gdb: Use std::min and std::max throughout
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "valprint.h"
39
40 #include "elf-bfd.h"
41
42 /* sh flags */
43 #include "elf/sh.h"
44 /* Register numbers shared with the simulator. */
45 #include "gdb/sim-sh.h"
46 #include "language.h"
47 #include "sh64-tdep.h"
48 #include <algorithm>
49
50 /* Information that is dependent on the processor variant. */
51 enum sh_abi
52 {
53 SH_ABI_UNKNOWN,
54 SH_ABI_32,
55 SH_ABI_64
56 };
57
58 struct gdbarch_tdep
59 {
60 enum sh_abi sh_abi;
61 };
62
63 struct sh64_frame_cache
64 {
65 /* Base address. */
66 CORE_ADDR base;
67 LONGEST sp_offset;
68 CORE_ADDR pc;
69
70 /* Flag showing that a frame has been created in the prologue code. */
71 int uses_fp;
72
73 int media_mode;
74
75 /* Saved registers. */
76 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
77 CORE_ADDR saved_sp;
78 };
79
80 /* Registers of SH5 */
81 enum
82 {
83 R0_REGNUM = 0,
84 DEFAULT_RETURN_REGNUM = 2,
85 STRUCT_RETURN_REGNUM = 2,
86 ARG0_REGNUM = 2,
87 ARGLAST_REGNUM = 9,
88 FLOAT_ARGLAST_REGNUM = 11,
89 MEDIA_FP_REGNUM = 14,
90 PR_REGNUM = 18,
91 SR_REGNUM = 65,
92 DR0_REGNUM = 141,
93 DR_LAST_REGNUM = 172,
94 /* FPP stands for Floating Point Pair, to avoid confusion with
95 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
96 point register. Unfortunately on the sh5, the floating point
97 registers are called FR, and the floating point pairs are called FP. */
98 FPP0_REGNUM = 173,
99 FPP_LAST_REGNUM = 204,
100 FV0_REGNUM = 205,
101 FV_LAST_REGNUM = 220,
102 R0_C_REGNUM = 221,
103 R_LAST_C_REGNUM = 236,
104 PC_C_REGNUM = 237,
105 GBR_C_REGNUM = 238,
106 MACH_C_REGNUM = 239,
107 MACL_C_REGNUM = 240,
108 PR_C_REGNUM = 241,
109 T_C_REGNUM = 242,
110 FPSCR_C_REGNUM = 243,
111 FPUL_C_REGNUM = 244,
112 FP0_C_REGNUM = 245,
113 FP_LAST_C_REGNUM = 260,
114 DR0_C_REGNUM = 261,
115 DR_LAST_C_REGNUM = 268,
116 FV0_C_REGNUM = 269,
117 FV_LAST_C_REGNUM = 272,
118 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
119 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
120 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
121 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
122 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
123 };
124
125 static const char *
126 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
127 {
128 static char *register_names[] =
129 {
130 /* SH MEDIA MODE (ISA 32) */
131 /* general registers (64-bit) 0-63 */
132 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
133 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
134 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
135 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
136 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
137 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
138 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
139 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
140
141 /* pc (64-bit) 64 */
142 "pc",
143
144 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
145 "sr", "ssr", "spc",
146
147 /* target registers (64-bit) 68-75 */
148 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
149
150 /* floating point state control register (32-bit) 76 */
151 "fpscr",
152
153 /* single precision floating point registers (32-bit) 77-140 */
154 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
155 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
156 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
157 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
158 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
159 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
160 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
161 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
162
163 /* double precision registers (pseudo) 141-172 */
164 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
165 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
166 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
167 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
168
169 /* floating point pairs (pseudo) 173-204 */
170 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
171 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
172 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
173 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
174
175 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
176 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
177 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
178
179 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
180 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
181 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
182 "pc_c",
183 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
184 "fpscr_c", "fpul_c",
185 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
186 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
187 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
188 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
190 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 32-bit function
212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213
214 #define MSYMBOL_IS_SPECIAL(msym) \
215 MSYMBOL_TARGET_FLAG_1 (msym)
216
217 static void
218 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219 {
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
225 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
226 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
227 }
228 }
229
230 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232 #define IS_ISA32_ADDR(addr) ((addr) & 1)
233 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236 static int
237 pc_is_isa32 (bfd_vma memaddr)
238 {
239 struct bound_minimal_symbol sym;
240
241 /* If bit 0 of the address is set, assume this is a
242 ISA32 (shmedia) address. */
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
250 if (sym.minsym)
251 return MSYMBOL_IS_SPECIAL (sym.minsym);
252 else
253 return 0;
254 }
255
256 static const unsigned char *
257 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
258 CORE_ADDR *pcptr, int *lenptr)
259 {
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264
265 /* The BRK instruction for shcompact is
266 00000000 00111011
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0 */
269
270 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
271 {
272 if (pc_is_isa32 (*pcptr))
273 {
274 static unsigned char big_breakpoint_media[] = {
275 0x6f, 0xf5, 0xff, 0xf0
276 };
277 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
278 *lenptr = sizeof (big_breakpoint_media);
279 return big_breakpoint_media;
280 }
281 else
282 {
283 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
284 *lenptr = sizeof (big_breakpoint_compact);
285 return big_breakpoint_compact;
286 }
287 }
288 else
289 {
290 if (pc_is_isa32 (*pcptr))
291 {
292 static unsigned char little_breakpoint_media[] = {
293 0xf0, 0xff, 0xf5, 0x6f
294 };
295 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
296 *lenptr = sizeof (little_breakpoint_media);
297 return little_breakpoint_media;
298 }
299 else
300 {
301 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
302 *lenptr = sizeof (little_breakpoint_compact);
303 return little_breakpoint_compact;
304 }
305 }
306 }
307
308 /* Prologue looks like
309 [mov.l <regs>,@-r15]...
310 [sts.l pr,@-r15]
311 [mov.l r14,@-r15]
312 [mov r15,r14]
313
314 Actually it can be more complicated than this. For instance, with
315 newer gcc's:
316
317 mov.l r14,@-r15
318 add #-12,r15
319 mov r15,r14
320 mov r4,r1
321 mov r5,r2
322 mov.l r6,@(4,r14)
323 mov.l r7,@(8,r14)
324 mov.b r1,@r14
325 mov r14,r1
326 mov r14,r1
327 add #2,r1
328 mov.w r2,@r1
329
330 */
331
332 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
333 with l=1 and n = 18 0110101111110001010010100aaa0000 */
334 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
335
336 /* STS.L PR,@-r0 0100000000100010
337 r0-4-->r0, PR-->(r0) */
338 #define IS_STS_R0(x) ((x) == 0x4022)
339
340 /* STS PR, Rm 0000mmmm00101010
341 PR-->Rm */
342 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
343
344 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
345 Rm-->(dispx4+r15) */
346 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
347
348 /* MOV.L R14,@(disp,r15) 000111111110dddd
349 R14-->(dispx4+r15) */
350 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
351
352 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
353 R18-->(dispx8+R14) */
354 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
355
356 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
357 R18-->(dispx8+R15) */
358 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
359
360 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
361 R18-->(dispx4+R15) */
362 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
363
364 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx8+R15) */
366 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
367
368 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
369 R14-->(dispx4+R15) */
370 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
371
372 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
373 R15 + imm --> R15 */
374 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
375
376 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
377 R15 + imm --> R15 */
378 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
379
380 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
381 R15 + R63 --> R14 */
382 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
383
384 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
385 R15 + R63 --> R14 */
386 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
387
388 #define IS_MOV_SP_FP_MEDIA(x) \
389 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
390
391 /* MOV #imm, R0 1110 0000 ssss ssss
392 #imm-->R0 */
393 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
394
395 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
396 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
397
398 /* ADD r15,r0 0011 0000 1111 1100
399 r15+r0-->r0 */
400 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
401
402 /* MOV.L R14 @-R0 0010 0000 1110 0110
403 R14-->(R0-4), R0-4-->R0 */
404 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
405
406 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
407 where Rm is one of r2-r9 which are the argument registers. */
408 /* FIXME: Recognize the float and double register moves too! */
409 #define IS_MEDIA_IND_ARG_MOV(x) \
410 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
411 && (((x) & 0x03f00000) >= 0x00200000 \
412 && ((x) & 0x03f00000) <= 0x00900000))
413
414 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
415 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
416 where Rm is one of r2-r9 which are the argument registers. */
417 #define IS_MEDIA_ARG_MOV(x) \
418 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
419 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
420
421 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
422 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
423 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
424 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
425 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
426 #define IS_MEDIA_MOV_TO_R14(x) \
427 ((((x) & 0xfffffc0f) == 0xa0e00000) \
428 || (((x) & 0xfffffc0f) == 0xa4e00000) \
429 || (((x) & 0xfffffc0f) == 0xa8e00000) \
430 || (((x) & 0xfffffc0f) == 0xb4e00000) \
431 || (((x) & 0xfffffc0f) == 0xbce00000))
432
433 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
434 where Rm is r2-r9 */
435 #define IS_COMPACT_IND_ARG_MOV(x) \
436 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
437 && (((x) & 0x00f0) <= 0x0090))
438
439 /* compact direct arg move!
