ChangeLog:
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "solib.h"
25 #include "solist.h"
26 #include "frv-tdep.h"
27 #include "objfiles.h"
28 #include "symtab.h"
29 #include "language.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "elf/frv.h"
33 #include "exceptions.h"
34
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug;
37
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE = 4 };
40
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
49
50 struct ext_elf32_fdpic_loadseg
51 {
52 /* Core address to which the segment is mapped. */
53 ext_Elf32_Addr addr;
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
58 };
59
60 struct ext_elf32_fdpic_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version;
63 /* Number of segments in this map. */
64 ext_Elf32_Half nsegs;
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
67 };
68
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
73 {
74 /* Core address to which the segment is mapped. */
75 CORE_ADDR addr;
76 /* VMA recorded in the program header. */
77 CORE_ADDR p_vaddr;
78 /* Size of this segment in memory. */
79 long p_memsz;
80 };
81
82 struct int_elf32_fdpic_loadmap {
83 /* Protocol version number, must be zero. */
84 int version;
85 /* Number of segments in this map. */
86 int nsegs;
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
89 };
90
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
96
97 static struct int_elf32_fdpic_loadmap *
98 fetch_loadmap (CORE_ADDR ldmaddr)
99 {
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version);
117 if (version != 0)
118 {
119 /* We only handle version 0. */
120 return NULL;
121 }
122
123 /* Extract the number of segments. */
124 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
125 sizeof ext_ldmbuf_partial.nsegs);
126
127 /* Allocate space for the complete (external) loadmap. */
128 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
129 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
130 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
131
132 /* Copy over the portion of the loadmap that's already been read. */
133 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
134
135 /* Read the rest of the loadmap from the target. */
136 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
137 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
138 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
139 {
140 /* Couldn't read rest of the loadmap. */
141 xfree (ext_ldmbuf);
142 return NULL;
143 }
144
145 /* Allocate space into which to put information extract from the
146 external loadsegs. I.e, allocate the internal loadsegs. */
147 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
148 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
149 int_ldmbuf = xmalloc (int_ldmbuf_size);
150
151 /* Place extracted information in internal structs. */
152 int_ldmbuf->version = version;
153 int_ldmbuf->nsegs = nsegs;
154 for (seg = 0; seg < nsegs; seg++)
155 {
156 int_ldmbuf->segs[seg].addr
157 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
158 sizeof (ext_ldmbuf->segs[seg].addr));
159 int_ldmbuf->segs[seg].p_vaddr
160 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
161 sizeof (ext_ldmbuf->segs[seg].p_vaddr));
162 int_ldmbuf->segs[seg].p_memsz
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
164 sizeof (ext_ldmbuf->segs[seg].p_memsz));
165 }
166
167 xfree (ext_ldmbuf);
168 return int_ldmbuf;
169 }
170
171 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
172
173 typedef gdb_byte ext_ptr[4];
174
175 struct ext_elf32_fdpic_loadaddr
176 {
177 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
178 ext_ptr got_value; /* void *got_value; */
179 };
180
181 struct ext_link_map
182 {
183 struct ext_elf32_fdpic_loadaddr l_addr;
184
185 /* Absolute file name object was found in. */
186 ext_ptr l_name; /* char *l_name; */
187
188 /* Dynamic section of the shared object. */
189 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
190
191 /* Chain of loaded objects. */
192 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
193 };
194
195 /* Link map info to include in an allocated so_list entry */
196
197 struct lm_info
198 {
199 /* The loadmap, digested into an easier to use form. */
200 struct int_elf32_fdpic_loadmap *map;
201 /* The GOT address for this link map entry. */
202 CORE_ADDR got_value;
203 /* The link map address, needed for frv_fetch_objfile_link_map(). */
204 CORE_ADDR lm_addr;
205
206 /* Cached dynamic symbol table and dynamic relocs initialized and
207 used only by find_canonical_descriptor_in_load_object().
