Change len's type to ULONGEST: remote_write_bytes_aux
[deliverable/binutils-gdb.git] / gdb / solib-irix.c
1 /* Shared library support for IRIX.
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3
4 This file was created using portions of irix5-nat.c originally
5 contributed to GDB by Ian Lance Taylor.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "symtab.h"
25 #include "bfd.h"
26 /* FIXME: ezannoni/2004-02-13 Verify that the include below is
27 really needed. */
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "gdbthread.h"
34
35 #include "solist.h"
36 #include "solib.h"
37 #include "solib-irix.h"
38
39
40 /* Link map info to include in an allocate so_list entry. Unlike some
41 of the other solib backends, this (Irix) backend chooses to decode
42 the link map info obtained from the target and store it as (mostly)
43 CORE_ADDRs which need no further decoding. This is more convenient
44 because there are three different link map formats to worry about.
45 We use a single routine (fetch_lm_info) to read (and decode) the target
46 specific link map data. */
47
48 struct lm_info
49 {
50 CORE_ADDR addr; /* address of obj_info or obj_list
51 struct on target (from which the
52 following information is obtained). */
53 CORE_ADDR next; /* address of next item in list. */
54 CORE_ADDR reloc_offset; /* amount to relocate by */
55 CORE_ADDR pathname_addr; /* address of pathname */
56 int pathname_len; /* length of pathname */
57 };
58
59 /* It's not desirable to use the system header files to obtain the
60 structure of the obj_list or obj_info structs. Therefore, we use a
61 platform neutral representation which has been derived from the IRIX
62 header files. */
63
64 typedef struct
65 {
66 gdb_byte b[4];
67 }
68 gdb_int32_bytes;
69 typedef struct
70 {
71 gdb_byte b[8];
72 }
73 gdb_int64_bytes;
74
75 /* The "old" obj_list struct. This is used with old (o32) binaries.
76 The ``data'' member points at a much larger and more complicated
77 struct which we will only refer to by offsets. See
78 fetch_lm_info(). */
79
80 struct irix_obj_list
81 {
82 gdb_int32_bytes data;
83 gdb_int32_bytes next;
84 gdb_int32_bytes prev;
85 };
86
87 /* The ELF32 and ELF64 versions of the above struct. The oi_magic value
88 corresponds to the ``data'' value in the "old" struct. When this value
89 is 0xffffffff, the data will be in one of the following formats. The
90 ``oi_size'' field is used to decide which one we actually have. */
91
92 struct irix_elf32_obj_info
93 {
94 gdb_int32_bytes oi_magic;
95 gdb_int32_bytes oi_size;
96 gdb_int32_bytes oi_next;
97 gdb_int32_bytes oi_prev;
98 gdb_int32_bytes oi_ehdr;
99 gdb_int32_bytes oi_orig_ehdr;
100 gdb_int32_bytes oi_pathname;
101 gdb_int32_bytes oi_pathname_len;
102 };
103
104 struct irix_elf64_obj_info
105 {
106 gdb_int32_bytes oi_magic;
107 gdb_int32_bytes oi_size;
108 gdb_int64_bytes oi_next;
109 gdb_int64_bytes oi_prev;
110 gdb_int64_bytes oi_ehdr;
111 gdb_int64_bytes oi_orig_ehdr;
112 gdb_int64_bytes oi_pathname;
113 gdb_int32_bytes oi_pathname_len;
114 gdb_int32_bytes padding;
115 };
116
117 /* Union of all of the above (plus a split out magic field). */
118
119 union irix_obj_info
120 {
121 gdb_int32_bytes magic;
122 struct irix_obj_list ol32;
123 struct irix_elf32_obj_info oi32;
124 struct irix_elf64_obj_info oi64;
125 };
126
127 /* MIPS sign extends its 32 bit addresses. We could conceivably use
128 extract_typed_address here, but to do so, we'd have to construct an
129 appropriate type. Calling extract_signed_integer seems simpler. */
130
131 static CORE_ADDR
132 extract_mips_address (void *addr, int len, enum bfd_endian byte_order)
133 {
134 return extract_signed_integer (addr, len, byte_order);
135 }
136
137 /* Fetch and return the link map data associated with ADDR. Note that
138 this routine automatically determines which (of three) link map
139 formats is in use by the target. */
140
