1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "gdb_string.h"
33 #include "exceptions.h"
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug
;
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE
= 4 };
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half
[2];
47 typedef gdb_byte ext_Elf32_Addr
[4];
48 typedef gdb_byte ext_Elf32_Word
[4];
50 struct ext_elf32_fdpic_loadseg
52 /* Core address to which the segment is mapped. */
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr
;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz
;
60 struct ext_elf32_fdpic_loadmap
{
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version
;
63 /* Number of segments in this map. */
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs
[1 /* nsegs, actually */];
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
74 /* Core address to which the segment is mapped. */
76 /* VMA recorded in the program header. */
78 /* Size of this segment in memory. */
82 struct int_elf32_fdpic_loadmap
{
83 /* Protocol version number, must be zero. */
85 /* Number of segments in this map. */
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs
[1 /* nsegs, actually */];
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
97 static struct int_elf32_fdpic_loadmap
*
98 fetch_loadmap (CORE_ADDR ldmaddr
)
100 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch
);
101 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial
;
102 struct ext_elf32_fdpic_loadmap
*ext_ldmbuf
;
103 struct int_elf32_fdpic_loadmap
*int_ldmbuf
;
104 int ext_ldmbuf_size
, int_ldmbuf_size
;
105 int version
, seg
, nsegs
;
107 /* Fetch initial portion of the loadmap. */
108 if (target_read_memory (ldmaddr
, (gdb_byte
*) &ext_ldmbuf_partial
,
109 sizeof ext_ldmbuf_partial
))
111 /* Problem reading the target's memory. */
115 /* Extract the version. */
116 version
= extract_unsigned_integer (ext_ldmbuf_partial
.version
,
117 sizeof ext_ldmbuf_partial
.version
,
121 /* We only handle version 0. */
125 /* Extract the number of segments. */
126 nsegs
= extract_unsigned_integer (ext_ldmbuf_partial
.nsegs
,
127 sizeof ext_ldmbuf_partial
.nsegs
,
133 /* Allocate space for the complete (external) loadmap. */
134 ext_ldmbuf_size
= sizeof (struct ext_elf32_fdpic_loadmap
)
135 + (nsegs
- 1) * sizeof (struct ext_elf32_fdpic_loadseg
);
136 ext_ldmbuf
= xmalloc (ext_ldmbuf_size
);
138 /* Copy over the portion of the loadmap that's already been read. */
139 memcpy (ext_ldmbuf
, &ext_ldmbuf_partial
, sizeof ext_ldmbuf_partial
);
141 /* Read the rest of the loadmap from the target. */
142 if (target_read_memory (ldmaddr
+ sizeof ext_ldmbuf_partial
,
143 (gdb_byte
*) ext_ldmbuf
+ sizeof ext_ldmbuf_partial
,
144 ext_ldmbuf_size
- sizeof ext_ldmbuf_partial
))
146 /* Couldn't read rest of the loadmap. */
151 /* Allocate space into which to put information extract from the
152 external loadsegs. I.e, allocate the internal loadsegs. */
153 int_ldmbuf_size
= sizeof (struct int_elf32_fdpic_loadmap
)
154 + (nsegs
- 1) * sizeof (struct int_elf32_fdpic_loadseg
);
155 int_ldmbuf
= xmalloc (int_ldmbuf_size
);
157 /* Place extracted information in internal structs. */
158 int_ldmbuf
->version
= version
;
159 int_ldmbuf
->nsegs
= nsegs
;
160 for (seg
= 0; seg
< nsegs
; seg
++)
162 int_ldmbuf
->segs
[seg
].addr
163 = extract_unsigned_integer (ext_ldmbuf
->segs
[seg
].addr
,
164 sizeof (ext_ldmbuf
->segs
[seg
].addr
),
166 int_ldmbuf
->segs
[seg
].p_vaddr
167 = extract_unsigned_integer (ext_ldmbuf
->segs
[seg
].p_vaddr
,
168 sizeof (ext_ldmbuf
->segs
[seg
].p_vaddr
),
170 int_ldmbuf
->segs
[seg
].p_memsz
171 = extract_unsigned_integer (ext_ldmbuf
->segs
[seg
].p_memsz
,
172 sizeof (ext_ldmbuf
->segs
[seg
].p_memsz
),
180 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
182 typedef gdb_byte ext_ptr
[4];
184 struct ext_elf32_fdpic_loadaddr
186 ext_ptr map
; /* struct elf32_fdpic_loadmap *map; */
187 ext_ptr got_value
; /* void *got_value; */
192 struct ext_elf32_fdpic_loadaddr l_addr
;
194 /* Absolute file name object was found in. */
195 ext_ptr l_name
; /* char *l_name; */
197 /* Dynamic section of the shared object. */
198 ext_ptr l_ld
; /* ElfW(Dyn) *l_ld; */
200 /* Chain of loaded objects. */
201 ext_ptr l_next
, l_prev
; /* struct link_map *l_next, *l_prev; */
204 /* Link map info to include in an allocated so_list entry */
208 /* The loadmap, digested into an easier to use form. */
209 struct int_elf32_fdpic_loadmap
*map
;
210 /* The GOT address for this link map entry. */
212 /* The link map address, needed for frv_fetch_objfile_link_map(). */
215 /* Cached dynamic symbol table and dynamic relocs initialized and
216 used only by find_canonical_descriptor_in_load_object().
