doc: Fix substitute-path example
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "valprint.h"
39
40 #include "elf-bfd.h"
41
42 /* sh flags */
43 #include "elf/sh.h"
44 /* Register numbers shared with the simulator. */
45 #include "gdb/sim-sh.h"
46 #include "language.h"
47 #include "sh64-tdep.h"
48
49 /* Information that is dependent on the processor variant. */
50 enum sh_abi
51 {
52 SH_ABI_UNKNOWN,
53 SH_ABI_32,
54 SH_ABI_64
55 };
56
57 struct gdbarch_tdep
58 {
59 enum sh_abi sh_abi;
60 };
61
62 struct sh64_frame_cache
63 {
64 /* Base address. */
65 CORE_ADDR base;
66 LONGEST sp_offset;
67 CORE_ADDR pc;
68
69 /* Flag showing that a frame has been created in the prologue code. */
70 int uses_fp;
71
72 int media_mode;
73
74 /* Saved registers. */
75 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
76 CORE_ADDR saved_sp;
77 };
78
79 /* Registers of SH5 */
80 enum
81 {
82 R0_REGNUM = 0,
83 DEFAULT_RETURN_REGNUM = 2,
84 STRUCT_RETURN_REGNUM = 2,
85 ARG0_REGNUM = 2,
86 ARGLAST_REGNUM = 9,
87 FLOAT_ARGLAST_REGNUM = 11,
88 MEDIA_FP_REGNUM = 14,
89 PR_REGNUM = 18,
90 SR_REGNUM = 65,
91 DR0_REGNUM = 141,
92 DR_LAST_REGNUM = 172,
93 /* FPP stands for Floating Point Pair, to avoid confusion with
94 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
95 point register. Unfortunately on the sh5, the floating point
96 registers are called FR, and the floating point pairs are called FP. */
97 FPP0_REGNUM = 173,
98 FPP_LAST_REGNUM = 204,
99 FV0_REGNUM = 205,
100 FV_LAST_REGNUM = 220,
101 R0_C_REGNUM = 221,
102 R_LAST_C_REGNUM = 236,
103 PC_C_REGNUM = 237,
104 GBR_C_REGNUM = 238,
105 MACH_C_REGNUM = 239,
106 MACL_C_REGNUM = 240,
107 PR_C_REGNUM = 241,
108 T_C_REGNUM = 242,
109 FPSCR_C_REGNUM = 243,
110 FPUL_C_REGNUM = 244,
111 FP0_C_REGNUM = 245,
112 FP_LAST_C_REGNUM = 260,
113 DR0_C_REGNUM = 261,
114 DR_LAST_C_REGNUM = 268,
115 FV0_C_REGNUM = 269,
116 FV_LAST_C_REGNUM = 272,
117 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
118 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
119 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
120 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
121 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
122 };
123
124 static const char *
125 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
126 {
127 static char *register_names[] =
128 {
129 /* SH MEDIA MODE (ISA 32) */
130 /* general registers (64-bit) 0-63 */
131 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
132 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
133 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
134 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
135 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
136 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
137 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
138 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
139
140 /* pc (64-bit) 64 */
141 "pc",
142
143 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
144 "sr", "ssr", "spc",
145
146 /* target registers (64-bit) 68-75 */
147 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
148
149 /* floating point state control register (32-bit) 76 */
150 "fpscr",
151
152 /* single precision floating point registers (32-bit) 77-140 */
153 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
154 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
155 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
156 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
157 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
158 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
159 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
160 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
161
162 /* double precision registers (pseudo) 141-172 */
163 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
164 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
165 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
166 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
167
168 /* floating point pairs (pseudo) 173-204 */
169 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
170 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
171 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
172 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
173
174 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
175 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
176 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
177
178 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
179 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
180 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
181 "pc_c",
182 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
183 "fpscr_c", "fpul_c",
184 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
185 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
186 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
187 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
188 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
189 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
190 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
191 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
192 };
193
194 if (reg_nr < 0)
195 return NULL;
196 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
197 return NULL;
198 return register_names[reg_nr];
199 }
200
201 #define NUM_PSEUDO_REGS_SH_MEDIA 80
202 #define NUM_PSEUDO_REGS_SH_COMPACT 51
203
204 /* Macros and functions for setting and testing a bit in a minimal
205 symbol that marks it as 32-bit function. The MSB of the minimal
206 symbol's "info" field is used for this purpose.
207
208 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
209 i.e. refers to a 32-bit function, and sets a "special" bit in a
210 minimal symbol to mark it as a 32-bit function
211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
212
213 #define MSYMBOL_IS_SPECIAL(msym) \
214 MSYMBOL_TARGET_FLAG_1 (msym)
215
216 static void
217 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
218 {
219 if (msym == NULL)
220 return;
221
222 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
223 {
224 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
225 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
226 }
227 }
228
229 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
230 are some macros to test, set, or clear bit 0 of addresses. */
231 #define IS_ISA32_ADDR(addr) ((addr) & 1)
232 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
233 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
234
235 static int
236 pc_is_isa32 (bfd_vma memaddr)
237 {
238 struct bound_minimal_symbol sym;
239
240 /* If bit 0 of the address is set, assume this is a
241 ISA32 (shmedia) address. */
242 if (IS_ISA32_ADDR (memaddr))
243 return 1;
244
245 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
246 the high bit of the info field. Use this to decide if the function is
247 ISA16 or ISA32. */
248 sym = lookup_minimal_symbol_by_pc (memaddr);
249 if (sym.minsym)
250 return MSYMBOL_IS_SPECIAL (sym.minsym);
251 else
252 return 0;
253 }
254
255 static const unsigned char *
256 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
257 CORE_ADDR *pcptr, int *lenptr)
258 {
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263
264 /* The BRK instruction for shcompact is
265 00000000 00111011
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0 */
268
269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
270 {
271 if (pc_is_isa32 (*pcptr))
272 {
273 static unsigned char big_breakpoint_media[] = {
274 0x6f, 0xf5, 0xff, 0xf0
275 };
276 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
277 *lenptr = sizeof (big_breakpoint_media);
278 return big_breakpoint_media;
279 }
280 else
281 {
282 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
283 *lenptr = sizeof (big_breakpoint_compact);
284 return big_breakpoint_compact;
285 }
286 }
287 else
288 {
289 if (pc_is_isa32 (*pcptr))
290 {
291 static unsigned char little_breakpoint_media[] = {
292 0xf0, 0xff, 0xf5, 0x6f
293 };
294 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
295 *lenptr = sizeof (little_breakpoint_media);
296 return little_breakpoint_media;
297 }
298 else
299 {
300 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
301 *lenptr = sizeof (little_breakpoint_compact);
302 return little_breakpoint_compact;
303 }
304 }
305 }
306
307 /* Prologue looks like
308 [mov.l <regs>,@-r15]...
309 [sts.l pr,@-r15]
310 [mov.l r14,@-r15]
311 [mov r15,r14]
312
313 Actually it can be more complicated than this. For instance, with
314 newer gcc's:
315
316 mov.l r14,@-r15
317 add #-12,r15
318 mov r15,r14
319 mov r4,r1
320 mov r5,r2
321 mov.l r6,@(4,r14)
322 mov.l r7,@(8,r14)
323 mov.b r1,@r14
324 mov r14,r1
325 mov r14,r1
326 add #2,r1
327 mov.w r2,@r1
328
329 */
330
331 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
332 with l=1 and n = 18 0110101111110001010010100aaa0000 */
333 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
334
335 /* STS.L PR,@-r0 0100000000100010
336 r0-4-->r0, PR-->(r0) */
337 #define IS_STS_R0(x) ((x) == 0x4022)
338
339 /* STS PR, Rm 0000mmmm00101010
340 PR-->Rm */
341 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
342
343 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
344 Rm-->(dispx4+r15) */
345 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
346
347 /* MOV.L R14,@(disp,r15) 000111111110dddd
348 R14-->(dispx4+r15) */
349 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
350
351 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
352 R18-->(dispx8+R14) */
353 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
354
355 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
356 R18-->(dispx8+R15) */
357 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
358
359 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
360 R18-->(dispx4+R15) */
361 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
362
363 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx8+R15) */
365 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
366
367 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
368 R14-->(dispx4+R15) */
369 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
370
371 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
372 R15 + imm --> R15 */
373 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
374
375 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
376 R15 + imm --> R15 */
377 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
378
379 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
380 R15 + R63 --> R14 */
381 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
382
383 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
384 R15 + R63 --> R14 */
385 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
386
387 #define IS_MOV_SP_FP_MEDIA(x) \
388 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
389
390 /* MOV #imm, R0 1110 0000 ssss ssss
391 #imm-->R0 */
392 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
393
394 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
395 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
396
397 /* ADD r15,r0 0011 0000 1111 1100
398 r15+r0-->r0 */
399 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
400
401 /* MOV.L R14 @-R0 0010 0000 1110 0110
402 R14-->(R0-4), R0-4-->R0 */
403 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
404
405 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
406 where Rm is one of r2-r9 which are the argument registers. */
407 /* FIXME: Recognize the float and double register moves too! */
408 #define IS_MEDIA_IND_ARG_MOV(x) \
409 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
410 && (((x) & 0x03f00000) >= 0x00200000 \
411 && ((x) & 0x03f00000) <= 0x00900000))
412
413 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
414 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
415 where Rm is one of r2-r9 which are the argument registers. */
416 #define IS_MEDIA_ARG_MOV(x) \
417 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
418 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
419
420 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
421 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
422 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
423 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
424 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
425 #define IS_MEDIA_MOV_TO_R14(x) \
426 ((((x) & 0xfffffc0f) == 0xa0e00000) \
427 || (((x) & 0xfffffc0f) == 0xa4e00000) \
428 || (((x) & 0xfffffc0f) == 0xa8e00000) \
429 || (((x) & 0xfffffc0f) == 0xb4e00000) \
430 || (((x) & 0xfffffc0f) == 0xbce00000))
431
432 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
433 where Rm is r2-r9 */
434 #define IS_COMPACT_IND_ARG_MOV(x) \
435 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
436 && (((x) & 0x00f0) <= 0x0090))
437
438 /* compact direct arg move!
