gdb/
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "solib.h"
25 #include "solist.h"
26 #include "frv-tdep.h"
27 #include "objfiles.h"
28 #include "symtab.h"
29 #include "language.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "elf/frv.h"
33 #include "exceptions.h"
34
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug;
37
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE = 4 };
40
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
49
50 struct ext_elf32_fdpic_loadseg
51 {
52 /* Core address to which the segment is mapped. */
53 ext_Elf32_Addr addr;
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
58 };
59
60 struct ext_elf32_fdpic_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version;
63 /* Number of segments in this map. */
64 ext_Elf32_Half nsegs;
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
67 };
68
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
73 {
74 /* Core address to which the segment is mapped. */
75 CORE_ADDR addr;
76 /* VMA recorded in the program header. */
77 CORE_ADDR p_vaddr;
78 /* Size of this segment in memory. */
79 long p_memsz;
80 };
81
82 struct int_elf32_fdpic_loadmap {
83 /* Protocol version number, must be zero. */
84 int version;
85 /* Number of segments in this map. */
86 int nsegs;
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
89 };
90
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
96
97 static struct int_elf32_fdpic_loadmap *
98 fetch_loadmap (CORE_ADDR ldmaddr)
99 {
100 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
101 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
102 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
103 struct int_elf32_fdpic_loadmap *int_ldmbuf;
104 int ext_ldmbuf_size, int_ldmbuf_size;
105 int version, seg, nsegs;
106
107 /* Fetch initial portion of the loadmap. */
108 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
109 sizeof ext_ldmbuf_partial))
110 {
111 /* Problem reading the target's memory. */
112 return NULL;
113 }
114
115 /* Extract the version. */
116 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
117 sizeof ext_ldmbuf_partial.version,
118 byte_order);
119 if (version != 0)
120 {
121 /* We only handle version 0. */
122 return NULL;
123 }
124
125 /* Extract the number of segments. */
126 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
127 sizeof ext_ldmbuf_partial.nsegs,
128 byte_order);
129
130 if (nsegs <= 0)
131 return NULL;
132
133 /* Allocate space for the complete (external) loadmap. */
134 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
135 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
136 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
137
138 /* Copy over the portion of the loadmap that's already been read. */
139 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
140
141 /* Read the rest of the loadmap from the target. */
142 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
143 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
144 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
145 {
146 /* Couldn't read rest of the loadmap. */
147 xfree (ext_ldmbuf);
148 return NULL;
149 }
150
151 /* Allocate space into which to put information extract from the
152 external loadsegs. I.e, allocate the internal loadsegs. */
153 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
154 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
155 int_ldmbuf = xmalloc (int_ldmbuf_size);
156
157 /* Place extracted information in internal structs. */
158 int_ldmbuf->version = version;
159 int_ldmbuf->nsegs = nsegs;
160 for (seg = 0; seg < nsegs; seg++)
161 {
162 int_ldmbuf->segs[seg].addr
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
164 sizeof (ext_ldmbuf->segs[seg].addr),
165 byte_order);
166 int_ldmbuf->segs[seg].p_vaddr
167 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
168 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
169 byte_order);
170 int_ldmbuf->segs[seg].p_memsz
171 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
172 sizeof (ext_ldmbuf->segs[seg].p_memsz),
173 byte_order);
174 }
175
176 xfree (ext_ldmbuf);
177 return int_ldmbuf;
178 }
179
180 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
181
182 typedef gdb_byte ext_ptr[4];
183
184 struct ext_elf32_fdpic_loadaddr
185 {
186 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
187 ext_ptr got_value; /* void *got_value; */
188 };
189
190 struct ext_link_map
191 {
192 struct ext_elf32_fdpic_loadaddr l_addr;
193
194 /* Absolute file name object was found in. */
195 ext_ptr l_name; /* char *l_name; */
196
197 /* Dynamic section of the shared object. */
198 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
199
200 /* Chain of loaded objects. */
201 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
202 };
203
204 /* Link map info to include in an allocated so_list entry */
205
206 struct lm_info
207 {
208 /* The loadmap, digested into an easier to use form. */
209 struct int_elf32_fdpic_loadmap *map;
210 /* The GOT address for this link map entry. */
211 CORE_ADDR got_value;
212 /* The link map address, needed for frv_fetch_objfile_link_map(). */
213 CORE_ADDR lm_addr;
214
215 /* Cached dynamic symbol table and dynamic relocs initialized and
216 used only by find_canonical_descriptor_in_load_object().
