btrace: remove leftover comment
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
33
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
36
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
39
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
48
49 struct ext_elf32_fdpic_loadseg
50 {
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57 };
58
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66 };
67
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
72 {
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79 };
80
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88 };
89
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
98 {
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
128
129 if (nsegs <= 0)
130 return NULL;
131
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
173 }
174
175 xfree (ext_ldmbuf);
176 return int_ldmbuf;
177 }
178
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
181 typedef gdb_byte ext_ptr[4];
182
183 struct ext_elf32_fdpic_loadaddr
184 {
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187 };
188
189 struct ext_link_map
190 {
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201 };
202
203 /* Link map info to include in an allocated so_list entry. */
204
205 struct lm_info
206 {
207 /* The loadmap, digested into an easier to use form. */
208 struct int_elf32_fdpic_loadmap *map;
209 /* The GOT address for this link map entry. */
210 CORE_ADDR got_value;
211 /* The link map address, needed for frv_fetch_objfile_link_map(). */
212 CORE_ADDR lm_addr;
213
214 /* Cached dynamic symbol table and dynamic relocs initialized and
215 used only by find_canonical_descriptor_in_load_object().
216
217 Note: kevinb/2004-02-26: It appears that calls to
218 bfd_canonicalize_dynamic_reloc() will use the same symbols as
219 those supplied to the first call to this function. Therefore,
220 it's important to NOT free the asymbol ** data structure
221 supplied to the first call. Thus the caching of the dynamic
222 symbols (dyn_syms) is critical for correct operation. The
223 caching of the dynamic relocations could be dispensed with. */
224 asymbol **dyn_syms;
225 arelent **dyn_relocs;
226 int dyn_reloc_count; /* Number of dynamic relocs. */
227
228 };
229
230 /* The load map, got value, etc. are not available from the chain
231 of loaded shared objects. ``main_executable_lm_info'' provides
232 a way to get at this information so that it doesn't need to be
233 frequently recomputed. Initialized by frv_relocate_main_executable(). */
234 static struct lm_info *main_executable_lm_info;
235
236 static void frv_relocate_main_executable (void);
237 static CORE_ADDR main_got (void);
238 static int enable_break2 (void);
239
240 /* Implement the "open_symbol_file_object" target_so_ops method. */
241
242 static int
243 open_symbol_file_object (void *from_ttyp)
244 {
245 /* Unimplemented. */
246 return 0;
247 }
248
249 /* Cached value for lm_base(), below. */
250 static CORE_ADDR lm_base_cache = 0;
251
252 /* Link map address for main module. */
253 static CORE_ADDR main_lm_addr = 0;
254
255 /* Return the address from which the link map chain may be found. On
256 the FR-V, this may be found in a number of ways. Assuming that the
257 main executable has already been relocated, the easiest way to find
258 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
259 pointer to the start of the link map will be located at the word found
260 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
261 reserve area mandated by the ABI.) */
262
263 static CORE_ADDR
264 lm_base (void)
265 {
266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
267 struct bound_minimal_symbol got_sym;
268 CORE_ADDR addr;
269 gdb_byte buf[FRV_PTR_SIZE];
270
271 /* One of our assumptions is that the main executable has been relocated.
