* gdb.dwarf2/dw2-noloc.S: New file.
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
20
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "solib.h"
27 #include "solist.h"
28 #include "frv-tdep.h"
29 #include "objfiles.h"
30 #include "symtab.h"
31 #include "language.h"
32 #include "command.h"
33 #include "gdbcmd.h"
34 #include "elf/frv.h"
35
36 /* Flag which indicates whether internal debug messages should be printed. */
37 static int solib_frv_debug;
38
39 /* FR-V pointers are four bytes wide. */
40 enum { FRV_PTR_SIZE = 4 };
41
42 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43
44 /* External versions; the size and alignment of the fields should be
45 the same as those on the target. When loaded, the placement of
46 the bits in each field will be the same as on the target. */
47 typedef gdb_byte ext_Elf32_Half[2];
48 typedef gdb_byte ext_Elf32_Addr[4];
49 typedef gdb_byte ext_Elf32_Word[4];
50
51 struct ext_elf32_fdpic_loadseg
52 {
53 /* Core address to which the segment is mapped. */
54 ext_Elf32_Addr addr;
55 /* VMA recorded in the program header. */
56 ext_Elf32_Addr p_vaddr;
57 /* Size of this segment in memory. */
58 ext_Elf32_Word p_memsz;
59 };
60
61 struct ext_elf32_fdpic_loadmap {
62 /* Protocol version number, must be zero. */
63 ext_Elf32_Half version;
64 /* Number of segments in this map. */
65 ext_Elf32_Half nsegs;
66 /* The actual memory map. */
67 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68 };
69
70 /* Internal versions; the types are GDB types and the data in each
71 of the fields is (or will be) decoded from the external struct
72 for ease of consumption. */
73 struct int_elf32_fdpic_loadseg
74 {
75 /* Core address to which the segment is mapped. */
76 CORE_ADDR addr;
77 /* VMA recorded in the program header. */
78 CORE_ADDR p_vaddr;
79 /* Size of this segment in memory. */
80 long p_memsz;
81 };
82
83 struct int_elf32_fdpic_loadmap {
84 /* Protocol version number, must be zero. */
85 int version;
86 /* Number of segments in this map. */
87 int nsegs;
88 /* The actual memory map. */
89 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90 };
91
92 /* Given address LDMADDR, fetch and decode the loadmap at that address.
93 Return NULL if there is a problem reading the target memory or if
94 there doesn't appear to be a loadmap at the given address. The
95 allocated space (representing the loadmap) returned by this
96 function may be freed via a single call to xfree(). */
97
98 static struct int_elf32_fdpic_loadmap *
99 fetch_loadmap (CORE_ADDR ldmaddr)
100 {
101 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
102 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
103 struct int_elf32_fdpic_loadmap *int_ldmbuf;
104 int ext_ldmbuf_size, int_ldmbuf_size;
105 int version, seg, nsegs;
106
107 /* Fetch initial portion of the loadmap. */
108 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
109 sizeof ext_ldmbuf_partial))
110 {
111 /* Problem reading the target's memory. */
112 return NULL;
113 }
114
115 /* Extract the version. */
116 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
117 sizeof ext_ldmbuf_partial.version);
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs);
127
128 /* Allocate space for the complete (external) loadmap. */
129 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
130 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
131 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
132
133 /* Copy over the portion of the loadmap that's already been read. */
134 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
135
136 /* Read the rest of the loadmap from the target. */
137 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
138 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
139 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
140 {
141 /* Couldn't read rest of the loadmap. */
142 xfree (ext_ldmbuf);
143 return NULL;
144 }
145
146 /* Allocate space into which to put information extract from the
147 external loadsegs. I.e, allocate the internal loadsegs. */
148 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
149 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
150 int_ldmbuf = xmalloc (int_ldmbuf_size);
151
152 /* Place extracted information in internal structs. */
153 int_ldmbuf->version = version;
154 int_ldmbuf->nsegs = nsegs;
155 for (seg = 0; seg < nsegs; seg++)
156 {
157 int_ldmbuf->segs[seg].addr
158 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
159 sizeof (ext_ldmbuf->segs[seg].addr));
160 int_ldmbuf->segs[seg].p_vaddr
161 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
162 sizeof (ext_ldmbuf->segs[seg].p_vaddr));
163 int_ldmbuf->segs[seg].p_memsz
164 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
165 sizeof (ext_ldmbuf->segs[seg].p_memsz));
166 }
167
168 xfree (ext_ldmbuf);
169 return int_ldmbuf;
170 }
171
172 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
173
174 typedef gdb_byte ext_ptr[4];
175
176 struct ext_elf32_fdpic_loadaddr
177 {
178 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
179 ext_ptr got_value; /* void *got_value; */
180 };
181
182 struct ext_link_map
183 {
184 struct ext_elf32_fdpic_loadaddr l_addr;
185
186 /* Absolute file name object was found in. */
187 ext_ptr l_name; /* char *l_name; */
188
189 /* Dynamic section of the shared object. */
190 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
191
192 /* Chain of loaded objects. */
193 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
194 };
195
196 /* Link map info to include in an allocated so_list entry */
197
198 struct lm_info
199 {
200 /* The loadmap, digested into an easier to use form. */
201 struct int_elf32_fdpic_loadmap *map;
202 /* The GOT address for this link map entry. */
203 CORE_ADDR got_value;
204 /* The link map address, needed for frv_fetch_objfile_link_map(). */
205 CORE_ADDR lm_addr;
206
207 /* Cached dynamic symbol table and dynamic relocs initialized and
208 used only by find_canonical_descriptor_in_load_object().
