2010-11-19 Jan Kratochvil <jan.kratochvil@redhat.com>
[deliverable/binutils-gdb.git] / gdb / solib-irix.c
1 /* Shared library support for IRIX.
2 Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 This file was created using portions of irix5-nat.c originally
6 contributed to GDB by Ian Lance Taylor.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24
25 #include "symtab.h"
26 #include "bfd.h"
27 /* FIXME: ezannoni/2004-02-13 Verify that the include below is
28 really needed. */
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcore.h"
32 #include "target.h"
33 #include "inferior.h"
34 #include "gdbthread.h"
35
36 #include "solist.h"
37 #include "solib.h"
38 #include "solib-irix.h"
39
40
41 /* Link map info to include in an allocate so_list entry. Unlike some
42 of the other solib backends, this (Irix) backend chooses to decode
43 the link map info obtained from the target and store it as (mostly)
44 CORE_ADDRs which need no further decoding. This is more convenient
45 because there are three different link map formats to worry about.
46 We use a single routine (fetch_lm_info) to read (and decode) the target
47 specific link map data. */
48
49 struct lm_info
50 {
51 CORE_ADDR addr; /* address of obj_info or obj_list
52 struct on target (from which the
53 following information is obtained). */
54 CORE_ADDR next; /* address of next item in list. */
55 CORE_ADDR reloc_offset; /* amount to relocate by */
56 CORE_ADDR pathname_addr; /* address of pathname */
57 int pathname_len; /* length of pathname */
58 };
59
60 /* It's not desirable to use the system header files to obtain the
61 structure of the obj_list or obj_info structs. Therefore, we use a
62 platform neutral representation which has been derived from the IRIX
63 header files. */
64
65 typedef struct
66 {
67 gdb_byte b[4];
68 }
69 gdb_int32_bytes;
70 typedef struct
71 {
72 gdb_byte b[8];
73 }
74 gdb_int64_bytes;
75
76 /* The "old" obj_list struct. This is used with old (o32) binaries.
77 The ``data'' member points at a much larger and more complicated
78 struct which we will only refer to by offsets. See
79 fetch_lm_info(). */
80
81 struct irix_obj_list
82 {
83 gdb_int32_bytes data;
84 gdb_int32_bytes next;
85 gdb_int32_bytes prev;
86 };
87
88 /* The ELF32 and ELF64 versions of the above struct. The oi_magic value
89 corresponds to the ``data'' value in the "old" struct. When this value
90 is 0xffffffff, the data will be in one of the following formats. The
91 ``oi_size'' field is used to decide which one we actually have. */
92
93 struct irix_elf32_obj_info
94 {
95 gdb_int32_bytes oi_magic;
96 gdb_int32_bytes oi_size;
97 gdb_int32_bytes oi_next;
98 gdb_int32_bytes oi_prev;
99 gdb_int32_bytes oi_ehdr;
100 gdb_int32_bytes oi_orig_ehdr;
101 gdb_int32_bytes oi_pathname;
102 gdb_int32_bytes oi_pathname_len;
103 };
104
105 struct irix_elf64_obj_info
106 {
107 gdb_int32_bytes oi_magic;
108 gdb_int32_bytes oi_size;
109 gdb_int64_bytes oi_next;
110 gdb_int64_bytes oi_prev;
111 gdb_int64_bytes oi_ehdr;
112 gdb_int64_bytes oi_orig_ehdr;
113 gdb_int64_bytes oi_pathname;
114 gdb_int32_bytes oi_pathname_len;
115 gdb_int32_bytes padding;
116 };
117
118 /* Union of all of the above (plus a split out magic field). */
119
120 union irix_obj_info
121 {
122 gdb_int32_bytes magic;
123 struct irix_obj_list ol32;
124 struct irix_elf32_obj_info oi32;
125 struct irix_elf64_obj_info oi64;
126 };
127
128 /* MIPS sign extends its 32 bit addresses. We could conceivably use
129 extract_typed_address here, but to do so, we'd have to construct an