218 Note: kevinb/2004-02-26: It appears that calls to
219 bfd_canonicalize_dynamic_reloc() will use the same symbols as
220 those supplied to the first call to this function. Therefore,
221 it's important to NOT free the asymbol ** data structure
222 supplied to the first call. Thus the caching of the dynamic
223 symbols (dyn_syms) is critical for correct operation. The
224 caching of the dynamic relocations could be dispensed with. */
226 arelent
**dyn_relocs
;
227 int dyn_reloc_count
; /* number of dynamic relocs. */
231 /* The load map, got value, etc. are not available from the chain
232 of loaded shared objects. ``main_executable_lm_info'' provides
233 a way to get at this information so that it doesn't need to be
234 frequently recomputed. Initialized by frv_relocate_main_executable(). */
235 static struct lm_info
*main_executable_lm_info
;
237 static void frv_relocate_main_executable (void);
238 static CORE_ADDR
main_got (void);
239 static int enable_break2 (void);
245 bfd_lookup_symbol -- lookup the value for a specific symbol
249 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
253 An expensive way to lookup the value of a single symbol for
254 bfd's that are only temporary anyway. This is used by the
255 shared library support to find the address of the debugger
256 interface structures in the shared library.
258 Note that 0 is specifically allowed as an error return (no
263 bfd_lookup_symbol (bfd
*abfd
, char *symname
)
267 asymbol
**symbol_table
;
268 unsigned int number_of_symbols
;
270 struct cleanup
*back_to
;
271 CORE_ADDR symaddr
= 0;
273 storage_needed
= bfd_get_symtab_upper_bound (abfd
);
275 if (storage_needed
> 0)
277 symbol_table
= (asymbol
**) xmalloc (storage_needed
);
278 back_to
= make_cleanup (xfree
, symbol_table
);
279 number_of_symbols
= bfd_canonicalize_symtab (abfd
, symbol_table
);
281 for (i
= 0; i
< number_of_symbols
; i
++)
283 sym
= *symbol_table
++;
284 if (strcmp (sym
->name
, symname
) == 0)
286 /* Bfd symbols are section relative. */
287 symaddr
= sym
->value
+ sym
->section
->vma
;
291 do_cleanups (back_to
);
297 /* Look for the symbol in the dynamic string table too. */
299 storage_needed
= bfd_get_dynamic_symtab_upper_bound (abfd
);
301 if (storage_needed
> 0)
303 symbol_table
= (asymbol
**) xmalloc (storage_needed
);
304 back_to
= make_cleanup (xfree
, symbol_table
);
305 number_of_symbols
= bfd_canonicalize_dynamic_symtab (abfd
, symbol_table
);
307 for (i
= 0; i
< number_of_symbols
; i
++)
309 sym
= *symbol_table
++;
310 if (strcmp (sym
->name
, symname
) == 0)
312 /* Bfd symbols are section relative. */
313 symaddr
= sym
->value
+ sym
->section
->vma
;
317 do_cleanups (back_to
);
328 open_symbol_file_object
332 void open_symbol_file_object (void *from_tty)
336 If no open symbol file, attempt to locate and open the main symbol
339 If FROM_TTYP dereferences to a non-zero integer, allow messages to
340 be printed. This parameter is a pointer rather than an int because
341 open_symbol_file_object() is called via catch_errors() and
342 catch_errors() requires a pointer argument. */
345 open_symbol_file_object (void *from_ttyp
)
351 /* Cached value for lm_base(), below. */
352 static CORE_ADDR lm_base_cache
= 0;
354 /* Link map address for main module. */
355 static CORE_ADDR main_lm_addr
= 0;
357 /* Return the address from which the link map chain may be found. On
358 the FR-V, this may be found in a number of ways. Assuming that the
359 main executable has already been relocated, the easiest way to find
360 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
361 pointer to the start of the link map will be located at the word found
362 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
363 reserve area mandated by the ABI.) */
368 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch
);
369 struct minimal_symbol
*got_sym
;
371 gdb_byte buf
[FRV_PTR_SIZE
];
373 /* One of our assumptions is that the main executable has been relocated.
