doc: Fix substitute-path example
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
33
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
36
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
39
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
48
49 struct ext_elf32_fdpic_loadseg
50 {
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57 };
58
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66 };
67
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
72 {
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79 };
80
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88 };
89
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
98 {
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
128
129 if (nsegs <= 0)
130 return NULL;
131
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = xmalloc (int_ldmbuf_size);
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
173 }
174
175 xfree (ext_ldmbuf);
176 return int_ldmbuf;
177 }
178
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
181 typedef gdb_byte ext_ptr[4];
182
183 struct ext_elf32_fdpic_loadaddr
184 {
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187 };
188
189 struct ext_link_map
190 {
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201 };
202
203 /* Link map info to include in an allocated so_list entry. */
204
205 struct lm_info
206 {
207 /* The loadmap, digested into an easier to use form. */
208 struct int_elf32_fdpic_loadmap *map;
209 /* The GOT address for this link map entry. */
210 CORE_ADDR got_value;
211 /* The link map address, needed for frv_fetch_objfile_link_map(). */
212 CORE_ADDR lm_addr;
213
214 /* Cached dynamic symbol table and dynamic relocs initialized and
215 used only by find_canonical_descriptor_in_load_object().
216
217 Note: kevinb/2004-02-26: It appears that calls to
218 bfd_canonicalize_dynamic_reloc() will use the same symbols as
219 those supplied to the first call to this function. Therefore,
220 it's important to NOT free the asymbol ** data structure
221 supplied to the first call. Thus the caching of the dynamic
222 symbols (dyn_syms) is critical for correct operation. The
223 caching of the dynamic relocations could be dispensed with. */
224 asymbol **dyn_syms;
225 arelent **dyn_relocs;
226 int dyn_reloc_count; /* Number of dynamic relocs. */
227
228 };
229
230 /* The load map, got value, etc. are not available from the chain
231 of loaded shared objects. ``main_executable_lm_info'' provides
232 a way to get at this information so that it doesn't need to be
233 frequently recomputed. Initialized by frv_relocate_main_executable(). */
234 static struct lm_info *main_executable_lm_info;
235
236 static void frv_relocate_main_executable (void);
237 static CORE_ADDR main_got (void);
238 static int enable_break2 (void);
239
240 /* Implement the "open_symbol_file_object" target_so_ops method. */
241
242 static int
243 open_symbol_file_object (void *from_ttyp)
244 {
245 /* Unimplemented. */
246 return 0;
247 }
248
249 /* Cached value for lm_base(), below. */
250 static CORE_ADDR lm_base_cache = 0;
251
252 /* Link map address for main module. */
253 static CORE_ADDR main_lm_addr = 0;
254
255 /* Return the address from which the link map chain may be found. On
256 the FR-V, this may be found in a number of ways. Assuming that the
257 main executable has already been relocated, the easiest way to find
258 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
259 pointer to the start of the link map will be located at the word found
260 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
261 reserve area mandated by the ABI.) */
262
263 static CORE_ADDR
264 lm_base (void)
265 {
266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
267 struct bound_minimal_symbol got_sym;
268 CORE_ADDR addr;
269 gdb_byte buf[FRV_PTR_SIZE];
270
271 /* One of our assumptions is that the main executable has been relocated.