439 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
440 #define IS_COMPACT_ARG_MOV(x) \
441 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
442 && ((x) & 0x00f0) <= 0x0090))
443
444 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
445 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
446 #define IS_COMPACT_MOV_TO_R14(x) \
447 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
448
449 #define IS_JSR_R0(x) ((x) == 0x400b)
450 #define IS_NOP(x) ((x) == 0x0009)
451
452
453 /* MOV r15,r14 0110111011110011
454 r15-->r14 */
455 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
456
457 /* ADD #imm,r15 01111111iiiiiiii
458 r15+imm-->r15 */
459 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
460
461 /* Skip any prologue before the guts of a function. */
462
463 /* Skip the prologue using the debug information. If this fails we'll
464 fall back on the 'guess' method below. */
465 static CORE_ADDR
466 after_prologue (CORE_ADDR pc)
467 {
468 struct symtab_and_line sal;
469 CORE_ADDR func_addr, func_end;
470
471 /* If we can not find the symbol in the partial symbol table, then
472 there is no hope we can determine the function's start address
473 with this code. */
474 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
475 return 0;
476
477
478 /* Get the line associated with FUNC_ADDR. */
479 sal = find_pc_line (func_addr, 0);
480
481 /* There are only two cases to consider. First, the end of the source line
482 is within the function bounds. In that case we return the end of the
483 source line. Second is the end of the source line extends beyond the
484 bounds of the current function. We need to use the slow code to
485 examine instructions in that case. */
486 if (sal.end < func_end)
487 return sal.end;
488 else
489 return 0;
490 }
491
492 static CORE_ADDR
493 look_for_args_moves (struct gdbarch *gdbarch,
494 CORE_ADDR start_pc, int media_mode)
495 {
496 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
497 CORE_ADDR here, end;
498 int w;
499 int insn_size = (media_mode ? 4 : 2);
500
501 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
502 {
503 if (media_mode)
504 {
505 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
506 insn_size, byte_order);
507 here += insn_size;
508 if (IS_MEDIA_IND_ARG_MOV (w))
509 {
510 /* This must be followed by a store to r14, so the argument
511 is where the debug info says it is. This can happen after
512 the SP has been saved, unfortunately. */
513
514 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
515 insn_size, byte_order);
516 here += insn_size;
517 if (IS_MEDIA_MOV_TO_R14 (next_insn))
518 start_pc = here;
519 }
520 else if (IS_MEDIA_ARG_MOV (w))
521 {
522 /* These instructions store directly the argument in r14. */
523 start_pc = here;
524 }
525 else
526 break;
527 }
528 else
529 {
530 w = read_memory_integer (here, insn_size, byte_order);
531 w = w & 0xffff;
532 here += insn_size;
533 if (IS_COMPACT_IND_ARG_MOV (w))
534 {
535 /* This must be followed by a store to r14, so the argument
536 is where the debug info says it is. This can happen after
537 the SP has been saved, unfortunately. */
538
539 int next_insn = 0xffff & read_memory_integer (here, insn_size,
540 byte_order);
541 here += insn_size;
542 if (IS_COMPACT_MOV_TO_R14 (next_insn))
543 start_pc = here;
544 }
545 else if (IS_COMPACT_ARG_MOV (w))
546 {
547 /* These instructions store directly the argument in r14. */
548 start_pc = here;
549 }
550 else if (IS_MOVL_R0 (w))
551 {
552 /* There is a function that gcc calls to get the arguments
553 passed correctly to the function. Only after this
554 function call the arguments will be found at the place
555 where they are supposed to be. This happens in case the
556 argument has to be stored into a 64-bit register (for
557 instance doubles, long longs). SHcompact doesn't have
558 access to the full 64-bits, so we store the register in
559 stack slot and store the address of the stack slot in
560 the register, then do a call through a wrapper that
561 loads the memory value into the register. A SHcompact
562 callee calls an argument decoder
563 (GCC_shcompact_incoming_args) that stores the 64-bit
564 value in a stack slot and stores the address of the
565 stack slot in the register. GCC thinks the argument is
566 just passed by transparent reference, but this is only
567 true after the argument decoder is called. Such a call
568 needs to be considered part of the prologue. */
569
570 /* This must be followed by a JSR @r0 instruction and by
571 a NOP instruction. After these, the prologue is over! */
572
573 int next_insn = 0xffff & read_memory_integer (here, insn_size,
574 byte_order);
575 here += insn_size;
576 if (IS_JSR_R0 (next_insn))
577 {
578 next_insn = 0xffff & read_memory_integer (here, insn_size,
579 byte_order);
580 here += insn_size;
581
582 if (IS_NOP (next_insn))
583 start_pc = here;
584 }
585 }
586 else
587 break;
588 }
589 }
590
591 return start_pc;
592 }
593
594 static CORE_ADDR
595 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
596 {
597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
598 CORE_ADDR here, end;
599 int updated_fp = 0;
600 int insn_size = 4;
601 int media_mode = 1;
602
603 if (!start_pc)
604 return 0;
605
606 if (pc_is_isa32 (start_pc) == 0)
607 {
608 insn_size = 2;
609 media_mode = 0;
610 }
611
612 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
613 {
614
615 if (media_mode)
616 {
617 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
618 insn_size, byte_order);
619 here += insn_size;
620 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
621 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
622 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
623 || IS_PTABSL_R18 (w))
624 {
625 start_pc = here;
626 }
627 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
628 {
629 start_pc = here;
630 updated_fp = 1;
631 }
632 else
633 if (updated_fp)
634 {
635 /* Don't bail out yet, we may have arguments stored in
636 registers here, according to the debug info, so that
637 gdb can print the frames correctly. */
638 start_pc = look_for_args_moves (gdbarch,
639 here - insn_size, media_mode);
640 break;
641 }
642 }
643 else
644 {
645 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
646 here += insn_size;
647
648 if (IS_STS_R0 (w) || IS_STS_PR (w)
649 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
650 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
651 {
652 start_pc = here;
653 }
654 else if (IS_MOV_SP_FP (w))
655 {
656 start_pc = here;
657 updated_fp = 1;
658 }
659 else
660 if (updated_fp)
661 {
662 /* Don't bail out yet, we may have arguments stored in
663 registers here, according to the debug info, so that
664 gdb can print the frames correctly. */
665 start_pc = look_for_args_moves (gdbarch,
666 here - insn_size, media_mode);
667 break;
668 }
669 }
670 }
671
672 return start_pc;
673 }
674
675 static CORE_ADDR
676 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
677 {
678 CORE_ADDR post_prologue_pc;
679
680 /* See if we can determine the end of the prologue via the symbol table.
