1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Steve Chamberlain
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
35 #include "arch-utils.h"
44 /* Register numbers shared with the simulator. */
45 #include "gdb/sim-sh.h"
47 #include "sh64-tdep.h"
49 /* Information that is dependent on the processor variant. */
62 struct sh64_frame_cache
69 /* Flag showing that a frame has been created in the prologue code. */
74 /* Saved registers. */
75 CORE_ADDR saved_regs
[SIM_SH64_NR_REGS
];
79 /* Registers of SH5 */
83 DEFAULT_RETURN_REGNUM
= 2,
84 STRUCT_RETURN_REGNUM
= 2,
87 FLOAT_ARGLAST_REGNUM
= 11,
93 /* FPP stands for Floating Point Pair, to avoid confusion with
94 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
95 point register. Unfortunately on the sh5, the floating point
96 registers are called FR, and the floating point pairs are called FP. */
98 FPP_LAST_REGNUM
= 204,
100 FV_LAST_REGNUM
= 220,
102 R_LAST_C_REGNUM
= 236,
109 FPSCR_C_REGNUM
= 243,
112 FP_LAST_C_REGNUM
= 260,
114 DR_LAST_C_REGNUM
= 268,
116 FV_LAST_C_REGNUM
= 272,
117 FPSCR_REGNUM
= SIM_SH64_FPCSR_REGNUM
,
118 SSR_REGNUM
= SIM_SH64_SSR_REGNUM
,
119 SPC_REGNUM
= SIM_SH64_SPC_REGNUM
,
120 TR7_REGNUM
= SIM_SH64_TR0_REGNUM
+ 7,
121 FP_LAST_REGNUM
= SIM_SH64_FR0_REGNUM
+ SIM_SH64_NR_FP_REGS
- 1
125 sh64_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
127 static char *register_names
[] =
129 /* SH MEDIA MODE (ISA 32) */
130 /* general registers (64-bit) 0-63 */
131 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
132 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
133 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
134 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
135 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
136 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
137 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
138 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
146 /* target registers (64-bit) 68-75 */
147 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
149 /* floating point state control register (32-bit) 76 */
152 /* single precision floating point registers (32-bit) 77-140 */
153 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
154 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
155 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
156 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
157 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
158 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
159 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
160 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
162 /* double precision registers (pseudo) 141-172 */
163 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
164 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
165 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
166 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
168 /* floating point pairs (pseudo) 173-204 */
169 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
170 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
171 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
172 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
174 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
175 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
176 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
178 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
179 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
180 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
182 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
184 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
185 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
186 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
187 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
188 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
189 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
190 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
191 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
196 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
198 return register_names
[reg_nr
];
201 #define NUM_PSEUDO_REGS_SH_MEDIA 80
202 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204 /* Macros and functions for setting and testing a bit in a minimal
205 symbol that marks it as 32-bit function. The MSB of the minimal
206 symbol's "info" field is used for this purpose.
208 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
209 i.e. refers to a 32-bit function, and sets a "special" bit in a
210 minimal symbol to mark it as a 32-bit function
211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213 #define MSYMBOL_IS_SPECIAL(msym) \
214 MSYMBOL_TARGET_FLAG_1 (msym)
217 sh64_elf_make_msymbol_special (asymbol
*sym
, struct minimal_symbol
*msym
)
222 if (((elf_symbol_type
*)(sym
))->internal_elf_sym
.st_other
== STO_SH5_ISA32
)
224 MSYMBOL_TARGET_FLAG_1 (msym
) = 1;
225 SET_MSYMBOL_VALUE_ADDRESS (msym
, MSYMBOL_VALUE_RAW_ADDRESS (msym
) | 1);
229 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
230 are some macros to test, set, or clear bit 0 of addresses. */
231 #define IS_ISA32_ADDR(addr) ((addr) & 1)
232 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
233 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236 pc_is_isa32 (bfd_vma memaddr
)
238 struct bound_minimal_symbol sym
;
240 /* If bit 0 of the address is set, assume this is a
241 ISA32 (shmedia) address. */
242 if (IS_ISA32_ADDR (memaddr
))
245 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
246 the high bit of the info field. Use this to decide if the function is
248 sym
= lookup_minimal_symbol_by_pc (memaddr
);
250 return MSYMBOL_IS_SPECIAL (sym
.minsym
);
255 static const unsigned char *
256 sh64_breakpoint_from_pc (struct gdbarch
*gdbarch
,
257 CORE_ADDR
*pcptr
, int *lenptr
)
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264 /* The BRK instruction for shcompact is
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0 */
269 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
271 if (pc_is_isa32 (*pcptr
))
273 static unsigned char big_breakpoint_media
[] = {
274 0x6f, 0xf5, 0xff, 0xf0
276 *pcptr
= UNMAKE_ISA32_ADDR (*pcptr
);
277 *lenptr
= sizeof (big_breakpoint_media
);
278 return big_breakpoint_media
;
282 static unsigned char big_breakpoint_compact
[] = {0x0, 0x3b};
283 *lenptr
= sizeof (big_breakpoint_compact
);
284 return big_breakpoint_compact
;
289 if (pc_is_isa32 (*pcptr
))
291 static unsigned char little_breakpoint_media
[] = {
292 0xf0, 0xff, 0xf5, 0x6f
294 *pcptr
= UNMAKE_ISA32_ADDR (*pcptr
);
295 *lenptr
= sizeof (little_breakpoint_media
);
296 return little_breakpoint_media
;
300 static unsigned char little_breakpoint_compact
[] = {0x3b, 0x0};
301 *lenptr
= sizeof (little_breakpoint_compact
);
302 return little_breakpoint_compact
;
307 /* Prologue looks like
308 [mov.l <regs>,@-r15]...
313 Actually it can be more complicated than this. For instance, with
331 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
332 with l=1 and n = 18 0110101111110001010010100aaa0000 */
333 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
335 /* STS.L PR,@-r0 0100000000100010
336 r0-4-->r0, PR-->(r0) */
337 #define IS_STS_R0(x) ((x) == 0x4022)
339 /* STS PR, Rm 0000mmmm00101010
341 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
343 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
345 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
347 /* MOV.L R14,@(disp,r15) 000111111110dddd
348 R14-->(dispx4+r15) */
349 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
351 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
352 R18-->(dispx8+R14) */
353 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
355 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
356 R18-->(dispx8+R15) */
357 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
359 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
360 R18-->(dispx4+R15) */
361 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
363 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx8+R15) */
365 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
367 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
368 R14-->(dispx4+R15) */
369 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
371 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
373 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
375 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
377 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
379 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
381 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
383 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
385 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
387 #define IS_MOV_SP_FP_MEDIA(x) \
388 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
390 /* MOV #imm, R0 1110 0000 ssss ssss
392 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
394 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
395 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
397 /* ADD r15,r0 0011 0000 1111 1100
399 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
401 /* MOV.L R14 @-R0 0010 0000 1110 0110
402 R14-->(R0-4), R0-4-->R0 */
403 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
405 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
406 where Rm is one of r2-r9 which are the argument registers. */
407 /* FIXME: Recognize the float and double register moves too! */
408 #define IS_MEDIA_IND_ARG_MOV(x) \
409 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
410 && (((x) & 0x03f00000) >= 0x00200000 \
411 && ((x) & 0x03f00000) <= 0x00900000))
413 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
414 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
415 where Rm is one of r2-r9 which are the argument registers. */
416 #define IS_MEDIA_ARG_MOV(x) \
417 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
418 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
420 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
421 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
422 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
423 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
424 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
425 #define IS_MEDIA_MOV_TO_R14(x) \
426 ((((x) & 0xfffffc0f) == 0xa0e00000) \
427 || (((x) & 0xfffffc0f) == 0xa4e00000) \
428 || (((x) & 0xfffffc0f) == 0xa8e00000) \
429 || (((x) & 0xfffffc0f) == 0xb4e00000) \
430 || (((x) & 0xfffffc0f) == 0xbce00000))
432 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
434 #define IS_COMPACT_IND_ARG_MOV(x) \
435 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
436 && (((x) & 0x00f0) <= 0x0090))
438 /* compact direct arg move!