217
218 Note: kevinb/2004-02-26: It appears that calls to
219 bfd_canonicalize_dynamic_reloc() will use the same symbols as
220 those supplied to the first call to this function. Therefore,
221 it's important to NOT free the asymbol ** data structure
222 supplied to the first call. Thus the caching of the dynamic
223 symbols (dyn_syms) is critical for correct operation. The
224 caching of the dynamic relocations could be dispensed with. */
225 asymbol **dyn_syms;
226 arelent **dyn_relocs;
227 int dyn_reloc_count; /* number of dynamic relocs. */
228
229 };
230
231 /* The load map, got value, etc. are not available from the chain
232 of loaded shared objects. ``main_executable_lm_info'' provides
233 a way to get at this information so that it doesn't need to be
234 frequently recomputed. Initialized by frv_relocate_main_executable(). */
235 static struct lm_info *main_executable_lm_info;
236
237 static void frv_relocate_main_executable (void);
238 static CORE_ADDR main_got (void);
239 static int enable_break2 (void);
240
241 /*
242
243 LOCAL FUNCTION
244
245 bfd_lookup_symbol -- lookup the value for a specific symbol
246
247 SYNOPSIS
248
249 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
250
251 DESCRIPTION
252
253 An expensive way to lookup the value of a single symbol for
254 bfd's that are only temporary anyway. This is used by the
255 shared library support to find the address of the debugger
256 interface structures in the shared library.
257
258 Note that 0 is specifically allowed as an error return (no
259 such symbol).
260 */
261
262 static CORE_ADDR
263 bfd_lookup_symbol (bfd *abfd, char *symname)
264 {
265 long storage_needed;
266 asymbol *sym;
267 asymbol **symbol_table;
268 unsigned int number_of_symbols;
269 unsigned int i;
270 struct cleanup *back_to;
271 CORE_ADDR symaddr = 0;
272
273 storage_needed = bfd_get_symtab_upper_bound (abfd);
274
275 if (storage_needed > 0)
276 {
277 symbol_table = (asymbol **) xmalloc (storage_needed);
278 back_to = make_cleanup (xfree, symbol_table);
279 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
280
281 for (i = 0; i < number_of_symbols; i++)
282 {
283 sym = *symbol_table++;
284 if (strcmp (sym->name, symname) == 0)
285 {
286 /* Bfd symbols are section relative. */
287 symaddr = sym->value + sym->section->vma;
288 break;
289 }
290 }
291 do_cleanups (back_to);
292 }
293
294 if (symaddr)
295 return symaddr;
296
297 /* Look for the symbol in the dynamic string table too. */
298
299 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
300
301 if (storage_needed > 0)
302 {
303 symbol_table = (asymbol **) xmalloc (storage_needed);
304 back_to = make_cleanup (xfree, symbol_table);
305 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
306
307 for (i = 0; i < number_of_symbols; i++)
308 {
309 sym = *symbol_table++;
310 if (strcmp (sym->name, symname) == 0)
311 {
312 /* Bfd symbols are section relative. */
313 symaddr = sym->value + sym->section->vma;
314 break;
315 }
316 }
317 do_cleanups (back_to);
318 }
319
320 return symaddr;
321 }
322
323
324 /*
325
326 LOCAL FUNCTION
327
328 open_symbol_file_object
329
330 SYNOPSIS
331
332 void open_symbol_file_object (void *from_tty)
333
334 DESCRIPTION
335
336 If no open symbol file, attempt to locate and open the main symbol
337 file.
338
339 If FROM_TTYP dereferences to a non-zero integer, allow messages to
340 be printed. This parameter is a pointer rather than an int because
341 open_symbol_file_object() is called via catch_errors() and
342 catch_errors() requires a pointer argument. */
343
344 static int
345 open_symbol_file_object (void *from_ttyp)
346 {
347 /* Unimplemented. */
348 return 0;
349 }
350
351 /* Cached value for lm_base(), below. */
352 static CORE_ADDR lm_base_cache = 0;
353
354 /* Link map address for main module. */
355 static CORE_ADDR main_lm_addr = 0;
356
357 /* Return the address from which the link map chain may be found. On
358 the FR-V, this may be found in a number of ways. Assuming that the
359 main executable has already been relocated, the easiest way to find
360 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
361 pointer to the start of the link map will be located at the word found
362 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
363 reserve area mandated by the ABI.) */
364
365 static CORE_ADDR
366 lm_base (void)
367 {
368 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
369 struct minimal_symbol *got_sym;
370 CORE_ADDR addr;
371 gdb_byte buf[FRV_PTR_SIZE];
372
373 /* One of our assumptions is that the main executable has been relocated.