208
209 Note: kevinb/2004-02-26: It appears that calls to
210 bfd_canonicalize_dynamic_reloc() will use the same symbols as
211 those supplied to the first call to this function. Therefore,
212 it's important to NOT free the asymbol ** data structure
213 supplied to the first call. Thus the caching of the dynamic
214 symbols (dyn_syms) is critical for correct operation. The
215 caching of the dynamic relocations could be dispensed with. */
216 asymbol **dyn_syms;
217 arelent **dyn_relocs;
218 int dyn_reloc_count; /* number of dynamic relocs. */
219
220 };
221
222 /* The load map, got value, etc. are not available from the chain
223 of loaded shared objects. ``main_executable_lm_info'' provides
224 a way to get at this information so that it doesn't need to be
225 frequently recomputed. Initialized by frv_relocate_main_executable(). */
226 static struct lm_info *main_executable_lm_info;
227
228 static void frv_relocate_main_executable (void);
229 static CORE_ADDR main_got (void);
230 static int enable_break2 (void);
231
232 /*
233
234 LOCAL FUNCTION
235
236 bfd_lookup_symbol -- lookup the value for a specific symbol
237
238 SYNOPSIS
239
240 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
241
242 DESCRIPTION
243
244 An expensive way to lookup the value of a single symbol for
245 bfd's that are only temporary anyway. This is used by the
246 shared library support to find the address of the debugger
247 interface structures in the shared library.
248
249 Note that 0 is specifically allowed as an error return (no
250 such symbol).
251 */
252
253 static CORE_ADDR
254 bfd_lookup_symbol (bfd *abfd, char *symname)
255 {
256 long storage_needed;
257 asymbol *sym;
258 asymbol **symbol_table;
259 unsigned int number_of_symbols;
260 unsigned int i;
261 struct cleanup *back_to;
262 CORE_ADDR symaddr = 0;
263
264 storage_needed = bfd_get_symtab_upper_bound (abfd);
265
266 if (storage_needed > 0)
267 {
268 symbol_table = (asymbol **) xmalloc (storage_needed);
269 back_to = make_cleanup (xfree, symbol_table);
270 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
271
272 for (i = 0; i < number_of_symbols; i++)
273 {
274 sym = *symbol_table++;
275 if (strcmp (sym->name, symname) == 0)
276 {
277 /* Bfd symbols are section relative. */
278 symaddr = sym->value + sym->section->vma;
279 break;
280 }
281 }
282 do_cleanups (back_to);
283 }
284
285 if (symaddr)
286 return symaddr;
287
288 /* Look for the symbol in the dynamic string table too. */
289
290 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
291
292 if (storage_needed > 0)
293 {
294 symbol_table = (asymbol **) xmalloc (storage_needed);
295 back_to = make_cleanup (xfree, symbol_table);
296 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
297
298 for (i = 0; i < number_of_symbols; i++)
299 {
300 sym = *symbol_table++;
301 if (strcmp (sym->name, symname) == 0)
302 {
303 /* Bfd symbols are section relative. */
304 symaddr = sym->value + sym->section->vma;
305 break;
306 }
307 }
308 do_cleanups (back_to);
309 }
310
311 return symaddr;
312 }
313
314
315 /*
316
317 LOCAL FUNCTION
318
319 open_symbol_file_object
320
321 SYNOPSIS
322
323 void open_symbol_file_object (void *from_tty)
324
325 DESCRIPTION
326
327 If no open symbol file, attempt to locate and open the main symbol
328 file.
329
330 If FROM_TTYP dereferences to a non-zero integer, allow messages to
331 be printed. This parameter is a pointer rather than an int because
332 open_symbol_file_object() is called via catch_errors() and
333 catch_errors() requires a pointer argument. */
334
335 static int
336 open_symbol_file_object (void *from_ttyp)
337 {
338 /* Unimplemented. */
339 return 0;
340 }
341
342 /* Cached value for lm_base(), below. */
343 static CORE_ADDR lm_base_cache = 0;
344
345 /* Link map address for main module. */
346 static CORE_ADDR main_lm_addr = 0;
347
348 /* Return the address from which the link map chain may be found. On
349 the FR-V, this may be found in a number of ways. Assuming that the
350 main executable has already been relocated, the easiest way to find
351 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
352 pointer to the start of the link map will be located at the word found
353 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
354 reserve area mandated by the ABI.) */
355
356 static CORE_ADDR
357 lm_base (void)
358 {
359 struct minimal_symbol *got_sym;
360 CORE_ADDR addr;
361 gdb_byte buf[FRV_PTR_SIZE];
362
363 /* One of our assumptions is that the main executable has been relocated.