439 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
440 #define IS_COMPACT_ARG_MOV(x) \
441 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
442 && ((x) & 0x00f0) <= 0x0090))
444 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
445 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
446 #define IS_COMPACT_MOV_TO_R14(x) \
447 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
449 #define IS_JSR_R0(x) ((x) == 0x400b)
450 #define IS_NOP(x) ((x) == 0x0009)
453 /* MOV r15,r14 0110111011110011
455 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
457 /* ADD #imm,r15 01111111iiiiiiii
459 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
461 /* Skip any prologue before the guts of a function. */
463 /* Skip the prologue using the debug information. If this fails we'll
464 fall back on the 'guess' method below. */
466 after_prologue (CORE_ADDR pc
)
468 struct symtab_and_line sal
;
469 CORE_ADDR func_addr
, func_end
;
471 /* If we can not find the symbol in the partial symbol table, then
472 there is no hope we can determine the function's start address
474 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
478 /* Get the line associated with FUNC_ADDR. */
479 sal
= find_pc_line (func_addr
, 0);
481 /* There are only two cases to consider. First, the end of the source line
482 is within the function bounds. In that case we return the end of the
483 source line. Second is the end of the source line extends beyond the
484 bounds of the current function. We need to use the slow code to
485 examine instructions in that case. */
486 if (sal
.end
< func_end
)
493 look_for_args_moves (struct gdbarch
*gdbarch
,
494 CORE_ADDR start_pc
, int media_mode
)
496 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
499 int insn_size
= (media_mode
? 4 : 2);
501 for (here
= start_pc
, end
= start_pc
+ (insn_size
* 28); here
< end
;)
505 w
= read_memory_integer (UNMAKE_ISA32_ADDR (here
),
506 insn_size
, byte_order
);
508 if (IS_MEDIA_IND_ARG_MOV (w
))
510 /* This must be followed by a store to r14, so the argument
511 is where the debug info says it is. This can happen after
512 the SP has been saved, unfortunately. */
514 int next_insn
= read_memory_integer (UNMAKE_ISA32_ADDR (here
),
515 insn_size
, byte_order
);
517 if (IS_MEDIA_MOV_TO_R14 (next_insn
))
520 else if (IS_MEDIA_ARG_MOV (w
))
522 /* These instructions store directly the argument in r14. */
530 w
= read_memory_integer (here
, insn_size
, byte_order
);
533 if (IS_COMPACT_IND_ARG_MOV (w
))
535 /* This must be followed by a store to r14, so the argument
536 is where the debug info says it is. This can happen after
537 the SP has been saved, unfortunately. */
539 int next_insn
= 0xffff & read_memory_integer (here
, insn_size
,
542 if (IS_COMPACT_MOV_TO_R14 (next_insn
))
545 else if (IS_COMPACT_ARG_MOV (w
))
547 /* These instructions store directly the argument in r14. */
550 else if (IS_MOVL_R0 (w
))
552 /* There is a function that gcc calls to get the arguments
553 passed correctly to the function. Only after this
554 function call the arguments will be found at the place
555 where they are supposed to be. This happens in case the
556 argument has to be stored into a 64-bit register (for
557 instance doubles, long longs). SHcompact doesn't have
558 access to the full 64-bits, so we store the register in
559 stack slot and store the address of the stack slot in
560 the register, then do a call through a wrapper that
561 loads the memory value into the register. A SHcompact
562 callee calls an argument decoder
563 (GCC_shcompact_incoming_args) that stores the 64-bit
564 value in a stack slot and stores the address of the
565 stack slot in the register. GCC thinks the argument is
566 just passed by transparent reference, but this is only
567 true after the argument decoder is called. Such a call
568 needs to be considered part of the prologue. */
570 /* This must be followed by a JSR @r0 instruction and by
571 a NOP instruction. After these, the prologue is over! */
573 int next_insn
= 0xffff & read_memory_integer (here
, insn_size
,
576 if (IS_JSR_R0 (next_insn
))
578 next_insn
= 0xffff & read_memory_integer (here
, insn_size
,
582 if (IS_NOP (next_insn
))
595 sh64_skip_prologue_hard_way (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
597 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
606 if (pc_is_isa32 (start_pc
) == 0)
612 for (here
= start_pc
, end
= start_pc
+ (insn_size
* 28); here
< end
;)
617 int w
= read_memory_integer (UNMAKE_ISA32_ADDR (here
),
618 insn_size
, byte_order
);
620 if (IS_STQ_R18_R14 (w
) || IS_STQ_R18_R15 (w
) || IS_STQ_R14_R15 (w
)
621 || IS_STL_R14_R15 (w
) || IS_STL_R18_R15 (w
)
622 || IS_ADDIL_SP_MEDIA (w
) || IS_ADDI_SP_MEDIA (w
)
623 || IS_PTABSL_R18 (w
))
627 else if (IS_MOV_SP_FP (w
) || IS_MOV_SP_FP_MEDIA(w
))
635 /* Don't bail out yet, we may have arguments stored in
636 registers here, according to the debug info, so that
637 gdb can print the frames correctly. */
638 start_pc
= look_for_args_moves (gdbarch
,
639 here
- insn_size
, media_mode
);
645 int w
= 0xffff & read_memory_integer (here
, insn_size
, byte_order
);
648 if (IS_STS_R0 (w
) || IS_STS_PR (w
)
649 || IS_MOV_TO_R15 (w
) || IS_MOV_R14 (w
)
650 || IS_MOV_R0 (w
) || IS_ADD_SP_R0 (w
) || IS_MOV_R14_R0 (w
))
654 else if (IS_MOV_SP_FP (w
))
662 /* Don't bail out yet, we may have arguments stored in
663 registers here, according to the debug info, so that
664 gdb can print the frames correctly. */
665 start_pc
= look_for_args_moves (gdbarch
,
666 here
- insn_size
, media_mode
);
676 sh64_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
678 CORE_ADDR post_prologue_pc
;
680 /* See if we can determine the end of the prologue via the symbol table.
681 If so, then return either PC, or the PC after the prologue, whichever
683 post_prologue_pc
= after_prologue (pc
);
685 /* If after_prologue returned a useful address, then use it. Else
686 fall back on the instruction skipping code. */
687 if (post_prologue_pc
!= 0)
688 return max (pc
, post_prologue_pc
);
690 return sh64_skip_prologue_hard_way (gdbarch
, pc
);
693 /* Should call_function allocate stack space for a struct return? */
695 sh64_use_struct_convention (struct type
*type
)
697 return (TYPE_LENGTH (type
) > 8);
700 /* For vectors of 4 floating point registers. */
702 sh64_fv_reg_base_num (struct gdbarch
*gdbarch
, int fv_regnum
)
706 fp_regnum
= gdbarch_fp0_regnum (gdbarch
) + (fv_regnum
- FV0_REGNUM
) * 4;
710 /* For double precision floating point registers, i.e 2 fp regs. */
712 sh64_dr_reg_base_num (struct gdbarch
*gdbarch
, int dr_regnum
)
716 fp_regnum
= gdbarch_fp0_regnum (gdbarch
) + (dr_regnum
- DR0_REGNUM
) * 2;
720 /* For pairs of floating point registers. */
722 sh64_fpp_reg_base_num (struct gdbarch
*gdbarch
, int fpp_regnum
)
726 fp_regnum
= gdbarch_fp0_regnum (gdbarch
) + (fpp_regnum
- FPP0_REGNUM
) * 2;
732 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
733 GDB_REGNUM BASE_REGNUM
793 sh64_compact_reg_base_num (struct gdbarch
*gdbarch
, int reg_nr
)
795 int base_regnum
= reg_nr
;
797 /* general register N maps to general register N */
798 if (reg_nr
>= R0_C_REGNUM
799 && reg_nr
<= R_LAST_C_REGNUM
)
800 base_regnum
= reg_nr
- R0_C_REGNUM
;
802 /* floating point register N maps to floating point register N */
803 else if (reg_nr
>= FP0_C_REGNUM
804 && reg_nr
<= FP_LAST_C_REGNUM
)
805 base_regnum
= reg_nr
- FP0_C_REGNUM
+ gdbarch_fp0_regnum (gdbarch
);
807 /* double prec register N maps to base regnum for double prec register N */
808 else if (reg_nr
>= DR0_C_REGNUM
809 && reg_nr
<= DR_LAST_C_REGNUM
)
810 base_regnum
= sh64_dr_reg_base_num (gdbarch
,
811 DR0_REGNUM
+ reg_nr
- DR0_C_REGNUM
);
813 /* vector N maps to base regnum for vector register N */
814 else if (reg_nr
>= FV0_C_REGNUM
815 && reg_nr
<= FV_LAST_C_REGNUM
)
816 base_regnum
= sh64_fv_reg_base_num (gdbarch
,
817 FV0_REGNUM
+ reg_nr
- FV0_C_REGNUM
);
819 else if (reg_nr
== PC_C_REGNUM
)
820 base_regnum
= gdbarch_pc_regnum (gdbarch
);
822 else if (reg_nr
== GBR_C_REGNUM
)
825 else if (reg_nr
== MACH_C_REGNUM
826 || reg_nr
== MACL_C_REGNUM
)
829 else if (reg_nr
== PR_C_REGNUM
)
830 base_regnum
= PR_REGNUM
;
832 else if (reg_nr
== T_C_REGNUM
)
835 else if (reg_nr
== FPSCR_C_REGNUM
)
836 base_regnum
= FPSCR_REGNUM
; /*???? this register is a mess. */
838 else if (reg_nr
== FPUL_C_REGNUM
)
839 base_regnum
= gdbarch_fp0_regnum (gdbarch
) + 32;
845 sign_extend (int value
, int bits
)
847 value
= value
& ((1 << bits
) - 1);
848 return (value
& (1 << (bits
- 1))
849 ? value
| (~((1 << bits
) - 1))
854 sh64_analyze_prologue (struct gdbarch
*gdbarch
,
855 struct sh64_frame_cache
*cache
,
857 CORE_ADDR current_pc
)
864 int gdb_register_number
;
866 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
867 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
869 cache
->sp_offset
= 0;
871 /* Loop around examining the prologue insns until we find something
872 that does not appear to be part of the prologue. But give up
873 after 20 of them, since we're getting silly then. */
877 if (cache
->media_mode
)
882 opc
= pc
+ (insn_size
* 28);
883 if (opc
> current_pc
)
885 for ( ; pc
<= opc
; pc
+= insn_size
)
887 insn
= read_memory_integer (cache
->media_mode
? UNMAKE_ISA32_ADDR (pc
)
889 insn_size
, byte_order
);
891 if (!cache
->media_mode
)
893 if (IS_STS_PR (insn
))
895 int next_insn
= read_memory_integer (pc
+ insn_size
,
896 insn_size
, byte_order
);
897 if (IS_MOV_TO_R15 (next_insn
))
899 cache
->saved_regs
[PR_REGNUM
]
900 = cache
->sp_offset
- ((((next_insn
& 0xf) ^ 0x8)
906 else if (IS_MOV_R14 (insn
))
907 cache
->saved_regs
[MEDIA_FP_REGNUM
] =
908 cache
->sp_offset
- ((((insn
& 0xf) ^ 0x8) - 0x8) << 2);
910 else if (IS_MOV_R0 (insn
))
912 /* Put in R0 the offset from SP at which to store some
913 registers. We are interested in this value, because it
914 will tell us where the given registers are stored within
916 r0_val
= ((insn
& 0xff) ^ 0x80) - 0x80;
919 else if (IS_ADD_SP_R0 (insn
))
921 /* This instruction still prepares r0, but we don't care.