209
210 Note: kevinb/2004-02-26: It appears that calls to
211 bfd_canonicalize_dynamic_reloc() will use the same symbols as
212 those supplied to the first call to this function. Therefore,
213 it's important to NOT free the asymbol ** data structure
214 supplied to the first call. Thus the caching of the dynamic
215 symbols (dyn_syms) is critical for correct operation. The
216 caching of the dynamic relocations could be dispensed with. */
217 asymbol **dyn_syms;
218 arelent **dyn_relocs;
219 int dyn_reloc_count; /* number of dynamic relocs. */
220
221 };
222
223 /* The load map, got value, etc. are not available from the chain
224 of loaded shared objects. ``main_executable_lm_info'' provides
225 a way to get at this information so that it doesn't need to be
226 frequently recomputed. Initialized by frv_relocate_main_executable(). */
227 static struct lm_info *main_executable_lm_info;
228
229 static void frv_relocate_main_executable (void);
230 static CORE_ADDR main_got (void);
231 static int enable_break2 (void);
232
233 /*
234
235 LOCAL FUNCTION
236
237 bfd_lookup_symbol -- lookup the value for a specific symbol
238
239 SYNOPSIS
240
241 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
242
243 DESCRIPTION
244
245 An expensive way to lookup the value of a single symbol for
246 bfd's that are only temporary anyway. This is used by the
247 shared library support to find the address of the debugger
248 interface structures in the shared library.
249
250 Note that 0 is specifically allowed as an error return (no
251 such symbol).
252 */
253
254 static CORE_ADDR
255 bfd_lookup_symbol (bfd *abfd, char *symname)
256 {
257 long storage_needed;
258 asymbol *sym;
259 asymbol **symbol_table;
260 unsigned int number_of_symbols;
261 unsigned int i;
262 struct cleanup *back_to;
263 CORE_ADDR symaddr = 0;
264
265 storage_needed = bfd_get_symtab_upper_bound (abfd);
266
267 if (storage_needed > 0)
268 {
269 symbol_table = (asymbol **) xmalloc (storage_needed);
270 back_to = make_cleanup (xfree, symbol_table);
271 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
272
273 for (i = 0; i < number_of_symbols; i++)
274 {
275 sym = *symbol_table++;
276 if (strcmp (sym->name, symname) == 0)
277 {
278 /* Bfd symbols are section relative. */
279 symaddr = sym->value + sym->section->vma;
280 break;
281 }
282 }
283 do_cleanups (back_to);
284 }
285
286 if (symaddr)
287 return symaddr;
288
289 /* Look for the symbol in the dynamic string table too. */
290
291 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
292
293 if (storage_needed > 0)
294 {
295 symbol_table = (asymbol **) xmalloc (storage_needed);
296 back_to = make_cleanup (xfree, symbol_table);
297 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
298
299 for (i = 0; i < number_of_symbols; i++)
300 {
301 sym = *symbol_table++;
302 if (strcmp (sym->name, symname) == 0)
303 {
304 /* Bfd symbols are section relative. */
305 symaddr = sym->value + sym->section->vma;
306 break;
307 }
308 }
309 do_cleanups (back_to);
310 }
311
312 return symaddr;
313 }
314
315
316 /*
317
318 LOCAL FUNCTION
319
320 open_symbol_file_object
321
322 SYNOPSIS
323
324 void open_symbol_file_object (void *from_tty)
325
326 DESCRIPTION
327
328 If no open symbol file, attempt to locate and open the main symbol
329 file.