272 Bail out if this has not happened. (Note that post_create_inferior()
273 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
274 If we allow this to happen, lm_base_cache will be initialized with
275 a bogus value. */
276 if (main_executable_lm_info == 0)
277 return 0;
278
279 /* If we already have a cached value, return it. */
280 if (lm_base_cache)
281 return lm_base_cache;
282
283 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
284 symfile_objfile);
285 if (got_sym.minsym == 0)
286 {
287 if (solib_frv_debug)
288 fprintf_unfiltered (gdb_stdlog,
289 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
290 return 0;
291 }
292
293 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
294
295 if (solib_frv_debug)
296 fprintf_unfiltered (gdb_stdlog,
297 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
298 hex_string_custom (addr, 8));
299
300 if (target_read_memory (addr, buf, sizeof buf) != 0)
301 return 0;
302 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
303
304 if (solib_frv_debug)
305 fprintf_unfiltered (gdb_stdlog,
306 "lm_base: lm_base_cache = %s\n",
307 hex_string_custom (lm_base_cache, 8));
308
309 return lm_base_cache;
310 }
311
312
313 /* Implement the "current_sos" target_so_ops method. */
314
315 static struct so_list *
316 frv_current_sos (void)
317 {
318 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
319 CORE_ADDR lm_addr, mgot;
320 struct so_list *sos_head = NULL;
321 struct so_list **sos_next_ptr = &sos_head;
322
323 /* Make sure that the main executable has been relocated. This is
324 required in order to find the address of the global offset table,
325 which in turn is used to find the link map info. (See lm_base()
326 for details.)
327
328 Note that the relocation of the main executable is also performed
329 by solib_create_inferior_hook(), however, in the case of core
330 files, this hook is called too late in order to be of benefit to
331 solib_add. solib_add eventually calls this this function,
332 frv_current_sos, and also precedes the call to
333 solib_create_inferior_hook(). (See post_create_inferior() in
334 infcmd.c.) */
335 if (main_executable_lm_info == 0 && core_bfd != NULL)
336 frv_relocate_main_executable ();
337
338 /* Fetch the GOT corresponding to the main executable. */
339 mgot = main_got ();
340
341 /* Locate the address of the first link map struct. */
342 lm_addr = lm_base ();
343
344 /* We have at least one link map entry. Fetch the lot of them,
345 building the solist chain. */
346 while (lm_addr)
347 {
348 struct ext_link_map lm_buf;
349 CORE_ADDR got_addr;
350
351 if (solib_frv_debug)
352 fprintf_unfiltered (gdb_stdlog,
353 "current_sos: reading link_map entry at %s\n",
354 hex_string_custom (lm_addr, 8));
355
356 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
357 sizeof (lm_buf)) != 0)
358 {
359 warning (_("frv_current_sos: Unable to read link map entry. "
360 "Shared object chain may be incomplete."));
361 break;
362 }
363
364 got_addr
365 = extract_unsigned_integer (lm_buf.l_addr.got_value,
366 sizeof (lm_buf.l_addr.got_value),
367 byte_order);
368 /* If the got_addr is the same as mgotr, then we're looking at the
369 entry for the main executable. By convention, we don't include
370 this in the list of shared objects. */
371 if (got_addr != mgot)
372 {
373 int errcode;
374 char *name_buf;
375 struct int_elf32_fdpic_loadmap *loadmap;
376 struct so_list *sop;
377 CORE_ADDR addr;
378
379 /* Fetch the load map address. */
380 addr = extract_unsigned_integer (lm_buf.l_addr.map,
381 sizeof lm_buf.l_addr.map,
382 byte_order);
383 loadmap = fetch_loadmap (addr);
384 if (loadmap == NULL)
385 {
386 warning (_("frv_current_sos: Unable to fetch load map. "
387 "Shared object chain may be incomplete."));
388 break;
389 }
390
391 sop = XCNEW (struct so_list);
392 sop->lm_info = XCNEW (struct lm_info);
393 sop->lm_info->map = loadmap;
394 sop->lm_info->got_value = got_addr;
395 sop->lm_info->lm_addr = lm_addr;
396 /* Fetch the name. */
397 addr = extract_unsigned_integer (lm_buf.l_name,
398 sizeof (lm_buf.l_name),
399 byte_order);
400 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
401 &errcode);
402
403 if (solib_frv_debug)
404 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
405 name_buf);
406
407 if (errcode != 0)
408 warning (_("Can't read pathname for link map entry: %s."),
409 safe_strerror (errcode));
410 else