922 We already have the offset in r0_val. */
925 else if (IS_STS_R0 (insn
))
927 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
928 cache
->saved_regs
[PR_REGNUM
] = cache
->sp_offset
- (r0_val
- 4);
932 else if (IS_MOV_R14_R0 (insn
))
934 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
935 cache
->saved_regs
[MEDIA_FP_REGNUM
] = cache
->sp_offset
940 else if (IS_ADD_SP (insn
))
941 cache
->sp_offset
-= ((insn
& 0xff) ^ 0x80) - 0x80;
943 else if (IS_MOV_SP_FP (insn
))
948 if (IS_ADDIL_SP_MEDIA (insn
) || IS_ADDI_SP_MEDIA (insn
))
950 sign_extend ((((insn
& 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
952 else if (IS_STQ_R18_R15 (insn
))
953 cache
->saved_regs
[PR_REGNUM
]
954 = cache
->sp_offset
- (sign_extend ((insn
& 0xffc00) >> 10,
957 else if (IS_STL_R18_R15 (insn
))
958 cache
->saved_regs
[PR_REGNUM
]
959 = cache
->sp_offset
- (sign_extend ((insn
& 0xffc00) >> 10,
962 else if (IS_STQ_R14_R15 (insn
))
963 cache
->saved_regs
[MEDIA_FP_REGNUM
]
964 = cache
->sp_offset
- (sign_extend ((insn
& 0xffc00) >> 10,
967 else if (IS_STL_R14_R15 (insn
))
968 cache
->saved_regs
[MEDIA_FP_REGNUM
]
969 = cache
->sp_offset
- (sign_extend ((insn
& 0xffc00) >> 10,
972 else if (IS_MOV_SP_FP_MEDIA (insn
))
977 if (cache
->saved_regs
[MEDIA_FP_REGNUM
] >= 0)
982 sh64_frame_align (struct gdbarch
*ignore
, CORE_ADDR sp
)
987 /* Function: push_dummy_call
988 Setup the function arguments for calling a function in the inferior.
990 On the Renesas SH architecture, there are four registers (R4 to R7)
991 which are dedicated for passing function arguments. Up to the first
992 four arguments (depending on size) may go into these registers.
993 The rest go on the stack.
995 Arguments that are smaller than 4 bytes will still take up a whole
996 register or a whole 32-bit word on the stack, and will be
997 right-justified in the register or the stack word. This includes
998 chars, shorts, and small aggregate types.
1000 Arguments that are larger than 4 bytes may be split between two or
1001 more registers. If there are not enough registers free, an argument
1002 may be passed partly in a register (or registers), and partly on the
1003 stack. This includes doubles, long longs, and larger aggregates.
1004 As far as I know, there is no upper limit to the size of aggregates
1005 that will be passed in this way; in other words, the convention of
1006 passing a pointer to a large aggregate instead of a copy is not used.
1008 An exceptional case exists for struct arguments (and possibly other
1009 aggregates such as arrays) if the size is larger than 4 bytes but
1010 not a multiple of 4 bytes. In this case the argument is never split
1011 between the registers and the stack, but instead is copied in its
1012 entirety onto the stack, AND also copied into as many registers as
1013 there is room for. In other words, space in registers permitting,
1014 two copies of the same argument are passed in. As far as I can tell,
1015 only the one on the stack is used, although that may be a function
1016 of the level of compiler optimization. I suspect this is a compiler
1017 bug. Arguments of these odd sizes are left-justified within the
1018 word (as opposed to arguments smaller than 4 bytes, which are
1021 If the function is to return an aggregate type such as a struct, it
1022 is either returned in the normal return value register R0 (if its
1023 size is no greater than one byte), or else the caller must allocate
1024 space into which the callee will copy the return value (if the size
1025 is greater than one byte). In this case, a pointer to the return
1026 value location is passed into the callee in register R2, which does
1027 not displace any of the other arguments passed in via registers R4
1030 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1031 non-scalar (struct, union) elements (even if the elements are
1033 FR0-FR11 for single precision floating point (float)
1034 DR0-DR10 for double precision floating point (double)
1036 If a float is argument number 3 (for instance) and arguments number
1037 1,2, and 4 are integer, the mapping will be:
1038 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1040 If a float is argument number 10 (for instance) and arguments number
1041 1 through 10 are integer, the mapping will be:
1042 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1043 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1044 arg11->stack(16,SP). I.e. there is hole in the stack.
1046 Different rules apply for variable arguments functions, and for functions
1047 for which the prototype is not known. */
1050 sh64_push_dummy_call (struct gdbarch
*gdbarch
,
1051 struct value
*function
,
1052 struct regcache
*regcache
,
1054 int nargs
, struct value
**args
,
1055 CORE_ADDR sp
, int struct_return
,
1056 CORE_ADDR struct_addr
)
1058 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1059 int stack_offset
, stack_alloc
;
1063 int float_arg_index
= 0;
1064 int double_arg_index
= 0;
1068 const gdb_byte
*val
;
1074 memset (fp_args
, 0, sizeof (fp_args
));
1076 /* First force sp to a 8-byte alignment. */
1077 sp
= sh64_frame_align (gdbarch
, sp
);
1079 /* The "struct return pointer" pseudo-argument has its own dedicated
1083 regcache_cooked_write_unsigned (regcache
,
1084 STRUCT_RETURN_REGNUM
, struct_addr
);
1086 /* Now make sure there's space on the stack. */
1087 for (argnum
= 0, stack_alloc
= 0; argnum
< nargs
; argnum
++)
1088 stack_alloc
+= ((TYPE_LENGTH (value_type (args
[argnum
])) + 7) & ~7);
1089 sp
-= stack_alloc
; /* Make room on stack for args. */
1091 /* Now load as many as possible of the first arguments into
1092 registers, and push the rest onto the stack. There are 64 bytes
1093 in eight registers available. Loop thru args from first to last. */
1095 int_argreg
= ARG0_REGNUM
;
1096 float_argreg
= gdbarch_fp0_regnum (gdbarch
);
1097 double_argreg
= DR0_REGNUM
;
1099 for (argnum
= 0, stack_offset
= 0; argnum
< nargs
; argnum
++)
1101 type
= value_type (args
[argnum
]);
1102 len
= TYPE_LENGTH (type
);
1103 memset (valbuf
, 0, sizeof (valbuf
));
1105 if (TYPE_CODE (type
) != TYPE_CODE_FLT
)
1107 argreg_size
= register_size (gdbarch
, int_argreg
);
1109 if (len
< argreg_size
)
1111 /* value gets right-justified in the register or stack word. */
1112 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
1113 memcpy (valbuf
+ argreg_size
- len
,
1114 value_contents (args
[argnum
]), len
);
1116 memcpy (valbuf
, value_contents (args
[argnum
]), len
);
1121 val
= value_contents (args
[argnum
]);
1125 if (int_argreg
> ARGLAST_REGNUM
)
1127 /* Must go on the stack. */
1128 write_memory (sp
+ stack_offset
, val
, argreg_size
);
1129 stack_offset
+= 8;/*argreg_size;*/
1131 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1132 That's because some *&^%$ things get passed on the stack
1133 AND in the registers! */
1134 if (int_argreg
<= ARGLAST_REGNUM
)
1136 /* There's room in a register. */
1137 regval
= extract_unsigned_integer (val
, argreg_size
,
1139 regcache_cooked_write_unsigned (regcache
,
1140 int_argreg
, regval
);
1142 /* Store the value 8 bytes at a time. This means that
1143 things larger than 8 bytes may go partly in registers
1144 and partly on the stack. FIXME: argreg is incremented
1145 before we use its size. */
1153 val
= value_contents (args
[argnum
]);
1156 /* Where is it going to be stored? */
1157 while (fp_args
[float_arg_index
])
1160 /* Now float_argreg points to the register where it
1161 should be stored. Are we still within the allowed
1163 if (float_arg_index
<= FLOAT_ARGLAST_REGNUM
)
1165 /* Goes in FR0...FR11 */
1166 regcache_cooked_write (regcache
,
1167 gdbarch_fp0_regnum (gdbarch
)
1170 fp_args
[float_arg_index
] = 1;
1171 /* Skip the corresponding general argument register. */
1176 /* Store it as the integers, 8 bytes at the time, if
1177 necessary spilling on the stack. */
1182 /* Where is it going to be stored? */
1183 while (fp_args
[double_arg_index
])
1184 double_arg_index
+= 2;
1185 /* Now double_argreg points to the register
1186 where it should be stored.