130 appropriate type. Calling extract_signed_integer seems simpler. */
131
132 static CORE_ADDR
133 extract_mips_address (void *addr, int len, enum bfd_endian byte_order)
134 {
135 return extract_signed_integer (addr, len, byte_order);
136 }
137
138 /* Fetch and return the link map data associated with ADDR. Note that
139 this routine automatically determines which (of three) link map
140 formats is in use by the target. */
141
142 static struct lm_info
143 fetch_lm_info (CORE_ADDR addr)
144 {
145 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
146 struct lm_info li;
147 union irix_obj_info buf;
148
149 li.addr = addr;
150
151 /* The smallest region that we'll need is for buf.ol32. We'll read
152 that first. We'll read more of the buffer later if we have to deal
153 with one of the other cases. (We don't want to incur a memory error
154 if we were to read a larger region that generates an error due to
155 being at the end of a page or the like.) */
156 read_memory (addr, (char *) &buf, sizeof (buf.ol32));
157
158 if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic), byte_order)
159 != 0xffffffff)
160 {
161 /* Use buf.ol32... */
162 char obj_buf[432];
163 CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
164 sizeof (buf.ol32.data),
165 byte_order);
166
167 li.next = extract_mips_address (&buf.ol32.next,
168 sizeof (buf.ol32.next), byte_order);
169
170 read_memory (obj_addr, obj_buf, sizeof (obj_buf));
171
172 li.pathname_addr = extract_mips_address (&obj_buf[236], 4, byte_order);
173 li.pathname_len = 0; /* unknown */
174 li.reloc_offset = extract_mips_address (&obj_buf[196], 4, byte_order)
175 - extract_mips_address (&obj_buf[248], 4, byte_order);
176
177 }
178 else if (extract_unsigned_integer (buf.oi32.oi_size.b,
179 sizeof (buf.oi32.oi_size), byte_order)
180 == sizeof (buf.oi32))
181 {
182 /* Use buf.oi32... */
183
184 /* Read rest of buffer. */
185 read_memory (addr + sizeof (buf.ol32),
186 ((char *) &buf) + sizeof (buf.ol32),
187 sizeof (buf.oi32) - sizeof (buf.ol32));
188
189 /* Fill in fields using buffer contents. */
190 li.next = extract_mips_address (&buf.oi32.oi_next,
191 sizeof (buf.oi32.oi_next), byte_order);
192 li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
193 sizeof (buf.oi32.oi_ehdr),
194 byte_order)
195 - extract_mips_address (&buf.oi32.oi_orig_ehdr,
196 sizeof (buf.oi32.oi_orig_ehdr), byte_order);
197 li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
198 sizeof (buf.oi32.oi_pathname),
199 byte_order);
200 li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
201 sizeof (buf.oi32.
202 oi_pathname_len),
203 byte_order);
204 }
205 else if (extract_unsigned_integer (buf.oi64.oi_size.b,
206 sizeof (buf.oi64.oi_size), byte_order)
207 == sizeof (buf.oi64))
208 {
209 /* Use buf.oi64... */
210
211 /* Read rest of buffer. */
212 read_memory (addr + sizeof (buf.ol32),
213 ((char *) &buf) + sizeof (buf.ol32),
214 sizeof (buf.oi64) - sizeof (buf.ol32));
215
216 /* Fill in fields using buffer contents. */
217 li.next = extract_mips_address (&buf.oi64.oi_next,
218 sizeof (buf.oi64.oi_next), byte_order);
219 li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
220 sizeof (buf.oi64.oi_ehdr),
221 byte_order)
222 - extract_mips_address (&buf.oi64.oi_orig_ehdr,
223 sizeof (buf.oi64.oi_orig_ehdr), byte_order);
224 li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
225 sizeof (buf.oi64.oi_pathname),
226 byte_order);
227 li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
228 sizeof (buf.oi64.