364 Bail out if this has not happened. (Note that post_create_inferior()
365 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
366 If we allow this to happen, lm_base_cache will be initialized with
367 a bogus value. */
368 if (main_executable_lm_info == 0)
369 return 0;
370
371 /* If we already have a cached value, return it. */
372 if (lm_base_cache)
373 return lm_base_cache;
374
375 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
376 symfile_objfile);
377 if (got_sym == 0)
378 {
379 if (solib_frv_debug)
380 fprintf_unfiltered (gdb_stdlog,
381 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
382 return 0;
383 }
384
385 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
386
387 if (solib_frv_debug)
388 fprintf_unfiltered (gdb_stdlog,
389 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
390 hex_string_custom (addr, 8));
391
392 if (target_read_memory (addr, buf, sizeof buf) != 0)
393 return 0;
394 lm_base_cache = extract_unsigned_integer (buf, sizeof buf);
395
396 if (solib_frv_debug)
397 fprintf_unfiltered (gdb_stdlog,
398 "lm_base: lm_base_cache = %s\n",
399 hex_string_custom (lm_base_cache, 8));
400
401 return lm_base_cache;
402 }
403
404
405 /* LOCAL FUNCTION
406
407 frv_current_sos -- build a list of currently loaded shared objects
408
409 SYNOPSIS
410
411 struct so_list *frv_current_sos ()
412
413 DESCRIPTION
414
415 Build a list of `struct so_list' objects describing the shared
416 objects currently loaded in the inferior. This list does not
417 include an entry for the main executable file.
418
419 Note that we only gather information directly available from the
420 inferior --- we don't examine any of the shared library files
421 themselves. The declaration of `struct so_list' says which fields
422 we provide values for. */
423
424 static struct so_list *
425 frv_current_sos (void)
426 {
427 CORE_ADDR lm_addr, mgot;
428 struct so_list *sos_head = NULL;
429 struct so_list **sos_next_ptr = &sos_head;
430
431 /* Make sure that the main executable has been relocated. This is
432 required in order to find the address of the global offset table,
433 which in turn is used to find the link map info. (See lm_base()
434 for details.)
435
436 Note that the relocation of the main executable is also performed
437 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
438 files, this hook is called too late in order to be of benefit to
439 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
440 frv_current_sos, and also precedes the call to
441 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
442 infcmd.c.) */
443 if (main_executable_lm_info == 0 && core_bfd != NULL)
444 frv_relocate_main_executable ();
445
446 /* Fetch the GOT corresponding to the main executable. */
447 mgot = main_got ();
448
449 /* Locate the address of the first link map struct. */
450 lm_addr = lm_base ();
451
452 /* We have at least one link map entry. Fetch the the lot of them,
453 building the solist chain. */
454 while (lm_addr)
455 {
456 struct ext_link_map lm_buf;
457 CORE_ADDR got_addr;
458
459 if (solib_frv_debug)
460 fprintf_unfiltered (gdb_stdlog,
461 "current_sos: reading link_map entry at %s\n",
462 hex_string_custom (lm_addr, 8));
463
464 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
465 {
466 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
467 break;
468 }
469
470 got_addr
471 = extract_unsigned_integer (lm_buf.l_addr.got_value,
472 sizeof (lm_buf.l_addr.got_value));
473 /* If the got_addr is the same as mgotr, then we're looking at the
474 entry for the main executable. By convention, we don't include
475 this in the list of shared objects. */
476 if (got_addr != mgot)
477 {
478 int errcode;
479 char *name_buf;
480 struct int_elf32_fdpic_loadmap *loadmap;
481 struct so_list *sop;
482 CORE_ADDR addr;
483
484 /* Fetch the load map address. */
485 addr = extract_unsigned_integer (lm_buf.l_addr.map,
486 sizeof lm_buf.l_addr.map);
487 loadmap = fetch_loadmap (addr);
488 if (loadmap == NULL)
489 {
490 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
491 break;
492 }
493
494 sop = xcalloc (1, sizeof (struct so_list));
495 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
496 sop->lm_info->map = loadmap;
497 sop->lm_info->got_value = got_addr;
498 sop->lm_info->lm_addr = lm_addr;
499 /* Fetch the name. */
500 addr = extract_unsigned_integer (lm_buf.l_name,
501 sizeof (lm_buf.l_name));
502 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
503 &errcode);
504
505 if (solib_frv_debug)
506 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
507 name_buf);
508
509 if (errcode != 0)