374 Bail out if this has not happened. (Note that post_create_inferior()
375 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
376 If we allow this to happen, lm_base_cache will be initialized with
377 a bogus value. */
378 if (main_executable_lm_info == 0)
379 return 0;
380
381 /* If we already have a cached value, return it. */
382 if (lm_base_cache)
383 return lm_base_cache;
384
385 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
386 symfile_objfile);
387 if (got_sym == 0)
388 {
389 if (solib_frv_debug)
390 fprintf_unfiltered (gdb_stdlog,
391 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
392 return 0;
393 }
394
395 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
396
397 if (solib_frv_debug)
398 fprintf_unfiltered (gdb_stdlog,
399 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
400 hex_string_custom (addr, 8));
401
402 if (target_read_memory (addr, buf, sizeof buf) != 0)
403 return 0;
404 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
405
406 if (solib_frv_debug)
407 fprintf_unfiltered (gdb_stdlog,
408 "lm_base: lm_base_cache = %s\n",
409 hex_string_custom (lm_base_cache, 8));
410
411 return lm_base_cache;
412 }
413
414
415 /* LOCAL FUNCTION
416
417 frv_current_sos -- build a list of currently loaded shared objects
418
419 SYNOPSIS
420
421 struct so_list *frv_current_sos ()
422
423 DESCRIPTION
424
425 Build a list of `struct so_list' objects describing the shared
426 objects currently loaded in the inferior. This list does not
427 include an entry for the main executable file.
428
429 Note that we only gather information directly available from the
430 inferior --- we don't examine any of the shared library files
431 themselves. The declaration of `struct so_list' says which fields
432 we provide values for. */
433
434 static struct so_list *
435 frv_current_sos (void)
436 {
437 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
438 CORE_ADDR lm_addr, mgot;
439 struct so_list *sos_head = NULL;
440 struct so_list **sos_next_ptr = &sos_head;
441
442 /* Make sure that the main executable has been relocated. This is
443 required in order to find the address of the global offset table,
444 which in turn is used to find the link map info. (See lm_base()
445 for details.)
446
447 Note that the relocation of the main executable is also performed
448 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
449 files, this hook is called too late in order to be of benefit to
450 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
451 frv_current_sos, and also precedes the call to
452 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
453 infcmd.c.) */
454 if (main_executable_lm_info == 0 && core_bfd != NULL)
455 frv_relocate_main_executable ();
456
457 /* Fetch the GOT corresponding to the main executable. */
458 mgot = main_got ();
459
460 /* Locate the address of the first link map struct. */
461 lm_addr = lm_base ();
462
463 /* We have at least one link map entry. Fetch the the lot of them,
464 building the solist chain. */
465 while (lm_addr)
466 {
467 struct ext_link_map lm_buf;
468 CORE_ADDR got_addr;
469
470 if (solib_frv_debug)
471 fprintf_unfiltered (gdb_stdlog,
472 "current_sos: reading link_map entry at %s\n",
473 hex_string_custom (lm_addr, 8));
474
475 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
476 {
477 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
478 break;
479 }
480
481 got_addr
482 = extract_unsigned_integer (lm_buf.l_addr.got_value,
483 sizeof (lm_buf.l_addr.got_value),
484 byte_order);
485 /* If the got_addr is the same as mgotr, then we're looking at the
486 entry for the main executable. By convention, we don't include
487 this in the list of shared objects. */
488 if (got_addr != mgot)
489 {
490 int errcode;
491 char *name_buf;
492 struct int_elf32_fdpic_loadmap *loadmap;
493 struct so_list *sop;
494 CORE_ADDR addr;
495
496 /* Fetch the load map address. */
497 addr = extract_unsigned_integer (lm_buf.l_addr.map,
498 sizeof lm_buf.l_addr.map,
499 byte_order);
500 loadmap = fetch_loadmap (addr);
501 if (loadmap == NULL)
502 {
503 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
504 break;
505 }
506
507 sop = xcalloc (1, sizeof (struct so_list));
508 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
509 sop->lm_info->map = loadmap;
510 sop->lm_info->got_value = got_addr;
511 sop->lm_info->lm_addr = lm_addr;
512 /* Fetch the name. */
513 addr = extract_unsigned_integer (lm_buf.l_name,
514 sizeof (lm_buf.l_name),
515 byte_order);
516 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
517 &errcode);
518