411 {
412 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
413 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
414 xfree (name_buf);
415 strcpy (sop->so_original_name, sop->so_name);
416 }
417
418 *sos_next_ptr = sop;
419 sos_next_ptr = &sop->next;
420 }
421 else
422 {
423 main_lm_addr = lm_addr;
424 }
425
426 lm_addr = extract_unsigned_integer (lm_buf.l_next,
427 sizeof (lm_buf.l_next), byte_order);
428 }
429
430 enable_break2 ();
431
432 return sos_head;
433 }
434
435
436 /* Return 1 if PC lies in the dynamic symbol resolution code of the
437 run time loader. */
438
439 static CORE_ADDR interp_text_sect_low;
440 static CORE_ADDR interp_text_sect_high;
441 static CORE_ADDR interp_plt_sect_low;
442 static CORE_ADDR interp_plt_sect_high;
443
444 static int
445 frv_in_dynsym_resolve_code (CORE_ADDR pc)
446 {
447 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
448 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
449 || in_plt_section (pc));
450 }
451
452 /* Given a loadmap and an address, return the displacement needed
453 to relocate the address. */
454
455 static CORE_ADDR
456 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
457 CORE_ADDR addr)
458 {
459 int seg;
460
461 for (seg = 0; seg < map->nsegs; seg++)
462 {
463 if (map->segs[seg].p_vaddr <= addr
464 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
465 {
466 return map->segs[seg].addr - map->segs[seg].p_vaddr;
467 }
468 }
469
470 return 0;
471 }
472
473 /* Print a warning about being unable to set the dynamic linker
474 breakpoint. */
475
476 static void
477 enable_break_failure_warning (void)
478 {
479 warning (_("Unable to find dynamic linker breakpoint function.\n"
480 "GDB will be unable to debug shared library initializers\n"
481 "and track explicitly loaded dynamic code."));
482 }
483
484 /* Helper function for gdb_bfd_lookup_symbol. */
485
486 static int
487 cmp_name (asymbol *sym, void *data)
488 {
489 return (strcmp (sym->name, (const char *) data) == 0);
490 }
491
492 /* Arrange for dynamic linker to hit breakpoint.
493
494 The dynamic linkers has, as part of its debugger interface, support
495 for arranging for the inferior to hit a breakpoint after mapping in
496 the shared libraries. This function enables that breakpoint.
497
498 On the FR-V, using the shared library (FDPIC) ABI, the symbol
499 _dl_debug_addr points to the r_debug struct which contains
500 a field called r_brk. r_brk is the address of the function
501 descriptor upon which a breakpoint must be placed. Being a
502 function descriptor, we must extract the entry point in order
503 to set the breakpoint.
504
505 Our strategy will be to get the .interp section from the
506 executable. This section will provide us with the name of the
507 interpreter. We'll open the interpreter and then look up
508 the address of _dl_debug_addr. We then relocate this address
509 using the interpreter's loadmap. Once the relocated address
510 is known, we fetch the value (address) corresponding to r_brk
511 and then use that value to fetch the entry point of the function
512 we're interested in. */
513
514 static int enable_break2_done = 0;
515
516 static int
517 enable_break2 (void)
518 {
519 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
520 int success = 0;
521 char **bkpt_namep;
522 asection *interp_sect;
523
524 if (enable_break2_done)
525 return 1;
526
527 interp_text_sect_low = interp_text_sect_high = 0;
528 interp_plt_sect_low = interp_plt_sect_high = 0;
529
530 /* Find the .interp section; if not found, warn the user and drop
531 into the old breakpoint at symbol code. */
532 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
533 if (interp_sect)
534 {
535 unsigned int interp_sect_size;
536 char *buf;
537 bfd *tmp_bfd = NULL;
538 int status;
539 CORE_ADDR addr, interp_loadmap_addr;
540 gdb_byte addr_buf[FRV_PTR_SIZE];
541 struct int_elf32_fdpic_loadmap *ldm;
542
543 /* Read the contents of the .interp section into a local buffer;
544 the contents specify the dynamic linker this program uses. */
545 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
546 buf = alloca (interp_sect_size);
547 bfd_get_section_contents (exec_bfd, interp_sect,
548 buf, 0, interp_sect_size);
549
550 /* Now we need to figure out where the dynamic linker was
551 loaded so that we can load its symbols and place a breakpoint
552 in the dynamic linker itself.