330
331 If FROM_TTYP dereferences to a non-zero integer, allow messages to
332 be printed. This parameter is a pointer rather than an int because
333 open_symbol_file_object() is called via catch_errors() and
334 catch_errors() requires a pointer argument. */
335
336 static int
337 open_symbol_file_object (void *from_ttyp)
338 {
339 /* Unimplemented. */
340 return 0;
341 }
342
343 /* Cached value for lm_base(), below. */
344 static CORE_ADDR lm_base_cache = 0;
345
346 /* Link map address for main module. */
347 static CORE_ADDR main_lm_addr = 0;
348
349 /* Return the address from which the link map chain may be found. On
350 the FR-V, this may be found in a number of ways. Assuming that the
351 main executable has already been relocated, the easiest way to find
352 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
353 pointer to the start of the link map will be located at the word found
354 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
355 reserve area mandated by the ABI.) */
356
357 static CORE_ADDR
358 lm_base (void)
359 {
360 struct minimal_symbol *got_sym;
361 CORE_ADDR addr;
362 gdb_byte buf[FRV_PTR_SIZE];
363
364 /* If we already have a cached value, return it. */
365 if (lm_base_cache)
366 return lm_base_cache;
367
368 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
369 symfile_objfile);
370 if (got_sym == 0)
371 {
372 if (solib_frv_debug)
373 fprintf_unfiltered (gdb_stdlog,
374 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
375 return 0;
376 }
377
378 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
379
380 if (solib_frv_debug)
381 fprintf_unfiltered (gdb_stdlog,
382 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
383 hex_string_custom (addr, 8));
384
385 if (target_read_memory (addr, buf, sizeof buf) != 0)
386 return 0;
387 lm_base_cache = extract_unsigned_integer (buf, sizeof buf);
388
389 if (solib_frv_debug)
390 fprintf_unfiltered (gdb_stdlog,
391 "lm_base: lm_base_cache = %s\n",
392 hex_string_custom (lm_base_cache, 8));
393
394 return lm_base_cache;
395 }
396
397
398 /* LOCAL FUNCTION
399
400 frv_current_sos -- build a list of currently loaded shared objects
401
402 SYNOPSIS
403
404 struct so_list *frv_current_sos ()
405
406 DESCRIPTION
407
408 Build a list of `struct so_list' objects describing the shared
409 objects currently loaded in the inferior. This list does not
410 include an entry for the main executable file.
411
412 Note that we only gather information directly available from the
413 inferior --- we don't examine any of the shared library files
414 themselves. The declaration of `struct so_list' says which fields
415 we provide values for. */
416
417 static struct so_list *
418 frv_current_sos (void)
419 {
420 CORE_ADDR lm_addr, mgot;
421 struct so_list *sos_head = NULL;
422 struct so_list **sos_next_ptr = &sos_head;
423
424 /* Make sure that the main executable has been relocated. This is
425 required in order to find the address of the global offset table,
426 which in turn is used to find the link map info. (See lm_base()
427 for details.)
428
429 Note that the relocation of the main executable is also performed
430 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
431 files, this hook is called too late in order to be of benefit to
432 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
433 frv_current_sos, and also precedes the call to
434 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
435 infcmd.c.) */
436 if (main_executable_lm_info == 0 && core_bfd != NULL)
437 frv_relocate_main_executable ();
438
439 /* Fetch the GOT corresponding to the main executable. */
440 mgot = main_got ();
441
442 /* Locate the address of the first link map struct. */
443 lm_addr = lm_base ();
444
445 /* We have at least one link map entry. Fetch the the lot of them,
446 building the solist chain. */
447 while (lm_addr)
448 {
449 struct ext_link_map lm_buf;
450 CORE_ADDR got_addr;
451
452 if (solib_frv_debug)
453 fprintf_unfiltered (gdb_stdlog,
454 "current_sos: reading link_map entry at %s\n",
455 hex_string_custom (lm_addr, 8));
456
457 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
458 {
459 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
460 break;
461 }
462
463 got_addr
464 = extract_unsigned_integer (lm_buf.l_addr.got_value,
465 sizeof (lm_buf.l_addr.got_value));
466 /* If the got_addr is the same as mgotr, then we're looking at the
467 entry for the main executable. By convention, we don't include
468 this in the list of shared objects. */
469 if (got_addr != mgot)
470 {
471 int errcode;
472 char *name_buf;
473 struct int_elf32_fdpic_loadmap *loadmap;
474 struct so_list *sop;
475 CORE_ADDR addr;
476
477 /* Fetch the load map address. */
478 addr = extract_unsigned_integer (lm_buf.l_addr.map,
479 sizeof lm_buf.l_addr.map);
480 loadmap = fetch_loadmap (addr);
481 if (loadmap == NULL)
482 {
483 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
484 break;
485 }
486
487 sop = xcalloc (1, sizeof (struct so_list));
488 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
489 sop->lm_info->map = loadmap;
