Fix djgpp gdb build
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "valprint.h"
39
40 #include "elf-bfd.h"
41
42 /* sh flags */
43 #include "elf/sh.h"
44 /* Register numbers shared with the simulator. */
45 #include "gdb/sim-sh.h"
46 #include "language.h"
47 #include "sh64-tdep.h"
48
49 /* Information that is dependent on the processor variant. */
50 enum sh_abi
51 {
52 SH_ABI_UNKNOWN,
53 SH_ABI_32,
54 SH_ABI_64
55 };
56
57 struct gdbarch_tdep
58 {
59 enum sh_abi sh_abi;
60 };
61
62 struct sh64_frame_cache
63 {
64 /* Base address. */
65 CORE_ADDR base;
66 LONGEST sp_offset;
67 CORE_ADDR pc;
68
69 /* Flag showing that a frame has been created in the prologue code. */
70 int uses_fp;
71
72 int media_mode;
73
74 /* Saved registers. */
75 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
76 CORE_ADDR saved_sp;
77 };
78
79 /* Registers of SH5 */
80 enum
81 {
82 R0_REGNUM = 0,
83 DEFAULT_RETURN_REGNUM = 2,
84 STRUCT_RETURN_REGNUM = 2,
85 ARG0_REGNUM = 2,
86 ARGLAST_REGNUM = 9,
87 FLOAT_ARGLAST_REGNUM = 11,
88 MEDIA_FP_REGNUM = 14,
89 PR_REGNUM = 18,
90 SR_REGNUM = 65,
91 DR0_REGNUM = 141,
92 DR_LAST_REGNUM = 172,
93 /* FPP stands for Floating Point Pair, to avoid confusion with
94 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
95 point register. Unfortunately on the sh5, the floating point
96 registers are called FR, and the floating point pairs are called FP. */
97 FPP0_REGNUM = 173,
98 FPP_LAST_REGNUM = 204,
99 FV0_REGNUM = 205,
100 FV_LAST_REGNUM = 220,
101 R0_C_REGNUM = 221,
102 R_LAST_C_REGNUM = 236,
103 PC_C_REGNUM = 237,
104 GBR_C_REGNUM = 238,
105 MACH_C_REGNUM = 239,
106 MACL_C_REGNUM = 240,
107 PR_C_REGNUM = 241,
108 T_C_REGNUM = 242,
109 FPSCR_C_REGNUM = 243,
110 FPUL_C_REGNUM = 244,
111 FP0_C_REGNUM = 245,
112 FP_LAST_C_REGNUM = 260,
113 DR0_C_REGNUM = 261,
114 DR_LAST_C_REGNUM = 268,
115 FV0_C_REGNUM = 269,
116 FV_LAST_C_REGNUM = 272,
117 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
118 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
119 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
120 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
121 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
122 };
123
124 static const char *
125 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
126 {
127 static char *register_names[] =
128 {
129 /* SH MEDIA MODE (ISA 32) */
130 /* general registers (64-bit) 0-63 */
131 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
132 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
133 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
134 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
135 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
136 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
137 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
138 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
139
140 /* pc (64-bit) 64 */
141 "pc",
142
143 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
144 "sr", "ssr", "spc",
145
146 /* target registers (64-bit) 68-75 */
147 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
148
149 /* floating point state control register (32-bit) 76 */
150 "fpscr",
151
152 /* single precision floating point registers (32-bit) 77-140 */
153 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
154 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
155 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
156 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
157 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
158 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
159 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
160 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
161
162 /* double precision registers (pseudo) 141-172 */
163 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
164 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
165 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
166 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
167
168 /* floating point pairs (pseudo) 173-204 */
169 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
170 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
171 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
172 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
173
174 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
175 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
176 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
177
178 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
179 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
180 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
181 "pc_c",
182 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
183 "fpscr_c", "fpul_c",
184 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
185 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
186 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
187 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
188 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
189 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
190 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
191 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
192 };
193
194 if (reg_nr < 0)
195 return NULL;
196 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
197 return NULL;
198 return register_names[reg_nr];
199 }
200
201 #define NUM_PSEUDO_REGS_SH_MEDIA 80
202 #define NUM_PSEUDO_REGS_SH_COMPACT 51
203
204 /* Macros and functions for setting and testing a bit in a minimal
205 symbol that marks it as 32-bit function. The MSB of the minimal
206 symbol's "info" field is used for this purpose.
207
208 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
209 i.e. refers to a 32-bit function, and sets a "special" bit in a
210 minimal symbol to mark it as a 32-bit function
211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
212
213 #define MSYMBOL_IS_SPECIAL(msym) \
214 MSYMBOL_TARGET_FLAG_1 (msym)
215
216 static void
217 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
218 {
219 if (msym == NULL)
220 return;
221
222 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
223 {
224 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
225 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
226 }
227 }
228
229 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
230 are some macros to test, set, or clear bit 0 of addresses. */
231 #define IS_ISA32_ADDR(addr) ((addr) & 1)
232 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
233 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
234
235 static int
236 pc_is_isa32 (bfd_vma memaddr)
237 {
238 struct bound_minimal_symbol sym;
239
240 /* If bit 0 of the address is set, assume this is a
241 ISA32 (shmedia) address. */
242 if (IS_ISA32_ADDR (memaddr))
243 return 1;
244
245 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
246 the high bit of the info field. Use this to decide if the function is
247 ISA16 or ISA32. */
248 sym = lookup_minimal_symbol_by_pc (memaddr);
249 if (sym.minsym)
250 return MSYMBOL_IS_SPECIAL (sym.minsym);
251 else
252 return 0;
253 }
254
255 static const unsigned char *
256 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
257 CORE_ADDR *pcptr, int *lenptr)
258 {
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263
264 /* The BRK instruction for shcompact is
265 00000000 00111011
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0 */
268
269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
270 {
271 if (pc_is_isa32 (*pcptr))
272 {
273 static unsigned char big_breakpoint_media[] = {
274 0x6f, 0xf5, 0xff, 0xf0
275 };
276 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
277 *lenptr = sizeof (big_breakpoint_media);
278 return big_breakpoint_media;
279 }
280 else
281 {
282 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
283 *lenptr = sizeof (big_breakpoint_compact);
284 return big_breakpoint_compact;
285 }
286 }
287 else
288 {
289 if (pc_is_isa32 (*pcptr))
290 {
291 static unsigned char little_breakpoint_media[] = {
292 0xf0, 0xff, 0xf5, 0x6f
293 };
294 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
295 *lenptr = sizeof (little_breakpoint_media);
296 return little_breakpoint_media;
297 }
298 else
299 {
300 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
301 *lenptr = sizeof (little_breakpoint_compact);
302 return little_breakpoint_compact;
303 }
304 }
305 }
306
307 /* Prologue looks like
308 [mov.l <regs>,@-r15]...
309 [sts.l pr,@-r15]
310 [mov.l r14,@-r15]
311 [mov r15,r14]
312
313 Actually it can be more complicated than this. For instance, with
314 newer gcc's:
315
316 mov.l r14,@-r15
317 add #-12,r15
318 mov r15,r14
319 mov r4,r1
320 mov r5,r2
321 mov.l r6,@(4,r14)
322 mov.l r7,@(8,r14)
323 mov.b r1,@r14
324 mov r14,r1
325 mov r14,r1
326 add #2,r1
327 mov.w r2,@r1
328
329 */
330
331 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
332 with l=1 and n = 18 0110101111110001010010100aaa0000 */
333 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
334
335 /* STS.L PR,@-r0 0100000000100010
336 r0-4-->r0, PR-->(r0) */
337 #define IS_STS_R0(x) ((x) == 0x4022)
338
339 /* STS PR, Rm 0000mmmm00101010
340 PR-->Rm */
341 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
342
343 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
344 Rm-->(dispx4+r15) */
345 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
346
347 /* MOV.L R14,@(disp,r15) 000111111110dddd
348 R14-->(dispx4+r15) */
349 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
350
351 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
352 R18-->(dispx8+R14) */
353 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
354
355 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
356 R18-->(dispx8+R15) */
357 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
358
359 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
360 R18-->(dispx4+R15) */
361 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
362
363 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx8+R15) */
365 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
366
367 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
368 R14-->(dispx4+R15) */
369 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
370
371 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
372 R15 + imm --> R15 */
373 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
374
375 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
376 R15 + imm --> R15 */
377 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
378
379 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
380 R15 + R63 --> R14 */
381 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
382
383 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
384 R15 + R63 --> R14 */
385 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
386
387 #define IS_MOV_SP_FP_MEDIA(x) \
388 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
389
390 /* MOV #imm, R0 1110 0000 ssss ssss
391 #imm-->R0 */
392 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
393
394 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
395 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
396
397 /* ADD r15,r0 0011 0000 1111 1100
398 r15+r0-->r0 */
399 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
400
401 /* MOV.L R14 @-R0 0010 0000 1110 0110
402 R14-->(R0-4), R0-4-->R0 */
403 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
404
405 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
406 where Rm is one of r2-r9 which are the argument registers. */
407 /* FIXME: Recognize the float and double register moves too! */
408 #define IS_MEDIA_IND_ARG_MOV(x) \
409 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
410 && (((x) & 0x03f00000) >= 0x00200000 \
411 && ((x) & 0x03f00000) <= 0x00900000))
412
413 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
414 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
415 where Rm is one of r2-r9 which are the argument registers. */
416 #define IS_MEDIA_ARG_MOV(x) \
417 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
418 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
419
420 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
421 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
422 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
423 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
424 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
425 #define IS_MEDIA_MOV_TO_R14(x) \
426 ((((x) & 0xfffffc0f) == 0xa0e00000) \
427 || (((x) & 0xfffffc0f) == 0xa4e00000) \
428 || (((x) & 0xfffffc0f) == 0xa8e00000) \
429 || (((x) & 0xfffffc0f) == 0xb4e00000) \
430 || (((x) & 0xfffffc0f) == 0xbce00000))
431
432 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
433 where Rm is r2-r9 */
434 #define IS_COMPACT_IND_ARG_MOV(x) \
435 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
436 && (((x) & 0x00f0) <= 0x0090))
437
438 /* compact direct arg move!