681 If so, then return either PC, or the PC after the prologue, whichever
682 is greater. */
683 post_prologue_pc = after_prologue (pc);
684
685 /* If after_prologue returned a useful address, then use it. Else
686 fall back on the instruction skipping code. */
687 if (post_prologue_pc != 0)
688 return max (pc, post_prologue_pc);
689 else
690 return sh64_skip_prologue_hard_way (gdbarch, pc);
691 }
692
693 /* Should call_function allocate stack space for a struct return? */
694 static int
695 sh64_use_struct_convention (struct type *type)
696 {
697 return (TYPE_LENGTH (type) > 8);
698 }
699
700 /* For vectors of 4 floating point registers. */
701 static int
702 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
703 {
704 int fp_regnum;
705
706 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
707 return fp_regnum;
708 }
709
710 /* For double precision floating point registers, i.e 2 fp regs. */
711 static int
712 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
713 {
714 int fp_regnum;
715
716 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
717 return fp_regnum;
718 }
719
720 /* For pairs of floating point registers. */
721 static int
722 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
723 {
724 int fp_regnum;
725
726 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
727 return fp_regnum;
728 }
729
730 /* *INDENT-OFF* */
731 /*
732 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
733 GDB_REGNUM BASE_REGNUM
734 r0_c 221 0
735 r1_c 222 1
736 r2_c 223 2
737 r3_c 224 3
738 r4_c 225 4
739 r5_c 226 5
740 r6_c 227 6
741 r7_c 228 7
742 r8_c 229 8
743 r9_c 230 9
744 r10_c 231 10
745 r11_c 232 11
746 r12_c 233 12
747 r13_c 234 13
748 r14_c 235 14
749 r15_c 236 15
750
751 pc_c 237 64
752 gbr_c 238 16
753 mach_c 239 17
754 macl_c 240 17
755 pr_c 241 18
756 t_c 242 19
757 fpscr_c 243 76
758 fpul_c 244 109
759
760 fr0_c 245 77
761 fr1_c 246 78
762 fr2_c 247 79
763 fr3_c 248 80
764 fr4_c 249 81
765 fr5_c 250 82
766 fr6_c 251 83
767 fr7_c 252 84
768 fr8_c 253 85
769 fr9_c 254 86
770 fr10_c 255 87
771 fr11_c 256 88
772 fr12_c 257 89
773 fr13_c 258 90
774 fr14_c 259 91
775 fr15_c 260 92
776
777 dr0_c 261 77
778 dr2_c 262 79
779 dr4_c 263 81
780 dr6_c 264 83
781 dr8_c 265 85
782 dr10_c 266 87
783 dr12_c 267 89
784 dr14_c 268 91
785
786 fv0_c 269 77
787 fv4_c 270 81
788 fv8_c 271 85
789 fv12_c 272 91
790 */
791 /* *INDENT-ON* */
792 static int
793 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
794 {
795 int base_regnum = reg_nr;
796
797 /* general register N maps to general register N */
798 if (reg_nr >= R0_C_REGNUM
799 && reg_nr <= R_LAST_C_REGNUM)
800 base_regnum = reg_nr - R0_C_REGNUM;
801
802 /* floating point register N maps to floating point register N */
803 else if (reg_nr >= FP0_C_REGNUM
804 && reg_nr <= FP_LAST_C_REGNUM)
805 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
806
807 /* double prec register N maps to base regnum for double prec register N */
808 else if (reg_nr >= DR0_C_REGNUM
809 && reg_nr <= DR_LAST_C_REGNUM)
810 base_regnum = sh64_dr_reg_base_num (gdbarch,
811 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
812
813 /* vector N maps to base regnum for vector register N */
814 else if (reg_nr >= FV0_C_REGNUM
815 && reg_nr <= FV_LAST_C_REGNUM)
816 base_regnum = sh64_fv_reg_base_num (gdbarch,
817 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
818
819 else if (reg_nr == PC_C_REGNUM)
820 base_regnum = gdbarch_pc_regnum (gdbarch);
821
822 else if (reg_nr == GBR_C_REGNUM)
823 base_regnum = 16;
824
825 else if (reg_nr == MACH_C_REGNUM
826 || reg_nr == MACL_C_REGNUM)
827 base_regnum = 17;
828
829 else if (reg_nr == PR_C_REGNUM)
830 base_regnum = PR_REGNUM;
831
832 else if (reg_nr == T_C_REGNUM)
833 base_regnum = 19;
834
835 else if (reg_nr == FPSCR_C_REGNUM)
836 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
837
838 else if (reg_nr == FPUL_C_REGNUM)
839 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
840
841 return base_regnum;
842 }
843
844 static int
845 sign_extend (int value, int bits)
846 {
847 value = value & ((1 << bits) - 1);
848 return (value & (1 << (bits - 1))
849 ? value | (~((1 << bits) - 1))
850 : value);
851 }
852
853 static void
854 sh64_analyze_prologue (struct gdbarch *gdbarch,
855 struct sh64_frame_cache *cache,
856 CORE_ADDR func_pc,
857 CORE_ADDR current_pc)
858 {
859 int pc;
860 int opc;
861 int insn;
862 int r0_val = 0;
863 int insn_size;
864 int gdb_register_number;
865 int register_number;
866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868
869 cache->sp_offset = 0;
870
871 /* Loop around examining the prologue insns until we find something
872 that does not appear to be part of the prologue. But give up
873 after 20 of them, since we're getting silly then. */
874
875 pc = func_pc;
876
877 if (cache->media_mode)
878 insn_size = 4;
879 else
880 insn_size = 2;
881
882 opc = pc + (insn_size * 28);
883 if (opc > current_pc)
884 opc = current_pc;
885 for ( ; pc <= opc; pc += insn_size)
886 {
887 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
888 : pc,
889 insn_size, byte_order);
890
891 if (!cache->media_mode)
892 {
893 if (IS_STS_PR (insn))
894 {
895 int next_insn = read_memory_integer (pc + insn_size,
896 insn_size, byte_order);
897 if (IS_MOV_TO_R15 (next_insn))
898 {
899 cache->saved_regs[PR_REGNUM]
900 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
901 - 0x8) << 2);
902 pc += insn_size;
903 }
904 }
905
906 else if (IS_MOV_R14 (insn))
907 cache->saved_regs[MEDIA_FP_REGNUM] =
908 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
909
910 else if (IS_MOV_R0 (insn))
911 {
912 /* Put in R0 the offset from SP at which to store some
913 registers. We are interested in this value, because it
914 will tell us where the given registers are stored within
915 the frame. */
916 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
917 }
918
919 else if (IS_ADD_SP_R0 (insn))
920 {
921 /* This instruction still prepares r0, but we don't care.
922 We already have the offset in r0_val. */
923 }
924
925 else if (IS_STS_R0 (insn))
926 {
927 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
928 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
929 r0_val -= 4;
930 }
931
932 else if (IS_MOV_R14_R0 (insn))
933 {
934 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
935 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
936 - (r0_val - 4);
937 r0_val -= 4;
938 }
939
940 else if (IS_ADD_SP (insn))
941 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
942
943 else if (IS_MOV_SP_FP (insn))
944 break;
945 }
946 else
947 {
948 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
949 cache->sp_offset -=
950 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
951
952 else if (IS_STQ_R18_R15 (insn))
953 cache->saved_regs[PR_REGNUM]
954 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
955 9) << 3);
956
957 else if (IS_STL_R18_R15 (insn))
958 cache->saved_regs[PR_REGNUM]
959 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
960 9) << 2);
961
962 else if (IS_STQ_R14_R15 (insn))
963 cache->saved_regs[MEDIA_FP_REGNUM]
964 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
965 9) << 3);
966
967 else if (IS_STL_R14_R15 (insn))
968 cache->saved_regs[MEDIA_FP_REGNUM]
969 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
970 9) << 2);
971
972 else if (IS_MOV_SP_FP_MEDIA (insn))
973 break;
974 }
975 }
976
977 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
978 cache->uses_fp = 1;
979 }
980
981 static CORE_ADDR
982 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
983 {
984 return sp & ~7;
985 }
986
987 /* Function: push_dummy_call
988 Setup the function arguments for calling a function in the inferior.
989
990 On the Renesas SH architecture, there are four registers (R4 to R7)
991 which are dedicated for passing function arguments. Up to the first
992 four arguments (depending on size) may go into these registers.
993 The rest go on the stack.
994
995 Arguments that are smaller than 4 bytes will still take up a whole
996 register or a whole 32-bit word on the stack, and will be
997 right-justified in the register or the stack word. This includes
998 chars, shorts, and small aggregate types.
999
1000 Arguments that are larger than 4 bytes may be split between two or
1001 more registers. If there are not enough registers free, an argument
1002 may be passed partly in a register (or registers), and partly on the
1003 stack. This includes doubles, long longs, and larger aggregates.
1004 As far as I know, there is no upper limit to the size of aggregates
1005 that will be passed in this way; in other words, the convention of
1006 passing a pointer to a large aggregate instead of a copy is not used.
