way; in other words, the convention of
1008 passing a pointer to a large aggregate instead of a copy is not used.
1009
1010 An exceptional case exists for struct arguments (and possibly other
1011 aggregates such as arrays) if the size is larger than 4 bytes but
1012 not a multiple of 4 bytes. In this case the argument is never split
1013 between the registers and the stack, but instead is copied in its
1014 entirety onto the stack, AND also copied into as many registers as
1015 there is room for. In other words, space in registers permitting,
1016 two copies of the same argument are passed in. As far as I can tell,
1017 only the one on the stack is used, although that may be a function
1018 of the level of compiler optimization. I suspect this is a compiler
1019 bug. Arguments of these odd sizes are left-justified within the
1020 word (as opposed to arguments smaller than 4 bytes, which are
1021 right-justified).
1022
1023 If the function is to return an aggregate type such as a struct, it
1024 is either returned in the normal return value register R0 (if its
1025 size is no greater than one byte), or else the caller must allocate
1026 space into which the callee will copy the return value (if the size
1027 is greater than one byte). In this case, a pointer to the return
1028 value location is passed into the callee in register R2, which does
1029 not displace any of the other arguments passed in via registers R4
1030 to R7. */
1031
1032 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1033 non-scalar (struct, union) elements (even if the elements are
1034 floats).
1035 FR0-FR11 for single precision floating point (float)
1036 DR0-DR10 for double precision floating point (double)
1037
1038 If a float is argument number 3 (for instance) and arguments number
1039 1,2, and 4 are integer, the mapping will be:
1040 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1041
1042 If a float is argument number 10 (for instance) and arguments number
1043 1 through 10 are integer, the mapping will be:
1044 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1045 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1046 arg11->stack(16,SP). I.e. there is hole in the stack.
1047
1048 Different rules apply for variable arguments functions, and for functions
1049 for which the prototype is not known. */
1050
1051 static CORE_ADDR
1052 sh64_push_dummy_call (struct gdbarch *gdbarch,
1053 struct value *function,
1054 struct regcache *regcache,
1055 CORE_ADDR bp_addr,
1056 int nargs, struct value **args,
1057 CORE_ADDR sp, int struct_return,
1058 CORE_ADDR struct_addr)
1059 {
1060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1061 int stack_offset, stack_alloc;
1062 int int_argreg;
1063 int float_argreg;
1064 int double_argreg;
1065 int float_arg_index = 0;
1066 int double_arg_index = 0;
1067 int argnum;
1068 struct type *type;
1069 CORE_ADDR regval;
1070 char *val;
1071 char valbuf[8];
1072 char valbuf_tmp[8];
1073 int len;
1074 int argreg_size;
1075 int fp_args[12];
1076
1077 memset (fp_args, 0, sizeof (fp_args));
1078
1079 /* First force sp to a 8-byte alignment. */
1080 sp = sh64_frame_align (gdbarch, sp);
1081
1082 /* The "struct return pointer" pseudo-argument has its own dedicated
1083 register. */
1084
1085 if (struct_return)
1086 regcache_cooked_write_unsigned (regcache,
1087 STRUCT_RETURN_REGNUM, struct_addr);
1088
1089 /* Now make sure there's space on the stack. */
1090 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1091 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1092 sp -= stack_alloc; /* Make room on stack for args. */
1093
1094 /* Now load as many as possible of the first arguments into
1095 registers, and push the rest onto the stack. There are 64 bytes
1096 in eight registers available. Loop thru args from first to last. */
1097
1098 int_argreg = ARG0_REGNUM;
1099 float_argreg = gdbarch_fp0_regnum (gdbarch);
1100 double_argreg = DR0_REGNUM;
1101
1102 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1103 {
1104 type = value_type (args[argnum]);
1105 len = TYPE_LENGTH (type);
1106 memset (valbuf, 0, sizeof (valbuf));
1107
1108 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1109 {
1110 argreg_size = register_size (gdbarch, int_argreg);
1111
1112 if (len < argreg_size)
1113 {
1114 /* value gets right-justified in the register or stack word. */
1115 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1116 memcpy (valbuf + argreg_size - len,
1117 (char *) value_contents (args[argnum]), len);
1118 else
1119 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1120
1121 val = valbuf;
1122 }
1123 else
1124 val = (char *) value_contents (args[argnum]);
1125
1126 while (len > 0)
1127 {
1128 if (int_argreg > ARGLAST_REGNUM)
1129 {
1130 /* Must go on the stack. */
1131 write_memory (sp + stack_offset, (const bfd_byte *) val,
1132 argreg_size);
1133 stack_offset += 8;/*argreg_size;*/
1134 }
1135 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1136 That's because some *&^%$ things get passed on the stack
1137 AND in the registers! */
1138 if (int_argreg <= ARGLAST_REGNUM)
1139 {
1140 /* There's room in a register. */
1141 regval = extract_unsigned_integer (val, argreg_size,
1142 byte_order);
1143 regcache_cooked_write_unsigned (regcache,
1144 int_argreg, regval);
1145 }
1146 /* Store the value 8 bytes at a time. This means that
1147 things larger than 8 bytes may go partly in registers
1148 and partly on the stack. FIXME: argreg is incremented
1149 before we use its size. */
1150 len -= argreg_size;
1151 val += argreg_size;
1152 int_argreg++;
1153 }
1154 }
1155 else
1156 {
1157 val = (char *) value_contents (args[argnum]);
1158 if (len == 4)
1159 {
1160 /* Where is it going to be stored? */
1161 while (fp_args[float_arg_index])
1162 float_arg_index ++;
1163
1164 /* Now float_argreg points to the register where it
1165 should be stored. Are we still within the allowed
1166 register set? */
1167 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1168 {
1169 /* Goes in FR0...FR11 */
1170 regcache_cooked_write (regcache,
1171 gdbarch_fp0_regnum (gdbarch)
1172 + float_arg_index,
1173 val);
1174 fp_args[float_arg_index] = 1;
1175 /* Skip the corresponding general argument register. */
1176 int_argreg ++;
1177 }
1178 else
1179 ;
1180 /* Store it as the integers, 8 bytes at the time, if
1181 necessary spilling on the stack. */
1182
1183 }
1184 else if (len == 8)
1185 {
1186 /* Where is it going to be stored? */
1187 while (fp_args[double_arg_index])
1188 double_arg_index += 2;
1189 /* Now double_argreg points to the register
1190 where it should be stored.