1187 Are we still within the allowed register set? */
1188 if (double_arg_index
< FLOAT_ARGLAST_REGNUM
)
1190 /* Goes in DR0...DR10 */
1191 /* The numbering of the DRi registers is consecutive,
1192 i.e. includes odd numbers. */
1193 int double_register_offset
= double_arg_index
/ 2;
1194 int regnum
= DR0_REGNUM
+ double_register_offset
;
1195 regcache_cooked_write (regcache
, regnum
, val
);
1196 fp_args
[double_arg_index
] = 1;
1197 fp_args
[double_arg_index
+ 1] = 1;
1198 /* Skip the corresponding general argument register. */
1203 /* Store it as the integers, 8 bytes at the time, if
1204 necessary spilling on the stack. */
1209 /* Store return address. */
1210 regcache_cooked_write_unsigned (regcache
, PR_REGNUM
, bp_addr
);
1212 /* Update stack pointer. */
1213 regcache_cooked_write_unsigned (regcache
,
1214 gdbarch_sp_regnum (gdbarch
), sp
);
1219 /* Find a function's return value in the appropriate registers (in
1220 regbuf), and copy it into valbuf. Extract from an array REGBUF
1221 containing the (raw) register state a function return value of type
1222 TYPE, and copy that, in virtual format, into VALBUF. */
1224 sh64_extract_return_value (struct type
*type
, struct regcache
*regcache
,
1227 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1228 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1229 int len
= TYPE_LENGTH (type
);
1231 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
1235 /* Return value stored in gdbarch_fp0_regnum. */
1236 regcache_raw_read (regcache
,
1237 gdbarch_fp0_regnum (gdbarch
), valbuf
);
1241 /* return value stored in DR0_REGNUM. */
1245 regcache_cooked_read (regcache
, DR0_REGNUM
, buf
);
1247 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
)
1248 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1251 floatformat_to_doublest (&floatformat_ieee_double_big
,
1253 store_typed_floating (valbuf
, type
, val
);
1262 /* Result is in register 2. If smaller than 8 bytes, it is padded
1263 at the most significant end. */
1264 regcache_raw_read (regcache
, DEFAULT_RETURN_REGNUM
, buf
);
1266 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
1267 offset
= register_size (gdbarch
, DEFAULT_RETURN_REGNUM
)
1271 memcpy (valbuf
, buf
+ offset
, len
);
1274 error (_("bad size for return value"));
1278 /* Write into appropriate registers a function return value
1279 of type TYPE, given in virtual format.
1280 If the architecture is sh4 or sh3e, store a function's return value
1281 in the R0 general register or in the FP0 floating point register,
1282 depending on the type of the return value. In all the other cases
1283 the result is stored in r0, left-justified. */
1286 sh64_store_return_value (struct type
*type
, struct regcache
*regcache
,
1287 const gdb_byte
*valbuf
)
1289 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1290 gdb_byte buf
[64]; /* more than enough... */
1291 int len
= TYPE_LENGTH (type
);
1293 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
1295 int i
, regnum
= gdbarch_fp0_regnum (gdbarch
);
1296 for (i
= 0; i
< len
; i
+= 4)
1297 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
)
1298 regcache_raw_write (regcache
, regnum
++,
1299 valbuf
+ len
- 4 - i
);
1301 regcache_raw_write (regcache
, regnum
++, valbuf
+ i
);
1305 int return_register
= DEFAULT_RETURN_REGNUM
;
1308 if (len
<= register_size (gdbarch
, return_register
))
1310 /* Pad with zeros. */
1311 memset (buf
, 0, register_size (gdbarch
, return_register
));
1312 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
)
1313 offset
= 0; /*register_size (gdbarch,
1314 return_register) - len;*/
1316 offset
= register_size (gdbarch
, return_register
) - len
;
1318 memcpy (buf
+ offset
, valbuf
, len
);
1319 regcache_raw_write (regcache
, return_register
, buf
);
1322 regcache_raw_write (regcache
, return_register
, valbuf
);
1326 static enum return_value_convention
1327 sh64_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
1328 struct type
*type
, struct regcache
*regcache
,
1329 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1331 if (sh64_use_struct_convention (type
))
1332 return RETURN_VALUE_STRUCT_CONVENTION
;
1334 sh64_store_return_value (type
, regcache
, writebuf
);
1336 sh64_extract_return_value (type
, regcache
, readbuf
);
1337 return RETURN_VALUE_REGISTER_CONVENTION
;
1342 SH MEDIA MODE (ISA 32)
1343 general registers (64-bit) 0-63
1344 0 r0, r1, r2, r3, r4, r5, r6, r7,
1345 64 r8, r9, r10, r11, r12, r13, r14, r15,
1346 128 r16, r17, r18, r19, r20, r21, r22, r23,
1347 192 r24, r25, r26, r27, r28, r29, r30, r31,
1348 256 r32, r33, r34, r35, r36, r37, r38, r39,
1349 320 r40, r41, r42, r43, r44, r45, r46, r47,
1350 384 r48, r49, r50, r51, r52, r53, r54, r55,
1351 448 r56, r57, r58, r59, r60, r61, r62, r63,
1356 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1359 target registers (64-bit) 68-75
1360 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1362 floating point state control register (32-bit) 76
1365 single precision floating point registers (32-bit) 77-140
1366 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1367 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1368 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1369 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1370 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1371 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1372 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1373 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1375 TOTAL SPACE FOR REGISTERS: 868 bytes