1007
1008 An exceptional case exists for struct arguments (and possibly other
1009 aggregates such as arrays) if the size is larger than 4 bytes but
1010 not a multiple of 4 bytes. In this case the argument is never split
1011 between the registers and the stack, but instead is copied in its
1012 entirety onto the stack, AND also copied into as many registers as
1013 there is room for. In other words, space in registers permitting,
1014 two copies of the same argument are passed in. As far as I can tell,
1015 only the one on the stack is used, although that may be a function
1016 of the level of compiler optimization. I suspect this is a compiler
1017 bug. Arguments of these odd sizes are left-justified within the
1018 word (as opposed to arguments smaller than 4 bytes, which are
1019 right-justified).
1020
1021 If the function is to return an aggregate type such as a struct, it
1022 is either returned in the normal return value register R0 (if its
1023 size is no greater than one byte), or else the caller must allocate
1024 space into which the callee will copy the return value (if the size
1025 is greater than one byte). In this case, a pointer to the return
1026 value location is passed into the callee in register R2, which does
1027 not displace any of the other arguments passed in via registers R4
1028 to R7. */
1029
1030 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1031 non-scalar (struct, union) elements (even if the elements are
1032 floats).
1033 FR0-FR11 for single precision floating point (float)
1034 DR0-DR10 for double precision floating point (double)
1035
1036 If a float is argument number 3 (for instance) and arguments number
1037 1,2, and 4 are integer, the mapping will be:
1038 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1039
1040 If a float is argument number 10 (for instance) and arguments number
1041 1 through 10 are integer, the mapping will be:
1042 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1043 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1044 arg11->stack(16,SP). I.e. there is hole in the stack.
1045
1046 Different rules apply for variable arguments functions, and for functions
1047 for which the prototype is not known. */
1048
1049 static CORE_ADDR
1050 sh64_push_dummy_call (struct gdbarch *gdbarch,
1051 struct value *function,
1052 struct regcache *regcache,
1053 CORE_ADDR bp_addr,
1054 int nargs, struct value **args,
1055 CORE_ADDR sp, int struct_return,
1056 CORE_ADDR struct_addr)
1057 {
1058 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1059 int stack_offset, stack_alloc;
1060 int int_argreg;
1061 int float_argreg;
1062 int double_argreg;
1063 int float_arg_index = 0;
1064 int double_arg_index = 0;
1065 int argnum;
1066 struct type *type;
1067 CORE_ADDR regval;
1068 const gdb_byte *val;
1069 gdb_byte valbuf[8];
1070 int len;
1071 int argreg_size;
1072 int fp_args[12];
1073
1074 memset (fp_args, 0, sizeof (fp_args));
1075
1076 /* First force sp to a 8-byte alignment. */
1077 sp = sh64_frame_align (gdbarch, sp);
1078
1079 /* The "struct return pointer" pseudo-argument has its own dedicated
1080 register. */
1081
1082 if (struct_return)
1083 regcache_cooked_write_unsigned (regcache,
1084 STRUCT_RETURN_REGNUM, struct_addr);
1085
1086 /* Now make sure there's space on the stack. */
1087 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1088 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1089 sp -= stack_alloc; /* Make room on stack for args. */
1090
1091 /* Now load as many as possible of the first arguments into
1092 registers, and push the rest onto the stack. There are 64 bytes
1093 in eight registers available. Loop thru args from first to last. */
1094
1095 int_argreg = ARG0_REGNUM;
1096 float_argreg = gdbarch_fp0_regnum (gdbarch);
1097 double_argreg = DR0_REGNUM;
1098
1099 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1100 {
1101 type = value_type (args[argnum]);
1102 len = TYPE_LENGTH (type);
1103 memset (valbuf, 0, sizeof (valbuf));
1104
1105 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1106 {
1107 argreg_size = register_size (gdbarch, int_argreg);
1108
1109 if (len < argreg_size)
1110 {
1111 /* value gets right-justified in the register or stack word. */
1112 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1113 memcpy (valbuf + argreg_size - len,
1114 value_contents (args[argnum]), len);
1115 else
1116 memcpy (valbuf, value_contents (args[argnum]), len);
1117
1118 val = valbuf;
1119 }
1120 else
1121 val = value_contents (args[argnum]);
1122
1123 while (len > 0)
1124 {
1125 if (int_argreg > ARGLAST_REGNUM)
1126 {
1127 /* Must go on the stack. */
1128 write_memory (sp + stack_offset, val, argreg_size);
1129 stack_offset += 8;/*argreg_size;*/
1130 }
1131 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1132 That's because some *&^%$ things get passed on the stack
1133 AND in the registers! */
1134 if (int_argreg <= ARGLAST_REGNUM)
1135 {
1136 /* There's room in a register. */
1137 regval = extract_unsigned_integer (val, argreg_size,
1138 byte_order);
1139 regcache_cooked_write_unsigned (regcache,
1140 int_argreg, regval);
1141 }
1142 /* Store the value 8 bytes at a time. This means that
1143 things larger than 8 bytes may go partly in registers
1144 and partly on the stack. FIXME: argreg is incremented
1145 before we use its size. */
1146 len -= argreg_size;
1147 val += argreg_size;
1148 int_argreg++;
1149 }
1150 }
1151 else
1152 {
1153 val = value_contents (args[argnum]);
1154 if (len == 4)
1155 {
1156 /* Where is it going to be stored? */
1157 while (fp_args[float_arg_index])
1158 float_arg_index ++;
1159
1160 /* Now float_argreg points to the register where it
1161 should be stored. Are we still within the allowed
1162 register set? */
1163 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1164 {
1165 /* Goes in FR0...FR11 */
1166 regcache_cooked_write (regcache,
1167 gdbarch_fp0_regnum (gdbarch)
1168 + float_arg_index,
1169 val);
1170 fp_args[float_arg_index] = 1;
1171 /* Skip the corresponding general argument register. */
1172 int_argreg ++;
1173 }
1174 else
1175 {
1176 /* Store it as the integers, 8 bytes at the time, if
1177 necessary spilling on the stack. */
1178 }
1179 }
1180 else if (len == 8)
1181 {
1182 /* Where is it going to be stored? */
1183 while (fp_args[double_arg_index])
1184 double_arg_index += 2;
1185 /* Now double_argreg points to the register
1186 where it should be stored.
1187 Are we still within the allowed register set? */
1188 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1189 {
1190 /* Goes in DR0...DR10 */
1191 /* The numbering of the DRi registers is consecutive,
1192 i.e. includes odd numbers. */
1193 int double_register_offset = double_arg_index / 2;
1194 int regnum = DR0_REGNUM + double_register_offset;
1195 regcache_cooked_write (regcache, regnum, val);
1196 fp_args[double_arg_index] = 1;
1197 fp_args[double_arg_index + 1] = 1;
1198 /* Skip the corresponding general argument register. */
1199 int_argreg ++;
1200 }
1201 else
1202 {
1203 /* Store it as the integers, 8 bytes at the time, if
1204 necessary spilling on the stack. */
1205 }
1206 }
1207 }
1208 }
1209 /* Store return address. */
1210 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1211
1212 /* Update stack pointer. */
1213 regcache_cooked_write_unsigned (regcache,
1214 gdbarch_sp_regnum (gdbarch), sp);
1215
1216 return sp;
1217 }
1218
1219 /* Find a function's return value in the appropriate registers (in
1220 regbuf), and copy it into valbuf. Extract from an array REGBUF
1221 containing the (raw) register state a function return value of type
1222 TYPE, and copy that, in virtual format, into VALBUF. */
1223 static void
1224 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1225 void *valbuf)
1226 {
1227 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1229 int len = TYPE_LENGTH (type);
1230
1231 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1232 {
1233 if (len == 4)
1234 {
1235 /* Return value stored in gdbarch_fp0_regnum. */
1236 regcache_raw_read (regcache,
1237 gdbarch_fp0_regnum (gdbarch), valbuf);
1238 }
1239 else if (len == 8)
1240 {
1241 /* return value stored in DR0_REGNUM. */
1242 DOUBLEST val;
1243 gdb_byte buf[8];
1244
1245 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1246
1247 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1248 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1249 buf, &val);
1250 else
1251 floatformat_to_doublest (&floatformat_ieee_double_big,
1252 buf, &val);
1253 store_typed_floating (valbuf, type, val);
1254 }
1255 }
1256 else
1257 {
1258 if (len <= 8)
1259 {
1260 int offset;
1261 gdb_byte buf[8];
1262 /* Result is in register 2. If smaller than 8 bytes, it is padded
1263 at the most significant end. */
1264 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1265
1266 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1267 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1268 - len;
1269 else
1270 offset = 0;
1271 memcpy (valbuf, buf + offset, len);
1272 }
1273 else
1274 error (_("bad size for return value"));
1275 }
1276 }
1277
1278 /* Write into appropriate registers a function return value
1279 of type TYPE, given in virtual format.