440 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
441 #define IS_COMPACT_ARG_MOV(x) \
442 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
443 && ((x) & 0x00f0) <= 0x0090))
444
445 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
446 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
447 #define IS_COMPACT_MOV_TO_R14(x) \
448 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
449
450 #define IS_JSR_R0(x) ((x) == 0x400b)
451 #define IS_NOP(x) ((x) == 0x0009)
452
453
454 /* MOV r15,r14 0110111011110011
455 r15-->r14 */
456 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
457
458 /* ADD #imm,r15 01111111iiiiiiii
459 r15+imm-->r15 */
460 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
461
462 /* Skip any prologue before the guts of a function. */
463
464 /* Skip the prologue using the debug information. If this fails we'll
465 fall back on the 'guess' method below. */
466 static CORE_ADDR
467 after_prologue (CORE_ADDR pc)
468 {
469 struct symtab_and_line sal;
470 CORE_ADDR func_addr, func_end;
471
472 /* If we can not find the symbol in the partial symbol table, then
473 there is no hope we can determine the function's start address
474 with this code. */
475 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
476 return 0;
477
478
479 /* Get the line associated with FUNC_ADDR. */
480 sal = find_pc_line (func_addr, 0);
481
482 /* There are only two cases to consider. First, the end of the source line
483 is within the function bounds. In that case we return the end of the
484 source line. Second is the end of the source line extends beyond the
485 bounds of the current function. We need to use the slow code to
486 examine instructions in that case. */
487 if (sal.end < func_end)
488 return sal.end;
489 else
490 return 0;
491 }
492
493 static CORE_ADDR
494 look_for_args_moves (struct gdbarch *gdbarch,
495 CORE_ADDR start_pc, int media_mode)
496 {
497 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
498 CORE_ADDR here, end;
499 int w;
500 int insn_size = (media_mode ? 4 : 2);
501
502 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
503 {
504 if (media_mode)
505 {
506 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
507 insn_size, byte_order);
508 here += insn_size;
509 if (IS_MEDIA_IND_ARG_MOV (w))
510 {
511 /* This must be followed by a store to r14, so the argument
512 is where the debug info says it is. This can happen after
513 the SP has been saved, unfortunately. */
514
515 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
516 insn_size, byte_order);
517 here += insn_size;
518 if (IS_MEDIA_MOV_TO_R14 (next_insn))
519 start_pc = here;
520 }
521 else if (IS_MEDIA_ARG_MOV (w))
522 {
523 /* These instructions store directly the argument in r14. */
524 start_pc = here;
525 }
526 else
527 break;
528 }
529 else
530 {
531 w = read_memory_integer (here, insn_size, byte_order);
532 w = w & 0xffff;
533 here += insn_size;
534 if (IS_COMPACT_IND_ARG_MOV (w))
535 {
536 /* This must be followed by a store to r14, so the argument
537 is where the debug info says it is. This can happen after
538 the SP has been saved, unfortunately. */
539
540 int next_insn = 0xffff & read_memory_integer (here, insn_size,
541 byte_order);
542 here += insn_size;
543 if (IS_COMPACT_MOV_TO_R14 (next_insn))
544 start_pc = here;
545 }
546 else if (IS_COMPACT_ARG_MOV (w))
547 {
548 /* These instructions store directly the argument in r14. */
549 start_pc = here;
550 }
551 else if (IS_MOVL_R0 (w))
552 {
553 /* There is a function that gcc calls to get the arguments
554 passed correctly to the function. Only after this
555 function call the arguments will be found at the place
556 where they are supposed to be. This happens in case the
557 argument has to be stored into a 64-bit register (for
558 instance doubles, long longs). SHcompact doesn't have
559 access to the full 64-bits, so we store the register in
560 stack slot and store the address of the stack slot in
561 the register, then do a call through a wrapper that
562 loads the memory value into the register. A SHcompact
563 callee calls an argument decoder
564 (GCC_shcompact_incoming_args) that stores the 64-bit
565 value in a stack slot and stores the address of the
566 stack slot in the register. GCC thinks the argument is
567 just passed by transparent reference, but this is only
568 true after the argument decoder is called. Such a call
569 needs to be considered part of the prologue. */
570
571 /* This must be followed by a JSR @r0 instruction and by
572 a NOP instruction. After these, the prologue is over! */
573
574 int next_insn = 0xffff & read_memory_integer (here, insn_size,
575 byte_order);
576 here += insn_size;
577 if (IS_JSR_R0 (next_insn))
578 {
579 next_insn = 0xffff & read_memory_integer (here, insn_size,
580 byte_order);
581 here += insn_size;
582
583 if (IS_NOP (next_insn))
584 start_pc = here;
585 }
586 }
587 else
588 break;
589 }
590 }
591
592 return start_pc;
593 }
594
595 static CORE_ADDR
596 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
597 {
598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
599 CORE_ADDR here, end;
600 int updated_fp = 0;
601 int insn_size = 4;
602 int media_mode = 1;
603
604 if (!start_pc)
605 return 0;
606
607 if (pc_is_isa32 (start_pc) == 0)
608 {
609 insn_size = 2;
610 media_mode = 0;
611 }
612
613 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
614 {
615
616 if (media_mode)
617 {
618 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
619 insn_size, byte_order);
620 here += insn_size;
621 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
622 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
623 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
624 || IS_PTABSL_R18 (w))
625 {
626 start_pc = here;
627 }
628 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
629 {
630 start_pc = here;
631 updated_fp = 1;
632 }
633 else
634 if (updated_fp)
635 {
636 /* Don't bail out yet, we may have arguments stored in
637 registers here, according to the debug info, so that
638 gdb can print the frames correctly. */
639 start_pc = look_for_args_moves (gdbarch,
640 here - insn_size, media_mode);
641 break;
642 }
643 }
644 else
645 {
646 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
647 here += insn_size;
648
649 if (IS_STS_R0 (w) || IS_STS_PR (w)
650 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
651 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
652 {
653 start_pc = here;
654 }
655 else if (IS_MOV_SP_FP (w))
656 {
657 start_pc = here;
658 updated_fp = 1;
659 }
660 else
661 if (updated_fp)
662 {
663 /* Don't bail out yet, we may have arguments stored in
664 registers here, according to the debug info, so that
665 gdb can print the frames correctly. */
666 start_pc = look_for_args_moves (gdbarch,
667 here - insn_size, media_mode);
668 break;
669 }
670 }
671 }
672
673 return start_pc;
674 }
675
676 static CORE_ADDR
677 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
678 {
679 CORE_ADDR post_prologue_pc;
680
681 /* See if we can determine the end of the prologue via the symbol table.