141 static struct lm_info
142 fetch_lm_info (CORE_ADDR addr)
143 {
144 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
145 struct lm_info li;
146 union irix_obj_info buf;
147
148 li.addr = addr;
149
150 /* The smallest region that we'll need is for buf.ol32. We'll read
151 that first. We'll read more of the buffer later if we have to deal
152 with one of the other cases. (We don't want to incur a memory error
153 if we were to read a larger region that generates an error due to
154 being at the end of a page or the like.) */
155 read_memory (addr, (gdb_byte *) &buf, sizeof (buf.ol32));
156
157 if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic), byte_order)
158 != 0xffffffff)
159 {
160 /* Use buf.ol32... */
161 gdb_byte obj_buf[432];
162 CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
163 sizeof (buf.ol32.data),
164 byte_order);
165
166 li.next = extract_mips_address (&buf.ol32.next,
167 sizeof (buf.ol32.next), byte_order);
168
169 read_memory (obj_addr, obj_buf, sizeof (obj_buf));
170
171 li.pathname_addr = extract_mips_address (&obj_buf[236], 4, byte_order);
172 li.pathname_len = 0; /* unknown */
173 li.reloc_offset = extract_mips_address (&obj_buf[196], 4, byte_order)
174 - extract_mips_address (&obj_buf[248], 4, byte_order);
175
176 }
177 else if (extract_unsigned_integer (buf.oi32.oi_size.b,
178 sizeof (buf.oi32.oi_size), byte_order)
179 == sizeof (buf.oi32))
180 {
181 /* Use buf.oi32... */
182
183 /* Read rest of buffer. */
184 read_memory (addr + sizeof (buf.ol32),
185 ((gdb_byte *) &buf) + sizeof (buf.ol32),
186 sizeof (buf.oi32) - sizeof (buf.ol32));
187
188 /* Fill in fields using buffer contents. */
189 li.next = extract_mips_address (&buf.oi32.oi_next,
190 sizeof (buf.oi32.oi_next), byte_order);
191 li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
192 sizeof (buf.oi32.oi_ehdr),
193 byte_order)
194 - extract_mips_address (&buf.oi32.oi_orig_ehdr,
195 sizeof (buf.oi32.oi_orig_ehdr), byte_order);
196 li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
197 sizeof (buf.oi32.oi_pathname),
198 byte_order);
199 li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
200 sizeof (buf.oi32.
201 oi_pathname_len),
202 byte_order);
203 }
204 else if (extract_unsigned_integer (buf.oi64.oi_size.b,
205 sizeof (buf.oi64.oi_size), byte_order)
206 == sizeof (buf.oi64))
207 {
208 /* Use buf.oi64... */
209
210 /* Read rest of buffer. */
211 read_memory (addr + sizeof (buf.ol32),
212 ((gdb_byte *) &buf) + sizeof (buf.ol32),
213 sizeof (buf.oi64) - sizeof (buf.ol32));
214
215 /* Fill in fields using buffer contents. */
216 li.next = extract_mips_address (&buf.oi64.oi_next,
217 sizeof (buf.oi64.oi_next), byte_order);
218 li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
219 sizeof (buf.oi64.oi_ehdr),
220 byte_order)
221 - extract_mips_address (&buf.oi64.oi_orig_ehdr,
222 sizeof (buf.oi64.oi_orig_ehdr), byte_order);
223 li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
224 sizeof (buf.oi64.oi_pathname),
225 byte_order);
226 li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
227 sizeof (buf.oi64.
228 oi_pathname_len),
229 byte_order);
230 }
231 else
232 {
233 error (_("Unable to fetch shared library obj_info or obj_list info."));
234 }
235
236 return li;
237 }
238
239 /* The symbol which starts off the list of shared libraries. */
240 #define DEBUG_BASE "__rld_obj_head"
241
242 static void *base_breakpoint;
243
244 static CORE_ADDR debug_base; /* Base of dynamic linker structures. */
245
246 /* Locate the base address of dynamic linker structs.
247
248 For both the SunOS and SVR4 shared library implementations, if the
249 inferior executable has been linked dynamically, there is a single
250 address somewhere in the inferior's data space which is the key to
251 locating all of the dynamic linker's runtime structures. This
252 address is the value of the symbol defined by the macro DEBUG_BASE.