490 sop->lm_info->got_value = got_addr;
491 sop->lm_info->lm_addr = lm_addr;
492 /* Fetch the name. */
493 addr = extract_unsigned_integer (lm_buf.l_name,
494 sizeof (lm_buf.l_name));
495 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
496 &errcode);
497
498 if (solib_frv_debug)
499 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
500 name_buf);
501
502 if (errcode != 0)
503 warning (_("Can't read pathname for link map entry: %s."),
504 safe_strerror (errcode));
505 else
506 {
507 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
508 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
509 xfree (name_buf);
510 strcpy (sop->so_original_name, sop->so_name);
511 }
512
513 *sos_next_ptr = sop;
514 sos_next_ptr = &sop->next;
515 }
516 else
517 {
518 main_lm_addr = lm_addr;
519 }
520
521 lm_addr = extract_unsigned_integer (lm_buf.l_next, sizeof (lm_buf.l_next));
522 }
523
524 enable_break2 ();
525
526 return sos_head;
527 }
528
529
530 /* Return 1 if PC lies in the dynamic symbol resolution code of the
531 run time loader. */
532
533 static CORE_ADDR interp_text_sect_low;
534 static CORE_ADDR interp_text_sect_high;
535 static CORE_ADDR interp_plt_sect_low;
536 static CORE_ADDR interp_plt_sect_high;
537
538 static int
539 frv_in_dynsym_resolve_code (CORE_ADDR pc)
540 {
541 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
542 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
543 || in_plt_section (pc, NULL));
544 }
545
546 /* Given a loadmap and an address, return the displacement needed
547 to relocate the address. */
548
549 CORE_ADDR
550 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
551 CORE_ADDR addr)
552 {
553 int seg;
554
555 for (seg = 0; seg < map->nsegs; seg++)
556 {
557 if (map->segs[seg].p_vaddr <= addr
558 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
559 {
560 return map->segs[seg].addr - map->segs[seg].p_vaddr;
561 }
562 }
563
564 return 0;
565 }
566
567 /* Print a warning about being unable to set the dynamic linker
568 breakpoint. */
569
570 static void
571 enable_break_failure_warning (void)
572 {
573 warning (_("Unable to find dynamic linker breakpoint function.\n"
574 "GDB will be unable to debug shared library initializers\n"
575 "and track explicitly loaded dynamic code."));
576 }
577
578 /*
579
580 LOCAL FUNCTION
581
582 enable_break -- arrange for dynamic linker to hit breakpoint
583
584 SYNOPSIS
585
586 int enable_break (void)
587
588 DESCRIPTION
589
590 The dynamic linkers has, as part of its debugger interface, support
591 for arranging for the inferior to hit a breakpoint after mapping in
592 the shared libraries. This function enables that breakpoint.
593
594 On the FR-V, using the shared library (FDPIC) ABI, the symbol
595 _dl_debug_addr points to the r_debug struct which contains
596 a field called r_brk. r_brk is the address of the function
597 descriptor upon which a breakpoint must be placed. Being a
598 function descriptor, we must extract the entry point in order
599 to set the breakpoint.
600
601 Our strategy will be to get the .interp section from the
602 executable. This section will provide us with the name of the
603 interpreter. We'll open the interpreter and then look up
604 the address of _dl_debug_addr. We then relocate this address
605 using the interpreter's loadmap. Once the relocated address
606 is known, we fetch the value (address) corresponding to r_brk
607 and then use that value to fetch the entry point of the function
608 we're interested in.
609
610 */
611
612 static int enable_break1_done = 0;
613 static int enable_break2_done = 0;
614
615 static int
616 enable_break2 (void)
617 {
618 int success = 0;
619 char **bkpt_namep;
620 asection *interp_sect;
621
622 if (!enable_break1_done || enable_break2_done)
623 return 1;
624
625 enable_break2_done = 1;
626
627 /* First, remove all the solib event breakpoints. Their addresses
628 may have changed since the last time we ran the program. */
629 remove_solib_event_breakpoints ();
630
631 interp_text_sect_low = interp_text_sect_high = 0;
632 interp_plt_sect_low = interp_plt_sect_high = 0;
633
634 /* Find the .interp section; if not found, warn the user and drop
635 into the old breakpoint at symbol code. */
636 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
637 if (interp_sect)
638 {
639 unsigned int interp_sect_size;
640 gdb_byte *buf;
641 bfd *tmp_bfd = NULL;
642 int tmp_fd = -1;
643 char *tmp_pathname = NULL;
644 int status;
645 CORE_ADDR addr, interp_loadmap_addr;
646 gdb_byte addr_buf[FRV_PTR_SIZE];
647 struct int_elf32_fdpic_loadmap *ldm;
648
649 /* Read the contents of the .interp section into a local buffer;
650 the contents specify the dynamic linker this program uses. */
651 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
652 buf = alloca (interp_sect_size);
653 bfd_get_section_contents (exec_bfd, interp_sect,
654 buf, 0, interp_sect_size);
655
656 /* Now we need to figure out where the dynamic linker was
657 loaded so that we can load its symbols and place a breakpoint
658 in the dynamic linker itself.