1191 Are we still within the allowed register set? */
1192 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1193 {
1194 /* Goes in DR0...DR10 */
1195 /* The numbering of the DRi registers is consecutive,
1196 i.e. includes odd numbers. */
1197 int double_register_offset = double_arg_index / 2;
1198 int regnum = DR0_REGNUM + double_register_offset;
1199 regcache_cooked_write (regcache, regnum, val);
1200 fp_args[double_arg_index] = 1;
1201 fp_args[double_arg_index + 1] = 1;
1202 /* Skip the corresponding general argument register. */
1203 int_argreg ++;
1204 }
1205 else
1206 ;
1207 /* Store it as the integers, 8 bytes at the time, if
1208 necessary spilling on the stack. */
1209 }
1210 }
1211 }
1212 /* Store return address. */
1213 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1214
1215 /* Update stack pointer. */
1216 regcache_cooked_write_unsigned (regcache,
1217 gdbarch_sp_regnum (gdbarch), sp);
1218
1219 return sp;
1220 }
1221
1222 /* Find a function's return value in the appropriate registers (in
1223 regbuf), and copy it into valbuf. Extract from an array REGBUF
1224 containing the (raw) register state a function return value of type
1225 TYPE, and copy that, in virtual format, into VALBUF. */
1226 static void
1227 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1228 void *valbuf)
1229 {
1230 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1231 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1232 int len = TYPE_LENGTH (type);
1233
1234 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1235 {
1236 if (len == 4)
1237 {
1238 /* Return value stored in gdbarch_fp0_regnum. */
1239 regcache_raw_read (regcache,
1240 gdbarch_fp0_regnum (gdbarch), valbuf);
1241 }
1242 else if (len == 8)
1243 {
1244 /* return value stored in DR0_REGNUM. */
1245 DOUBLEST val;
1246 gdb_byte buf[8];
1247
1248 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1249
1250 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1251 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1252 buf, &val);
1253 else
1254 floatformat_to_doublest (&floatformat_ieee_double_big,
1255 buf, &val);
1256 store_typed_floating (valbuf, type, val);
1257 }
1258 }
1259 else
1260 {
1261 if (len <= 8)
1262 {
1263 int offset;
1264 char buf[8];
1265 /* Result is in register 2. If smaller than 8 bytes, it is padded
1266 at the most significant end. */
1267 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1268
1269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1270 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1271 - len;
1272 else
1273 offset = 0;
1274 memcpy (valbuf, buf + offset, len);
1275 }
1276 else
1277 error (_("bad size for return value"));
1278 }
1279 }
1280
1281 /* Write into appropriate registers a function return value
1282 of type TYPE, given in virtual format.
1283 If the architecture is sh4 or sh3e, store a function's return value
1284 in the R0 general register or in the FP0 floating point register,
1285 depending on the type of the return value. In all the other cases
1286 the result is stored in r0, left-justified. */
1287
1288 static void
1289 sh64_store_return_value (struct type *type, struct regcache *regcache,
1290 const void *valbuf)
1291 {
1292 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1293 char buf[64]; /* more than enough... */
1294 int len = TYPE_LENGTH (type);
1295
1296 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1297 {
1298 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1299 for (i = 0; i < len; i += 4)
1300 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1301 regcache_raw_write (regcache, regnum++,
1302 (char *) valbuf + len - 4 - i);
1303 else
1304 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1305 }
1306 else
1307 {
1308 int return_register = DEFAULT_RETURN_REGNUM;
1309 int offset = 0;
1310
1311 if (len <= register_size (gdbarch, return_register))
1312 {
1313 /* Pad with zeros. */
1314 memset (buf, 0, register_size (gdbarch, return_register));
1315 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1316 offset = 0; /*register_size (gdbarch,
1317 return_register) - len;*/
1318 else
1319 offset = register_size (gdbarch, return_register) - len;
1320
1321 memcpy (buf + offset, valbuf, len);
1322 regcache_raw_write (regcache, return_register, buf);
1323 }
1324 else
1325 regcache_raw_write (regcache, return_register, valbuf);
1326 }
1327 }
1328
1329 static enum return_value_convention
1330 sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1331 struct type *type, struct regcache *regcache,
1332 gdb_byte *readbuf, const gdb_byte *writebuf)
1333 {
1334 if (sh64_use_struct_convention (type))
1335 return RETURN_VALUE_STRUCT_CONVENTION;
1336 if (writebuf)
1337 sh64_store_return_value (type, regcache, writebuf);
1338 else if (readbuf)
1339 sh64_extract_return_value (type, regcache, readbuf);
1340 return RETURN_VALUE_REGISTER_CONVENTION;
1341 }
1342
1343 static void
1344 sh64_show_media_regs (struct frame_info *frame)
1345 {
1346 struct gdbarch *gdbarch = get_frame_arch (frame);
1347 int i;
1348
1349 printf_filtered
1350 ("PC=%s SR=%s\n",
1351 phex (get_frame_register_unsigned (frame,
1352 gdbarch_pc_regnum (gdbarch)), 8),
1353 phex (get_frame_register_unsigned (frame, SR_REGNUM), 8));
1354
1355 printf_filtered
1356 ("SSR=%s SPC=%s\n",