229 oi_pathname_len),
230 byte_order);
231 }
232 else
233 {
234 error (_("Unable to fetch shared library obj_info or obj_list info."));
235 }
236
237 return li;
238 }
239
240 /* The symbol which starts off the list of shared libraries. */
241 #define DEBUG_BASE "__rld_obj_head"
242
243 static void *base_breakpoint;
244
245 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
246
247 /*
248
249 LOCAL FUNCTION
250
251 locate_base -- locate the base address of dynamic linker structs
252
253 SYNOPSIS
254
255 CORE_ADDR locate_base (void)
256
257 DESCRIPTION
258
259 For both the SunOS and SVR4 shared library implementations, if the
260 inferior executable has been linked dynamically, there is a single
261 address somewhere in the inferior's data space which is the key to
262 locating all of the dynamic linker's runtime structures. This
263 address is the value of the symbol defined by the macro DEBUG_BASE.
264 The job of this function is to find and return that address, or to
265 return 0 if there is no such address (the executable is statically
266 linked for example).
267
268 For SunOS, the job is almost trivial, since the dynamic linker and
269 all of it's structures are statically linked to the executable at
270 link time. Thus the symbol for the address we are looking for has
271 already been added to the minimal symbol table for the executable's
272 objfile at the time the symbol file's symbols were read, and all we
273 have to do is look it up there. Note that we explicitly do NOT want
274 to find the copies in the shared library.
275
276 The SVR4 version is much more complicated because the dynamic linker
277 and it's structures are located in the shared C library, which gets
278 run as the executable's "interpreter" by the kernel. We have to go
279 to a lot more work to discover the address of DEBUG_BASE. Because
280 of this complexity, we cache the value we find and return that value
281 on subsequent invocations. Note there is no copy in the executable
282 symbol tables.
283
284 Irix 5 is basically like SunOS.
285
286 Note that we can assume nothing about the process state at the time
287 we need to find this address. We may be stopped on the first instruc-
288 tion of the interpreter (C shared library), the first instruction of
289 the executable itself, or somewhere else entirely (if we attached
290 to the process for example).
291
292 */
293
294 static CORE_ADDR
295 locate_base (void)
296 {
297 struct minimal_symbol *msymbol;
298 CORE_ADDR address = 0;
299
300 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
301 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
302 {
303 address = SYMBOL_VALUE_ADDRESS (msymbol);
304 }
305 return (address);
306 }
307
308 /*
309
310 LOCAL FUNCTION
311
312 disable_break -- remove the "mapping changed" breakpoint
313
314 SYNOPSIS
315
316 static int disable_break ()
317
318 DESCRIPTION
319
320 Removes the breakpoint that gets hit when the dynamic linker
321 completes a mapping change.
322
323 */
324
325 static int
326 disable_break (void)
327 {
328 int status = 1;
329
330 /* Note that breakpoint address and original contents are in our address
331 space, so we just need to write the original contents back. */
332
333 if (deprecated_remove_raw_breakpoint (target_gdbarch, base_breakpoint) != 0)
334 {
335 status = 0;
336 }
337
338 base_breakpoint = NULL;
339
340 /* Note that it is possible that we have stopped at a location that
341 is different from the location where we inserted our breakpoint.
342 On mips-irix, we can actually land in __dbx_init(), so we should
343 not check the PC against our breakpoint address here. See procfs.c
344 for more details. */
345
346 return (status);
347 }
348
349 /*
350
351 LOCAL FUNCTION
352
353 enable_break -- arrange for dynamic linker to hit breakpoint
354
355 SYNOPSIS
356
357 int enable_break (void)
358
359 DESCRIPTION
360
361 This functions inserts a breakpoint at the entry point of the
362 main executable, where all shared libraries are mapped in.