272 Bail out if this has not happened. (Note that post_create_inferior()
273 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
274 If we allow this to happen, lm_base_cache will be initialized with
275 a bogus value. */
276 if (main_executable_lm_info == 0)
277 return 0;
278
279 /* If we already have a cached value, return it. */
280 if (lm_base_cache)
281 return lm_base_cache;
282
283 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
284 symfile_objfile);
285 if (got_sym.minsym == 0)
286 {
287 if (solib_frv_debug)
288 fprintf_unfiltered (gdb_stdlog,
289 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
290 return 0;
291 }
292
293 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
294
295 if (solib_frv_debug)
296 fprintf_unfiltered (gdb_stdlog,
297 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
298 hex_string_custom (addr, 8));
299
300 if (target_read_memory (addr, buf, sizeof buf) != 0)
301 return 0;
302 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
303
304 if (solib_frv_debug)
305 fprintf_unfiltered (gdb_stdlog,
306 "lm_base: lm_base_cache = %s\n",
307 hex_string_custom (lm_base_cache, 8));
308
309 return lm_base_cache;
310 }
311
312
313 /* Implement the "current_sos" target_so_ops method. */
314
315 static struct so_list *
316 frv_current_sos (void)
317 {
318 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
319 CORE_ADDR lm_addr, mgot;
320 struct so_list *sos_head = NULL;
321 struct so_list **sos_next_ptr = &sos_head;
322
323 /* Make sure that the main executable has been relocated. This is
324 required in order to find the address of the global offset table,
325 which in turn is used to find the link map info. (See lm_base()
326 for details.)
327
328 Note that the relocation of the main executable is also performed
329 by solib_create_inferior_hook(), however, in the case of core
330 files, this hook is called too late in order to be of benefit to
331 solib_add. solib_add eventually calls this this function,
332 frv_current_sos, and also precedes the call to
333 solib_create_inferior_hook(). (See post_create_inferior() in
334 infcmd.c.) */
335 if (main_executable_lm_info == 0 && core_bfd != NULL)
336 frv_relocate_main_executable ();
337
338 /* Fetch the GOT corresponding to the main executable. */
339 mgot = main_got ();
340
341 /* Locate the address of the first link map struct. */
342 lm_addr = lm_base ();
343
344 /* We have at least one link map entry. Fetch the lot of them,
345 building the solist chain. */
346 while (lm_addr)
347 {
348 struct ext_link_map lm_buf;
349 CORE_ADDR got_addr;
350
351 if (solib_frv_debug)
352 fprintf_unfiltered (gdb_stdlog,
353 "current_sos: reading link_map entry at %s\n",
354 hex_string_custom (lm_addr, 8));
355
356 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
357 sizeof (lm_buf)) != 0)
358 {
359 warning (_("frv_current_sos: Unable to read link map entry. "
360 "Shared object chain may be incomplete."));
361 break;
362 }
363
364 got_addr
365 = extract_unsigned_integer (lm_buf.l_addr.got_value,
366 sizeof (lm_buf.l_addr.got_value),
367 byte_order);
368 /* If the got_addr is the same as mgotr, then we're looking at the
369 entry for the main executable. By convention, we don't include
370 this in the list of shared objects. */
371 if (got_addr != mgot)
372 {
373 int errcode;
374 char *name_buf;
375 struct int_elf32_fdpic_loadmap *loadmap;
376 struct so_list *sop;
377 CORE_ADDR addr;
378
379 /* Fetch the load map address. */
380 addr = extract_unsigned_integer (lm_buf.l_addr.map,
381 sizeof lm_buf.l_addr.map,
382 byte_order);
383 loadmap = fetch_loadmap (addr);
384 if (loadmap == NULL)
385 {
386 warning (_("frv_current_sos: Unable to fetch load map. "
387 "Shared object chain may be incomplete."));
388 break;
389 }
390
391 sop = XCNEW (struct so_list);
392 sop->lm_info = XCNEW (struct lm_info);
393 sop->lm_info->map = loadmap;
394 sop->lm_info->got_value = got_addr;
395 sop->lm_info->lm_addr = lm_addr;
396 /* Fetch the name. */
397 addr = extract_unsigned_integer (lm_buf.l_name,
398 sizeof (lm_buf.l_name),
399 byte_order);
400 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
401 &errcode);
402
403 if (solib_frv_debug)
404 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
405 name_buf);
406
407 if (errcode != 0)
408 warning (_("Can't read pathname for link map entry: %s."),
409 safe_strerror (errcode));