659
660 This address is stored on the stack. However, I've been unable
661 to find any magic formula to find it for Solaris (appears to
662 be trivial on GNU/Linux). Therefore, we have to try an alternate
663 mechanism to find the dynamic linker's base address. */
664
665 tmp_fd = solib_open (buf, &tmp_pathname);
666 if (tmp_fd >= 0)
667 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
668
669 if (tmp_bfd == NULL)
670 {
671 enable_break_failure_warning ();
672 return 0;
673 }
674
675 /* Make sure the dynamic linker is really a useful object. */
676 if (!bfd_check_format (tmp_bfd, bfd_object))
677 {
678 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
679 enable_break_failure_warning ();
680 bfd_close (tmp_bfd);
681 return 0;
682 }
683
684 status = frv_fdpic_loadmap_addresses (current_gdbarch,
685 &interp_loadmap_addr, 0);
686 if (status < 0)
687 {
688 warning (_("Unable to determine dynamic linker loadmap address."));
689 enable_break_failure_warning ();
690 bfd_close (tmp_bfd);
691 return 0;
692 }
693
694 if (solib_frv_debug)
695 fprintf_unfiltered (gdb_stdlog,
696 "enable_break: interp_loadmap_addr = %s\n",
697 hex_string_custom (interp_loadmap_addr, 8));
698
699 ldm = fetch_loadmap (interp_loadmap_addr);
700 if (ldm == NULL)
701 {
702 warning (_("Unable to load dynamic linker loadmap at address %s."),
703 hex_string_custom (interp_loadmap_addr, 8));
704 enable_break_failure_warning ();
705 bfd_close (tmp_bfd);
706 return 0;
707 }
708
709 /* Record the relocated start and end address of the dynamic linker
710 text and plt section for svr4_in_dynsym_resolve_code. */
711 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
712 if (interp_sect)
713 {
714 interp_text_sect_low
715 = bfd_section_vma (tmp_bfd, interp_sect);
716 interp_text_sect_low
717 += displacement_from_map (ldm, interp_text_sect_low);
718 interp_text_sect_high
719 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
720 }
721 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
722 if (interp_sect)
723 {
724 interp_plt_sect_low =
725 bfd_section_vma (tmp_bfd, interp_sect);
726 interp_plt_sect_low
727 += displacement_from_map (ldm, interp_plt_sect_low);
728 interp_plt_sect_high =
729 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
730 }
731
732 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
733 if (addr == 0)
734 {
735 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
736 enable_break_failure_warning ();
737 bfd_close (tmp_bfd);
738 return 0;
739 }
740
741 if (solib_frv_debug)
742 fprintf_unfiltered (gdb_stdlog,
743 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
744 hex_string_custom (addr, 8));
745
746 addr += displacement_from_map (ldm, addr);
747
748 if (solib_frv_debug)
749 fprintf_unfiltered (gdb_stdlog,
750 "enable_break: _dl_debug_addr (after relocation) = %s\n",
751 hex_string_custom (addr, 8));
752
753 /* Fetch the address of the r_debug struct. */
754 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
755 {
756 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
757 hex_string_custom (addr, 8));
758 }
759 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
760
761 /* Fetch the r_brk field. It's 8 bytes from the start of
762 _dl_debug_addr. */
763 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
764 {
765 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
766 hex_string_custom (addr + 8, 8));
767 enable_break_failure_warning ();
768 bfd_close (tmp_bfd);
769 return 0;
770 }
771 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
772
773 /* Now fetch the function entry point. */
774 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
775 {
776 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
777 hex_string_custom (addr, 8));
778 enable_break_failure_warning ();
779 bfd_close (tmp_bfd);
780 return 0;
781 }
782 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
783
784 /* We're done with the temporary bfd. */
785 bfd_close (tmp_bfd);
786
787 /* We're also done with the loadmap. */
788 xfree (ldm);
789
790 /* Now (finally!) create the solib breakpoint. */
791 create_solib_event_breakpoint (addr);
792
793 return 1;
794 }
795
796 /* Tell the user we couldn't set a dynamic linker breakpoint. */
797 enable_break_failure_warning ();
798
799 /* Failure return. */
800 return 0;
801 }
802
803 static int
804 enable_break (void)
805 {
806 asection *interp_sect;
807
808 /* Remove all the solib event breakpoints. Their addresses
809 may have changed since the last time we ran the program. */
810 remove_solib_event_breakpoints ();
811
812 /* Check for the presence of a .interp section. If there is no
813 such section, the executable is statically linked. */
814
815 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
816
817 if (interp_sect)
818 {
819 enable_break1_done = 1;
820 create_solib_event_breakpoint (symfile_objfile->ei.entry_point);
821
822 if (solib_frv_debug)
823 fprintf_unfiltered (gdb_stdlog,
824 "enable_break: solib event breakpoint placed at entry point: %s\n",
825 hex_string_custom
826 (symfile_objfile->ei.entry_point, 8));
827 }
828 else
829 {
830 if (solib_frv_debug)
831 fprintf_unfiltered (gdb_stdlog,
832 "enable_break: No .interp section found.\n");
833 }
834
835 return 1;
836 }
837
838 /*
839
840 LOCAL FUNCTION
841
842 special_symbol_handling -- additional shared library symbol handling
843
844 SYNOPSIS
845
846 void special_symbol_handling ()
847
848 DESCRIPTION
849
850 Once the symbols from a shared object have been loaded in the usual
851 way, we are called to do any system specific symbol handling that
852 is needed.