682 If so, then return either PC, or the PC after the prologue, whichever
683 is greater. */
684 post_prologue_pc = after_prologue (pc);
685
686 /* If after_prologue returned a useful address, then use it. Else
687 fall back on the instruction skipping code. */
688 if (post_prologue_pc != 0)
689 return std::max (pc, post_prologue_pc);
690 else
691 return sh64_skip_prologue_hard_way (gdbarch, pc);
692 }
693
694 /* Should call_function allocate stack space for a struct return? */
695 static int
696 sh64_use_struct_convention (struct type *type)
697 {
698 return (TYPE_LENGTH (type) > 8);
699 }
700
701 /* For vectors of 4 floating point registers. */
702 static int
703 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
704 {
705 int fp_regnum;
706
707 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
708 return fp_regnum;
709 }
710
711 /* For double precision floating point registers, i.e 2 fp regs. */
712 static int
713 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
714 {
715 int fp_regnum;
716
717 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
718 return fp_regnum;
719 }
720
721 /* For pairs of floating point registers. */
722 static int
723 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
724 {
725 int fp_regnum;
726
727 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
728 return fp_regnum;
729 }
730
731 /* *INDENT-OFF* */
732 /*
733 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
734 GDB_REGNUM BASE_REGNUM
735 r0_c 221 0
736 r1_c 222 1
737 r2_c 223 2
738 r3_c 224 3
739 r4_c 225 4
740 r5_c 226 5
741 r6_c 227 6
742 r7_c 228 7
743 r8_c 229 8
744 r9_c 230 9
745 r10_c 231 10
746 r11_c 232 11
747 r12_c 233 12
748 r13_c 234 13
749 r14_c 235 14
750 r15_c 236 15
751
752 pc_c 237 64
753 gbr_c 238 16
754 mach_c 239 17
755 macl_c 240 17
756 pr_c 241 18
757 t_c 242 19
758 fpscr_c 243 76
759 fpul_c 244 109
760
761 fr0_c 245 77
762 fr1_c 246 78
763 fr2_c 247 79
764 fr3_c 248 80
765 fr4_c 249 81
766 fr5_c 250 82
767 fr6_c 251 83
768 fr7_c 252 84
769 fr8_c 253 85
770 fr9_c 254 86
771 fr10_c 255 87
772 fr11_c 256 88
773 fr12_c 257 89
774 fr13_c 258 90
775 fr14_c 259 91
776 fr15_c 260 92
777
778 dr0_c 261 77
779 dr2_c 262 79
780 dr4_c 263 81
781 dr6_c 264 83
782 dr8_c 265 85
783 dr10_c 266 87
784 dr12_c 267 89
785 dr14_c 268 91
786
787 fv0_c 269 77
788 fv4_c 270 81
789 fv8_c 271 85
790 fv12_c 272 91
791 */
792 /* *INDENT-ON* */
793 static int
794 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
795 {
796 int base_regnum = reg_nr;
797
798 /* general register N maps to general register N */
799 if (reg_nr >= R0_C_REGNUM
800 && reg_nr <= R_LAST_C_REGNUM)
801 base_regnum = reg_nr - R0_C_REGNUM;
802
803 /* floating point register N maps to floating point register N */
804 else if (reg_nr >= FP0_C_REGNUM
805 && reg_nr <= FP_LAST_C_REGNUM)
806 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
807
808 /* double prec register N maps to base regnum for double prec register N */
809 else if (reg_nr >= DR0_C_REGNUM
810 && reg_nr <= DR_LAST_C_REGNUM)
811 base_regnum = sh64_dr_reg_base_num (gdbarch,
812 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
813
814 /* vector N maps to base regnum for vector register N */
815 else if (reg_nr >= FV0_C_REGNUM
816 && reg_nr <= FV_LAST_C_REGNUM)
817 base_regnum = sh64_fv_reg_base_num (gdbarch,
818 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
819
820 else if (reg_nr == PC_C_REGNUM)
821 base_regnum = gdbarch_pc_regnum (gdbarch);
822
823 else if (reg_nr == GBR_C_REGNUM)
824 base_regnum = 16;
825
826 else if (reg_nr == MACH_C_REGNUM
827 || reg_nr == MACL_C_REGNUM)
828 base_regnum = 17;
829
830 else if (reg_nr == PR_C_REGNUM)
831 base_regnum = PR_REGNUM;
832
833 else if (reg_nr == T_C_REGNUM)
834 base_regnum = 19;
835
836 else if (reg_nr == FPSCR_C_REGNUM)
837 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
838
839 else if (reg_nr == FPUL_C_REGNUM)
840 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
841
842 return base_regnum;
843 }
844
845 static int
846 sign_extend (int value, int bits)
847 {
848 value = value & ((1 << bits) - 1);
849 return (value & (1 << (bits - 1))
850 ? value | (~((1 << bits) - 1))
851 : value);
852 }
853
854 static void
855 sh64_analyze_prologue (struct gdbarch *gdbarch,
856 struct sh64_frame_cache *cache,
857 CORE_ADDR func_pc,
858 CORE_ADDR current_pc)
859 {
860 int pc;
861 int opc;
862 int insn;
863 int r0_val = 0;
864 int insn_size;
865 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
866
867 cache->sp_offset = 0;
868
869 /* Loop around examining the prologue insns until we find something
870 that does not appear to be part of the prologue. But give up
871 after 20 of them, since we're getting silly then. */
872
873 pc = func_pc;
874
875 if (cache->media_mode)
876 insn_size = 4;
877 else
878 insn_size = 2;
879
880 opc = pc + (insn_size * 28);
881 if (opc > current_pc)
882 opc = current_pc;
883 for ( ; pc <= opc; pc += insn_size)
884 {
885 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
886 : pc,
887 insn_size, byte_order);
888
889 if (!cache->media_mode)
890 {
891 if (IS_STS_PR (insn))
892 {
893 int next_insn = read_memory_integer (pc + insn_size,
894 insn_size, byte_order);
895 if (IS_MOV_TO_R15 (next_insn))
896 {
897 cache->saved_regs[PR_REGNUM]
898 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
899 - 0x8) << 2);
900 pc += insn_size;
901 }
902 }
903
904 else if (IS_MOV_R14 (insn))
905 {
906 cache->saved_regs[MEDIA_FP_REGNUM] =
907 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
908 cache->uses_fp = 1;
909 }
910
911 else if (IS_MOV_R0 (insn))
912 {
913 /* Put in R0 the offset from SP at which to store some
914 registers. We are interested in this value, because it
915 will tell us where the given registers are stored within
916 the frame. */
917 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
918 }
919
920 else if (IS_ADD_SP_R0 (insn))
921 {
922 /* This instruction still prepares r0, but we don't care.
923 We already have the offset in r0_val. */
924 }
925
926 else if (IS_STS_R0 (insn))
927 {
928 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
929 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
930 r0_val -= 4;
931 }
932
933 else if (IS_MOV_R14_R0 (insn))
934 {
935 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
936 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
937 - (r0_val - 4);
938 cache->uses_fp = 1;
939 r0_val -= 4;
940 }
941
942 else if (IS_ADD_SP (insn))
943 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
944
945 else if (IS_MOV_SP_FP (insn))
946 break;
947 }
948 else
949 {
950 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
951 cache->sp_offset -=
952 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
953
954 else if (IS_STQ_R18_R15 (insn))
955 cache->saved_regs[PR_REGNUM]
956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
957 9) << 3);
958
959 else if (IS_STL_R18_R15 (insn))
960 cache->saved_regs[PR_REGNUM]
961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
962 9) << 2);
963
964 else if (IS_STQ_R14_R15 (insn))
965 {
966 cache->saved_regs[MEDIA_FP_REGNUM]
967 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
968 9) << 3);
969 cache->uses_fp = 1;
970 }
971
972 else if (IS_STL_R14_R15 (insn))
973 {
974 cache->saved_regs[MEDIA_FP_REGNUM]
975 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
976 9) << 2);
977 cache->uses_fp = 1;
978 }
979
980 else if (IS_MOV_SP_FP_MEDIA (insn))
981 break;
982 }
983 }
984 }
985
986 static CORE_ADDR
987 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
988 {
989 return sp & ~7;
990 }
991
992 /* Function: push_dummy_call
993 Setup the function arguments for calling a function in the inferior.
994
995 On the Renesas SH architecture, there are four registers (R4 to R7)
996 which are dedicated for passing function arguments. Up to the first
997 four arguments (depending on size) may go into these registers.
998 The rest go on the stack.
999
1000 Arguments that are smaller than 4 bytes will still take up a whole
1001 register or a whole 32-bit word on the stack, and will be
1002 right-justified in the register or the stack word. This includes
1003 chars, shorts, and small aggregate types.
1004
1005 Arguments that are larger than 4 bytes may be split between two or
1006 more registers. If there are not enough registers free, an argument
1007 may be passed partly in a register (or registers), and partly on the
1008 stack. This includes doubles, long longs, and larger aggregates.
1009 As far as I know, there is no upper limit to the size of aggregates
1010 that will be passed in this way; in other words, the convention of
1011 passing a pointer to a large aggregate instead of a copy is not used.
1012
1013 An exceptional case exists for struct arguments (and possibly other
1014 aggregates such as arrays) if the size is larger than 4 bytes but
1015 not a multiple of 4 bytes. In this case the argument is never split
1016 between the registers and the stack, but instead is copied in its
1017 entirety onto the stack, AND also copied into as many registers as
1018 there is room for. In other words, space in registers permitting,
1019 two copies of the same argument are passed in. As far as I can tell,
1020 only the one on the stack is used, although that may be a function
1021 of the level of compiler optimization. I suspect this is a compiler
1022 bug. Arguments of these odd sizes are left-justified within the
1023 word (as opposed to arguments smaller than 4 bytes, which are
1024 right-justified).