410 else
411 {
412 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
413 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
414 xfree (name_buf);
415 strcpy (sop->so_original_name, sop->so_name);
416 }
417
418 *sos_next_ptr = sop;
419 sos_next_ptr = &sop->next;
420 }
421 else
422 {
423 main_lm_addr = lm_addr;
424 }
425
426 lm_addr = extract_unsigned_integer (lm_buf.l_next,
427 sizeof (lm_buf.l_next), byte_order);
428 }
429
430 enable_break2 ();
431
432 return sos_head;
433 }
434
435
436 /* Return 1 if PC lies in the dynamic symbol resolution code of the
437 run time loader. */
438
439 static CORE_ADDR interp_text_sect_low;
440 static CORE_ADDR interp_text_sect_high;
441 static CORE_ADDR interp_plt_sect_low;
442 static CORE_ADDR interp_plt_sect_high;
443
444 static int
445 frv_in_dynsym_resolve_code (CORE_ADDR pc)
446 {
447 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
448 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
449 || in_plt_section (pc));
450 }
451
452 /* Given a loadmap and an address, return the displacement needed
453 to relocate the address. */
454
455 static CORE_ADDR
456 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
457 CORE_ADDR addr)
458 {
459 int seg;
460
461 for (seg = 0; seg < map->nsegs; seg++)
462 {
463 if (map->segs[seg].p_vaddr <= addr
464 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
465 {
466 return map->segs[seg].addr - map->segs[seg].p_vaddr;
467 }
468 }
469
470 return 0;
471 }
472
473 /* Print a warning about being unable to set the dynamic linker
474 breakpoint. */
475
476 static void
477 enable_break_failure_warning (void)
478 {
479 warning (_("Unable to find dynamic linker breakpoint function.\n"
480 "GDB will be unable to debug shared library initializers\n"
481 "and track explicitly loaded dynamic code."));
482 }
483
484 /* Helper function for gdb_bfd_lookup_symbol. */
485
486 static int
487 cmp_name (const asymbol *sym, const void *data)
488 {
489 return (strcmp (sym->name, (const char *) data) == 0);
490 }
491
492 /* Arrange for dynamic linker to hit breakpoint.
493
494 The dynamic linkers has, as part of its debugger interface, support
495 for arranging for the inferior to hit a breakpoint after mapping in
496 the shared libraries. This function enables that breakpoint.
497
498 On the FR-V, using the shared library (FDPIC) ABI, the symbol
499 _dl_debug_addr points to the r_debug struct which contains
500 a field called r_brk. r_brk is the address of the function
501 descriptor upon which a breakpoint must be placed. Being a
502 function descriptor, we must extract the entry point in order
503 to set the breakpoint.
504
505 Our strategy will be to get the .interp section from the
506 executable. This section will provide us with the name of the
507 interpreter. We'll open the interpreter and then look up
508 the address of _dl_debug_addr. We then relocate this address
509 using the interpreter's loadmap. Once the relocated address
510 is known, we fetch the value (address) corresponding to r_brk
511 and then use that value to fetch the entry point of the function
512 we're interested in. */
513
514 static int enable_break2_done = 0;
515
516 static int
517 enable_break2 (void)
518 {
519 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
520 asection *interp_sect;
521
522 if (enable_break2_done)
523 return 1;
524
525 interp_text_sect_low = interp_text_sect_high = 0;
526 interp_plt_sect_low = interp_plt_sect_high = 0;
527
528 /* Find the .interp section; if not found, warn the user and drop
529 into the old breakpoint at symbol code. */
530 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
531 if (interp_sect)
532 {
533 unsigned int interp_sect_size;
534 char *buf;
535 bfd *tmp_bfd = NULL;
536 int status;
537 CORE_ADDR addr, interp_loadmap_addr;
538 gdb_byte addr_buf[FRV_PTR_SIZE];
539 struct int_elf32_fdpic_loadmap *ldm;
540
541 /* Read the contents of the .interp section into a local buffer;
542 the contents specify the dynamic linker this program uses. */
543 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
544 buf = (char *) alloca (interp_sect_size);
545 bfd_get_section_contents (exec_bfd, interp_sect,
546 buf, 0, interp_sect_size);
547
548 /* Now we need to figure out where the dynamic linker was
549 loaded so that we can load its symbols and place a breakpoint
550 in the dynamic linker itself.