439 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
440 #define IS_COMPACT_ARG_MOV(x) \
441 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
442 && ((x) & 0x00f0) <= 0x0090))
443
444 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
445 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
446 #define IS_COMPACT_MOV_TO_R14(x) \
447 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
448
449 #define IS_JSR_R0(x) ((x) == 0x400b)
450 #define IS_NOP(x) ((x) == 0x0009)
451
452
453 /* MOV r15,r14 0110111011110011
454 r15-->r14 */
455 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
456
457 /* ADD #imm,r15 01111111iiiiiiii
458 r15+imm-->r15 */
459 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
460
461 /* Skip any prologue before the guts of a function. */
462
463 /* Skip the prologue using the debug information. If this fails we'll
464 fall back on the 'guess' method below. */
465 static CORE_ADDR
466 after_prologue (CORE_ADDR pc)
467 {
468 struct symtab_and_line sal;
469 CORE_ADDR func_addr, func_end;
470
471 /* If we can not find the symbol in the partial symbol table, then
472 there is no hope we can determine the function's start address
473 with this code. */
474 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
475 return 0;
476
477
478 /* Get the line associated with FUNC_ADDR. */
479 sal = find_pc_line (func_addr, 0);
480
481 /* There are only two cases to consider. First, the end of the source line
482 is within the function bounds. In that case we return the end of the
483 source line. Second is the end of the source line extends beyond the
484 bounds of the current function. We need to use the slow code to
485 examine instructions in that case. */
486 if (sal.end < func_end)
487 return sal.end;
488 else
489 return 0;
490 }
491
492 static CORE_ADDR
493 look_for_args_moves (struct gdbarch *gdbarch,
494 CORE_ADDR start_pc, int media_mode)
495 {
496 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
497 CORE_ADDR here, end;
498 int w;
499 int insn_size = (media_mode ? 4 : 2);
500
501 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
502 {
503 if (media_mode)
504 {
505 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
506 insn_size, byte_order);
507 here += insn_size;
508 if (IS_MEDIA_IND_ARG_MOV (w))
509 {
510 /* This must be followed by a store to r14, so the argument
511 is where the debug info says it is. This can happen after
512 the SP has been saved, unfortunately. */
513
514 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
515 insn_size, byte_order);
516 here += insn_size;
517 if (IS_MEDIA_MOV_TO_R14 (next_insn))
518 start_pc = here;
519 }
520 else if (IS_MEDIA_ARG_MOV (w))
521 {
522 /* These instructions store directly the argument in r14. */
523 start_pc = here;
524 }
525 else
526 break;
527 }
528 else
529 {
530 w = read_memory_integer (here, insn_size, byte_order);
531 w = w & 0xffff;
532 here += insn_size;
533 if (IS_COMPACT_IND_ARG_MOV (w))
534 {
535 /* This must be followed by a store to r14, so the argument
536 is where the debug info says it is. This can happen after
537 the SP has been saved, unfortunately. */
538
539 int next_insn = 0xffff & read_memory_integer (here, insn_size,
540 byte_order);
541 here += insn_size;
542 if (IS_COMPACT_MOV_TO_R14 (next_insn))
543 start_pc = here;
544 }
545 else if (IS_COMPACT_ARG_MOV (w))
546 {
547 /* These instructions store directly the argument in r14. */
548 start_pc = here;
549 }
550 else if (IS_MOVL_R0 (w))
551 {
552 /* There is a function that gcc calls to get the arguments
553 passed correctly to the function. Only after this
554 function call the arguments will be found at the place
555 where they are supposed to be. This happens in case the
556 argument has to be stored into a 64-bit register (for
557 instance doubles, long longs). SHcompact doesn't have
558 access to the full 64-bits, so we store the register in
559 stack slot and store the address of the stack slot in
560 the register, then do a call through a wrapper that
561 loads the memory value into the register. A SHcompact
562 callee calls an argument decoder
563 (GCC_shcompact_incoming_args) that stores the 64-bit
564 value in a stack slot and stores the address of the
565 stack slot in the register. GCC thinks the argument is
566 just passed by transparent reference, but this is only
567 true after the argument decoder is called. Such a call
568 needs to be considered part of the prologue. */
569
570 /* This must be followed by a JSR @r0 instruction and by
571 a NOP instruction. After these, the prologue is over! */
572
573 int next_insn = 0xffff & read_memory_integer (here, insn_size,
574 byte_order);
575 here += insn_size;
576 if (IS_JSR_R0 (next_insn))
577 {
578 next_insn = 0xffff & read_memory_integer (here, insn_size,
579 byte_order);
580 here += insn_size;
581
582 if (IS_NOP (next_insn))
583 start_pc = here;
584 }
585 }
586 else
587 break;
588 }
589 }
590
591 return start_pc;
592 }
593
594 static CORE_ADDR
595 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
596 {
597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
598 CORE_ADDR here, end;
599 int updated_fp = 0;
600 int insn_size = 4;
601 int media_mode = 1;
602
603 if (!start_pc)
604 return 0;
605
606 if (pc_is_isa32 (start_pc) == 0)
607 {
608 insn_size = 2;
609 media_mode = 0;
610 }
611
612 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
613 {
614
615 if (media_mode)
616 {
617 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
618 insn_size, byte_order);
619 here += insn_size;
620 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
621 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
622 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
623 || IS_PTABSL_R18 (w))
624 {
625 start_pc = here;
626 }
627 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
628 {
629 start_pc = here;
630 updated_fp = 1;
631 }
632 else
633 if (updated_fp)
634 {
635 /* Don't bail out yet, we may have arguments stored in
636 registers here, according to the debug info, so that
637 gdb can print the frames correctly. */
638 start_pc = look_for_args_moves (gdbarch,
639 here - insn_size, media_mode);
640 break;
641 }
642 }
643 else
644 {
645 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
646 here += insn_size;
647
648 if (IS_STS_R0 (w) || IS_STS_PR (w)
649 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
650 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
651 {
652 start_pc = here;
653 }
654 else if (IS_MOV_SP_FP (w))
655 {
656 start_pc = here;
657 updated_fp = 1;
658 }
659 else
660 if (updated_fp)
661 {
662 /* Don't bail out yet, we may have arguments stored in
663 registers here, according to the debug info, so that
664 gdb can print the frames correctly. */
665 start_pc = look_for_args_moves (gdbarch,
666 here - insn_size, media_mode);
667 break;
668 }
669 }
670 }
671
672 return start_pc;
673 }
674
675 static CORE_ADDR
676 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
677 {
678 CORE_ADDR post_prologue_pc;
679
680 /* See if we can determine the end of the prologue via the symbol table.