1025
1026 If the function is to return an aggregate type such as a struct, it
1027 is either returned in the normal return value register R0 (if its
1028 size is no greater than one byte), or else the caller must allocate
1029 space into which the callee will copy the return value (if the size
1030 is greater than one byte). In this case, a pointer to the return
1031 value location is passed into the callee in register R2, which does
1032 not displace any of the other arguments passed in via registers R4
1033 to R7. */
1034
1035 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1036 non-scalar (struct, union) elements (even if the elements are
1037 floats).
1038 FR0-FR11 for single precision floating point (float)
1039 DR0-DR10 for double precision floating point (double)
1040
1041 If a float is argument number 3 (for instance) and arguments number
1042 1,2, and 4 are integer, the mapping will be:
1043 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1044
1045 If a float is argument number 10 (for instance) and arguments number
1046 1 through 10 are integer, the mapping will be:
1047 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1048 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1049 arg11->stack(16,SP). I.e. there is hole in the stack.
1050
1051 Different rules apply for variable arguments functions, and for functions
1052 for which the prototype is not known. */
1053
1054 static CORE_ADDR
1055 sh64_push_dummy_call (struct gdbarch *gdbarch,
1056 struct value *function,
1057 struct regcache *regcache,
1058 CORE_ADDR bp_addr,
1059 int nargs, struct value **args,
1060 CORE_ADDR sp, int struct_return,
1061 CORE_ADDR struct_addr)
1062 {
1063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1064 int stack_offset, stack_alloc;
1065 int int_argreg;
1066 int float_arg_index = 0;
1067 int double_arg_index = 0;
1068 int argnum;
1069 struct type *type;
1070 CORE_ADDR regval;
1071 const gdb_byte *val;
1072 gdb_byte valbuf[8];
1073 int len;
1074 int argreg_size;
1075 int fp_args[12];
1076
1077 memset (fp_args, 0, sizeof (fp_args));
1078
1079 /* First force sp to a 8-byte alignment. */
1080 sp = sh64_frame_align (gdbarch, sp);
1081
1082 /* The "struct return pointer" pseudo-argument has its own dedicated
1083 register. */
1084
1085 if (struct_return)
1086 regcache_cooked_write_unsigned (regcache,
1087 STRUCT_RETURN_REGNUM, struct_addr);
1088
1089 /* Now make sure there's space on the stack. */
1090 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1091 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1092 sp -= stack_alloc; /* Make room on stack for args. */
1093
1094 /* Now load as many as possible of the first arguments into
1095 registers, and push the rest onto the stack. There are 64 bytes
1096 in eight registers available. Loop thru args from first to last. */
1097
1098 int_argreg = ARG0_REGNUM;
1099
1100 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1101 {
1102 type = value_type (args[argnum]);
1103 len = TYPE_LENGTH (type);
1104 memset (valbuf, 0, sizeof (valbuf));
1105
1106 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1107 {
1108 argreg_size = register_size (gdbarch, int_argreg);
1109
1110 if (len < argreg_size)
1111 {
1112 /* value gets right-justified in the register or stack word. */
1113 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1114 memcpy (valbuf + argreg_size - len,
1115 value_contents (args[argnum]), len);
1116 else
1117 memcpy (valbuf, value_contents (args[argnum]), len);
1118
1119 val = valbuf;
1120 }
1121 else
1122 val = value_contents (args[argnum]);
1123
1124 while (len > 0)
1125 {
1126 if (int_argreg > ARGLAST_REGNUM)
1127 {
1128 /* Must go on the stack. */
1129 write_memory (sp + stack_offset, val, argreg_size);
1130 stack_offset += 8;/*argreg_size;*/
1131 }
1132 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1133 That's because some *&^%$ things get passed on the stack
1134 AND in the registers! */
1135 if (int_argreg <= ARGLAST_REGNUM)
1136 {
1137 /* There's room in a register. */
1138 regval = extract_unsigned_integer (val, argreg_size,
1139 byte_order);
1140 regcache_cooked_write_unsigned (regcache,
1141 int_argreg, regval);
1142 }
1143 /* Store the value 8 bytes at a time. This means that
1144 things larger than 8 bytes may go partly in registers
1145 and partly on the stack. FIXME: argreg is incremented
1146 before we use its size. */
1147 len -= argreg_size;
1148 val += argreg_size;
1149 int_argreg++;
1150 }
1151 }
1152 else
1153 {
1154 val = value_contents (args[argnum]);
1155 if (len == 4)
1156 {
1157 /* Where is it going to be stored? */
1158 while (fp_args[float_arg_index])
1159 float_arg_index ++;
1160
1161 /* Now float_argreg points to the register where it
1162 should be stored. Are we still within the allowed
1163 register set? */
1164 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1165 {
1166 /* Goes in FR0...FR11 */
1167 regcache_cooked_write (regcache,
1168 gdbarch_fp0_regnum (gdbarch)
1169 + float_arg_index,
1170 val);
1171 fp_args[float_arg_index] = 1;
1172 /* Skip the corresponding general argument register. */
1173 int_argreg ++;
1174 }
1175 else
1176 {
1177 /* Store it as the integers, 8 bytes at the time, if
1178 necessary spilling on the stack. */
1179 }
1180 }
1181 else if (len == 8)
1182 {
1183 /* Where is it going to be stored? */
1184 while (fp_args[double_arg_index])
1185 double_arg_index += 2;
1186 /* Now double_argreg points to the register
1187 where it should be stored.
1188 Are we still within the allowed register set? */
1189 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1190 {
1191 /* Goes in DR0...DR10 */
1192 /* The numbering of the DRi registers is consecutive,
1193 i.e. includes odd numbers. */
1194 int double_register_offset = double_arg_index / 2;
1195 int regnum = DR0_REGNUM + double_register_offset;
1196 regcache_cooked_write (regcache, regnum, val);
1197 fp_args[double_arg_index] = 1;
1198 fp_args[double_arg_index + 1] = 1;
1199 /* Skip the corresponding general argument register. */
1200 int_argreg ++;
1201 }
1202 else
1203 {
1204 /* Store it as the integers, 8 bytes at the time, if
1205 necessary spilling on the stack. */
1206 }
1207 }
1208 }
1209 }
1210 /* Store return address. */
1211 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1212
1213 /* Update stack pointer. */
1214 regcache_cooked_write_unsigned (regcache,
1215 gdbarch_sp_regnum (gdbarch), sp);
1216
1217 return sp;
1218 }
1219
1220 /* Find a function's return value in the appropriate registers (in
1221 regbuf), and copy it into valbuf. Extract from an array REGBUF
1222 containing the (raw) register state a function return value of type
1223 TYPE, and copy that, in virtual format, into VALBUF. */
1224 static void
1225 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1226 gdb_byte *valbuf)
1227 {
1228 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1229 int len = TYPE_LENGTH (type);
1230
1231 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1232 {
1233 if (len == 4)
1234 {
1235 /* Return value stored in gdbarch_fp0_regnum. */
1236 regcache_raw_read (regcache,
1237 gdbarch_fp0_regnum (gdbarch), valbuf);
1238 }
1239 else if (len == 8)
1240 {
1241 /* return value stored in DR0_REGNUM. */
1242 DOUBLEST val;
1243 gdb_byte buf[8];
1244
1245 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1246
1247 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1248 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1249 buf, &val);
1250 else
1251 floatformat_to_doublest (&floatformat_ieee_double_big,
1252 buf, &val);
1253 store_typed_floating (valbuf, type, val);
1254 }
1255 }
1256 else
1257 {
1258 if (len <= 8)
1259 {
1260 int offset;
1261 gdb_byte buf[8];
1262 /* Result is in register 2. If smaller than 8 bytes, it is padded
1263 at the most significant end. */
1264 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1265
1266 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1267 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1268 - len;
1269 else
1270 offset = 0;
1271 memcpy (valbuf, buf + offset, len);
1272 }
1273 else
1274 error (_("bad size for return value"));
1275 }
1276 }
1277
1278 /* Write into appropriate registers a function return value
1279 of type TYPE, given in virtual format.
