PR 4713
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "dwarf2-frame.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "value.h"
38 #include "dis-asm.h"
39 #include "inferior.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "arch-utils.h"
43 #include "regcache.h"
44 #include "osabi.h"
45
46 #include "elf-bfd.h"
47
48 /* sh flags */
49 #include "elf/sh.h"
50 /* registers numbers shared with the simulator */
51 #include "gdb/sim-sh.h"
52
53 /* Information that is dependent on the processor variant. */
54 enum sh_abi
55 {
56 SH_ABI_UNKNOWN,
57 SH_ABI_32,
58 SH_ABI_64
59 };
60
61 struct gdbarch_tdep
62 {
63 enum sh_abi sh_abi;
64 };
65
66 struct sh64_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 LONGEST sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 int media_mode;
77
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
80 CORE_ADDR saved_sp;
81 };
82
83 /* Registers of SH5 */
84 enum
85 {
86 R0_REGNUM = 0,
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
89 ARG0_REGNUM = 2,
90 ARGLAST_REGNUM = 9,
91 FLOAT_ARGLAST_REGNUM = 11,
92 MEDIA_FP_REGNUM = 14,
93 PR_REGNUM = 18,
94 SR_REGNUM = 65,
95 DR0_REGNUM = 141,
96 DR_LAST_REGNUM = 172,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
98 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
99 point register. Unfortunately on the sh5, the floating point
100 registers are called FR, and the floating point pairs are called FP. */
101 FPP0_REGNUM = 173,
102 FPP_LAST_REGNUM = 204,
103 FV0_REGNUM = 205,
104 FV_LAST_REGNUM = 220,
105 R0_C_REGNUM = 221,
106 R_LAST_C_REGNUM = 236,
107 PC_C_REGNUM = 237,
108 GBR_C_REGNUM = 238,
109 MACH_C_REGNUM = 239,
110 MACL_C_REGNUM = 240,
111 PR_C_REGNUM = 241,
112 T_C_REGNUM = 242,
113 FPSCR_C_REGNUM = 243,
114 FPUL_C_REGNUM = 244,
115 FP0_C_REGNUM = 245,
116 FP_LAST_C_REGNUM = 260,
117 DR0_C_REGNUM = 261,
118 DR_LAST_C_REGNUM = 268,
119 FV0_C_REGNUM = 269,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
126 };
127
128 static const char *
129 sh64_register_name (int reg_nr)
130 {
131 static char *register_names[] =
132 {
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143
144 /* pc (64-bit) 64 */
145 "pc",
146
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
148 "sr", "ssr", "spc",
149
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
152
153 /* floating point state control register (32-bit) 76 */
154 "fpscr",
155
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
165
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
171
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
177
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
181
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
185 "pc_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
187 "fpscr_c", "fpul_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 32-bit function
212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213
214 #define MSYMBOL_IS_SPECIAL(msym) \
215 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
216
217 static void
218 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219 {
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
225 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
226 SYMBOL_VALUE_ADDRESS (msym) |= 1;
227 }
228 }
229
230 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232 #define IS_ISA32_ADDR(addr) ((addr) & 1)
233 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236 static int
237 pc_is_isa32 (bfd_vma memaddr)
238 {
239 struct minimal_symbol *sym;
240
241 /* If bit 0 of the address is set, assume this is a
242 ISA32 (shmedia) address. */
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
250 if (sym)
251 return MSYMBOL_IS_SPECIAL (sym);
252 else
253 return 0;
254 }
255
256 static const unsigned char *
257 sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
258 {
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263
264 /* The BRK instruction for shcompact is
265 00000000 00111011
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0*/
268
269 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
270 {
271 if (pc_is_isa32 (*pcptr))
272 {
273 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
274 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
275 *lenptr = sizeof (big_breakpoint_media);
276 return big_breakpoint_media;
277 }
278 else
279 {
280 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
281 *lenptr = sizeof (big_breakpoint_compact);
282 return big_breakpoint_compact;
283 }
284 }
285 else
286 {
287 if (pc_is_isa32 (*pcptr))
288 {
289 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
290 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
291 *lenptr = sizeof (little_breakpoint_media);
292 return little_breakpoint_media;
293 }
294 else
295 {
296 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
297 *lenptr = sizeof (little_breakpoint_compact);
298 return little_breakpoint_compact;
299 }
300 }
301 }
302
303 /* Prologue looks like
304 [mov.l <regs>,@-r15]...
305 [sts.l pr,@-r15]
306 [mov.l r14,@-r15]
307 [mov r15,r14]
308
309 Actually it can be more complicated than this. For instance, with
310 newer gcc's:
311
312 mov.l r14,@-r15
313 add #-12,r15
314 mov r15,r14
315 mov r4,r1
316 mov r5,r2
317 mov.l r6,@(4,r14)
318 mov.l r7,@(8,r14)
319 mov.b r1,@r14
320 mov r14,r1
321 mov r14,r1
322 add #2,r1
323 mov.w r2,@r1
324
325 */
326
327 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
328 with l=1 and n = 18 0110101111110001010010100aaa0000 */
329 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
330
331 /* STS.L PR,@-r0 0100000000100010
332 r0-4-->r0, PR-->(r0) */
333 #define IS_STS_R0(x) ((x) == 0x4022)
334
335 /* STS PR, Rm 0000mmmm00101010
336 PR-->Rm */
337 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
338
339 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
340 Rm-->(dispx4+r15) */
341 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
342
343 /* MOV.L R14,@(disp,r15) 000111111110dddd
344 R14-->(dispx4+r15) */
345 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
346
347 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
348 R18-->(dispx8+R14) */
349 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
350
351 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
352 R18-->(dispx8+R15) */
353 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
354
355 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
356 R18-->(dispx4+R15) */
357 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
358
359 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
360 R14-->(dispx8+R15) */
361 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
362
363 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx4+R15) */
365 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
366
367 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
368 R15 + imm --> R15 */
369 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
370
371 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
372 R15 + imm --> R15 */
373 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
374
375 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
376 R15 + R63 --> R14 */
377 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
378
379 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
380 R15 + R63 --> R14 */
381 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
382
383 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
384
385 /* MOV #imm, R0 1110 0000 ssss ssss
386 #imm-->R0 */
387 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
388
389 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
390 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
391
392 /* ADD r15,r0 0011 0000 1111 1100
393 r15+r0-->r0 */
394 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
395
396 /* MOV.L R14 @-R0 0010 0000 1110 0110
397 R14-->(R0-4), R0-4-->R0 */
398 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
399
400 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
401 where Rm is one of r2-r9 which are the argument registers. */
402 /* FIXME: Recognize the float and double register moves too! */
403 #define IS_MEDIA_IND_ARG_MOV(x) \
404 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
405
406 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
407 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
408 where Rm is one of r2-r9 which are the argument registers. */
409 #define IS_MEDIA_ARG_MOV(x) \
410 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
411 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
412
413 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
414 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
415 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
416 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
417 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
418 #define IS_MEDIA_MOV_TO_R14(x) \
419 ((((x) & 0xfffffc0f) == 0xa0e00000) \
420 || (((x) & 0xfffffc0f) == 0xa4e00000) \
421 || (((x) & 0xfffffc0f) == 0xa8e00000) \
422 || (((x) & 0xfffffc0f) == 0xb4e00000) \
423 || (((x) & 0xfffffc0f) == 0xbce00000))
424
425 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
426 where Rm is r2-r9 */
427 #define IS_COMPACT_IND_ARG_MOV(x) \
428 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
429
430 /* compact direct arg move!