681 If so, then return either PC, or the PC after the prologue, whichever
682 is greater. */
683 post_prologue_pc = after_prologue (pc);
684
685 /* If after_prologue returned a useful address, then use it. Else
686 fall back on the instruction skipping code. */
687 if (post_prologue_pc != 0)
688 return max (pc, post_prologue_pc);
689 else
690 return sh64_skip_prologue_hard_way (gdbarch, pc);
691 }
692
693 /* Should call_function allocate stack space for a struct return? */
694 static int
695 sh64_use_struct_convention (struct type *type)
696 {
697 return (TYPE_LENGTH (type) > 8);
698 }
699
700 /* For vectors of 4 floating point registers. */
701 static int
702 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
703 {
704 int fp_regnum;
705
706 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
707 return fp_regnum;
708 }
709
710 /* For double precision floating point registers, i.e 2 fp regs. */
711 static int
712 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
713 {
714 int fp_regnum;
715
716 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
717 return fp_regnum;
718 }
719
720 /* For pairs of floating point registers. */
721 static int
722 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
723 {
724 int fp_regnum;
725
726 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
727 return fp_regnum;
728 }
729
730 /* *INDENT-OFF* */
731 /*
732 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
733 GDB_REGNUM BASE_REGNUM
734 r0_c 221 0
735 r1_c 222 1
736 r2_c 223 2
737 r3_c 224 3
738 r4_c 225 4
739 r5_c 226 5
740 r6_c 227 6
741 r7_c 228 7
742 r8_c 229 8
743 r9_c 230 9
744 r10_c 231 10
745 r11_c 232 11
746 r12_c 233 12
747 r13_c 234 13
748 r14_c 235 14
749 r15_c 236 15
750
751 pc_c 237 64
752 gbr_c 238 16
753 mach_c 239 17
754 macl_c 240 17
755 pr_c 241 18
756 t_c 242 19
757 fpscr_c 243 76
758 fpul_c 244 109
759
760 fr0_c 245 77
761 fr1_c 246 78
762 fr2_c 247 79
763 fr3_c 248 80
764 fr4_c 249 81
765 fr5_c 250 82
766 fr6_c 251 83
767 fr7_c 252 84
768 fr8_c 253 85
769 fr9_c 254 86
770 fr10_c 255 87
771 fr11_c 256 88
772 fr12_c 257 89
773 fr13_c 258 90
774 fr14_c 259 91
775 fr15_c 260 92
776
777 dr0_c 261 77
778 dr2_c 262 79
779 dr4_c 263 81
780 dr6_c 264 83
781 dr8_c 265 85
782 dr10_c 266 87
783 dr12_c 267 89
784 dr14_c 268 91
785
786 fv0_c 269 77
787 fv4_c 270 81
788 fv8_c 271 85
789 fv12_c 272 91
790 */
791 /* *INDENT-ON* */
792 static int
793 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
794 {
795 int base_regnum = reg_nr;
796
797 /* general register N maps to general register N */
798 if (reg_nr >= R0_C_REGNUM
799 && reg_nr <= R_LAST_C_REGNUM)
800 base_regnum = reg_nr - R0_C_REGNUM;
801
802 /* floating point register N maps to floating point register N */
803 else if (reg_nr >= FP0_C_REGNUM
804 && reg_nr <= FP_LAST_C_REGNUM)
805 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
806
807 /* double prec register N maps to base regnum for double prec register N */
808 else if (reg_nr >= DR0_C_REGNUM
809 && reg_nr <= DR_LAST_C_REGNUM)
810 base_regnum = sh64_dr_reg_base_num (gdbarch,
811 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
812
813 /* vector N maps to base regnum for vector register N */
814 else if (reg_nr >= FV0_C_REGNUM
815 && reg_nr <= FV_LAST_C_REGNUM)
816 base_regnum = sh64_fv_reg_base_num (gdbarch,
817 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
818
819 else if (reg_nr == PC_C_REGNUM)
820 base_regnum = gdbarch_pc_regnum (gdbarch);
821
822 else if (reg_nr == GBR_C_REGNUM)
823 base_regnum = 16;
824
825 else if (reg_nr == MACH_C_REGNUM
826 || reg_nr == MACL_C_REGNUM)
827 base_regnum = 17;
828
829 else if (reg_nr == PR_C_REGNUM)
830 base_regnum = PR_REGNUM;
831
832 else if (reg_nr == T_C_REGNUM)
833 base_regnum = 19;
834
835 else if (reg_nr == FPSCR_C_REGNUM)
836 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
837
838 else if (reg_nr == FPUL_C_REGNUM)
839 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
840
841 return base_regnum;
842 }
843
844 static int
845 sign_extend (int value, int bits)
846 {
847 value = value & ((1 << bits) - 1);
848 return (value & (1 << (bits - 1))
849 ? value | (~((1 << bits) - 1))
850 : value);
851 }
852
853 static void
854 sh64_analyze_prologue (struct gdbarch *gdbarch,
855 struct sh64_frame_cache *cache,
856 CORE_ADDR func_pc,
857 CORE_ADDR current_pc)
858 {
859 int pc;
860 int opc;
861 int insn;
862 int r0_val = 0;
863 int insn_size;
864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
865
866 cache->sp_offset = 0;
867
868 /* Loop around examining the prologue insns until we find something
869 that does not appear to be part of the prologue. But give up
870 after 20 of them, since we're getting silly then. */
871
872 pc = func_pc;
873
874 if (cache->media_mode)
875 insn_size = 4;
876 else
877 insn_size = 2;
878
879 opc = pc + (insn_size * 28);
880 if (opc > current_pc)
881 opc = current_pc;
882 for ( ; pc <= opc; pc += insn_size)
883 {
884 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
885 : pc,
886 insn_size, byte_order);
887
888 if (!cache->media_mode)
889 {
890 if (IS_STS_PR (insn))
891 {
892 int next_insn = read_memory_integer (pc + insn_size,
893 insn_size, byte_order);
894 if (IS_MOV_TO_R15 (next_insn))
895 {
896 cache->saved_regs[PR_REGNUM]
897 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
898 - 0x8) << 2);
899 pc += insn_size;
900 }
901 }
902
903 else if (IS_MOV_R14 (insn))
904 {
905 cache->saved_regs[MEDIA_FP_REGNUM] =
906 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
907 cache->uses_fp = 1;
908 }
909
910 else if (IS_MOV_R0 (insn))
911 {
912 /* Put in R0 the offset from SP at which to store some
913 registers. We are interested in this value, because it
914 will tell us where the given registers are stored within
915 the frame. */
916 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
917 }
918
919 else if (IS_ADD_SP_R0 (insn))
920 {
921 /* This instruction still prepares r0, but we don't care.
922 We already have the offset in r0_val. */
923 }
924
925 else if (IS_STS_R0 (insn))
926 {
927 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
928 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
929 r0_val -= 4;
930 }
931
932 else if (IS_MOV_R14_R0 (insn))
933 {
934 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
935 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
936 - (r0_val - 4);
937 cache->uses_fp = 1;
938 r0_val -= 4;
939 }
940
941 else if (IS_ADD_SP (insn))
942 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
943
944 else if (IS_MOV_SP_FP (insn))
945 break;
946 }
947 else
948 {
949 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
950 cache->sp_offset -=
951 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
952
953 else if (IS_STQ_R18_R15 (insn))
954 cache->saved_regs[PR_REGNUM]
955 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
956 9) << 3);
957
958 else if (IS_STL_R18_R15 (insn))
959 cache->saved_regs[PR_REGNUM]
960 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
961 9) << 2);
962
963 else if (IS_STQ_R14_R15 (insn))
964 {
965 cache->saved_regs[MEDIA_FP_REGNUM]
966 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
967 9) << 3);
968 cache->uses_fp = 1;
969 }
970
971 else if (IS_STL_R14_R15 (insn))
972 {
973 cache->saved_regs[MEDIA_FP_REGNUM]
974 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
975 9) << 2);
976 cache->uses_fp = 1;
977 }
978
979 else if (IS_MOV_SP_FP_MEDIA (insn))
980 break;
981 }
982 }
983 }
984
985 static CORE_ADDR
986 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
987 {
988 return sp & ~7;
989 }
990
991 /* Function: push_dummy_call
992 Setup the function arguments for calling a function in the inferior.
993
994 On the Renesas SH architecture, there are four registers (R4 to R7)
995 which are dedicated for passing function arguments. Up to the first
996 four arguments (depending on size) may go into these registers.
997 The rest go on the stack.
998
999 Arguments that are smaller than 4 bytes will still take up a whole
1000 register or a whole 32-bit word on the stack, and will be
1001 right-justified in the register or the stack word. This includes
1002 chars, shorts, and small aggregate types.
1003
1004 Arguments that are larger than 4 bytes may be split between two or
1005 more registers. If there are not enough registers free, an argument
1006 may be passed partly in a register (or registers), and partly on the
1007 stack. This includes doubles, long longs, and larger aggregates.
1008 As far as I know, there is no upper limit to the size of aggregates
1009 that will be passed in this way; in other words, the convention of
1010 passing a pointer to a large aggregate instead of a copy is not used.