853
854 */
855
856 static void
857 frv_special_symbol_handling (void)
858 {
859 /* Nothing needed (yet) for FRV. */
860 }
861
862 static void
863 frv_relocate_main_executable (void)
864 {
865 int status;
866 CORE_ADDR exec_addr;
867 struct int_elf32_fdpic_loadmap *ldm;
868 struct cleanup *old_chain;
869 struct section_offsets *new_offsets;
870 int changed;
871 struct obj_section *osect;
872
873 status = frv_fdpic_loadmap_addresses (current_gdbarch, 0, &exec_addr);
874
875 if (status < 0)
876 {
877 /* Not using FDPIC ABI, so do nothing. */
878 return;
879 }
880
881 /* Fetch the loadmap located at ``exec_addr''. */
882 ldm = fetch_loadmap (exec_addr);
883 if (ldm == NULL)
884 error (_("Unable to load the executable's loadmap."));
885
886 if (main_executable_lm_info)
887 xfree (main_executable_lm_info);
888 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
889 main_executable_lm_info->map = ldm;
890
891 new_offsets = xcalloc (symfile_objfile->num_sections,
892 sizeof (struct section_offsets));
893 old_chain = make_cleanup (xfree, new_offsets);
894 changed = 0;
895
896 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
897 {
898 CORE_ADDR orig_addr, addr, offset;
899 int osect_idx;
900 int seg;
901
902 osect_idx = osect->the_bfd_section->index;
903
904 /* Current address of section. */
905 addr = osect->addr;
906 /* Offset from where this section started. */
907 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
908 /* Original address prior to any past relocations. */
909 orig_addr = addr - offset;
910
911 for (seg = 0; seg < ldm->nsegs; seg++)
912 {
913 if (ldm->segs[seg].p_vaddr <= orig_addr
914 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
915 {
916 new_offsets->offsets[osect_idx]
917 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
918
919 if (new_offsets->offsets[osect_idx] != offset)
920 changed = 1;
921 break;
922 }
923 }
924 }
925
926 if (changed)
927 objfile_relocate (symfile_objfile, new_offsets);
928
929 do_cleanups (old_chain);
930
931 /* Now that symfile_objfile has been relocated, we can compute the
932 GOT value and stash it away. */
933 main_executable_lm_info->got_value = main_got ();
934 }
935
936 /*
937
938 GLOBAL FUNCTION
939
940 frv_solib_create_inferior_hook -- shared library startup support
941
942 SYNOPSIS
943
944 void frv_solib_create_inferior_hook ()
945
946 DESCRIPTION
947
948 When gdb starts up the inferior, it nurses it along (through the
949 shell) until it is ready to execute it's first instruction. At this
950 point, this function gets called via expansion of the macro
951 SOLIB_CREATE_INFERIOR_HOOK.
952
953 For the FR-V shared library ABI (FDPIC), the main executable
954 needs to be relocated. The shared library breakpoints also need
955 to be enabled.