1280 If the architecture is sh4 or sh3e, store a function's return value
1281 in the R0 general register or in the FP0 floating point register,
1282 depending on the type of the return value. In all the other cases
1283 the result is stored in r0, left-justified. */
1284
1285 static void
1286 sh64_store_return_value (struct type *type, struct regcache *regcache,
1287 const gdb_byte *valbuf)
1288 {
1289 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1290 gdb_byte buf[64]; /* more than enough... */
1291 int len = TYPE_LENGTH (type);
1292
1293 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1294 {
1295 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1296 for (i = 0; i < len; i += 4)
1297 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1298 regcache_raw_write (regcache, regnum++,
1299 valbuf + len - 4 - i);
1300 else
1301 regcache_raw_write (regcache, regnum++, valbuf + i);
1302 }
1303 else
1304 {
1305 int return_register = DEFAULT_RETURN_REGNUM;
1306 int offset = 0;
1307
1308 if (len <= register_size (gdbarch, return_register))
1309 {
1310 /* Pad with zeros. */
1311 memset (buf, 0, register_size (gdbarch, return_register));
1312 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1313 offset = 0; /*register_size (gdbarch,
1314 return_register) - len;*/
1315 else
1316 offset = register_size (gdbarch, return_register) - len;
1317
1318 memcpy (buf + offset, valbuf, len);
1319 regcache_raw_write (regcache, return_register, buf);
1320 }
1321 else
1322 regcache_raw_write (regcache, return_register, valbuf);
1323 }
1324 }
1325
1326 static enum return_value_convention
1327 sh64_return_value (struct gdbarch *gdbarch, struct value *function,
1328 struct type *type, struct regcache *regcache,
1329 gdb_byte *readbuf, const gdb_byte *writebuf)
1330 {
1331 if (sh64_use_struct_convention (type))
1332 return RETURN_VALUE_STRUCT_CONVENTION;
1333 if (writebuf)
1334 sh64_store_return_value (type, regcache, writebuf);
1335 else if (readbuf)
1336 sh64_extract_return_value (type, regcache, readbuf);
1337 return RETURN_VALUE_REGISTER_CONVENTION;
1338 }
1339
1340 /* *INDENT-OFF* */
1341 /*
1342 SH MEDIA MODE (ISA 32)
1343 general registers (64-bit) 0-63
1344 0 r0, r1, r2, r3, r4, r5, r6, r7,
1345 64 r8, r9, r10, r11, r12, r13, r14, r15,
1346 128 r16, r17, r18, r19, r20, r21, r22, r23,
1347 192 r24, r25, r26, r27, r28, r29, r30, r31,
1348 256 r32, r33, r34, r35, r36, r37, r38, r39,
1349 320 r40, r41, r42, r43, r44, r45, r46, r47,
1350 384 r48, r49, r50, r51, r52, r53, r54, r55,
1351 448 r56, r57, r58, r59, r60, r61, r62, r63,
1352
1353 pc (64-bit) 64
1354 512 pc,
1355
1356 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1357 520 sr, ssr, spc,
1358
1359 target registers (64-bit) 68-75
1360 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1361
1362 floating point state control register (32-bit) 76
1363 608 fpscr,
1364
1365 single precision floating point registers (32-bit) 77-140
1366 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1367 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1368 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1369 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1370 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1371 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1372 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1373 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1374
1375 TOTAL SPACE FOR REGISTERS: 868 bytes
1376
1377 From here on they are all pseudo registers: no memory allocated.
1378 REGISTER_BYTE returns the register byte for the base register.
1379
1380 double precision registers (pseudo) 141-172
1381 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1382 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1383 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1384 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1385
1386 floating point pairs (pseudo) 173-204
1387 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1388 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1389 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1390 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1391
1392 floating point vectors (4 floating point regs) (pseudo) 205-220
1393 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1394 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1395
1396 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1397 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1398 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1399 pc_c,
1400 gbr_c, mach_c, macl_c, pr_c, t_c,
1401 fpscr_c, fpul_c,
1402 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1403 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1404 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1405 fv0_c, fv4_c, fv8_c, fv12_c
1406 */
1407
1408 static struct type *
1409 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1410 {
1411 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1412 0, high);
1413 }
1414
1415 /* Return the GDB type object for the "standard" data type
1416 of data in register REG_NR. */
1417 static struct type *
1418 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1419 {
1420 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1421 && reg_nr <= FP_LAST_REGNUM)
1422 || (reg_nr >= FP0_C_REGNUM
1423 && reg_nr <= FP_LAST_C_REGNUM))
1424 return builtin_type (gdbarch)->builtin_float;
1425 else if ((reg_nr >= DR0_REGNUM
1426 && reg_nr <= DR_LAST_REGNUM)
1427 || (reg_nr >= DR0_C_REGNUM
1428 && reg_nr <= DR_LAST_C_REGNUM))
1429 return builtin_type (gdbarch)->builtin_double;
1430 else if (reg_nr >= FPP0_REGNUM
1431 && reg_nr <= FPP_LAST_REGNUM)
1432 return sh64_build_float_register_type (gdbarch, 1);
1433 else if ((reg_nr >= FV0_REGNUM
1434 && reg_nr <= FV_LAST_REGNUM)
1435 ||(reg_nr >= FV0_C_REGNUM
1436 && reg_nr <= FV_LAST_C_REGNUM))
1437 return sh64_build_float_register_type (gdbarch, 3);
1438 else if (reg_nr == FPSCR_REGNUM)
1439 return builtin_type (gdbarch)->builtin_int;
1440 else if (reg_nr >= R0_C_REGNUM
1441 && reg_nr < FP0_C_REGNUM)
1442 return builtin_type (gdbarch)->builtin_int;
1443 else
1444 return builtin_type (gdbarch)->builtin_long_long;
1445 }
1446
1447 static void
1448 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1449 struct type *type, gdb_byte *from, gdb_byte *to)
1450 {
1451 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1452 {
1453 /* It is a no-op. */
1454 memcpy (to, from, register_size (gdbarch, regnum));
1455 return;
1456 }
1457
1458 if ((regnum >= DR0_REGNUM
1459 && regnum <= DR_LAST_REGNUM)
1460 || (regnum >= DR0_C_REGNUM
1461 && regnum <= DR_LAST_C_REGNUM))
1462 {
1463 DOUBLEST val;
1464 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1465 from, &val);
1466 store_typed_floating (to, type, val);
1467 }
1468 else
1469 error (_("sh64_register_convert_to_virtual "
1470 "called with non DR register number"));
1471 }
1472
1473 static void
1474 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1475 int regnum, const void *from, void *to)
1476 {
1477 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1478 {
1479 /* It is a no-op. */
1480 memcpy (to, from, register_size (gdbarch, regnum));
1481 return;
1482 }
1483
1484 if ((regnum >= DR0_REGNUM
1485 && regnum <= DR_LAST_REGNUM)
1486 || (regnum >= DR0_C_REGNUM
1487 && regnum <= DR_LAST_C_REGNUM))
1488 {
1489 DOUBLEST val = extract_typed_floating (from, type);
1490 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1491 &val, to);
1492 }
1493 else
1494 error (_("sh64_register_convert_to_raw called "
1495 "with non DR register number"));
1496 }
1497
1498 /* Concatenate PORTIONS contiguous raw registers starting at
1499 BASE_REGNUM into BUFFER. */
1500
1501 static enum register_status
1502 pseudo_register_read_portions (struct gdbarch *gdbarch,
1503 struct regcache *regcache,
1504 int portions,
1505 int base_regnum, gdb_byte *buffer)
1506 {
1507 int portion;
1508
1509 for (portion = 0; portion < portions; portion++)
1510 {
1511 enum register_status status;
1512 gdb_byte *b;
1513
1514 b = buffer + register_size (gdbarch, base_regnum) * portion;
1515 status = regcache_raw_read (regcache, base_regnum + portion, b);
1516 if (status != REG_VALID)
1517 return status;
1518 }
1519
1520 return REG_VALID;
1521 }
1522
1523 static enum register_status
1524 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1525 int reg_nr, gdb_byte *buffer)
1526 {
1527 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1528 int base_regnum;
1529 int offset = 0;
1530 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1531 enum register_status status;
1532
1533 if (reg_nr >= DR0_REGNUM
1534 && reg_nr <= DR_LAST_REGNUM)
1535 {
1536 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1537
1538 /* Build the value in the provided buffer. */
1539 /* DR regs are double precision registers obtained by
1540 concatenating 2 single precision floating point registers. */
1541 status = pseudo_register_read_portions (gdbarch, regcache,
1542 2, base_regnum, temp_buffer);
1543 if (status == REG_VALID)
1544 {
1545 /* We must pay attention to the endianness. */