519 if (solib_frv_debug)
520 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
521 name_buf);
522
523 if (errcode != 0)
524 warning (_("Can't read pathname for link map entry: %s."),
525 safe_strerror (errcode));
526 else
527 {
528 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
529 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
530 xfree (name_buf);
531 strcpy (sop->so_original_name, sop->so_name);
532 }
533
534 *sos_next_ptr = sop;
535 sos_next_ptr = &sop->next;
536 }
537 else
538 {
539 main_lm_addr = lm_addr;
540 }
541
542 lm_addr = extract_unsigned_integer (lm_buf.l_next,
543 sizeof (lm_buf.l_next), byte_order);
544 }
545
546 enable_break2 ();
547
548 return sos_head;
549 }
550
551
552 /* Return 1 if PC lies in the dynamic symbol resolution code of the
553 run time loader. */
554
555 static CORE_ADDR interp_text_sect_low;
556 static CORE_ADDR interp_text_sect_high;
557 static CORE_ADDR interp_plt_sect_low;
558 static CORE_ADDR interp_plt_sect_high;
559
560 static int
561 frv_in_dynsym_resolve_code (CORE_ADDR pc)
562 {
563 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
564 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
565 || in_plt_section (pc, NULL));
566 }
567
568 /* Given a loadmap and an address, return the displacement needed
569 to relocate the address. */
570
571 static CORE_ADDR
572 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
573 CORE_ADDR addr)
574 {
575 int seg;
576
577 for (seg = 0; seg < map->nsegs; seg++)
578 {
579 if (map->segs[seg].p_vaddr <= addr
580 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
581 {
582 return map->segs[seg].addr - map->segs[seg].p_vaddr;
583 }
584 }
585
586 return 0;
587 }
588
589 /* Print a warning about being unable to set the dynamic linker
590 breakpoint. */
591
592 static void
593 enable_break_failure_warning (void)
594 {
595 warning (_("Unable to find dynamic linker breakpoint function.\n"
596 "GDB will be unable to debug shared library initializers\n"
597 "and track explicitly loaded dynamic code."));
598 }
599
600 /*
601
602 LOCAL FUNCTION
603
604 enable_break -- arrange for dynamic linker to hit breakpoint
605
606 SYNOPSIS
607
608 int enable_break (void)
609
610 DESCRIPTION
611
612 The dynamic linkers has, as part of its debugger interface, support
613 for arranging for the inferior to hit a breakpoint after mapping in
614 the shared libraries. This function enables that breakpoint.
615
616 On the FR-V, using the shared library (FDPIC) ABI, the symbol
617 _dl_debug_addr points to the r_debug struct which contains
618 a field called r_brk. r_brk is the address of the function
619 descriptor upon which a breakpoint must be placed. Being a
620 function descriptor, we must extract the entry point in order
621 to set the breakpoint.
622
623 Our strategy will be to get the .interp section from the
624 executable. This section will provide us with the name of the
625 interpreter. We'll open the interpreter and then look up
626 the address of _dl_debug_addr. We then relocate this address
627 using the interpreter's loadmap. Once the relocated address
628 is known, we fetch the value (address) corresponding to r_brk
629 and then use that value to fetch the entry point of the function
630 we're interested in.
631
632 */
633
634 static int enable_break2_done = 0;
635
636 static int
637 enable_break2 (void)
638 {
639 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
640 int success = 0;
641 char **bkpt_namep;
642 asection *interp_sect;
643
644 if (enable_break2_done)
645 return 1;
646
647 interp_text_sect_low = interp_text_sect_high = 0;
648 interp_plt_sect_low = interp_plt_sect_high = 0;
649
650 /* Find the .interp section; if not found, warn the user and drop
651 into the old breakpoint at symbol code. */
652 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
653 if (interp_sect)
654 {
655 unsigned int interp_sect_size;
656 gdb_byte *buf;
657 bfd *tmp_bfd = NULL;
658 int status;
659 CORE_ADDR addr, interp_loadmap_addr;
660 gdb_byte addr_buf[FRV_PTR_SIZE];
661 struct int_elf32_fdpic_loadmap *ldm;
662 volatile struct gdb_exception ex;
663
664 /* Read the contents of the .interp section into a local buffer;
665 the contents specify the dynamic linker this program uses. */
666 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
667 buf = alloca (interp_sect_size);
668 bfd_get_section_contents (exec_bfd, interp_sect,
669 buf, 0, interp_sect_size);
670
671 /* Now we need to figure out where the dynamic linker was
672 loaded so that we can load its symbols and place a breakpoint
673 in the dynamic linker itself.
