1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
23 #include "gdb_string.h"
36 /* Flag which indicates whether internal debug messages should be printed. */
37 static int solib_frv_debug
;
39 /* FR-V pointers are four bytes wide. */
40 enum { FRV_PTR_SIZE
= 4 };
42 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
44 /* External versions; the size and alignment of the fields should be
45 the same as those on the target. When loaded, the placement of
46 the bits in each field will be the same as on the target. */
47 typedef gdb_byte ext_Elf32_Half
[2];
48 typedef gdb_byte ext_Elf32_Addr
[4];
49 typedef gdb_byte ext_Elf32_Word
[4];
51 struct ext_elf32_fdpic_loadseg
53 /* Core address to which the segment is mapped. */
55 /* VMA recorded in the program header. */
56 ext_Elf32_Addr p_vaddr
;
57 /* Size of this segment in memory. */
58 ext_Elf32_Word p_memsz
;
61 struct ext_elf32_fdpic_loadmap
{
62 /* Protocol version number, must be zero. */
63 ext_Elf32_Half version
;
64 /* Number of segments in this map. */
66 /* The actual memory map. */
67 struct ext_elf32_fdpic_loadseg segs
[1 /* nsegs, actually */];
70 /* Internal versions; the types are GDB types and the data in each
71 of the fields is (or will be) decoded from the external struct
72 for ease of consumption. */
73 struct int_elf32_fdpic_loadseg
75 /* Core address to which the segment is mapped. */
77 /* VMA recorded in the program header. */
79 /* Size of this segment in memory. */
83 struct int_elf32_fdpic_loadmap
{
84 /* Protocol version number, must be zero. */
86 /* Number of segments in this map. */
88 /* The actual memory map. */
89 struct int_elf32_fdpic_loadseg segs
[1 /* nsegs, actually */];
92 /* Given address LDMADDR, fetch and decode the loadmap at that address.
93 Return NULL if there is a problem reading the target memory or if
94 there doesn't appear to be a loadmap at the given address. The
95 allocated space (representing the loadmap) returned by this
96 function may be freed via a single call to xfree(). */
98 static struct int_elf32_fdpic_loadmap
*
99 fetch_loadmap (CORE_ADDR ldmaddr
)
101 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial
;
102 struct ext_elf32_fdpic_loadmap
*ext_ldmbuf
;
103 struct int_elf32_fdpic_loadmap
*int_ldmbuf
;
104 int ext_ldmbuf_size
, int_ldmbuf_size
;
105 int version
, seg
, nsegs
;
107 /* Fetch initial portion of the loadmap. */
108 if (target_read_memory (ldmaddr
, (gdb_byte
*) &ext_ldmbuf_partial
,
109 sizeof ext_ldmbuf_partial
))
111 /* Problem reading the target's memory. */
115 /* Extract the version. */
116 version
= extract_unsigned_integer (ext_ldmbuf_partial
.version
,
117 sizeof ext_ldmbuf_partial
.version
);
120 /* We only handle version 0. */
124 /* Extract the number of segments. */
125 nsegs
= extract_unsigned_integer (ext_ldmbuf_partial
.nsegs
,
126 sizeof ext_ldmbuf_partial
.nsegs
);
128 /* Allocate space for the complete (external) loadmap. */
129 ext_ldmbuf_size
= sizeof (struct ext_elf32_fdpic_loadmap
)
130 + (nsegs
- 1) * sizeof (struct ext_elf32_fdpic_loadseg
);
131 ext_ldmbuf
= xmalloc (ext_ldmbuf_size
);
133 /* Copy over the portion of the loadmap that's already been read. */
134 memcpy (ext_ldmbuf
, &ext_ldmbuf_partial
, sizeof ext_ldmbuf_partial
);
136 /* Read the rest of the loadmap from the target. */
137 if (target_read_memory (ldmaddr
+ sizeof ext_ldmbuf_partial
,
138 (gdb_byte