1546 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1547 register_type (gdbarch, reg_nr),
1548 temp_buffer, buffer);
1549 }
1550
1551 return status;
1552 }
1553
1554 else if (reg_nr >= FPP0_REGNUM
1555 && reg_nr <= FPP_LAST_REGNUM)
1556 {
1557 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1558
1559 /* Build the value in the provided buffer. */
1560 /* FPP regs are pairs of single precision registers obtained by
1561 concatenating 2 single precision floating point registers. */
1562 return pseudo_register_read_portions (gdbarch, regcache,
1563 2, base_regnum, buffer);
1564 }
1565
1566 else if (reg_nr >= FV0_REGNUM
1567 && reg_nr <= FV_LAST_REGNUM)
1568 {
1569 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1570
1571 /* Build the value in the provided buffer. */
1572 /* FV regs are vectors of single precision registers obtained by
1573 concatenating 4 single precision floating point registers. */
1574 return pseudo_register_read_portions (gdbarch, regcache,
1575 4, base_regnum, buffer);
1576 }
1577
1578 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1579 else if (reg_nr >= R0_C_REGNUM
1580 && reg_nr <= T_C_REGNUM)
1581 {
1582 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1583
1584 /* Build the value in the provided buffer. */
1585 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1586 if (status != REG_VALID)
1587 return status;
1588 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1589 offset = 4;
1590 memcpy (buffer,
1591 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1592 return REG_VALID;
1593 }
1594
1595 else if (reg_nr >= FP0_C_REGNUM
1596 && reg_nr <= FP_LAST_C_REGNUM)
1597 {
1598 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1599
1600 /* Build the value in the provided buffer. */
1601 /* Floating point registers map 1-1 to the media fp regs,
1602 they have the same size and endianness. */
1603 return regcache_raw_read (regcache, base_regnum, buffer);
1604 }
1605
1606 else if (reg_nr >= DR0_C_REGNUM
1607 && reg_nr <= DR_LAST_C_REGNUM)
1608 {
1609 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1610
1611 /* DR_C regs are double precision registers obtained by
1612 concatenating 2 single precision floating point registers. */
1613 status = pseudo_register_read_portions (gdbarch, regcache,
1614 2, base_regnum, temp_buffer);
1615 if (status == REG_VALID)
1616 {
1617 /* We must pay attention to the endianness. */
1618 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1619 register_type (gdbarch, reg_nr),
1620 temp_buffer, buffer);
1621 }
1622 return status;
1623 }
1624
1625 else if (reg_nr >= FV0_C_REGNUM
1626 && reg_nr <= FV_LAST_C_REGNUM)
1627 {
1628 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1629
1630 /* Build the value in the provided buffer. */
1631 /* FV_C regs are vectors of single precision registers obtained by
1632 concatenating 4 single precision floating point registers. */
1633 return pseudo_register_read_portions (gdbarch, regcache,
1634 4, base_regnum, buffer);
1635 }
1636
1637 else if (reg_nr == FPSCR_C_REGNUM)
1638 {
1639 int fpscr_base_regnum;
1640 int sr_base_regnum;
1641 unsigned int fpscr_value;
1642 unsigned int sr_value;
1643 unsigned int fpscr_c_value;
1644 unsigned int fpscr_c_part1_value;
1645 unsigned int fpscr_c_part2_value;
1646
1647 fpscr_base_regnum = FPSCR_REGNUM;
1648 sr_base_regnum = SR_REGNUM;
1649
1650 /* Build the value in the provided buffer. */
1651 /* FPSCR_C is a very weird register that contains sparse bits
1652 from the FPSCR and the SR architectural registers.
1653 Specifically: */
1654 /* *INDENT-OFF* */
1655 /*
1656 FPSRC_C bit
1657 0 Bit 0 of FPSCR
1658 1 reserved
1659 2-17 Bit 2-18 of FPSCR
1660 18-20 Bits 12,13,14 of SR
1661 21-31 reserved
1662 */
1663 /* *INDENT-ON* */
1664 /* Get FPSCR into a local buffer. */
1665 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1666 if (status != REG_VALID)
1667 return status;
1668 /* Get value as an int. */
1669 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1670 /* Get SR into a local buffer */
1671 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1672 if (status != REG_VALID)
1673 return status;
1674 /* Get value as an int. */
1675 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1676 /* Build the new value. */
1677 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1678 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1679 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1680 /* Store that in out buffer!!! */
1681 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1682 /* FIXME There is surely an endianness gotcha here. */
1683
1684 return REG_VALID;
1685 }
1686
1687 else if (reg_nr == FPUL_C_REGNUM)
1688 {
1689 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1690
1691 /* FPUL_C register is floating point register 32,
1692 same size, same endianness. */
1693 return regcache_raw_read (regcache, base_regnum, buffer);
1694 }
1695 else
1696 gdb_assert_not_reached ("invalid pseudo register number");
1697 }
1698
1699 static void
1700 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1701 int reg_nr, const gdb_byte *buffer)
1702 {
1703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1704 int base_regnum, portion;
1705 int offset;
1706 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1707
1708 if (reg_nr >= DR0_REGNUM
1709 && reg_nr <= DR_LAST_REGNUM)
1710 {
1711 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1712 /* We must pay attention to the endianness. */
1713 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1714 reg_nr,
1715 buffer, temp_buffer);
1716
1717 /* Write the real regs for which this one is an alias. */
1718 for (portion = 0; portion < 2; portion++)
1719 regcache_raw_write (regcache, base_regnum + portion,
1720 (temp_buffer
1721 + register_size (gdbarch,
1722 base_regnum) * portion));
1723 }
1724
1725 else if (reg_nr >= FPP0_REGNUM
1726 && reg_nr <= FPP_LAST_REGNUM)
1727 {
1728 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1729
1730 /* Write the real regs for which this one is an alias. */
1731 for (portion = 0; portion < 2; portion++)
1732 regcache_raw_write (regcache, base_regnum + portion,
1733 (buffer + register_size (gdbarch,
1734 base_regnum) * portion));
1735 }
1736
1737 else if (reg_nr >= FV0_REGNUM
1738 && reg_nr <= FV_LAST_REGNUM)
1739 {
1740 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1741
1742 /* Write the real regs for which this one is an alias. */
1743 for (portion = 0; portion < 4; portion++)
1744 regcache_raw_write (regcache, base_regnum + portion,
1745 (buffer + register_size (gdbarch,
1746 base_regnum) * portion));
1747 }
1748
1749 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1750 register but only 4 bytes of it. */
1751 else if (reg_nr >= R0_C_REGNUM
1752 && reg_nr <= T_C_REGNUM)
1753 {
1754 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1755 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1756 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1757 offset = 4;
1758 else
1759 offset = 0;
1760 /* Let's read the value of the base register into a temporary
1761 buffer, so that overwriting the last four bytes with the new
1762 value of the pseudo will leave the upper 4 bytes unchanged. */
1763 regcache_raw_read (regcache, base_regnum, temp_buffer);
1764 /* Write as an 8 byte quantity. */
1765 memcpy (temp_buffer + offset, buffer, 4);
1766 regcache_raw_write (regcache, base_regnum, temp_buffer);
1767 }
1768
1769 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1770 registers. Both are 4 bytes. */
1771 else if (reg_nr >= FP0_C_REGNUM
1772 && reg_nr <= FP_LAST_C_REGNUM)
1773 {
1774 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1775 regcache_raw_write (regcache, base_regnum, buffer);
1776 }
1777
1778 else if (reg_nr >= DR0_C_REGNUM
1779 && reg_nr <= DR_LAST_C_REGNUM)
1780 {
1781 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1782 for (portion = 0; portion < 2; portion++)
1783 {
1784 /* We must pay attention to the endianness. */
1785 sh64_register_convert_to_raw (gdbarch,
1786 register_type (gdbarch, reg_nr),
1787 reg_nr,
1788 buffer, temp_buffer);
1789
1790 regcache_raw_write (regcache, base_regnum + portion,
1791 (temp_buffer
1792 + register_size (gdbarch,
1793 base_regnum) * portion));
1794 }
1795 }
1796
1797 else if (reg_nr >= FV0_C_REGNUM
1798 && reg_nr <= FV_LAST_C_REGNUM)
1799 {
1800 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1801
1802 for (portion = 0; portion < 4; portion++)
1803 {
1804 regcache_raw_write (regcache, base_regnum + portion,
1805 (buffer
1806 + register_size (gdbarch,
1807 base_regnum) * portion));
1808 }
1809 }
1810
1811 else if (reg_nr == FPSCR_C_REGNUM)
1812 {
1813 int fpscr_base_regnum;
1814 int sr_base_regnum;
1815 unsigned int fpscr_value;
1816 unsigned int sr_value;
1817 unsigned int old_fpscr_value;
1818 unsigned int old_sr_value;
1819 unsigned int fpscr_c_value;
1820 unsigned int fpscr_mask;
1821 unsigned int sr_mask;
1822
1823 fpscr_base_regnum = FPSCR_REGNUM;
1824 sr_base_regnum = SR_REGNUM;
1825
1826 /* FPSCR_C is a very weird register that contains sparse bits
1827 from the FPSCR and the SR architectural registers.