1011
1012 An exceptional case exists for struct arguments (and possibly other
1013 aggregates such as arrays) if the size is larger than 4 bytes but
1014 not a multiple of 4 bytes. In this case the argument is never split
1015 between the registers and the stack, but instead is copied in its
1016 entirety onto the stack, AND also copied into as many registers as
1017 there is room for. In other words, space in registers permitting,
1018 two copies of the same argument are passed in. As far as I can tell,
1019 only the one on the stack is used, although that may be a function
1020 of the level of compiler optimization. I suspect this is a compiler
1021 bug. Arguments of these odd sizes are left-justified within the
1022 word (as opposed to arguments smaller than 4 bytes, which are
1023 right-justified).
1024
1025 If the function is to return an aggregate type such as a struct, it
1026 is either returned in the normal return value register R0 (if its
1027 size is no greater than one byte), or else the caller must allocate
1028 space into which the callee will copy the return value (if the size
1029 is greater than one byte). In this case, a pointer to the return
1030 value location is passed into the callee in register R2, which does
1031 not displace any of the other arguments passed in via registers R4
1032 to R7. */
1033
1034 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1035 non-scalar (struct, union) elements (even if the elements are
1036 floats).
1037 FR0-FR11 for single precision floating point (float)
1038 DR0-DR10 for double precision floating point (double)
1039
1040 If a float is argument number 3 (for instance) and arguments number
1041 1,2, and 4 are integer, the mapping will be:
1042 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1043
1044 If a float is argument number 10 (for instance) and arguments number
1045 1 through 10 are integer, the mapping will be:
1046 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1047 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1048 arg11->stack(16,SP). I.e. there is hole in the stack.
1049
1050 Different rules apply for variable arguments functions, and for functions
1051 for which the prototype is not known. */
1052
1053 static CORE_ADDR
1054 sh64_push_dummy_call (struct gdbarch *gdbarch,
1055 struct value *function,
1056 struct regcache *regcache,
1057 CORE_ADDR bp_addr,
1058 int nargs, struct value **args,
1059 CORE_ADDR sp, int struct_return,
1060 CORE_ADDR struct_addr)
1061 {
1062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1063 int stack_offset, stack_alloc;
1064 int int_argreg;
1065 int float_arg_index = 0;
1066 int double_arg_index = 0;
1067 int argnum;
1068 struct type *type;
1069 CORE_ADDR regval;
1070 const gdb_byte *val;
1071 gdb_byte valbuf[8];
1072 int len;
1073 int argreg_size;
1074 int fp_args[12];
1075
1076 memset (fp_args, 0, sizeof (fp_args));
1077
1078 /* First force sp to a 8-byte alignment. */
1079 sp = sh64_frame_align (gdbarch, sp);
1080
1081 /* The "struct return pointer" pseudo-argument has its own dedicated
1082 register. */
1083
1084 if (struct_return)
1085 regcache_cooked_write_unsigned (regcache,
1086 STRUCT_RETURN_REGNUM, struct_addr);
1087
1088 /* Now make sure there's space on the stack. */
1089 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1090 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1091 sp -= stack_alloc; /* Make room on stack for args. */
1092
1093 /* Now load as many as possible of the first arguments into
1094 registers, and push the rest onto the stack. There are 64 bytes
1095 in eight registers available. Loop thru args from first to last. */
1096
1097 int_argreg = ARG0_REGNUM;
1098
1099 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1100 {
1101 type = value_type (args[argnum]);
1102 len = TYPE_LENGTH (type);
1103 memset (valbuf, 0, sizeof (valbuf));
1104
1105 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1106 {
1107 argreg_size = register_size (gdbarch, int_argreg);
1108
1109 if (len < argreg_size)
1110 {
1111 /* value gets right-justified in the register or stack word. */
1112 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1113 memcpy (valbuf + argreg_size - len,
1114 value_contents (args[argnum]), len);
1115 else
1116 memcpy (valbuf, value_contents (args[argnum]), len);
1117
1118 val = valbuf;
1119 }
1120 else
1121 val = value_contents (args[argnum]);
1122
1123 while (len > 0)
1124 {
1125 if (int_argreg > ARGLAST_REGNUM)
1126 {
1127 /* Must go on the stack. */
1128 write_memory (sp + stack_offset, val, argreg_size);
1129 stack_offset += 8;/*argreg_size;*/
1130 }
1131 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1132 That's because some *&^%$ things get passed on the stack
1133 AND in the registers! */
1134 if (int_argreg <= ARGLAST_REGNUM)
1135 {
1136 /* There's room in a register. */
1137 regval = extract_unsigned_integer (val, argreg_size,
1138 byte_order);
1139 regcache_cooked_write_unsigned (regcache,
1140 int_argreg, regval);
1141 }
1142 /* Store the value 8 bytes at a time. This means that
1143 things larger than 8 bytes may go partly in registers
1144 and partly on the stack. FIXME: argreg is incremented
1145 before we use its size. */
1146 len -= argreg_size;
1147 val += argreg_size;
1148 int_argreg++;
1149 }
1150 }
1151 else
1152 {
1153 val = value_contents (args[argnum]);
1154 if (len == 4)
1155 {
1156 /* Where is it going to be stored? */
1157 while (fp_args[float_arg_index])
1158 float_arg_index ++;
1159
1160 /* Now float_argreg points to the register where it
1161 should be stored. Are we still within the allowed
1162 register set? */
1163 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1164 {
1165 /* Goes in FR0...FR11 */
1166 regcache_cooked_write (regcache,
1167 gdbarch_fp0_regnum (gdbarch)
1168 + float_arg_index,
1169 val);
1170 fp_args[float_arg_index] = 1;
1171 /* Skip the corresponding general argument register. */
1172 int_argreg ++;
1173 }
1174 else
1175 {
1176 /* Store it as the integers, 8 bytes at the time, if
1177 necessary spilling on the stack. */
1178 }
1179 }
1180 else if (len == 8)
1181 {
1182 /* Where is it going to be stored? */
1183 while (fp_args[double_arg_index])
1184 double_arg_index += 2;
1185 /* Now double_argreg points to the register
1186 where it should be stored.
1187 Are we still within the allowed register set? */
1188 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1189 {
1190 /* Goes in DR0...DR10 */
1191 /* The numbering of the DRi registers is consecutive,
1192 i.e. includes odd numbers. */
1193 int double_register_offset = double_arg_index / 2;
1194 int regnum = DR0_REGNUM + double_register_offset;
1195 regcache_cooked_write (regcache, regnum, val);
1196 fp_args[double_arg_index] = 1;
1197 fp_args[double_arg_index + 1] = 1;
1198 /* Skip the corresponding general argument register. */
1199 int_argreg ++;
1200 }
1201 else
1202 {
1203 /* Store it as the integers, 8 bytes at the time, if
1204 necessary spilling on the stack. */
1205 }
1206 }
1207 }
1208 }
1209 /* Store return address. */
1210 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1211
1212 /* Update stack pointer. */
1213 regcache_cooked_write_unsigned (regcache,
1214 gdbarch_sp_regnum (gdbarch), sp);
1215
1216 return sp;
1217 }
1218
1219 /* Find a function's return value in the appropriate registers (in
1220 regbuf), and copy it into valbuf. Extract from an array REGBUF
1221 containing the (raw) register state a function return value of type
1222 TYPE, and copy that, in virtual format, into VALBUF. */
1223 static void
1224 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1225 gdb_byte *valbuf)
1226 {
1227 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1228 int len = TYPE_LENGTH (type);
1229
1230 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1231 {
1232 if (len == 4)
1233 {
1234 /* Return value stored in gdbarch_fp0_regnum. */
1235 regcache_raw_read (regcache,
1236 gdbarch_fp0_regnum (gdbarch), valbuf);
1237 }
1238 else if (len == 8)
1239 {
1240 /* return value stored in DR0_REGNUM. */
1241 DOUBLEST val;
1242 gdb_byte buf[8];
1243
1244 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1245
1246 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1247 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1248 buf, &val);
1249 else
1250 floatformat_to_doublest (&floatformat_ieee_double_big,
1251 buf, &val);
1252 store_typed_floating (valbuf, type, val);
1253 }
1254 }
1255 else
1256 {
1257 if (len <= 8)
1258 {
1259 int offset;
1260 gdb_byte buf[8];
1261 /* Result is in register 2. If smaller than 8 bytes, it is padded
1262 at the most significant end. */
1263 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1264
1265 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1266 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1267 - len;
1268 else
1269 offset = 0;
1270 memcpy (valbuf, buf + offset, len);
1271 }
1272 else
1273 error (_("bad size for return value"));
1274 }
1275 }
1276
1277 /* Write into appropriate registers a function return value
1278 of type TYPE, given in virtual format.