363 */
364
365 static int
366 enable_break (void)
367 {
368 if (symfile_objfile != NULL && has_stack_frames ())
369 {
370 struct frame_info *frame = get_current_frame ();
371 struct address_space *aspace = get_frame_address_space (frame);
372 CORE_ADDR entry_point;
373
374 if (!entry_point_address_query (&entry_point))
375 return 0;
376
377 base_breakpoint = deprecated_insert_raw_breakpoint (target_gdbarch,
378 aspace, entry_point);
379
380 if (base_breakpoint != NULL)
381 return 1;
382 }
383
384 return 0;
385 }
386
387 /*
388
389 LOCAL FUNCTION
390
391 irix_solib_create_inferior_hook -- shared library startup support
392
393 SYNOPSIS
394
395 void solib_create_inferior_hook (int from_tty)
396
397 DESCRIPTION
398
399 When gdb starts up the inferior, it nurses it along (through the
400 shell) until it is ready to execute it's first instruction. At this
401 point, this function gets called via expansion of the macro
402 SOLIB_CREATE_INFERIOR_HOOK.
403
404 For SunOS executables, this first instruction is typically the
405 one at "_start", or a similar text label, regardless of whether
406 the executable is statically or dynamically linked. The runtime
407 startup code takes care of dynamically linking in any shared
408 libraries, once gdb allows the inferior to continue.
409
410 For SVR4 executables, this first instruction is either the first
411 instruction in the dynamic linker (for dynamically linked
412 executables) or the instruction at "start" for statically linked
413 executables. For dynamically linked executables, the system
414 first exec's /lib/libc.so.N, which contains the dynamic linker,
415 and starts it running. The dynamic linker maps in any needed
416 shared libraries, maps in the actual user executable, and then
417 jumps to "start" in the user executable.
418
419 For both SunOS shared libraries, and SVR4 shared libraries, we
420 can arrange to cooperate with the dynamic linker to discover the
421 names of shared libraries that are dynamically linked, and the
422 base addresses to which they are linked.
423
424 This function is responsible for discovering those names and
425 addresses, and saving sufficient information about them to allow
426 their symbols to be read at a later time.
427
428 FIXME
429
430 Between enable_break() and disable_break(), this code does not
431 properly handle hitting breakpoints which the user might have
432 set in the startup code or in the dynamic linker itself. Proper
433 handling will probably have to wait until the implementation is
434 changed to use the "breakpoint handler function" method.
435
436 Also, what if child has exit()ed? Must exit loop somehow.
437 */
438
439 static void
440 irix_solib_create_inferior_hook (int from_tty)
441 {
442 struct inferior *inf;
443 struct thread_info *tp;
444
445 inf = current_inferior ();
446
447 /* If we are attaching to the inferior, the shared libraries
448 have already been mapped, so nothing more to do. */
449 if (inf->attach_flag)
450 return;
451
452 /* Likewise when debugging from a core file, the shared libraries
453 have already been mapped, so nothing more to do. */
454 if (!target_can_run (&current_target))
455 return;
456
457 if (!enable_break ())
458 {
459 warning (_("shared library handler failed to enable breakpoint"));
460 return;
461 }
462
463 /* Now run the target. It will eventually hit the breakpoint, at
464 which point all of the libraries will have been mapped in and we
465 can go groveling around in the dynamic linker structures to find
466 out what we need to know about them. */
467
468 tp = inferior_thread ();
469
470 clear_proceed_status ();
471
472 inf->stop_soon = STOP_QUIETLY;
473 tp->stop_signal = TARGET_SIGNAL_0;
474
475 do
476 {
477 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
478 wait_for_inferior (0);
479 }
480 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
481
482 /* We are now either at the "mapping complete" breakpoint (or somewhere
483 else, a condition we aren't prepared to deal with anyway), so adjust
484 the PC as necessary after a breakpoint, disable the breakpoint, and
485 add any shared libraries that were mapped in. */
486
487 if (!disable_break ())
488 {
489 warning (_("shared library handler failed to disable breakpoint"));
490 }
491
492 /* solib_add will call reinit_frame_cache.