674
675 This address is stored on the stack. However, I've been unable
676 to find any magic formula to find it for Solaris (appears to
677 be trivial on GNU/Linux). Therefore, we have to try an alternate
678 mechanism to find the dynamic linker's base address. */
679
680 TRY_CATCH (ex, RETURN_MASK_ALL)
681 {
682 tmp_bfd = solib_bfd_open (buf);
683 }
684 if (tmp_bfd == NULL)
685 {
686 enable_break_failure_warning ();
687 return 0;
688 }
689
690 status = frv_fdpic_loadmap_addresses (target_gdbarch,
691 &interp_loadmap_addr, 0);
692 if (status < 0)
693 {
694 warning (_("Unable to determine dynamic linker loadmap address."));
695 enable_break_failure_warning ();
696 bfd_close (tmp_bfd);
697 return 0;
698 }
699
700 if (solib_frv_debug)
701 fprintf_unfiltered (gdb_stdlog,
702 "enable_break: interp_loadmap_addr = %s\n",
703 hex_string_custom (interp_loadmap_addr, 8));
704
705 ldm = fetch_loadmap (interp_loadmap_addr);
706 if (ldm == NULL)
707 {
708 warning (_("Unable to load dynamic linker loadmap at address %s."),
709 hex_string_custom (interp_loadmap_addr, 8));
710 enable_break_failure_warning ();
711 bfd_close (tmp_bfd);
712 return 0;
713 }
714
715 /* Record the relocated start and end address of the dynamic linker
716 text and plt section for svr4_in_dynsym_resolve_code. */
717 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
718 if (interp_sect)
719 {
720 interp_text_sect_low
721 = bfd_section_vma (tmp_bfd, interp_sect);
722 interp_text_sect_low
723 += displacement_from_map (ldm, interp_text_sect_low);
724 interp_text_sect_high
725 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
726 }
727 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
728 if (interp_sect)
729 {
730 interp_plt_sect_low =
731 bfd_section_vma (tmp_bfd, interp_sect);
732 interp_plt_sect_low
733 += displacement_from_map (ldm, interp_plt_sect_low);
734 interp_plt_sect_high =
735 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
736 }
737
738 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
739 if (addr == 0)
740 {
741 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
742 enable_break_failure_warning ();
743 bfd_close (tmp_bfd);
744 return 0;
745 }
746
747 if (solib_frv_debug)
748 fprintf_unfiltered (gdb_stdlog,
749 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
750 hex_string_custom (addr, 8));
751
752 addr += displacement_from_map (ldm, addr);
753
754 if (solib_frv_debug)
755 fprintf_unfiltered (gdb_stdlog,
756 "enable_break: _dl_debug_addr (after relocation) = %s\n",
757 hex_string_custom (addr, 8));
758
759 /* Fetch the address of the r_debug struct. */
760 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
761 {
762 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
763 hex_string_custom (addr, 8));
764 }
765 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
766
767 if (solib_frv_debug)
768 fprintf_unfiltered (gdb_stdlog,
769 "enable_break: _dl_debug_addr[0..3] = %s\n",
770 hex_string_custom (addr, 8));
771
772 /* If it's zero, then the ldso hasn't initialized yet, and so
773 there are no shared libs yet loaded. */
774 if (addr == 0)
775 {
776 if (solib_frv_debug)
777 fprintf_unfiltered (gdb_stdlog,
778 "enable_break: ldso not yet initialized\n");
779 /* Do not warn, but mark to run again. */
780 return 0;
781 }
782
783 /* Fetch the r_brk field. It's 8 bytes from the start of
784 _dl_debug_addr. */
785 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
786 {
787 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
788 hex_string_custom (addr + 8, 8));
789 enable_break_failure_warning ();
790 bfd_close (tmp_bfd);
791 return 0;
792 }
793 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
794
795 /* Now fetch the function entry point. */
796 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
797 {
798 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
799 hex_string_custom (addr, 8));
800 enable_break_failure_warning ();
801 bfd_close (tmp_bfd);
802 return 0;
803 }
804 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
805
806 /* We're done with the temporary bfd. */
807 bfd_close (tmp_bfd);
808
809 /* We're also done with the loadmap. */
810 xfree (ldm);
811
812 /* Remove all the solib event breakpoints. Their addresses
813 may have changed since the last time we ran the program. */
814 remove_solib_event_breakpoints ();
815
816 /* Now (finally!) create the solib breakpoint. */
817 create_solib_event_breakpoint (target_gdbarch, addr);
818
819 enable_break2_done = 1;
820
821 return 1;
822 }
823
824 /* Tell the user we couldn't set a dynamic linker breakpoint. */
825 enable_break_failure_warning ();
826
827 /* Failure return. */
828 return 0;
829 }
830
831 static int
832 enable_break (void)
833 {
834 asection *interp_sect;
835
836 if (symfile_objfile == NULL)
837 {
838 if (solib_frv_debug)
839 fprintf_unfiltered (gdb_stdlog,
840 "enable_break: No symbol file found.\n");
841 return 0;
842 }
843
844 if (!symfile_objfile->ei.entry_point_p)
845 {
846 if (solib_frv_debug)
847 fprintf_unfiltered (gdb_stdlog,
848 "enable_break: Symbol file has no entry point.\n");
849 return 0;
850 }
851
852 /* Check for the presence of a .interp section. If there is no
853 such section, the executable is statically linked. */
854
855 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
856
857 if (interp_sect == NULL)
858 {
859 if (solib_frv_debug)
860 fprintf_unfiltered (gdb_stdlog,
861 "enable_break: No .interp section found.\n");
862 return 0;
863 }
864
865 create_solib_event_breakpoint (target_gdbarch,
866 symfile_objfile->ei.entry_point);
867
868 if (solib_frv_debug)
869 fprintf_unfiltered (gdb_stdlog,
870 "enable_break: solib event breakpoint placed at entry point: %s\n",
871 hex_string_custom (symfile_objfile->ei.entry_point, 8));
872 return 1;
873 }
874
875 /*
876
877 LOCAL FUNCTION
878
879 special_symbol_handling -- additional shared library symbol handling
880
881 SYNOPSIS
882
883 void special_symbol_handling ()
884
885 DESCRIPTION
886
887 Once the symbols from a shared object have been loaded in the usual
888 way, we are called to do any system specific symbol handling that
889 is needed.