431 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
432 #define IS_COMPACT_ARG_MOV(x) \
433 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
434
435 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
436 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
437 #define IS_COMPACT_MOV_TO_R14(x) \
438 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
439
440 #define IS_JSR_R0(x) ((x) == 0x400b)
441 #define IS_NOP(x) ((x) == 0x0009)
442
443
444 /* MOV r15,r14 0110111011110011
445 r15-->r14 */
446 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
447
448 /* ADD #imm,r15 01111111iiiiiiii
449 r15+imm-->r15 */
450 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
451
452 /* Skip any prologue before the guts of a function */
453
454 /* Skip the prologue using the debug information. If this fails we'll
455 fall back on the 'guess' method below. */
456 static CORE_ADDR
457 after_prologue (CORE_ADDR pc)
458 {
459 struct symtab_and_line sal;
460 CORE_ADDR func_addr, func_end;
461
462 /* If we can not find the symbol in the partial symbol table, then
463 there is no hope we can determine the function's start address
464 with this code. */
465 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
466 return 0;
467
468
469 /* Get the line associated with FUNC_ADDR. */
470 sal = find_pc_line (func_addr, 0);
471
472 /* There are only two cases to consider. First, the end of the source line
473 is within the function bounds. In that case we return the end of the
474 source line. Second is the end of the source line extends beyond the
475 bounds of the current function. We need to use the slow code to
476 examine instructions in that case. */
477 if (sal.end < func_end)
478 return sal.end;
479 else
480 return 0;
481 }
482
483 static CORE_ADDR
484 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
485 {
486 CORE_ADDR here, end;
487 int w;
488 int insn_size = (media_mode ? 4 : 2);
489
490 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
491 {
492 if (media_mode)
493 {
494 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
495 here += insn_size;
496 if (IS_MEDIA_IND_ARG_MOV (w))
497 {
498 /* This must be followed by a store to r14, so the argument
499 is where the debug info says it is. This can happen after
500 the SP has been saved, unfortunately. */
501
502 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
503 insn_size);
504 here += insn_size;
505 if (IS_MEDIA_MOV_TO_R14 (next_insn))
506 start_pc = here;
507 }
508 else if (IS_MEDIA_ARG_MOV (w))
509 {
510 /* These instructions store directly the argument in r14. */
511 start_pc = here;
512 }
513 else
514 break;
515 }
516 else
517 {
518 w = read_memory_integer (here, insn_size);
519 w = w & 0xffff;
520 here += insn_size;
521 if (IS_COMPACT_IND_ARG_MOV (w))
522 {
523 /* This must be followed by a store to r14, so the argument
524 is where the debug info says it is. This can happen after
525 the SP has been saved, unfortunately. */
526
527 int next_insn = 0xffff & read_memory_integer (here, insn_size);
528 here += insn_size;
529 if (IS_COMPACT_MOV_TO_R14 (next_insn))
530 start_pc = here;
531 }
532 else if (IS_COMPACT_ARG_MOV (w))
533 {
534 /* These instructions store directly the argument in r14. */
535 start_pc = here;
536 }
537 else if (IS_MOVL_R0 (w))
538 {
539 /* There is a function that gcc calls to get the arguments
540 passed correctly to the function. Only after this
541 function call the arguments will be found at the place
542 where they are supposed to be. This happens in case the
543 argument has to be stored into a 64-bit register (for
544 instance doubles, long longs). SHcompact doesn't have
545 access to the full 64-bits, so we store the register in
546 stack slot and store the address of the stack slot in
547 the register, then do a call through a wrapper that
548 loads the memory value into the register. A SHcompact
549 callee calls an argument decoder
550 (GCC_shcompact_incoming_args) that stores the 64-bit
551 value in a stack slot and stores the address of the
552 stack slot in the register. GCC thinks the argument is
553 just passed by transparent reference, but this is only
554 true after the argument decoder is called. Such a call
555 needs to be considered part of the prologue. */
556
557 /* This must be followed by a JSR @r0 instruction and by
558 a NOP instruction. After these, the prologue is over! */
559
560 int next_insn = 0xffff & read_memory_integer (here, insn_size);
561 here += insn_size;
562 if (IS_JSR_R0 (next_insn))
563 {
564 next_insn = 0xffff & read_memory_integer (here, insn_size);
565 here += insn_size;
566
567 if (IS_NOP (next_insn))
568 start_pc = here;
569 }
570 }
571 else
572 break;
573 }
574 }
575
576 return start_pc;
577 }
578
579 static CORE_ADDR
580 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
581 {
582 CORE_ADDR here, end;
583 int updated_fp = 0;
584 int insn_size = 4;
585 int media_mode = 1;
586
587 if (!start_pc)
588 return 0;
589
590 if (pc_is_isa32 (start_pc) == 0)
591 {
592 insn_size = 2;
593 media_mode = 0;
594 }
595
596 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
597 {
598
599 if (media_mode)
600 {
601 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
602 here += insn_size;
603 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
604 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
605 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
606 {
607 start_pc = here;
608 }
609 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
610 {
611 start_pc = here;
612 updated_fp = 1;
613 }
614 else
615 if (updated_fp)
616 {
617 /* Don't bail out yet, we may have arguments stored in
618 registers here, according to the debug info, so that
619 gdb can print the frames correctly. */
620 start_pc = look_for_args_moves (here - insn_size, media_mode);
621 break;
622 }
623 }
624 else
625 {
626 int w = 0xffff & read_memory_integer (here, insn_size);
627 here += insn_size;
628
629 if (IS_STS_R0 (w) || IS_STS_PR (w)
630 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
631 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
632 {
633 start_pc = here;
634 }
635 else if (IS_MOV_SP_FP (w))
636 {
637 start_pc = here;
638 updated_fp = 1;
639 }
640 else
641 if (updated_fp)
642 {
643 /* Don't bail out yet, we may have arguments stored in
644 registers here, according to the debug info, so that
645 gdb can print the frames correctly. */
646 start_pc = look_for_args_moves (here - insn_size, media_mode);
647 break;
648 }
649 }
650 }
651
652 return start_pc;
653 }
654
655 static CORE_ADDR
656 sh64_skip_prologue (CORE_ADDR pc)
657 {
658 CORE_ADDR post_prologue_pc;
659
660 /* See if we can determine the end of the prologue via the symbol table.
661 If so, then return either PC, or the PC after the prologue, whichever
662 is greater. */
663 post_prologue_pc = after_prologue (pc);
664
665 /* If after_prologue returned a useful address, then use it. Else
666 fall back on the instruction skipping code. */
667 if (post_prologue_pc != 0)
668 return max (pc, post_prologue_pc);
669 else
670 return sh64_skip_prologue_hard_way (pc);
671 }
672
673 /* Should call_function allocate stack space for a struct return? */
674 static int
675 sh64_use_struct_convention (struct type *type)
676 {
677 return (TYPE_LENGTH (type) > 8);
678 }
679
680 /* Disassemble an instruction. */
681 static int
682 gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
683 {
684 info->endian = gdbarch_byte_order (current_gdbarch);
685 return print_insn_sh (memaddr, info);
686 }
687
688 /* For vectors of 4 floating point registers. */
689 static int
690 sh64_fv_reg_base_num (int fv_regnum)
691 {
692 int fp_regnum;
693
694 fp_regnum = gdbarch_fp0_regnum (current_gdbarch) +
695 (fv_regnum - FV0_REGNUM) * 4;
696 return fp_regnum;
697 }
698
699 /* For double precision floating point registers, i.e 2 fp regs.*/
700 static int
701 sh64_dr_reg_base_num (int dr_regnum)
702 {
703 int fp_regnum;
704
705 fp_regnum = gdbarch_fp0_regnum (current_gdbarch) +
706 (dr_regnum - DR0_REGNUM) * 2;
707 return fp_regnum;
708 }
709
710 /* For pairs of floating point registers */
711 static int
712 sh64_fpp_reg_base_num (int fpp_regnum)
713 {
714 int fp_regnum;
715
716 fp_regnum = gdbarch_fp0_regnum (current_gdbarch) +
717 (fpp_regnum - FPP0_REGNUM) * 2;
718 return fp_regnum;
719 }
720
721 /* *INDENT-OFF* */
722 /*
723 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
724 GDB_REGNUM BASE_REGNUM
725 r0_c 221 0
726 r1_c 222 1
727 r2_c 223 2
728 r3_c 224 3
729 r4_c 225 4
730 r5_c 226 5
731 r6_c 227 6
732 r7_c 228 7
733 r8_c 229 8
734 r9_c 230 9
735 r10_c 231 10
736 r11_c 232 11
737 r12_c 233 12
738 r13_c 234 13
739 r14_c 235 14
740 r15_c 236 15
741
742 pc_c 237 64
743 gbr_c 238 16
744 mach_c 239 17
745 macl_c 240 17
746 pr_c 241 18
747 t_c 242 19
748 fpscr_c 243 76