253 The job of this function is to find and return that address, or to
254 return 0 if there is no such address (the executable is statically
255 linked for example).
256
257 For SunOS, the job is almost trivial, since the dynamic linker and
258 all of it's structures are statically linked to the executable at
259 link time. Thus the symbol for the address we are looking for has
260 already been added to the minimal symbol table for the executable's
261 objfile at the time the symbol file's symbols were read, and all we
262 have to do is look it up there. Note that we explicitly do NOT want
263 to find the copies in the shared library.
264
265 The SVR4 version is much more complicated because the dynamic linker
266 and it's structures are located in the shared C library, which gets
267 run as the executable's "interpreter" by the kernel. We have to go
268 to a lot more work to discover the address of DEBUG_BASE. Because
269 of this complexity, we cache the value we find and return that value
270 on subsequent invocations. Note there is no copy in the executable
271 symbol tables.
272
273 Irix 5 is basically like SunOS.
274
275 Note that we can assume nothing about the process state at the time
276 we need to find this address. We may be stopped on the first instruc-
277 tion of the interpreter (C shared library), the first instruction of
278 the executable itself, or somewhere else entirely (if we attached
279 to the process for example). */
280
281 static CORE_ADDR
282 locate_base (void)
283 {
284 struct minimal_symbol *msymbol;
285 CORE_ADDR address = 0;
286
287 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
288 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
289 {
290 address = SYMBOL_VALUE_ADDRESS (msymbol);
291 }
292 return (address);
293 }
294
295 /* Remove the "mapping changed" breakpoint.
296
297 Removes the breakpoint that gets hit when the dynamic linker
298 completes a mapping change. */
299
300 static int
301 disable_break (void)
302 {
303 int status = 1;
304
305 /* Note that breakpoint address and original contents are in our address
306 space, so we just need to write the original contents back. */
307
308 if (deprecated_remove_raw_breakpoint (target_gdbarch (), base_breakpoint) != 0)
309 {
310 status = 0;
311 }
312
313 base_breakpoint = NULL;
314
315 /* Note that it is possible that we have stopped at a location that
316 is different from the location where we inserted our breakpoint.
317 On mips-irix, we can actually land in __dbx_init(), so we should
318 not check the PC against our breakpoint address here. See procfs.c
319 for more details. */
320
321 return (status);
322 }
323
324 /* Arrange for dynamic linker to hit breakpoint.
325
326 This functions inserts a breakpoint at the entry point of the
327 main executable, where all shared libraries are mapped in. */
328
329 static int
330 enable_break (void)
331 {
332 if (symfile_objfile != NULL && has_stack_frames ())
333 {
334 struct frame_info *frame = get_current_frame ();
335 struct address_space *aspace = get_frame_address_space (frame);
336 CORE_ADDR entry_point;
337
338 if (!entry_point_address_query (&entry_point))
339 return 0;
340
341 base_breakpoint = deprecated_insert_raw_breakpoint (target_gdbarch (),
342 aspace, entry_point);
343
344 if (base_breakpoint != NULL)
345 return 1;
346 }
347
348 return 0;
349 }
350
351 /* Implement the "create_inferior_hook" target_solib_ops method.
352
353 For SunOS executables, this first instruction is typically the
354 one at "_start", or a similar text label, regardless of whether
355 the executable is statically or dynamically linked. The runtime
356 startup code takes care of dynamically linking in any shared
357 libraries, once gdb allows the inferior to continue.
358
359 For SVR4 executables, this first instruction is either the first
360 instruction in the dynamic linker (for dynamically linked
361 executables) or the instruction at "start" for statically linked
362 executables. For dynamically linked executables, the system
363 first exec's /lib/libc.so.N, which contains the dynamic linker,
364 and starts it running. The dynamic linker maps in any needed
365 shared libraries, maps in the actual user executable, and then
366 jumps to "start" in the user executable.
367
368 For both SunOS shared libraries, and SVR4 shared libraries, we
369 can arrange to cooperate with the dynamic linker to discover the
370 names of shared libraries that are dynamically linked, and the
371 base addresses to which they are linked.
372
373 This function is responsible for discovering those names and
374 addresses, and saving sufficient information about them to allow
375 their symbols to be read at a later time.