1279 If the architecture is sh4 or sh3e, store a function's return value
1280 in the R0 general register or in the FP0 floating point register,
1281 depending on the type of the return value. In all the other cases
1282 the result is stored in r0, left-justified. */
1283
1284 static void
1285 sh64_store_return_value (struct type *type, struct regcache *regcache,
1286 const gdb_byte *valbuf)
1287 {
1288 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1289 gdb_byte buf[64]; /* more than enough... */
1290 int len = TYPE_LENGTH (type);
1291
1292 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1293 {
1294 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1295 for (i = 0; i < len; i += 4)
1296 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1297 regcache_raw_write (regcache, regnum++,
1298 valbuf + len - 4 - i);
1299 else
1300 regcache_raw_write (regcache, regnum++, valbuf + i);
1301 }
1302 else
1303 {
1304 int return_register = DEFAULT_RETURN_REGNUM;
1305 int offset = 0;
1306
1307 if (len <= register_size (gdbarch, return_register))
1308 {
1309 /* Pad with zeros. */
1310 memset (buf, 0, register_size (gdbarch, return_register));
1311 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1312 offset = 0; /*register_size (gdbarch,
1313 return_register) - len;*/
1314 else
1315 offset = register_size (gdbarch, return_register) - len;
1316
1317 memcpy (buf + offset, valbuf, len);
1318 regcache_raw_write (regcache, return_register, buf);
1319 }
1320 else
1321 regcache_raw_write (regcache, return_register, valbuf);
1322 }
1323 }
1324
1325 static enum return_value_convention
1326 sh64_return_value (struct gdbarch *gdbarch, struct value *function,
1327 struct type *type, struct regcache *regcache,
1328 gdb_byte *readbuf, const gdb_byte *writebuf)
1329 {
1330 if (sh64_use_struct_convention (type))
1331 return RETURN_VALUE_STRUCT_CONVENTION;
1332 if (writebuf)
1333 sh64_store_return_value (type, regcache, writebuf);
1334 else if (readbuf)
1335 sh64_extract_return_value (type, regcache, readbuf);
1336 return RETURN_VALUE_REGISTER_CONVENTION;
1337 }
1338
1339 /* *INDENT-OFF* */
1340 /*
1341 SH MEDIA MODE (ISA 32)
1342 general registers (64-bit) 0-63
1343 0 r0, r1, r2, r3, r4, r5, r6, r7,
1344 64 r8, r9, r10, r11, r12, r13, r14, r15,
1345 128 r16, r17, r18, r19, r20, r21, r22, r23,
1346 192 r24, r25, r26, r27, r28, r29, r30, r31,
1347 256 r32, r33, r34, r35, r36, r37, r38, r39,
1348 320 r40, r41, r42, r43, r44, r45, r46, r47,
1349 384 r48, r49, r50, r51, r52, r53, r54, r55,
1350 448 r56, r57, r58, r59, r60, r61, r62, r63,
1351
1352 pc (64-bit) 64
1353 512 pc,
1354
1355 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1356 520 sr, ssr, spc,
1357
1358 target registers (64-bit) 68-75
1359 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1360
1361 floating point state control register (32-bit) 76
1362 608 fpscr,
1363
1364 single precision floating point registers (32-bit) 77-140
1365 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1366 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1367 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1368 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1369 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1370 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1371 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1372 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1373
1374 TOTAL SPACE FOR REGISTERS: 868 bytes
1375
1376 From here on they are all pseudo registers: no memory allocated.
1377 REGISTER_BYTE returns the register byte for the base register.
1378
1379 double precision registers (pseudo) 141-172
1380 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1381 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1382 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1383 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1384
1385 floating point pairs (pseudo) 173-204
1386 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1387 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1388 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1389 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1390
1391 floating point vectors (4 floating point regs) (pseudo) 205-220
1392 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1393 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1394
1395 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1396 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1397 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1398 pc_c,
1399 gbr_c, mach_c, macl_c, pr_c, t_c,
1400 fpscr_c, fpul_c,
1401 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1402 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1403 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1404 fv0_c, fv4_c, fv8_c, fv12_c
1405 */
1406
1407 static struct type *
1408 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1409 {
1410 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1411 0, high);
1412 }
1413
1414 /* Return the GDB type object for the "standard" data type
1415 of data in register REG_NR. */
1416 static struct type *
1417 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1418 {
1419 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1420 && reg_nr <= FP_LAST_REGNUM)
1421 || (reg_nr >= FP0_C_REGNUM
1422 && reg_nr <= FP_LAST_C_REGNUM))
1423 return builtin_type (gdbarch)->builtin_float;
1424 else if ((reg_nr >= DR0_REGNUM
1425 && reg_nr <= DR_LAST_REGNUM)
1426 || (reg_nr >= DR0_C_REGNUM
1427 && reg_nr <= DR_LAST_C_REGNUM))
1428 return builtin_type (gdbarch)->builtin_double;
1429 else if (reg_nr >= FPP0_REGNUM
1430 && reg_nr <= FPP_LAST_REGNUM)
1431 return sh64_build_float_register_type (gdbarch, 1);
1432 else if ((reg_nr >= FV0_REGNUM
1433 && reg_nr <= FV_LAST_REGNUM)
1434 ||(reg_nr >= FV0_C_REGNUM
1435 && reg_nr <= FV_LAST_C_REGNUM))
1436 return sh64_build_float_register_type (gdbarch, 3);
1437 else if (reg_nr == FPSCR_REGNUM)
1438 return builtin_type (gdbarch)->builtin_int;
1439 else if (reg_nr >= R0_C_REGNUM
1440 && reg_nr < FP0_C_REGNUM)
1441 return builtin_type (gdbarch)->builtin_int;
1442 else
1443 return builtin_type (gdbarch)->builtin_long_long;
1444 }
1445
1446 static void
1447 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1448 struct type *type, gdb_byte *from, gdb_byte *to)
1449 {
1450 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1451 {
1452 /* It is a no-op. */
1453 memcpy (to, from, register_size (gdbarch, regnum));
1454 return;
1455 }
1456
1457 if ((regnum >= DR0_REGNUM
1458 && regnum <= DR_LAST_REGNUM)
1459 || (regnum >= DR0_C_REGNUM
1460 && regnum <= DR_LAST_C_REGNUM))
1461 {
1462 DOUBLEST val;
1463 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1464 from, &val);
1465 store_typed_floating (to, type, val);
1466 }
1467 else
1468 error (_("sh64_register_convert_to_virtual "
1469 "called with non DR register number"));
1470 }
1471
1472 static void
1473 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1474 int regnum, const void *from, void *to)
1475 {
1476 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1477 {
1478 /* It is a no-op. */
1479 memcpy (to, from, register_size (gdbarch, regnum));
1480 return;
1481 }
1482
1483 if ((regnum >= DR0_REGNUM
1484 && regnum <= DR_LAST_REGNUM)
1485 || (regnum >= DR0_C_REGNUM
1486 && regnum <= DR_LAST_C_REGNUM))
1487 {
1488 DOUBLEST val = extract_typed_floating (from, type);
1489 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1490 &val, to);
1491 }
1492 else
1493 error (_("sh64_register_convert_to_raw called "
1494 "with non DR register number"));
1495 }
1496
1497 /* Concatenate PORTIONS contiguous raw registers starting at
1498 BASE_REGNUM into BUFFER. */
1499
1500 static enum register_status
1501 pseudo_register_read_portions (struct gdbarch *gdbarch,
1502 struct regcache *regcache,
1503 int portions,
1504 int base_regnum, gdb_byte *buffer)
1505 {
1506 int portion;
1507
1508 for (portion = 0; portion < portions; portion++)
1509 {
1510 enum register_status status;
1511 gdb_byte *b;
1512
1513 b = buffer + register_size (gdbarch, base_regnum) * portion;
1514 status = regcache_raw_read (regcache, base_regnum + portion, b);
1515 if (status != REG_VALID)
1516 return status;
1517 }
1518
1519 return REG_VALID;
1520 }
1521
1522 static enum register_status
1523 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1524 int reg_nr, gdb_byte *buffer)
1525 {
1526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1527 int base_regnum;
1528 int offset = 0;
1529 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1530 enum register_status status;
1531
1532 if (reg_nr >= DR0_REGNUM
1533 && reg_nr <= DR_LAST_REGNUM)
1534 {
1535 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1536
1537 /* Build the value in the provided buffer. */
1538 /* DR regs are double precision registers obtained by
1539 concatenating 2 single precision floating point registers. */
1540 status = pseudo_register_read_portions (gdbarch, regcache,
1541 2, base_regnum, temp_buffer);
1542 if (status == REG_VALID)
1543 {
1544 /* We must pay attention to the endianness. */