551
552 This address is stored on the stack. However, I've been unable
553 to find any magic formula to find it for Solaris (appears to
554 be trivial on GNU/Linux). Therefore, we have to try an alternate
555 mechanism to find the dynamic linker's base address. */
556
557 TRY
558 {
559 tmp_bfd = solib_bfd_open (buf);
560 }
561 CATCH (ex, RETURN_MASK_ALL)
562 {
563 }
564 END_CATCH
565
566 if (tmp_bfd == NULL)
567 {
568 enable_break_failure_warning ();
569 return 0;
570 }
571
572 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
573 &interp_loadmap_addr, 0);
574 if (status < 0)
575 {
576 warning (_("Unable to determine dynamic linker loadmap address."));
577 enable_break_failure_warning ();
578 gdb_bfd_unref (tmp_bfd);
579 return 0;
580 }
581
582 if (solib_frv_debug)
583 fprintf_unfiltered (gdb_stdlog,
584 "enable_break: interp_loadmap_addr = %s\n",
585 hex_string_custom (interp_loadmap_addr, 8));
586
587 ldm = fetch_loadmap (interp_loadmap_addr);
588 if (ldm == NULL)
589 {
590 warning (_("Unable to load dynamic linker loadmap at address %s."),
591 hex_string_custom (interp_loadmap_addr, 8));
592 enable_break_failure_warning ();
593 gdb_bfd_unref (tmp_bfd);
594 return 0;
595 }
596
597 /* Record the relocated start and end address of the dynamic linker
598 text and plt section for svr4_in_dynsym_resolve_code. */
599 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
600 if (interp_sect)
601 {
602 interp_text_sect_low
603 = bfd_section_vma (tmp_bfd, interp_sect);
604 interp_text_sect_low
605 += displacement_from_map (ldm, interp_text_sect_low);
606 interp_text_sect_high
607 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
608 }
609 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
610 if (interp_sect)
611 {
612 interp_plt_sect_low =
613 bfd_section_vma (tmp_bfd, interp_sect);
614 interp_plt_sect_low
615 += displacement_from_map (ldm, interp_plt_sect_low);
616 interp_plt_sect_high =
617 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
618 }
619
620 addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name, "_dl_debug_addr");
621
622 if (addr == 0)
623 {
624 warning (_("Could not find symbol _dl_debug_addr "
625 "in dynamic linker"));
626 enable_break_failure_warning ();
627 gdb_bfd_unref (tmp_bfd);
628 return 0;
629 }
630
631 if (solib_frv_debug)
632 fprintf_unfiltered (gdb_stdlog,
633 "enable_break: _dl_debug_addr "
634 "(prior to relocation) = %s\n",
635 hex_string_custom (addr, 8));
636
637 addr += displacement_from_map (ldm, addr);
638
639 if (solib_frv_debug)
640 fprintf_unfiltered (gdb_stdlog,
641 "enable_break: _dl_debug_addr "
642 "(after relocation) = %s\n",
643 hex_string_custom (addr, 8));
644
645 /* Fetch the address of the r_debug struct. */
646 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
647 {
648 warning (_("Unable to fetch contents of _dl_debug_addr "
649 "(at address %s) from dynamic linker"),
650 hex_string_custom (addr, 8));
651 }
652 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
653
654 if (solib_frv_debug)
655 fprintf_unfiltered (gdb_stdlog,
656 "enable_break: _dl_debug_addr[0..3] = %s\n",
657 hex_string_custom (addr, 8));
658
659 /* If it's zero, then the ldso hasn't initialized yet, and so
660 there are no shared libs yet loaded. */
661 if (addr == 0)
662 {
663 if (solib_frv_debug)
664 fprintf_unfiltered (gdb_stdlog,
665 "enable_break: ldso not yet initialized\n");
666 /* Do not warn, but mark to run again. */
667 return 0;
668 }
669
670 /* Fetch the r_brk field. It's 8 bytes from the start of
671 _dl_debug_addr. */
672 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
673 {
674 warning (_("Unable to fetch _dl_debug_addr->r_brk "
675 "(at address %s) from dynamic linker"),
676 hex_string_custom (addr + 8, 8));