890
891 */
892
893 static void
894 frv_special_symbol_handling (void)
895 {
896 /* Nothing needed (yet) for FRV. */
897 }
898
899 static void
900 frv_relocate_main_executable (void)
901 {
902 int status;
903 CORE_ADDR exec_addr, interp_addr;
904 struct int_elf32_fdpic_loadmap *ldm;
905 struct cleanup *old_chain;
906 struct section_offsets *new_offsets;
907 int changed;
908 struct obj_section *osect;
909
910 status = frv_fdpic_loadmap_addresses (target_gdbarch,
911 &interp_addr, &exec_addr);
912
913 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
914 {
915 /* Not using FDPIC ABI, so do nothing. */
916 return;
917 }
918
919 /* Fetch the loadmap located at ``exec_addr''. */
920 ldm = fetch_loadmap (exec_addr);
921 if (ldm == NULL)
922 error (_("Unable to load the executable's loadmap."));
923
924 if (main_executable_lm_info)
925 xfree (main_executable_lm_info);
926 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
927 main_executable_lm_info->map = ldm;
928
929 new_offsets = xcalloc (symfile_objfile->num_sections,
930 sizeof (struct section_offsets));
931 old_chain = make_cleanup (xfree, new_offsets);
932 changed = 0;
933
934 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
935 {
936 CORE_ADDR orig_addr, addr, offset;
937 int osect_idx;
938 int seg;
939
940 osect_idx = osect->the_bfd_section->index;
941
942 /* Current address of section. */
943 addr = obj_section_addr (osect);
944 /* Offset from where this section started. */
945 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
946 /* Original address prior to any past relocations. */
947 orig_addr = addr - offset;
948
949 for (seg = 0; seg < ldm->nsegs; seg++)
950 {
951 if (ldm->segs[seg].p_vaddr <= orig_addr
952 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
953 {
954 new_offsets->offsets[osect_idx]
955 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
956
957 if (new_offsets->offsets[osect_idx] != offset)
958 changed = 1;
959 break;
960 }
961 }
962 }
963
964 if (changed)
965 objfile_relocate (symfile_objfile, new_offsets);
966
967 do_cleanups (old_chain);
968
969 /* Now that symfile_objfile has been relocated, we can compute the
970 GOT value and stash it away. */
971 main_executable_lm_info->got_value = main_got ();
972 }
973
974 /*
975
976 GLOBAL FUNCTION
977
978 frv_solib_create_inferior_hook -- shared library startup support
979
980 SYNOPSIS
981
982 void frv_solib_create_inferior_hook ()
983
984 DESCRIPTION
985
986 When gdb starts up the inferior, it nurses it along (through the
987 shell) until it is ready to execute it's first instruction. At this
988 point, this function gets called via expansion of the macro
989 SOLIB_CREATE_INFERIOR_HOOK.
990
991 For the FR-V shared library ABI (FDPIC), the main executable
992 needs to be relocated. The shared library breakpoints also need
993 to be enabled.