1545 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1546 register_type (gdbarch, reg_nr),
1547 temp_buffer, buffer);
1548 }
1549
1550 return status;
1551 }
1552
1553 else if (reg_nr >= FPP0_REGNUM
1554 && reg_nr <= FPP_LAST_REGNUM)
1555 {
1556 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1557
1558 /* Build the value in the provided buffer. */
1559 /* FPP regs are pairs of single precision registers obtained by
1560 concatenating 2 single precision floating point registers. */
1561 return pseudo_register_read_portions (gdbarch, regcache,
1562 2, base_regnum, buffer);
1563 }
1564
1565 else if (reg_nr >= FV0_REGNUM
1566 && reg_nr <= FV_LAST_REGNUM)
1567 {
1568 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1569
1570 /* Build the value in the provided buffer. */
1571 /* FV regs are vectors of single precision registers obtained by
1572 concatenating 4 single precision floating point registers. */
1573 return pseudo_register_read_portions (gdbarch, regcache,
1574 4, base_regnum, buffer);
1575 }
1576
1577 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1578 else if (reg_nr >= R0_C_REGNUM
1579 && reg_nr <= T_C_REGNUM)
1580 {
1581 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1582
1583 /* Build the value in the provided buffer. */
1584 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1585 if (status != REG_VALID)
1586 return status;
1587 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1588 offset = 4;
1589 memcpy (buffer,
1590 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1591 return REG_VALID;
1592 }
1593
1594 else if (reg_nr >= FP0_C_REGNUM
1595 && reg_nr <= FP_LAST_C_REGNUM)
1596 {
1597 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1598
1599 /* Build the value in the provided buffer. */
1600 /* Floating point registers map 1-1 to the media fp regs,
1601 they have the same size and endianness. */
1602 return regcache_raw_read (regcache, base_regnum, buffer);
1603 }
1604
1605 else if (reg_nr >= DR0_C_REGNUM
1606 && reg_nr <= DR_LAST_C_REGNUM)
1607 {
1608 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1609
1610 /* DR_C regs are double precision registers obtained by
1611 concatenating 2 single precision floating point registers. */
1612 status = pseudo_register_read_portions (gdbarch, regcache,
1613 2, base_regnum, temp_buffer);
1614 if (status == REG_VALID)
1615 {
1616 /* We must pay attention to the endianness. */
1617 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1618 register_type (gdbarch, reg_nr),
1619 temp_buffer, buffer);
1620 }
1621 return status;
1622 }
1623
1624 else if (reg_nr >= FV0_C_REGNUM
1625 && reg_nr <= FV_LAST_C_REGNUM)
1626 {
1627 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1628
1629 /* Build the value in the provided buffer. */
1630 /* FV_C regs are vectors of single precision registers obtained by
1631 concatenating 4 single precision floating point registers. */
1632 return pseudo_register_read_portions (gdbarch, regcache,
1633 4, base_regnum, buffer);
1634 }
1635
1636 else if (reg_nr == FPSCR_C_REGNUM)
1637 {
1638 int fpscr_base_regnum;
1639 int sr_base_regnum;
1640 unsigned int fpscr_value;
1641 unsigned int sr_value;
1642 unsigned int fpscr_c_value;
1643 unsigned int fpscr_c_part1_value;
1644 unsigned int fpscr_c_part2_value;
1645
1646 fpscr_base_regnum = FPSCR_REGNUM;
1647 sr_base_regnum = SR_REGNUM;
1648
1649 /* Build the value in the provided buffer. */
1650 /* FPSCR_C is a very weird register that contains sparse bits
1651 from the FPSCR and the SR architectural registers.
1652 Specifically: */
1653 /* *INDENT-OFF* */
1654 /*
1655 FPSRC_C bit
1656 0 Bit 0 of FPSCR
1657 1 reserved
1658 2-17 Bit 2-18 of FPSCR
1659 18-20 Bits 12,13,14 of SR
1660 21-31 reserved
1661 */
1662 /* *INDENT-ON* */
1663 /* Get FPSCR into a local buffer. */
1664 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1665 if (status != REG_VALID)
1666 return status;
1667 /* Get value as an int. */
1668 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1669 /* Get SR into a local buffer */
1670 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1671 if (status != REG_VALID)
1672 return status;
1673 /* Get value as an int. */
1674 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1675 /* Build the new value. */
1676 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1677 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1678 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1679 /* Store that in out buffer!!! */
1680 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1681 /* FIXME There is surely an endianness gotcha here. */
1682
1683 return REG_VALID;
1684 }
1685
1686 else if (reg_nr == FPUL_C_REGNUM)
1687 {
1688 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1689
1690 /* FPUL_C register is floating point register 32,
1691 same size, same endianness. */
1692 return regcache_raw_read (regcache, base_regnum, buffer);
1693 }
1694 else
1695 gdb_assert_not_reached ("invalid pseudo register number");
1696 }
1697
1698 static void
1699 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1700 int reg_nr, const gdb_byte *buffer)
1701 {
1702 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1703 int base_regnum, portion;
1704 int offset;
1705 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1706
1707 if (reg_nr >= DR0_REGNUM
1708 && reg_nr <= DR_LAST_REGNUM)
1709 {
1710 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1711 /* We must pay attention to the endianness. */
1712 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1713 reg_nr,
1714 buffer, temp_buffer);
1715
1716 /* Write the real regs for which this one is an alias. */
1717 for (portion = 0; portion < 2; portion++)
1718 regcache_raw_write (regcache, base_regnum + portion,
1719 (temp_buffer
1720 + register_size (gdbarch,
1721 base_regnum) * portion));
1722 }
1723
1724 else if (reg_nr >= FPP0_REGNUM
1725 && reg_nr <= FPP_LAST_REGNUM)
1726 {
1727 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1728
1729 /* Write the real regs for which this one is an alias. */
1730 for (portion = 0; portion < 2; portion++)
1731 regcache_raw_write (regcache, base_regnum + portion,
1732 (buffer + register_size (gdbarch,
1733 base_regnum) * portion));
1734 }
1735
1736 else if (reg_nr >= FV0_REGNUM
1737 && reg_nr <= FV_LAST_REGNUM)
1738 {
1739 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1740
1741 /* Write the real regs for which this one is an alias. */
1742 for (portion = 0; portion < 4; portion++)
1743 regcache_raw_write (regcache, base_regnum + portion,
1744 (buffer + register_size (gdbarch,
1745 base_regnum) * portion));
1746 }
1747
1748 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1749 register but only 4 bytes of it. */
1750 else if (reg_nr >= R0_C_REGNUM
1751 && reg_nr <= T_C_REGNUM)
1752 {
1753 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1754 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1755 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1756 offset = 4;
1757 else
1758 offset = 0;
1759 /* Let's read the value of the base register into a temporary
1760 buffer, so that overwriting the last four bytes with the new
1761 value of the pseudo will leave the upper 4 bytes unchanged. */
1762 regcache_raw_read (regcache, base_regnum, temp_buffer);
1763 /* Write as an 8 byte quantity. */
1764 memcpy (temp_buffer + offset, buffer, 4);
1765 regcache_raw_write (regcache, base_regnum, temp_buffer);
1766 }
1767
1768 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1769 registers. Both are 4 bytes. */
1770 else if (reg_nr >= FP0_C_REGNUM
1771 && reg_nr <= FP_LAST_C_REGNUM)
1772 {
1773 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1774 regcache_raw_write (regcache, base_regnum, buffer);
1775 }
1776
1777 else if (reg_nr >= DR0_C_REGNUM
1778 && reg_nr <= DR_LAST_C_REGNUM)
1779 {
1780 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1781 for (portion = 0; portion < 2; portion++)
1782 {
1783 /* We must pay attention to the endianness. */
1784 sh64_register_convert_to_raw (gdbarch,
1785 register_type (gdbarch, reg_nr),
1786 reg_nr,
1787 buffer, temp_buffer);
1788
1789 regcache_raw_write (regcache, base_regnum + portion,
1790 (temp_buffer
1791 + register_size (gdbarch,
1792 base_regnum) * portion));
1793 }
1794 }
1795
1796 else if (reg_nr >= FV0_C_REGNUM
1797 && reg_nr <= FV_LAST_C_REGNUM)
1798 {
1799 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1800
1801 for (portion = 0; portion < 4; portion++)
1802 {
1803 regcache_raw_write (regcache, base_regnum + portion,
1804 (buffer
1805 + register_size (gdbarch,
1806 base_regnum) * portion));
1807 }
1808 }
1809
1810 else if (reg_nr == FPSCR_C_REGNUM)
1811 {
1812 int fpscr_base_regnum;
1813 int sr_base_regnum;
1814 unsigned int fpscr_value;
1815 unsigned int sr_value;
1816 unsigned int old_fpscr_value;
1817 unsigned int old_sr_value;
1818 unsigned int fpscr_c_value;
1819 unsigned int fpscr_mask;
1820 unsigned int sr_mask;
1821
1822 fpscr_base_regnum = FPSCR_REGNUM;
1823 sr_base_regnum = SR_REGNUM;
1824
1825 /* FPSCR_C is a very weird register that contains sparse bits
1826 from the FPSCR and the SR architectural registers.