956 */
957
958 static void
959 frv_solib_create_inferior_hook (void)
960 {
961 /* Relocate main executable. */
962 frv_relocate_main_executable ();
963
964 /* Enable shared library breakpoints. */
965 if (!enable_break ())
966 {
967 warning (_("shared library handler failed to enable breakpoint"));
968 return;
969 }
970 }
971
972 static void
973 frv_clear_solib (void)
974 {
975 lm_base_cache = 0;
976 enable_break1_done = 0;
977 enable_break2_done = 0;
978 main_lm_addr = 0;
979 if (main_executable_lm_info != 0)
980 {
981 xfree (main_executable_lm_info->map);
982 xfree (main_executable_lm_info->dyn_syms);
983 xfree (main_executable_lm_info->dyn_relocs);
984 xfree (main_executable_lm_info);
985 main_executable_lm_info = 0;
986 }
987 }
988
989 static void
990 frv_free_so (struct so_list *so)
991 {
992 xfree (so->lm_info->map);
993 xfree (so->lm_info->dyn_syms);
994 xfree (so->lm_info->dyn_relocs);
995 xfree (so->lm_info);
996 }
997
998 static void
999 frv_relocate_section_addresses (struct so_list *so,
1000 struct section_table *sec)
1001 {
1002 int seg;
1003 struct int_elf32_fdpic_loadmap *map;
1004
1005 map = so->lm_info->map;
1006
1007 for (seg = 0; seg < map->nsegs; seg++)
1008 {
1009 if (map->segs[seg].p_vaddr <= sec->addr
1010 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1011 {
1012 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1013 sec->addr += displ;
1014 sec->endaddr += displ;
1015 break;
1016 }
1017 }
1018 }
1019
1020 /* Return the GOT address associated with the main executable. Return
1021 0 if it can't be found. */
1022
1023 static CORE_ADDR
1024 main_got (void)
1025 {
1026 struct minimal_symbol *got_sym;
1027
1028 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1029 if (got_sym == 0)
1030 return 0;
1031
1032 return SYMBOL_VALUE_ADDRESS (got_sym);
1033 }
1034
1035 /* Find the global pointer for the given function address ADDR. */
1036
1037 CORE_ADDR
1038 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1039 {
1040 struct so_list *so;
1041
1042 so = master_so_list ();
1043 while (so)
1044 {
1045 int seg;
1046 struct int_elf32_fdpic_loadmap *map;
1047
1048 map = so->lm_info->map;
1049
1050 for (seg = 0; seg < map->nsegs; seg++)
1051 {
1052 if (map->segs[seg].addr <= addr
1053 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1054 return so->lm_info->got_value;
1055 }
1056
1057 so = so->next;
1058 }
1059
1060 /* Didn't find it it any of the shared objects. So assume it's in the
1061 main executable. */
1062 return main_got ();
1063 }
1064
1065 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1066 static CORE_ADDR find_canonical_descriptor_in_load_object
1067 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1068
1069 /* Given a function entry point, attempt to find the canonical descriptor
1070 associated with that entry point. Return 0 if no canonical descriptor
1071 could be found. */
1072
1073 CORE_ADDR
1074 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1075 {
1076 char *name;
1077 CORE_ADDR addr;
1078 CORE_ADDR got_value;
1079 struct int_elf32_fdpic_loadmap *ldm = 0;
1080 struct symbol *sym;
1081 int status;
1082 CORE_ADDR exec_loadmap_addr;
1083
1084 /* Fetch the corresponding global pointer for the entry point. */
1085 got_value = frv_fdpic_find_global_pointer (entry_point);
1086
1087 /* Attempt to find the name of the function. If the name is available,
1088 it'll be used as an aid in finding matching functions in the dynamic
1089 symbol table. */
1090 sym = find_pc_function (entry_point);
1091 if (sym == 0)
1092 name = 0;
1093 else
1094 name = SYMBOL_LINKAGE_NAME (sym);
1095
1096 /* Check the main executable. */
1097 addr = find_canonical_descriptor_in_load_object
1098 (entry_point, got_value, name, symfile_objfile->obfd,
1099 main_executable_lm_info);
1100
1101 /* If descriptor not found via main executable, check each load object
1102 in list of shared objects. */
1103 if (addr == 0)
1104 {
1105 struct so_list *so;
1106
1107 so = master_so_list ();
1108 while (so)
1109 {
1110 addr = find_canonical_descriptor_in_load_object
1111 (entry_point, got_value, name, so->abfd, so->lm_info);
1112
1113 if (addr != 0)
1114 break;
1115
1116 so = so->next;
1117 }
1118 }
1119
1120 return addr;
1121 }
1122
1123 static CORE_ADDR
1124 find_canonical_descriptor_in_load_object
1125 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1126 struct lm_info *lm)
1127 {
1128 arelent *rel;
1129 unsigned int i;
1130 CORE_ADDR addr = 0;
1131
1132 /* Nothing to do if no bfd. */
1133 if (abfd == 0)
1134 return 0;
1135
1136 /* Nothing to do if no link map. */
1137 if (lm == 0)
1138 return 0;
1139
1140 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1141 (More about this later.) But in order to fetch the relocs, we
1142 need to first fetch the dynamic symbols. These symbols need to
1143 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1144 works. (See the comments in the declaration of struct lm_info
1145 for more information.) */
1146 if (lm->dyn_syms == NULL)
1147 {
1148 long storage_needed;
1149 unsigned int number_of_symbols;
1150
1151 /* Determine amount of space needed to hold the dynamic symbol table. */
1152 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1153
1154 /* If there are no dynamic symbols, there's nothing to do. */
1155 if (storage_needed <= 0)
1156 return 0;
1157
1158 /* Allocate space for the dynamic symbol table. */
1159 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1160
1161 /* Fetch the dynamic symbol table. */
1162 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1163
1164 if (number_of_symbols == 0)
1165 return 0;
1166 }
1167
1168 /* Fetch the dynamic relocations if not already cached. */
1169 if (lm->dyn_relocs == NULL)
1170 {
1171 long storage_needed;
1172
1173 /* Determine amount of space needed to hold the dynamic relocs. */
1174 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1175
1176 /* Bail out if there are no dynamic relocs. */
1177 if (storage_needed <= 0)
1178 return 0;
1179
1180 /* Allocate space for the relocs. */
1181 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1182
1183 /* Fetch the dynamic relocs. */
1184 lm->dyn_reloc_count
1185 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1186 }
1187
1188 /* Search the dynamic relocs. */
1189 for (i = 0; i < lm->dyn_reloc_count; i++)
1190 {
1191 rel = lm->dyn_relocs[i];
1192
1193 /* Relocs of interest are those which meet the following
1194 criteria:
1195
1196 - the names match (assuming the caller could provide
1197 a name which matches ``entry_point'').