510 warning (_("Can't read pathname for link map entry: %s."),
511 safe_strerror (errcode));
512 else
513 {
514 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
515 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
516 xfree (name_buf);
517 strcpy (sop->so_original_name, sop->so_name);
518 }
519
520 *sos_next_ptr = sop;
521 sos_next_ptr = &sop->next;
522 }
523 else
524 {
525 main_lm_addr = lm_addr;
526 }
527
528 lm_addr = extract_unsigned_integer (lm_buf.l_next, sizeof (lm_buf.l_next));
529 }
530
531 enable_break2 ();
532
533 return sos_head;
534 }
535
536
537 /* Return 1 if PC lies in the dynamic symbol resolution code of the
538 run time loader. */
539
540 static CORE_ADDR interp_text_sect_low;
541 static CORE_ADDR interp_text_sect_high;
542 static CORE_ADDR interp_plt_sect_low;
543 static CORE_ADDR interp_plt_sect_high;
544
545 static int
546 frv_in_dynsym_resolve_code (CORE_ADDR pc)
547 {
548 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
549 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
550 || in_plt_section (pc, NULL));
551 }
552
553 /* Given a loadmap and an address, return the displacement needed
554 to relocate the address. */
555
556 CORE_ADDR
557 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
558 CORE_ADDR addr)
559 {
560 int seg;
561
562 for (seg = 0; seg < map->nsegs; seg++)
563 {
564 if (map->segs[seg].p_vaddr <= addr
565 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
566 {
567 return map->segs[seg].addr - map->segs[seg].p_vaddr;
568 }
569 }
570
571 return 0;
572 }
573
574 /* Print a warning about being unable to set the dynamic linker
575 breakpoint. */
576
577 static void
578 enable_break_failure_warning (void)
579 {
580 warning (_("Unable to find dynamic linker breakpoint function.\n"
581 "GDB will be unable to debug shared library initializers\n"
582 "and track explicitly loaded dynamic code."));
583 }
584
585 /*
586
587 LOCAL FUNCTION
588
589 enable_break -- arrange for dynamic linker to hit breakpoint
590
591 SYNOPSIS
592
593 int enable_break (void)
594
595 DESCRIPTION
596
597 The dynamic linkers has, as part of its debugger interface, support
598 for arranging for the inferior to hit a breakpoint after mapping in
599 the shared libraries. This function enables that breakpoint.
600
601 On the FR-V, using the shared library (FDPIC) ABI, the symbol
602 _dl_debug_addr points to the r_debug struct which contains
603 a field called r_brk. r_brk is the address of the function
604 descriptor upon which a breakpoint must be placed. Being a
605 function descriptor, we must extract the entry point in order
606 to set the breakpoint.
607
608 Our strategy will be to get the .interp section from the
609 executable. This section will provide us with the name of the
610 interpreter. We'll open the interpreter and then look up
611 the address of _dl_debug_addr. We then relocate this address
612 using the interpreter's loadmap. Once the relocated address
613 is known, we fetch the value (address) corresponding to r_brk
614 and then use that value to fetch the entry point of the function
615 we're interested in.
616
617 */
618
619 static int enable_break1_done = 0;
620 static int enable_break2_done = 0;
621
622 static int
623 enable_break2 (void)
624 {
625 int success = 0;
626 char **bkpt_namep;
627 asection *interp_sect;
628
629 if (!enable_break1_done || enable_break2_done)
630 return 1;
631
632 enable_break2_done = 1;
633
634 /* First, remove all the solib event breakpoints. Their addresses
635 may have changed since the last time we ran the program. */
636 remove_solib_event_breakpoints ();
637
638 interp_text_sect_low = interp_text_sect_high = 0;
639 interp_plt_sect_low = interp_plt_sect_high = 0;
640
641 /* Find the .interp section; if not found, warn the user and drop
642 into the old breakpoint at symbol code. */
643 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
644 if (interp_sect)
645 {
646 unsigned int interp_sect_size;
647 gdb_byte *buf;
648 bfd *tmp_bfd = NULL;
649 int status;
650 CORE_ADDR addr, interp_loadmap_addr;
651 gdb_byte addr_buf[FRV_PTR_SIZE];
652 struct int_elf32_fdpic_loadmap *ldm;
653 volatile struct gdb_exception ex;
654
655 /* Read the contents of the .interp section into a local buffer;
656 the contents specify the dynamic linker this program uses. */
657 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
658 buf = alloca (interp_sect_size);
659 bfd_get_section_contents (exec_bfd, interp_sect,
660 buf, 0, interp_sect_size);
661
662 /* Now we need to figure out where the dynamic linker was
663 loaded so that we can load its symbols and place a breakpoint
664 in the dynamic linker itself.