1357 phex (get_frame_register_unsigned (frame, SSR_REGNUM), 8),
1358 phex (get_frame_register_unsigned (frame, SPC_REGNUM), 8));
1359 printf_filtered
1360 ("FPSCR=%s\n ",
1361 phex (get_frame_register_unsigned (frame, FPSCR_REGNUM), 8));
1362
1363 for (i = 0; i < 64; i = i + 4)
1364 printf_filtered
1365 ("\nR%d-R%d %s %s %s %s\n",
1366 i, i + 3,
1367 phex (get_frame_register_unsigned (frame, i + 0), 8),
1368 phex (get_frame_register_unsigned (frame, i + 1), 8),
1369 phex (get_frame_register_unsigned (frame, i + 2), 8),
1370 phex (get_frame_register_unsigned (frame, i + 3), 8));
1371
1372 printf_filtered ("\n");
1373
1374 for (i = 0; i < 64; i = i + 8)
1375 printf_filtered
1376 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1377 i, i + 7,
1378 (long) get_frame_register_unsigned
1379 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1380 (long) get_frame_register_unsigned
1381 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1382 (long) get_frame_register_unsigned
1383 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1384 (long) get_frame_register_unsigned
1385 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1386 (long) get_frame_register_unsigned
1387 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1388 (long) get_frame_register_unsigned
1389 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1390 (long) get_frame_register_unsigned
1391 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1392 (long) get_frame_register_unsigned
1393 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1394 }
1395
1396 static void
1397 sh64_show_compact_regs (struct frame_info *frame)
1398 {
1399 struct gdbarch *gdbarch = get_frame_arch (frame);
1400 int i;
1401
1402 printf_filtered
1403 ("PC=%s\n",
1404 phex (get_frame_register_unsigned (frame, PC_C_REGNUM), 8));
1405
1406 printf_filtered
1407 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1408 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1409 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1410 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1411 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1412 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1413 printf_filtered
1414 ("FPSCR=%08lx FPUL=%08lx\n",
1415 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1416 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1417
1418 for (i = 0; i < 16; i = i + 4)
1419 printf_filtered
1420 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1421 i, i + 3,
1422 (long) get_frame_register_unsigned (frame, i + 0),
1423 (long) get_frame_register_unsigned (frame, i + 1),
1424 (long) get_frame_register_unsigned (frame, i + 2),
1425 (long) get_frame_register_unsigned (frame, i + 3));
1426
1427 printf_filtered ("\n");
1428
1429 for (i = 0; i < 16; i = i + 8)
1430 printf_filtered
1431 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1432 i, i + 7,
1433 (long) get_frame_register_unsigned
1434 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1435 (long) get_frame_register_unsigned
1436 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1437 (long) get_frame_register_unsigned
1438 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1439 (long) get_frame_register_unsigned
1440 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1441 (long) get_frame_register_unsigned
1442 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1443 (long) get_frame_register_unsigned
1444 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1445 (long) get_frame_register_unsigned
1446 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1447 (long) get_frame_register_unsigned
1448 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1449 }
1450
1451 /* FIXME!!! This only shows the registers for shmedia, excluding the
1452 pseudo registers. */
1453 void
1454 sh64_show_regs (struct frame_info *frame)
1455 {
1456 if (pc_is_isa32 (get_frame_pc (frame)))
1457 sh64_show_media_regs (frame);
1458 else
1459 sh64_show_compact_regs (frame);
1460 }
1461
1462 /* *INDENT-OFF* */
1463 /*
1464 SH MEDIA MODE (ISA 32)
1465 general registers (64-bit) 0-63
1466 0 r0, r1, r2, r3, r4, r5, r6, r7,
1467 64 r8, r9, r10, r11, r12, r13, r14, r15,
1468 128 r16, r17, r18, r19, r20, r21, r22, r23,
1469 192 r24, r25, r26, r27, r28, r29, r30, r31,
1470 256 r32, r33, r34, r35, r36, r37, r38, r39,
1471 320 r40, r41, r42, r43, r44, r45, r46, r47,
1472 384 r48, r49, r50, r51, r52, r53, r54, r55,
1473 448 r56, r57, r58, r59, r60, r61, r62, r63,
1474
1475 pc (64-bit) 64
1476 512 pc,
1477
1478 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1479 520 sr, ssr, spc,
1480
1481 target registers (64-bit) 68-75
1482 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1483
1484 floating point state control register (32-bit) 76
1485 608 fpscr,
1486
1487 single precision floating point registers (32-bit) 77-140
1488 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1489 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1490 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1491 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1492 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1493 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1494 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1495 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1496