1198 - the relocation type must be R_FRV_FUNCDESC. Relocs
1199 of this type are used (by the dynamic linker) to
1200 look up the address of a canonical descriptor (allocating
1201 it if need be) and initializing the GOT entry referred
1202 to by the offset to the address of the descriptor.
1203
1204 These relocs of interest may be used to obtain a
1205 candidate descriptor by first adjusting the reloc's
1206 address according to the link map and then dereferencing
1207 this address (which is a GOT entry) to obtain a descriptor
1208 address. */
1209 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1210 && rel->howto->type == R_FRV_FUNCDESC)
1211 {
1212 gdb_byte buf [FRV_PTR_SIZE];
1213
1214 /* Compute address of address of candidate descriptor. */
1215 addr = rel->address + displacement_from_map (lm->map, rel->address);
1216
1217 /* Fetch address of candidate descriptor. */
1218 if (target_read_memory (addr, buf, sizeof buf) != 0)
1219 continue;
1220 addr = extract_unsigned_integer (buf, sizeof buf);
1221
1222 /* Check for matching entry point. */
1223 if (target_read_memory (addr, buf, sizeof buf) != 0)
1224 continue;
1225 if (extract_unsigned_integer (buf, sizeof buf) != entry_point)
1226 continue;
1227
1228 /* Check for matching got value. */
1229 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1230 continue;
1231 if (extract_unsigned_integer (buf, sizeof buf) != got_value)
1232 continue;
1233
1234 /* Match was successful! Exit loop. */
1235 break;
1236 }
1237 }
1238
1239 return addr;
1240 }
1241
1242 /* Given an objfile, return the address of its link map. This value is
1243 needed for TLS support. */
1244 CORE_ADDR
1245 frv_fetch_objfile_link_map (struct objfile *objfile)
1246 {
1247 struct so_list *so;
1248
1249 /* Cause frv_current_sos() to be run if it hasn't been already. */
1250 if (main_lm_addr == 0)
1251 solib_add (0, 0, 0, 1);
1252
1253 /* frv_current_sos() will set main_lm_addr for the main executable. */
1254 if (objfile == symfile_objfile)
1255 return main_lm_addr;
1256
1257 /* The other link map addresses may be found by examining the list
1258 of shared libraries. */
1259 for (so = master_so_list (); so; so = so->next)
1260 {
1261 if (so->objfile == objfile)
1262 return so->lm_info->lm_addr;
1263 }
1264
1265 /* Not found! */
1266 return 0;
1267 }
1268
1269 static struct target_so_ops frv_so_ops;
1270
1271 void
1272 _initialize_frv_solib (void)
1273 {
1274 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1275 frv_so_ops.free_so = frv_free_so;
1276 frv_so_ops.clear_solib = frv_clear_solib;
1277 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1278 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1279 frv_so_ops.current_sos = frv_current_sos;
1280 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1281 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1282
1283 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1284 current_target_so_ops = &frv_so_ops;
1285
1286 /* Debug this file's internals. */
1287 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1288 &solib_frv_debug, _("\
1289 Set internal debugging of shared library code for FR-V."), _("\
1290 Show internal debugging of shared library code for FR-V."), _("\
1291 When non-zero, FR-V solib specific internal debugging is enabled."),
1292 NULL,
1293 NULL, /* FIXME: i18n: */
1294 &setdebuglist, &showdebuglist);
1295 }
This page took 0.058034 seconds and 4 git commands to generate.