553
554 This address is stored on the stack. However, I've been unable
555 to find any magic formula to find it for Solaris (appears to
556 be trivial on GNU/Linux). Therefore, we have to try an alternate
557 mechanism to find the dynamic linker's base address. */
558
559 TRY
560 {
561 tmp_bfd = solib_bfd_open (buf);
562 }
563 CATCH (ex, RETURN_MASK_ALL)
564 {
565 }
566 END_CATCH
567
568 if (tmp_bfd == NULL)
569 {
570 enable_break_failure_warning ();
571 return 0;
572 }
573
574 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
575 &interp_loadmap_addr, 0);
576 if (status < 0)
577 {
578 warning (_("Unable to determine dynamic linker loadmap address."));
579 enable_break_failure_warning ();
580 gdb_bfd_unref (tmp_bfd);
581 return 0;
582 }
583
584 if (solib_frv_debug)
585 fprintf_unfiltered (gdb_stdlog,
586 "enable_break: interp_loadmap_addr = %s\n",
587 hex_string_custom (interp_loadmap_addr, 8));
588
589 ldm = fetch_loadmap (interp_loadmap_addr);
590 if (ldm == NULL)
591 {
592 warning (_("Unable to load dynamic linker loadmap at address %s."),
593 hex_string_custom (interp_loadmap_addr, 8));
594 enable_break_failure_warning ();
595 gdb_bfd_unref (tmp_bfd);
596 return 0;
597 }
598
599 /* Record the relocated start and end address of the dynamic linker
600 text and plt section for svr4_in_dynsym_resolve_code. */
601 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
602 if (interp_sect)
603 {
604 interp_text_sect_low
605 = bfd_section_vma (tmp_bfd, interp_sect);
606 interp_text_sect_low
607 += displacement_from_map (ldm, interp_text_sect_low);
608 interp_text_sect_high
609 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
610 }
611 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
612 if (interp_sect)
613 {
614 interp_plt_sect_low =
615 bfd_section_vma (tmp_bfd, interp_sect);
616 interp_plt_sect_low
617 += displacement_from_map (ldm, interp_plt_sect_low);
618 interp_plt_sect_high =
619 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
620 }
621
622 addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name, "_dl_debug_addr");
623
624 if (addr == 0)
625 {
626 warning (_("Could not find symbol _dl_debug_addr "
627 "in dynamic linker"));
628 enable_break_failure_warning ();
629 gdb_bfd_unref (tmp_bfd);
630 return 0;
631 }
632
633 if (solib_frv_debug)
634 fprintf_unfiltered (gdb_stdlog,
635 "enable_break: _dl_debug_addr "
636 "(prior to relocation) = %s\n",
637 hex_string_custom (addr, 8));
638
639 addr += displacement_from_map (ldm, addr);
640
641 if (solib_frv_debug)
642 fprintf_unfiltered (gdb_stdlog,
643 "enable_break: _dl_debug_addr "
644 "(after relocation) = %s\n",
645 hex_string_custom (addr, 8));
646
647 /* Fetch the address of the r_debug struct. */
648 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
649 {
650 warning (_("Unable to fetch contents of _dl_debug_addr "
651 "(at address %s) from dynamic linker"),
652 hex_string_custom (addr, 8));
653 }
654 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
655
656 if (solib_frv_debug)
657 fprintf_unfiltered (gdb_stdlog,
658 "enable_break: _dl_debug_addr[0..3] = %s\n",
659 hex_string_custom (addr, 8));
660
661 /* If it's zero, then the ldso hasn't initialized yet, and so
662 there are no shared libs yet loaded. */
663 if (addr == 0)
664 {
665 if (solib_frv_debug)
666 fprintf_unfiltered (gdb_stdlog,
667 "enable_break: ldso not yet initialized\n");
668 /* Do not warn, but mark to run again. */
669 return 0;
670 }
671
672 /* Fetch the r_brk field. It's 8 bytes from the start of
673 _dl_debug_addr. */
674 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
675 {
676 warning (_("Unable to fetch _dl_debug_addr->r_brk "
677 "(at address %s) from dynamic linker"),
678 hex_string_custom (addr + 8, 8));