1827 Specifically: */
1828 /* *INDENT-OFF* */
1829 /*
1830 FPSRC_C bit
1831 0 Bit 0 of FPSCR
1832 1 reserved
1833 2-17 Bit 2-18 of FPSCR
1834 18-20 Bits 12,13,14 of SR
1835 21-31 reserved
1836 */
1837 /* *INDENT-ON* */
1838 /* Get value as an int. */
1839 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1840
1841 /* Build the new values. */
1842 fpscr_mask = 0x0003fffd;
1843 sr_mask = 0x001c0000;
1844
1845 fpscr_value = fpscr_c_value & fpscr_mask;
1846 sr_value = (fpscr_value & sr_mask) >> 6;
1847
1848 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1849 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1850 old_fpscr_value &= 0xfffc0002;
1851 fpscr_value |= old_fpscr_value;
1852 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1853 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1854
1855 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1856 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1857 old_sr_value &= 0xffff8fff;
1858 sr_value |= old_sr_value;
1859 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1860 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1861 }
1862
1863 else if (reg_nr == FPUL_C_REGNUM)
1864 {
1865 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1866 regcache_raw_write (regcache, base_regnum, buffer);
1867 }
1868 }
1869
1870 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1871 shmedia REGISTERS. */
1872 /* Control registers, compact mode. */
1873 static void
1874 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1875 int cr_c_regnum)
1876 {
1877 switch (cr_c_regnum)
1878 {
1879 case PC_C_REGNUM:
1880 fprintf_filtered (file, "pc_c\t0x%08x\n",
1881 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1882 break;
1883 case GBR_C_REGNUM:
1884 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1885 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1886 break;
1887 case MACH_C_REGNUM:
1888 fprintf_filtered (file, "mach_c\t0x%08x\n",
1889 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1890 break;
1891 case MACL_C_REGNUM:
1892 fprintf_filtered (file, "macl_c\t0x%08x\n",
1893 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1894 break;
1895 case PR_C_REGNUM:
1896 fprintf_filtered (file, "pr_c\t0x%08x\n",
1897 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1898 break;
1899 case T_C_REGNUM:
1900 fprintf_filtered (file, "t_c\t0x%08x\n",
1901 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1902 break;
1903 case FPSCR_C_REGNUM:
1904 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1905 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1906 break;
1907 case FPUL_C_REGNUM:
1908 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1909 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1910 break;
1911 }
1912 }
1913
1914 static void
1915 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1916 struct frame_info *frame, int regnum)
1917 { /* Do values for FP (float) regs. */
1918 unsigned char *raw_buffer;
1919 double flt; /* Double extracted from raw hex data. */
1920 int inv;
1921
1922 /* Allocate space for the float. */
1923 raw_buffer = (unsigned char *)
1924 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
1925
1926 /* Get the data in raw format. */
1927 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
1928 error (_("can't read register %d (%s)"),
1929 regnum, gdbarch_register_name (gdbarch, regnum));
1930
1931 /* Get the register as a number. */
1932 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1933 raw_buffer, &inv);
1934
1935 /* Print the name and some spaces. */
1936 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
1937 print_spaces_filtered (15 - strlen (gdbarch_register_name
1938 (gdbarch, regnum)), file);
1939
1940 /* Print the value. */
1941 if (inv)
1942 fprintf_filtered (file, "<invalid float>");
1943 else
1944 fprintf_filtered (file, "%-10.9g", flt);
1945
1946 /* Print the fp register as hex. */
1947 fprintf_filtered (file, "\t(raw ");
1948 print_hex_chars (file, raw_buffer,
1949 register_size (gdbarch, regnum),
1950 gdbarch_byte_order (gdbarch));
1951 fprintf_filtered (file, ")");
1952 fprintf_filtered (file, "\n");
1953 }
1954
1955 static void
1956 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1957 struct frame_info *frame, int regnum)
1958 {
1959 /* All the sh64-compact mode registers are pseudo registers. */
1960
1961 if (regnum < gdbarch_num_regs (gdbarch)
1962 || regnum >= gdbarch_num_regs (gdbarch)
1963 + NUM_PSEUDO_REGS_SH_MEDIA
1964 + NUM_PSEUDO_REGS_SH_COMPACT)
1965 internal_error (__FILE__, __LINE__,
1966 _("Invalid pseudo register number %d\n"), regnum);
1967
1968 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1969 {
1970 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
1971 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1972 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1973 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1974 }
1975
1976 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1977 {
1978 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1979 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1980 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1981 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1982 }
1983
1984 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1985 {
1986 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
1987 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1988 regnum - FV0_REGNUM,
1989 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1990 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1991 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1992 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1993 }
1994
1995 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1996 {
1997 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1998 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1999 regnum - FV0_C_REGNUM,
2000 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2001 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2002 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2004 }
2005
2006 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2007 {
2008 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2009 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2010 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2011 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2012 }
2013
2014 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2015 {
2016 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2017 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2018 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2019 }
2020 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2021 /* This should work also for pseudoregs. */
2022 sh64_do_fp_register (gdbarch, file, frame, regnum);
2023 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2024 sh64_do_cr_c_register_info (file, frame, regnum);
2025 }
2026
2027 static void
2028 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2029 struct frame_info *frame, int regnum)
2030 {
2031 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2032 struct value_print_options opts;
2033
2034 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2035 print_spaces_filtered (15 - strlen (gdbarch_register_name
2036 (gdbarch, regnum)), file);
2037
2038 /* Get the data in raw format. */
2039 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
2040 {
2041 fprintf_filtered (file, "*value not available*\n");
2042 return;
2043 }
2044
2045 get_formatted_print_options (&opts, 'x');
2046 opts.deref_ref = 1;
2047 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2048 file, 0, NULL, &opts, current_language);
2049 fprintf_filtered (file, "\t");
2050 get_formatted_print_options (&opts, 0);
2051 opts.deref_ref = 1;
2052 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2053 file, 0, NULL, &opts, current_language);
2054 fprintf_filtered (file, "\n");
2055 }
2056
2057 static void
2058 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2059 struct frame_info *frame, int regnum)
2060 {
2061 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2062 + gdbarch_num_pseudo_regs (gdbarch))
2063 internal_error (__FILE__, __LINE__,
2064 _("Invalid register number %d\n"), regnum);
2065
2066 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2067 {
2068 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2069 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2070 else
2071 sh64_do_register (gdbarch, file, frame, regnum);
2072 }
2073
2074 else if (regnum < gdbarch_num_regs (gdbarch)
2075 + gdbarch_num_pseudo_regs (gdbarch))
2076 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2077 }
2078
2079 static void
2080 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2081 struct frame_info *frame, int regnum,
2082 int fpregs)
2083 {
2084 if (regnum != -1) /* Do one specified register. */
2085 {
2086 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2087 error (_("Not a valid register for the current processor type"));
2088
2089 sh64_print_register (gdbarch, file, frame, regnum);
2090 }
2091 else
2092 /* Do all (or most) registers. */
2093 {
2094 regnum = 0;
2095 while (regnum < gdbarch_num_regs (gdbarch))
2096 {
2097 /* If the register name is empty, it is undefined for this
2098 processor, so don't display anything. */
2099 if (gdbarch_register_name (gdbarch, regnum) == NULL
2100 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2101 {
2102 regnum++;
2103 continue;
2104 }
2105
2106 if (TYPE_CODE (register_type (gdbarch, regnum))
2107 == TYPE_CODE_FLT)
2108 {
2109 if (fpregs)
2110 {
2111 /* true for "INFO ALL-REGISTERS" command. */
2112 sh64_do_fp_register (gdbarch, file, frame, regnum);
2113 regnum ++;
2114 }
2115 else
2116 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2117 /* skip FP regs */
2118 }
2119 else
2120 {
2121 sh64_do_register (gdbarch, file, frame, regnum);
2122 regnum++;
2123 }
2124 }
2125
2126 if (fpregs)
2127 while (regnum < gdbarch_num_regs (gdbarch)
2128 + gdbarch_num_pseudo_regs (gdbarch))
2129 {
2130 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2131 regnum++;
2132 }
2133 }
2134 }
2135
2136 static void