665
666 This address is stored on the stack. However, I've been unable
667 to find any magic formula to find it for Solaris (appears to
668 be trivial on GNU/Linux). Therefore, we have to try an alternate
669 mechanism to find the dynamic linker's base address. */
670
671 TRY_CATCH (ex, RETURN_MASK_ALL)
672 {
673 tmp_bfd = solib_bfd_open (buf);
674 }
675 if (tmp_bfd == NULL)
676 {
677 enable_break_failure_warning ();
678 return 0;
679 }
680
681 status = frv_fdpic_loadmap_addresses (target_gdbarch,
682 &interp_loadmap_addr, 0);
683 if (status < 0)
684 {
685 warning (_("Unable to determine dynamic linker loadmap address."));
686 enable_break_failure_warning ();
687 bfd_close (tmp_bfd);
688 return 0;
689 }
690
691 if (solib_frv_debug)
692 fprintf_unfiltered (gdb_stdlog,
693 "enable_break: interp_loadmap_addr = %s\n",
694 hex_string_custom (interp_loadmap_addr, 8));
695
696 ldm = fetch_loadmap (interp_loadmap_addr);
697 if (ldm == NULL)
698 {
699 warning (_("Unable to load dynamic linker loadmap at address %s."),
700 hex_string_custom (interp_loadmap_addr, 8));
701 enable_break_failure_warning ();
702 bfd_close (tmp_bfd);
703 return 0;
704 }
705
706 /* Record the relocated start and end address of the dynamic linker
707 text and plt section for svr4_in_dynsym_resolve_code. */
708 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
709 if (interp_sect)
710 {
711 interp_text_sect_low
712 = bfd_section_vma (tmp_bfd, interp_sect);
713 interp_text_sect_low
714 += displacement_from_map (ldm, interp_text_sect_low);
715 interp_text_sect_high
716 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
717 }
718 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
719 if (interp_sect)
720 {
721 interp_plt_sect_low =
722 bfd_section_vma (tmp_bfd, interp_sect);
723 interp_plt_sect_low
724 += displacement_from_map (ldm, interp_plt_sect_low);
725 interp_plt_sect_high =
726 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
727 }
728
729 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
730 if (addr == 0)
731 {
732 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
733 enable_break_failure_warning ();
734 bfd_close (tmp_bfd);
735 return 0;
736 }
737
738 if (solib_frv_debug)
739 fprintf_unfiltered (gdb_stdlog,
740 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
741 hex_string_custom (addr, 8));
742
743 addr += displacement_from_map (ldm, addr);
744
745 if (solib_frv_debug)
746 fprintf_unfiltered (gdb_stdlog,
747 "enable_break: _dl_debug_addr (after relocation) = %s\n",
748 hex_string_custom (addr, 8));
749
750 /* Fetch the address of the r_debug struct. */
751 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
752 {
753 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
754 hex_string_custom (addr, 8));
755 }
756 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
757
758 /* Fetch the r_brk field. It's 8 bytes from the start of
759 _dl_debug_addr. */
760 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
761 {
762 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
763 hex_string_custom (addr + 8, 8));
764 enable_break_failure_warning ();
765 bfd_close (tmp_bfd);
766 return 0;
767 }
768 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
769
770 /* Now fetch the function entry point. */
771 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
772 {
773 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
774 hex_string_custom (addr, 8));
775 enable_break_failure_warning ();
776 bfd_close (tmp_bfd);
777 return 0;
778 }
779 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
780
781 /* We're done with the temporary bfd. */
782 bfd_close (tmp_bfd);
783
784 /* We're also done with the loadmap. */
785 xfree (ldm);
786
787 /* Now (finally!) create the solib breakpoint. */
788 create_solib_event_breakpoint (addr);
789
790 return 1;
791 }
792
793 /* Tell the user we couldn't set a dynamic linker breakpoint. */
794 enable_break_failure_warning ();
795
796 /* Failure return. */
797 return 0;
798 }
799
800 static int
801 enable_break (void)
802 {
803 asection *interp_sect;
804
805 /* Remove all the solib event breakpoints. Their addresses
806 may have changed since the last time we ran the program. */
807 remove_solib_event_breakpoints ();
808
809 /* Check for the presence of a .interp section. If there is no
810 such section, the executable is statically linked. */
811
812 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
813
814 if (interp_sect)
815 {
816 enable_break1_done = 1;
817 create_solib_event_breakpoint (symfile_objfile->ei.entry_point);
818
819 if (solib_frv_debug)
820 fprintf_unfiltered (gdb_stdlog,
821 "enable_break: solib event breakpoint placed at entry point: %s\n",
822 hex_string_custom
823 (symfile_objfile->ei.entry_point, 8));
824 }
825 else
826 {
827 if (solib_frv_debug)
828 fprintf_unfiltered (gdb_stdlog,
829 "enable_break: No .interp section found.\n");
830 }
831
832 return 1;
833 }
834
835 /*
836
837 LOCAL FUNCTION
838
839 special_symbol_handling -- additional shared library symbol handling
840
841 SYNOPSIS
842
843 void special_symbol_handling ()
844
845 DESCRIPTION
846
847 Once the symbols from a shared object have been loaded in the usual
848 way, we are called to do any system specific symbol handling that
849 is needed.