749 fpul_c 244 109
750
751 fr0_c 245 77
752 fr1_c 246 78
753 fr2_c 247 79
754 fr3_c 248 80
755 fr4_c 249 81
756 fr5_c 250 82
757 fr6_c 251 83
758 fr7_c 252 84
759 fr8_c 253 85
760 fr9_c 254 86
761 fr10_c 255 87
762 fr11_c 256 88
763 fr12_c 257 89
764 fr13_c 258 90
765 fr14_c 259 91
766 fr15_c 260 92
767
768 dr0_c 261 77
769 dr2_c 262 79
770 dr4_c 263 81
771 dr6_c 264 83
772 dr8_c 265 85
773 dr10_c 266 87
774 dr12_c 267 89
775 dr14_c 268 91
776
777 fv0_c 269 77
778 fv4_c 270 81
779 fv8_c 271 85
780 fv12_c 272 91
781 */
782 /* *INDENT-ON* */
783 static int
784 sh64_compact_reg_base_num (int reg_nr)
785 {
786 int base_regnum = reg_nr;
787
788 /* general register N maps to general register N */
789 if (reg_nr >= R0_C_REGNUM
790 && reg_nr <= R_LAST_C_REGNUM)
791 base_regnum = reg_nr - R0_C_REGNUM;
792
793 /* floating point register N maps to floating point register N */
794 else if (reg_nr >= FP0_C_REGNUM
795 && reg_nr <= FP_LAST_C_REGNUM)
796 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (current_gdbarch);
797
798 /* double prec register N maps to base regnum for double prec register N */
799 else if (reg_nr >= DR0_C_REGNUM
800 && reg_nr <= DR_LAST_C_REGNUM)
801 base_regnum = sh64_dr_reg_base_num (DR0_REGNUM + reg_nr - DR0_C_REGNUM);
802
803 /* vector N maps to base regnum for vector register N */
804 else if (reg_nr >= FV0_C_REGNUM
805 && reg_nr <= FV_LAST_C_REGNUM)
806 base_regnum = sh64_fv_reg_base_num (FV0_REGNUM + reg_nr - FV0_C_REGNUM);
807
808 else if (reg_nr == PC_C_REGNUM)
809 base_regnum = gdbarch_pc_regnum (current_gdbarch);
810
811 else if (reg_nr == GBR_C_REGNUM)
812 base_regnum = 16;
813
814 else if (reg_nr == MACH_C_REGNUM
815 || reg_nr == MACL_C_REGNUM)
816 base_regnum = 17;
817
818 else if (reg_nr == PR_C_REGNUM)
819 base_regnum = PR_REGNUM;
820
821 else if (reg_nr == T_C_REGNUM)
822 base_regnum = 19;
823
824 else if (reg_nr == FPSCR_C_REGNUM)
825 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
826
827 else if (reg_nr == FPUL_C_REGNUM)
828 base_regnum = gdbarch_fp0_regnum (current_gdbarch) + 32;
829
830 return base_regnum;
831 }
832
833 static int
834 sign_extend (int value, int bits)
835 {
836 value = value & ((1 << bits) - 1);
837 return (value & (1 << (bits - 1))
838 ? value | (~((1 << bits) - 1))
839 : value);
840 }
841
842 static void
843 sh64_analyze_prologue (struct gdbarch *gdbarch,
844 struct sh64_frame_cache *cache,
845 CORE_ADDR func_pc,
846 CORE_ADDR current_pc)
847 {
848 int reg_nr;
849 int pc;
850 int opc;
851 int insn;
852 int r0_val = 0;
853 int insn_size;
854 int gdb_register_number;
855 int register_number;
856 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
857
858 cache->sp_offset = 0;
859
860 /* Loop around examining the prologue insns until we find something
861 that does not appear to be part of the prologue. But give up
862 after 20 of them, since we're getting silly then. */
863
864 pc = func_pc;
865
866 if (cache->media_mode)
867 insn_size = 4;
868 else
869 insn_size = 2;
870
871 opc = pc + (insn_size * 28);
872 if (opc > current_pc)
873 opc = current_pc;
874 for ( ; pc <= opc; pc += insn_size)
875 {
876 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
877 : pc,
878 insn_size);
879
880 if (!cache->media_mode)
881 {
882 if (IS_STS_PR (insn))
883 {
884 int next_insn = read_memory_integer (pc + insn_size, insn_size);
885 if (IS_MOV_TO_R15 (next_insn))
886 {
887 cache->saved_regs[PR_REGNUM] =
888 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
889 pc += insn_size;
890 }
891 }
892
893 else if (IS_MOV_R14 (insn))
894 cache->saved_regs[MEDIA_FP_REGNUM] =
895 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
896
897 else if (IS_MOV_R0 (insn))
898 {
899 /* Put in R0 the offset from SP at which to store some
900 registers. We are interested in this value, because it
901 will tell us where the given registers are stored within
902 the frame. */
903 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
904 }
905
906 else if (IS_ADD_SP_R0 (insn))
907 {
908 /* This instruction still prepares r0, but we don't care.
909 We already have the offset in r0_val. */
910 }
911
912 else if (IS_STS_R0 (insn))
913 {
914 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
915 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
916 r0_val -= 4;
917 }
918
919 else if (IS_MOV_R14_R0 (insn))
920 {
921 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
922 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
923 - (r0_val - 4);
924 r0_val -= 4;
925 }
926
927 else if (IS_ADD_SP (insn))
928 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
929
930 else if (IS_MOV_SP_FP (insn))
931 break;
932 }
933 else
934 {
935 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
936 cache->sp_offset -=
937 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
938
939 else if (IS_STQ_R18_R15 (insn))
940 cache->saved_regs[PR_REGNUM] =
941 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
942
943 else if (IS_STL_R18_R15 (insn))
944 cache->saved_regs[PR_REGNUM] =
945 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
946
947 else if (IS_STQ_R14_R15 (insn))
948 cache->saved_regs[MEDIA_FP_REGNUM] =
949 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
950
951 else if (IS_STL_R14_R15 (insn))
952 cache->saved_regs[MEDIA_FP_REGNUM] =
953 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
954
955 else if (IS_MOV_SP_FP_MEDIA (insn))
956 break;
957 }
958 }
959
960 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
961 cache->uses_fp = 1;
962 }
963
964 static CORE_ADDR
965 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
966 {
967 return sp & ~7;
968 }
969
970 /* Function: push_dummy_call
971 Setup the function arguments for calling a function in the inferior.
972
973 On the Renesas SH architecture, there are four registers (R4 to R7)
974 which are dedicated for passing function arguments. Up to the first
975 four arguments (depending on size) may go into these registers.
976 The rest go on the stack.
977
978 Arguments that are smaller than 4 bytes will still take up a whole
979 register or a whole 32-bit word on the stack, and will be
980 right-justified in the register or the stack word. This includes
981 chars, shorts, and small aggregate types.
982
983 Arguments that are larger than 4 bytes may be split between two or
984 more registers. If there are not enough registers free, an argument
985 may be passed partly in a register (or registers), and partly on the
986 stack. This includes doubles, long longs, and larger aggregates.
987 As far as I know, there is no upper limit to the size of aggregates
988 that will be passed in this way; in other words, the convention of
989 passing a pointer to a large aggregate instead of a copy is not used.
990
991 An exceptional case exists for struct arguments (and possibly other
992 aggregates such as arrays) if the size is larger than 4 bytes but
993 not a multiple of 4 bytes. In this case the argument is never split
994 between the registers and the stack, but instead is copied in its
995 entirety onto the stack, AND also copied into as many registers as
996 there is room for. In other words, space in registers permitting,
997 two copies of the same argument are passed in. As far as I can tell,
998 only the one on the stack is used, although that may be a function
999 of the level of compiler optimization. I suspect this is a compiler
1000 bug. Arguments of these odd sizes are left-justified within the
1001 word (as opposed to arguments smaller than 4 bytes, which are
1002 right-justified).
1003
1004 If the function is to return an aggregate type such as a struct, it
1005 is either returned in the normal return value register R0 (if its
1006 size is no greater than one byte), or else the caller must allocate
1007 space into which the callee will copy the return value (if the size
1008 is greater than one byte). In this case, a pointer to the return
1009 value location is passed into the callee in register R2, which does
1010 not displace any of the other arguments passed in via registers R4
1011 to R7. */
1012
1013 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1014 non-scalar (struct, union) elements (even if the elements are
1015 floats).
1016 FR0-FR11 for single precision floating point (float)
1017 DR0-DR10 for double precision floating point (double)
1018
1019 If a float is argument number 3 (for instance) and arguments number
1020 1,2, and 4 are integer, the mapping will be:
1021 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1022
1023 If a float is argument number 10 (for instance) and arguments number
1024 1 through 10 are integer, the mapping will be:
1025 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1026 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1027 I.e. there is hole in the stack.