*) ext_ldmbuf
+ sizeof ext_ldmbuf_partial
,
139 ext_ldmbuf_size
- sizeof ext_ldmbuf_partial
))
141 /* Couldn't read rest of the loadmap. */
146 /* Allocate space into which to put information extract from the
147 external loadsegs. I.e, allocate the internal loadsegs. */
148 int_ldmbuf_size
= sizeof (struct int_elf32_fdpic_loadmap
)
149 + (nsegs
- 1) * sizeof (struct int_elf32_fdpic_loadseg
);
150 int_ldmbuf
= xmalloc (int_ldmbuf_size
);
152 /* Place extracted information in internal structs. */
153 int_ldmbuf
->version
= version
;
154 int_ldmbuf
->nsegs
= nsegs
;
155 for (seg
= 0; seg
< nsegs
; seg
++)
157 int_ldmbuf
->segs
[seg
].addr
158 = extract_unsigned_integer (ext_ldmbuf
->segs
[seg
].addr
,
159 sizeof (ext_ldmbuf
->segs
[seg
].addr
));
160 int_ldmbuf
->segs
[seg
].p_vaddr
161 = extract_unsigned_integer (ext_ldmbuf
->segs
[seg
].p_vaddr
,
162 sizeof (ext_ldmbuf
->segs
[seg
].p_vaddr
));
163 int_ldmbuf
->segs
[seg
].p_memsz
164 = extract_unsigned_integer (ext_ldmbuf
->segs
[seg
].p_memsz
,
165 sizeof (ext_ldmbuf
->segs
[seg
].p_memsz
));
172 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
174 typedef gdb_byte ext_ptr
[4];
176 struct ext_elf32_fdpic_loadaddr
178 ext_ptr map
; /* struct elf32_fdpic_loadmap *map; */
179 ext_ptr got_value
; /* void *got_value; */
184 struct ext_elf32_fdpic_loadaddr l_addr
;
186 /* Absolute file name object was found in. */
187 ext_ptr l_name
; /* char *l_name; */
189 /* Dynamic section of the shared object. */
190 ext_ptr l_ld
; /* ElfW(Dyn) *l_ld; */
192 /* Chain of loaded objects. */
193 ext_ptr l_next
, l_prev
; /* struct link_map *l_next, *l_prev; */
196 /* Link map info to include in an allocated so_list entry */
200 /* The loadmap, digested into an easier to use form. */
201 struct int_elf32_fdpic_loadmap
*map
;
202 /* The GOT address for this link map entry. */
204 /* The link map address, needed for frv_fetch_objfile_link_map(). */
207 /* Cached dynamic symbol table and dynamic relocs initialized and
208 used only by find_canonical_descriptor_in_load_object().
210 Note: kevinb/2004-02-26: It appears that calls to
211 bfd_canonicalize_dynamic_reloc() will use the same symbols as
212 those supplied to the first call to this function. Therefore,
213 it's important to NOT free the asymbol ** data structure
214 supplied to the first call. Thus the caching of the dynamic
215 symbols (dyn_syms) is critical for correct operation. The
216 caching of the dynamic relocations could be dispensed with. */
218 arelent
**dyn_relocs
;
219 int dyn_reloc_count
; /* number of dynamic relocs. */
223 /* The load map, got value, etc. are not available from the chain
224 of loaded shared objects. ``main_executable_lm_info'' provides
225 a way to get at this information so that it doesn't need to be
226 frequently recomputed. Initialized by frv_relocate_main_executable(). */
227 static struct lm_info
*main_executable_lm_info
;
229 static void frv_relocate_main_executable (void);
230 static CORE_ADDR
main_got (void);
231 static int enable_break2 (void);
237 bfd_lookup_symbol -- lookup the value for a specific symbol
241 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
245 An expensive way to lookup the value of a single symbol for
246 bfd's that are only temporary anyway. This is used by the
247 shared library support to find the address of the debugger
248 interface structures in the shared library.