850
851 */
852
853 static void
854 frv_special_symbol_handling (void)
855 {
856 /* Nothing needed (yet) for FRV. */
857 }
858
859 static void
860 frv_relocate_main_executable (void)
861 {
862 int status;
863 CORE_ADDR exec_addr;
864 struct int_elf32_fdpic_loadmap *ldm;
865 struct cleanup *old_chain;
866 struct section_offsets *new_offsets;
867 int changed;
868 struct obj_section *osect;
869
870 status = frv_fdpic_loadmap_addresses (target_gdbarch, 0, &exec_addr);
871
872 if (status < 0)
873 {
874 /* Not using FDPIC ABI, so do nothing. */
875 return;
876 }
877
878 /* Fetch the loadmap located at ``exec_addr''. */
879 ldm = fetch_loadmap (exec_addr);
880 if (ldm == NULL)
881 error (_("Unable to load the executable's loadmap."));
882
883 if (main_executable_lm_info)
884 xfree (main_executable_lm_info);
885 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
886 main_executable_lm_info->map = ldm;
887
888 new_offsets = xcalloc (symfile_objfile->num_sections,
889 sizeof (struct section_offsets));
890 old_chain = make_cleanup (xfree, new_offsets);
891 changed = 0;
892
893 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
894 {
895 CORE_ADDR orig_addr, addr, offset;
896 int osect_idx;
897 int seg;
898
899 osect_idx = osect->the_bfd_section->index;
900
901 /* Current address of section. */
902 addr = obj_section_addr (osect);
903 /* Offset from where this section started. */
904 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
905 /* Original address prior to any past relocations. */
906 orig_addr = addr - offset;
907
908 for (seg = 0; seg < ldm->nsegs; seg++)
909 {
910 if (ldm->segs[seg].p_vaddr <= orig_addr
911 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
912 {
913 new_offsets->offsets[osect_idx]
914 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
915
916 if (new_offsets->offsets[osect_idx] != offset)
917 changed = 1;
918 break;
919 }
920 }
921 }
922
923 if (changed)
924 objfile_relocate (symfile_objfile, new_offsets);
925
926 do_cleanups (old_chain);
927
928 /* Now that symfile_objfile has been relocated, we can compute the
929 GOT value and stash it away. */
930 main_executable_lm_info->got_value = main_got ();
931 }
932
933 /*
934
935 GLOBAL FUNCTION
936
937 frv_solib_create_inferior_hook -- shared library startup support
938
939 SYNOPSIS
940
941 void frv_solib_create_inferior_hook ()
942
943 DESCRIPTION
944
945 When gdb starts up the inferior, it nurses it along (through the
946 shell) until it is ready to execute it's first instruction. At this
947 point, this function gets called via expansion of the macro
948 SOLIB_CREATE_INFERIOR_HOOK.
949
950 For the FR-V shared library ABI (FDPIC), the main executable
951 needs to be relocated. The shared library breakpoints also need
952 to be enabled.