376
377 FIXME
378
379 Between enable_break() and disable_break(), this code does not
380 properly handle hitting breakpoints which the user might have
381 set in the startup code or in the dynamic linker itself. Proper
382 handling will probably have to wait until the implementation is
383 changed to use the "breakpoint handler function" method.
384
385 Also, what if child has exit()ed? Must exit loop somehow. */
386
387 static void
388 irix_solib_create_inferior_hook (int from_tty)
389 {
390 struct inferior *inf;
391 struct thread_info *tp;
392
393 inf = current_inferior ();
394
395 /* If we are attaching to the inferior, the shared libraries
396 have already been mapped, so nothing more to do. */
397 if (inf->attach_flag)
398 return;
399
400 /* Likewise when debugging from a core file, the shared libraries
401 have already been mapped, so nothing more to do. */
402 if (!target_can_run (&current_target))
403 return;
404
405 if (!enable_break ())
406 {
407 warning (_("shared library handler failed to enable breakpoint"));
408 return;
409 }
410
411 /* Now run the target. It will eventually hit the breakpoint, at
412 which point all of the libraries will have been mapped in and we
413 can go groveling around in the dynamic linker structures to find
414 out what we need to know about them. */
415
416 tp = inferior_thread ();
417
418 clear_proceed_status ();
419
420 inf->control.stop_soon = STOP_QUIETLY;
421 tp->suspend.stop_signal = GDB_SIGNAL_0;
422
423 do
424 {
425 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
426 wait_for_inferior ();
427 }
428 while (tp->suspend.stop_signal != GDB_SIGNAL_TRAP);
429
430 /* We are now either at the "mapping complete" breakpoint (or somewhere
431 else, a condition we aren't prepared to deal with anyway), so adjust
432 the PC as necessary after a breakpoint, disable the breakpoint, and
433 add any shared libraries that were mapped in. */
434
435 if (!disable_break ())
436 {
437 warning (_("shared library handler failed to disable breakpoint"));
438 }
439
440 /* solib_add will call reinit_frame_cache.
441 But we are stopped in the startup code and we might not have symbols
442 for the startup code, so heuristic_proc_start could be called
443 and will put out an annoying warning.
444 Delaying the resetting of stop_soon until after symbol loading
445 suppresses the warning. */
446 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
447 inf->control.stop_soon = NO_STOP_QUIETLY;
448 }
449
450 /* Implement the "current_sos" target_so_ops method. */
451
452 static struct so_list *
453 irix_current_sos (void)
454 {
455 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
456 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / TARGET_CHAR_BIT;
457 CORE_ADDR lma;
458 gdb_byte addr_buf[8];
459 struct so_list *head = 0;
460 struct so_list **link_ptr = &head;
461 int is_first = 1;
462 struct lm_info lm;
463
464 /* Make sure we've looked up the inferior's dynamic linker's base
465 structure. */
466 if (!debug_base)
467 {
468 debug_base = locate_base ();
469
470 /* If we can't find the dynamic linker's base structure, this
471 must not be a dynamically linked executable. Hmm. */
472 if (!debug_base)
473 return 0;
474 }
475
476 read_memory (debug_base, addr_buf, addr_size);
477 lma = extract_mips_address (addr_buf, addr_size, byte_order);
478
479 while (lma)
480 {
481 lm = fetch_lm_info (lma);
482 if (!is_first)
483 {
484 int errcode;
485 char *name_buf;
486 int name_size;
487 struct so_list *new
488 = (struct so_list *) xmalloc (sizeof (struct so_list));
489 struct cleanup *old_chain = make_cleanup (xfree, new);
490
491 memset (new, 0, sizeof (*new));
492
493 new->lm_info = xmalloc (sizeof (struct lm_info));
494 make_cleanup (xfree, new->lm_info);
495
496 *new->lm_info = lm;
497
498 /* Extract this shared object's name. */
499 name_size = lm.pathname_len;
500 if (name_size == 0)
501 name_size = SO_NAME_MAX_PATH_SIZE - 1;
502
503 if (name_size >= SO_NAME_MAX_PATH_SIZE)
504 {
505 name_size = SO_NAME_MAX_PATH_SIZE - 1;
506 warning (_("current_sos: truncating name of "
507 "%d characters to only %d characters"),
508 lm.pathname_len, name_size);
509 }
510
511 target_read_string (lm.pathname_addr, &name_buf,
512 name_size, &errcode);
513 if (errcode != 0)
514 warning (_("Can't read pathname for load map: %s."),
515 safe_strerror (errcode));
516 else
517 {
518 strncpy (new->so_name, name_buf, name_size);
519 new->so_name[name_size] = '\0';
520 xfree (name_buf);
521 strcpy (new->so_original_name, new->so_name);
522 }
523
524 new->next = 0;
525 *link_ptr = new;
526 link_ptr = &new->next;
527
528 discard_cleanups (old_chain);
529 }
530 is_first = 0;
531 lma = lm.next;
532 }
533
534 return head;
535 }
536
537 /* Implement the "open_symbol_file_object" target_so_ops method.