679 enable_break_failure_warning ();
680 gdb_bfd_unref (tmp_bfd);
681 return 0;
682 }
683 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
684
685 /* Now fetch the function entry point. */
686 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
687 {
688 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
689 "(at address %s) from dynamic linker"),
690 hex_string_custom (addr, 8));
691 enable_break_failure_warning ();
692 gdb_bfd_unref (tmp_bfd);
693 return 0;
694 }
695 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
696
697 /* We're done with the temporary bfd. */
698 gdb_bfd_unref (tmp_bfd);
699
700 /* We're also done with the loadmap. */
701 xfree (ldm);
702
703 /* Remove all the solib event breakpoints. Their addresses
704 may have changed since the last time we ran the program. */
705 remove_solib_event_breakpoints ();
706
707 /* Now (finally!) create the solib breakpoint. */
708 create_solib_event_breakpoint (target_gdbarch (), addr);
709
710 enable_break2_done = 1;
711
712 return 1;
713 }
714
715 /* Tell the user we couldn't set a dynamic linker breakpoint. */
716 enable_break_failure_warning ();
717
718 /* Failure return. */
719 return 0;
720 }
721
722 static int
723 enable_break (void)
724 {
725 asection *interp_sect;
726 CORE_ADDR entry_point;
727
728 if (symfile_objfile == NULL)
729 {
730 if (solib_frv_debug)
731 fprintf_unfiltered (gdb_stdlog,
732 "enable_break: No symbol file found.\n");
733 return 0;
734 }
735
736 if (!entry_point_address_query (&entry_point))
737 {
738 if (solib_frv_debug)
739 fprintf_unfiltered (gdb_stdlog,
740 "enable_break: Symbol file has no entry point.\n");
741 return 0;
742 }
743
744 /* Check for the presence of a .interp section. If there is no
745 such section, the executable is statically linked. */
746
747 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
748
749 if (interp_sect == NULL)
750 {
751 if (solib_frv_debug)
752 fprintf_unfiltered (gdb_stdlog,
753 "enable_break: No .interp section found.\n");
754 return 0;
755 }
756
757 create_solib_event_breakpoint (target_gdbarch (), entry_point);
758
759 if (solib_frv_debug)
760 fprintf_unfiltered (gdb_stdlog,
761 "enable_break: solib event breakpoint "
762 "placed at entry point: %s\n",
763 hex_string_custom (entry_point, 8));
764 return 1;
765 }
766
767 /* Implement the "special_symbol_handling" target_so_ops method. */
768
769 static void
770 frv_special_symbol_handling (void)
771 {
772 /* Nothing needed for FRV. */
773 }
774
775 static void
776 frv_relocate_main_executable (void)
777 {
778 int status;
779 CORE_ADDR exec_addr, interp_addr;
780 struct int_elf32_fdpic_loadmap *ldm;
781 struct cleanup *old_chain;
782 struct section_offsets *new_offsets;
783 int changed;
784 struct obj_section *osect;
785
786 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
787 &interp_addr, &exec_addr);
788
789 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
790 {
791 /* Not using FDPIC ABI, so do nothing. */
792 return;
793 }
794
795 /* Fetch the loadmap located at ``exec_addr''. */
796 ldm = fetch_loadmap (exec_addr);
797 if (ldm == NULL)
798 error (_("Unable to load the executable's loadmap."));
799
800 if (main_executable_lm_info)
801 xfree (main_executable_lm_info);
802 main_executable_lm_info = XCNEW (struct lm_info);
803 main_executable_lm_info->map = ldm;
804
805 new_offsets = xcalloc (symfile_objfile->num_sections,
806 sizeof (struct section_offsets));
807 old_chain = make_cleanup (xfree, new_offsets);
808 changed = 0;
809
810 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
811 {
812 CORE_ADDR orig_addr, addr, offset;
813 int osect_idx;
814 int seg;
815
816 osect_idx = osect - symfile_objfile->sections;
817
818 /* Current address of section. */
819 addr = obj_section_addr (osect);