1377 From here on they are all pseudo registers: no memory allocated.
1378 REGISTER_BYTE returns the register byte for the base register.
1380 double precision registers (pseudo) 141-172
1381 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1382 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1383 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1384 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1386 floating point pairs (pseudo) 173-204
1387 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1388 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1389 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1390 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1392 floating point vectors (4 floating point regs) (pseudo) 205-220
1393 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1394 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1396 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1397 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1398 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1400 gbr_c, mach_c, macl_c, pr_c, t_c,
1402 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1403 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1404 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1405 fv0_c, fv4_c, fv8_c, fv12_c
1408 static struct type
*
1409 sh64_build_float_register_type (struct gdbarch
*gdbarch
, int high
)
1411 return lookup_array_range_type (builtin_type (gdbarch
)->builtin_float
,
1415 /* Return the GDB type object for the "standard" data type
1416 of data in register REG_NR. */
1417 static struct type
*
1418 sh64_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1420 if ((reg_nr
>= gdbarch_fp0_regnum (gdbarch
)
1421 && reg_nr
<= FP_LAST_REGNUM
)
1422 || (reg_nr
>= FP0_C_REGNUM
1423 && reg_nr
<= FP_LAST_C_REGNUM
))
1424 return builtin_type (gdbarch
)->builtin_float
;
1425 else if ((reg_nr
>= DR0_REGNUM
1426 && reg_nr
<= DR_LAST_REGNUM
)
1427 || (reg_nr
>= DR0_C_REGNUM
1428 && reg_nr
<= DR_LAST_C_REGNUM
))
1429 return builtin_type (gdbarch
)->builtin_double
;
1430 else if (reg_nr
>= FPP0_REGNUM
1431 && reg_nr
<= FPP_LAST_REGNUM
)
1432 return sh64_build_float_register_type (gdbarch
, 1);
1433 else if ((reg_nr
>= FV0_REGNUM
1434 && reg_nr
<= FV_LAST_REGNUM
)
1435 ||(reg_nr
>= FV0_C_REGNUM
1436 && reg_nr
<= FV_LAST_C_REGNUM
))
1437 return sh64_build_float_register_type (gdbarch
, 3);
1438 else if (reg_nr
== FPSCR_REGNUM
)
1439 return builtin_type (gdbarch
)->builtin_int
;
1440 else if (reg_nr
>= R0_C_REGNUM
1441 && reg_nr
< FP0_C_REGNUM
)
1442 return builtin_type (gdbarch
)->builtin_int
;
1444 return builtin_type (gdbarch
)->builtin_long_long
;
1448 sh64_register_convert_to_virtual (struct gdbarch
*gdbarch
, int regnum
,
1449 struct type
*type
, gdb_byte
*from
, gdb_byte
*to
)
1451 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_LITTLE
)
1453 /* It is a no-op. */
1454 memcpy (to
, from
, register_size (gdbarch
, regnum
));
1458 if ((regnum
>= DR0_REGNUM
1459 && regnum
<= DR_LAST_REGNUM
)
1460 || (regnum
>= DR0_C_REGNUM
1461 && regnum
<= DR_LAST_C_REGNUM
))
1464 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1466 store_typed_floating (to
, type
, val
);
1469 error (_("sh64_register_convert_to_virtual "
1470 "called with non DR register number"));
1474 sh64_register_convert_to_raw (struct gdbarch
*gdbarch
, struct type
*type
,
1475 int regnum
, const void *from
, void *to
)
1477 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_LITTLE
)
1479 /* It is a no-op. */
1480 memcpy (to
, from
, register_size (gdbarch
, regnum
));
1484 if ((regnum
>= DR0_REGNUM
1485 && regnum
<= DR_LAST_REGNUM
)
1486 || (regnum
>= DR0_C_REGNUM
1487 && regnum
<= DR_LAST_C_REGNUM
))
1489 DOUBLEST val
= extract_typed_floating (from
, type
);
1490 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1494 error (_("sh64_register_convert_to_raw called "
1495 "with non DR register number"));
1498 /* Concatenate PORTIONS contiguous raw registers starting at
1499 BASE_REGNUM into BUFFER. */
1501 static enum register_status
1502 pseudo_register_read_portions (struct gdbarch
*gdbarch
,
1503 struct regcache
*regcache
,
1505 int base_regnum
, gdb_byte
*buffer
)
1509 for (portion
= 0; portion
< portions
; portion
++)
1511 enum register_status status
;
1514 b
= buffer
+ register_size (gdbarch
, base_regnum
) * portion
;
1515 status
= regcache_raw_read (regcache
, base_regnum
+ portion
, b
);
1516 if (status
!= REG_VALID
)
1523 static enum register_status
1524 sh64_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1525 int reg_nr
, gdb_byte
*buffer
)
1527 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1530 gdb_byte temp_buffer
[MAX_REGISTER_SIZE
];
1531 enum register_status status
;
1533 if (reg_nr
>= DR0_REGNUM
1534 && reg_nr
<= DR_LAST_REGNUM
)
1536 base_regnum
= sh64_dr_reg_base_num (gdbarch
, reg_nr
);
1538 /* Build the value in the provided buffer. */
1539 /* DR regs are double precision registers obtained by
1540 concatenating 2 single precision floating point registers. */
1541 status
= pseudo_register_read_portions (gdbarch
, regcache
,
1542 2, base_regnum
, temp_buffer
);
1543 if (status
== REG_VALID
)
1545 /* We must pay attention to the endianness. */
1546 sh64_register_convert_to_virtual (gdbarch
, reg_nr
,
1547 register_type (gdbarch
, reg_nr
),
1548 temp_buffer
, buffer
);
1554 else if (reg_nr
>= FPP0_REGNUM
1555 && reg_nr
<= FPP_LAST_REGNUM
)
1557 base_regnum
= sh64_fpp_reg_base_num (gdbarch
, reg_nr
);
1559 /* Build the value in the provided buffer. */
1560 /* FPP regs are pairs of single precision registers obtained by
1561 concatenating 2 single precision floating point registers. */
1562 return pseudo_register_read_portions (gdbarch
, regcache
,
1563 2, base_regnum
, buffer
);
1566 else if (reg_nr
>= FV0_REGNUM
1567 && reg_nr
<= FV_LAST_REGNUM
)
1569 base_regnum
= sh64_fv_reg_base_num (gdbarch
, reg_nr
);
1571 /* Build the value in the provided buffer. */
1572 /* FV regs are vectors of single precision registers obtained by
1573 concatenating 4 single precision floating point registers. */
1574 return pseudo_register_read_portions (gdbarch
, regcache
,
1575 4, base_regnum
, buffer
);
1578 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1579 else if (reg_nr
>= R0_C_REGNUM
1580 && reg_nr
<= T_C_REGNUM
)
1582 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1584 /* Build the value in the provided buffer. */
1585 status
= regcache_raw_read (regcache
, base_regnum
, temp_buffer
);
1586 if (status
!= REG_VALID
)
1588 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
1591 temp_buffer
+ offset
, 4); /* get LOWER 32 bits only???? */
1595 else if (reg_nr
>= FP0_C_REGNUM
1596 && reg_nr
<= FP_LAST_C_REGNUM
)
1598 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1600 /* Build the value in the provided buffer. */
1601 /* Floating point registers map 1-1 to the media fp regs,
1602 they have the same size and endianness. */
1603 return regcache_raw_read (regcache
, base_regnum
, buffer
);
1606 else if (reg_nr
>= DR0_C_REGNUM
1607 && reg_nr
<= DR_LAST_C_REGNUM
)
1609 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1611 /* DR_C regs are double precision registers obtained by
1612 concatenating 2 single precision floating point registers. */
1613 status
= pseudo_register_read_portions (gdbarch
, regcache
,
1614 2, base_regnum
, temp_buffer
);
1615 if (status
== REG_VALID
)
1617 /* We must pay attention to the endianness. */
1618 sh64_register_convert_to_virtual (gdbarch
, reg_nr
,
1619 register_type (gdbarch
, reg_nr
),
1620 temp_buffer
, buffer
);
1625 else if (reg_nr
>= FV0_C_REGNUM
1626 && reg_nr
<= FV_LAST_C_REGNUM
)
1628 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1630 /* Build the value in the provided buffer. */
1631 /* FV_C regs are vectors of single precision registers obtained by
1632 concatenating 4 single precision floating point registers. */
1633 return pseudo_register_read_portions (gdbarch
, regcache
,
1634 4, base_regnum
, buffer
);
1637 else if (reg_nr
== FPSCR_C_REGNUM
)
1639 int fpscr_base_regnum
;
1641 unsigned int fpscr_value
;
1642 unsigned int sr_value
;
1643 unsigned int fpscr_c_value
;
1644 unsigned int fpscr_c_part1_value
;
1645 unsigned int fpscr_c_part2_value
;
1647 fpscr_base_regnum
= FPSCR_REGNUM
;
1648 sr_base_regnum
= SR_REGNUM
;
1650 /* Build the value in the provided buffer. */
1651 /* FPSCR_C is a very weird register that contains sparse bits
1652 from the FPSCR and the SR architectural registers.