374 Bail out if this has not happened. (Note that post_create_inferior()
375 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
376 If we allow this to happen, lm_base_cache will be initialized with
378 if (main_executable_lm_info
== 0)
381 /* If we already have a cached value, return it. */
383 return lm_base_cache
;
385 got_sym
= lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL
,
390 fprintf_unfiltered (gdb_stdlog
,
391 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
395 addr
= SYMBOL_VALUE_ADDRESS (got_sym
) + 8;
398 fprintf_unfiltered (gdb_stdlog
,
399 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
400 hex_string_custom (addr
, 8));
402 if (target_read_memory (addr
, buf
, sizeof buf
) != 0)
404 lm_base_cache
= extract_unsigned_integer (buf
, sizeof buf
, byte_order
);
407 fprintf_unfiltered (gdb_stdlog
,
408 "lm_base: lm_base_cache = %s\n",
409 hex_string_custom (lm_base_cache
, 8));
411 return lm_base_cache
;
417 frv_current_sos -- build a list of currently loaded shared objects
421 struct so_list *frv_current_sos ()
425 Build a list of `struct so_list' objects describing the shared
426 objects currently loaded in the inferior. This list does not
427 include an entry for the main executable file.
429 Note that we only gather information directly available from the
430 inferior --- we don't examine any of the shared library files
431 themselves. The declaration of `struct so_list' says which fields
432 we provide values for. */
434 static struct so_list
*
435 frv_current_sos (void)
437 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch
);
438 CORE_ADDR lm_addr
, mgot
;
439 struct so_list
*sos_head
= NULL
;
440 struct so_list
**sos_next_ptr
= &sos_head
;
442 /* Make sure that the main executable has been relocated. This is
443 required in order to find the address of the global offset table,
444 which in turn is used to find the link map info. (See lm_base()
447 Note that the relocation of the main executable is also performed
448 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
449 files, this hook is called too late in order to be of benefit to
450 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
451 frv_current_sos, and also precedes the call to
452 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
454 if (main_executable_lm_info
== 0 && core_bfd
!= NULL
)
455 frv_relocate_main_executable ();
457 /* Fetch the GOT corresponding to the main executable. */
460 /* Locate the address of the first link map struct. */
461 lm_addr
= lm_base ();
463 /* We have at least one link map entry. Fetch the the lot of them,
464 building the solist chain. */
467 struct ext_link_map lm_buf
;
471 fprintf_unfiltered (gdb_stdlog
,
472 "current_sos: reading link_map entry at %s\n",
473 hex_string_custom (lm_addr
, 8));
475 if (target_read_memory (lm_addr
, (gdb_byte
*) &lm_buf
, sizeof (lm_buf
)) != 0)
477 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
482 = extract_unsigned_integer (lm_buf
.l_addr
.got_value
,
483 sizeof (lm_buf
.l_addr
.got_value
),
485 /* If the got_addr is the same as mgotr, then we're looking at the
486 entry for the main executable. By convention, we don't include
487 this in the list of shared objects. */
488 if (got_addr
!= mgot
)
492 struct int_elf32_fdpic_loadmap
*loadmap
;
496 /* Fetch the load map address. */
497 addr
= extract_unsigned_integer (lm_buf
.l_addr
.map
,
498 sizeof lm_buf
.l_addr
.map
,
500 loadmap
= fetch_loadmap (addr
);
503 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
507 sop
= xcalloc (1, sizeof (struct so_list
));
508 sop
->lm_info
= xcalloc (1, sizeof (struct lm_info
));
509 sop
->lm_info
->map
= loadmap
;
510 sop
->lm_info
->got_value
= got_addr
;
511 sop
->lm_info
->lm_addr
= lm_addr
;
512 /* Fetch the name. */
513 addr
= extract_unsigned_integer (lm_buf
.l_name
,
514 sizeof (lm_buf
.l_name
),
516 target_read_string (addr
, &name_buf