250 Note that 0 is specifically allowed as an error return (no
255 bfd_lookup_symbol (bfd
*abfd
, char *symname
)
259 asymbol
**symbol_table
;
260 unsigned int number_of_symbols
;
262 struct cleanup
*back_to
;
263 CORE_ADDR symaddr
= 0;
265 storage_needed
= bfd_get_symtab_upper_bound (abfd
);
267 if (storage_needed
> 0)
269 symbol_table
= (asymbol
**) xmalloc (storage_needed
);
270 back_to
= make_cleanup (xfree
, symbol_table
);
271 number_of_symbols
= bfd_canonicalize_symtab (abfd
, symbol_table
);
273 for (i
= 0; i
< number_of_symbols
; i
++)
275 sym
= *symbol_table
++;
276 if (strcmp (sym
->name
, symname
) == 0)
278 /* Bfd symbols are section relative. */
279 symaddr
= sym
->value
+ sym
->section
->vma
;
283 do_cleanups (back_to
);
289 /* Look for the symbol in the dynamic string table too. */
291 storage_needed
= bfd_get_dynamic_symtab_upper_bound (abfd
);
293 if (storage_needed
> 0)
295 symbol_table
= (asymbol
**) xmalloc (storage_needed
);
296 back_to
= make_cleanup (xfree
, symbol_table
);
297 number_of_symbols
= bfd_canonicalize_dynamic_symtab (abfd
, symbol_table
);
299 for (i
= 0; i
< number_of_symbols
; i
++)
301 sym
= *symbol_table
++;
302 if (strcmp (sym
->name
, symname
) == 0)
304 /* Bfd symbols are section relative. */
305 symaddr
= sym
->value
+ sym
->section
->vma
;
309 do_cleanups (back_to
);
320 open_symbol_file_object
324 void open_symbol_file_object (void *from_tty)
328 If no open symbol file, attempt to locate and open the main symbol
331 If FROM_TTYP dereferences to a non-zero integer, allow messages to
332 be printed. This parameter is a pointer rather than an int because
333 open_symbol_file_object() is called via catch_errors() and
334 catch_errors() requires a pointer argument. */
337 open_symbol_file_object (void *from_ttyp
)
343 /* Cached value for lm_base(), below. */
344 static CORE_ADDR lm_base_cache
= 0;
346 /* Link map address for main module. */
347 static CORE_ADDR main_lm_addr
= 0;
349 /* Return the address from which the link map chain may be found. On
350 the FR-V, this may be found in a number of ways. Assuming that the
351 main executable has already been relocated, the easiest way to find
352 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
353 pointer to the start of the link map will be located at the word found
354 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
355 reserve area mandated by the ABI.) */
360 struct minimal_symbol
*got_sym
;
362 gdb_byte buf
[FRV_PTR_SIZE
];
364 /* If we already have a cached value, return it. */
366 return lm_base_cache
;
368 got_sym
= lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL
,
373 fprintf_unfiltered (gdb_stdlog
,
374 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
378 addr
= SYMBOL_VALUE_ADDRESS (got_sym
) + 8;
381 fprintf_unfiltered (gdb_stdlog
,
382 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
383 hex_string_custom (addr
, 8));
385 if (target_read_memory (addr
, buf
, sizeof buf
) != 0)
387 lm_base_cache
= extract_unsigned_integer (buf
, sizeof buf
);
390 fprintf_unfiltered (gdb_stdlog
,
391 "lm_base: lm_base_cache = %s\n",
392 hex_string_custom (lm_base_cache
, 8));
394 return lm_base_cache
;
400 frv_current_sos -- build a list of currently loaded shared objects
404 struct so_list *frv_current_sos ()
408 Build a list of `struct so_list' objects describing the shared
409 objects currently loaded in the inferior. This list does not
410 include an entry for the main executable file.
412 Note that we only gather information directly available from the
413 inferior --- we don't examine any of the shared library files
414 themselves. The declaration of `struct so_list' says which fields
415 we provide values for. */
417 static struct so_list
*
418 frv_current_sos (void)
420 CORE_ADDR lm_addr
, mgot
;
421 struct so_list
*sos_head
= NULL
;
422 struct so_list
**sos_next_ptr
= &sos_head
;
424 /* Make sure that the main executable has been relocated. This is
425 required in order to find the address of the global offset table,
426 which in turn is used to find the link map info. (See lm_base()
429 Note that the relocation of the main executable is also performed
430 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
431 files, this hook is called too late in order to be of benefit to
432 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
433 frv_current_sos, and also precedes the call to
434 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
436 if (main_executable_lm_info
== 0 && core_bfd
!= NULL
)
437 frv_relocate_main_executable ();
439 /* Fetch the GOT corresponding to the main executable. */
442 /* Locate the address of the first link map struct. */
443 lm_addr
= lm_base ();
445 /* We have at least one link map entry. Fetch the the lot of them,
446 building the solist chain. */
449 struct ext_link_map lm_buf
;
453 fprintf_unfiltered (gdb_stdlog
,
454 "current_sos: reading link_map entry at %s\n",
455 hex_string_custom (lm_addr
, 8));
457 if (target_read_memory (lm_addr
, (gdb_byte
*) &lm_buf
, sizeof (lm_buf
)) != 0)
459 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