677 enable_break_failure_warning ();
678 gdb_bfd_unref (tmp_bfd);
679 return 0;
680 }
681 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
682
683 /* Now fetch the function entry point. */
684 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
685 {
686 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
687 "(at address %s) from dynamic linker"),
688 hex_string_custom (addr, 8));
689 enable_break_failure_warning ();
690 gdb_bfd_unref (tmp_bfd);
691 return 0;
692 }
693 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
694
695 /* We're done with the temporary bfd. */
696 gdb_bfd_unref (tmp_bfd);
697
698 /* We're also done with the loadmap. */
699 xfree (ldm);
700
701 /* Remove all the solib event breakpoints. Their addresses
702 may have changed since the last time we ran the program. */
703 remove_solib_event_breakpoints ();
704
705 /* Now (finally!) create the solib breakpoint. */
706 create_solib_event_breakpoint (target_gdbarch (), addr);
707
708 enable_break2_done = 1;
709
710 return 1;
711 }
712
713 /* Tell the user we couldn't set a dynamic linker breakpoint. */
714 enable_break_failure_warning ();
715
716 /* Failure return. */
717 return 0;
718 }
719
720 static int
721 enable_break (void)
722 {
723 asection *interp_sect;
724 CORE_ADDR entry_point;
725
726 if (symfile_objfile == NULL)
727 {
728 if (solib_frv_debug)
729 fprintf_unfiltered (gdb_stdlog,
730 "enable_break: No symbol file found.\n");
731 return 0;
732 }
733
734 if (!entry_point_address_query (&entry_point))
735 {
736 if (solib_frv_debug)
737 fprintf_unfiltered (gdb_stdlog,
738 "enable_break: Symbol file has no entry point.\n");
739 return 0;
740 }
741
742 /* Check for the presence of a .interp section. If there is no
743 such section, the executable is statically linked. */
744
745 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
746
747 if (interp_sect == NULL)
748 {
749 if (solib_frv_debug)
750 fprintf_unfiltered (gdb_stdlog,
751 "enable_break: No .interp section found.\n");
752 return 0;
753 }
754
755 create_solib_event_breakpoint (target_gdbarch (), entry_point);
756
757 if (solib_frv_debug)
758 fprintf_unfiltered (gdb_stdlog,
759 "enable_break: solib event breakpoint "
760 "placed at entry point: %s\n",
761 hex_string_custom (entry_point, 8));
762 return 1;
763 }
764
765 /* Implement the "special_symbol_handling" target_so_ops method. */
766
767 static void
768 frv_special_symbol_handling (void)
769 {
770 /* Nothing needed for FRV. */
771 }
772
773 static void
774 frv_relocate_main_executable (void)
775 {
776 int status;
777 CORE_ADDR exec_addr, interp_addr;
778 struct int_elf32_fdpic_loadmap *ldm;
779 struct cleanup *old_chain;
780 struct section_offsets *new_offsets;
781 int changed;
782 struct obj_section *osect;
783
784 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
785 &interp_addr, &exec_addr);
786
787 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
788 {
789 /* Not using FDPIC ABI, so do nothing. */
790 return;
791 }
792
793 /* Fetch the loadmap located at ``exec_addr''. */
794 ldm = fetch_loadmap (exec_addr);
795 if (ldm == NULL)
796 error (_("Unable to load the executable's loadmap."));
797
798 if (main_executable_lm_info)
799 xfree (main_executable_lm_info);
800 main_executable_lm_info = XCNEW (struct lm_info);
801 main_executable_lm_info->map = ldm;
802
803 new_offsets = XCNEWVEC (struct section_offsets,
804 symfile_objfile->num_sections);
805 old_chain = make_cleanup (xfree, new_offsets);
806 changed = 0;
807
808 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
809 {
810 CORE_ADDR orig_addr, addr, offset;
811 int osect_idx;
812 int seg;
813
814 osect_idx = osect - symfile_objfile->sections;
815
816 /* Current address of section. */
817 addr = obj_section_addr (osect);