, SO_NAME_MAX_PATH_SIZE
- 1,
520 fprintf_unfiltered (gdb_stdlog
, "current_sos: name = %s\n",
524 warning (_("Can't read pathname for link map entry: %s."),
525 safe_strerror (errcode
));
528 strncpy (sop
->so_name
, name_buf
, SO_NAME_MAX_PATH_SIZE
- 1);
529 sop
->so_name
[SO_NAME_MAX_PATH_SIZE
- 1] = '\0';
531 strcpy (sop
->so_original_name
, sop
->so_name
);
535 sos_next_ptr
= &sop
->next
;
539 main_lm_addr
= lm_addr
;
542 lm_addr
= extract_unsigned_integer (lm_buf
.l_next
,
543 sizeof (lm_buf
.l_next
), byte_order
);
552 /* Return 1 if PC lies in the dynamic symbol resolution code of the
555 static CORE_ADDR interp_text_sect_low
;
556 static CORE_ADDR interp_text_sect_high
;
557 static CORE_ADDR interp_plt_sect_low
;
558 static CORE_ADDR interp_plt_sect_high
;
561 frv_in_dynsym_resolve_code (CORE_ADDR pc
)
563 return ((pc
>= interp_text_sect_low
&& pc
< interp_text_sect_high
)
564 || (pc
>= interp_plt_sect_low
&& pc
< interp_plt_sect_high
)
565 || in_plt_section (pc
, NULL
));
568 /* Given a loadmap and an address, return the displacement needed
569 to relocate the address. */
572 displacement_from_map (struct int_elf32_fdpic_loadmap
*map
,
577 for (seg
= 0; seg
< map
->nsegs
; seg
++)
579 if (map
->segs
[seg
].p_vaddr
<= addr
580 && addr
< map
->segs
[seg
].p_vaddr
+ map
->segs
[seg
].p_memsz
)
582 return map
->segs
[seg
].addr
- map
->segs
[seg
].p_vaddr
;
589 /* Print a warning about being unable to set the dynamic linker
593 enable_break_failure_warning (void)
595 warning (_("Unable to find dynamic linker breakpoint function.\n"
596 "GDB will be unable to debug shared library initializers\n"
597 "and track explicitly loaded dynamic code."));
604 enable_break -- arrange for dynamic linker to hit breakpoint
608 int enable_break (void)
612 The dynamic linkers has, as part of its debugger interface, support
613 for arranging for the inferior to hit a breakpoint after mapping in
614 the shared libraries. This function enables that breakpoint.
616 On the FR-V, using the shared library (FDPIC) ABI, the symbol
617 _dl_debug_addr points to the r_debug struct which contains
618 a field called r_brk. r_brk is the address of the function
619 descriptor upon which a breakpoint must be placed. Being a
620 function descriptor, we must extract the entry point in order
621 to set the breakpoint.
623 Our strategy will be to get the .interp section from the
624 executable. This section will provide us with the name of the
625 interpreter. We'll open the interpreter and then look up
626 the address of _dl_debug_addr. We then relocate this address
627 using the interpreter's loadmap. Once the relocated address
628 is known, we fetch the value (address) corresponding to r_brk
629 and then use that value to fetch the entry point of the function
634 static int enable_break2_done
= 0;
639 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch
);
642 asection
*interp_sect
;
644 if (enable_break2_done
)
647 interp_text_sect_low
= interp_text_sect_high
= 0;
648 interp_plt_sect_low
= interp_plt_sect_high
= 0;
650 /* Find the .interp section; if not found, warn the user and drop
651 into the old breakpoint at symbol code. */
652 interp_sect
= bfd_get_section_by_name (exec_bfd
, ".interp");
655 unsigned int interp_sect_size
;
659 CORE_ADDR addr
, interp_loadmap_addr
;
660 gdb_byte addr_buf
[FRV_PTR_SIZE
];
661 struct int_elf32_fdpic_loadmap
*ldm
;
662 volatile struct gdb_exception ex
;
664 /* Read the contents of the .interp section into a local buffer;
665 the contents specify the dynamic linker this program uses. */
666 interp_sect_size
= bfd_section_size (exec_bfd
, interp_sect
);
667 buf
= alloca (interp_sect_size
);
668 bfd_get_section_contents (exec_bfd
, interp_sect
,
669 buf
, 0, interp_sect_size
);
671 /* Now we need to figure out where the dynamic linker was
672 loaded so that we can load its symbols and place a breakpoint
673 in the dynamic linker itself.