1659 2-17 Bit 2-18 of FPSCR
1660 18-20 Bits 12,13,14 of SR
1664 /* Get FPSCR into a local buffer. */
1665 status
= regcache_raw_read (regcache
, fpscr_base_regnum
, temp_buffer
);
1666 if (status
!= REG_VALID
)
1668 /* Get value as an int. */
1669 fpscr_value
= extract_unsigned_integer (temp_buffer
, 4, byte_order
);
1670 /* Get SR into a local buffer */
1671 status
= regcache_raw_read (regcache
, sr_base_regnum
, temp_buffer
);
1672 if (status
!= REG_VALID
)
1674 /* Get value as an int. */
1675 sr_value
= extract_unsigned_integer (temp_buffer
, 4, byte_order
);
1676 /* Build the new value. */
1677 fpscr_c_part1_value
= fpscr_value
& 0x3fffd;
1678 fpscr_c_part2_value
= (sr_value
& 0x7000) << 6;
1679 fpscr_c_value
= fpscr_c_part1_value
| fpscr_c_part2_value
;
1680 /* Store that in out buffer!!! */
1681 store_unsigned_integer (buffer
, 4, byte_order
, fpscr_c_value
);
1682 /* FIXME There is surely an endianness gotcha here. */
1687 else if (reg_nr
== FPUL_C_REGNUM
)
1689 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1691 /* FPUL_C register is floating point register 32,
1692 same size, same endianness. */
1693 return regcache_raw_read (regcache
, base_regnum
, buffer
);
1696 gdb_assert_not_reached ("invalid pseudo register number");
1700 sh64_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1701 int reg_nr
, const gdb_byte
*buffer
)
1703 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1704 int base_regnum
, portion
;
1706 gdb_byte temp_buffer
[MAX_REGISTER_SIZE
];
1708 if (reg_nr
>= DR0_REGNUM
1709 && reg_nr
<= DR_LAST_REGNUM
)
1711 base_regnum
= sh64_dr_reg_base_num (gdbarch
, reg_nr
);
1712 /* We must pay attention to the endianness. */
1713 sh64_register_convert_to_raw (gdbarch
, register_type (gdbarch
, reg_nr
),
1715 buffer
, temp_buffer
);
1717 /* Write the real regs for which this one is an alias. */
1718 for (portion
= 0; portion
< 2; portion
++)
1719 regcache_raw_write (regcache
, base_regnum
+ portion
,
1721 + register_size (gdbarch
,
1722 base_regnum
) * portion
));
1725 else if (reg_nr
>= FPP0_REGNUM
1726 && reg_nr
<= FPP_LAST_REGNUM
)
1728 base_regnum
= sh64_fpp_reg_base_num (gdbarch
, reg_nr
);
1730 /* Write the real regs for which this one is an alias. */
1731 for (portion
= 0; portion
< 2; portion
++)
1732 regcache_raw_write (regcache
, base_regnum
+ portion
,
1733 (buffer
+ register_size (gdbarch
,
1734 base_regnum
) * portion
));
1737 else if (reg_nr
>= FV0_REGNUM
1738 && reg_nr
<= FV_LAST_REGNUM
)
1740 base_regnum
= sh64_fv_reg_base_num (gdbarch
, reg_nr
);
1742 /* Write the real regs for which this one is an alias. */
1743 for (portion
= 0; portion
< 4; portion
++)
1744 regcache_raw_write (regcache
, base_regnum
+ portion
,
1745 (buffer
+ register_size (gdbarch
,
1746 base_regnum
) * portion
));
1749 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1750 register but only 4 bytes of it. */
1751 else if (reg_nr
>= R0_C_REGNUM
1752 && reg_nr
<= T_C_REGNUM
)
1754 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1755 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1756 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
1760 /* Let's read the value of the base register into a temporary
1761 buffer, so that overwriting the last four bytes with the new
1762 value of the pseudo will leave the upper 4 bytes unchanged. */
1763 regcache_raw_read (regcache
, base_regnum
, temp_buffer
);
1764 /* Write as an 8 byte quantity. */
1765 memcpy (temp_buffer
+ offset
, buffer
, 4);
1766 regcache_raw_write (regcache
, base_regnum
, temp_buffer
);
1769 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1770 registers. Both are 4 bytes. */
1771 else if (reg_nr
>= FP0_C_REGNUM
1772 && reg_nr
<= FP_LAST_C_REGNUM
)
1774 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1775 regcache_raw_write (regcache
, base_regnum
, buffer
);
1778 else if (reg_nr
>= DR0_C_REGNUM
1779 && reg_nr
<= DR_LAST_C_REGNUM
)
1781 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1782 for (portion
= 0; portion
< 2; portion
++)
1784 /* We must pay attention to the endianness. */
1785 sh64_register_convert_to_raw (gdbarch
,
1786 register_type (gdbarch
, reg_nr
),
1788 buffer
, temp_buffer
);
1790 regcache_raw_write (regcache
, base_regnum
+ portion
,
1792 + register_size (gdbarch
,
1793 base_regnum
) * portion
));
1797 else if (reg_nr
>= FV0_C_REGNUM
1798 && reg_nr
<= FV_LAST_C_REGNUM
)
1800 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1802 for (portion
= 0; portion
< 4; portion
++)
1804 regcache_raw_write (regcache
, base_regnum
+ portion
,
1806 + register_size (gdbarch
,
1807 base_regnum
) * portion
));
1811 else if (reg_nr
== FPSCR_C_REGNUM
)
1813 int fpscr_base_regnum
;
1815 unsigned int fpscr_value
;
1816 unsigned int sr_value
;
1817 unsigned int old_fpscr_value
;
1818 unsigned int old_sr_value
;
1819 unsigned int fpscr_c_value
;
1820 unsigned int fpscr_mask
;
1821 unsigned int sr_mask
;
1823 fpscr_base_regnum
= FPSCR_REGNUM
;
1824 sr_base_regnum
= SR_REGNUM
;
1826 /* FPSCR_C is a very weird register that contains sparse bits
1827 from the FPSCR and the SR architectural registers.
1834 2-17 Bit 2-18 of FPSCR
1835 18-20 Bits 12,13,14 of SR
1839 /* Get value as an int. */
1840 fpscr_c_value
= extract_unsigned_integer (buffer
, 4, byte_order
);
1842 /* Build the new values. */
1843 fpscr_mask
= 0x0003fffd;
1844 sr_mask
= 0x001c0000;
1846 fpscr_value
= fpscr_c_value
& fpscr_mask
;
1847 sr_value
= (fpscr_value
& sr_mask
) >> 6;
1849 regcache_raw_read (regcache
, fpscr_base_regnum
, temp_buffer
);
1850 old_fpscr_value
= extract_unsigned_integer (temp_buffer
, 4, byte_order
);
1851 old_fpscr_value
&= 0xfffc0002;
1852 fpscr_value
|= old_fpscr_value
;
1853 store_unsigned_integer (temp_buffer
, 4, byte_order
, fpscr_value
);
1854 regcache_raw_write (regcache
, fpscr_base_regnum
, temp_buffer
);
1856 regcache_raw_read (regcache
, sr_base_regnum
, temp_buffer
);
1857 old_sr_value
= extract_unsigned_integer (temp_buffer
, 4, byte_order
);
1858 old_sr_value
&= 0xffff8fff;
1859 sr_value
|= old_sr_value
;
1860 store_unsigned_integer (temp_buffer
, 4, byte_order
, sr_value
);
1861 regcache_raw_write (regcache
, sr_base_regnum
, temp_buffer
);
1864 else if (reg_nr
== FPUL_C_REGNUM
)
1866 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1867 regcache_raw_write (regcache
, base_regnum
, buffer
);
1871 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1872 shmedia REGISTERS. */
1873 /* Control registers, compact mode. */
1875 sh64_do_cr_c_register_info (struct ui_file
*file
, struct frame_info
*frame
,
1878 switch (cr_c_regnum
)
1881 fprintf_filtered (file
, "pc_c\t0x%08x\n",
1882 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
1885 fprintf_filtered (file
, "gbr_c\t0x%08x\n",
1886 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
1889 fprintf_filtered (file
, "mach_c\t0x%08x\n",
1890 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
1893 fprintf_filtered (file
, "macl_c\t0x%08x\n",
1894 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
1897 fprintf_filtered (file
, "pr_c\t0x%08x\n",
1898 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
1901 fprintf_filtered (file
, "t_c\t0x%08x\n",
1902 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
1904 case FPSCR_C_REGNUM
:
1905 fprintf_filtered (file
, "fpscr_c\t0x%08x\n",
1906 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
1909 fprintf_filtered (file
, "fpul_c\t0x%08x\n",
1910 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
1916 sh64_do_fp_register (struct gdbarch
*gdbarch
, struct ui_file
*file
,
1917 struct frame_info
*frame
, int regnum
)
1918 { /* Do values for FP (float) regs. */
1919 unsigned char *raw_buffer
;
1920 double flt
; /* Double extracted from raw hex data. */
1924 /* Allocate space for the float. */
1925 raw_buffer
= (unsigned char *)
1926 alloca (register_size (gdbarch
, gdbarch_fp0_regnum (gdbarch
)));
1928 /* Get the data in raw format. */
1929 if (!deprecated_frame_register_read (frame
, regnum
, raw_buffer
))
1930 error (_("can't read register %d (%s)"),
1931 regnum
, gdbarch_register_name (gdbarch
, regnum
));
1933 /* Get the register as a number. */
1934 flt
= unpack_double (builtin_type (gdbarch
)->builtin_float
,
1937 /* Print the name and some spaces. */
1938 fputs_filtered (gdbarch_register_name (gdbarch
, regnum
), file
);
1939 print_spaces_filtered (15 - strlen (gdbarch_register_name
1940 (gdbarch
, regnum
)), file
);