464 = extract_unsigned_integer (lm_buf
.l_addr
.got_value
,
465 sizeof (lm_buf
.l_addr
.got_value
));
466 /* If the got_addr is the same as mgotr, then we're looking at the
467 entry for the main executable. By convention, we don't include
468 this in the list of shared objects. */
469 if (got_addr
!= mgot
)
473 struct int_elf32_fdpic_loadmap
*loadmap
;
477 /* Fetch the load map address. */
478 addr
= extract_unsigned_integer (lm_buf
.l_addr
.map
,
479 sizeof lm_buf
.l_addr
.map
);
480 loadmap
= fetch_loadmap (addr
);
483 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
487 sop
= xcalloc (1, sizeof (struct so_list
));
488 sop
->lm_info
= xcalloc (1, sizeof (struct lm_info
));
489 sop
->lm_info
->map
= loadmap
;
490 sop
->lm_info
->got_value
= got_addr
;
491 sop
->lm_info
->lm_addr
= lm_addr
;
492 /* Fetch the name. */
493 addr
= extract_unsigned_integer (lm_buf
.l_name
,
494 sizeof (lm_buf
.l_name
));
495 target_read_string (addr
, &name_buf
, SO_NAME_MAX_PATH_SIZE
- 1,
499 fprintf_unfiltered (gdb_stdlog
, "current_sos: name = %s\n",
503 warning (_("Can't read pathname for link map entry: %s."),
504 safe_strerror (errcode
));
507 strncpy (sop
->so_name
, name_buf
, SO_NAME_MAX_PATH_SIZE
- 1);
508 sop
->so_name
[SO_NAME_MAX_PATH_SIZE
- 1] = '\0';
510 strcpy (sop
->so_original_name
, sop
->so_name
);
514 sos_next_ptr
= &sop
->next
;
518 main_lm_addr
= lm_addr
;
521 lm_addr
= extract_unsigned_integer (lm_buf
.l_next
, sizeof (lm_buf
.l_next
));
530 /* Return 1 if PC lies in the dynamic symbol resolution code of the
533 static CORE_ADDR interp_text_sect_low
;
534 static CORE_ADDR interp_text_sect_high
;
535 static CORE_ADDR interp_plt_sect_low
;
536 static CORE_ADDR interp_plt_sect_high
;
539 frv_in_dynsym_resolve_code (CORE_ADDR pc
)
541 return ((pc
>= interp_text_sect_low
&& pc
< interp_text_sect_high
)
542 || (pc
>= interp_plt_sect_low
&& pc
< interp_plt_sect_high
)
543 || in_plt_section (pc
, NULL
));
546 /* Given a loadmap and an address, return the displacement needed
547 to relocate the address. */
550 displacement_from_map (struct int_elf32_fdpic_loadmap
*map
,
555 for (seg
= 0; seg
< map
->nsegs
; seg
++)
557 if (map
->segs
[seg
].p_vaddr
<= addr
558 && addr
< map
->segs
[seg
].p_vaddr
+ map
->segs
[seg
].p_memsz
)
560 return map
->segs
[seg
].addr
- map
->segs
[seg
].p_vaddr
;
567 /* Print a warning about being unable to set the dynamic linker
571 enable_break_failure_warning (void)
573 warning (_("Unable to find dynamic linker breakpoint function.\n"
574 "GDB will be unable to debug shared library initializers\n"
575 "and track explicitly loaded dynamic code."));
582 enable_break -- arrange for dynamic linker to hit breakpoint
586 int enable_break (void)
590 The dynamic linkers has, as part of its debugger interface, support
591 for arranging for the inferior to hit a breakpoint after mapping in
592 the shared libraries. This function enables that breakpoint.
594 On the FR-V, using the shared library (FDPIC) ABI, the symbol
595 _dl_debug_addr points to the r_debug struct which contains
596 a field called r_brk. r_brk is the address of the function
597 descriptor upon which a breakpoint must be placed. Being a
598 function descriptor, we must extract the entry point in order
599 to set the breakpoint.
601 Our strategy will be to get the .interp section from the
602 executable. This section will provide us with the name of the
603 interpreter. We'll open the interpreter and then look up
604 the address of _dl_debug_addr. We then relocate this address
605 using the interpreter's loadmap. Once the relocated address
606 is known, we fetch the value (address) corresponding to r_brk
607 and then use that value to fetch the entry point of the function
612 static int enable_break1_done
= 0;
613 static int enable_break2_done
= 0;
620 asection
*interp_sect
;
622 if (!enable_break1_done
|| enable_break2_done
)
625 enable_break2_done
= 1;
627 /* First, remove all the solib event breakpoints. Their addresses
628 may have changed since the last time we ran the program. */
629 remove_solib_event_breakpoints ();
631 interp_text_sect_low
= interp_text_sect_high
= 0;
632 interp_plt_sect_low
= interp_plt_sect_high
= 0;
634 /* Find the .interp section; if not found, warn the user and drop
635 into the old breakpoint at symbol code. */
636 interp_sect
= bfd_get_section_by_name (exec_bfd
, ".interp");
639 unsigned int interp_sect_size
;
643 char *tmp_pathname
= NULL
;
645 CORE_ADDR addr
, interp_loadmap_addr
;
646 gdb_byte addr_buf
[FRV_PTR_SIZE
];
647 struct int_elf32_fdpic_loadmap
*ldm
;
649 /* Read the contents of the .interp section into a local buffer;
650 the contents specify the dynamic linker this program uses. */
651 interp_sect_size
= bfd_section_size (exec_bfd
, interp_sect
);
652 buf
= alloca (interp_sect_size
);
653 bfd_get_section_contents (exec_bfd
, interp_sect
,
654 buf
, 0, interp_sect_size
);
656 /* Now we need to figure out where the dynamic linker was
657 loaded so that we can load its symbols and place a breakpoint
658 in the dynamic linker itself.