1028
1029 Different rules apply for variable arguments functions, and for functions
1030 for which the prototype is not known. */
1031
1032 static CORE_ADDR
1033 sh64_push_dummy_call (struct gdbarch *gdbarch,
1034 struct value *function,
1035 struct regcache *regcache,
1036 CORE_ADDR bp_addr,
1037 int nargs, struct value **args,
1038 CORE_ADDR sp, int struct_return,
1039 CORE_ADDR struct_addr)
1040 {
1041 int stack_offset, stack_alloc;
1042 int int_argreg;
1043 int float_argreg;
1044 int double_argreg;
1045 int float_arg_index = 0;
1046 int double_arg_index = 0;
1047 int argnum;
1048 struct type *type;
1049 CORE_ADDR regval;
1050 char *val;
1051 char valbuf[8];
1052 char valbuf_tmp[8];
1053 int len;
1054 int argreg_size;
1055 int fp_args[12];
1056
1057 memset (fp_args, 0, sizeof (fp_args));
1058
1059 /* first force sp to a 8-byte alignment */
1060 sp = sh64_frame_align (gdbarch, sp);
1061
1062 /* The "struct return pointer" pseudo-argument has its own dedicated
1063 register */
1064
1065 if (struct_return)
1066 regcache_cooked_write_unsigned (regcache,
1067 STRUCT_RETURN_REGNUM, struct_addr);
1068
1069 /* Now make sure there's space on the stack */
1070 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1071 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1072 sp -= stack_alloc; /* make room on stack for args */
1073
1074 /* Now load as many as possible of the first arguments into
1075 registers, and push the rest onto the stack. There are 64 bytes
1076 in eight registers available. Loop thru args from first to last. */
1077
1078 int_argreg = ARG0_REGNUM;
1079 float_argreg = gdbarch_fp0_regnum (current_gdbarch);
1080 double_argreg = DR0_REGNUM;
1081
1082 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1083 {
1084 type = value_type (args[argnum]);
1085 len = TYPE_LENGTH (type);
1086 memset (valbuf, 0, sizeof (valbuf));
1087
1088 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1089 {
1090 argreg_size = register_size (current_gdbarch, int_argreg);
1091
1092 if (len < argreg_size)
1093 {
1094 /* value gets right-justified in the register or stack word */
1095 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1096 memcpy (valbuf + argreg_size - len,
1097 (char *) value_contents (args[argnum]), len);
1098 else
1099 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1100
1101 val = valbuf;
1102 }
1103 else
1104 val = (char *) value_contents (args[argnum]);
1105
1106 while (len > 0)
1107 {
1108 if (int_argreg > ARGLAST_REGNUM)
1109 {
1110 /* must go on the stack */
1111 write_memory (sp + stack_offset, (const bfd_byte *) val,
1112 argreg_size);
1113 stack_offset += 8;/*argreg_size;*/
1114 }
1115 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1116 That's because some *&^%$ things get passed on the stack
1117 AND in the registers! */
1118 if (int_argreg <= ARGLAST_REGNUM)
1119 {
1120 /* there's room in a register */
1121 regval = extract_unsigned_integer (val, argreg_size);
1122 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1123 }
1124 /* Store the value 8 bytes at a time. This means that
1125 things larger than 8 bytes may go partly in registers
1126 and partly on the stack. FIXME: argreg is incremented
1127 before we use its size. */
1128 len -= argreg_size;
1129 val += argreg_size;
1130 int_argreg++;
1131 }
1132 }
1133 else
1134 {
1135 val = (char *) value_contents (args[argnum]);
1136 if (len == 4)
1137 {
1138 /* Where is it going to be stored? */
1139 while (fp_args[float_arg_index])
1140 float_arg_index ++;
1141
1142 /* Now float_argreg points to the register where it
1143 should be stored. Are we still within the allowed
1144 register set? */
1145 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1146 {
1147 /* Goes in FR0...FR11 */
1148 regcache_cooked_write (regcache,
1149 gdbarch_fp0_regnum (current_gdbarch)
1150 + float_arg_index,
1151 val);
1152 fp_args[float_arg_index] = 1;
1153 /* Skip the corresponding general argument register. */
1154 int_argreg ++;
1155 }
1156 else
1157 ;
1158 /* Store it as the integers, 8 bytes at the time, if
1159 necessary spilling on the stack. */
1160
1161 }
1162 else if (len == 8)
1163 {
1164 /* Where is it going to be stored? */
1165 while (fp_args[double_arg_index])
1166 double_arg_index += 2;
1167 /* Now double_argreg points to the register
1168 where it should be stored.
1169 Are we still within the allowed register set? */
1170 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1171 {
1172 /* Goes in DR0...DR10 */
1173 /* The numbering of the DRi registers is consecutive,
1174 i.e. includes odd numbers. */
1175 int double_register_offset = double_arg_index / 2;
1176 int regnum = DR0_REGNUM + double_register_offset;
1177 regcache_cooked_write (regcache, regnum, val);
1178 fp_args[double_arg_index] = 1;
1179 fp_args[double_arg_index + 1] = 1;
1180 /* Skip the corresponding general argument register. */
1181 int_argreg ++;
1182 }
1183 else
1184 ;
1185 /* Store it as the integers, 8 bytes at the time, if
1186 necessary spilling on the stack. */
1187 }
1188 }
1189 }
1190 /* Store return address. */
1191 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1192
1193 /* Update stack pointer. */
1194 regcache_cooked_write_unsigned (regcache,
1195 gdbarch_sp_regnum (current_gdbarch), sp);
1196
1197 return sp;
1198 }
1199
1200 /* Find a function's return value in the appropriate registers (in
1201 regbuf), and copy it into valbuf. Extract from an array REGBUF
1202 containing the (raw) register state a function return value of type
1203 TYPE, and copy that, in virtual format, into VALBUF. */
1204 static void
1205 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1206 void *valbuf)
1207 {
1208 int len = TYPE_LENGTH (type);
1209
1210 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1211 {
1212 if (len == 4)
1213 {
1214 /* Return value stored in gdbarch_fp0_regnum */
1215 regcache_raw_read (regcache,
1216 gdbarch_fp0_regnum (current_gdbarch), valbuf);
1217 }
1218 else if (len == 8)
1219 {
1220 /* return value stored in DR0_REGNUM */
1221 DOUBLEST val;
1222 gdb_byte buf[8];
1223
1224 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1225
1226 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1227 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1228 buf, &val);
1229 else
1230 floatformat_to_doublest (&floatformat_ieee_double_big,
1231 buf, &val);
1232 store_typed_floating (valbuf, type, val);
1233 }
1234 }
1235 else
1236 {
1237 if (len <= 8)
1238 {
1239 int offset;
1240 char buf[8];
1241 /* Result is in register 2. If smaller than 8 bytes, it is padded
1242 at the most significant end. */
1243 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1244
1245 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1246 offset = register_size (current_gdbarch, DEFAULT_RETURN_REGNUM)
1247 - len;
1248 else
1249 offset = 0;
1250 memcpy (valbuf, buf + offset, len);
1251 }
1252 else
1253 error ("bad size for return value");
1254 }
1255 }
1256
1257 /* Write into appropriate registers a function return value
1258 of type TYPE, given in virtual format.
1259 If the architecture is sh4 or sh3e, store a function's return value
1260 in the R0 general register or in the FP0 floating point register,
1261 depending on the type of the return value. In all the other cases
1262 the result is stored in r0, left-justified. */
1263
1264 static void
1265 sh64_store_return_value (struct type *type, struct regcache *regcache,
1266 const void *valbuf)
1267 {
1268 char buf[64]; /* more than enough... */
1269 int len = TYPE_LENGTH (type);
1270
1271 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1272 {
1273 int i, regnum = gdbarch_fp0_regnum (current_gdbarch);
1274 for (i = 0; i < len; i += 4)
1275 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1276 regcache_raw_write (regcache, regnum++,
1277 (char *) valbuf + len - 4 - i);
1278 else
1279 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1280 }
1281 else
1282 {
1283 int return_register = DEFAULT_RETURN_REGNUM;
1284 int offset = 0;
1285
1286 if (len <= register_size (current_gdbarch, return_register))
1287 {
1288 /* Pad with zeros. */
1289 memset (buf, 0, register_size (current_gdbarch, return_register));
1290 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1291 offset = 0; /*register_size (current_gdbarch,
1292 return_register) - len;*/
1293 else
1294 offset = register_size (current_gdbarch, return_register) - len;
1295
1296 memcpy (buf + offset, valbuf, len);
1297 regcache_raw_write (regcache, return_register, buf);
1298 }
1299 else
1300 regcache_raw_write (regcache, return_register, valbuf);
1301 }
1302 }
1303
1304 static enum return_value_convention
1305 sh64_return_value (struct gdbarch *gdbarch, struct type *type,
1306 struct regcache *regcache,
1307 gdb_byte *readbuf, const gdb_byte *writebuf)
1308 {
1309 if (sh64_use_struct_convention (type))
1310 return RETURN_VALUE_STRUCT_CONVENTION;
1311 if (writebuf)
1312 sh64_store_return_value (type, regcache, writebuf);
1313 else if (readbuf)
1314 sh64_extract_return_value (type, regcache, readbuf);
1315 return RETURN_VALUE_REGISTER_CONVENTION;
1316 }
1317
1318 static void
1319 sh64_show_media_regs (struct frame_info *frame)
1320 {
1321 int i;
1322
1323 printf_filtered
1324 ("PC=%s SR=%016llx \n",
1325 paddr (get_frame_register_unsigned (frame,
1326 gdbarch_pc_regnum (current_gdbarch))),
1327 (long long) get_frame_register_unsigned (frame, SR_REGNUM));
1328
1329 printf_filtered
1330 ("SSR=%016llx SPC=%016llx \n",
1331 (long long) get_frame_register_unsigned (frame, SSR_REGNUM),