1497 TOTAL SPACE FOR REGISTERS: 868 bytes
1498
1499 From here on they are all pseudo registers: no memory allocated.
1500 REGISTER_BYTE returns the register byte for the base register.
1501
1502 double precision registers (pseudo) 141-172
1503 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1504 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1505 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1506 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1507
1508 floating point pairs (pseudo) 173-204
1509 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1510 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1511 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1512 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1513
1514 floating point vectors (4 floating point regs) (pseudo) 205-220
1515 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1516 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1517
1518 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1519 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1520 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1521 pc_c,
1522 gbr_c, mach_c, macl_c, pr_c, t_c,
1523 fpscr_c, fpul_c,
1524 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1525 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1526 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1527 fv0_c, fv4_c, fv8_c, fv12_c
1528 */
1529
1530 static struct type *
1531 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1532 {
1533 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1534 0, high);
1535 }
1536
1537 /* Return the GDB type object for the "standard" data type
1538 of data in register REG_NR. */
1539 static struct type *
1540 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1541 {
1542 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1543 && reg_nr <= FP_LAST_REGNUM)
1544 || (reg_nr >= FP0_C_REGNUM
1545 && reg_nr <= FP_LAST_C_REGNUM))
1546 return builtin_type (gdbarch)->builtin_float;
1547 else if ((reg_nr >= DR0_REGNUM
1548 && reg_nr <= DR_LAST_REGNUM)
1549 || (reg_nr >= DR0_C_REGNUM
1550 && reg_nr <= DR_LAST_C_REGNUM))
1551 return builtin_type (gdbarch)->builtin_double;
1552 else if (reg_nr >= FPP0_REGNUM
1553 && reg_nr <= FPP_LAST_REGNUM)
1554 return sh64_build_float_register_type (gdbarch, 1);
1555 else if ((reg_nr >= FV0_REGNUM
1556 && reg_nr <= FV_LAST_REGNUM)
1557 ||(reg_nr >= FV0_C_REGNUM
1558 && reg_nr <= FV_LAST_C_REGNUM))
1559 return sh64_build_float_register_type (gdbarch, 3);
1560 else if (reg_nr == FPSCR_REGNUM)
1561 return builtin_type (gdbarch)->builtin_int;
1562 else if (reg_nr >= R0_C_REGNUM
1563 && reg_nr < FP0_C_REGNUM)
1564 return builtin_type (gdbarch)->builtin_int;
1565 else
1566 return builtin_type (gdbarch)->builtin_long_long;
1567 }
1568
1569 static void
1570 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1571 struct type *type, char *from, char *to)
1572 {
1573 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1574 {
1575 /* It is a no-op. */
1576 memcpy (to, from, register_size (gdbarch, regnum));
1577 return;
1578 }
1579
1580 if ((regnum >= DR0_REGNUM
1581 && regnum <= DR_LAST_REGNUM)
1582 || (regnum >= DR0_C_REGNUM
1583 && regnum <= DR_LAST_C_REGNUM))
1584 {
1585 DOUBLEST val;
1586 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1587 from, &val);
1588 store_typed_floating (to, type, val);
1589 }
1590 else
1591 error (_("sh64_register_convert_to_virtual "
1592 "called with non DR register number"));
1593 }
1594
1595 static void
1596 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1597 int regnum, const void *from, void *to)
1598 {
1599 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1600 {
1601 /* It is a no-op. */
1602 memcpy (to, from, register_size (gdbarch, regnum));
1603 return;
1604 }
1605
1606 if ((regnum >= DR0_REGNUM
1607 && regnum <= DR_LAST_REGNUM)
1608 || (regnum >= DR0_C_REGNUM
1609 && regnum <= DR_LAST_C_REGNUM))
1610 {
1611 DOUBLEST val = extract_typed_floating (from, type);
1612 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1613 &val, to);
1614 }
1615 else
1616 error (_("sh64_register_convert_to_raw called "
1617 "with non DR register number"));
1618 }
1619
1620 /* Concatenate PORTIONS contiguous raw registers starting at
1621 BASE_REGNUM into BUFFER. */
1622
1623 static enum register_status
1624 pseudo_register_read_portions (struct gdbarch *gdbarch,
1625 struct regcache *regcache,
1626 int portions,
1627 int base_regnum, gdb_byte *buffer)
1628 {
1629 int portion;
1630
1631 for (portion = 0; portion < portions; portion++)
1632 {
1633 enum register_status status;
1634 gdb_byte *b;
1635
1636 b = buffer + register_size (gdbarch, base_regnum) * portion;
1637 status = regcache_raw_read (regcache, base_regnum + portion, b);
1638 if (status != REG_VALID)
1639 return status;
1640 }
1641
1642 return REG_VALID;
1643 }
1644
1645 static enum register_status
1646 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1647 int reg_nr, gdb_byte *buffer)
1648 {
1649 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1650 int base_regnum;
1651 int offset = 0;
1652 char temp_buffer[MAX_REGISTER_SIZE];
1653 enum register_status status;
1654
1655 if (reg_nr >= DR0_REGNUM
1656 && reg_nr <= DR_LAST_REGNUM)
1657 {
1658 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1659
1660 /* Build the value in the provided buffer. */
1661 /* DR regs are double precision registers obtained by
1662 concatenating 2 single precision floating point registers. */
1663 status = pseudo_register_read_portions (gdbarch, regcache,
1664 2, base_regnum, temp_buffer);
1665 if (status == REG_VALID)
1666 {
1667 /* We must pay attention to the endianness. */
1668 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1669 register_type (gdbarch, reg_nr),
1670 temp_buffer, buffer);
1671 }
1672
1673 return status;
1674 }
1675
1676 else if (reg_nr >= FPP0_REGNUM
1677 && reg_nr <= FPP_LAST_REGNUM)
1678 {
1679 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1680
1681 /* Build the value in the provided buffer. */
1682 /* FPP regs are pairs of single precision registers obtained by
1683 concatenating 2 single precision floating point registers. */
1684 return pseudo_register_read_portions (gdbarch, regcache,
1685 2, base_regnum, buffer);
1686 }
1687
1688 else if (reg_nr >= FV0_REGNUM
1689 && reg_nr <= FV_LAST_REGNUM)
1690 {
1691 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1692
1693 /* Build the value in the provided buffer. */
1694 /* FV regs are vectors of single precision registers obtained by
1695 concatenating 4 single precision floating point registers. */
1696 return pseudo_register_read_portions (gdbarch, regcache,
1697 4, base_regnum, buffer);
1698 }
1699
1700 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1701 else if (reg_nr >= R0_C_REGNUM
1702 && reg_nr <= T_C_REGNUM)
1703 {
1704 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1705
1706 /* Build the value in the provided buffer. */
1707 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1708 if (status != REG_VALID)
1709 return status;
1710 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1711 offset = 4;
1712 memcpy (buffer,
1713 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1714 return REG_VALID;
1715 }
1716
1717 else if (reg_nr >= FP0_C_REGNUM
1718 && reg_nr <= FP_LAST_C_REGNUM)
1719 {
1720 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1721
1722 /* Build the value in the provided buffer. */
1723 /* Floating point registers map 1-1 to the media fp regs,
1724 they have the same size and endianness. */
1725 return regcache_raw_read (regcache, base_regnum, buffer);
1726 }
1727
1728 else if (reg_nr >= DR0_C_REGNUM
1729 && reg_nr <= DR_LAST_C_REGNUM)
1730 {
1731 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1732
1733 /* DR_C regs are double precision registers obtained by
1734 concatenating 2 single precision floating point registers. */
1735 status = pseudo_register_read_portions (gdbarch, regcache,
1736 2, base_regnum, temp_buffer);
1737 if (status == REG_VALID)
1738 {
1739 /* We must pay attention to the endianness. */
1740 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1741 register_type (gdbarch, reg_nr),
1742 temp_buffer, buffer);
1743 }
1744 return status;
1745 }
1746
1747 else if (reg_nr >= FV0_C_REGNUM
1748 && reg_nr <= FV_LAST_C_REGNUM)
1749 {
1750 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1751
1752 /* Build the value in the provided buffer. */
1753 /* FV_C regs are vectors of single precision registers obtained by
1754 concatenating 4 single precision floating point registers. */
1755 return pseudo_register_read_portions (gdbarch, regcache,
1756 4, base_regnum, buffer);
1757 }
1758
1759 else if (reg_nr == FPSCR_C_REGNUM)
1760 {
1761 int fpscr_base_regnum;
1762 int sr_base_regnum;
1763 unsigned int fpscr_value;
1764 unsigned int sr_value;
1765 unsigned int fpscr_c_value;
1766 unsigned int fpscr_c_part1_value;
1767 unsigned int fpscr_c_part2_value;
1768
1769 fpscr_base_regnum = FPSCR_REGNUM;
1770 sr_base_regnum = SR_REGNUM;
1771
1772 /* Build the value in the provided buffer. */
1773 /* FPSCR_C is a very weird register that contains sparse bits
1774 from the FPSCR and the SR architectural registers.