660 This address is stored on the stack. However, I've been unable
661 to find any magic formula to find it for Solaris (appears to
662 be trivial on GNU/Linux). Therefore, we have to try an alternate
663 mechanism to find the dynamic linker's base address. */
665 tmp_fd
= solib_open (buf
, &tmp_pathname
);
667 tmp_bfd
= bfd_fopen (tmp_pathname
, gnutarget
, FOPEN_RB
, tmp_fd
);
671 enable_break_failure_warning ();
675 /* Make sure the dynamic linker is really a useful object. */
676 if (!bfd_check_format (tmp_bfd
, bfd_object
))
678 warning (_("Unable to grok dynamic linker %s as an object file"), buf
);
679 enable_break_failure_warning ();
684 status
= frv_fdpic_loadmap_addresses (current_gdbarch
,
685 &interp_loadmap_addr
, 0);
688 warning (_("Unable to determine dynamic linker loadmap address."));
689 enable_break_failure_warning ();
695 fprintf_unfiltered (gdb_stdlog
,
696 "enable_break: interp_loadmap_addr = %s\n",
697 hex_string_custom (interp_loadmap_addr
, 8));
699 ldm
= fetch_loadmap (interp_loadmap_addr
);
702 warning (_("Unable to load dynamic linker loadmap at address %s."),
703 hex_string_custom (interp_loadmap_addr
, 8));
704 enable_break_failure_warning ();
709 /* Record the relocated start and end address of the dynamic linker
710 text and plt section for svr4_in_dynsym_resolve_code. */
711 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".text");
715 = bfd_section_vma (tmp_bfd
, interp_sect
);
717 += displacement_from_map (ldm
, interp_text_sect_low
);
718 interp_text_sect_high
719 = interp_text_sect_low
+ bfd_section_size (tmp_bfd
, interp_sect
);
721 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".plt");
724 interp_plt_sect_low
=
725 bfd_section_vma (tmp_bfd
, interp_sect
);
727 += displacement_from_map (ldm
, interp_plt_sect_low
);
728 interp_plt_sect_high
=
729 interp_plt_sect_low
+ bfd_section_size (tmp_bfd
, interp_sect
);
732 addr
= bfd_lookup_symbol (tmp_bfd
, "_dl_debug_addr");
735 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
736 enable_break_failure_warning ();
742 fprintf_unfiltered (gdb_stdlog
,
743 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
744 hex_string_custom (addr
, 8));
746 addr
+= displacement_from_map (ldm
, addr
);
749 fprintf_unfiltered (gdb_stdlog
,
750 "enable_break: _dl_debug_addr (after relocation) = %s\n",
751 hex_string_custom (addr
, 8));
753 /* Fetch the address of the r_debug struct. */
754 if (target_read_memory (addr
, addr_buf
, sizeof addr_buf
) != 0)
756 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
757 hex_string_custom (addr
, 8));
759 addr
= extract_unsigned_integer (addr_buf
, sizeof addr_buf
);
761 /* Fetch the r_brk field. It's 8 bytes from the start of
763 if (target_read_memory (addr
+ 8, addr_buf
, sizeof addr_buf
) != 0)
765 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
766 hex_string_custom (addr
+ 8, 8));
767 enable_break_failure_warning ();
771 addr
= extract_unsigned_integer (addr_buf
, sizeof addr_buf
);
773 /* Now fetch the function entry point. */
774 if (target_read_memory (addr
, addr_buf
, sizeof addr_buf
) != 0)
776 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
777 hex_string_custom (addr
, 8));
778 enable_break_failure_warning ();
782 addr
= extract_unsigned_integer (addr_buf