1280 If the architecture is sh4 or sh3e, store a function's return value
1281 in the R0 general register or in the FP0 floating point register,
1282 depending on the type of the return value. In all the other cases
1283 the result is stored in r0, left-justified. */
1284
1285 static void
1286 sh64_store_return_value (struct type *type, struct regcache *regcache,
1287 const gdb_byte *valbuf)
1288 {
1289 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1290 gdb_byte buf[64]; /* more than enough... */
1291 int len = TYPE_LENGTH (type);
1292
1293 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1294 {
1295 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1296 for (i = 0; i < len; i += 4)
1297 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1298 regcache_raw_write (regcache, regnum++,
1299 valbuf + len - 4 - i);
1300 else
1301 regcache_raw_write (regcache, regnum++, valbuf + i);
1302 }
1303 else
1304 {
1305 int return_register = DEFAULT_RETURN_REGNUM;
1306 int offset = 0;
1307
1308 if (len <= register_size (gdbarch, return_register))
1309 {
1310 /* Pad with zeros. */
1311 memset (buf, 0, register_size (gdbarch, return_register));
1312 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1313 offset = 0; /*register_size (gdbarch,
1314 return_register) - len;*/
1315 else
1316 offset = register_size (gdbarch, return_register) - len;
1317
1318 memcpy (buf + offset, valbuf, len);
1319 regcache_raw_write (regcache, return_register, buf);
1320 }
1321 else
1322 regcache_raw_write (regcache, return_register, valbuf);
1323 }
1324 }
1325
1326 static enum return_value_convention
1327 sh64_return_value (struct gdbarch *gdbarch, struct value *function,
1328 struct type *type, struct regcache *regcache,
1329 gdb_byte *readbuf, const gdb_byte *writebuf)
1330 {
1331 if (sh64_use_struct_convention (type))
1332 return RETURN_VALUE_STRUCT_CONVENTION;
1333 if (writebuf)
1334 sh64_store_return_value (type, regcache, writebuf);
1335 else if (readbuf)
1336 sh64_extract_return_value (type, regcache, readbuf);
1337 return RETURN_VALUE_REGISTER_CONVENTION;
1338 }
1339
1340 /* *INDENT-OFF* */
1341 /*
1342 SH MEDIA MODE (ISA 32)
1343 general registers (64-bit) 0-63
1344 0 r0, r1, r2, r3, r4, r5, r6, r7,
1345 64 r8, r9, r10, r11, r12, r13, r14, r15,
1346 128 r16, r17, r18, r19, r20, r21, r22, r23,
1347 192 r24, r25, r26, r27, r28, r29, r30, r31,
1348 256 r32, r33, r34, r35, r36, r37, r38, r39,
1349 320 r40, r41, r42, r43, r44, r45, r46, r47,
1350 384 r48, r49, r50, r51, r52, r53, r54, r55,
1351 448 r56, r57, r58, r59, r60, r61, r62, r63,
1352
1353 pc (64-bit) 64
1354 512 pc,
1355
1356 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1357 520 sr, ssr, spc,
1358
1359 target registers (64-bit) 68-75
1360 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1361
1362 floating point state control register (32-bit) 76
1363 608 fpscr,
1364
1365 single precision floating point registers (32-bit) 77-140
1366 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1367 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1368 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1369 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1370 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1371 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1372 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1373 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1374
1375 TOTAL SPACE FOR REGISTERS: 868 bytes
1376
1377 From here on they are all pseudo registers: no memory allocated.
1378 REGISTER_BYTE returns the register byte for the base register.
1379
1380 double precision registers (pseudo) 141-172
1381 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1382 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1383 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1384 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1385
1386 floating point pairs (pseudo) 173-204
1387 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1388 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1389 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1390 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1391
1392 floating point vectors (4 floating point regs) (pseudo) 205-220
1393 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1394 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1395
1396 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1397 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1398 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1399 pc_c,
1400 gbr_c, mach_c, macl_c, pr_c, t_c,
1401 fpscr_c, fpul_c,
1402 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1403 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1404 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1405 fv0_c, fv4_c, fv8_c, fv12_c
1406 */
1407
1408 static struct type *
1409 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1410 {
1411 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1412 0, high);
1413 }
1414
1415 /* Return the GDB type object for the "standard" data type
1416 of data in register REG_NR. */
1417 static struct type *
1418 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1419 {
1420 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1421 && reg_nr <= FP_LAST_REGNUM)
1422 || (reg_nr >= FP0_C_REGNUM
1423 && reg_nr <= FP_LAST_C_REGNUM))
1424 return builtin_type (gdbarch)->builtin_float;
1425 else if ((reg_nr >= DR0_REGNUM
1426 && reg_nr <= DR_LAST_REGNUM)
1427 || (reg_nr >= DR0_C_REGNUM
1428 && reg_nr <= DR_LAST_C_REGNUM))
1429 return builtin_type (gdbarch)->builtin_double;
1430 else if (reg_nr >= FPP0_REGNUM
1431 && reg_nr <= FPP_LAST_REGNUM)
1432 return sh64_build_float_register_type (gdbarch, 1);
1433 else if ((reg_nr >= FV0_REGNUM
1434 && reg_nr <= FV_LAST_REGNUM)
1435 ||(reg_nr >= FV0_C_REGNUM
1436 && reg_nr <= FV_LAST_C_REGNUM))
1437 return sh64_build_float_register_type (gdbarch, 3);
1438 else if (reg_nr == FPSCR_REGNUM)
1439 return builtin_type (gdbarch)->builtin_int;
1440 else if (reg_nr >= R0_C_REGNUM
1441 && reg_nr < FP0_C_REGNUM)
1442 return builtin_type (gdbarch)->builtin_int;
1443 else
1444 return builtin_type (gdbarch)->builtin_long_long;
1445 }
1446
1447 static void
1448 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1449 struct type *type, gdb_byte *from, gdb_byte *to)
1450 {
1451 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1452 {
1453 /* It is a no-op. */
1454 memcpy (to, from, register_size (gdbarch, regnum));
1455 return;
1456 }
1457
1458 if ((regnum >= DR0_REGNUM
1459 && regnum <= DR_LAST_REGNUM)
1460 || (regnum >= DR0_C_REGNUM
1461 && regnum <= DR_LAST_C_REGNUM))
1462 {
1463 DOUBLEST val;
1464 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1465 from, &val);
1466 store_typed_floating (to, type, val);
1467 }
1468 else
1469 error (_("sh64_register_convert_to_virtual "
1470 "called with non DR register number"));
1471 }
1472
1473 static void
1474 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1475 int regnum, const void *from, void *to)
1476 {
1477 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1478 {
1479 /* It is a no-op. */
1480 memcpy (to, from, register_size (gdbarch, regnum));
1481 return;
1482 }
1483
1484 if ((regnum >= DR0_REGNUM
1485 && regnum <= DR_LAST_REGNUM)
1486 || (regnum >= DR0_C_REGNUM
1487 && regnum <= DR_LAST_C_REGNUM))
1488 {
1489 DOUBLEST val = extract_typed_floating (from, type);
1490 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1491 &val, to);
1492 }
1493 else
1494 error (_("sh64_register_convert_to_raw called "
1495 "with non DR register number"));
1496 }
1497
1498 /* Concatenate PORTIONS contiguous raw registers starting at
1499 BASE_REGNUM into BUFFER. */
1500
1501 static enum register_status
1502 pseudo_register_read_portions (struct gdbarch *gdbarch,
1503 struct regcache *regcache,
1504 int portions,
1505 int base_regnum, gdb_byte *buffer)
1506 {
1507 int portion;
1508
1509 for (portion = 0; portion < portions; portion++)
1510 {
1511 enum register_status status;
1512 gdb_byte *b;
1513
1514 b = buffer + register_size (gdbarch, base_regnum) * portion;
1515 status = regcache_raw_read (regcache, base_regnum + portion, b);
1516 if (status != REG_VALID)
1517 return status;
1518 }
1519
1520 return REG_VALID;
1521 }
1522
1523 static enum register_status
1524 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1525 int reg_nr, gdb_byte *buffer)
1526 {
1527 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1528 int base_regnum;
1529 int offset = 0;
1530 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1531 enum register_status status;
1532
1533 if (reg_nr >= DR0_REGNUM
1534 && reg_nr <= DR_LAST_REGNUM)
1535 {
1536 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1537
1538 /* Build the value in the provided buffer. */
1539 /* DR regs are double precision registers obtained by
1540 concatenating 2 single precision floating point registers. */
1541 status = pseudo_register_read_portions (gdbarch, regcache,
1542 2, base_regnum, temp_buffer);
1543 if (status == REG_VALID)
1544 {
1545 /* We must pay attention to the endianness. */