994 */
995
996 static void
997 frv_solib_create_inferior_hook (int from_tty)
998 {
999 /* Relocate main executable. */
1000 frv_relocate_main_executable ();
1001
1002 /* Enable shared library breakpoints. */
1003 if (!enable_break ())
1004 {
1005 warning (_("shared library handler failed to enable breakpoint"));
1006 return;
1007 }
1008 }
1009
1010 static void
1011 frv_clear_solib (void)
1012 {
1013 lm_base_cache = 0;
1014 enable_break2_done = 0;
1015 main_lm_addr = 0;
1016 if (main_executable_lm_info != 0)
1017 {
1018 xfree (main_executable_lm_info->map);
1019 xfree (main_executable_lm_info->dyn_syms);
1020 xfree (main_executable_lm_info->dyn_relocs);
1021 xfree (main_executable_lm_info);
1022 main_executable_lm_info = 0;
1023 }
1024 }
1025
1026 static void
1027 frv_free_so (struct so_list *so)
1028 {
1029 xfree (so->lm_info->map);
1030 xfree (so->lm_info->dyn_syms);
1031 xfree (so->lm_info->dyn_relocs);
1032 xfree (so->lm_info);
1033 }
1034
1035 static void
1036 frv_relocate_section_addresses (struct so_list *so,
1037 struct target_section *sec)
1038 {
1039 int seg;
1040 struct int_elf32_fdpic_loadmap *map;
1041
1042 map = so->lm_info->map;
1043
1044 for (seg = 0; seg < map->nsegs; seg++)
1045 {
1046 if (map->segs[seg].p_vaddr <= sec->addr
1047 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1048 {
1049 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1050
1051 sec->addr += displ;
1052 sec->endaddr += displ;
1053 break;
1054 }
1055 }
1056 }
1057
1058 /* Return the GOT address associated with the main executable. Return
1059 0 if it can't be found. */
1060
1061 static CORE_ADDR
1062 main_got (void)
1063 {
1064 struct minimal_symbol *got_sym;
1065
1066 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1067 if (got_sym == 0)
1068 return 0;
1069
1070 return SYMBOL_VALUE_ADDRESS (got_sym);
1071 }
1072
1073 /* Find the global pointer for the given function address ADDR. */
1074
1075 CORE_ADDR
1076 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1077 {
1078 struct so_list *so;
1079
1080 so = master_so_list ();
1081 while (so)
1082 {
1083 int seg;
1084 struct int_elf32_fdpic_loadmap *map;
1085
1086 map = so->lm_info->map;
1087
1088 for (seg = 0; seg < map->nsegs; seg++)
1089 {
1090 if (map->segs[seg].addr <= addr
1091 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1092 return so->lm_info->got_value;
1093 }
1094
1095 so = so->next;
1096 }
1097
1098 /* Didn't find it it any of the shared objects. So assume it's in the
1099 main executable. */
1100 return main_got ();
1101 }
1102
1103 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1104 static CORE_ADDR find_canonical_descriptor_in_load_object
1105 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1106
1107 /* Given a function entry point, attempt to find the canonical descriptor
1108 associated with that entry point. Return 0 if no canonical descriptor
1109 could be found. */
1110
1111 CORE_ADDR
1112 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1113 {
1114 char *name;
1115 CORE_ADDR addr;
1116 CORE_ADDR got_value;
1117 struct int_elf32_fdpic_loadmap *ldm = 0;
1118 struct symbol *sym;
1119 int status;
1120 CORE_ADDR exec_loadmap_addr;
1121
1122 /* Fetch the corresponding global pointer for the entry point. */
1123 got_value = frv_fdpic_find_global_pointer (entry_point);
1124
1125 /* Attempt to find the name of the function. If the name is available,
1126 it'll be used as an aid in finding matching functions in the dynamic
1127 symbol table. */
1128 sym = find_pc_function (entry_point);
1129 if (sym == 0)
1130 name = 0;
1131 else
1132 name = SYMBOL_LINKAGE_NAME (sym);
1133
1134 /* Check the main executable. */
1135 addr = find_canonical_descriptor_in_load_object
1136 (entry_point, got_value, name, symfile_objfile->obfd,
1137 main_executable_lm_info);
1138
1139 /* If descriptor not found via main executable, check each load object
1140 in list of shared objects. */
1141 if (addr == 0)
1142 {
1143 struct so_list *so;
1144
1145 so = master_so_list ();
1146 while (so)
1147 {
1148 addr = find_canonical_descriptor_in_load_object
1149 (entry_point, got_value, name, so->abfd, so->lm_info);
1150
1151 if (addr != 0)
1152 break;
1153
1154 so = so->next;
1155 }
1156 }
1157
1158 return addr;
1159 }
1160
1161 static CORE_ADDR
1162 find_canonical_descriptor_in_load_object
1163 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1164 struct lm_info *lm)
1165 {
1166 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1167 arelent *rel;
1168 unsigned int i;
1169 CORE_ADDR addr = 0;
1170
1171 /* Nothing to do if no bfd. */
1172 if (abfd == 0)
1173 return 0;
1174
1175 /* Nothing to do if no link map. */
1176 if (lm == 0)
1177 return 0;
1178
1179 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1180 (More about this later.) But in order to fetch the relocs, we
1181 need to first fetch the dynamic symbols. These symbols need to
1182 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1183 works. (See the comments in the declaration of struct lm_info
1184 for more information.) */
1185 if (lm->dyn_syms == NULL)
1186 {
1187 long storage_needed;
1188 unsigned int number_of_symbols;
1189
1190 /* Determine amount of space needed to hold the dynamic symbol table. */
1191 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1192
1193 /* If there are no dynamic symbols, there's nothing to do. */
1194 if (storage_needed <= 0)
1195 return 0;
1196
1197 /* Allocate space for the dynamic symbol table. */
1198 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1199
1200 /* Fetch the dynamic symbol table. */
1201 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1202
1203 if (number_of_symbols == 0)
1204 return 0;
1205 }
1206
1207 /* Fetch the dynamic relocations if not already cached. */
1208 if (lm->dyn_relocs == NULL)
1209 {
1210 long storage_needed;
1211
1212 /* Determine amount of space needed to hold the dynamic relocs. */
1213 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1214
1215 /* Bail out if there are no dynamic relocs. */
1216 if (storage_needed <= 0)
1217 return 0;
1218
1219 /* Allocate space for the relocs. */
1220 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1221
1222 /* Fetch the dynamic relocs. */
1223 lm->dyn_reloc_count
1224 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1225 }
1226
1227 /* Search the dynamic relocs. */
1228 for (i = 0; i < lm->dyn_reloc_count; i++)
1229 {
1230 rel = lm->dyn_relocs[i];
1231
1232 /* Relocs of interest are those which meet the following
1233 criteria:
1234
1235 - the names match (assuming the caller could provide
1236 a name which matches ``entry_point'').