818 /* Offset from where this section started. */
819 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
820 /* Original address prior to any past relocations. */
821 orig_addr = addr - offset;
822
823 for (seg = 0; seg < ldm->nsegs; seg++)
824 {
825 if (ldm->segs[seg].p_vaddr <= orig_addr
826 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
827 {
828 new_offsets->offsets[osect_idx]
829 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
830
831 if (new_offsets->offsets[osect_idx] != offset)
832 changed = 1;
833 break;
834 }
835 }
836 }
837
838 if (changed)
839 objfile_relocate (symfile_objfile, new_offsets);
840
841 do_cleanups (old_chain);
842
843 /* Now that symfile_objfile has been relocated, we can compute the
844 GOT value and stash it away. */
845 main_executable_lm_info->got_value = main_got ();
846 }
847
848 /* Implement the "create_inferior_hook" target_solib_ops method.
849
850 For the FR-V shared library ABI (FDPIC), the main executable needs
851 to be relocated. The shared library breakpoints also need to be
852 enabled. */
853
854 static void
855 frv_solib_create_inferior_hook (int from_tty)
856 {
857 /* Relocate main executable. */
858 frv_relocate_main_executable ();
859
860 /* Enable shared library breakpoints. */
861 if (!enable_break ())
862 {
863 warning (_("shared library handler failed to enable breakpoint"));
864 return;
865 }
866 }
867
868 static void
869 frv_clear_solib (void)
870 {
871 lm_base_cache = 0;
872 enable_break2_done = 0;
873 main_lm_addr = 0;
874 if (main_executable_lm_info != 0)
875 {
876 xfree (main_executable_lm_info->map);
877 xfree (main_executable_lm_info->dyn_syms);
878 xfree (main_executable_lm_info->dyn_relocs);
879 xfree (main_executable_lm_info);
880 main_executable_lm_info = 0;
881 }
882 }
883
884 static void
885 frv_free_so (struct so_list *so)
886 {
887 xfree (so->lm_info->map);
888 xfree (so->lm_info->dyn_syms);
889 xfree (so->lm_info->dyn_relocs);
890 xfree (so->lm_info);
891 }
892
893 static void
894 frv_relocate_section_addresses (struct so_list *so,
895 struct target_section *sec)
896 {
897 int seg;
898 struct int_elf32_fdpic_loadmap *map;
899
900 map = so->lm_info->map;
901
902 for (seg = 0; seg < map->nsegs; seg++)
903 {
904 if (map->segs[seg].p_vaddr <= sec->addr
905 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
906 {
907 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
908
909 sec->addr += displ;
910 sec->endaddr += displ;
911 break;
912 }
913 }
914 }
915
916 /* Return the GOT address associated with the main executable. Return
917 0 if it can't be found. */
918
919 static CORE_ADDR
920 main_got (void)
921 {
922 struct bound_minimal_symbol got_sym;
923
924 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
925 NULL, symfile_objfile);
926 if (got_sym.minsym == 0)
927 return 0;
928
929 return BMSYMBOL_VALUE_ADDRESS (got_sym);
930 }
931
932 /* Find the global pointer for the given function address ADDR. */
933
934 CORE_ADDR
935 frv_fdpic_find_global_pointer (CORE_ADDR addr)
936 {
937 struct so_list *so;
938
939 so = master_so_list ();
940 while (so)
941 {
942 int seg;
943 struct int_elf32_fdpic_loadmap *map;
944
945 map = so->lm_info->map;
946
947 for (seg = 0; seg < map->nsegs; seg++)
948 {
949 if (map->segs[seg].addr <= addr
950 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
951 return so->lm_info->got_value;
952 }
953
954 so = so->next;
955 }
956
957 /* Didn't find it in any of the shared objects. So assume it's in the
958 main executable. */
959 return main_got ();
960 }
961
962 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
963 static CORE_ADDR find_canonical_descriptor_in_load_object
964 (CORE_ADDR, CORE_ADDR, const char *, bfd *, struct lm_info *);
965