1828 Specifically: */
1829 /* *INDENT-OFF* */
1830 /*
1831 FPSRC_C bit
1832 0 Bit 0 of FPSCR
1833 1 reserved
1834 2-17 Bit 2-18 of FPSCR
1835 18-20 Bits 12,13,14 of SR
1836 21-31 reserved
1837 */
1838 /* *INDENT-ON* */
1839 /* Get value as an int. */
1840 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1841
1842 /* Build the new values. */
1843 fpscr_mask = 0x0003fffd;
1844 sr_mask = 0x001c0000;
1845
1846 fpscr_value = fpscr_c_value & fpscr_mask;
1847 sr_value = (fpscr_value & sr_mask) >> 6;
1848
1849 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1850 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1851 old_fpscr_value &= 0xfffc0002;
1852 fpscr_value |= old_fpscr_value;
1853 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1854 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1855
1856 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1857 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1858 old_sr_value &= 0xffff8fff;
1859 sr_value |= old_sr_value;
1860 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1861 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1862 }
1863
1864 else if (reg_nr == FPUL_C_REGNUM)
1865 {
1866 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1867 regcache_raw_write (regcache, base_regnum, buffer);
1868 }
1869 }
1870
1871 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1872 shmedia REGISTERS. */
1873 /* Control registers, compact mode. */
1874 static void
1875 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1876 int cr_c_regnum)
1877 {
1878 switch (cr_c_regnum)
1879 {
1880 case PC_C_REGNUM:
1881 fprintf_filtered (file, "pc_c\t0x%08x\n",
1882 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1883 break;
1884 case GBR_C_REGNUM:
1885 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1886 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1887 break;
1888 case MACH_C_REGNUM:
1889 fprintf_filtered (file, "mach_c\t0x%08x\n",
1890 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1891 break;
1892 case MACL_C_REGNUM:
1893 fprintf_filtered (file, "macl_c\t0x%08x\n",
1894 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1895 break;
1896 case PR_C_REGNUM:
1897 fprintf_filtered (file, "pr_c\t0x%08x\n",
1898 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1899 break;
1900 case T_C_REGNUM:
1901 fprintf_filtered (file, "t_c\t0x%08x\n",
1902 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1903 break;
1904 case FPSCR_C_REGNUM:
1905 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1906 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1907 break;
1908 case FPUL_C_REGNUM:
1909 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1910 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1911 break;
1912 }
1913 }
1914
1915 static void
1916 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1917 struct frame_info *frame, int regnum)
1918 { /* Do values for FP (float) regs. */
1919 unsigned char *raw_buffer;
1920 double flt; /* Double extracted from raw hex data. */
1921 int inv;
1922
1923 /* Allocate space for the float. */
1924 raw_buffer = (unsigned char *)
1925 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
1926
1927 /* Get the data in raw format. */
1928 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
1929 error (_("can't read register %d (%s)"),
1930 regnum, gdbarch_register_name (gdbarch, regnum));
1931
1932 /* Get the register as a number. */
1933 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1934 raw_buffer, &inv);
1935
1936 /* Print the name and some spaces. */
1937 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
1938 print_spaces_filtered (15 - strlen (gdbarch_register_name
1939 (gdbarch, regnum)), file);
1940
1941 /* Print the value. */
1942 if (inv)
1943 fprintf_filtered (file, "<invalid float>");
1944 else
1945 fprintf_filtered (file, "%-10.9g", flt);
1946
1947 /* Print the fp register as hex. */
1948 fprintf_filtered (file, "\t(raw ");
1949 print_hex_chars (file, raw_buffer,
1950 register_size (gdbarch, regnum),
1951 gdbarch_byte_order (gdbarch));
1952 fprintf_filtered (file, ")");
1953 fprintf_filtered (file, "\n");
1954 }
1955
1956 static void
1957 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1958 struct frame_info *frame, int regnum)
1959 {
1960 /* All the sh64-compact mode registers are pseudo registers. */
1961
1962 if (regnum < gdbarch_num_regs (gdbarch)
1963 || regnum >= gdbarch_num_regs (gdbarch)
1964 + NUM_PSEUDO_REGS_SH_MEDIA
1965 + NUM_PSEUDO_REGS_SH_COMPACT)
1966 internal_error (__FILE__, __LINE__,
1967 _("Invalid pseudo register number %d\n"), regnum);
1968
1969 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1970 {
1971 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
1972 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1973 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1974 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1975 }
1976
1977 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1978 {
1979 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1980 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1981 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1983 }
1984
1985 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1986 {
1987 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
1988 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1989 regnum - FV0_REGNUM,
1990 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1991 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1992 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1994 }
1995
1996 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1997 {
1998 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1999 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2000 regnum - FV0_C_REGNUM,
2001 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2002 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2005 }
2006
2007 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2008 {
2009 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2010 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2011 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2012 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2013 }
2014
2015 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2016 {
2017 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2018 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2019 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2020 }
2021 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2022 /* This should work also for pseudoregs. */
2023 sh64_do_fp_register (gdbarch, file, frame, regnum);
2024 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2025 sh64_do_cr_c_register_info (file, frame, regnum);
2026 }
2027
2028 static void
2029 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2030 struct frame_info *frame, int regnum)
2031 {
2032 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2033 struct value_print_options opts;
2034
2035 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2036 print_spaces_filtered (15 - strlen (gdbarch_register_name
2037 (gdbarch, regnum)), file);
2038
2039 /* Get the data in raw format. */
2040 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
2041 {
2042 fprintf_filtered (file, "*value not available*\n");
2043 return;
2044 }
2045
2046 get_formatted_print_options (&opts, 'x');
2047 opts.deref_ref = 1;
2048 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2049 file, 0, NULL, &opts, current_language);
2050 fprintf_filtered (file, "\t");
2051 get_formatted_print_options (&opts, 0);
2052 opts.deref_ref = 1;
2053 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2054 file, 0, NULL, &opts, current_language);
2055 fprintf_filtered (file, "\n");
2056 }
2057
2058 static void
2059 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2060 struct frame_info *frame, int regnum)
2061 {
2062 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2063 + gdbarch_num_pseudo_regs (gdbarch))
2064 internal_error (__FILE__, __LINE__,
2065 _("Invalid register number %d\n"), regnum);
2066
2067 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2068 {
2069 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2070 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2071 else
2072 sh64_do_register (gdbarch, file, frame, regnum);
2073 }
2074
2075 else if (regnum < gdbarch_num_regs (gdbarch)
2076 + gdbarch_num_pseudo_regs (gdbarch))
2077 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2078 }
2079
2080 static void
2081 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2082 struct frame_info *frame, int regnum,
2083 int fpregs)
2084 {
2085 if (regnum != -1) /* Do one specified register. */
2086 {
2087 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2088 error (_("Not a valid register for the current processor type"));
2089
2090 sh64_print_register (gdbarch, file, frame, regnum);
2091 }
2092 else
2093 /* Do all (or most) registers. */
2094 {
2095 regnum = 0;
2096 while (regnum < gdbarch_num_regs (gdbarch))
2097 {
2098 /* If the register name is empty, it is undefined for this
2099 processor, so don't display anything. */
2100 if (gdbarch_register_name (gdbarch, regnum) == NULL
2101 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2102 {
2103 regnum++;
2104 continue;
2105 }
2106
2107 if (TYPE_CODE (register_type (gdbarch, regnum))
2108 == TYPE_CODE_FLT)
2109 {
2110 if (fpregs)
2111 {
2112 /* true for "INFO ALL-REGISTERS" command. */
2113 sh64_do_fp_register (gdbarch, file, frame, regnum);
2114 regnum ++;
2115 }
2116 else
2117 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2118 /* skip FP regs */
2119 }
2120 else
2121 {
2122 sh64_do_register (gdbarch, file, frame, regnum);
2123 regnum++;
2124 }
2125 }
2126
2127 if (fpregs)
2128 while (regnum < gdbarch_num_regs (gdbarch)
2129 + gdbarch_num_pseudo_regs (gdbarch))
2130 {
2131 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2132 regnum++;
2133 }
2134 }
2135 }
2136
2137 static void
2138 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2139 struct ui_file *file,
2140 struct frame_info *frame, int regnum,
2141 int fpregs)
2142 {
2143 if (regnum != -1) /* Do one specified register. */
2144 {
2145 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2146 error (_("Not a valid register for the current processor type"));
2147
2148 if (regnum >= 0 && regnum < R0_C_REGNUM)
2149 error (_("Not a valid register for the current processor mode."));
2150
2151 sh64_print_register (gdbarch, file, frame, regnum);
2152 }
2153 else
2154 /* Do all compact registers. */
2155 {
2156 regnum = R0_C_REGNUM;
2157 while (regnum < gdbarch_num_regs (gdbarch)
2158 + gdbarch_num_pseudo_regs (gdbarch))
2159 {
2160 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2161 regnum++;
2162 }
2163 }
2164 }
2165
2166 static void
2167 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2168 struct frame_info *frame, int regnum, int fpregs)
2169 {
2170 if (pc_is_isa32 (get_frame_pc (frame)))
2171 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2172 else
2173 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2174 }
2175
2176 static struct sh64_frame_cache *
2177 sh64_alloc_frame_cache (void)
2178 {
2179 struct sh64_frame_cache *cache;
2180 int i;
2181
2182 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2183
2184 /* Base address. */
2185 cache->base = 0;
2186 cache->saved_sp = 0;
2187 cache->sp_offset = 0;
2188 cache->pc = 0;
2189
2190 /* Frameless until proven otherwise. */
2191 cache->uses_fp = 0;
2192
2193 /* Saved registers. We initialize these to -1 since zero is a valid
2194 offset (that's where fp is supposed to be stored). */
2195 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2196 {
2197 cache->saved_regs[i] = -1;
2198 }
2199
2200 return cache;
2201 }
2202
2203 static struct sh64_frame_cache *
2204 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2205 {
2206 struct gdbarch *gdbarch;
2207 struct sh64_frame_cache *cache;
2208 CORE_ADDR current_pc;
2209 int i;
2210
2211 if (*this_cache)
2212 return (struct sh64_frame_cache *) *this_cache;
2213
2214 gdbarch = get_frame_arch (this_frame);
2215 cache = sh64_alloc_frame_cache ();
2216 *this_cache = cache;
2217
2218 current_pc = get_frame_pc (this_frame);
2219 cache->media_mode = pc_is_isa32 (current_pc);
2220
2221 /* In principle, for normal frames, fp holds the frame pointer,
2222 which holds the base address for the current stack frame.