675 This address is stored on the stack. However, I've been unable
676 to find any magic formula to find it for Solaris (appears to
677 be trivial on GNU/Linux). Therefore, we have to try an alternate
678 mechanism to find the dynamic linker's base address. */
680 TRY_CATCH (ex
, RETURN_MASK_ALL
)
682 tmp_bfd
= solib_bfd_open (buf
);
686 enable_break_failure_warning ();
690 status
= frv_fdpic_loadmap_addresses (target_gdbarch
,
691 &interp_loadmap_addr
, 0);
694 warning (_("Unable to determine dynamic linker loadmap address."));
695 enable_break_failure_warning ();
701 fprintf_unfiltered (gdb_stdlog
,
702 "enable_break: interp_loadmap_addr = %s\n",
703 hex_string_custom (interp_loadmap_addr
, 8));
705 ldm
= fetch_loadmap (interp_loadmap_addr
);
708 warning (_("Unable to load dynamic linker loadmap at address %s."),
709 hex_string_custom (interp_loadmap_addr
, 8));
710 enable_break_failure_warning ();
715 /* Record the relocated start and end address of the dynamic linker
716 text and plt section for svr4_in_dynsym_resolve_code. */
717 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".text");
721 = bfd_section_vma (tmp_bfd
, interp_sect
);
723 += displacement_from_map (ldm
, interp_text_sect_low
);
724 interp_text_sect_high
725 = interp_text_sect_low
+ bfd_section_size (tmp_bfd
, interp_sect
);
727 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".plt");
730 interp_plt_sect_low
=
731 bfd_section_vma (tmp_bfd
, interp_sect
);
733 += displacement_from_map (ldm
, interp_plt_sect_low
);
734 interp_plt_sect_high
=
735 interp_plt_sect_low
+ bfd_section_size (tmp_bfd
, interp_sect
);
738 addr
= bfd_lookup_symbol (tmp_bfd
, "_dl_debug_addr");
741 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
742 enable_break_failure_warning ();
748 fprintf_unfiltered (gdb_stdlog
,
749 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
750 hex_string_custom (addr
, 8));
752 addr
+= displacement_from_map (ldm
, addr
);
755 fprintf_unfiltered (gdb_stdlog
,
756 "enable_break: _dl_debug_addr (after relocation) = %s\n",
757 hex_string_custom (addr
, 8));
759 /* Fetch the address of the r_debug struct. */
760 if (target_read_memory (addr
, addr_buf
, sizeof addr_buf
) != 0)
762 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
763 hex_string_custom (addr
, 8));
765 addr
= extract_unsigned_integer (addr_buf
, sizeof addr_buf
, byte_order
);
768 fprintf_unfiltered (gdb_stdlog
,
769 "enable_break: _dl_debug_addr[0..3] = %s\n",
770 hex_string_custom (addr
, 8));
772 /* If it's zero, then the ldso hasn't initialized yet, and so
773 there are no shared libs yet loaded. */
777 fprintf_unfiltered (gdb_stdlog
,
778 "enable_break: ldso not yet initialized\n");
779 /* Do not warn, but mark to run again. */
783 /* Fetch the r_brk field. It's 8 bytes from the start of
785 if (target_read_memory (addr
+ 8, addr_buf
, sizeof addr_buf
) != 0)
787 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
788 hex_string_custom (addr
+ 8, 8));
789 enable_break_failure_warning ();
793 addr
= extract_unsigned_integer (addr_buf
, sizeof addr_buf
, byte_order
);
795 /* Now fetch the function entry point. */
796 if (target_read_memory (addr
, addr_buf
, sizeof addr_buf
) != 0)
798 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
799 hex_string_custom (addr
, 8));
800 enable_break_failure_warning ();
804 addr
= extract_unsigned_integer (addr_buf
, sizeof addr_buf
, byte_order
);
806 /* We're done with the temporary bfd. */
809 /* We're also done with the loadmap. */
812 /* Remove all the solib event breakpoints. Their addresses