953 */
954
955 static void
956 frv_solib_create_inferior_hook (void)
957 {
958 /* Relocate main executable. */
959 frv_relocate_main_executable ();
960
961 /* Enable shared library breakpoints. */
962 if (!enable_break ())
963 {
964 warning (_("shared library handler failed to enable breakpoint"));
965 return;
966 }
967 }
968
969 static void
970 frv_clear_solib (void)
971 {
972 lm_base_cache = 0;
973 enable_break1_done = 0;
974 enable_break2_done = 0;
975 main_lm_addr = 0;
976 if (main_executable_lm_info != 0)
977 {
978 xfree (main_executable_lm_info->map);
979 xfree (main_executable_lm_info->dyn_syms);
980 xfree (main_executable_lm_info->dyn_relocs);
981 xfree (main_executable_lm_info);
982 main_executable_lm_info = 0;
983 }
984 }
985
986 static void
987 frv_free_so (struct so_list *so)
988 {
989 xfree (so->lm_info->map);
990 xfree (so->lm_info->dyn_syms);
991 xfree (so->lm_info->dyn_relocs);
992 xfree (so->lm_info);
993 }
994
995 static void
996 frv_relocate_section_addresses (struct so_list *so,
997 struct section_table *sec)
998 {
999 int seg;
1000 struct int_elf32_fdpic_loadmap *map;
1001
1002 map = so->lm_info->map;
1003
1004 for (seg = 0; seg < map->nsegs; seg++)
1005 {
1006 if (map->segs[seg].p_vaddr <= sec->addr
1007 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1008 {
1009 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1010 sec->addr += displ;
1011 sec->endaddr += displ;
1012 break;
1013 }
1014 }
1015 }
1016
1017 /* Return the GOT address associated with the main executable. Return
1018 0 if it can't be found. */
1019
1020 static CORE_ADDR
1021 main_got (void)
1022 {
1023 struct minimal_symbol *got_sym;
1024
1025 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1026 if (got_sym == 0)
1027 return 0;
1028
1029 return SYMBOL_VALUE_ADDRESS (got_sym);
1030 }
1031
1032 /* Find the global pointer for the given function address ADDR. */
1033
1034 CORE_ADDR
1035 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1036 {
1037 struct so_list *so;
1038
1039 so = master_so_list ();
1040 while (so)
1041 {
1042 int seg;
1043 struct int_elf32_fdpic_loadmap *map;
1044
1045 map = so->lm_info->map;
1046
1047 for (seg = 0; seg < map->nsegs; seg++)
1048 {
1049 if (map->segs[seg].addr <= addr
1050 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1051 return so->lm_info->got_value;
1052 }
1053
1054 so = so->next;
1055 }
1056
1057 /* Didn't find it it any of the shared objects. So assume it's in the
1058 main executable. */
1059 return main_got ();
1060 }
1061
1062 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1063 static CORE_ADDR find_canonical_descriptor_in_load_object
1064 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1065
1066 /* Given a function entry point, attempt to find the canonical descriptor
1067 associated with that entry point. Return 0 if no canonical descriptor
1068 could be found. */
1069
1070 CORE_ADDR
1071 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1072 {
1073 char *name;
1074 CORE_ADDR addr;
1075 CORE_ADDR got_value;
1076 struct int_elf32_fdpic_loadmap *ldm = 0;
1077 struct symbol *sym;
1078 int status;
1079 CORE_ADDR exec_loadmap_addr;
1080
1081 /* Fetch the corresponding global pointer for the entry point. */
1082 got_value = frv_fdpic_find_global_pointer (entry_point);
1083
1084 /* Attempt to find the name of the function. If the name is available,
1085 it'll be used as an aid in finding matching functions in the dynamic
1086 symbol table. */
1087 sym = find_pc_function (entry_point);
1088 if (sym == 0)
1089 name = 0;
1090 else
1091 name = SYMBOL_LINKAGE_NAME (sym);
1092
1093 /* Check the main executable. */
1094 addr = find_canonical_descriptor_in_load_object
1095 (entry_point, got_value, name, symfile_objfile->obfd,
1096 main_executable_lm_info);
1097
1098 /* If descriptor not found via main executable, check each load object
1099 in list of shared objects. */
1100 if (addr == 0)
1101 {
1102 struct so_list *so;
1103
1104 so = master_so_list ();
1105 while (so)
1106 {
1107 addr = find_canonical_descriptor_in_load_object
1108 (entry_point, got_value, name, so->abfd, so->lm_info);
1109
1110 if (addr != 0)
1111 break;
1112
1113 so = so->next;
1114 }
1115 }
1116
1117 return addr;
1118 }
1119
1120 static CORE_ADDR
1121 find_canonical_descriptor_in_load_object
1122 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1123 struct lm_info *lm)
1124 {
1125 arelent *rel;
1126 unsigned int i;
1127 CORE_ADDR addr = 0;
1128
1129 /* Nothing to do if no bfd. */
1130 if (abfd == 0)
1131 return 0;
1132
1133 /* Nothing to do if no link map. */
1134 if (lm == 0)
1135 return 0;
1136
1137 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1138 (More about this later.) But in order to fetch the relocs, we
1139 need to first fetch the dynamic symbols. These symbols need to
1140 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1141 works. (See the comments in the declaration of struct lm_info
1142 for more information.) */
1143 if (lm->dyn_syms == NULL)
1144 {
1145 long storage_needed;
1146 unsigned int number_of_symbols;
1147
1148 /* Determine amount of space needed to hold the dynamic symbol table. */
1149 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1150
1151 /* If there are no dynamic symbols, there's nothing to do. */
1152 if (storage_needed <= 0)
1153 return 0;
1154
1155 /* Allocate space for the dynamic symbol table. */
1156 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1157
1158 /* Fetch the dynamic symbol table. */
1159 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1160
1161 if (number_of_symbols == 0)
1162 return 0;
1163 }
1164
1165 /* Fetch the dynamic relocations if not already cached. */
1166 if (lm->dyn_relocs == NULL)
1167 {
1168 long storage_needed;
1169
1170 /* Determine amount of space needed to hold the dynamic relocs. */
1171 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1172
1173 /* Bail out if there are no dynamic relocs. */
1174 if (storage_needed <= 0)
1175 return 0;
1176
1177 /* Allocate space for the relocs. */
1178 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1179
1180 /* Fetch the dynamic relocs. */
1181 lm->dyn_reloc_count
1182 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1183 }
1184
1185 /* Search the dynamic relocs. */
1186 for (i = 0; i < lm->dyn_reloc_count; i++)
1187 {
1188 rel = lm->dyn_relocs[i];
1189
1190 /* Relocs of interest are those which meet the following
1191 criteria:
1192
1193 - the names match (assuming the caller could provide
1194 a name which matches ``entry_point'').