1775 Specifically: */
1776 /* *INDENT-OFF* */
1777 /*
1778 FPSRC_C bit
1779 0 Bit 0 of FPSCR
1780 1 reserved
1781 2-17 Bit 2-18 of FPSCR
1782 18-20 Bits 12,13,14 of SR
1783 21-31 reserved
1784 */
1785 /* *INDENT-ON* */
1786 /* Get FPSCR into a local buffer. */
1787 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1788 if (status != REG_VALID)
1789 return status;
1790 /* Get value as an int. */
1791 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1792 /* Get SR into a local buffer */
1793 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1794 if (status != REG_VALID)
1795 return status;
1796 /* Get value as an int. */
1797 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1798 /* Build the new value. */
1799 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1800 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1801 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1802 /* Store that in out buffer!!! */
1803 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1804 /* FIXME There is surely an endianness gotcha here. */
1805
1806 return REG_VALID;
1807 }
1808
1809 else if (reg_nr == FPUL_C_REGNUM)
1810 {
1811 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1812
1813 /* FPUL_C register is floating point register 32,
1814 same size, same endianness. */
1815 return regcache_raw_read (regcache, base_regnum, buffer);
1816 }
1817 else
1818 gdb_assert_not_reached ("invalid pseudo register number");
1819 }
1820
1821 static void
1822 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1823 int reg_nr, const gdb_byte *buffer)
1824 {
1825 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1826 int base_regnum, portion;
1827 int offset;
1828 char temp_buffer[MAX_REGISTER_SIZE];
1829
1830 if (reg_nr >= DR0_REGNUM
1831 && reg_nr <= DR_LAST_REGNUM)
1832 {
1833 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1834 /* We must pay attention to the endianness. */
1835 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1836 reg_nr,
1837 buffer, temp_buffer);
1838
1839 /* Write the real regs for which this one is an alias. */
1840 for (portion = 0; portion < 2; portion++)
1841 regcache_raw_write (regcache, base_regnum + portion,
1842 (temp_buffer
1843 + register_size (gdbarch,
1844 base_regnum) * portion));
1845 }
1846
1847 else if (reg_nr >= FPP0_REGNUM
1848 && reg_nr <= FPP_LAST_REGNUM)
1849 {
1850 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1851
1852 /* Write the real regs for which this one is an alias. */
1853 for (portion = 0; portion < 2; portion++)
1854 regcache_raw_write (regcache, base_regnum + portion,
1855 ((char *) buffer
1856 + register_size (gdbarch,
1857 base_regnum) * portion));
1858 }
1859
1860 else if (reg_nr >= FV0_REGNUM
1861 && reg_nr <= FV_LAST_REGNUM)
1862 {
1863 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1864
1865 /* Write the real regs for which this one is an alias. */
1866 for (portion = 0; portion < 4; portion++)
1867 regcache_raw_write (regcache, base_regnum + portion,
1868 ((char *) buffer
1869 + register_size (gdbarch,
1870 base_regnum) * portion));
1871 }
1872
1873 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1874 register but only 4 bytes of it. */
1875 else if (reg_nr >= R0_C_REGNUM
1876 && reg_nr <= T_C_REGNUM)
1877 {
1878 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1879 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1880 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1881 offset = 4;
1882 else
1883 offset = 0;
1884 /* Let's read the value of the base register into a temporary
1885 buffer, so that overwriting the last four bytes with the new
1886 value of the pseudo will leave the upper 4 bytes unchanged. */
1887 regcache_raw_read (regcache, base_regnum, temp_buffer);
1888 /* Write as an 8 byte quantity. */
1889 memcpy (temp_buffer + offset, buffer, 4);
1890 regcache_raw_write (regcache, base_regnum, temp_buffer);
1891 }
1892
1893 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1894 registers. Both are 4 bytes. */
1895 else if (reg_nr >= FP0_C_REGNUM
1896 && reg_nr <= FP_LAST_C_REGNUM)
1897 {
1898 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1899 regcache_raw_write (regcache, base_regnum, buffer);
1900 }
1901
1902 else if (reg_nr >= DR0_C_REGNUM
1903 && reg_nr <= DR_LAST_C_REGNUM)
1904 {
1905 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1906 for (portion = 0; portion < 2; portion++)
1907 {
1908 /* We must pay attention to the endianness. */
1909 sh64_register_convert_to_raw (gdbarch,
1910 register_type (gdbarch, reg_nr),
1911 reg_nr,
1912 buffer, temp_buffer);
1913
1914 regcache_raw_write (regcache, base_regnum + portion,
1915 (temp_buffer
1916 + register_size (gdbarch,
1917 base_regnum) * portion));
1918 }
1919 }
1920
1921 else if (reg_nr >= FV0_C_REGNUM
1922 && reg_nr <= FV_LAST_C_REGNUM)
1923 {
1924 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1925
1926 for (portion = 0; portion < 4; portion++)
1927 {
1928 regcache_raw_write (regcache, base_regnum + portion,
1929 ((char *) buffer
1930 + register_size (gdbarch,
1931 base_regnum) * portion));
1932 }
1933 }
1934
1935 else if (reg_nr == FPSCR_C_REGNUM)
1936 {
1937 int fpscr_base_regnum;
1938 int sr_base_regnum;
1939 unsigned int fpscr_value;
1940 unsigned int sr_value;
1941 unsigned int old_fpscr_value;
1942 unsigned int old_sr_value;
1943 unsigned int fpscr_c_value;
1944 unsigned int fpscr_mask;
1945 unsigned int sr_mask;
1946
1947 fpscr_base_regnum = FPSCR_REGNUM;
1948 sr_base_regnum = SR_REGNUM;
1949
1950 /* FPSCR_C is a very weird register that contains sparse bits
1951 from the FPSCR and the SR architectural registers.