813 may have changed since the last time we ran the program. */
814 remove_solib_event_breakpoints ();
816 /* Now (finally!) create the solib breakpoint. */
817 create_solib_event_breakpoint (target_gdbarch
, addr
);
819 enable_break2_done
= 1;
824 /* Tell the user we couldn't set a dynamic linker breakpoint. */
825 enable_break_failure_warning ();
827 /* Failure return. */
834 asection
*interp_sect
;
836 if (symfile_objfile
== NULL
)
839 fprintf_unfiltered (gdb_stdlog
,
840 "enable_break: No symbol file found.\n");
844 if (!symfile_objfile
->ei
.entry_point_p
)
847 fprintf_unfiltered (gdb_stdlog
,
848 "enable_break: Symbol file has no entry point.\n");
852 /* Check for the presence of a .interp section. If there is no
853 such section, the executable is statically linked. */
855 interp_sect
= bfd_get_section_by_name (exec_bfd
, ".interp");
857 if (interp_sect
== NULL
)
860 fprintf_unfiltered (gdb_stdlog
,
861 "enable_break: No .interp section found.\n");
865 create_solib_event_breakpoint (target_gdbarch
,
866 symfile_objfile
->ei
.entry_point
);
869 fprintf_unfiltered (gdb_stdlog
,
870 "enable_break: solib event breakpoint placed at entry point: %s\n",
871 hex_string_custom (symfile_objfile
->ei
.entry_point
, 8));
879 special_symbol_handling -- additional shared library symbol handling
883 void special_symbol_handling ()
887 Once the symbols from a shared object have been loaded in the usual
888 way, we are called to do any system specific symbol handling that
894 frv_special_symbol_handling (void)
896 /* Nothing needed (yet) for FRV. */
900 frv_relocate_main_executable (void)
903 CORE_ADDR exec_addr
, interp_addr
;
904 struct int_elf32_fdpic_loadmap
*ldm
;
905 struct cleanup
*old_chain
;
906 struct section_offsets
*new_offsets
;
908 struct obj_section
*osect
;
910 status
= frv_fdpic_loadmap_addresses (target_gdbarch
,
911 &interp_addr
, &exec_addr
);
913 if (status
< 0 || (exec_addr
== 0 && interp_addr
== 0))
915 /* Not using FDPIC ABI, so do nothing. */
919 /* Fetch the loadmap located at ``exec_addr''. */
920 ldm
= fetch_loadmap (exec_addr
);
922 error (_("Unable to load the executable's loadmap."));
924 if (main_executable_lm_info
)
925 xfree (main_executable_lm_info
);
926 main_executable_lm_info
= xcalloc (1, sizeof (struct lm_info
));
927 main_executable_lm_info
->map
= ldm
;
929 new_offsets
= xcalloc (symfile_objfile
->num_sections
,
930 sizeof (struct section_offsets
));
931 old_chain
= make_cleanup (xfree
, new_offsets
);
934 ALL_OBJFILE_OSECTIONS (symfile_objfile
, osect
)
936 CORE_ADDR orig_addr
, addr
, offset
;
940 osect_idx
= osect
->the_bfd_section
->index
;
942 /* Current address of section. */
943 addr
= obj_section_addr (osect
);
944 /* Offset from where this section started. */
945 offset
= ANOFFSET (symfile_objfile
->section_offsets
, osect_idx
);
946 /* Original address prior to any past relocations. */
947 orig_addr
= addr
- offset
;
949 for (seg
= 0; seg
< ldm
->nsegs
; seg
++)
951 if (ldm
->segs
[seg
].p_vaddr
<= orig_addr
952 && orig_addr
< ldm
->segs
[seg
].p_vaddr
+ ldm
->segs
[seg
].p_memsz
)
954 new_offsets
->offsets
[osect_idx
]
955 = ldm
->segs
[seg
].addr
- ldm
->segs
[seg
].p_vaddr
;
957 if (new_offsets
->offsets
[osect_idx
] != offset
)
965 objfile_relocate (symfile_objfile
, new_offsets
);
967 do_cleanups (old_chain
);
969 /* Now that symfile_objfile has been relocated, we can compute the
970 GOT value and stash it away. */
971 main_executable_lm_info
->got_value
= main_got ();
978 frv_solib_create_inferior_hook -- shared library startup support
982 void frv_solib_create_inferior_hook ()