1195 - the relocation type must be R_FRV_FUNCDESC. Relocs
1196 of this type are used (by the dynamic linker) to
1197 look up the address of a canonical descriptor (allocating
1198 it if need be) and initializing the GOT entry referred
1199 to by the offset to the address of the descriptor.
1200
1201 These relocs of interest may be used to obtain a
1202 candidate descriptor by first adjusting the reloc's
1203 address according to the link map and then dereferencing
1204 this address (which is a GOT entry) to obtain a descriptor
1205 address. */
1206 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1207 && rel->howto->type == R_FRV_FUNCDESC)
1208 {
1209 gdb_byte buf [FRV_PTR_SIZE];
1210
1211 /* Compute address of address of candidate descriptor. */
1212 addr = rel->address + displacement_from_map (lm->map, rel->address);
1213
1214 /* Fetch address of candidate descriptor. */
1215 if (target_read_memory (addr, buf, sizeof buf) != 0)
1216 continue;
1217 addr = extract_unsigned_integer (buf, sizeof buf);
1218
1219 /* Check for matching entry point. */
1220 if (target_read_memory (addr, buf, sizeof buf) != 0)
1221 continue;
1222 if (extract_unsigned_integer (buf, sizeof buf) != entry_point)
1223 continue;
1224
1225 /* Check for matching got value. */
1226 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1227 continue;
1228 if (extract_unsigned_integer (buf, sizeof buf) != got_value)
1229 continue;
1230
1231 /* Match was successful! Exit loop. */
1232 break;
1233 }
1234 }
1235
1236 return addr;
1237 }
1238
1239 /* Given an objfile, return the address of its link map. This value is
1240 needed for TLS support. */
1241 CORE_ADDR
1242 frv_fetch_objfile_link_map (struct objfile *objfile)
1243 {
1244 struct so_list *so;
1245
1246 /* Cause frv_current_sos() to be run if it hasn't been already. */
1247 if (main_lm_addr == 0)
1248 solib_add (0, 0, 0, 1);
1249
1250 /* frv_current_sos() will set main_lm_addr for the main executable. */
1251 if (objfile == symfile_objfile)
1252 return main_lm_addr;
1253
1254 /* The other link map addresses may be found by examining the list
1255 of shared libraries. */
1256 for (so = master_so_list (); so; so = so->next)
1257 {
1258 if (so->objfile == objfile)
1259 return so->lm_info->lm_addr;
1260 }
1261
1262 /* Not found! */
1263 return 0;
1264 }
1265
1266 struct target_so_ops frv_so_ops;
1267
1268 void
1269 _initialize_frv_solib (void)
1270 {
1271 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1272 frv_so_ops.free_so = frv_free_so;
1273 frv_so_ops.clear_solib = frv_clear_solib;
1274 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1275 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1276 frv_so_ops.current_sos = frv_current_sos;
1277 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1278 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1279
1280 /* Debug this file's internals. */
1281 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1282 &solib_frv_debug, _("\
1283 Set internal debugging of shared library code for FR-V."), _("\
1284 Show internal debugging of shared library code for FR-V."), _("\
1285 When non-zero, FR-V solib specific internal debugging is enabled."),
1286 NULL,
1287 NULL, /* FIXME: i18n: */
1288 &setdebuglist, &showdebuglist);
1289 }
This page took 0.057007 seconds and 5 git commands to generate.