1952 Specifically: */
1953 /* *INDENT-OFF* */
1954 /*
1955 FPSRC_C bit
1956 0 Bit 0 of FPSCR
1957 1 reserved
1958 2-17 Bit 2-18 of FPSCR
1959 18-20 Bits 12,13,14 of SR
1960 21-31 reserved
1961 */
1962 /* *INDENT-ON* */
1963 /* Get value as an int. */
1964 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1965
1966 /* Build the new values. */
1967 fpscr_mask = 0x0003fffd;
1968 sr_mask = 0x001c0000;
1969
1970 fpscr_value = fpscr_c_value & fpscr_mask;
1971 sr_value = (fpscr_value & sr_mask) >> 6;
1972
1973 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1974 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1975 old_fpscr_value &= 0xfffc0002;
1976 fpscr_value |= old_fpscr_value;
1977 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1978 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1979
1980 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1981 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1982 old_sr_value &= 0xffff8fff;
1983 sr_value |= old_sr_value;
1984 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1985 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1986 }
1987
1988 else if (reg_nr == FPUL_C_REGNUM)
1989 {
1990 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1991 regcache_raw_write (regcache, base_regnum, buffer);
1992 }
1993 }
1994
1995 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1996 shmedia REGISTERS. */
1997 /* Control registers, compact mode. */
1998 static void
1999 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
2000 int cr_c_regnum)
2001 {
2002 switch (cr_c_regnum)
2003 {
2004 case PC_C_REGNUM:
2005 fprintf_filtered (file, "pc_c\t0x%08x\n",
2006 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2007 break;
2008 case GBR_C_REGNUM:
2009 fprintf_filtered (file, "gbr_c\t0x%08x\n",
2010 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2011 break;
2012 case MACH_C_REGNUM:
2013 fprintf_filtered (file, "mach_c\t0x%08x\n",
2014 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2015 break;
2016 case MACL_C_REGNUM:
2017 fprintf_filtered (file, "macl_c\t0x%08x\n",
2018 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2019 break;
2020 case PR_C_REGNUM:
2021 fprintf_filtered (file, "pr_c\t0x%08x\n",
2022 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2023 break;
2024 case T_C_REGNUM:
2025 fprintf_filtered (file, "t_c\t0x%08x\n",
2026 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2027 break;
2028 case FPSCR_C_REGNUM:
2029 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
2030 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2031 break;
2032 case FPUL_C_REGNUM:
2033 fprintf_filtered (file, "fpul_c\t0x%08x\n",
2034 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2035 break;
2036 }
2037 }
2038
2039 static void
2040 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
2041 struct frame_info *frame, int regnum)
2042 { /* Do values for FP (float) regs. */
2043 unsigned char *raw_buffer;
2044 double flt; /* Double extracted from raw hex data. */
2045 int inv;
2046 int j;
2047
2048 /* Allocate space for the float. */
2049 raw_buffer = (unsigned char *)
2050 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
2051
2052 /* Get the data in raw format. */
2053 if (!frame_register_read (frame, regnum, raw_buffer))
2054 error (_("can't read register %d (%s)"),
2055 regnum, gdbarch_register_name (gdbarch, regnum));
2056
2057 /* Get the register as a number. */
2058 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
2059 raw_buffer, &inv);
2060
2061 /* Print the name and some spaces. */
2062 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2063 print_spaces_filtered (15 - strlen (gdbarch_register_name
2064 (gdbarch, regnum)), file);
2065
2066 /* Print the value. */
2067 if (inv)
2068 fprintf_filtered (file, "<invalid float>");
2069 else
2070 fprintf_filtered (file, "%-10.9g", flt);
2071
2072 /* Print the fp register as hex. */
2073 fprintf_filtered (file, "\t(raw 0x");
2074 for (j = 0; j < register_size (gdbarch, regnum); j++)
2075 {
2076 int idx = gdbarch_byte_order (gdbarch)
2077 == BFD_ENDIAN_BIG ? j : register_size
2078 (gdbarch, regnum) - 1 - j;
2079 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2080 }
2081 fprintf_filtered (file, ")");
2082 fprintf_filtered (file, "\n");
2083 }
2084
2085 static void
2086 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2087 struct frame_info *frame, int regnum)
2088 {
2089 /* All the sh64-compact mode registers are pseudo registers. */
2090
2091 if (regnum < gdbarch_num_regs (gdbarch)
2092 || regnum >= gdbarch_num_regs (gdbarch)
2093 + NUM_PSEUDO_REGS_SH_MEDIA
2094 + NUM_PSEUDO_REGS_SH_COMPACT)
2095 internal_error (__FILE__, __LINE__,
2096 _("Invalid pseudo register number %d\n"), regnum);
2097
2098 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2099 {
2100 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
2101 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2102 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2103 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2104 }
2105
2106 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2107 {
2108 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2109 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2110 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2111 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2112 }
2113
2114 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2115 {
2116 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
2117 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2118 regnum - FV0_REGNUM,
2119 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2120 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2121 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2122 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2123 }
2124
2125 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2126 {
2127 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2128 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2129 regnum - FV0_C_REGNUM,
2130 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2131 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2132 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2133 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2134 }
2135
2136 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2137 {