1332 (long long) get_frame_register_unsigned (frame, SPC_REGNUM));
1333 printf_filtered
1334 ("FPSCR=%016lx\n ",
1335 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1336
1337 for (i = 0; i < 64; i = i + 4)
1338 printf_filtered
1339 ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1340 i, i + 3,
1341 (long long) get_frame_register_unsigned (frame, i + 0),
1342 (long long) get_frame_register_unsigned (frame, i + 1),
1343 (long long) get_frame_register_unsigned (frame, i + 2),
1344 (long long) get_frame_register_unsigned (frame, i + 3));
1345
1346 printf_filtered ("\n");
1347
1348 for (i = 0; i < 64; i = i + 8)
1349 printf_filtered
1350 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1351 i, i + 7,
1352 (long) get_frame_register_unsigned
1353 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 0),
1354 (long) get_frame_register_unsigned
1355 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 1),
1356 (long) get_frame_register_unsigned
1357 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 2),
1358 (long) get_frame_register_unsigned
1359 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 3),
1360 (long) get_frame_register_unsigned
1361 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 4),
1362 (long) get_frame_register_unsigned
1363 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 5),
1364 (long) get_frame_register_unsigned
1365 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 6),
1366 (long) get_frame_register_unsigned
1367 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 7));
1368 }
1369
1370 static void
1371 sh64_show_compact_regs (struct frame_info *frame)
1372 {
1373 int i;
1374
1375 printf_filtered
1376 ("PC=%s \n",
1377 paddr (get_frame_register_unsigned (frame, PC_C_REGNUM)));
1378
1379 printf_filtered
1380 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1381 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1382 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1383 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1384 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1385 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1386 printf_filtered
1387 ("FPSCR=%08lx FPUL=%08lx\n",
1388 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1389 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1390
1391 for (i = 0; i < 16; i = i + 4)
1392 printf_filtered
1393 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1394 i, i + 3,
1395 (long) get_frame_register_unsigned (frame, i + 0),
1396 (long) get_frame_register_unsigned (frame, i + 1),
1397 (long) get_frame_register_unsigned (frame, i + 2),
1398 (long) get_frame_register_unsigned (frame, i + 3));
1399
1400 printf_filtered ("\n");
1401
1402 for (i = 0; i < 16; i = i + 8)
1403 printf_filtered
1404 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1405 i, i + 7,
1406 (long) get_frame_register_unsigned
1407 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 0),
1408 (long) get_frame_register_unsigned
1409 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 1),
1410 (long) get_frame_register_unsigned
1411 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 2),
1412 (long) get_frame_register_unsigned
1413 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 3),
1414 (long) get_frame_register_unsigned
1415 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 4),
1416 (long) get_frame_register_unsigned
1417 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 5),
1418 (long) get_frame_register_unsigned
1419 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 6),
1420 (long) get_frame_register_unsigned
1421 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 7));
1422 }
1423
1424 /* FIXME!!! This only shows the registers for shmedia, excluding the
1425 pseudo registers. */
1426 void
1427 sh64_show_regs (struct frame_info *frame)
1428 {
1429 if (pc_is_isa32 (get_frame_pc (frame)))
1430 sh64_show_media_regs (frame);
1431 else
1432 sh64_show_compact_regs (frame);
1433 }
1434
1435 /* *INDENT-OFF* */
1436 /*
1437 SH MEDIA MODE (ISA 32)
1438 general registers (64-bit) 0-63
1439 0 r0, r1, r2, r3, r4, r5, r6, r7,
1440 64 r8, r9, r10, r11, r12, r13, r14, r15,
1441 128 r16, r17, r18, r19, r20, r21, r22, r23,
1442 192 r24, r25, r26, r27, r28, r29, r30, r31,
1443 256 r32, r33, r34, r35, r36, r37, r38, r39,
1444 320 r40, r41, r42, r43, r44, r45, r46, r47,
1445 384 r48, r49, r50, r51, r52, r53, r54, r55,
1446 448 r56, r57, r58, r59, r60, r61, r62, r63,
1447
1448 pc (64-bit) 64
1449 512 pc,
1450
1451 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1452 520 sr, ssr, spc,
1453
1454 target registers (64-bit) 68-75
1455 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1456
1457 floating point state control register (32-bit) 76
1458 608 fpscr,
1459
1460 single precision floating point registers (32-bit) 77-140
1461 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1462 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1463 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1464 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1465 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1466 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1467 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1468 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1469
1470 TOTAL SPACE FOR REGISTERS: 868 bytes
1471
1472 From here on they are all pseudo registers: no memory allocated.
1473 REGISTER_BYTE returns the register byte for the base register.
1474
1475 double precision registers (pseudo) 141-172
1476 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1477 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1478 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1479 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1480
1481 floating point pairs (pseudo) 173-204
1482 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1483 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1484 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1485 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1486
1487 floating point vectors (4 floating point regs) (pseudo) 205-220
1488 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1489 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1490
1491 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1492 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1493 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1494 pc_c,
1495 gbr_c, mach_c, macl_c, pr_c, t_c,
1496 fpscr_c, fpul_c,
1497 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1498 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1499 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1500 fv0_c, fv4_c, fv8_c, fv12_c
1501 */
1502
1503 static struct type *
1504 sh64_build_float_register_type (int high)
1505 {
1506 struct type *temp;
1507
1508 temp = create_range_type (NULL, builtin_type_int, 0, high);
1509 return create_array_type (NULL, builtin_type_float, temp);
1510 }
1511
1512 /* Return the GDB type object for the "standard" data type
1513 of data in register REG_NR. */
1514 static struct type *
1515 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1516 {
1517 if ((reg_nr >= gdbarch_fp0_regnum (current_gdbarch)
1518 && reg_nr <= FP_LAST_REGNUM)
1519 || (reg_nr >= FP0_C_REGNUM
1520 && reg_nr <= FP_LAST_C_REGNUM))
1521 return builtin_type_float;
1522 else if ((reg_nr >= DR0_REGNUM
1523 && reg_nr <= DR_LAST_REGNUM)
1524 || (reg_nr >= DR0_C_REGNUM
1525 && reg_nr <= DR_LAST_C_REGNUM))
1526 return builtin_type_double;
1527 else if (reg_nr >= FPP0_REGNUM
1528 && reg_nr <= FPP_LAST_REGNUM)
1529 return sh64_build_float_register_type (1);
1530 else if ((reg_nr >= FV0_REGNUM
1531 && reg_nr <= FV_LAST_REGNUM)
1532 ||(reg_nr >= FV0_C_REGNUM
1533 && reg_nr <= FV_LAST_C_REGNUM))
1534 return sh64_build_float_register_type (3);
1535 else if (reg_nr == FPSCR_REGNUM)
1536 return builtin_type_int;
1537 else if (reg_nr >= R0_C_REGNUM
1538 && reg_nr < FP0_C_REGNUM)
1539 return builtin_type_int;
1540 else
1541 return builtin_type_long_long;
1542 }
1543
1544 static void
1545 sh64_register_convert_to_virtual (int regnum, struct type *type,
1546 char *from, char *to)
1547 {
1548 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_LITTLE)
1549 {
1550 /* It is a no-op. */
1551 memcpy (to, from, register_size (current_gdbarch, regnum));
1552 return;
1553 }
1554
1555 if ((regnum >= DR0_REGNUM
1556 && regnum <= DR_LAST_REGNUM)
1557 || (regnum >= DR0_C_REGNUM
1558 && regnum <= DR_LAST_C_REGNUM))
1559 {
1560 DOUBLEST val;
1561 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1562 from, &val);
1563 store_typed_floating (to, type, val);
1564 }
1565 else
1566 error ("sh64_register_convert_to_virtual called with non DR register number");
1567 }
1568
1569 static void
1570 sh64_register_convert_to_raw (struct type *type, int regnum,
1571 const void *from, void *to)
1572 {
1573 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_LITTLE)
1574 {
1575 /* It is a no-op. */
1576 memcpy (to, from, register_size (current_gdbarch, regnum));
1577 return;
1578 }
1579
1580 if ((regnum >= DR0_REGNUM
1581 && regnum <= DR_LAST_REGNUM)
1582 || (regnum >= DR0_C_REGNUM
1583 && regnum <= DR_LAST_C_REGNUM))
1584 {
1585 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
1586 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1587 &val, to);
1588 }
1589 else
1590 error ("sh64_register_convert_to_raw called with non DR register number");
1591 }
1592
1593 static void
1594 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1595 int reg_nr, gdb_byte *buffer)
1596 {
1597 int base_regnum;
1598 int portion;