966 /* Given a function entry point, attempt to find the canonical descriptor
967 associated with that entry point. Return 0 if no canonical descriptor
968 could be found. */
969
970 CORE_ADDR
971 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
972 {
973 const char *name;
974 CORE_ADDR addr;
975 CORE_ADDR got_value;
976 struct symbol *sym;
977
978 /* Fetch the corresponding global pointer for the entry point. */
979 got_value = frv_fdpic_find_global_pointer (entry_point);
980
981 /* Attempt to find the name of the function. If the name is available,
982 it'll be used as an aid in finding matching functions in the dynamic
983 symbol table. */
984 sym = find_pc_function (entry_point);
985 if (sym == 0)
986 name = 0;
987 else
988 name = SYMBOL_LINKAGE_NAME (sym);
989
990 /* Check the main executable. */
991 addr = find_canonical_descriptor_in_load_object
992 (entry_point, got_value, name, symfile_objfile->obfd,
993 main_executable_lm_info);
994
995 /* If descriptor not found via main executable, check each load object
996 in list of shared objects. */
997 if (addr == 0)
998 {
999 struct so_list *so;
1000
1001 so = master_so_list ();
1002 while (so)
1003 {
1004 addr = find_canonical_descriptor_in_load_object
1005 (entry_point, got_value, name, so->abfd, so->lm_info);
1006
1007 if (addr != 0)
1008 break;
1009
1010 so = so->next;
1011 }
1012 }
1013
1014 return addr;
1015 }
1016
1017 static CORE_ADDR
1018 find_canonical_descriptor_in_load_object
1019 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
1020 struct lm_info *lm)
1021 {
1022 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1023 arelent *rel;
1024 unsigned int i;
1025 CORE_ADDR addr = 0;
1026
1027 /* Nothing to do if no bfd. */
1028 if (abfd == 0)
1029 return 0;
1030
1031 /* Nothing to do if no link map. */
1032 if (lm == 0)
1033 return 0;
1034
1035 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1036 (More about this later.) But in order to fetch the relocs, we
1037 need to first fetch the dynamic symbols. These symbols need to
1038 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1039 works. (See the comments in the declaration of struct lm_info
1040 for more information.) */
1041 if (lm->dyn_syms == NULL)
1042 {
1043 long storage_needed;
1044 unsigned int number_of_symbols;
1045
1046 /* Determine amount of space needed to hold the dynamic symbol table. */
1047 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1048
1049 /* If there are no dynamic symbols, there's nothing to do. */
1050 if (storage_needed <= 0)
1051 return 0;
1052
1053 /* Allocate space for the dynamic symbol table. */
1054 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1055
1056 /* Fetch the dynamic symbol table. */
1057 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1058
1059 if (number_of_symbols == 0)
1060 return 0;
1061 }
1062
1063 /* Fetch the dynamic relocations if not already cached. */
1064 if (lm->dyn_relocs == NULL)
1065 {
1066 long storage_needed;
1067
1068 /* Determine amount of space needed to hold the dynamic relocs. */
1069 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1070
1071 /* Bail out if there are no dynamic relocs. */
1072 if (storage_needed <= 0)
1073 return 0;
1074
1075 /* Allocate space for the relocs. */
1076 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1077
1078 /* Fetch the dynamic relocs. */
1079 lm->dyn_reloc_count
1080 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1081 }
1082
1083 /* Search the dynamic relocs. */
1084 for (i = 0; i < lm->dyn_reloc_count; i++)
1085 {
1086 rel = lm->dyn_relocs[i];
1087
1088 /* Relocs of interest are those which meet the following
1089 criteria:
1090
1091 - the names match (assuming the caller could provide
1092 a name which matches ``entry_point'').