1546 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1547 register_type (gdbarch, reg_nr),
1548 temp_buffer, buffer);
1549 }
1550
1551 return status;
1552 }
1553
1554 else if (reg_nr >= FPP0_REGNUM
1555 && reg_nr <= FPP_LAST_REGNUM)
1556 {
1557 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1558
1559 /* Build the value in the provided buffer. */
1560 /* FPP regs are pairs of single precision registers obtained by
1561 concatenating 2 single precision floating point registers. */
1562 return pseudo_register_read_portions (gdbarch, regcache,
1563 2, base_regnum, buffer);
1564 }
1565
1566 else if (reg_nr >= FV0_REGNUM
1567 && reg_nr <= FV_LAST_REGNUM)
1568 {
1569 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1570
1571 /* Build the value in the provided buffer. */
1572 /* FV regs are vectors of single precision registers obtained by
1573 concatenating 4 single precision floating point registers. */
1574 return pseudo_register_read_portions (gdbarch, regcache,
1575 4, base_regnum, buffer);
1576 }
1577
1578 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1579 else if (reg_nr >= R0_C_REGNUM
1580 && reg_nr <= T_C_REGNUM)
1581 {
1582 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1583
1584 /* Build the value in the provided buffer. */
1585 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1586 if (status != REG_VALID)
1587 return status;
1588 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1589 offset = 4;
1590 memcpy (buffer,
1591 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1592 return REG_VALID;
1593 }
1594
1595 else if (reg_nr >= FP0_C_REGNUM
1596 && reg_nr <= FP_LAST_C_REGNUM)
1597 {
1598 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1599
1600 /* Build the value in the provided buffer. */
1601 /* Floating point registers map 1-1 to the media fp regs,
1602 they have the same size and endianness. */
1603 return regcache_raw_read (regcache, base_regnum, buffer);
1604 }
1605
1606 else if (reg_nr >= DR0_C_REGNUM
1607 && reg_nr <= DR_LAST_C_REGNUM)
1608 {
1609 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1610
1611 /* DR_C regs are double precision registers obtained by
1612 concatenating 2 single precision floating point registers. */
1613 status = pseudo_register_read_portions (gdbarch, regcache,
1614 2, base_regnum, temp_buffer);
1615 if (status == REG_VALID)
1616 {
1617 /* We must pay attention to the endianness. */
1618 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1619 register_type (gdbarch, reg_nr),
1620 temp_buffer, buffer);
1621 }
1622 return status;
1623 }
1624
1625 else if (reg_nr >= FV0_C_REGNUM
1626 && reg_nr <= FV_LAST_C_REGNUM)
1627 {
1628 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1629
1630 /* Build the value in the provided buffer. */
1631 /* FV_C regs are vectors of single precision registers obtained by
1632 concatenating 4 single precision floating point registers. */
1633 return pseudo_register_read_portions (gdbarch, regcache,
1634 4, base_regnum, buffer);
1635 }
1636
1637 else if (reg_nr == FPSCR_C_REGNUM)
1638 {
1639 int fpscr_base_regnum;
1640 int sr_base_regnum;
1641 unsigned int fpscr_value;
1642 unsigned int sr_value;
1643 unsigned int fpscr_c_value;
1644 unsigned int fpscr_c_part1_value;
1645 unsigned int fpscr_c_part2_value;
1646
1647 fpscr_base_regnum = FPSCR_REGNUM;
1648 sr_base_regnum = SR_REGNUM;
1649
1650 /* Build the value in the provided buffer. */
1651 /* FPSCR_C is a very weird register that contains sparse bits
1652 from the FPSCR and the SR architectural registers.
1653 Specifically: */
1654 /* *INDENT-OFF* */
1655 /*
1656 FPSRC_C bit
1657 0 Bit 0 of FPSCR
1658 1 reserved
1659 2-17 Bit 2-18 of FPSCR
1660 18-20 Bits 12,13,14 of SR
1661 21-31 reserved
1662 */
1663 /* *INDENT-ON* */
1664 /* Get FPSCR into a local buffer. */
1665 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1666 if (status != REG_VALID)
1667 return status;
1668 /* Get value as an int. */
1669 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1670 /* Get SR into a local buffer */
1671 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1672 if (status != REG_VALID)
1673 return status;
1674 /* Get value as an int. */
1675 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1676 /* Build the new value. */
1677 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1678 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1679 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1680 /* Store that in out buffer!!! */
1681 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1682 /* FIXME There is surely an endianness gotcha here. */
1683
1684 return REG_VALID;
1685 }
1686
1687 else if (reg_nr == FPUL_C_REGNUM)
1688 {
1689 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1690
1691 /* FPUL_C register is floating point register 32,
1692 same size, same endianness. */
1693 return regcache_raw_read (regcache, base_regnum, buffer);
1694 }
1695 else
1696 gdb_assert_not_reached ("invalid pseudo register number");
1697 }
1698
1699 static void
1700 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1701 int reg_nr, const gdb_byte *buffer)
1702 {
1703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1704 int base_regnum, portion;
1705 int offset;
1706 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1707
1708 if (reg_nr >= DR0_REGNUM
1709 && reg_nr <= DR_LAST_REGNUM)
1710 {
1711 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1712 /* We must pay attention to the endianness. */
1713 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1714 reg_nr,
1715 buffer, temp_buffer);
1716
1717 /* Write the real regs for which this one is an alias. */
1718 for (portion = 0; portion < 2; portion++)
1719 regcache_raw_write (regcache, base_regnum + portion,
1720 (temp_buffer
1721 + register_size (gdbarch,
1722 base_regnum) * portion));
1723 }
1724
1725 else if (reg_nr >= FPP0_REGNUM
1726 && reg_nr <= FPP_LAST_REGNUM)
1727 {
1728 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1729
1730 /* Write the real regs for which this one is an alias. */
1731 for (portion = 0; portion < 2; portion++)
1732 regcache_raw_write (regcache, base_regnum + portion,
1733 (buffer + register_size (gdbarch,
1734 base_regnum) * portion));
1735 }
1736
1737 else if (reg_nr >= FV0_REGNUM
1738 && reg_nr <= FV_LAST_REGNUM)
1739 {
1740 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1741
1742 /* Write the real regs for which this one is an alias. */
1743 for (portion = 0; portion < 4; portion++)
1744 regcache_raw_write (regcache, base_regnum + portion,
1745 (buffer + register_size (gdbarch,
1746 base_regnum) * portion));
1747 }
1748
1749 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1750 register but only 4 bytes of it. */
1751 else if (reg_nr >= R0_C_REGNUM
1752 && reg_nr <= T_C_REGNUM)
1753 {
1754 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1755 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1756 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1757 offset = 4;
1758 else
1759 offset = 0;
1760 /* Let's read the value of the base register into a temporary
1761 buffer, so that overwriting the last four bytes with the new
1762 value of the pseudo will leave the upper 4 bytes unchanged. */
1763 regcache_raw_read (regcache, base_regnum, temp_buffer);
1764 /* Write as an 8 byte quantity. */
1765 memcpy (temp_buffer + offset, buffer, 4);
1766 regcache_raw_write (regcache, base_regnum, temp_buffer);
1767 }
1768
1769 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1770 registers. Both are 4 bytes. */
1771 else if (reg_nr >= FP0_C_REGNUM
1772 && reg_nr <= FP_LAST_C_REGNUM)
1773 {
1774 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1775 regcache_raw_write (regcache, base_regnum, buffer);
1776 }
1777
1778 else if (reg_nr >= DR0_C_REGNUM
1779 && reg_nr <= DR_LAST_C_REGNUM)
1780 {
1781 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1782 for (portion = 0; portion < 2; portion++)
1783 {
1784 /* We must pay attention to the endianness. */
1785 sh64_register_convert_to_raw (gdbarch,
1786 register_type (gdbarch, reg_nr),
1787 reg_nr,
1788 buffer, temp_buffer);
1789
1790 regcache_raw_write (regcache, base_regnum + portion,
1791 (temp_buffer
1792 + register_size (gdbarch,
1793 base_regnum) * portion));
1794 }
1795 }
1796
1797 else if (reg_nr >= FV0_C_REGNUM
1798 && reg_nr <= FV_LAST_C_REGNUM)
1799 {
1800 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1801
1802 for (portion = 0; portion < 4; portion++)
1803 {
1804 regcache_raw_write (regcache, base_regnum + portion,
1805 (buffer
1806 + register_size (gdbarch,
1807 base_regnum) * portion));
1808 }
1809 }
1810
1811 else if (reg_nr == FPSCR_C_REGNUM)
1812 {
1813 int fpscr_base_regnum;
1814 int sr_base_regnum;
1815 unsigned int fpscr_value;
1816 unsigned int sr_value;
1817 unsigned int old_fpscr_value;
1818 unsigned int old_sr_value;
1819 unsigned int fpscr_c_value;
1820 unsigned int fpscr_mask;
1821 unsigned int sr_mask;
1822
1823 fpscr_base_regnum = FPSCR_REGNUM;
1824 sr_base_regnum = SR_REGNUM;
1825
1826 /* FPSCR_C is a very weird register that contains sparse bits
1827 from the FPSCR and the SR architectural registers.