986 When gdb starts up the inferior, it nurses it along (through the
987 shell) until it is ready to execute it's first instruction. At this
988 point, this function gets called via expansion of the macro
989 SOLIB_CREATE_INFERIOR_HOOK.
991 For the FR-V shared library ABI (FDPIC), the main executable
992 needs to be relocated. The shared library breakpoints also need
997 frv_solib_create_inferior_hook (int from_tty
)
999 /* Relocate main executable. */
1000 frv_relocate_main_executable ();
1002 /* Enable shared library breakpoints. */
1003 if (!enable_break ())
1005 warning (_("shared library handler failed to enable breakpoint"));
1011 frv_clear_solib (void)
1014 enable_break2_done
= 0;
1016 if (main_executable_lm_info
!= 0)
1018 xfree (main_executable_lm_info
->map
);
1019 xfree (main_executable_lm_info
->dyn_syms
);
1020 xfree (main_executable_lm_info
->dyn_relocs
);
1021 xfree (main_executable_lm_info
);
1022 main_executable_lm_info
= 0;
1027 frv_free_so (struct so_list
*so
)
1029 xfree (so
->lm_info
->map
);
1030 xfree (so
->lm_info
->dyn_syms
);
1031 xfree (so
->lm_info
->dyn_relocs
);
1032 xfree (so
->lm_info
);
1036 frv_relocate_section_addresses (struct so_list
*so
,
1037 struct target_section
*sec
)
1040 struct int_elf32_fdpic_loadmap
*map
;
1042 map
= so
->lm_info
->map
;
1044 for (seg
= 0; seg
< map
->nsegs
; seg
++)
1046 if (map
->segs
[seg
].p_vaddr
<= sec
->addr
1047 && sec
->addr
< map
->segs
[seg
].p_vaddr
+ map
->segs
[seg
].p_memsz
)
1049 CORE_ADDR displ
= map
->segs
[seg
].addr
- map
->segs
[seg
].p_vaddr
;
1052 sec
->endaddr
+= displ
;
1058 /* Return the GOT address associated with the main executable. Return
1059 0 if it can't be found. */
1064 struct minimal_symbol
*got_sym
;
1066 got_sym
= lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL
, symfile_objfile
);
1070 return SYMBOL_VALUE_ADDRESS (got_sym
);
1073 /* Find the global pointer for the given function address ADDR. */
1076 frv_fdpic_find_global_pointer (CORE_ADDR addr
)
1080 so
= master_so_list ();
1084 struct int_elf32_fdpic_loadmap
*map
;
1086 map
= so
->lm_info
->map
;
1088 for (seg
= 0; seg
< map
->nsegs
; seg
++)
1090 if (map
->segs
[seg
].addr
<= addr
1091 && addr
< map
->segs
[seg
].addr
+ map
->segs
[seg
].p_memsz
)
1092 return so
->lm_info
->got_value
;
1098 /* Didn't find it it any of the shared objects. So assume it's in the
1103 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1104 static CORE_ADDR find_canonical_descriptor_in_load_object
1105 (CORE_ADDR
, CORE_ADDR
, char *, bfd
*, struct lm_info
*);
1107 /* Given a function entry point, attempt to find the canonical descriptor
1108 associated with that entry point. Return 0 if no canonical descriptor
1112 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point
)
1116 CORE_ADDR got_value
;
1117 struct int_elf32_fdpic_loadmap
*ldm
= 0;
1120 CORE_ADDR exec_loadmap_addr
;
1122 /* Fetch the corresponding global pointer for the entry point. */
1123 got_value
= frv_fdpic_find_global_pointer (entry_point
);
1125 /* Attempt to find the name of the function. If the name is available,
1126 it'll be used as an aid in finding matching functions in the dynamic
1128 sym
= find_pc_function (entry_point
);
1132 name
= SYMBOL_LINKAGE_NAME (sym
);
1134 /* Check the main executable. */
1135 addr
= find_canonical_descriptor_in_load_object
1136 (entry_point
, got_value
, name
, symfile_objfile
->obfd
,
1137 main_executable_lm_info
);
1139 /* If descriptor not found via main executable, check each load object
1140 in list of shared objects. */
1145 so
= master_so_list ();
1148 addr
= find_canonical_descriptor_in_load_object
1149 (entry_point
, got_value
, name
, so
->abfd
, so
->lm_info
);
1162 find_canonical_descriptor_in_load_object
1163 (CORE_ADDR entry_point
, CORE_ADDR got_value
, char *name
, bfd
*abfd
,
1166 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch
);
1171 /* Nothing to do if no bfd. */
1175 /* Nothing to do if no link map. */
1179 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1180 (More about this later.) But in order to fetch the relocs, we
1181 need to first fetch the dynamic symbols. These symbols need to
1182 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1183 works. (See the comments in the declaration of struct lm_info
1184 for more information.) */
1185 if (lm
->dyn_syms
== NULL
)
1187 long storage_needed
;
1188 unsigned int number_of_symbols
;
1190 /* Determine amount of space needed to hold the dynamic symbol table. */
1191 storage_needed
= bfd_get_dynamic_symtab_upper_bound (abfd
);
1193 /* If there are no dynamic symbols, there's nothing to do. */
1194 if (storage_needed
<= 0)
1197 /* Allocate space for the dynamic symbol table. */
1198 lm
->dyn_syms
= (asymbol
**) xmalloc (storage_needed
);
1200 /* Fetch the dynamic symbol table. */
1201 number_of_symbols
= bfd_canonicalize_dynamic_symtab (abfd
, lm
->dyn_syms
);
1203 if (number_of_symbols
== 0)
1207 /* Fetch the dynamic relocations if not already cached. */
1208 if (lm
->dyn_relocs
== NULL
)
1210 long storage_needed
;
1212 /* Determine amount of space needed to hold the dynamic relocs. */
1213 storage_needed
= bfd_get_dynamic_reloc_upper_bound (abfd
);
1215 /* Bail out if there are no dynamic relocs. */
1216 if (storage_needed
<= 0)
1219 /* Allocate space for the relocs. */
1220 lm
->dyn_relocs
= (arelent
**) xmalloc (storage_needed
);
1222 /* Fetch the dynamic relocs. */
1224 = bfd_canonicalize_dynamic_reloc (abfd
, lm
->dyn_relocs
, lm
->dyn_syms
);
1227 /* Search the dynamic relocs. */
1228 for (i
= 0; i
< lm
->dyn_reloc_count
; i
++)
1230 rel
= lm
->dyn_relocs
[i
];
1232 /* Relocs of interest are those which meet the following
1235 - the names match (assuming the caller could provide
1236 a name which matches ``entry_point'').