, sizeof addr_buf
);
784 /* We're done with the temporary bfd. */
787 /* We're also done with the loadmap. */
790 /* Now (finally!) create the solib breakpoint. */
791 create_solib_event_breakpoint (addr
);
796 /* Tell the user we couldn't set a dynamic linker breakpoint. */
797 enable_break_failure_warning ();
799 /* Failure return. */
806 asection
*interp_sect
;
808 /* Remove all the solib event breakpoints. Their addresses
809 may have changed since the last time we ran the program. */
810 remove_solib_event_breakpoints ();
812 /* Check for the presence of a .interp section. If there is no
813 such section, the executable is statically linked. */
815 interp_sect
= bfd_get_section_by_name (exec_bfd
, ".interp");
819 enable_break1_done
= 1;
820 create_solib_event_breakpoint (symfile_objfile
->ei
.entry_point
);
823 fprintf_unfiltered (gdb_stdlog
,
824 "enable_break: solib event breakpoint placed at entry point: %s\n",
826 (symfile_objfile
->ei
.entry_point
, 8));
831 fprintf_unfiltered (gdb_stdlog
,
832 "enable_break: No .interp section found.\n");
842 special_symbol_handling -- additional shared library symbol handling
846 void special_symbol_handling ()
850 Once the symbols from a shared object have been loaded in the usual
851 way, we are called to do any system specific symbol handling that
857 frv_special_symbol_handling (void)
859 /* Nothing needed (yet) for FRV. */
863 frv_relocate_main_executable (void)
867 struct int_elf32_fdpic_loadmap
*ldm
;
868 struct cleanup
*old_chain
;
869 struct section_offsets
*new_offsets
;
871 struct obj_section
*osect
;
873 status
= frv_fdpic_loadmap_addresses (current_gdbarch
, 0, &exec_addr
);
877 /* Not using FDPIC ABI, so do nothing. */
881 /* Fetch the loadmap located at ``exec_addr''. */
882 ldm
= fetch_loadmap (exec_addr
);
884 error (_("Unable to load the executable's loadmap."));
886 if (main_executable_lm_info
)
887 xfree (main_executable_lm_info
);
888 main_executable_lm_info
= xcalloc (1, sizeof (struct lm_info
));
889 main_executable_lm_info
->map
= ldm
;
891 new_offsets
= xcalloc (symfile_objfile
->num_sections
,
892 sizeof (struct section_offsets
));
893 old_chain
= make_cleanup (xfree
, new_offsets
);
896 ALL_OBJFILE_OSECTIONS (symfile_objfile
, osect
)
898 CORE_ADDR orig_addr
, addr
, offset
;
902 osect_idx
= osect
->the_bfd_section
->index
;
904 /* Current address of section. */
906 /* Offset from where this section started. */
907 offset
= ANOFFSET (symfile_objfile
->section_offsets
, osect_idx
);
908 /* Original address prior to any past relocations. */
909 orig_addr
= addr
- offset
;
911 for (seg
= 0; seg
< ldm
->nsegs
; seg
++)
913 if (ldm
->segs
[seg
].p_vaddr
<= orig_addr
914 && orig_addr
< ldm
->segs
[seg
].p_vaddr
+ ldm
->segs
[seg
].p_memsz
)
916 new_offsets
->offsets
[osect_idx
]
917 = ldm
->segs
[seg
].addr
- ldm
->segs
[seg
].p_vaddr
;
919 if (new_offsets
->offsets
[osect_idx
] != offset
)
927 objfile_relocate (symfile_objfile
, new_offsets
);
929 do_cleanups (old_chain
);
931 /* Now that symfile_objfile has been relocated, we can compute the
932 GOT value and stash it away. */
933 main_executable_lm_info
->got_value
= main_got ();
940 frv_solib_create_inferior_hook -- shared library startup support
944 void frv_solib_create_inferior_hook ()