1828 Specifically: */
1829 /* *INDENT-OFF* */
1830 /*
1831 FPSRC_C bit
1832 0 Bit 0 of FPSCR
1833 1 reserved
1834 2-17 Bit 2-18 of FPSCR
1835 18-20 Bits 12,13,14 of SR
1836 21-31 reserved
1837 */
1838 /* *INDENT-ON* */
1839 /* Get value as an int. */
1840 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1841
1842 /* Build the new values. */
1843 fpscr_mask = 0x0003fffd;
1844 sr_mask = 0x001c0000;
1845
1846 fpscr_value = fpscr_c_value & fpscr_mask;
1847 sr_value = (fpscr_value & sr_mask) >> 6;
1848
1849 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1850 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1851 old_fpscr_value &= 0xfffc0002;
1852 fpscr_value |= old_fpscr_value;
1853 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1854 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1855
1856 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1857 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1858 old_sr_value &= 0xffff8fff;
1859 sr_value |= old_sr_value;
1860 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1861 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1862 }
1863
1864 else if (reg_nr == FPUL_C_REGNUM)
1865 {
1866 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1867 regcache_raw_write (regcache, base_regnum, buffer);
1868 }
1869 }
1870
1871 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1872 shmedia REGISTERS. */
1873 /* Control registers, compact mode. */
1874 static void
1875 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1876 int cr_c_regnum)
1877 {
1878 switch (cr_c_regnum)
1879 {
1880 case PC_C_REGNUM:
1881 fprintf_filtered (file, "pc_c\t0x%08x\n",
1882 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1883 break;
1884 case GBR_C_REGNUM:
1885 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1886 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1887 break;
1888 case MACH_C_REGNUM:
1889 fprintf_filtered (file, "mach_c\t0x%08x\n",
1890 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1891 break;
1892 case MACL_C_REGNUM:
1893 fprintf_filtered (file, "macl_c\t0x%08x\n",
1894 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1895 break;
1896 case PR_C_REGNUM:
1897 fprintf_filtered (file, "pr_c\t0x%08x\n",
1898 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1899 break;
1900 case T_C_REGNUM:
1901 fprintf_filtered (file, "t_c\t0x%08x\n",
1902 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1903 break;
1904 case FPSCR_C_REGNUM:
1905 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1906 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1907 break;
1908 case FPUL_C_REGNUM:
1909 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1910 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1911 break;
1912 }
1913 }
1914
1915 static void
1916 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1917 struct frame_info *frame, int regnum)
1918 { /* Do values for FP (float) regs. */
1919 unsigned char *raw_buffer;
1920 double flt; /* Double extracted from raw hex data. */
1921 int inv;
1922 int j;
1923
1924 /* Allocate space for the float. */
1925 raw_buffer = (unsigned char *)
1926 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
1927
1928 /* Get the data in raw format. */
1929 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
1930 error (_("can't read register %d (%s)"),
1931 regnum, gdbarch_register_name (gdbarch, regnum));
1932
1933 /* Get the register as a number. */
1934 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1935 raw_buffer, &inv);
1936
1937 /* Print the name and some spaces. */
1938 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
1939 print_spaces_filtered (15 - strlen (gdbarch_register_name
1940 (gdbarch, regnum)), file);
1941
1942 /* Print the value. */
1943 if (inv)
1944 fprintf_filtered (file, "<invalid float>");
1945 else
1946 fprintf_filtered (file, "%-10.9g", flt);
1947
1948 /* Print the fp register as hex. */
1949 fprintf_filtered (file, "\t(raw ");
1950 print_hex_chars (file, raw_buffer,
1951 register_size (gdbarch, regnum),
1952 gdbarch_byte_order (gdbarch));
1953 fprintf_filtered (file, ")");
1954 fprintf_filtered (file, "\n");
1955 }
1956
1957 static void
1958 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1959 struct frame_info *frame, int regnum)
1960 {
1961 /* All the sh64-compact mode registers are pseudo registers. */
1962
1963 if (regnum < gdbarch_num_regs (gdbarch)
1964 || regnum >= gdbarch_num_regs (gdbarch)
1965 + NUM_PSEUDO_REGS_SH_MEDIA
1966 + NUM_PSEUDO_REGS_SH_COMPACT)
1967 internal_error (__FILE__, __LINE__,
1968 _("Invalid pseudo register number %d\n"), regnum);
1969
1970 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1971 {
1972 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
1973 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1974 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1975 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1976 }
1977
1978 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1979 {
1980 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1981 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1984 }
1985
1986 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1987 {
1988 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
1989 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1990 regnum - FV0_REGNUM,
1991 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1992 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1995 }
1996
1997 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1998 {
1999 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2000 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2001 regnum - FV0_C_REGNUM,
2002 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2005 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2006 }
2007
2008 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2009 {
2010 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2011 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2012 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2013 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2014 }
2015
2016 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2017 {
2018 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2019 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2020 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2021 }
2022 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2023 /* This should work also for pseudoregs. */
2024 sh64_do_fp_register (gdbarch, file, frame, regnum);
2025 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2026 sh64_do_cr_c_register_info (file, frame, regnum);
2027 }
2028
2029 static void
2030 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2031 struct frame_info *frame, int regnum)
2032 {
2033 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2034 struct value_print_options opts;
2035
2036 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2037 print_spaces_filtered (15 - strlen (gdbarch_register_name
2038 (gdbarch, regnum)), file);
2039
2040 /* Get the data in raw format. */
2041 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
2042 {
2043 fprintf_filtered (file, "*value not available*\n");
2044 return;
2045 }
2046
2047 get_formatted_print_options (&opts, 'x');
2048 opts.deref_ref = 1;
2049 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2050 file, 0, NULL, &opts, current_language);
2051 fprintf_filtered (file, "\t");
2052 get_formatted_print_options (&opts, 0);
2053 opts.deref_ref = 1;
2054 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2055 file, 0, NULL, &opts, current_language);
2056 fprintf_filtered (file, "\n");
2057 }
2058
2059 static void
2060 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2061 struct frame_info *frame, int regnum)
2062 {
2063 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2064 + gdbarch_num_pseudo_regs (gdbarch))
2065 internal_error (__FILE__, __LINE__,
2066 _("Invalid register number %d\n"), regnum);
2067
2068 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2069 {
2070 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2071 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2072 else
2073 sh64_do_register (gdbarch, file, frame, regnum);
2074 }
2075
2076 else if (regnum < gdbarch_num_regs (gdbarch)
2077 + gdbarch_num_pseudo_regs (gdbarch))
2078 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2079 }
2080
2081 static void
2082 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2083 struct frame_info *frame, int regnum,
2084 int fpregs)
2085 {
2086 if (regnum != -1) /* Do one specified register. */
2087 {
2088 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2089 error (_("Not a valid register for the current processor type"));
2090
2091 sh64_print_register (gdbarch, file, frame, regnum);
2092 }
2093 else
2094 /* Do all (or most) registers. */
2095 {
2096 regnum = 0;
2097 while (regnum < gdbarch_num_regs (gdbarch))
2098 {
2099 /* If the register name is empty, it is undefined for this
2100 processor, so don't display anything. */
2101 if (gdbarch_register_name (gdbarch, regnum) == NULL
2102 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2103 {
2104 regnum++;
2105 continue;
2106 }
2107
2108 if (TYPE_CODE (register_type (gdbarch, regnum))
2109 == TYPE_CODE_FLT)
2110 {
2111 if (fpregs)
2112 {
2113 /* true for "INFO ALL-REGISTERS" command. */
2114 sh64_do_fp_register (gdbarch, file, frame, regnum);
2115 regnum ++;
2116 }
2117 else
2118 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2119 /* skip FP regs */
2120 }
2121 else
2122 {
2123 sh64_do_register (gdbarch, file, frame, regnum);
2124 regnum++;
2125 }
2126 }
2127
2128 if (fpregs)
2129 while (regnum < gdbarch_num_regs (gdbarch)
2130 + gdbarch_num_pseudo_regs (gdbarch))
2131 {
2132 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2133 regnum++;
2134 }
2135 }
2136 }
2137
2138 static void
2139 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2140 struct ui_file *file,
2141 struct frame_info *frame, int regnum,