1942 /* Print the value. */
1944 fprintf_filtered (file
, "<invalid float>");
1946 fprintf_filtered (file
, "%-10.9g", flt
);
1948 /* Print the fp register as hex. */
1949 fprintf_filtered (file
, "\t(raw ");
1950 print_hex_chars (file
, raw_buffer
,
1951 register_size (gdbarch
, regnum
),
1952 gdbarch_byte_order (gdbarch
));
1953 fprintf_filtered (file
, ")");
1954 fprintf_filtered (file
, "\n");
1958 sh64_do_pseudo_register (struct gdbarch
*gdbarch
, struct ui_file
*file
,
1959 struct frame_info
*frame
, int regnum
)
1961 /* All the sh64-compact mode registers are pseudo registers. */
1963 if (regnum
< gdbarch_num_regs (gdbarch
)
1964 || regnum
>= gdbarch_num_regs (gdbarch
)
1965 + NUM_PSEUDO_REGS_SH_MEDIA
1966 + NUM_PSEUDO_REGS_SH_COMPACT
)
1967 internal_error (__FILE__
, __LINE__
,
1968 _("Invalid pseudo register number %d\n"), regnum
);
1970 else if ((regnum
>= DR0_REGNUM
&& regnum
<= DR_LAST_REGNUM
))
1972 int fp_regnum
= sh64_dr_reg_base_num (gdbarch
, regnum
);
1973 fprintf_filtered (file
, "dr%d\t0x%08x%08x\n", regnum
- DR0_REGNUM
,
1974 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
),
1975 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 1));
1978 else if ((regnum
>= DR0_C_REGNUM
&& regnum
<= DR_LAST_C_REGNUM
))
1980 int fp_regnum
= sh64_compact_reg_base_num (gdbarch
, regnum
);
1981 fprintf_filtered (file
, "dr%d_c\t0x%08x%08x\n", regnum
- DR0_C_REGNUM
,
1982 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
),
1983 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 1));
1986 else if ((regnum
>= FV0_REGNUM
&& regnum
<= FV_LAST_REGNUM
))
1988 int fp_regnum
= sh64_fv_reg_base_num (gdbarch
, regnum
);
1989 fprintf_filtered (file
, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1990 regnum
- FV0_REGNUM
,
1991 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
),
1992 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 1),
1993 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 2),
1994 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 3));
1997 else if ((regnum
>= FV0_C_REGNUM
&& regnum
<= FV_LAST_C_REGNUM
))
1999 int fp_regnum
= sh64_compact_reg_base_num (gdbarch
, regnum
);
2000 fprintf_filtered (file
, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2001 regnum
- FV0_C_REGNUM
,
2002 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
),
2003 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 1),
2004 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 2),
2005 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 3));
2008 else if (regnum
>= FPP0_REGNUM
&& regnum
<= FPP_LAST_REGNUM
)
2010 int fp_regnum
= sh64_fpp_reg_base_num (gdbarch
, regnum
);
2011 fprintf_filtered (file
, "fpp%d\t0x%08x\t0x%08x\n", regnum
- FPP0_REGNUM
,
2012 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
),
2013 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 1));
2016 else if (regnum
>= R0_C_REGNUM
&& regnum
<= R_LAST_C_REGNUM
)
2018 int c_regnum
= sh64_compact_reg_base_num (gdbarch
, regnum
);
2019 fprintf_filtered (file
, "r%d_c\t0x%08x\n", regnum
- R0_C_REGNUM
,
2020 (unsigned) get_frame_register_unsigned (frame
, c_regnum
));
2022 else if (regnum
>= FP0_C_REGNUM
&& regnum
<= FP_LAST_C_REGNUM
)
2023 /* This should work also for pseudoregs. */
2024 sh64_do_fp_register (gdbarch
, file
, frame
, regnum
);
2025 else if (regnum
>= PC_C_REGNUM
&& regnum
<= FPUL_C_REGNUM
)
2026 sh64_do_cr_c_register_info (file
, frame
, regnum
);
2030 sh64_do_register (struct gdbarch
*gdbarch
, struct ui_file
*file
,
2031 struct frame_info
*frame
, int regnum
)
2033 unsigned char raw_buffer
[MAX_REGISTER_SIZE
];
2034 struct value_print_options opts
;
2036 fputs_filtered (gdbarch_register_name (gdbarch
, regnum
), file
);
2037 print_spaces_filtered (15 - strlen (gdbarch_register_name
2038 (gdbarch
, regnum
)), file
);
2040 /* Get the data in raw format. */
2041 if (!deprecated_frame_register_read (frame
, regnum
, raw_buffer
))
2043 fprintf_filtered (file
, "*value not available*\n");
2047 get_formatted_print_options (&opts
, 'x');
2049 val_print (register_type (gdbarch
, regnum
), raw_buffer
, 0, 0,
2050 file
, 0, NULL
, &opts
, current_language
);
2051 fprintf_filtered (file
, "\t");
2052 get_formatted_print_options (&opts
, 0);
2054 val_print (register_type (gdbarch
, regnum
), raw_buffer
, 0, 0,
2055 file
, 0, NULL
, &opts
, current_language
);
2056 fprintf_filtered (file
, "\n");
2060 sh64_print_register (struct gdbarch
*gdbarch
, struct ui_file
*file
,
2061 struct frame_info
*frame
, int regnum
)
2063 if (regnum
< 0 || regnum
>= gdbarch_num_regs (gdbarch
)
2064 + gdbarch_num_pseudo_regs (gdbarch
))
2065 internal_error (__FILE__
, __LINE__
,
2066 _("Invalid register number %d\n"), regnum
);
2068 else if (regnum
>= 0 && regnum
< gdbarch_num_regs (gdbarch
))
2070 if (TYPE_CODE (register_type (gdbarch
, regnum
)) == TYPE_CODE_FLT
)
2071 sh64_do_fp_register (gdbarch
, file
, frame
, regnum
); /* FP regs */
2073 sh64_do_register (gdbarch
, file
, frame
, regnum
);
2076 else if (regnum
< gdbarch_num_regs (gdbarch
)
2077 + gdbarch_num_pseudo_regs (gdbarch
))
2078 sh64_do_pseudo_register (gdbarch
, file
, frame
, regnum
);
2082 sh64_media_print_registers_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
2083 struct frame_info
*frame
, int regnum
,
2086 if (regnum
!= -1) /* Do one specified register. */
2088 if (*(gdbarch_register_name (gdbarch
, regnum
)) == '\0')
2089 error (_("Not a valid register for the current processor type"));
2091 sh64_print_register (gdbarch
, file
, frame
, regnum
);
2094 /* Do all (or most) registers. */
2097 while (regnum
< gdbarch_num_regs (gdbarch
))
2099 /* If the register name is empty, it is undefined for this
2100 processor, so don't display anything. */
2101 if (gdbarch_register_name (gdbarch
, regnum
) == NULL
2102 || *(gdbarch_register_name (gdbarch
, regnum
)) == '\0')
2108 if (TYPE_CODE (register_type (gdbarch
, regnum
))
2113 /* true for "INFO ALL-REGISTERS" command. */
2114 sh64_do_fp_register (gdbarch
, file
, frame
, regnum
);
2118 regnum
+= FP_LAST_REGNUM
- gdbarch_fp0_regnum (gdbarch
);
2123 sh64_do_register (gdbarch
, file
, frame
, regnum
);
2129 while (regnum
< gdbarch_num_regs (gdbarch
)
2130 + gdbarch_num_pseudo_regs (gdbarch
))
2132 sh64_do_pseudo_register (gdbarch
, file
, frame
, regnum
);
2139 sh64_compact_print_registers_info (struct gdbarch
*gdbarch
,
2140 struct ui_file
*file
,
2141 struct frame_info
*frame
, int regnum
,
2144 if (regnum
!= -1) /* Do one specified register. */
2146 if (*(gdbarch_register_name (gdbarch
, regnum
)) == '\0')
2147 error (_("Not a valid register for the current processor type"));
2149 if (regnum
>= 0 && regnum
< R0_C_REGNUM
)
2150 error (_("Not a valid register for the current processor mode."));
2152 sh64_print_register (gdbarch
, file
, frame
, regnum
);
2155 /* Do all compact registers. */
2157 regnum
= R0_C_REGNUM
;
2158 while (regnum
< gdbarch_num_regs (gdbarch
)
2159 + gdbarch_num_pseudo_regs (gdbarch
))
2161 sh64_do_pseudo_register (gdbarch
, file
, frame
, regnum
);
2168 sh64_print_registers_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
2169 struct frame_info
*frame
, int regnum
, int fpregs
)
2171 if (pc_is_isa32 (get_frame_pc (frame
)))
2172 sh64_media_print_registers_info (gdbarch
, file
, frame
, regnum
, fpregs
);
2174 sh64_compact_print_registers_info (gdbarch
, file
, frame
, regnum
, fpregs
);
2177 static struct sh64_frame_cache
*
2178 sh64_alloc_frame_cache (void)
2180 struct sh64_frame_cache
*cache
;
2183 cache
= FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache
);
2187 cache
->saved_sp
= 0;
2188 cache
->sp_offset
= 0;
2191 /* Frameless until proven otherwise. */
2194 /* Saved registers. We initialize these to -1 since zero is a valid
2195 offset (that's where fp is supposed to be stored). */
2196 for (i
= 0; i
< SIM_SH64_NR_REGS
; i
++)
2198 cache
->saved_regs
[i
] = -1;
2204 static struct sh64_frame_cache
*
2205 sh64_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2207 struct gdbarch
*gdbarch
;
2208 struct sh64_frame_cache
*cache
;
2209 CORE_ADDR current_pc
;
2215 gdbarch
= get_frame_arch (this_frame
);
2216 cache
= sh64_alloc_frame_cache ();
2217 *this_cache
= cache
;
2219 current_pc
= get_frame_pc (this_frame
);
2220 cache
->media_mode
= pc_is_isa32 (current_pc
);
2222 /* In principle, for normal frames, fp holds the frame pointer,
2223 which holds the base address for the current stack frame.