1599 int offset = 0;
1600 char temp_buffer[MAX_REGISTER_SIZE];
1601
1602 if (reg_nr >= DR0_REGNUM
1603 && reg_nr <= DR_LAST_REGNUM)
1604 {
1605 base_regnum = sh64_dr_reg_base_num (reg_nr);
1606
1607 /* Build the value in the provided buffer. */
1608 /* DR regs are double precision registers obtained by
1609 concatenating 2 single precision floating point registers. */
1610 for (portion = 0; portion < 2; portion++)
1611 regcache_raw_read (regcache, base_regnum + portion,
1612 (temp_buffer
1613 + register_size (gdbarch, base_regnum) * portion));
1614
1615 /* We must pay attention to the endianness. */
1616 sh64_register_convert_to_virtual (reg_nr,
1617 register_type (gdbarch, reg_nr),
1618 temp_buffer, buffer);
1619
1620 }
1621
1622 else if (reg_nr >= FPP0_REGNUM
1623 && reg_nr <= FPP_LAST_REGNUM)
1624 {
1625 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1626
1627 /* Build the value in the provided buffer. */
1628 /* FPP regs are pairs of single precision registers obtained by
1629 concatenating 2 single precision floating point registers. */
1630 for (portion = 0; portion < 2; portion++)
1631 regcache_raw_read (regcache, base_regnum + portion,
1632 ((char *) buffer
1633 + register_size (gdbarch, base_regnum) * portion));
1634 }
1635
1636 else if (reg_nr >= FV0_REGNUM
1637 && reg_nr <= FV_LAST_REGNUM)
1638 {
1639 base_regnum = sh64_fv_reg_base_num (reg_nr);
1640
1641 /* Build the value in the provided buffer. */
1642 /* FV regs are vectors of single precision registers obtained by
1643 concatenating 4 single precision floating point registers. */
1644 for (portion = 0; portion < 4; portion++)
1645 regcache_raw_read (regcache, base_regnum + portion,
1646 ((char *) buffer
1647 + register_size (gdbarch, base_regnum) * portion));
1648 }
1649
1650 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1651 else if (reg_nr >= R0_C_REGNUM
1652 && reg_nr <= T_C_REGNUM)
1653 {
1654 base_regnum = sh64_compact_reg_base_num (reg_nr);
1655
1656 /* Build the value in the provided buffer. */
1657 regcache_raw_read (regcache, base_regnum, temp_buffer);
1658 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1659 offset = 4;
1660 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1661 }
1662
1663 else if (reg_nr >= FP0_C_REGNUM
1664 && reg_nr <= FP_LAST_C_REGNUM)
1665 {
1666 base_regnum = sh64_compact_reg_base_num (reg_nr);
1667
1668 /* Build the value in the provided buffer. */
1669 /* Floating point registers map 1-1 to the media fp regs,
1670 they have the same size and endianness. */
1671 regcache_raw_read (regcache, base_regnum, buffer);
1672 }
1673
1674 else if (reg_nr >= DR0_C_REGNUM
1675 && reg_nr <= DR_LAST_C_REGNUM)
1676 {
1677 base_regnum = sh64_compact_reg_base_num (reg_nr);
1678
1679 /* DR_C regs are double precision registers obtained by
1680 concatenating 2 single precision floating point registers. */
1681 for (portion = 0; portion < 2; portion++)
1682 regcache_raw_read (regcache, base_regnum + portion,
1683 (temp_buffer
1684 + register_size (gdbarch, base_regnum) * portion));
1685
1686 /* We must pay attention to the endianness. */
1687 sh64_register_convert_to_virtual (reg_nr,
1688 register_type (gdbarch, reg_nr),
1689 temp_buffer, buffer);
1690 }
1691
1692 else if (reg_nr >= FV0_C_REGNUM
1693 && reg_nr <= FV_LAST_C_REGNUM)
1694 {
1695 base_regnum = sh64_compact_reg_base_num (reg_nr);
1696
1697 /* Build the value in the provided buffer. */
1698 /* FV_C regs are vectors of single precision registers obtained by
1699 concatenating 4 single precision floating point registers. */
1700 for (portion = 0; portion < 4; portion++)
1701 regcache_raw_read (regcache, base_regnum + portion,
1702 ((char *) buffer
1703 + register_size (gdbarch, base_regnum) * portion));
1704 }
1705
1706 else if (reg_nr == FPSCR_C_REGNUM)
1707 {
1708 int fpscr_base_regnum;
1709 int sr_base_regnum;
1710 unsigned int fpscr_value;
1711 unsigned int sr_value;
1712 unsigned int fpscr_c_value;
1713 unsigned int fpscr_c_part1_value;
1714 unsigned int fpscr_c_part2_value;
1715
1716 fpscr_base_regnum = FPSCR_REGNUM;
1717 sr_base_regnum = SR_REGNUM;
1718
1719 /* Build the value in the provided buffer. */
1720 /* FPSCR_C is a very weird register that contains sparse bits
1721 from the FPSCR and the SR architectural registers.
1722 Specifically: */
1723 /* *INDENT-OFF* */
1724 /*
1725 FPSRC_C bit
1726 0 Bit 0 of FPSCR
1727 1 reserved
1728 2-17 Bit 2-18 of FPSCR
1729 18-20 Bits 12,13,14 of SR
1730 21-31 reserved
1731 */
1732 /* *INDENT-ON* */
1733 /* Get FPSCR into a local buffer */
1734 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1735 /* Get value as an int. */
1736 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1737 /* Get SR into a local buffer */
1738 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1739 /* Get value as an int. */
1740 sr_value = extract_unsigned_integer (temp_buffer, 4);
1741 /* Build the new value. */
1742 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1743 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1744 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1745 /* Store that in out buffer!!! */
1746 store_unsigned_integer (buffer, 4, fpscr_c_value);
1747 /* FIXME There is surely an endianness gotcha here. */
1748 }
1749
1750 else if (reg_nr == FPUL_C_REGNUM)
1751 {
1752 base_regnum = sh64_compact_reg_base_num (reg_nr);
1753
1754 /* FPUL_C register is floating point register 32,
1755 same size, same endianness. */
1756 regcache_raw_read (regcache, base_regnum, buffer);
1757 }
1758 }
1759
1760 static void
1761 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1762 int reg_nr, const gdb_byte *buffer)
1763 {
1764 int base_regnum, portion;
1765 int offset;
1766 char temp_buffer[MAX_REGISTER_SIZE];
1767
1768 if (reg_nr >= DR0_REGNUM
1769 && reg_nr <= DR_LAST_REGNUM)
1770 {
1771 base_regnum = sh64_dr_reg_base_num (reg_nr);
1772 /* We must pay attention to the endianness. */
1773 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1774 reg_nr,
1775 buffer, temp_buffer);
1776
1777 /* Write the real regs for which this one is an alias. */
1778 for (portion = 0; portion < 2; portion++)
1779 regcache_raw_write (regcache, base_regnum + portion,
1780 (temp_buffer
1781 + register_size (gdbarch,
1782 base_regnum) * portion));
1783 }
1784
1785 else if (reg_nr >= FPP0_REGNUM
1786 && reg_nr <= FPP_LAST_REGNUM)
1787 {
1788 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1789
1790 /* Write the real regs for which this one is an alias. */
1791 for (portion = 0; portion < 2; portion++)
1792 regcache_raw_write (regcache, base_regnum + portion,
1793 ((char *) buffer
1794 + register_size (gdbarch,
1795 base_regnum) * portion));
1796 }
1797
1798 else if (reg_nr >= FV0_REGNUM
1799 && reg_nr <= FV_LAST_REGNUM)
1800 {
1801 base_regnum = sh64_fv_reg_base_num (reg_nr);
1802
1803 /* Write the real regs for which this one is an alias. */
1804 for (portion = 0; portion < 4; portion++)
1805 regcache_raw_write (regcache, base_regnum + portion,
1806 ((char *) buffer
1807 + register_size (gdbarch,
1808 base_regnum) * portion));
1809 }
1810
1811 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1812 register but only 4 bytes of it. */
1813 else if (reg_nr >= R0_C_REGNUM
1814 && reg_nr <= T_C_REGNUM)
1815 {
1816 base_regnum = sh64_compact_reg_base_num (reg_nr);
1817 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1818 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1819 offset = 4;
1820 else
1821 offset = 0;
1822 /* Let's read the value of the base register into a temporary
1823 buffer, so that overwriting the last four bytes with the new
1824 value of the pseudo will leave the upper 4 bytes unchanged. */
1825 regcache_raw_read (regcache, base_regnum, temp_buffer);
1826 /* Write as an 8 byte quantity */
1827 memcpy (temp_buffer + offset, buffer, 4);
1828 regcache_raw_write (regcache, base_regnum, temp_buffer);
1829 }
1830
1831 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1832 registers. Both are 4 bytes. */
1833 else if (reg_nr >= FP0_C_REGNUM
1834 && reg_nr <= FP_LAST_C_REGNUM)
1835 {
1836 base_regnum = sh64_compact_reg_base_num (reg_nr);
1837 regcache_raw_write (regcache, base_regnum, buffer);
1838 }
1839
1840 else if (reg_nr >= DR0_C_REGNUM
1841 && reg_nr <= DR_LAST_C_REGNUM)
1842 {
1843 base_regnum = sh64_compact_reg_base_num (reg_nr);
1844 for (portion = 0; portion < 2; portion++)
1845 {
1846 /* We must pay attention to the endianness. */
1847 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1848 reg_nr,
1849 buffer, temp_buffer);
1850
1851 regcache_raw_write (regcache, base_regnum + portion,
1852 (temp_buffer
1853 + register_size (gdbarch,
1854 base_regnum) * portion));
1855 }
1856 }
1857
1858 else if (reg_nr >= FV0_C_REGNUM
1859 && reg_nr <= FV_LAST_C_REGNUM)
1860 {
1861 base_regnum = sh64_compact_reg_base_num (reg_nr);
1862
1863 for (portion = 0; portion < 4; portion++)
1864 {
1865 regcache_raw_write (regcache, base_regnum + portion,
1866 ((char *) buffer
1867 + register_size (gdbarch,
1868 base_regnum) * portion));
1869 }
1870 }
1871
1872 else if (reg_nr == FPSCR_C_REGNUM)
1873 {
1874 int fpscr_base_regnum;
1875 int sr_base_regnum;
1876 unsigned int fpscr_value;
1877 unsigned int sr_value;
1878 unsigned int old_fpscr_value;
1879 unsigned int old_sr_value;
1880 unsigned int fpscr_c_value;
1881 unsigned int fpscr_mask;
1882 unsigned int sr_mask;
1883
1884 fpscr_base_regnum = FPSCR_REGNUM;
1885 sr_base_regnum = SR_REGNUM;
1886
1887 /* FPSCR_C is a very weird register that contains sparse bits
1888 from the FPSCR and the SR architectural registers.