2138 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2139 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2140 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2141 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2142 }
2143
2144 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2145 {
2146 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2147 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2148 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2149 }
2150 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2151 /* This should work also for pseudoregs. */
2152 sh64_do_fp_register (gdbarch, file, frame, regnum);
2153 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2154 sh64_do_cr_c_register_info (file, frame, regnum);
2155 }
2156
2157 static void
2158 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2159 struct frame_info *frame, int regnum)
2160 {
2161 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2162 struct value_print_options opts;
2163
2164 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2165 print_spaces_filtered (15 - strlen (gdbarch_register_name
2166 (gdbarch, regnum)), file);
2167
2168 /* Get the data in raw format. */
2169 if (!frame_register_read (frame, regnum, raw_buffer))
2170 fprintf_filtered (file, "*value not available*\n");
2171
2172 get_formatted_print_options (&opts, 'x');
2173 opts.deref_ref = 1;
2174 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2175 file, 0, NULL, &opts, current_language);
2176 fprintf_filtered (file, "\t");
2177 get_formatted_print_options (&opts, 0);
2178 opts.deref_ref = 1;
2179 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2180 file, 0, NULL, &opts, current_language);
2181 fprintf_filtered (file, "\n");
2182 }
2183
2184 static void
2185 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2186 struct frame_info *frame, int regnum)
2187 {
2188 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2189 + gdbarch_num_pseudo_regs (gdbarch))
2190 internal_error (__FILE__, __LINE__,
2191 _("Invalid register number %d\n"), regnum);
2192
2193 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2194 {
2195 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2196 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2197 else
2198 sh64_do_register (gdbarch, file, frame, regnum);
2199 }
2200
2201 else if (regnum < gdbarch_num_regs (gdbarch)
2202 + gdbarch_num_pseudo_regs (gdbarch))
2203 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2204 }
2205
2206 static void
2207 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2208 struct frame_info *frame, int regnum,
2209 int fpregs)
2210 {
2211 if (regnum != -1) /* Do one specified register. */
2212 {
2213 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2214 error (_("Not a valid register for the current processor type"));
2215
2216 sh64_print_register (gdbarch, file, frame, regnum);
2217 }
2218 else
2219 /* Do all (or most) registers. */
2220 {
2221 regnum = 0;
2222 while (regnum < gdbarch_num_regs (gdbarch))
2223 {
2224 /* If the register name is empty, it is undefined for this
2225 processor, so don't display anything. */
2226 if (gdbarch_register_name (gdbarch, regnum) == NULL
2227 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2228 {
2229 regnum++;
2230 continue;
2231 }
2232
2233 if (TYPE_CODE (register_type (gdbarch, regnum))
2234 == TYPE_CODE_FLT)
2235 {
2236 if (fpregs)
2237 {
2238 /* true for "INFO ALL-REGISTERS" command. */
2239 sh64_do_fp_register (gdbarch, file, frame, regnum);
2240 regnum ++;
2241 }
2242 else
2243 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2244 /* skip FP regs */
2245 }
2246 else
2247 {
2248 sh64_do_register (gdbarch, file, frame, regnum);
2249 regnum++;
2250 }
2251 }
2252
2253 if (fpregs)
2254 while (regnum < gdbarch_num_regs (gdbarch)
2255 + gdbarch_num_pseudo_regs (gdbarch))
2256 {
2257 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2258 regnum++;
2259 }
2260 }
2261 }
2262
2263 static void
2264 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2265 struct ui_file *file,
2266 struct frame_info *frame, int regnum,
2267 int fpregs)
2268 {
2269 if (regnum != -1) /* Do one specified register. */
2270 {
2271 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2272 error (_("Not a valid register for the current processor type"));
2273
2274 if (regnum >= 0 && regnum < R0_C_REGNUM)
2275 error (_("Not a valid register for the current processor mode."));
2276
2277 sh64_print_register (gdbarch, file, frame, regnum);
2278 }
2279 else
2280 /* Do all compact registers. */
2281 {
2282 regnum = R0_C_REGNUM;
2283 while (regnum < gdbarch_num_regs (gdbarch)
2284 + gdbarch_num_pseudo_regs (gdbarch))
2285 {
2286 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2287 regnum++;
2288 }
2289 }
2290 }
2291
2292 static void
2293 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2294 struct frame_info *frame, int regnum, int fpregs)
2295 {
2296 if (pc_is_isa32 (get_frame_pc (frame)))
2297 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2298 else
2299 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2300 }
2301
2302 static struct sh64_frame_cache *
2303 sh64_alloc_frame_cache (void)
2304 {
2305 struct sh64_frame_cache *cache;
2306 int i;
2307
2308 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2309
2310 /* Base address. */
2311 cache->base = 0;
2312 cache->saved_sp = 0;
2313 cache->sp_offset = 0;
2314 cache->pc = 0;
2315
2316 /* Frameless until proven otherwise. */
2317 cache->uses_fp = 0;
2318
2319 /* Saved registers. We initialize these to -1 since zero is a valid
2320 offset (that's where fp is supposed to be stored). */
2321 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2322 {
2323 cache->saved_regs[i] = -1;
2324 }
2325
2326 return cache;
2327 }
2328
2329 static struct sh64_frame_cache *
2330 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2331 {
2332 struct gdbarch *gdbarch;
2333 struct sh64_frame_cache *cache;
2334 CORE_ADDR current_pc;
2335 int i;
2336
2337 if (*this_cache)
2338 return *this_cache;
2339
2340 gdbarch = get_frame_arch (this_frame);
2341 cache = sh64_alloc_frame_cache ();
2342 *this_cache = cache;
2343
2344 current_pc = get_frame_pc (this_frame);
2345 cache->media_mode = pc_is_isa32 (current_pc);
2346
2347 /* In principle, for normal frames, fp holds the frame pointer,
2348 which holds the base address for the current stack frame.