538
539 If no open symbol file, attempt to locate and open the main symbol
540 file. On IRIX, this is the first link map entry. If its name is
541 here, we can open it. Useful when attaching to a process without
542 first loading its symbol file. */
543
544 static int
545 irix_open_symbol_file_object (void *from_ttyp)
546 {
547 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
548 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / TARGET_CHAR_BIT;
549 CORE_ADDR lma;
550 gdb_byte addr_buf[8];
551 struct lm_info lm;
552 struct cleanup *cleanups;
553 int errcode;
554 int from_tty = *(int *) from_ttyp;
555 char *filename;
556
557 if (symfile_objfile)
558 if (!query (_("Attempt to reload symbols from process? ")))
559 return 0;
560
561 if ((debug_base = locate_base ()) == 0)
562 return 0; /* failed somehow... */
563
564 /* First link map member should be the executable. */
565 read_memory (debug_base, addr_buf, addr_size);
566 lma = extract_mips_address (addr_buf, addr_size, byte_order);
567 if (lma == 0)
568 return 0; /* failed somehow... */
569
570 lm = fetch_lm_info (lma);
571
572 if (lm.pathname_addr == 0)
573 return 0; /* No filename. */
574
575 /* Now fetch the filename from target memory. */
576 target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
577 &errcode);
578
579 if (errcode)
580 {
581 warning (_("failed to read exec filename from attached file: %s"),
582 safe_strerror (errcode));
583 return 0;
584 }
585
586 cleanups = make_cleanup (xfree, filename);
587 /* Have a pathname: read the symbol file. */
588 symbol_file_add_main (filename, from_tty);
589
590 do_cleanups (cleanups);
591
592 return 1;
593 }
594
595 /* Implement the "special_symbol_handling" target_so_ops method.
596
597 For IRIX, there's nothing to do. */
598
599 static void
600 irix_special_symbol_handling (void)
601 {
602 }
603
604 /* Using the solist entry SO, relocate the addresses in SEC. */
605
606 static void
607 irix_relocate_section_addresses (struct so_list *so,
608 struct target_section *sec)
609 {
610 sec->addr += so->lm_info->reloc_offset;
611 sec->endaddr += so->lm_info->reloc_offset;
612 }
613
614 /* Free the lm_info struct. */
615
616 static void
617 irix_free_so (struct so_list *so)
618 {
619 xfree (so->lm_info);
620 }
621
622 /* Clear backend specific state. */
623
624 static void
625 irix_clear_solib (void)
626 {
627 debug_base = 0;
628 }
629
630 /* Return 1 if PC lies in the dynamic symbol resolution code of the
631 run time loader. */
632 static int
633 irix_in_dynsym_resolve_code (CORE_ADDR pc)
634 {
635 return 0;
636 }
637
638 struct target_so_ops irix_so_ops;
639
640 /* Provide a prototype to silence -Wmissing-prototypes. */
641 extern initialize_file_ftype _initialize_irix_solib;
642
643 void
644 _initialize_irix_solib (void)
645 {
646 irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
647 irix_so_ops.free_so = irix_free_so;
648 irix_so_ops.clear_solib = irix_clear_solib;
649 irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
650 irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
651 irix_so_ops.current_sos = irix_current_sos;
652 irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
653 irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
654 irix_so_ops.bfd_open = solib_bfd_open;
655 }
This page took 0.04229 seconds and 4 git commands to generate.