493 But we are stopped in the startup code and we might not have symbols
494 for the startup code, so heuristic_proc_start could be called
495 and will put out an annoying warning.
496 Delaying the resetting of stop_soon until after symbol loading
497 suppresses the warning. */
498 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
499 inf->stop_soon = NO_STOP_QUIETLY;
500 }
501
502 /* LOCAL FUNCTION
503
504 current_sos -- build a list of currently loaded shared objects
505
506 SYNOPSIS
507
508 struct so_list *current_sos ()
509
510 DESCRIPTION
511
512 Build a list of `struct so_list' objects describing the shared
513 objects currently loaded in the inferior. This list does not
514 include an entry for the main executable file.
515
516 Note that we only gather information directly available from the
517 inferior --- we don't examine any of the shared library files
518 themselves. The declaration of `struct so_list' says which fields
519 we provide values for. */
520
521 static struct so_list *
522 irix_current_sos (void)
523 {
524 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
525 int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
526 CORE_ADDR lma;
527 char addr_buf[8];
528 struct so_list *head = 0;
529 struct so_list **link_ptr = &head;
530 int is_first = 1;
531 struct lm_info lm;
532
533 /* Make sure we've looked up the inferior's dynamic linker's base
534 structure. */
535 if (!debug_base)
536 {
537 debug_base = locate_base ();
538
539 /* If we can't find the dynamic linker's base structure, this
540 must not be a dynamically linked executable. Hmm. */
541 if (!debug_base)
542 return 0;
543 }
544
545 read_memory (debug_base, addr_buf, addr_size);
546 lma = extract_mips_address (addr_buf, addr_size, byte_order);
547
548 while (lma)
549 {
550 lm = fetch_lm_info (lma);
551 if (!is_first)
552 {
553 int errcode;
554 char *name_buf;
555 int name_size;
556 struct so_list *new
557 = (struct so_list *) xmalloc (sizeof (struct so_list));
558 struct cleanup *old_chain = make_cleanup (xfree, new);
559
560 memset (new, 0, sizeof (*new));
561
562 new->lm_info = xmalloc (sizeof (struct lm_info));
563 make_cleanup (xfree, new->lm_info);
564
565 *new->lm_info = lm;
566
567 /* Extract this shared object's name. */
568 name_size = lm.pathname_len;
569 if (name_size == 0)
570 name_size = SO_NAME_MAX_PATH_SIZE - 1;
571
572 if (name_size >= SO_NAME_MAX_PATH_SIZE)
573 {
574 name_size = SO_NAME_MAX_PATH_SIZE - 1;
575 warning
576 ("current_sos: truncating name of %d characters to only %d characters",
577 lm.pathname_len, name_size);
578 }
579
580 target_read_string (lm.pathname_addr, &name_buf,
581 name_size, &errcode);
582 if (errcode != 0)
583 warning (_("Can't read pathname for load map: %s."),
584 safe_strerror (errcode));
585 else
586 {
587 strncpy (new->so_name, name_buf, name_size);
588 new->so_name[name_size] = '\0';
589 xfree (name_buf);
590 strcpy (new->so_original_name, new->so_name);
591 }
592
593 new->next = 0;
594 *link_ptr = new;
595 link_ptr = &new->next;
596
597 discard_cleanups (old_chain);
598 }
599 is_first = 0;
600 lma = lm.next;
601 }
602
603 return head;
604 }
605
606 /*
607
608 LOCAL FUNCTION
609
610 irix_open_symbol_file_object
611
612 SYNOPSIS
613
614 void irix_open_symbol_file_object (void *from_tty)
615
616 DESCRIPTION
617
618 If no open symbol file, attempt to locate and open the main symbol
619 file. On IRIX, this is the first link map entry. If its name is
620 here, we can open it. Useful when attaching to a process without
621 first loading its symbol file.