820 /* Offset from where this section started. */
821 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
822 /* Original address prior to any past relocations. */
823 orig_addr = addr - offset;
824
825 for (seg = 0; seg < ldm->nsegs; seg++)
826 {
827 if (ldm->segs[seg].p_vaddr <= orig_addr
828 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
829 {
830 new_offsets->offsets[osect_idx]
831 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
832
833 if (new_offsets->offsets[osect_idx] != offset)
834 changed = 1;
835 break;
836 }
837 }
838 }
839
840 if (changed)
841 objfile_relocate (symfile_objfile, new_offsets);
842
843 do_cleanups (old_chain);
844
845 /* Now that symfile_objfile has been relocated, we can compute the
846 GOT value and stash it away. */
847 main_executable_lm_info->got_value = main_got ();
848 }
849
850 /* Implement the "create_inferior_hook" target_solib_ops method.
851
852 For the FR-V shared library ABI (FDPIC), the main executable needs
853 to be relocated. The shared library breakpoints also need to be
854 enabled. */
855
856 static void
857 frv_solib_create_inferior_hook (int from_tty)
858 {
859 /* Relocate main executable. */
860 frv_relocate_main_executable ();
861
862 /* Enable shared library breakpoints. */
863 if (!enable_break ())
864 {
865 warning (_("shared library handler failed to enable breakpoint"));
866 return;
867 }
868 }
869
870 static void
871 frv_clear_solib (void)
872 {
873 lm_base_cache = 0;
874 enable_break2_done = 0;
875 main_lm_addr = 0;
876 if (main_executable_lm_info != 0)
877 {
878 xfree (main_executable_lm_info->map);
879 xfree (main_executable_lm_info->dyn_syms);
880 xfree (main_executable_lm_info->dyn_relocs);
881 xfree (main_executable_lm_info);
882 main_executable_lm_info = 0;
883 }
884 }
885
886 static void
887 frv_free_so (struct so_list *so)
888 {
889 xfree (so->lm_info->map);
890 xfree (so->lm_info->dyn_syms);
891 xfree (so->lm_info->dyn_relocs);
892 xfree (so->lm_info);
893 }
894
895 static void
896 frv_relocate_section_addresses (struct so_list *so,
897 struct target_section *sec)
898 {
899 int seg;
900 struct int_elf32_fdpic_loadmap *map;
901
902 map = so->lm_info->map;
903
904 for (seg = 0; seg < map->nsegs; seg++)
905 {
906 if (map->segs[seg].p_vaddr <= sec->addr
907 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
908 {
909 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
910
911 sec->addr += displ;
912 sec->endaddr += displ;
913 break;
914 }
915 }
916 }
917
918 /* Return the GOT address associated with the main executable. Return
919 0 if it can't be found. */
920
921 static CORE_ADDR
922 main_got (void)
923 {
924 struct bound_minimal_symbol got_sym;
925
926 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
927 NULL, symfile_objfile);
928 if (got_sym.minsym == 0)
929 return 0;
930
931 return BMSYMBOL_VALUE_ADDRESS (got_sym);
932 }
933
934 /* Find the global pointer for the given function address ADDR. */
935
936 CORE_ADDR
937 frv_fdpic_find_global_pointer (CORE_ADDR addr)
938 {
939 struct so_list *so;
940
941 so = master_so_list ();
942 while (so)
943 {
944 int seg;
945 struct int_elf32_fdpic_loadmap *map;
946
947 map = so->lm_info->map;
948
949 for (seg = 0; seg < map->nsegs; seg++)
950 {
951 if (map->segs[seg].addr <= addr
952 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
953 return so->lm_info->got_value;
954 }
955
956 so = so->next;
957 }
958
959 /* Didn't find it in any of the shared objects. So assume it's in the
960 main executable. */
961 return main_got ();
962 }
963
964 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
965 static CORE_ADDR find_canonical_descriptor_in_load_object
966 (CORE_ADDR, CORE_ADDR, const char *, bfd *, struct lm_info *);
967
968 /* Given a function entry point, attempt to find the canonical descriptor