948 When gdb starts up the inferior, it nurses it along (through the
949 shell) until it is ready to execute it's first instruction. At this
950 point, this function gets called via expansion of the macro
951 SOLIB_CREATE_INFERIOR_HOOK.
953 For the FR-V shared library ABI (FDPIC), the main executable
954 needs to be relocated. The shared library breakpoints also need
959 frv_solib_create_inferior_hook (void)
961 /* Relocate main executable. */
962 frv_relocate_main_executable ();
964 /* Enable shared library breakpoints. */
965 if (!enable_break ())
967 warning (_("shared library handler failed to enable breakpoint"));
973 frv_clear_solib (void)
976 enable_break1_done
= 0;
977 enable_break2_done
= 0;
979 if (main_executable_lm_info
!= 0)
981 xfree (main_executable_lm_info
->map
);
982 xfree (main_executable_lm_info
->dyn_syms
);
983 xfree (main_executable_lm_info
->dyn_relocs
);
984 xfree (main_executable_lm_info
);
985 main_executable_lm_info
= 0;
990 frv_free_so (struct so_list
*so
)
992 xfree (so
->lm_info
->map
);
993 xfree (so
->lm_info
->dyn_syms
);
994 xfree (so
->lm_info
->dyn_relocs
);
999 frv_relocate_section_addresses (struct so_list
*so
,
1000 struct section_table
*sec
)
1003 struct int_elf32_fdpic_loadmap
*map
;
1005 map
= so
->lm_info
->map
;
1007 for (seg
= 0; seg
< map
->nsegs
; seg
++)
1009 if (map
->segs
[seg
].p_vaddr
<= sec
->addr
1010 && sec
->addr
< map
->segs
[seg
].p_vaddr
+ map
->segs
[seg
].p_memsz
)
1012 CORE_ADDR displ
= map
->segs
[seg
].addr
- map
->segs
[seg
].p_vaddr
;
1014 sec
->endaddr
+= displ
;
1020 /* Return the GOT address associated with the main executable. Return
1021 0 if it can't be found. */
1026 struct minimal_symbol
*got_sym
;
1028 got_sym
= lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL
, symfile_objfile
);
1032 return SYMBOL_VALUE_ADDRESS (got_sym
);
1035 /* Find the global pointer for the given function address ADDR. */
1038 frv_fdpic_find_global_pointer (CORE_ADDR addr
)
1042 so
= master_so_list ();
1046 struct int_elf32_fdpic_loadmap
*map
;
1048 map
= so
->lm_info
->map
;
1050 for (seg
= 0; seg
< map
->nsegs
; seg
++)
1052 if (map
->segs
[seg
].addr
<= addr
1053 && addr
< map
->segs
[seg
].addr
+ map
->segs
[seg
].p_memsz
)
1054 return so
->lm_info
->got_value
;
1060 /* Didn't find it it any of the shared objects. So assume it's in the
1065 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1066 static CORE_ADDR find_canonical_descriptor_in_load_object
1067 (CORE_ADDR
, CORE_ADDR
, char *, bfd
*, struct lm_info
*);
1069 /* Given a function entry point, attempt to find the canonical descriptor
1070 associated with that entry point. Return 0 if no canonical descriptor
1074 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point
)
1078 CORE_ADDR got_value
;
1079 struct int_elf32_fdpic_loadmap
*ldm
= 0;
1082 CORE_ADDR exec_loadmap_addr
;
1084 /* Fetch the corresponding global pointer for the entry point. */
1085 got_value
= frv_fdpic_find_global_pointer (entry_point
);
1087 /* Attempt to find the name of the function. If the name is available,
1088 it'll be used as an aid in finding matching functions in the dynamic
1090 sym
= find_pc_function (entry_point
);
1094 name
= SYMBOL_LINKAGE_NAME (sym
);
1096 /* Check the main executable. */
1097 addr
= find_canonical_descriptor_in_load_object
1098 (entry_point
, got_value
, name
, symfile_objfile
->obfd
,
1099 main_executable_lm_info
);
1101 /* If descriptor not found via main executable, check each load object
1102 in list of shared objects. */
1107 so
= master_so_list ();
1110 addr
= find_canonical_descriptor_in_load_object
1111 (entry_point
, got_value
, name
, so
->abfd
, so
->lm_info
);
1124 find_canonical_descriptor_in_load_object
1125 (CORE_ADDR entry_point
, CORE_ADDR got_value
, char *name
, bfd
*abfd
,
1132 /* Nothing to do if no bfd. */
1136 /* Nothing to do if no link map. */
1140 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1141 (More about this later.) But in order to fetch the relocs, we
1142 need to first fetch the dynamic symbols. These symbols need to
1143 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1144 works. (See the comments in the declaration of struct lm_info
1145 for more information.) */
1146 if (lm
->dyn_syms
== NULL
)
1148 long storage_needed
;
1149 unsigned int number_of_symbols
;
1151 /* Determine amount of space needed to hold the dynamic symbol table. */
1152 storage_needed
= bfd_get_dynamic_symtab_upper_bound (abfd
);
1154 /* If there are no dynamic symbols, there's nothing to do. */
1155 if (storage_needed
<= 0)
1158 /* Allocate space for the dynamic symbol table. */
1159 lm
->dyn_syms
= (asymbol
**) xmalloc (storage_needed
);
1161 /* Fetch the dynamic symbol table. */
1162 number_of_symbols
= bfd_canonicalize_dynamic_symtab (abfd
, lm
->dyn_syms
);
1164 if (number_of_symbols
== 0)
1168 /* Fetch the dynamic relocations if not already cached. */
1169 if (lm
->dyn_relocs
== NULL
)
1171 long storage_needed
;
1173 /* Determine amount of space needed to hold the dynamic relocs. */
1174 storage_needed
= bfd_get_dynamic_reloc_upper_bound (abfd
);
1176 /* Bail out if there are no dynamic relocs. */
1177 if (storage_needed
<= 0)
1180 /* Allocate space for the relocs. */
1181 lm
->dyn_relocs
= (arelent
**) xmalloc (storage_needed
);
1183 /* Fetch the dynamic relocs. */
1185 = bfd_canonicalize_dynamic_reloc (abfd
, lm
->dyn_relocs
, lm
->dyn_syms
);
1188 /* Search the dynamic relocs. */
1189 for (i
= 0; i
< lm
->dyn_reloc_count
; i
++)
1191 rel
= lm
->dyn_relocs
[i
];
1193 /* Relocs of interest are those which meet the following
1196 - the names match (assuming the caller could provide
1197 a name which matches ``entry_point'').