1889 Specifically: */
1890 /* *INDENT-OFF* */
1891 /*
1892 FPSRC_C bit
1893 0 Bit 0 of FPSCR
1894 1 reserved
1895 2-17 Bit 2-18 of FPSCR
1896 18-20 Bits 12,13,14 of SR
1897 21-31 reserved
1898 */
1899 /* *INDENT-ON* */
1900 /* Get value as an int. */
1901 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1902
1903 /* Build the new values. */
1904 fpscr_mask = 0x0003fffd;
1905 sr_mask = 0x001c0000;
1906
1907 fpscr_value = fpscr_c_value & fpscr_mask;
1908 sr_value = (fpscr_value & sr_mask) >> 6;
1909
1910 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1911 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1912 old_fpscr_value &= 0xfffc0002;
1913 fpscr_value |= old_fpscr_value;
1914 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1915 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1916
1917 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1918 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1919 old_sr_value &= 0xffff8fff;
1920 sr_value |= old_sr_value;
1921 store_unsigned_integer (temp_buffer, 4, sr_value);
1922 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1923 }
1924
1925 else if (reg_nr == FPUL_C_REGNUM)
1926 {
1927 base_regnum = sh64_compact_reg_base_num (reg_nr);
1928 regcache_raw_write (regcache, base_regnum, buffer);
1929 }
1930 }
1931
1932 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1933 shmedia REGISTERS. */
1934 /* Control registers, compact mode. */
1935 static void
1936 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1937 int cr_c_regnum)
1938 {
1939 switch (cr_c_regnum)
1940 {
1941 case PC_C_REGNUM:
1942 fprintf_filtered (file, "pc_c\t0x%08x\n",
1943 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1944 break;
1945 case GBR_C_REGNUM:
1946 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1947 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1948 break;
1949 case MACH_C_REGNUM:
1950 fprintf_filtered (file, "mach_c\t0x%08x\n",
1951 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1952 break;
1953 case MACL_C_REGNUM:
1954 fprintf_filtered (file, "macl_c\t0x%08x\n",
1955 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1956 break;
1957 case PR_C_REGNUM:
1958 fprintf_filtered (file, "pr_c\t0x%08x\n",
1959 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1960 break;
1961 case T_C_REGNUM:
1962 fprintf_filtered (file, "t_c\t0x%08x\n",
1963 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1964 break;
1965 case FPSCR_C_REGNUM:
1966 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1967 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1968 break;
1969 case FPUL_C_REGNUM:
1970 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1971 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1972 break;
1973 }
1974 }
1975
1976 static void
1977 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1978 struct frame_info *frame, int regnum)
1979 { /* do values for FP (float) regs */
1980 unsigned char *raw_buffer;
1981 double flt; /* double extracted from raw hex data */
1982 int inv;
1983 int j;
1984
1985 /* Allocate space for the float. */
1986 raw_buffer = (unsigned char *) alloca
1987 (register_size (gdbarch,
1988 gdbarch_fp0_regnum
1989 (current_gdbarch)));
1990
1991 /* Get the data in raw format. */
1992 if (!frame_register_read (frame, regnum, raw_buffer))
1993 error ("can't read register %d (%s)",
1994 regnum, gdbarch_register_name (current_gdbarch, regnum));
1995
1996 /* Get the register as a number */
1997 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1998
1999 /* Print the name and some spaces. */
2000 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
2001 print_spaces_filtered (15 - strlen (gdbarch_register_name
2002 (current_gdbarch, regnum)), file);
2003
2004 /* Print the value. */
2005 if (inv)
2006 fprintf_filtered (file, "<invalid float>");
2007 else
2008 fprintf_filtered (file, "%-10.9g", flt);
2009
2010 /* Print the fp register as hex. */
2011 fprintf_filtered (file, "\t(raw 0x");
2012 for (j = 0; j < register_size (gdbarch, regnum); j++)
2013 {
2014 int idx = gdbarch_byte_order (current_gdbarch)
2015 == BFD_ENDIAN_BIG ? j : register_size
2016 (gdbarch, regnum) - 1 - j;
2017 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2018 }
2019 fprintf_filtered (file, ")");
2020 fprintf_filtered (file, "\n");
2021 }
2022
2023 static void
2024 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2025 struct frame_info *frame, int regnum)
2026 {
2027 /* All the sh64-compact mode registers are pseudo registers. */
2028
2029 if (regnum < gdbarch_num_regs (current_gdbarch)
2030 || regnum >= gdbarch_num_regs (current_gdbarch)
2031 + NUM_PSEUDO_REGS_SH_MEDIA
2032 + NUM_PSEUDO_REGS_SH_COMPACT)
2033 internal_error (__FILE__, __LINE__,
2034 _("Invalid pseudo register number %d\n"), regnum);
2035
2036 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2037 {
2038 int fp_regnum = sh64_dr_reg_base_num (regnum);
2039 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2040 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2041 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2042 }
2043
2044 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2045 {
2046 int fp_regnum = sh64_compact_reg_base_num (regnum);
2047 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2048 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2049 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2050 }
2051
2052 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2053 {
2054 int fp_regnum = sh64_fv_reg_base_num (regnum);
2055 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2056 regnum - FV0_REGNUM,
2057 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2058 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2059 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2060 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2061 }
2062
2063 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2064 {
2065 int fp_regnum = sh64_compact_reg_base_num (regnum);
2066 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2067 regnum - FV0_C_REGNUM,
2068 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2069 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2070 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2072 }
2073
2074 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2075 {
2076 int fp_regnum = sh64_fpp_reg_base_num (regnum);
2077 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2078 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2079 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2080 }
2081
2082 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2083 {
2084 int c_regnum = sh64_compact_reg_base_num (regnum);
2085 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2086 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2087 }
2088 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2089 /* This should work also for pseudoregs. */
2090 sh64_do_fp_register (gdbarch, file, frame, regnum);
2091 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2092 sh64_do_cr_c_register_info (file, frame, regnum);
2093 }
2094
2095 static void
2096 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2097 struct frame_info *frame, int regnum)
2098 {
2099 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2100
2101 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
2102 print_spaces_filtered (15 - strlen (gdbarch_register_name
2103 (current_gdbarch, regnum)), file);
2104
2105 /* Get the data in raw format. */
2106 if (!frame_register_read (frame, regnum, raw_buffer))
2107 fprintf_filtered (file, "*value not available*\n");
2108
2109 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2110 file, 'x', 1, 0, Val_pretty_default);
2111 fprintf_filtered (file, "\t");
2112 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2113 file, 0, 1, 0, Val_pretty_default);
2114 fprintf_filtered (file, "\n");
2115 }
2116
2117 static void
2118 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2119 struct frame_info *frame, int regnum)
2120 {
2121 if (regnum < 0 || regnum >= gdbarch_num_regs (current_gdbarch)
2122 + gdbarch_num_pseudo_regs (current_gdbarch))
2123 internal_error (__FILE__, __LINE__,
2124 _("Invalid register number %d\n"), regnum);
2125
2126 else if (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch))
2127 {
2128 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2129 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2130 else
2131 sh64_do_register (gdbarch, file, frame, regnum);
2132 }
2133
2134 else if (regnum < gdbarch_num_regs (current_gdbarch)
2135 + gdbarch_num_pseudo_regs (current_gdbarch))
2136 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2137 }
2138
2139 static void
2140 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2141 struct frame_info *frame, int regnum,
2142 int fpregs)
2143 {
2144 if (regnum != -1) /* do one specified register */
2145 {
2146 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
2147 error ("Not a valid register for the current processor type");
2148
2149 sh64_print_register (gdbarch, file, frame, regnum);
2150 }
2151 else
2152 /* do all (or most) registers */
2153 {
2154 regnum = 0;
2155 while (regnum < gdbarch_num_regs (current_gdbarch))
2156 {
2157 /* If the register name is empty, it is undefined for this
2158 processor, so don't display anything. */
2159 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
2160 || *(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
2161 {
2162 regnum++;
2163 continue;
2164 }
2165
2166 if (TYPE_CODE (register_type (gdbarch, regnum))
2167 == TYPE_CODE_FLT)
2168 {
2169 if (fpregs)
2170 {
2171 /* true for "INFO ALL-REGISTERS" command */
2172 sh64_do_fp_register (gdbarch, file, frame, regnum);
2173 regnum ++;
2174 }
2175 else
2176 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (current_gdbarch);
2177 /* skip FP regs */
2178 }
2179 else
2180 {
2181 sh64_do_register (gdbarch, file, frame, regnum);
2182 regnum++;
2183 }
2184 }
2185
2186 if (fpregs)
2187 while (regnum < gdbarch_num_regs (current_gdbarch)
2188 + gdbarch_num_pseudo_regs (current_gdbarch))
2189 {
2190 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2191 regnum++;
2192 }
2193 }
2194 }
2195
2196 static void
2197 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2198 struct ui_file *file,
2199 struct frame_info *frame, int regnum,
2200 int fpregs)
2201 {
2202 if (regnum != -1) /* do one specified register */
2203 {
2204 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
2205 error ("Not a valid register for the current processor type");
2206
2207 if (regnum >= 0 && regnum < R0_C_REGNUM)
2208 error ("Not a valid register for the current processor mode.");
2209
2210 sh64_print_register (gdbarch, file, frame, regnum);
2211 }
2212 else
2213 /* do all compact registers */
2214 {
2215 regnum = R0_C_REGNUM;
2216 while (regnum < gdbarch_num_regs (current_gdbarch)
2217 + gdbarch_num_pseudo_regs (current_gdbarch))
2218 {
2219 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2220 regnum++;
2221 }
2222 }
2223 }
2224
2225 static void
2226 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2227 struct frame_info *frame, int regnum, int fpregs)
2228 {
2229 if (pc_is_isa32 (get_frame_pc (frame)))
2230 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2231 else
2232 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2233 }
2234
2235 static struct sh64_frame_cache *
2236 sh64_alloc_frame_cache (void)
2237 {
2238 struct sh64_frame_cache *cache;
2239 int i;
2240
2241 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2242
2243 /* Base address. */
2244 cache->base = 0;
2245 cache->saved_sp = 0;
2246 cache->sp_offset = 0;
2247 cache->pc = 0;
2248
2249 /* Frameless until proven otherwise. */
2250 cache->uses_fp = 0;
2251
2252 /* Saved registers. We initialize these to -1 since zero is a valid
2253 offset (that's where fp is supposed to be stored). */
2254 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2255 {
2256 cache->saved_regs[i] = -1;
2257 }
2258
2259 return cache;
2260 }
2261
2262 static struct sh64_frame_cache *
2263 sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
2264 {
2265 struct sh64_frame_cache *cache;
2266 CORE_ADDR current_pc;
2267 int i;
2268
2269 if (*this_cache)
2270 return *this_cache;
2271
2272 cache = sh64_alloc_frame_cache ();
2273 *this_cache = cache;
2274
2275 current_pc = frame_pc_unwind (next_frame);
2276 cache->media_mode = pc_is_isa32 (current_pc);
2277
2278 /* In principle, for normal frames, fp holds the frame pointer,
2279 which holds the base address for the current stack frame.