969 associated with that entry point. Return 0 if no canonical descriptor
970 could be found. */
971
972 CORE_ADDR
973 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
974 {
975 const char *name;
976 CORE_ADDR addr;
977 CORE_ADDR got_value;
978 struct int_elf32_fdpic_loadmap *ldm = 0;
979 struct symbol *sym;
980
981 /* Fetch the corresponding global pointer for the entry point. */
982 got_value = frv_fdpic_find_global_pointer (entry_point);
983
984 /* Attempt to find the name of the function. If the name is available,
985 it'll be used as an aid in finding matching functions in the dynamic
986 symbol table. */
987 sym = find_pc_function (entry_point);
988 if (sym == 0)
989 name = 0;
990 else
991 name = SYMBOL_LINKAGE_NAME (sym);
992
993 /* Check the main executable. */
994 addr = find_canonical_descriptor_in_load_object
995 (entry_point, got_value, name, symfile_objfile->obfd,
996 main_executable_lm_info);
997
998 /* If descriptor not found via main executable, check each load object
999 in list of shared objects. */
1000 if (addr == 0)
1001 {
1002 struct so_list *so;
1003
1004 so = master_so_list ();
1005 while (so)
1006 {
1007 addr = find_canonical_descriptor_in_load_object
1008 (entry_point, got_value, name, so->abfd, so->lm_info);
1009
1010 if (addr != 0)
1011 break;
1012
1013 so = so->next;
1014 }
1015 }
1016
1017 return addr;
1018 }
1019
1020 static CORE_ADDR
1021 find_canonical_descriptor_in_load_object
1022 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
1023 struct lm_info *lm)
1024 {
1025 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1026 arelent *rel;
1027 unsigned int i;
1028 CORE_ADDR addr = 0;
1029
1030 /* Nothing to do if no bfd. */
1031 if (abfd == 0)
1032 return 0;
1033
1034 /* Nothing to do if no link map. */
1035 if (lm == 0)
1036 return 0;
1037
1038 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1039 (More about this later.) But in order to fetch the relocs, we
1040 need to first fetch the dynamic symbols. These symbols need to
1041 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1042 works. (See the comments in the declaration of struct lm_info
1043 for more information.) */
1044 if (lm->dyn_syms == NULL)
1045 {
1046 long storage_needed;
1047 unsigned int number_of_symbols;
1048
1049 /* Determine amount of space needed to hold the dynamic symbol table. */
1050 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1051
1052 /* If there are no dynamic symbols, there's nothing to do. */
1053 if (storage_needed <= 0)
1054 return 0;
1055
1056 /* Allocate space for the dynamic symbol table. */
1057 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1058
1059 /* Fetch the dynamic symbol table. */
1060 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1061
1062 if (number_of_symbols == 0)
1063 return 0;
1064 }
1065
1066 /* Fetch the dynamic relocations if not already cached. */
1067 if (lm->dyn_relocs == NULL)
1068 {
1069 long storage_needed;
1070
1071 /* Determine amount of space needed to hold the dynamic relocs. */
1072 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1073
1074 /* Bail out if there are no dynamic relocs. */
1075 if (storage_needed <= 0)
1076 return 0;
1077
1078 /* Allocate space for the relocs. */
1079 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1080
1081 /* Fetch the dynamic relocs. */
1082 lm->dyn_reloc_count
1083 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1084 }
1085
1086 /* Search the dynamic relocs. */
1087 for (i = 0; i < lm->dyn_reloc_count; i++)
1088 {
1089 rel = lm->dyn_relocs[i];
1090
1091 /* Relocs of interest are those which meet the following
1092 criteria:
1093
1094 - the names match (assuming the caller could provide
1095 a name which matches ``entry_point'').