1198 - the relocation type must be R_FRV_FUNCDESC. Relocs
1199 of this type are used (by the dynamic linker) to
1200 look up the address of a canonical descriptor (allocating
1201 it if need be) and initializing the GOT entry referred
1202 to by the offset to the address of the descriptor.
1204 These relocs of interest may be used to obtain a
1205 candidate descriptor by first adjusting the reloc's
1206 address according to the link map and then dereferencing
1207 this address (which is a GOT entry) to obtain a descriptor
1209 if ((name
== 0 || strcmp (name
, (*rel
->sym_ptr_ptr
)->name
) == 0)
1210 && rel
->howto
->type
== R_FRV_FUNCDESC
)
1212 gdb_byte buf
[FRV_PTR_SIZE
];
1214 /* Compute address of address of candidate descriptor. */
1215 addr
= rel
->address
+ displacement_from_map (lm
->map
, rel
->address
);
1217 /* Fetch address of candidate descriptor. */
1218 if (target_read_memory (addr
, buf
, sizeof buf
) != 0)
1220 addr
= extract_unsigned_integer (buf
, sizeof buf
);
1222 /* Check for matching entry point. */
1223 if (target_read_memory (addr
, buf
, sizeof buf
) != 0)
1225 if (extract_unsigned_integer (buf
, sizeof buf
) != entry_point
)
1228 /* Check for matching got value. */
1229 if (target_read_memory (addr
+ 4, buf
, sizeof buf
) != 0)
1231 if (extract_unsigned_integer (buf
, sizeof buf
) != got_value
)
1234 /* Match was successful! Exit loop. */
1242 /* Given an objfile, return the address of its link map. This value is
1243 needed for TLS support. */
1245 frv_fetch_objfile_link_map (struct objfile
*objfile
)
1249 /* Cause frv_current_sos() to be run if it hasn't been already. */
1250 if (main_lm_addr
== 0)
1251 solib_add (0, 0, 0, 1);
1253 /* frv_current_sos() will set main_lm_addr for the main executable. */
1254 if (objfile
== symfile_objfile
)
1255 return main_lm_addr
;
1257 /* The other link map addresses may be found by examining the list
1258 of shared libraries. */
1259 for (so
= master_so_list (); so
; so
= so
->next
)
1261 if (so
->objfile
== objfile
)
1262 return so
->lm_info
->lm_addr
;
1269 static struct target_so_ops frv_so_ops
;
1272 _initialize_frv_solib (void)
1274 frv_so_ops
.relocate_section_addresses
= frv_relocate_section_addresses
;
1275 frv_so_ops
.free_so
= frv_free_so
;
1276 frv_so_ops
.clear_solib
= frv_clear_solib
;
1277 frv_so_ops
.solib_create_inferior_hook
= frv_solib_create_inferior_hook
;
1278 frv_so_ops
.special_symbol_handling
= frv_special_symbol_handling
;
1279 frv_so_ops
.current_sos
= frv_current_sos
;
1280 frv_so_ops
.open_symbol_file_object
= open_symbol_file_object
;
1281 frv_so_ops
.in_dynsym_resolve_code
= frv_in_dynsym_resolve_code
;
1283 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1284 current_target_so_ops
= &frv_so_ops
;
1286 /* Debug this file's internals. */
1287 add_setshow_zinteger_cmd ("solib-frv", class_maintenance
,
1288 &solib_frv_debug
, _("\
1289 Set internal debugging of shared library code for FR-V."), _("\
1290 Show internal debugging of shared library code for FR-V."), _("\
1291 When non-zero, FR-V solib specific internal debugging is enabled."),
1293 NULL
, /* FIXME: i18n: */
1294 &setdebuglist
, &showdebuglist
);