1093 - the relocation type must be R_FRV_FUNCDESC. Relocs
1094 of this type are used (by the dynamic linker) to
1095 look up the address of a canonical descriptor (allocating
1096 it if need be) and initializing the GOT entry referred
1097 to by the offset to the address of the descriptor.
1098
1099 These relocs of interest may be used to obtain a
1100 candidate descriptor by first adjusting the reloc's
1101 address according to the link map and then dereferencing
1102 this address (which is a GOT entry) to obtain a descriptor
1103 address. */
1104 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1105 && rel->howto->type == R_FRV_FUNCDESC)
1106 {
1107 gdb_byte buf [FRV_PTR_SIZE];
1108
1109 /* Compute address of address of candidate descriptor. */
1110 addr = rel->address + displacement_from_map (lm->map, rel->address);
1111
1112 /* Fetch address of candidate descriptor. */
1113 if (target_read_memory (addr, buf, sizeof buf) != 0)
1114 continue;
1115 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1116
1117 /* Check for matching entry point. */
1118 if (target_read_memory (addr, buf, sizeof buf) != 0)
1119 continue;
1120 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1121 != entry_point)
1122 continue;
1123
1124 /* Check for matching got value. */
1125 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1126 continue;
1127 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1128 != got_value)
1129 continue;
1130
1131 /* Match was successful! Exit loop. */
1132 break;
1133 }
1134 }
1135
1136 return addr;
1137 }
1138
1139 /* Given an objfile, return the address of its link map. This value is
1140 needed for TLS support. */
1141 CORE_ADDR
1142 frv_fetch_objfile_link_map (struct objfile *objfile)
1143 {
1144 struct so_list *so;
1145
1146 /* Cause frv_current_sos() to be run if it hasn't been already. */
1147 if (main_lm_addr == 0)
1148 solib_add (0, 0, 0, 1);
1149
1150 /* frv_current_sos() will set main_lm_addr for the main executable. */
1151 if (objfile == symfile_objfile)
1152 return main_lm_addr;
1153
1154 /* The other link map addresses may be found by examining the list
1155 of shared libraries. */
1156 for (so = master_so_list (); so; so = so->next)
1157 {
1158 if (so->objfile == objfile)
1159 return so->lm_info->lm_addr;
1160 }
1161
1162 /* Not found! */
1163 return 0;
1164 }
1165
1166 struct target_so_ops frv_so_ops;
1167
1168 /* Provide a prototype to silence -Wmissing-prototypes. */
1169 extern initialize_file_ftype _initialize_frv_solib;
1170
1171 void
1172 _initialize_frv_solib (void)
1173 {
1174 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1175 frv_so_ops.free_so = frv_free_so;
1176 frv_so_ops.clear_solib = frv_clear_solib;
1177 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1178 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1179 frv_so_ops.current_sos = frv_current_sos;
1180 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1181 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1182 frv_so_ops.bfd_open = solib_bfd_open;
1183
1184 /* Debug this file's internals. */
1185 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1186 &solib_frv_debug, _("\
1187 Set internal debugging of shared library code for FR-V."), _("\
1188 Show internal debugging of shared library code for FR-V."), _("\
1189 When non-zero, FR-V solib specific internal debugging is enabled."),
1190 NULL,
1191 NULL, /* FIXME: i18n: */
1192 &setdebuglist, &showdebuglist);
1193 }
This page took 0.054741 seconds and 4 git commands to generate.