2142 int fpregs)
2143 {
2144 if (regnum != -1) /* Do one specified register. */
2145 {
2146 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2147 error (_("Not a valid register for the current processor type"));
2148
2149 if (regnum >= 0 && regnum < R0_C_REGNUM)
2150 error (_("Not a valid register for the current processor mode."));
2151
2152 sh64_print_register (gdbarch, file, frame, regnum);
2153 }
2154 else
2155 /* Do all compact registers. */
2156 {
2157 regnum = R0_C_REGNUM;
2158 while (regnum < gdbarch_num_regs (gdbarch)
2159 + gdbarch_num_pseudo_regs (gdbarch))
2160 {
2161 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2162 regnum++;
2163 }
2164 }
2165 }
2166
2167 static void
2168 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2169 struct frame_info *frame, int regnum, int fpregs)
2170 {
2171 if (pc_is_isa32 (get_frame_pc (frame)))
2172 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2173 else
2174 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2175 }
2176
2177 static struct sh64_frame_cache *
2178 sh64_alloc_frame_cache (void)
2179 {
2180 struct sh64_frame_cache *cache;
2181 int i;
2182
2183 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2184
2185 /* Base address. */
2186 cache->base = 0;
2187 cache->saved_sp = 0;
2188 cache->sp_offset = 0;
2189 cache->pc = 0;
2190
2191 /* Frameless until proven otherwise. */
2192 cache->uses_fp = 0;
2193
2194 /* Saved registers. We initialize these to -1 since zero is a valid
2195 offset (that's where fp is supposed to be stored). */
2196 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2197 {
2198 cache->saved_regs[i] = -1;
2199 }
2200
2201 return cache;
2202 }
2203
2204 static struct sh64_frame_cache *
2205 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2206 {
2207 struct gdbarch *gdbarch;
2208 struct sh64_frame_cache *cache;
2209 CORE_ADDR current_pc;
2210 int i;
2211
2212 if (*this_cache)
2213 return *this_cache;
2214
2215 gdbarch = get_frame_arch (this_frame);
2216 cache = sh64_alloc_frame_cache ();
2217 *this_cache = cache;
2218
2219 current_pc = get_frame_pc (this_frame);
2220 cache->media_mode = pc_is_isa32 (current_pc);
2221
2222 /* In principle, for normal frames, fp holds the frame pointer,
2223 which holds the base address for the current stack frame.
2224 However, for functions that don't need it, the frame pointer is
2225 optional. For these "frameless" functions the frame pointer is
2226 actually the frame pointer of the calling frame. */
2227 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2228 if (cache->base == 0)
2229 return cache;
2230
2231 cache->pc = get_frame_func (this_frame);
2232 if (cache->pc != 0)
2233 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2234
2235 if (!cache->uses_fp)
2236 {
2237 /* We didn't find a valid frame, which means that CACHE->base
2238 currently holds the frame pointer for our calling frame. If
2239 we're at the start of a function, or somewhere half-way its
2240 prologue, the function's frame probably hasn't been fully
2241 setup yet. Try to reconstruct the base address for the stack
2242 frame by looking at the stack pointer. For truly "frameless"
2243 functions this might work too. */
2244 cache->base = get_frame_register_unsigned
2245 (this_frame, gdbarch_sp_regnum (gdbarch));
2246 }
2247
2248 /* Now that we have the base address for the stack frame we can
2249 calculate the value of sp in the calling frame. */
2250 cache->saved_sp = cache->base + cache->sp_offset;
2251
2252 /* Adjust all the saved registers such that they contain addresses
2253 instead of offsets. */
2254 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2255 if (cache->saved_regs[i] != -1)
2256 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2257
2258 return cache;
2259 }
2260
2261 static struct value *
2262 sh64_frame_prev_register (struct frame_info *this_frame,
2263 void **this_cache, int regnum)
2264 {
2265 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2266 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2268
2269 gdb_assert (regnum >= 0);
2270
2271 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2272 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2273
2274 /* The PC of the previous frame is stored in the PR register of
2275 the current frame. Frob regnum so that we pull the value from
2276 the correct place. */
2277 if (regnum == gdbarch_pc_regnum (gdbarch))
2278 regnum = PR_REGNUM;
2279
2280 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2281 {
2282 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2283 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2284 {
2285 CORE_ADDR val;
2286 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2287 4, byte_order);
2288 return frame_unwind_got_constant (this_frame, regnum, val);
2289 }
2290
2291 return frame_unwind_got_memory (this_frame, regnum,
2292 cache->saved_regs[regnum]);
2293 }
2294
2295 return frame_unwind_got_register (this_frame, regnum, regnum);
2296 }
2297
2298 static void
2299 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2300 struct frame_id *this_id)
2301 {
2302 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2303
2304 /* This marks the outermost frame. */
2305 if (cache->base == 0)
2306 return;
2307
2308 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2309 }
2310
2311 static const struct frame_unwind sh64_frame_unwind = {
2312 NORMAL_FRAME,
2313 default_frame_unwind_stop_reason,
2314 sh64_frame_this_id,
2315 sh64_frame_prev_register,
2316 NULL,
2317 default_frame_sniffer
2318 };
2319
2320 static CORE_ADDR
2321 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2322 {
2323 return frame_unwind_register_unsigned (next_frame,
2324 gdbarch_sp_regnum (gdbarch));
2325 }
2326
2327 static CORE_ADDR
2328 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2329 {
2330 return frame_unwind_register_unsigned (next_frame,
2331 gdbarch_pc_regnum (gdbarch));
2332 }
2333
2334 static struct frame_id
2335 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2336 {
2337 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2338 gdbarch_sp_regnum (gdbarch));
2339 return frame_id_build (sp, get_frame_pc (this_frame));
2340 }
2341
2342 static CORE_ADDR
2343 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2344 {
2345 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2346
2347 return cache->base;
2348 }
2349
2350 static const struct frame_base sh64_frame_base = {
2351 &sh64_frame_unwind,
2352 sh64_frame_base_address,
2353 sh64_frame_base_address,
2354 sh64_frame_base_address
2355 };
2356
2357
2358 struct gdbarch *
2359 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2360 {
2361 struct gdbarch *gdbarch;
2362 struct gdbarch_tdep *tdep;
2363
2364 /* If there is already a candidate, use it. */
2365 arches = gdbarch_list_lookup_by_info (arches, &info);
2366 if (arches != NULL)
2367 return arches->gdbarch;
2368
2369 /* None found, create a new architecture from the information
2370 provided. */
2371 tdep = XNEW (struct gdbarch_tdep);
2372 gdbarch = gdbarch_alloc (&info, tdep);
2373
2374 /* Determine the ABI */
2375 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2376 {
2377 /* If the ABI is the 64-bit one, it can only be sh-media. */
2378 tdep->sh_abi = SH_ABI_64;
2379 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2380 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2381 }
2382 else
2383 {
2384 /* If the ABI is the 32-bit one it could be either media or
2385 compact. */
2386 tdep->sh_abi = SH_ABI_32;
2387 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2388 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2389 }
2390
2391 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2392 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2393 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2394 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2395 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2396 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2397 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2398
2399 /* The number of real registers is the same whether we are in
2400 ISA16(compact) or ISA32(media). */
2401 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2402 set_gdbarch_sp_regnum (gdbarch, 15);
2403 set_gdbarch_pc_regnum (gdbarch, 64);
2404 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2405 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2406 + NUM_PSEUDO_REGS_SH_COMPACT);
2407
2408 set_gdbarch_register_name (gdbarch, sh64_register_name);
2409 set_gdbarch_register_type (gdbarch, sh64_register_type);
2410
2411 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2412 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2413
2414 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2415
2416 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2417 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2418
2419 set_gdbarch_return_value (gdbarch, sh64_return_value);
2420
2421 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2422 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2423
2424 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2425
2426 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2427
2428 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2429 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2430 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2431 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2432 frame_base_set_default (gdbarch, &sh64_frame_base);
2433
2434 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2435
2436 set_gdbarch_elf_make_msymbol_special (gdbarch,
2437 sh64_elf_make_msymbol_special);
2438
2439 /* Hook in ABI-specific overrides, if they have been registered. */
2440 gdbarch_init_osabi (info, gdbarch);
2441
2442 dwarf2_append_unwinders (gdbarch);
2443 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2444
2445 return gdbarch;
2446 }
This page took 0.118751 seconds and 4 git commands to generate.