1237 - the relocation type must be R_FRV_FUNCDESC. Relocs
1238 of this type are used (by the dynamic linker) to
1239 look up the address of a canonical descriptor (allocating
1240 it if need be) and initializing the GOT entry referred
1241 to by the offset to the address of the descriptor.
1242
1243 These relocs of interest may be used to obtain a
1244 candidate descriptor by first adjusting the reloc's
1245 address according to the link map and then dereferencing
1246 this address (which is a GOT entry) to obtain a descriptor
1247 address. */
1248 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1249 && rel->howto->type == R_FRV_FUNCDESC)
1250 {
1251 gdb_byte buf [FRV_PTR_SIZE];
1252
1253 /* Compute address of address of candidate descriptor. */
1254 addr = rel->address + displacement_from_map (lm->map, rel->address);
1255
1256 /* Fetch address of candidate descriptor. */
1257 if (target_read_memory (addr, buf, sizeof buf) != 0)
1258 continue;
1259 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1260
1261 /* Check for matching entry point. */
1262 if (target_read_memory (addr, buf, sizeof buf) != 0)
1263 continue;
1264 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1265 != entry_point)
1266 continue;
1267
1268 /* Check for matching got value. */
1269 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1270 continue;
1271 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1272 != got_value)
1273 continue;
1274
1275 /* Match was successful! Exit loop. */
1276 break;
1277 }
1278 }
1279
1280 return addr;
1281 }
1282
1283 /* Given an objfile, return the address of its link map. This value is
1284 needed for TLS support. */
1285 CORE_ADDR
1286 frv_fetch_objfile_link_map (struct objfile *objfile)
1287 {
1288 struct so_list *so;
1289
1290 /* Cause frv_current_sos() to be run if it hasn't been already. */
1291 if (main_lm_addr == 0)
1292 solib_add (0, 0, 0, 1);
1293
1294 /* frv_current_sos() will set main_lm_addr for the main executable. */
1295 if (objfile == symfile_objfile)
1296 return main_lm_addr;
1297
1298 /* The other link map addresses may be found by examining the list
1299 of shared libraries. */
1300 for (so = master_so_list (); so; so = so->next)
1301 {
1302 if (so->objfile == objfile)
1303 return so->lm_info->lm_addr;
1304 }
1305
1306 /* Not found! */
1307 return 0;
1308 }
1309
1310 struct target_so_ops frv_so_ops;
1311
1312 /* Provide a prototype to silence -Wmissing-prototypes. */
1313 extern initialize_file_ftype _initialize_frv_solib;
1314
1315 void
1316 _initialize_frv_solib (void)
1317 {
1318 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1319 frv_so_ops.free_so = frv_free_so;
1320 frv_so_ops.clear_solib = frv_clear_solib;
1321 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1322 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1323 frv_so_ops.current_sos = frv_current_sos;
1324 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1325 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1326 frv_so_ops.bfd_open = solib_bfd_open;
1327
1328 /* Debug this file's internals. */
1329 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1330 &solib_frv_debug, _("\
1331 Set internal debugging of shared library code for FR-V."), _("\
1332 Show internal debugging of shared library code for FR-V."), _("\
1333 When non-zero, FR-V solib specific internal debugging is enabled."),
1334 NULL,
1335 NULL, /* FIXME: i18n: */
1336 &setdebuglist, &showdebuglist);
1337 }
This page took 0.057679 seconds and 4 git commands to generate.