2280 However, for functions that don't need it, the frame pointer is
2281 optional. For these "frameless" functions the frame pointer is
2282 actually the frame pointer of the calling frame. */
2283 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2284 if (cache->base == 0)
2285 return cache;
2286
2287 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2288 if (cache->pc != 0)
2289 sh64_analyze_prologue (current_gdbarch, cache, cache->pc, current_pc);
2290
2291 if (!cache->uses_fp)
2292 {
2293 /* We didn't find a valid frame, which means that CACHE->base
2294 currently holds the frame pointer for our calling frame. If
2295 we're at the start of a function, or somewhere half-way its
2296 prologue, the function's frame probably hasn't been fully
2297 setup yet. Try to reconstruct the base address for the stack
2298 frame by looking at the stack pointer. For truly "frameless"
2299 functions this might work too. */
2300 cache->base = frame_unwind_register_unsigned
2301 (next_frame, gdbarch_sp_regnum (current_gdbarch));
2302 }
2303
2304 /* Now that we have the base address for the stack frame we can
2305 calculate the value of sp in the calling frame. */
2306 cache->saved_sp = cache->base + cache->sp_offset;
2307
2308 /* Adjust all the saved registers such that they contain addresses
2309 instead of offsets. */
2310 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2311 if (cache->saved_regs[i] != -1)
2312 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2313
2314 return cache;
2315 }
2316
2317 static void
2318 sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2319 int regnum, int *optimizedp,
2320 enum lval_type *lvalp, CORE_ADDR *addrp,
2321 int *realnump, gdb_byte *valuep)
2322 {
2323 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2324
2325 gdb_assert (regnum >= 0);
2326
2327 if (regnum == gdbarch_sp_regnum (current_gdbarch) && cache->saved_sp)
2328 {
2329 *optimizedp = 0;
2330 *lvalp = not_lval;
2331 *addrp = 0;
2332 *realnump = -1;
2333 if (valuep)
2334 {
2335 /* Store the value. */
2336 store_unsigned_integer (valuep,
2337 register_size (current_gdbarch,
2338 gdbarch_sp_regnum (current_gdbarch)),
2339 cache->saved_sp);
2340 }
2341 return;
2342 }
2343
2344 /* The PC of the previous frame is stored in the PR register of
2345 the current frame. Frob regnum so that we pull the value from
2346 the correct place. */
2347 if (regnum == gdbarch_pc_regnum (current_gdbarch))
2348 regnum = PR_REGNUM;
2349
2350 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2351 {
2352 int reg_size = register_size (current_gdbarch, regnum);
2353 int size;
2354
2355 *optimizedp = 0;
2356 *lvalp = lval_memory;
2357 *addrp = cache->saved_regs[regnum];
2358 *realnump = -1;
2359 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32
2360 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2361 size = 4;
2362 else
2363 size = reg_size;
2364 if (valuep)
2365 {
2366 memset (valuep, 0, reg_size);
2367 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
2368 read_memory (*addrp, valuep, size);
2369 else
2370 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2371 }
2372 return;
2373 }
2374
2375 *optimizedp = 0;
2376 *lvalp = lval_register;
2377 *addrp = 0;
2378 *realnump = regnum;
2379 if (valuep)
2380 frame_unwind_register (next_frame, (*realnump), valuep);
2381 }
2382
2383 static void
2384 sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2385 struct frame_id *this_id)
2386 {
2387 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2388
2389 /* This marks the outermost frame. */
2390 if (cache->base == 0)
2391 return;
2392
2393 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2394 }
2395
2396 static const struct frame_unwind sh64_frame_unwind = {
2397 NORMAL_FRAME,
2398 sh64_frame_this_id,
2399 sh64_frame_prev_register
2400 };
2401
2402 static const struct frame_unwind *
2403 sh64_frame_sniffer (struct frame_info *next_frame)
2404 {
2405 return &sh64_frame_unwind;
2406 }
2407
2408 static CORE_ADDR
2409 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2410 {
2411 return frame_unwind_register_unsigned (next_frame,
2412 gdbarch_sp_regnum (current_gdbarch));
2413 }
2414
2415 static CORE_ADDR
2416 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2417 {
2418 return frame_unwind_register_unsigned (next_frame,
2419 gdbarch_pc_regnum (current_gdbarch));
2420 }
2421
2422 static struct frame_id
2423 sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2424 {
2425 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2426 frame_pc_unwind (next_frame));
2427 }
2428
2429 static CORE_ADDR
2430 sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2431 {
2432 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2433
2434 return cache->base;
2435 }
2436
2437 static const struct frame_base sh64_frame_base = {
2438 &sh64_frame_unwind,
2439 sh64_frame_base_address,
2440 sh64_frame_base_address,
2441 sh64_frame_base_address
2442 };
2443
2444
2445 struct gdbarch *
2446 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2447 {
2448 struct gdbarch *gdbarch;
2449 struct gdbarch_tdep *tdep;
2450
2451 /* If there is already a candidate, use it. */
2452 arches = gdbarch_list_lookup_by_info (arches, &info);
2453 if (arches != NULL)
2454 return arches->gdbarch;
2455
2456 /* None found, create a new architecture from the information
2457 provided. */
2458 tdep = XMALLOC (struct gdbarch_tdep);
2459 gdbarch = gdbarch_alloc (&info, tdep);
2460
2461 /* Determine the ABI */
2462 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2463 {
2464 /* If the ABI is the 64-bit one, it can only be sh-media. */
2465 tdep->sh_abi = SH_ABI_64;
2466 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2467 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2468 }
2469 else
2470 {
2471 /* If the ABI is the 32-bit one it could be either media or
2472 compact. */
2473 tdep->sh_abi = SH_ABI_32;
2474 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2475 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2476 }
2477
2478 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2479 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2480 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2481 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2482 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2483 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2484 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2485
2486 /* The number of real registers is the same whether we are in
2487 ISA16(compact) or ISA32(media). */
2488 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2489 set_gdbarch_sp_regnum (gdbarch, 15);
2490 set_gdbarch_pc_regnum (gdbarch, 64);
2491 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2492 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2493 + NUM_PSEUDO_REGS_SH_COMPACT);
2494
2495 set_gdbarch_register_name (gdbarch, sh64_register_name);
2496 set_gdbarch_register_type (gdbarch, sh64_register_type);
2497
2498 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2499 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2500
2501 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2502
2503 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
2504 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2505
2506 set_gdbarch_return_value (gdbarch, sh64_return_value);
2507
2508 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2509 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2510
2511 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2512
2513 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2514
2515 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2516 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2517 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2518 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2519 frame_base_set_default (gdbarch, &sh64_frame_base);
2520
2521 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2522
2523 set_gdbarch_elf_make_msymbol_special (gdbarch,
2524 sh64_elf_make_msymbol_special);
2525
2526 /* Hook in ABI-specific overrides, if they have been registered. */
2527 gdbarch_init_osabi (info, gdbarch);
2528
2529 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2530 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);
2531
2532 return gdbarch;
2533 }
This page took 0.121248 seconds and 4 git commands to generate.