622
623 If FROM_TTYP dereferences to a non-zero integer, allow messages to
624 be printed. This parameter is a pointer rather than an int because
625 open_symbol_file_object() is called via catch_errors() and
626 catch_errors() requires a pointer argument. */
627
628 static int
629 irix_open_symbol_file_object (void *from_ttyp)
630 {
631 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
632 int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
633 CORE_ADDR lma;
634 char addr_buf[8];
635 struct lm_info lm;
636 struct cleanup *cleanups;
637 int errcode;
638 int from_tty = *(int *) from_ttyp;
639 char *filename;
640
641 if (symfile_objfile)
642 if (!query (_("Attempt to reload symbols from process? ")))
643 return 0;
644
645 if ((debug_base = locate_base ()) == 0)
646 return 0; /* failed somehow... */
647
648 /* First link map member should be the executable. */
649 read_memory (debug_base, addr_buf, addr_size);
650 lma = extract_mips_address (addr_buf, addr_size, byte_order);
651 if (lma == 0)
652 return 0; /* failed somehow... */
653
654 lm = fetch_lm_info (lma);
655
656 if (lm.pathname_addr == 0)
657 return 0; /* No filename. */
658
659 /* Now fetch the filename from target memory. */
660 target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
661 &errcode);
662
663 if (errcode)
664 {
665 warning (_("failed to read exec filename from attached file: %s"),
666 safe_strerror (errcode));
667 return 0;
668 }
669
670 cleanups = make_cleanup (xfree, filename);
671 /* Have a pathname: read the symbol file. */
672 symbol_file_add_main (filename, from_tty);
673
674 do_cleanups (cleanups);
675
676 return 1;
677 }
678
679
680 /*
681
682 LOCAL FUNCTION
683
684 irix_special_symbol_handling -- additional shared library symbol handling
685
686 SYNOPSIS
687
688 void irix_special_symbol_handling ()
689
690 DESCRIPTION
691
692 Once the symbols from a shared object have been loaded in the usual
693 way, we are called to do any system specific symbol handling that
694 is needed.
695
696 For SunOS4, this consisted of grunging around in the dynamic
697 linkers structures to find symbol definitions for "common" symbols
698 and adding them to the minimal symbol table for the runtime common
699 objfile.
700
701 However, for IRIX, there's nothing to do.
702
703 */
704
705 static void
706 irix_special_symbol_handling (void)
707 {
708 }
709
710 /* Using the solist entry SO, relocate the addresses in SEC. */
711
712 static void
713 irix_relocate_section_addresses (struct so_list *so,
714 struct target_section *sec)
715 {
716 sec->addr += so->lm_info->reloc_offset;
717 sec->endaddr += so->lm_info->reloc_offset;
718 }
719
720 /* Free the lm_info struct. */
721
722 static void
723 irix_free_so (struct so_list *so)
724 {
725 xfree (so->lm_info);
726 }
727
728 /* Clear backend specific state. */
729
730 static void
731 irix_clear_solib (void)
732 {
733 debug_base = 0;
734 }
735
736 /* Return 1 if PC lies in the dynamic symbol resolution code of the
737 run time loader. */
738 static int
739 irix_in_dynsym_resolve_code (CORE_ADDR pc)
740 {
741 return 0;
742 }
743
744 struct target_so_ops irix_so_ops;
745
746 /* Provide a prototype to silence -Wmissing-prototypes. */
747 extern initialize_file_ftype _initialize_irix_solib;
748
749 void
750 _initialize_irix_solib (void)
751 {
752 irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
753 irix_so_ops.free_so = irix_free_so;
754 irix_so_ops.clear_solib = irix_clear_solib;
755 irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
756 irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
757 irix_so_ops.current_sos = irix_current_sos;
758 irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
759 irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
760 irix_so_ops.bfd_open = solib_bfd_open;
761 }
This page took 0.046429 seconds and 4 git commands to generate.