2349 However, for functions that don't need it, the frame pointer is
2350 optional. For these "frameless" functions the frame pointer is
2351 actually the frame pointer of the calling frame. */
2352 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2353 if (cache->base == 0)
2354 return cache;
2355
2356 cache->pc = get_frame_func (this_frame);
2357 if (cache->pc != 0)
2358 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2359
2360 if (!cache->uses_fp)
2361 {
2362 /* We didn't find a valid frame, which means that CACHE->base
2363 currently holds the frame pointer for our calling frame. If
2364 we're at the start of a function, or somewhere half-way its
2365 prologue, the function's frame probably hasn't been fully
2366 setup yet. Try to reconstruct the base address for the stack
2367 frame by looking at the stack pointer. For truly "frameless"
2368 functions this might work too. */
2369 cache->base = get_frame_register_unsigned
2370 (this_frame, gdbarch_sp_regnum (gdbarch));
2371 }
2372
2373 /* Now that we have the base address for the stack frame we can
2374 calculate the value of sp in the calling frame. */
2375 cache->saved_sp = cache->base + cache->sp_offset;
2376
2377 /* Adjust all the saved registers such that they contain addresses
2378 instead of offsets. */
2379 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2380 if (cache->saved_regs[i] != -1)
2381 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2382
2383 return cache;
2384 }
2385
2386 static struct value *
2387 sh64_frame_prev_register (struct frame_info *this_frame,
2388 void **this_cache, int regnum)
2389 {
2390 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2391 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2392 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2393
2394 gdb_assert (regnum >= 0);
2395
2396 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2397 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2398
2399 /* The PC of the previous frame is stored in the PR register of
2400 the current frame. Frob regnum so that we pull the value from
2401 the correct place. */
2402 if (regnum == gdbarch_pc_regnum (gdbarch))
2403 regnum = PR_REGNUM;
2404
2405 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2406 {
2407 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2408 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2409 {
2410 CORE_ADDR val;
2411 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2412 4, byte_order);
2413 return frame_unwind_got_constant (this_frame, regnum, val);
2414 }
2415
2416 return frame_unwind_got_memory (this_frame, regnum,
2417 cache->saved_regs[regnum]);
2418 }
2419
2420 return frame_unwind_got_register (this_frame, regnum, regnum);
2421 }
2422
2423 static void
2424 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2425 struct frame_id *this_id)
2426 {
2427 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2428
2429 /* This marks the outermost frame. */
2430 if (cache->base == 0)
2431 return;
2432
2433 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2434 }
2435
2436 static const struct frame_unwind sh64_frame_unwind = {
2437 NORMAL_FRAME,
2438 default_frame_unwind_stop_reason,
2439 sh64_frame_this_id,
2440 sh64_frame_prev_register,
2441 NULL,
2442 default_frame_sniffer
2443 };
2444
2445 static CORE_ADDR
2446 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2447 {
2448 return frame_unwind_register_unsigned (next_frame,
2449 gdbarch_sp_regnum (gdbarch));
2450 }
2451
2452 static CORE_ADDR
2453 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2454 {
2455 return frame_unwind_register_unsigned (next_frame,
2456 gdbarch_pc_regnum (gdbarch));
2457 }
2458
2459 static struct frame_id
2460 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2461 {
2462 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2463 gdbarch_sp_regnum (gdbarch));
2464 return frame_id_build (sp, get_frame_pc (this_frame));
2465 }
2466
2467 static CORE_ADDR
2468 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2469 {
2470 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2471
2472 return cache->base;
2473 }
2474
2475 static const struct frame_base sh64_frame_base = {
2476 &sh64_frame_unwind,
2477 sh64_frame_base_address,
2478 sh64_frame_base_address,
2479 sh64_frame_base_address
2480 };
2481
2482
2483 struct gdbarch *
2484 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2485 {
2486 struct gdbarch *gdbarch;
2487 struct gdbarch_tdep *tdep;
2488
2489 /* If there is already a candidate, use it. */
2490 arches = gdbarch_list_lookup_by_info (arches, &info);
2491 if (arches != NULL)
2492 return arches->gdbarch;
2493
2494 /* None found, create a new architecture from the information
2495 provided. */
2496 tdep = XMALLOC (struct gdbarch_tdep);
2497 gdbarch = gdbarch_alloc (&info, tdep);
2498
2499 /* Determine the ABI */
2500 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2501 {
2502 /* If the ABI is the 64-bit one, it can only be sh-media. */
2503 tdep->sh_abi = SH_ABI_64;
2504 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2505 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2506 }
2507 else
2508 {
2509 /* If the ABI is the 32-bit one it could be either media or
2510 compact. */
2511 tdep->sh_abi = SH_ABI_32;
2512 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2513 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2514 }
2515
2516 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2517 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2518 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2519 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2520 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2521 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2522 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2523
2524 /* The number of real registers is the same whether we are in
2525 ISA16(compact) or ISA32(media). */
2526 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2527 set_gdbarch_sp_regnum (gdbarch, 15);
2528 set_gdbarch_pc_regnum (gdbarch, 64);
2529 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2530 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2531 + NUM_PSEUDO_REGS_SH_COMPACT);
2532
2533 set_gdbarch_register_name (gdbarch, sh64_register_name);
2534 set_gdbarch_register_type (gdbarch, sh64_register_type);
2535
2536 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2537 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2538
2539 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2540
2541 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2542 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2543
2544 set_gdbarch_return_value (gdbarch, sh64_return_value);
2545
2546 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2547 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2548
2549 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2550
2551 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2552
2553 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2554 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2555 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2556 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2557 frame_base_set_default (gdbarch, &sh64_frame_base);
2558
2559 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2560
2561 set_gdbarch_elf_make_msymbol_special (gdbarch,
2562 sh64_elf_make_msymbol_special);
2563
2564 /* Hook in ABI-specific overrides, if they have been registered. */
2565 gdbarch_init_osabi (info, gdbarch);
2566
2567 dwarf2_append_unwinders (gdbarch);
2568 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2569
2570 return gdbarch;
2571 }
This page took 0.1247 seconds and 4 git commands to generate.