2223 However, for functions that don't need it, the frame pointer is
2224 optional. For these "frameless" functions the frame pointer is
2225 actually the frame pointer of the calling frame. */
2226 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2227 if (cache->base == 0)
2228 return cache;
2229
2230 cache->pc = get_frame_func (this_frame);
2231 if (cache->pc != 0)
2232 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2233
2234 if (!cache->uses_fp)
2235 {
2236 /* We didn't find a valid frame, which means that CACHE->base
2237 currently holds the frame pointer for our calling frame. If
2238 we're at the start of a function, or somewhere half-way its
2239 prologue, the function's frame probably hasn't been fully
2240 setup yet. Try to reconstruct the base address for the stack
2241 frame by looking at the stack pointer. For truly "frameless"
2242 functions this might work too. */
2243 cache->base = get_frame_register_unsigned
2244 (this_frame, gdbarch_sp_regnum (gdbarch));
2245 }
2246
2247 /* Now that we have the base address for the stack frame we can
2248 calculate the value of sp in the calling frame. */
2249 cache->saved_sp = cache->base + cache->sp_offset;
2250
2251 /* Adjust all the saved registers such that they contain addresses
2252 instead of offsets. */
2253 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2254 if (cache->saved_regs[i] != -1)
2255 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2256
2257 return cache;
2258 }
2259
2260 static struct value *
2261 sh64_frame_prev_register (struct frame_info *this_frame,
2262 void **this_cache, int regnum)
2263 {
2264 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2265 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2266 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2267
2268 gdb_assert (regnum >= 0);
2269
2270 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2271 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2272
2273 /* The PC of the previous frame is stored in the PR register of
2274 the current frame. Frob regnum so that we pull the value from
2275 the correct place. */
2276 if (regnum == gdbarch_pc_regnum (gdbarch))
2277 regnum = PR_REGNUM;
2278
2279 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2280 {
2281 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2282 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2283 {
2284 CORE_ADDR val;
2285 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2286 4, byte_order);
2287 return frame_unwind_got_constant (this_frame, regnum, val);
2288 }
2289
2290 return frame_unwind_got_memory (this_frame, regnum,
2291 cache->saved_regs[regnum]);
2292 }
2293
2294 return frame_unwind_got_register (this_frame, regnum, regnum);
2295 }
2296
2297 static void
2298 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2299 struct frame_id *this_id)
2300 {
2301 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2302
2303 /* This marks the outermost frame. */
2304 if (cache->base == 0)
2305 return;
2306
2307 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2308 }
2309
2310 static const struct frame_unwind sh64_frame_unwind = {
2311 NORMAL_FRAME,
2312 default_frame_unwind_stop_reason,
2313 sh64_frame_this_id,
2314 sh64_frame_prev_register,
2315 NULL,
2316 default_frame_sniffer
2317 };
2318
2319 static CORE_ADDR
2320 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2321 {
2322 return frame_unwind_register_unsigned (next_frame,
2323 gdbarch_sp_regnum (gdbarch));
2324 }
2325
2326 static CORE_ADDR
2327 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2328 {
2329 return frame_unwind_register_unsigned (next_frame,
2330 gdbarch_pc_regnum (gdbarch));
2331 }
2332
2333 static struct frame_id
2334 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2335 {
2336 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2337 gdbarch_sp_regnum (gdbarch));
2338 return frame_id_build (sp, get_frame_pc (this_frame));
2339 }
2340
2341 static CORE_ADDR
2342 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2343 {
2344 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2345
2346 return cache->base;
2347 }
2348
2349 static const struct frame_base sh64_frame_base = {
2350 &sh64_frame_unwind,
2351 sh64_frame_base_address,
2352 sh64_frame_base_address,
2353 sh64_frame_base_address
2354 };
2355
2356
2357 struct gdbarch *
2358 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2359 {
2360 struct gdbarch *gdbarch;
2361 struct gdbarch_tdep *tdep;
2362
2363 /* If there is already a candidate, use it. */
2364 arches = gdbarch_list_lookup_by_info (arches, &info);
2365 if (arches != NULL)
2366 return arches->gdbarch;
2367
2368 /* None found, create a new architecture from the information
2369 provided. */
2370 tdep = XNEW (struct gdbarch_tdep);
2371 gdbarch = gdbarch_alloc (&info, tdep);
2372
2373 /* Determine the ABI */
2374 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2375 {
2376 /* If the ABI is the 64-bit one, it can only be sh-media. */
2377 tdep->sh_abi = SH_ABI_64;
2378 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2379 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2380 }
2381 else
2382 {
2383 /* If the ABI is the 32-bit one it could be either media or
2384 compact. */
2385 tdep->sh_abi = SH_ABI_32;
2386 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2387 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2388 }
2389
2390 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2391 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2392 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2393 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2394 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2395 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2396 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2397
2398 /* The number of real registers is the same whether we are in
2399 ISA16(compact) or ISA32(media). */
2400 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2401 set_gdbarch_sp_regnum (gdbarch, 15);
2402 set_gdbarch_pc_regnum (gdbarch, 64);
2403 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2404 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2405 + NUM_PSEUDO_REGS_SH_COMPACT);
2406
2407 set_gdbarch_register_name (gdbarch, sh64_register_name);
2408 set_gdbarch_register_type (gdbarch, sh64_register_type);
2409
2410 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2411 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2412
2413 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2414
2415 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2416 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2417
2418 set_gdbarch_return_value (gdbarch, sh64_return_value);
2419
2420 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2421 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2422
2423 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2424
2425 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2426
2427 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2428 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2429 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2430 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2431 frame_base_set_default (gdbarch, &sh64_frame_base);
2432
2433 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2434
2435 set_gdbarch_elf_make_msymbol_special (gdbarch,
2436 sh64_elf_make_msymbol_special);
2437
2438 /* Hook in ABI-specific overrides, if they have been registered. */
2439 gdbarch_init_osabi (info, gdbarch);
2440
2441 dwarf2_append_unwinders (gdbarch);
2442 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2443
2444 return gdbarch;
2445 }
This page took 0.08029 seconds and 4 git commands to generate.