1096 - the relocation type must be R_FRV_FUNCDESC. Relocs
1097 of this type are used (by the dynamic linker) to
1098 look up the address of a canonical descriptor (allocating
1099 it if need be) and initializing the GOT entry referred
1100 to by the offset to the address of the descriptor.
1101
1102 These relocs of interest may be used to obtain a
1103 candidate descriptor by first adjusting the reloc's
1104 address according to the link map and then dereferencing
1105 this address (which is a GOT entry) to obtain a descriptor
1106 address. */
1107 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1108 && rel->howto->type == R_FRV_FUNCDESC)
1109 {
1110 gdb_byte buf [FRV_PTR_SIZE];
1111
1112 /* Compute address of address of candidate descriptor. */
1113 addr = rel->address + displacement_from_map (lm->map, rel->address);
1114
1115 /* Fetch address of candidate descriptor. */
1116 if (target_read_memory (addr, buf, sizeof buf) != 0)
1117 continue;
1118 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1119
1120 /* Check for matching entry point. */
1121 if (target_read_memory (addr, buf, sizeof buf) != 0)
1122 continue;
1123 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1124 != entry_point)
1125 continue;
1126
1127 /* Check for matching got value. */
1128 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1129 continue;
1130 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1131 != got_value)
1132 continue;
1133
1134 /* Match was successful! Exit loop. */
1135 break;
1136 }
1137 }
1138
1139 return addr;
1140 }
1141
1142 /* Given an objfile, return the address of its link map. This value is
1143 needed for TLS support. */
1144 CORE_ADDR
1145 frv_fetch_objfile_link_map (struct objfile *objfile)
1146 {
1147 struct so_list *so;
1148
1149 /* Cause frv_current_sos() to be run if it hasn't been already. */
1150 if (main_lm_addr == 0)
1151 solib_add (0, 0, 0, 1);
1152
1153 /* frv_current_sos() will set main_lm_addr for the main executable. */
1154 if (objfile == symfile_objfile)
1155 return main_lm_addr;
1156
1157 /* The other link map addresses may be found by examining the list
1158 of shared libraries. */
1159 for (so = master_so_list (); so; so = so->next)
1160 {
1161 if (so->objfile == objfile)
1162 return so->lm_info->lm_addr;
1163 }
1164
1165 /* Not found! */
1166 return 0;
1167 }
1168
1169 struct target_so_ops frv_so_ops;
1170
1171 /* Provide a prototype to silence -Wmissing-prototypes. */
1172 extern initialize_file_ftype _initialize_frv_solib;
1173
1174 void
1175 _initialize_frv_solib (void)
1176 {
1177 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1178 frv_so_ops.free_so = frv_free_so;
1179 frv_so_ops.clear_solib = frv_clear_solib;
1180 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1181 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1182 frv_so_ops.current_sos = frv_current_sos;
1183 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1184 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1185 frv_so_ops.bfd_open = solib_bfd_open;
1186
1187 /* Debug this file's internals. */
1188 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1189 &solib_frv_debug, _("\
1190 Set internal debugging of shared library code for FR-V."), _("\
1191 Show internal debugging of shared library code for FR-V."), _("\
1192 When non-zero, FR-V solib specific internal debugging is enabled."),
1193 NULL,
1194 NULL, /* FIXME: i18n: */
1195 &setdebuglist, &showdebuglist);
1196 }
This page took 0.053673 seconds and 4 git commands to generate.