1237 - the relocation type must be R_FRV_FUNCDESC. Relocs
1238 of this type are used (by the dynamic linker) to
1239 look up the address of a canonical descriptor (allocating
1240 it if need be) and initializing the GOT entry referred
1241 to by the offset to the address of the descriptor.
1243 These relocs of interest may be used to obtain a
1244 candidate descriptor by first adjusting the reloc's
1245 address according to the link map and then dereferencing
1246 this address (which is a GOT entry) to obtain a descriptor
1248 if ((name
== 0 || strcmp (name
, (*rel
->sym_ptr_ptr
)->name
) == 0)
1249 && rel
->howto
->type
== R_FRV_FUNCDESC
)
1251 gdb_byte buf
[FRV_PTR_SIZE
];
1253 /* Compute address of address of candidate descriptor. */
1254 addr
= rel
->address
+ displacement_from_map (lm
->map
, rel
->address
);
1256 /* Fetch address of candidate descriptor. */
1257 if (target_read_memory (addr
, buf
, sizeof buf
) != 0)
1259 addr
= extract_unsigned_integer (buf
, sizeof buf
, byte_order
);
1261 /* Check for matching entry point. */
1262 if (target_read_memory (addr
, buf
, sizeof buf
) != 0)
1264 if (extract_unsigned_integer (buf
, sizeof buf
, byte_order
)
1268 /* Check for matching got value. */
1269 if (target_read_memory (addr
+ 4, buf
, sizeof buf
) != 0)
1271 if (extract_unsigned_integer (buf
, sizeof buf
, byte_order
)
1275 /* Match was successful! Exit loop. */
1283 /* Given an objfile, return the address of its link map. This value is
1284 needed for TLS support. */
1286 frv_fetch_objfile_link_map (struct objfile
*objfile
)
1290 /* Cause frv_current_sos() to be run if it hasn't been already. */
1291 if (main_lm_addr
== 0)
1292 solib_add (0, 0, 0, 1);
1294 /* frv_current_sos() will set main_lm_addr for the main executable. */
1295 if (objfile
== symfile_objfile
)
1296 return main_lm_addr
;
1298 /* The other link map addresses may be found by examining the list
1299 of shared libraries. */
1300 for (so
= master_so_list (); so
; so
= so
->next
)
1302 if (so
->objfile
== objfile
)
1303 return so
->lm_info
->lm_addr
;
1310 struct target_so_ops frv_so_ops
;
1312 /* Provide a prototype to silence -Wmissing-prototypes. */
1313 extern initialize_file_ftype _initialize_frv_solib
;
1316 _initialize_frv_solib (void)
1318 frv_so_ops
.relocate_section_addresses
= frv_relocate_section_addresses
;
1319 frv_so_ops
.free_so
= frv_free_so
;
1320 frv_so_ops
.clear_solib
= frv_clear_solib
;
1321 frv_so_ops
.solib_create_inferior_hook
= frv_solib_create_inferior_hook
;
1322 frv_so_ops
.special_symbol_handling
= frv_special_symbol_handling
;
1323 frv_so_ops
.current_sos
= frv_current_sos
;
1324 frv_so_ops
.open_symbol_file_object
= open_symbol_file_object
;
1325 frv_so_ops
.in_dynsym_resolve_code
= frv_in_dynsym_resolve_code
;
1326 frv_so_ops
.bfd_open
= solib_bfd_open
;
1328 /* Debug this file's internals. */
1329 add_setshow_zinteger_cmd ("solib-frv", class_maintenance
,
1330 &solib_frv_debug
, _("\
1331 Set internal debugging of shared library code for FR-V."), _("\
1332 Show internal debugging of shared library code for FR-V."), _("\
1333 When non-zero, FR-V solib specific internal debugging is enabled."),
1335 NULL
, /* FIXME: i18n: */
1336 &setdebuglist
, &showdebuglist
);