2137 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2138 struct ui_file *file,
2139 struct frame_info *frame, int regnum,
2140 int fpregs)
2141 {
2142 if (regnum != -1) /* Do one specified register. */
2143 {
2144 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2145 error (_("Not a valid register for the current processor type"));
2146
2147 if (regnum >= 0 && regnum < R0_C_REGNUM)
2148 error (_("Not a valid register for the current processor mode."));
2149
2150 sh64_print_register (gdbarch, file, frame, regnum);
2151 }
2152 else
2153 /* Do all compact registers. */
2154 {
2155 regnum = R0_C_REGNUM;
2156 while (regnum < gdbarch_num_regs (gdbarch)
2157 + gdbarch_num_pseudo_regs (gdbarch))
2158 {
2159 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2160 regnum++;
2161 }
2162 }
2163 }
2164
2165 static void
2166 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2167 struct frame_info *frame, int regnum, int fpregs)
2168 {
2169 if (pc_is_isa32 (get_frame_pc (frame)))
2170 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2171 else
2172 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2173 }
2174
2175 static struct sh64_frame_cache *
2176 sh64_alloc_frame_cache (void)
2177 {
2178 struct sh64_frame_cache *cache;
2179 int i;
2180
2181 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2182
2183 /* Base address. */
2184 cache->base = 0;
2185 cache->saved_sp = 0;
2186 cache->sp_offset = 0;
2187 cache->pc = 0;
2188
2189 /* Frameless until proven otherwise. */
2190 cache->uses_fp = 0;
2191
2192 /* Saved registers. We initialize these to -1 since zero is a valid
2193 offset (that's where fp is supposed to be stored). */
2194 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2195 {
2196 cache->saved_regs[i] = -1;
2197 }
2198
2199 return cache;
2200 }
2201
2202 static struct sh64_frame_cache *
2203 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2204 {
2205 struct gdbarch *gdbarch;
2206 struct sh64_frame_cache *cache;
2207 CORE_ADDR current_pc;
2208 int i;
2209
2210 if (*this_cache)
2211 return (struct sh64_frame_cache *) *this_cache;
2212
2213 gdbarch = get_frame_arch (this_frame);
2214 cache = sh64_alloc_frame_cache ();
2215 *this_cache = cache;
2216
2217 current_pc = get_frame_pc (this_frame);
2218 cache->media_mode = pc_is_isa32 (current_pc);
2219
2220 /* In principle, for normal frames, fp holds the frame pointer,
2221 which holds the base address for the current stack frame.
2222 However, for functions that don't need it, the frame pointer is
2223 optional. For these "frameless" functions the frame pointer is
2224 actually the frame pointer of the calling frame. */
2225 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2226 if (cache->base == 0)
2227 return cache;
2228
2229 cache->pc = get_frame_func (this_frame);
2230 if (cache->pc != 0)
2231 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2232
2233 if (!cache->uses_fp)
2234 {
2235 /* We didn't find a valid frame, which means that CACHE->base
2236 currently holds the frame pointer for our calling frame. If
2237 we're at the start of a function, or somewhere half-way its
2238 prologue, the function's frame probably hasn't been fully
2239 setup yet. Try to reconstruct the base address for the stack
2240 frame by looking at the stack pointer. For truly "frameless"
2241 functions this might work too. */
2242 cache->base = get_frame_register_unsigned
2243 (this_frame, gdbarch_sp_regnum (gdbarch));
2244 }
2245
2246 /* Now that we have the base address for the stack frame we can
2247 calculate the value of sp in the calling frame. */
2248 cache->saved_sp = cache->base + cache->sp_offset;
2249
2250 /* Adjust all the saved registers such that they contain addresses
2251 instead of offsets. */
2252 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2253 if (cache->saved_regs[i] != -1)
2254 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2255
2256 return cache;
2257 }
2258
2259 static struct value *
2260 sh64_frame_prev_register (struct frame_info *this_frame,
2261 void **this_cache, int regnum)
2262 {
2263 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2264 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2265 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2266
2267 gdb_assert (regnum >= 0);
2268
2269 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2270 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2271
2272 /* The PC of the previous frame is stored in the PR register of
2273 the current frame. Frob regnum so that we pull the value from
2274 the correct place. */
2275 if (regnum == gdbarch_pc_regnum (gdbarch))
2276 regnum = PR_REGNUM;
2277
2278 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2279 {
2280 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2281 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2282 {
2283 CORE_ADDR val;
2284 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2285 4, byte_order);
2286 return frame_unwind_got_constant (this_frame, regnum, val);
2287 }
2288
2289 return frame_unwind_got_memory (this_frame, regnum,
2290 cache->saved_regs[regnum]);
2291 }
2292
2293 return frame_unwind_got_register (this_frame, regnum, regnum);
2294 }
2295
2296 static void
2297 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2298 struct frame_id *this_id)
2299 {
2300 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2301
2302 /* This marks the outermost frame. */
2303 if (cache->base == 0)
2304 return;
2305
2306 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2307 }
2308
2309 static const struct frame_unwind sh64_frame_unwind = {
2310 NORMAL_FRAME,
2311 default_frame_unwind_stop_reason,
2312 sh64_frame_this_id,
2313 sh64_frame_prev_register,
2314 NULL,
2315 default_frame_sniffer
2316 };
2317
2318 static CORE_ADDR
2319 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2320 {
2321 return frame_unwind_register_unsigned (next_frame,
2322 gdbarch_sp_regnum (gdbarch));
2323 }
2324
2325 static CORE_ADDR
2326 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2327 {
2328 return frame_unwind_register_unsigned (next_frame,
2329 gdbarch_pc_regnum (gdbarch));
2330 }
2331
2332 static struct frame_id
2333 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2334 {
2335 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2336 gdbarch_sp_regnum (gdbarch));
2337 return frame_id_build (sp, get_frame_pc (this_frame));
2338 }
2339
2340 static CORE_ADDR
2341 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2342 {
2343 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2344
2345 return cache->base;
2346 }
2347
2348 static const struct frame_base sh64_frame_base = {
2349 &sh64_frame_unwind,
2350 sh64_frame_base_address,
2351 sh64_frame_base_address,
2352 sh64_frame_base_address
2353 };
2354
2355
2356 struct gdbarch *
2357 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2358 {
2359 struct gdbarch *gdbarch;
2360 struct gdbarch_tdep *tdep;
2361
2362 /* If there is already a candidate, use it. */
2363 arches = gdbarch_list_lookup_by_info (arches, &info);
2364 if (arches != NULL)
2365 return arches->gdbarch;
2366
2367 /* None found, create a new architecture from the information
2368 provided. */
2369 tdep = XNEW (struct gdbarch_tdep);
2370 gdbarch = gdbarch_alloc (&info, tdep);
2371
2372 /* Determine the ABI */
2373 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2374 {
2375 /* If the ABI is the 64-bit one, it can only be sh-media. */
2376 tdep->sh_abi = SH_ABI_64;
2377 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2378 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2379 }
2380 else
2381 {
2382 /* If the ABI is the 32-bit one it could be either media or
2383 compact. */
2384 tdep->sh_abi = SH_ABI_32;
2385 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2386 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2387 }
2388
2389 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2390 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2391 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2392 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2393 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2394 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2395 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2396
2397 /* The number of real registers is the same whether we are in
2398 ISA16(compact) or ISA32(media). */
2399 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2400 set_gdbarch_sp_regnum (gdbarch, 15);
2401 set_gdbarch_pc_regnum (gdbarch, 64);
2402 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2403 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2404 + NUM_PSEUDO_REGS_SH_COMPACT);
2405
2406 set_gdbarch_register_name (gdbarch, sh64_register_name);
2407 set_gdbarch_register_type (gdbarch, sh64_register_type);
2408
2409 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2410 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2411
2412 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2413
2414 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2415 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2416
2417 set_gdbarch_return_value (gdbarch, sh64_return_value);
2418
2419 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2420 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2421
2422 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2423
2424 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2425
2426 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2427 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2428 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2429 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2430 frame_base_set_default (gdbarch, &sh64_frame_base);
2431
2432 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2433
2434 set_gdbarch_elf_make_msymbol_special (gdbarch,
2435 sh64_elf_make_msymbol_special);
2436
2437 /* Hook in ABI-specific overrides, if they have been registered. */
2438 gdbarch_init_osabi (info, gdbarch);
2439
2440 dwarf2_append_unwinders (gdbarch);
2441 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2442
2443 return gdbarch;
2444 }
This page took 0.083925 seconds and 4 git commands to generate.