2224 However, for functions that don't need it, the frame pointer is
2225 optional. For these "frameless" functions the frame pointer is
2226 actually the frame pointer of the calling frame. */
2227 cache
->base
= get_frame_register_unsigned (this_frame
, MEDIA_FP_REGNUM
);
2228 if (cache
->base
== 0)
2231 cache
->pc
= get_frame_func (this_frame
);
2233 sh64_analyze_prologue (gdbarch
, cache
, cache
->pc
, current_pc
);
2235 if (!cache
->uses_fp
)
2237 /* We didn't find a valid frame, which means that CACHE->base
2238 currently holds the frame pointer for our calling frame. If
2239 we're at the start of a function, or somewhere half-way its
2240 prologue, the function's frame probably hasn't been fully
2241 setup yet. Try to reconstruct the base address for the stack
2242 frame by looking at the stack pointer. For truly "frameless"
2243 functions this might work too. */
2244 cache
->base
= get_frame_register_unsigned
2245 (this_frame
, gdbarch_sp_regnum (gdbarch
));
2248 /* Now that we have the base address for the stack frame we can
2249 calculate the value of sp in the calling frame. */
2250 cache
->saved_sp
= cache
->base
+ cache
->sp_offset
;
2252 /* Adjust all the saved registers such that they contain addresses
2253 instead of offsets. */
2254 for (i
= 0; i
< SIM_SH64_NR_REGS
; i
++)
2255 if (cache
->saved_regs
[i
] != -1)
2256 cache
->saved_regs
[i
] = cache
->saved_sp
- cache
->saved_regs
[i
];
2261 static struct value
*
2262 sh64_frame_prev_register (struct frame_info
*this_frame
,
2263 void **this_cache
, int regnum
)
2265 struct sh64_frame_cache
*cache
= sh64_frame_cache (this_frame
, this_cache
);
2266 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2267 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2269 gdb_assert (regnum
>= 0);
2271 if (regnum
== gdbarch_sp_regnum (gdbarch
) && cache
->saved_sp
)
2272 frame_unwind_got_constant (this_frame
, regnum
, cache
->saved_sp
);
2274 /* The PC of the previous frame is stored in the PR register of
2275 the current frame. Frob regnum so that we pull the value from
2276 the correct place. */
2277 if (regnum
== gdbarch_pc_regnum (gdbarch
))
2280 if (regnum
< SIM_SH64_NR_REGS
&& cache
->saved_regs
[regnum
] != -1)
2282 if (gdbarch_tdep (gdbarch
)->sh_abi
== SH_ABI_32
2283 && (regnum
== MEDIA_FP_REGNUM
|| regnum
== PR_REGNUM
))
2286 val
= read_memory_unsigned_integer (cache
->saved_regs
[regnum
],
2288 return frame_unwind_got_constant (this_frame
, regnum
, val
);
2291 return frame_unwind_got_memory (this_frame
, regnum
,
2292 cache
->saved_regs
[regnum
]);
2295 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
2299 sh64_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2300 struct frame_id
*this_id
)
2302 struct sh64_frame_cache
*cache
= sh64_frame_cache (this_frame
, this_cache
);
2304 /* This marks the outermost frame. */
2305 if (cache
->base
== 0)
2308 *this_id
= frame_id_build (cache
->saved_sp
, cache
->pc
);
2311 static const struct frame_unwind sh64_frame_unwind
= {
2313 default_frame_unwind_stop_reason
,
2315 sh64_frame_prev_register
,
2317 default_frame_sniffer
2321 sh64_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2323 return frame_unwind_register_unsigned (next_frame
,
2324 gdbarch_sp_regnum (gdbarch
));
2328 sh64_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2330 return frame_unwind_register_unsigned (next_frame
,
2331 gdbarch_pc_regnum (gdbarch
));
2334 static struct frame_id
2335 sh64_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
2337 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
,
2338 gdbarch_sp_regnum (gdbarch
));
2339 return frame_id_build (sp
, get_frame_pc (this_frame
));
2343 sh64_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
2345 struct sh64_frame_cache
*cache
= sh64_frame_cache (this_frame
, this_cache
);
2350 static const struct frame_base sh64_frame_base
= {
2352 sh64_frame_base_address
,
2353 sh64_frame_base_address
,
2354 sh64_frame_base_address
2359 sh64_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2361 struct gdbarch
*gdbarch
;
2362 struct gdbarch_tdep
*tdep
;
2364 /* If there is already a candidate, use it. */
2365 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
2367 return arches
->gdbarch
;
2369 /* None found, create a new architecture from the information
2371 tdep
= XNEW (struct gdbarch_tdep
);
2372 gdbarch
= gdbarch_alloc (&info
, tdep
);
2374 /* Determine the ABI */
2375 if (info
.abfd
&& bfd_get_arch_size (info
.abfd
) == 64)
2377 /* If the ABI is the 64-bit one, it can only be sh-media. */
2378 tdep
->sh_abi
= SH_ABI_64
;
2379 set_gdbarch_ptr_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2380 set_gdbarch_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2384 /* If the ABI is the 32-bit one it could be either media or
2386 tdep
->sh_abi
= SH_ABI_32
;
2387 set_gdbarch_ptr_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2388 set_gdbarch_long_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2391 set_gdbarch_short_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
2392 set_gdbarch_int_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2393 set_gdbarch_long_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2394 set_gdbarch_long_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2395 set_gdbarch_float_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2396 set_gdbarch_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2397 set_gdbarch_long_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2399 /* The number of real registers is the same whether we are in
2400 ISA16(compact) or ISA32(media). */
2401 set_gdbarch_num_regs (gdbarch
, SIM_SH64_NR_REGS
);
2402 set_gdbarch_sp_regnum (gdbarch
, 15);
2403 set_gdbarch_pc_regnum (gdbarch
, 64);
2404 set_gdbarch_fp0_regnum (gdbarch
, SIM_SH64_FR0_REGNUM
);
2405 set_gdbarch_num_pseudo_regs (gdbarch
, NUM_PSEUDO_REGS_SH_MEDIA
2406 + NUM_PSEUDO_REGS_SH_COMPACT
);
2408 set_gdbarch_register_name (gdbarch
, sh64_register_name
);
2409 set_gdbarch_register_type (gdbarch
, sh64_register_type
);
2411 set_gdbarch_pseudo_register_read (gdbarch
, sh64_pseudo_register_read
);
2412 set_gdbarch_pseudo_register_write (gdbarch
, sh64_pseudo_register_write
);
2414 set_gdbarch_breakpoint_from_pc (gdbarch
, sh64_breakpoint_from_pc
);
2416 set_gdbarch_print_insn (gdbarch
, print_insn_sh
);
2417 set_gdbarch_register_sim_regno (gdbarch
, legacy_register_sim_regno
);
2419 set_gdbarch_return_value (gdbarch
, sh64_return_value
);
2421 set_gdbarch_skip_prologue (gdbarch
, sh64_skip_prologue
);
2422 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
2424 set_gdbarch_push_dummy_call (gdbarch
, sh64_push_dummy_call
);
2426 set_gdbarch_believe_pcc_promotion (gdbarch
, 1);
2428 set_gdbarch_frame_align (gdbarch
, sh64_frame_align
);
2429 set_gdbarch_unwind_sp (gdbarch
, sh64_unwind_sp
);
2430 set_gdbarch_unwind_pc (gdbarch
, sh64_unwind_pc
);
2431 set_gdbarch_dummy_id (gdbarch
, sh64_dummy_id
);
2432 frame_base_set_default (gdbarch
, &sh64_frame_base
);
2434 set_gdbarch_print_registers_info (gdbarch
, sh64_print_registers_info
);
2436 set_gdbarch_elf_make_msymbol_special (gdbarch
,
2437 sh64_elf_make_msymbol_special
);
2439 /* Hook in ABI-specific overrides, if they have been registered. */
2440 gdbarch_init_osabi (info
, gdbarch
);
2442 dwarf2_append_unwinders (gdbarch
);
2443 frame_unwind_append_unwinder (gdbarch
, &sh64_frame_unwind
);